

AADDDDRREESSSSIINNGG CCHHAALLLLEENNGGEESS IINN AAPPPPLLIICCAATTIIOONN
SSEECCUURRIITTYY
An in-depth examination of the importance of addressing web application issues
throughout the Software Development Life Cycle (SDLC)

A whitepaper from Watchfire

KKEENNNNEETTHH GGRRAAFF

TTAABBLLEE OOFF CCOONNTTEENNTTSS
1. Understanding Application Security Challenges...1

1.1 Classic Application Security Challenges ...1
1.2 Application Security Defined..2

2. Application Security Threats...3
2.1 Impersonation ...3
2.2 Tampering..4
2.3 Repudiation ...4
2.4 Information Disclosure ..4
2.5 Denial of Service (DoS) ..5
2.6 Elevation of Privilege ...5

3. Reviewing Security Concerns for Existing Applications...5
3.1 Discovery and Baselines ..6
3.2 Risk assessment and assignment..6
3.3 Shielding and damage control ..6
3.4 Ongoing monitoring and review..7

4. Resolving Errors throughout the SDLC...7
4.1 Cost of Fixing Errors in the SDLC ..7
4.2 Types of Errors in the SDLC Process ...8
4.3 General Approaches to Application Security Testing ...8

5. Define Your Approach ...10
5.1 Security Awareness ..10
5.2 Application Risk and Liability Categorization...11
5.3 Zero Tolerance Enforcement ...11
5.4 Security Testing Integrated into Development Process ..11

6. Validate Your Methodology..12
6.1 Security Awareness ..12
6.2 Application Risk and Liability Categorization...12
6.3 Zero Tolerance Enforcement ...12
6.4 Security Testing...13

Appendix A: Requirement Phase Security Considerations ..14
Appendix B: Design Phase Security Considerations ...16
Appendix C: Coding Phase Security Considerations ..18
Appendix D: Using CMMI to improve Application Security...20
Appendix E: Microsoft’s DREAD-based risk scoring ..21
Appendix F: Event-Driven Security Testing ...23
7. Further Reading ..25
About Watchfire ..26

Copyright © 2005 Watchfire Corporation. All Rights Reserved. Watchfire, WebCPO, WebXM, WebQA, Watchfire Enterprise
Solution, WebXACT, Linkbot, Macrobot, Metabot, Bobby, Sanctum, AppScan, the Sanctum Logo, the Bobby Logo and the Flame
Logo are trademarks or registered trademarks of Watchfire Corporation. GómezPro is a trademark of Gómez, Inc., used under
license. All other products, company names, and logos are trademarks or registered trademarks of their respective owners.

Except as expressly agreed by Watchfire in writing, Watchfire makes no representation about the suitability and/or accuracy of the
information published in this whitepaper. In no event shall Watchfire be liable for any direct, indirect, incidental, special or
consequential damages, or damages for loss of profits, revenue, data or use, incurred by you or any third party, arising from your
access to, or use of, the information published in this whitepaper, for a particular purpose.

www.watchfire.com

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 1

11.. UUNNDDEERRSSTTAANNDDIINNGG AAPPPPLLIICCAATTIIOONN SSEECCUURRIITTYY CCHHAALLLLEENNGGEESS
Today’s web application attacker can use your own applications to expose, embarrass and steal from you.
Firewalls and SSL are commonplace yet, according to recent studies, three out of four websites are
vulnerable to attack, and the vast majority of these attacks are application security attacks.1 Companies rely
on network and host security, but often these measures are simply not enough to prevent these web
application attacks.

Application security is different for network and host security. The traditional approaches to implement
network and host security do not apply at this level. This paper will tell you why, what to do about it, and
provide a roadmap to improving your own application security.

11..11 CCLLAASSSSIICC AAPPPPLLIICCAATTIIOONN SSEECCUURRIITTYY CCHHAALLLLEENNGGEESS
Companies will face a wide variety of security challenges. The following tables show the business and
technical concerns raised by some of these challenges. We will present potential solutions to these problems
later in this paper. Watchfire’s approach of using security awareness, application risk assessment, zero
tolerance and complete testing may also help to address your application security concerns.

1.1.1 Insurance: A top-brand company with millions of individual and group customers

Business
Challenges

 Meet regulatory compliance

 Proactively secure sensitive customer records

 Integrate application security into multi-tiered security strategy supporting over
4000 physicians in 60 hospitals

 Eliminate costs associated with finding and fixing post-production security issues

Technical
Challenges

 Site growing rapidly

 Identified numerous application security flaws production in sites (discovered
through audit)

 Ensure secure customer information and transactions

 95 percent of data is considered confidential.

1.1.2 Finance: A top U.S. commercial bank with assets over $200B

Business
Challenges

 Meet corporate mandate to build application security into development life cycle

 Over 3000 legacy and new applications

 Reduce overall cost of development life cycle

 Company outsourcing >$1M a year for “ethical hacking” to detect vulnerabilities
prior or after deployment

Technical
Challenges

 Massive well-known site

 Application development distributed across many business units

 Inconsistent manual testing and code review by developer

 Developers had no tools or knowledge of security testing techniques.

