
v

© 2008 IBM Corporation

DB2 for z/OS Technical Conference

Gareth Jones
DB2 for z/OS Development
jonesgth@uk.ibm.com

Dynamic SQL Best Practice
and Multi-row FETCH and
INSERT



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Important Disclaimer

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR 
INFORMATIONAL PURPOSES ONLY. 
WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF 
THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS 
IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. 
IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT PRODUCT 
PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT 
NOTICE. 
IBM SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE 
OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER 
DOCUMENTATION. 
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL 
HAVE THE EFFECT OF:

CREATING ANY WARRANTY OR REPRESENTATION FROM IBM (OR ITS AFFILIATES OR 
ITS OR THEIR SUPPLIERS AND/OR LICENSORS); OR 

ALTERING THE TERMS AND CONDITIONS OF THE APPLICABLE LICENSE AGREEMENT 
GOVERNING THE USE OF IBM SOFTWARE. 



v

© 2008 IBM Corporation

DB2 for z/OS Technical Conference

Multi-row FETCH and INSERT



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Multi-row FETCH and INSERT

Why?
Enhances usability and power of SQL

Facilitates Portability

Performance improved by eliminating multiple trips between application and DB 
engine; for distributed, reduced network traffic

Combined with scrollable cursors important for browse applications

Multi-row FETCH:
A single FETCH statement can retrieve multiple rows of data from the result 
table of a query as a rowset

A rowset is a group of rows of data that are grouped together and operated on 
as a set

Multi-row INSERT:
A single SQL statement can insert one or more rows into a table or view

Multi-row INSERT can be implemented as either static or dynamic SQL



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Host Variable Arrays

Host variable array is an array in which each element of the array contains 
a value for the same column

Changes have been made to allow host variable arrays in:

COBOL

PL/1

C++

Limited Assembler support

Multi-row operations for Java applications are handled by the JDBC driver and 
cannot be coded in the application

Can only be referenced in multi-row fetch or insert
In general, arrays may not be arrays of structures



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

COBOL Example
Declare a CURSOR C1 and fetch 10 rows using a multi-row FETCH 
statement

01 OUTPUT-VARS.
05 NAME OCCURS 10 TIMES.

49 NAME-LE PIC S9(4)COMP-4 SY C.
49 NAME-DATA PIC X(40).

05 SERIAL-NUMBER PIC S9(9)COMP-4 OCCURS 10 TIMES.

PROCEDURE DIVISION.

EXEC SQL
DECLARE C1 CURSOR WITH ROWSET POSITIONING FOR
SELECT NAME, SERIAL# FROM CORPORATE.EMPLOYEE END-EXEC.

EXEC SQL

OPEN C1 END-EXEC.

EXEC SQL
FETCH FIRST ROWSET FROM C1 FOR 10 ROWS INTO :NAME,
:SERIAL-NUMBER END-EXEC.



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

C++ Example

Declare an integer and varying character array to hold columns retrieved from a multi-
row fetch statement

long serial_num(10);
struct {

short len;
char data [18];

}name [10];
...
EXEC SQL
DECLARE C1 CURSOR FOR SELECT NAME, SERIAL#
FROM CORPDATA.EMPLOYEE WITH ROWSET POSITIONING;

...
EXEC SQL OPEN C1;
EXEC SQL
FETCH FIRST ROWSET FORM C1 FOR 10 ROWS INTO :NAME,
:SERIAL_NUM;



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Multiple Row Insert
New third form of insert

INSERT via VALUES is used to insert a single row into the table or view using values 
provided or referenced

INSERT via SELECT is used to insert one or more rows into table or view using values 
from other tables or views

INSERT via VALUES… FOR "n" ROWS form is used to insert multiple rows into table or
view using values provided in host variable array

FOR "n" ROWS
For static, specify FOR "n" ROWS on INSERT statement (for dynamic INSERT, you may 
also specify FOR "n" ROWS on EXECUTE statement)