1 “All-Out blitz against Web app attacks,” Network World, May 17, 2004.
(http://www.networkworld.com/techinsider/2004/0517techinsidermain.html)

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 2

1.1.3 Pharmaceutical: A top-tier, research-driven pharmaceutical products company

Business
Challenges

 Meeting organizational and governmental regulations for data protection

 Accurately assessing risk associated with each application

 Frugally applying resources to secure applications and data

Technical
Challenges

 Numerous disparate development groups and lines of business

 Multiple acquisitions and strategic partnerships

 Highly regulated confidential data

 Adhering to multinational regulations

1.1.4 Entertainment & Media: Top U.S. television network
Business
Challenges

 Highly visible brand

 Multiple high profile and often controversial media properties

Technical
Challenges

 Very dynamic regularly changing sites

 Completely decentralized application development

 Small application security team

 Time critical production schedules

11..22 AAPPPPLLIICCAATTIIOONN SSEECCUURRIITTYY DDEEFFIINNEEDD
The Open System Interconnection (OSI) reference model defines seven network protocol layers, and every
message goes through all seven layers.2 The highest layer, layer 7, is the application layer and includes
protocols like HTTP. HTTP is used to transport messages containing content including HTML, XML, SOAP
and web services. For the purposes of this paper, we will focus on application attacks carried by HTTP.

Traditional firewalls can be ineffective against HTTP-carried attacks. The application attacker uses valid
HTTP requests over well-known ports so network firewalls will allow the attack traffic, by design, because
it is good traffic when viewed at the network layer. What is bad is not the HTTP request itself but the data
contained within the request. Often this harmful data is user input that is specially formatted or organized
to change the behavior of your application. Application attacks can allow unrestricted access to databases,
execute arbitrary system commands, or alter website content.

Proper application security prevents the user from altering the behavior of your application.

1.2.1 Common conditions that can lead to poor Application Security
 Application security requirements, if defined, are usually seen as non-functional requirements, negative
statements (you will not …), or vague expectations.

 Application security testing is only performed as part of an audit process.

 Application requirement and design teams view security as a network or IT team issue.

 Typical testing procedures are focused on proper functional behavior.

 Only the few “security experts” in the organization are aware of application security threats.

2 International Organization for Standardization (www.iso.org)

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 3

 Application security testing is limited to small windows where “good guys attempt to do what potential
bad guys might do.”

22.. AAPPPPLLIICCAATTIIOONN SSEECCUURRIITTYY TTHHRREEAATTSS
Security threats will define what security technologies can be most effectively used to defend your
application. It is often best to work with generic countermeasure concepts before selecting a specific
technology. Doing so will help ensure the best technologies are chosen on their merits and not because they
feature the latest buzzword.

Figure 1: Common web application security concerns

A list of common threats and possible solutions is listed below. The specific threats to your application will
be different.

22..11 IIMMPPEERRSSOONNAATTIIOONN
Anytime someone requests access to non-public information, an organization needs to make sure they are
who they say they are. In general, you can prevent impersonation by using stringent authentication. You
can also defend against impersonation by keeping credential information safe.

Examples
 An attacker typing in a different user's credentials

 Changing the contents of a cookie or parameter to pretend that he/she is a different
user or that the cookie comes from a different server

Common Mistakes

 Using communications-based authentication to allow access to any user’s data

 Using unencrypted credentials that an eavesdropper can capture and reuse

 Storing credentials in cookies or parameters

 Using self-designed or unproven authentication methods

 Client software is not allowed to authenticate the host when required.

 Using an authentication from the wrong trust domain

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 4

Possible Solutions
 Operating system supplied frameworks (e.g., Kerberos)

 Encrypted tokens such as session cookies

 Using digital signatures
Table 1: Impersonation threats

22..22 TTAAMMPPEERRIINNGG
Tampering means changing or deleting a resource without authorization.

Examples Defacing a website

 Altering data in transit

Common Mistakes

 Trusting data sources without validation

 Sanitizing input to prevent the execution of unwanted code

 Running with escalated privileges

 Sensitive data is left unencrypted

Possible Solutions
 Using operating system security to lock down files, directories and other resources

 Validating your data

 Hash and signed data in transit (SSL or IPsec)
Table 2: Tampering threats

22..33 RREEPPUUDDIIAATTIIOONN
Repudiation is the idea of denying that an action occurred. A repudiation attack tries to destroy, hide or
alter evidence.

Examples Deleting logs

 Using impersonation to request changes

Common Mistakes
 Poor or missing authorization and authentication

 Improper logging

 Allowing sensitive information on unsecured communication channels
Possible Solutions Stringent authentication, audits, transaction records, logs, or digital signatures

Table 3: Repudiation threats

22..44 IINNFFOORRMMAATTIIOONN DDIISSCCLLOOSSUURREE
Information disclosure simply means revealing private information. The severity will depend upon the
amount and sensitivity of the information disclosed. Data tampering is the ability to modify disclosed
information.

Examples
 Stealing passwords

 Obtaining credit card information or other similar personally identifiable
information (PII)

 Obtaining information about the application source and/or its host machines

Common Mistakes
 Allowing an authenticated user access to other users’ data

 Allowing sensitive information on unsecured communication channels

 Poor selection of encryption algorithms and keys

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 5

Possible Solutions
 Storing information on a session (transitory) rather than permanent basis

 Using hashing and encryption whenever possible

 Matching user data to user authentication
Table 4: Information disclosure threats

22..55 DDEENNIIAALL OOFF SSEERRVVIICCEE ((DDOOSS))
A DoS attack causes an application to be less available than it should be. DoS attacks take two forms: 1)
Flooding, where many messages are sent to overwhelm a server; 2) Lockout, where the request forces the
server to take a long time to respond by consuming resources, or preventing resources from being available.

DoS attacks can take place at any level of the OSI model. They are relatively easy to mount, and difficult to
defend against.

Examples Sending the application too many simultaneous requests

 Sending requests that cause the application to restart or take a long time to process

Common Mistakes Pleasing too many or conflicting applications on a single server

 Incomplete unit testing

Possible Solutions
 Filtering packets using a firewall

 Using a load balancer to throttle the number of requests from a single source

 Using asynchronous protocols to handle computationally intensive requests --
proper error recovery

Table 5: Denial of Service (DoS) threats

22..66 EELLEEVVAATTIIOONN OOFF PPRRIIVVIILLEEGGEE
An elevation of privilege means receiving more permissions than normally assigned.

Examples User gains administrative rights

 Employee gains access to a manager role

Common Mistakes
 Running web server processes as “root” or “administrator”

 Errors in coding allow buffer overflows, placing the application into an elevated
debug state

Possible Solutions
 Using a least privilege context whenever possible

 Using type safe languages and compiler options to prevent or control buffer
overflows

Table 6: Elevation of privilege threat

33.. RREEVVIIEEWWIINNGG SSEECCUURRIITTYY CCOONNCCEERRNNSS FFOORR EEXXIISSTTIINNGG
AAPPPPLLIICCAATTIIOONNSS
Application security errors are created, discovered and fixed just like any other application error. This
paper focuses on improving the security-specific processes that you use when creating applications.
General SDLC process improvements are outside of the scope of this paper.

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 6

Appendix D: Using CMMI to improve Application Security,” is a logical place to start if you need to make
general process improvements in addition to security.

Nearly every organization has existing legacy applications and systems that are currently deployed and
need to be protected. The effort to assess and manage the infrastructure is demanding, expensive and
ongoing. There are numerous books and web references on how to best manage security for an established
application. In fact, much of this material assumes that fixing the application is outside of your control.
While this paper’s proposed security guidelines will discuss benefits in the context of existing applications,
applying these guidelines to new or re-engineered applications can derive an even greater value.

You should already be doing the following for established applications:

33..11 DDIISSCCOOVVEERRYY AANNDD BBAASSEELLIINNEESS
 A complete inventory of all application and systems. This includes technical information (IP, DNS, OS
used, etc…) as well as business information, such as who authorized the deployment and who needs to
be notified if you need to pull the plug.

 Systems scanned for common vulnerabilities and exploits. The OS, web server and other third-party
products you rely upon need to be checked for known attacks. These attacks are normally published and
readily available. Ideally, prior to loading your application on a server, it was patched, hardened and
scanned.

 Applications scanned for vulnerabilities to known attacks. Application assessments look at the HTTP
requests your application uses and tries to manipulate the data. This assessment is usually based on
reviewing the application as a black-box.

 Application authentication and user rights management tested.

 Terminate all unknown services.

33..22 RRIISSKK AASSSSEESSSSMMEENNTT AANNDD AASSSSIIGGNNMMEENNTT
 Rate applications and systems for risk. Data stores, access control, user provisioning and rights
management should be highlighted.

 Prioritize application vulnerabilities discovered during the assessments. Appendix E: Microsoft’s
DREAD-based risk scoring is one possible framework.

 Review organizational, industry and governmental policy compliance. What is or is not acceptable must
be defined.

33..33 SSHHIIEELLDDIINNGG AANNDD DDAAMMAAGGEE CCOONNTTRROOLL
 Patches, if available, may be applied to the application and/or infrastructure.

 Sometimes you cannot or will not be able to fix security issues in an application. In these cases, the
security flaw should be shielded to prevent or minimize the exposure. An application firewall can be
used to shield, or the application may be restricted, disabled or relocated.

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 7

33..44 OONNGGOOIINNGG MMOONNIITTOORRIINNGG AANNDD RREEVVIIEEWW
 Assessments are scheduled as part of the documented change management processes. This closes the
circle by beginning a new discovery stage.

44.. RREESSOOLLVVIINNGG EERRRROORRSS TTHHRROOUUGGHHOOUUTT TTHHEE SSDDLLCC
44..11 CCOOSSTT OOFF FFIIXXIINNGG EERRRROORRSS IINN TTHHEE SSDDLLCC
Every application faces pressures on the SDLC, such as competitive time to market demands, growing
application complexity and increasing business risks. Costs escalate dramatically the longer application
errors go undiscovered. Table 7 is taken from a 2002 NIST study. Following is the direct link:
http://www.nist.gov/director/prog-ofc/report02-3.pdf

 Found in
Design

Found in
Coding

Found in
Integration

Found in
Beta

Found in
GA

Design Errors 1x 5x 10x 15x 30x

Coding Errors 1x 10x 20x 30x

Integration Errors 1x 10x 20x

Table 7: Relative costs based on time lapse between error creation and discovery

When a design error is found in GA, the expense is 30 times what it would have cost to fix the error during
the design phase. This is just the application team cost of fixing the error. The study did not factor in other
costs such as lost market share, reputation or customer satisfaction.