Maximum value of n is 32767 specified as host-variable, parameter marker, or literal value

Input provided with host variable array -- each array represents cells for multiple rows of 
a single column

VALUES… FOR “n” ROWS clause allows specification of multiple rows of data

Host variable arrays used to provide values for a column on INSERT
Example: VALUES (:hva1, :hva2) FOR 10 ROWS



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

ATOMIC vs NOT ATOMIC
ATOMIC

Traditional behaviour

All rows being inserted must successfully be inserted

NOT ATOMIC CONTINUE ON SQLEXCEPTION
Insert rows that are successful

Reject rows that are not successful

GET DIAGNOSTICS can be used to determine which rows were not successful

SQLCODE will indicate if all failed, all were successful or at least one failed

In this example, :hva represents the host variable array and :hvind
represents the array of indicator variables

EXEC SQL INSERT INTO T1 VALUES (:hva :hvind) 
FOR :hv ROWS ATOMIC;



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Rowsets

A group of rows for the result table of a query which are returned by a 
single FETCH statement
Program controls how many rows are returned (i.e., size of the rowset)

Can be specified on the FETCH statement (maximum rowset size is 32767)

Each group of rows are operated on as a rowset
Ability to intermix row positioned and rowset positioned fetches when a 
cursor is declared WITH ROWSET POSITIONING

FETCH FIRST ROWSET STARTING AT ABSOLUTE 10
FROM CURS1
FOR 6 ROWS INTO :hva1, :hva2;



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Multiple Row FETCH – coding DECLARE CURSOR

Declare C1 as the cursor of a query to retrieve a rowset from the table 
DEPT.

Rowset positioning specifies whether multiple rows of data can be 
accessed as a rowset on a single FETCH statement – default is WITHOUT 
ROWSET POSITIONING

EXEC SQL
DECLARE CURSOR C1 CURSOR
WITH ROWSET POSITIONING
FOR MYCURSOR;



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

FETCH Examples

EXAMPLE 1
Fetch the previous rowset and have the cursor positioned on that rowset

-- OR –

EXAMPLE 2:
Fetch 3 rows starting with row 20 regardless of the current position of the 
cursor

EXEC SQL
FETCH PRIOR ROWSET FROM C1 FOR 3 ROWS INTO...

EXEC SQL
FETCH ROWSET
STARTING AT RELATIVE -3 FROM C1 FOR 3 ROWS INTO...

EXEC SQL
FETCH ROWSET STARTING AT ABSOLUTE 20
FROM C1 FOR 3 ROWS INTO...



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Row and Rowset Positioned Fetches

CUST_NO CUST_TYPE CUST_NAME

1 P Haakon

2 P Sueli

3 P Fabricio

4 P San

5 P Milton

6 M Clarisse

7 M Tom

8 M Don

9 M Aroldo

10 R Hilario

11 R Marcelo

12 R Tania

13 R Wiliam

14 R Gareth

FETCH BEFORE

FETCH FIRST

FETCH ABSOLUTE 4

FETCH NEXT ROWSET 
FOR 3 ROWS

FETCH NEXT
Relative to first row in 
current rowset

FETCH ABSOLUTE 20

FETCH LAST



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Partial Results Sets

If you fetch beyond the end of the result set, you will receive an end of 
data condition

i.e., When there are only 5 rows left in result table and you request FETCH 
NEXT ROWSET FOR 10 ROWS, 5 rows will be returned - SQLCODE +100

SQLERRD(3) will contain the number or rows returned

This includes where FETCH FIRST n ROWS ONLY has been specified

If you fetch beyond the beginning of the result set, you will receive an end 
of data condition

i.e., if you are positioned on rows 3,4,5,6, and 7, and you request FETCH 
PRIOR ROWSET FOR 10 ROWS, 2 rows will be returned (Rows 1 and 2) -
SQLCODE +20237

SQLERRD(3) will contain the number or rows returned



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Fetching Outside the Result Set – Absolute or Relative

If you fetch beyond the end of the result set, or beyond the beginning of 
the result set, you will receive an end of data condition

Assume you are positioned on row 5 in a result set with 10 rows.