A study conducted by Sanctum
(acquired by Watchfire in 2004) of
over 100 applications at large
corporate and government sites
places some hard numbers on
security failure rates. The study
found that 92 percent of all
applications failed security
testing conducted in the
integration or production stages.
The average time to fix the errors
was 2.5 months, and the cost to
the business team averaged $25M.
When the failed applications
were tested again, 20 percent (16
percent of the total) security
testing failed a second time. Half
of these re-failed applications (8 percent of the total) never passed.

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 8

Given the likelihood of failed security testing and the cost of discovery errors late in the SDLC, it makes
sense to improve security testing throughout the lifecycle and find security errors early.

44..22 TTYYPPEESS OOFF EERRRROORRSS IINN TTHHEE SSDDLLCC PPRROOCCEESSSS
Before we discuss how we can find and fix errors, let’s review the types of errors we are trying to correct
based on where in the SDLC they are typically generated.

4.2.1 Requirements Stage Errors
The requirements team is often given general security expectations that their application is expected to
adhere to. But when the requirements team is unaware of application security threats, it is unlikely that
specific application requirements will be given to the design team, including requirements to scan for
specific application threats.

4.2.2 Design Stage Errors
If you have a good set of requirements, where can the design team go wrong? They, too, need to be aware
of application security threats. Poor or mismatched technology selection can cause the design team to
erroneously believe they have fulfilled a security requirement. That lack of security knowledge can mean
that a testing framework is missing, incomplete or ineffective.

4.2.3 Coding Stage Errors
You now have a good design, and the developer is expected to build to that design. What errors do they
introduce? Instead of writing brand new code, they reuse flawed code, or generate code using a security
unaware IDE wizard. They may not do proper data validation or they may not use the security features of
the application’s selected framework properly.

4.2.3 Late Stage Errors
In most organizations, application security knowledge is typically held by a few people that are part of
“tiger” or “red” security audit teams. These teams will be scheduled in limited windows to look at an
application late in the SDLC, with the hope that they will catch security errors before the application
reaches the user.

Centralizing this function is done because a good white-hat attacker is rare (read expensive), and these teams
often provide mandated audits of production systems. As we will see, this approach is a bottleneck,
expensive and ineffective in finding the full range of application security errors.

44..33 GGEENNEERRAALL AAPPPPRROOAACCHHEESS TTOO AAPPPPLLIICCAATTIIOONN SSEECCUURRIITTYY TTEESSTTIINNGG
Application security errors are just that: errors. While it may take special knowledge to create the tests to
discover security errors, once the security error, is found, the process you use to fix it is exactly the same as
any other error.

4.3.1 Manual Testing
Penetration or security acceptance testing is often completed by a small set of security experts. Often these
tests are done with the assistance of known tools and scripts.

Pros Generates well-targeted tests to specific application functions

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 9

Cons

 Limited experts perform security testing

 Human error

 High reoccurring expense

 Time constraints limit the application coverage

4.3.2 Automated testing
Automated testing is typically built in one of two ways. 1) A bottom-up approach where individual
functions or methods have specific tests typically built by the code developer. 2) A top-down approach
where QA teams build tests from an end-user perspective.

Automated testing requires greater overhead to create and maintain than manual testing. This expense is
normally offset by quality improvements, reduced effort for acceptance testing and improved iterative
development processes.

4.3.3 Black-box testing
Black box, sometimes called “system testing,” is a top-down approach. The assumption is that you know
nothing about how the “inside” of the application works. Your knowledge of the application is limited to
seeing the application’s input and output. This is the most common form of security testing, and is used by
auditors, pen testers and hackers. The test(s) consist of modifying “normal” user input in an attempt to get
the application to behave in an unexpected way.

Pros Little or no application knowledge required

 Well-established tools for automation of testing

Cons

 Testing can only be executed when all of the pieces of the application are ready for testing
(typically in a late-staging or production environment).

 User input mutations may result in a large number of transactions. Ignoring or reversing the
results of these transactions is often problematic for production systems.

 Because of limited visibility into the application, sometimes flaws are not discovered.

4.3.4 White-box
White-box, sometimes called “source testing,” tests the individual components of your application. Often
this testing is preformed at the method or function level. This testing is performed to show errors in specific
functions, and is often combined with code scanning tools and peer reviews.

Pros Well-defined discovery for flaws in tested functions

 Established integrations with developer IDEs

Cons

 Because of focus at the source level, this type of testing will not discover requirement and design
flaws.

 Poor discovery of security errors since many attacks involve multiple components or have specific
timing not covered by unit testing

 Tests are often written by the same person writing the code. If the developer is not security
aware, he will not know what tests he needs.

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 10

4.3.5 Gray-box testing (Using an Application Defined Framework)
A framework combines both black and white-box testing. The normal motivation to create a gray-box
testing framework is to create the application state and event testing that is unavailable in commercial
testing tools. Appendix F: Event-Driven Security Testing: shows one possible framework design.

Pros

 The most comprehensive method combining both system and unit level testing

 Action driven tests can provide state and timing based tests.