FETCH ROWSET STARTING AT ABSOLUTE 15

FETCH ROWSET STARTING AT RELATIVE -7

No rows will be returned - SQLCODE +100

SQLERRD(3) will contain 0

Cursor position will be either “BEFORE” or “AFTER” depending on the direction 
of the FETCH.



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Positioned DELETE 

Assuming cursor CS1 is positioned on a rowset consisting of 10 rows of 
table T1:

The following DELETE statement could be used to DELETE all 10 rows in the 
rowset

The following DELETE statement could be used to DELETE the 4th row of the 
rowset.

EXEC SQL DELETE FROM T1
WHERE CURRENT OF CS1;

EXEC SQL DELETE FROM T1
WHERE CURRENT OF CS1
FOR ROW 4 OF ROWSET;



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Positioned UPDATE 

Assuming cursor CS1 is positioned on a rowset consisting of 10 rows of 
table T1, the following UPDATE statement could be used to update all 10 
rows in the rowset

The following is an example of a positioned UPDATE on a rowset cursor

EXEC SQL UPDATE T1
SET C1 = 5
WHERE CURRENT OF CS1;

UPDATE T1 SET 
COL1='ABC‘
WHERE CURRENT OF CS1
FOR ROW :hv OF ROWSET;



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

GET DIAGNOSTICS
Enables more diagnostic information to be returned than can be contained 
in SQLCA
Returns SQL error information

for overall statement

for each condition (when multiple conditions occur)

Supports SQL error message tokens greater than 70 bytes (SQLDA 
Limitation)

To determine how many rows were updated in an UPDATE statement:

INSERT INTO T1 VALUES (:array) FOR 5 ROWS ;
GET DIAGNOSTICS :ERR_COUNT = NUMBER;
DO i = 1 TO ERR_COUNT;
GET DIAGNOSTICS FOR CONDITION :i
:rc = RETURNED_SQLCODE;

END;

GET DIAGNOSTICS :rcount = ROW_COUNT;



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

GET DIAGNOSTICS C++ Example

In an application, use GET DIAGNOSTICS to handle multiple SQL Errors.

Execution of this code segment will set and print retsqlstate with the 
SQLSTATE for each error that was encountered in the previous SQL
statement.

long numerrors, counter;
char retsqlstate [5 ];

EXEC SQL GET DIAGNOSTICS :numerrors = NUMBER;
for (i=1;i < numerrors;i++)
{
EXEC SQL

GET DIAGNOSTICS CONDITION :i
:retsqlstate = RETURNED_SQLSTATE;

printf("SQLSTATE =%s",retsqlstate);
}



v

© 2008 IBM Corporation

DB2 for z/OS Technical Conference

DYNAMIC SQL Usage



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Static SQL Compared to Dynamic SQL

Can approach static SQL performance with help 
from dynamic SQL caches.  Cache misses are 
costly! 

All SQL parsing, catalog access, done at BIND 
time.  Fully optimized during execution.  

Unpredictable – Any prepare can get a new access 
path as statistics or host variables change

Guaranteed – locked in at BIND time  All SQL 
available ahead of time for analysis by EXPLAIN.

Privileges handled at object level. All users or 
groups must have direct table privileges – Security 
exposure, and administrative burden

Privileges are package based.  Only administrator 
needs table access.  Users/Groups have execute 
authority. Prevent non-authorized SQL execution.  

For remote requests, the database view is typically 
of a generic JDBC or CLI package – no easy way 
to tell where any SQL statement came from.  

Package view of applications makes it simple to 
track back to the SQL statement location in the 
application

Difficult to summarize performance data at 
program level.