 Agents and/or proxies can be used for cause/effect based testing.

 Framework can be built to allow production based audit testing without impacting production
data.

 The framework can monitor data flows through the application.

Cons Must be defined as part of requirements and design phases

 The effort to build test framework is often as large as the application to be tested.

55.. DDEEFFIINNEE YYOOUURR AAPPPPRROOAACCHH
Watchfire recommends that every organization complete tasks in four categories: 1) Security Awareness, 2)
Application Risk and Liability Categorization, 3) Zero Tolerance Enforcement and 4) Security Testing
Integrated into Development process. While it is possible to achieve improvements by focusing on one to
two task categories, the best results are achieved by completing all categories.

55..11 SSEECCUURRIITTYY AAWWAARREENNEESSSS
This category consists of training, communication and monitoring tasks. To effectively complete these tasks,
it is recommended that organizations be prepared for a consultative or collaborative approach. One-way
edits, unread reports and ignored policies are counter-productive. The following is meant to be a potential
guideline only. Your individual requirements may vary.

Training

 Provide a half day of application security training annually for all members of the
application team, including developers, QA, analysts and managers -- this training
should cover what current attacks are, how they are created and what the
recommended remediation process is. The training should provide information on the
organization’s current security posture and feedback on the organization’s security
best practices.

 Every developer should attend framework specific security training. The typical
length of training (1-5 days) varies by framework and sometimes can be completed as
self-instruction. Every serious framework has pre-built security functions that should
be mastered.

 As recommend by the vendor training in the proper use of any COTS security tool
selected.

Communication

 Security best practices guidelines are drawn from all teams and all lines of business.
This document should be short (<10 pages), principal driven and applicable across the
organization.

 Develop processes that contain a component of peer mentoring

 Every application team is assigned a liaison from the Security team to help with
application requirements and design issues.

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 11

Monitoring
 The security posture of any application in production should be known at all times.

 Security errors should be tracked through normal defect tracking and reporting
infrastructures to ensure all parties have the proper visibility.

Table 8: Security Awareness Tasks

55..22 AAPPPPLLIICCAATTIIOONN RRIISSKK AANNDD LLIIAABBIILLIITTYY CCAATTEEGGOORRIIZZAATTIIOONN
Every organization is faced with limited resources. Priorities must be managed, and security is no exception.
We have found that organizations often have a difficult time assigning absolute dollar values to application
risk, and when they do succeed in this ordering, it does not change much from the softer models such as
DREAD (see Appendix E). Unless you have unlimited resources, you need to do the following tasks:

 Define risk thresholds. Include when the security team is expected to terminate application services.

 Categorize applications by risk factors (e.g., Internal vs. External Users or by network deployment,
Internet, Intranet vs. Extranet)

 All security scans of an application should result in a risk report that is matched against the defined risk
thresholds.

55..33 ZZEERROO TTOOLLEERRAANNCCEE EENNFFOORRCCEEMMEENNTT
This category may sound difficult. A better title may be “Ignorance of the law is no excuse.” When your
organization has a well-defined security policy, you should know prior to deployment whether your
application complies or not.

 The application team should know what tests it will need to be passed at the beginning of the project.

 The requirements and design of the application should be formally reviewed for security issues before
coding begins.

 If there is a compelling reason for the application to not follow the organization’s security policy, an
exception must be granted by the CIO as part of the design approval process.

 Clear security policies must be in place.

 The application team’s target defect rate for all errors should be less than one error per 10K lines of code.

55..44 SSEECCUURRIITTYY TTEESSTTIINNGG IINNTTEEGGRRAATTEEDD IINNTTOO DDEEVVEELLOOPPMMEENNTT PPRROOCCEESSSS
This task group is presented last for a reason. To be effective, this group relies upon you to make significant
process with the other task groups. When completed, this task group has the biggest return on investment.
This task group is the only one that has significant impact on the design, development and testing of your
application.

 The security tests an application needs to pass must be an explicit functional requirement.

 The test framework must be able to be run on demand.

 The application test framework should include unit and system tests as well as any test required to
address threats to the application.

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 12

 The test framework should be automated.

 The design of the application test framework should allow for audit testing in production.

 When building the application testing framework, make sure to include testing based on an event driven
model like the one defined in Appendix F: Event-Driven Security Testing.

 Although not a requirement, agile development processes like XP and SCRUM are preferred security
development methodologies.

 The application design must allow for the test framework to be run during the coding, testing,
integration and production stages.

66.. VVAALLIIDDAATTEE YYOOUURR MMEETTHHOODDOOLLOOGGYY
It is important to make progress on all four tracks.

66..11 SSEECCUURRIITTYY AAWWAARREENNEESSSS
The entire development team should be aware at a concept level what application security attacks are and
how they operate.

Key actions:

• Annual application security training.

• Application security training can be combined with organizational specific policy training.

66..22 AAPPPPLLIICCAATTIIOONN RRIISSKK AANNDD LLIIAABBIILLIITTYY CCAATTEEGGOORRIIZZAATTIIOONN
The deliverable of this track includes a database ranking every application by risk for each application.
Each team should know the status of their application, and be able to compare to other applications that are
already deployed.

Key actions:

• Application risk data collected

• Application compared to corporate security baseline

• Security requirements for the application are defined based on baseline policies.

66..33 ZZEERROO TTOOLLEERRAANNCCEE EENNFFOORRCCEEMMEENNTT
Once the team is aware of security attacks and the application has been rated for risk, the team needs to be
held accountable for a secure delivery. The key to making this work is to let the team know up front what
the application is going to be tested for.

Key actions:

• Security exceptions are allowed only in the design phase and only with appropriate management

approval.

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 13

• The range of security tests are defined to the application team as a requirement.

66..44 SSEECCUURRIITTYY TTEESSTTIINNGG
In this track, the results of the first three tracks are brought together. The team is aware, the risks are known
and a zero tolerance policy is in place. To deliver on application quality and security in a predictable
manner, automated testing tools must be deployed throughout the software development life cycle.

Key actions:

• Automated security testing tools for developers, QA teams and auditor

• Comprehensive security tests can be run at any point during the development process.

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 14

AAPPPPEENNDDIIXX AA:: RREEQQUUIIRREEMMEENNTT PPHHAASSEE SSEECCUURRIITTYY
CCOONNSSIIDDEERRAATTIIOONNSS
The following lists are examples of things to be considered during the application design phase. You may
want to add your own considerations.

Application Environment

 Identify, understand and accommodate the security policy of the organization

 Recognize infrastructure restrictions (services, protocols and firewall restrictions)

 Identify hosting environment restrictions (sub netting, VPN, sandboxing)

 Define deployment configuration of the application

 Define network domain structures, clustering and remote application servers

 Identify database servers

 Secure communication features provided by the environment are known.

 The design addresses web farm considerations (including session state management, machine specific
encryption keys, Secure Sockets Layer (SSL), certificate deployment issues and roaming profiles).

 If SSL is used by the application, the certificate authority (CA) and the types of certificates to be used are
identified.

 The design addresses the required scalability and performance criteria.

 Code trust level is known.

Input/Data validation

 All input is evil.

Authentication

 Identify all trust boundaries

 Identity accounts and/or resources that cross trust boundaries

 Use a policy of least-privileged accounts

 Consider account management policies

 When security policy mandates a strong password, the mandate is enforced.

 Ensure that communication of user credentials is encrypted (SSL, VPN, IPsec)

 Authentication information (tokens, cookies, tickets, etc.) is not transmitted over non-encrypted
connections

 Minimal error information is returned in the event of authentication failure

Session Management

 Session lifetime is limited.

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 15

 Session state is protected from unauthorized access.

 Session identifiers are not passed in query strings.

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 16

AAPPPPEENNDDIIXX BB:: DDEESSIIGGNN PPHHAASSEE SSEECCUURRIITTYY CCOONNSSIIDDEERRAATTIIOONNSS
The following lists are examples of things to be considered during the application design phase. You may
want to add your own considerations.

Input/Data validation

 All input is evil.

 Input validation is performed on a server controlled by the application.

 Client-side input validation can be done for GUI reasons but does not supersede server side validation.

 The design addresses potential canonicalization, SQL injection and cross-site scripting issues.

 All entry points and trust boundaries are identified.

Authentication

 Separate access to public and restricted areas

 Identity accounts and/or resources that cross trust boundaries

 Identify accounts that service or administer the application

 Ensure that credentials accepted from users are stored securely.

 Ensure that communication of user credentials is encrypted (SSL, VPN, IPsec)

 The identity that is used to authenticate with the database is identified by the design.

Authorization

 All identities that are used by the application are identified and the resources accessed by each identity
are known.

 The role design offers sufficient separation of privileges (the design considers authorization granularity).

 The design identifies code access security requirements.

 Privileged resources and privileged operations are identified.

Configuration Management

 Administration interfaces are secured (strong authentication and authorization is used).

 Remote administration channels are secured.

 Administrator privileges are separated based on roles (for example, site content developer or system
administrator).

 Least-privileged process accounts and service accounts are used.

Sensitive Data

 Secrets are not stored unless necessary. Alternate methods have been explored at design time.

 Identify encryption algorithms and key sizes to store secrets securely.

 The design identifies protection mechanisms for sensitive data that is sent over the network.

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 17

Session Management

 SSL is used to protect authentication cookies.

 The contents of authentication cookies are encrypted.

Cryptography

 Encryption keys are secured.

 Only known (good) cryptography libraries and services are used.

 Identify the proper cryptographic algorithms and key size

 The methodology to secure the encryption keys is identified.

Exception Management

 Define a standard approach to structured exception handling.

 The design identifies generic error messages that are returned to the client.

Auditing and Logging

 Identify the level of auditing and logging necessary for the application

 Identify the key parameters to be logged and audited

 Identify the storage, security and analysis of the application log files

 The design considers how to flow caller identity across multiple tiers (at the operating system or
application level) for auditing.

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 18

AAPPPPEENNDDIIXX CC:: CCOODDIINNGG PPHHAASSEE SSEECCUURRIITTYY CCOONNSSIIDDEERRAATTIIOONNSS
The following lists are examples of what to consider during the coding phase. You may want to add your
own considerations.

Coding Practices

 Ensure that authentication and authorization is used properly.

 If your application demands features that force you to reduce or change default security settings, test the
effects and understand the implications before making the change.

 Do not place secrets in the code. Relying on security by obscurity does not work.

 If you don't own it, don't trust it.

 Don’t expose information that is not needed.

 Handle errors gracefully

 Fail to a safe mode: do not display stack traces, or leave sensitive data unprotected.

Input/Data validation

 All input is evil.

 All input parameters are validated (including form fields, query strings, cookies and HTTP headers).

 Client-side input validation can be done for GUI reasons but does not supersede server-side validation.

 A positive validation is the model used (accept only known good input) vs. a negative model (reject
known bad input).

 Data is validated for type, length, format and range.

 Output that contains input is properly HTML- or URL-encoded.

Authentication

 When passwords are stored, they are stored as digests (with salt).

 Minimal error information is returned in the event of authentication failure

 HTTP header information is not relied on to make security decisions.

Authorization

 The application's database login is restricted to access-specific stored procedures and can not access
tables directly.

 Access to system level resources is restricted.

Configuration Management

 Configuration stores are secured.

 Configuration secrets are not held in plain text in configuration files.

 Least-privileged process accounts and service accounts are used.

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 19

Sensitive Data

 Secrets are not stored in code.

 Secrets are not stored unless necessary. (Alternate methods have been explored at the design phase.)

 Database connections, passwords, keys or other secrets are not stored in plain text.

 Sensitive data is not logged in clear text.

 Sensitive data is not stored in cookies or transmitted as a query string or form field.

Exception Management

 Minimal information is disclosure in case of an exception.

 Sensitive data is not logged.

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 20

AAPPPPEENNDDIIXX DD:: UUSSIINNGG CCMMMMII TTOO IIMMPPRROOVVEE AAPPPPLLIICCAATTIIOONN
SSEECCUURRIITTYY
The Software Engineering Institute (SEI) at Carnegie Mellon has defined CMMI (Capability Maturity
Model® Integration) http://www.sei.cmu.edu/cmmi/. A lot has been written about CMMI, but we are
only going to discuss some basic concepts here. The website is a starting point to many detailed lectures
and books on the subject, including their Team Software Process (TSP) and Personal Software Process (PSP).

The CMMI best practices enable organizations
among other things, to explicitly link management
and engineering activities to business objectives,
and to expand the scope of and visibility into the
product lifecycle and engineering activities to
ensure that the product or service meets customer
expectations.

It is important to keep the CMMI concepts in mind
when implementing changes in your organization.
Evolutionary changes are usually easier to
implement than revolutionary ones. And while the
Optimizing level provides the most predictability, it
also contains the most overhead. The interesting
claim by CMMI proponents is that the more mature

your software processes are, the earlier, and more likely, you are to find and address application errors.
Table 9: CMMI-defined application security activities shows typical application security activities for each
level.

Optimizing Striving for continuous improvement best practices pulled from process
metrics

Quantitatively
Managed

 Coordinated application security reviews are completed for all application
stages.

 The organization has published standards for secure application development.

Defined

 Security reviews are performed at the individual application development
stages.

 Security awareness is provided for all application team personnel.

 Predetermined application security policy is enforced for the entire
organization.

Managed
 Security audits are done on a regular basis.

 Audit teams and QA use automated scanning tools prior to deployment.

 The organization has an application security policy statement, but exceptions
are permitted.

Performed
 Audit or “tiger” teams will perform periodic infrastructure penetration tests.

 The organization has an application security policy statement, but enforcement
is limited.

Table 9: CMMI-defined application security activities

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 21

AAPPPPEENNDDIIXX EE:: MMIICCRROOSSOOFFTT’’SS DDRREEAADD--BBAASSEEDD RRIISSKK SSCCOORRIINNGG
One of the problems with a simplistic rating system is that team members usually will not agree on ratings.
To help solve this, add new dimensions that help determine what the impact of a security threat really
means. At Microsoft, the DREAD model is used to help calculate risk. By using the DREAD model, you
arrive at the risk rating for a given threat by asking the following questions:

 Damage potential: How great is the damage if the vulnerability is exploited?

 Reproducibility: How easy is it to reproduce the attack?

 Exploitability: How easy is it to launch an attack?

 Affected users: As a rough percentage, how many users are affected?

 Discoverability: How easy is it to find the vulnerability?

When you clearly define what each value represents for your rating system, it helps avoids confusion. Table
10 shows an example of a rating table that can be used by team members when prioritizing threats.
Consider using a finer (1-10) scale to apply this scoring across an entire organization.

Rating High (3) Medium (2) Low(1)

Damage
Potential

The attacker can subvert the
system’s security; get full
trust authorization; run as
administrator; upload
content.

Disclose sensitive
information

Disclose trivial information

Reproducibility

The attack can be
reproduced every time and
does not require a timing
window.

The attack can be
reproduced, but only with a
timing window or a
particular race situation.

The attack is very difficult to
reproduce, even with
knowledge of the security
hole.

Exploitability

A novice programmer could
make the attack in a short
time.

A skilled programmer could
make the attack, and then
repeat the steps.

The attack requires an
extremely skilled person and
in-depth knowledge every
time to exploit.

Affected users
All users, default
configuration, key
customers

Some users, non-default
configuration

Very small percentage of
users, obscure feature; affects
anonymous users

Discoverability

Published information
explains the attack. The
vulnerability is found in the
most commonly used
feature and is very
noticeable.

The vulnerability is in a
seldom-used part of the
product, and only a few
users should come across it.
It would take some thinking
to see malicious use.

The bug is obscure, and it is
unlikely that users will work
out damage potential.

Table 10: DREAD Rating Table

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 22

Table 11 shows a possible DREAD score of the alleged use of the “T-mobile Acct. PW Reset Exploit” in the
Paris Hilton T-Mobile hack. The bolding of keywords is provided for clarity and emphasizes that even if a
1-10 finer grain scoring was used this attack would still score very high, if not perfectly. The T-Mobile
response, appropriately, was to disable the affected function until the error was fixed.

Criteria Score Comments

Damage 3 Complete user account access and management is allowed.

Reproducibility 3 The attack works at will.

Exploitability 3 Browser-driven cut and paste operation

Affected users 3 All online T-Mobile users

Discoverability 3 Exploit receives mass media coverage and instructions are posted on
well-indexed Internet websites.

 15 HIGH
Table 11: “T-mobile Acct. PW Reset Exploit” DREAD rating (5-7 low) (8-11 Medium) (12-15 High)

High, Medium, and Low Ratings
You can use a simple High, Medium or Low scale to prioritize threats. If a threat is rated as High, it poses a
significant risk to your application and needs to be addressed as soon as possible. Medium threats need to
be addressed, but with less urgency. You may decide to ignore Low threats depending upon how much
effort and cost is required to address the threat.

Additional Microsoft Resources
Microsoft provides a number of threat model resources including a free downloadable tool called simply
the “Threat Model Tool.” This tool uses a categorization method called STRIDE.

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 23

AAPPPPEENNDDIIXX FF:: EEVVEENNTT--DDRRIIVVEENN SSEECCUURRIITTYY TTEESSTTIINNGG
System testing is an event driven process.

1) The user makes a request.

2) Your application responses.

3) The response is compared to an expected or previously stored response.

4) You pass or fail.

System tests are great when you have a controlled environment and know all possible user requests and
responses.

So what happens when your application does not control all of the services it uses? What about when you
want to test if an authenticated user is unable to access another user’s data? Often you are reduced to a set
of manual tests. As an example, consider the simple application shown below.

At a generic level, when you are concerned about protecting sensitive data you can write either a unit or
system test to ensure that data is retrieved from the database. But how do you test if User A can retrieve
User B’s data? How do you test
that poor user input does not
impact backend processes? Manual
testing is always a time consuming
(and expensive) option. A better
approach is to create a testing
framework that is designed as part
of the application.

The Tester generates a test and
knows what the request of the Spy
proxy or agent should be and
informs the Verifier which
compares the expected request to
the actual request received by the
Spy fronting the database.

The example shows a database as the backend component, but in reality, any service, email, XML or legacy
service can be fronted.

The implementation of the code to review requests is application dependant. Possible design approaches
for the Spy component could be: a mock data access object (DAO), proxy, sniffer, or as a class that inherits
from the fronted service, are all possible solutions. The concept is that you create code specifically for
testing that is inserted into the data stream. The inserted code is aware of the testing you want to perform
and will report data as needed by the testing framework.

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 24

Coordinating the testing objects shown in red allows for complete fine grain control of a full range of tests
and is available using black or white-box testing alone.

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 25

77.. FFUURRTTHHEERR RREEAADDIINNGG
1. Non-profit Agile Alliance development methodology
http://www.agilealliance.com/home

2. Discussion on SCRUM agile development
http://www.controlchaos.com/

3. XP agile development
http://c2.com/cgi/wiki and http://www.extremeprogramming.org/

4. DHS report on improving security in the application lifecycle
http://www.cyberpartnership.org/SDLCFULL.pdf

5. Software Engineering Institute (SEI) at Carnegie Mellon
http://www.sei.cmu.edu/cmmi/

6. Testing based on JUnit
http://junit.org/

7. Example testing frameworks
http://wiley.com/compbooks/javatesting/

8. Extreme Programming Pocket Guide
http://www.oreilly.com/catalog/extprogpg

9. Grady Booch’s software architecture handbook
http://www.booch.com/architecture/blog.jsp

10. The Open Web Application Security Project
http://www.owasp.org

11. OASIS WAS-XML TC
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=was

ADDRESSING CHALLENGES IN APPLICATION SECURITY

© Copyright 2005. Watchfire Corporation. All Rights Reserved. 26

AABBOOUUTT WWAATTCCHHFFIIRREE
Watchfire provides software and services to manage online risk. More than 250 enterprise organizations
and government agencies, including AXA Financial, SunTrust, Nationwide Building Society, Boots PLC,
Veterans Affairs and Dell, rely on Watchfire to monitor, manage, improve and secure all aspects of the
online business including security, privacy, quality, accessibility, corporate standards and regulatory
compliance. Watchfire’s alliance and technology partners include IBM Global Services,
PricewaterhouseCoopers, TRUSTe, Microsoft, Interwoven, EMC Documentum and Mercury Interactive.
Watchfire is headquartered in Waltham, MA. For more information, please visit www.watchfire.com.