Package Level Accounting gives program view of 
workload to aid accurate forecasting.

No record of which objects are  referenced by a 
compiled SQL statement 

Object dependencies registered in database 
catalog 

Dynamic SQL Static SQL

Performance

Access Path
Reliability

Monitoring, 
Problem 
Determination

Capacity Planning, 
Forecasting

Tracking Dependent 
Objects

Authorization



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Execution of  Dynamic and Static SQL Requests

Dynamic SQL Static SQL
Check auth for plan/pkg

Parse SQL statement

Check table/view auth

Calculate access path

Execute statement

Check auth for plan/pkg

Execute statement



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Why Dynamic SQL?

Alternative way to access DB2 via callable interface:
JDBC

ODBC

Rexx

Build SQL dynamically to avoid complicated statements with many 
predicates
Build SQL dynamically to avoid coding many SQL statements which are 
executed conditionally based upon program logic.



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

DB2 Statement Caching - 1

PREPARE S
EXECUTE S
EXECUTE S

PREPARE S
EXECUTE S
COMMIT
EXECUTE S
PREPARE S
EXECUTE S

prepared statement s

prepared statement s

prepared statement s

Full prepare

delete

-514/518

Full prepare

DB2 z/OS

NO CACHING

Full prepare



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

DB2 Statement Caching  - 2

PREPARE S
EXECUTE S
EXECUTE S

PREPARE S
EXECUTE S
COMMIT
EXECUTE S
PREPARE S
EXECUTE S

prepared statement s

prepared statement s

prepared statement s

Full prepare

delete

-514/518

Full prepare

DB2 z/OS

NO CACHING

PREPARE S
EXECUTE S
EXECUTE S

PREPARE S
EXECUTE S
COMMIT
EXECUTE S
PREPARE S
EXECUTE S

prepared statement s

prepared statement s

prepared statement s

Full prepare

delete

-514/518

short prepare

DB2 z/OS

GLOBAL CACHING ONLY

SKDS
s

Full prepare short prepare



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

DB2 Statement Caching – Global Caching

Significant cost to fully prepare a dynamic SQL statement
Global dynamic statement cache

statement text and executable (SKDS) is cached in EDM pool

V7 by default in data space
V8, V9 above the bar

Only first prepare is full prepare, otherwise short prepare, which is a 
copy from global cache into thread storage

No prepared statement is kept in thread storage across commit

Should be turned on if dynamic SQL is executed in the DB2 
system
Best trade-off between storage and CPU consumption for 
applications executing dynamic SQL



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

DB2 Statement Caching  - 3

PREPARE S
EXECUTE S
EXECUTE S

PREPARE S
EXECUTE S
COMMIT
EXECUTE S

prepared statement s

prepared statement s

prepared statement s

Full prepare

avoided prepare

DB2 z/OS

GLOBAL AND LOCAL CACHING

SKDS
s

short prepare



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

DB2 Statement Caching - Global and Local Caching

Only first prepare is full prepare, otherwise short prepares
Prepared statements kept in thread storage across commit (avoided 
prepares)

Same prepared sql statement can be stored in several threads

MAXKEEPD limits the stored executable only, the statement text is 
always stored in thread storage

application logic needs to reflect the bind option

Should only be used selectively for application with a limited number of 
SQL statements that are executed very frequently
Should NOT be used for DB2 systems that are constrained in DBM1 
storage



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Dynamic Statement Cache Controls

Global Dynamic Statement Cache
CACHEDYN=YES (ZPARM)

EDMSTMTC= … ZPARM – size in KB of Global Statement Cache above bar

Local Dynamic Statement Cache
MAXKEEPD= … ZPARM – maximum number of dynamic statements to keep 
after commit

Global value across DB2 subsystem

KEEPDYNAMIC(YES) BIND option

CACHEDYN_FREELOCAL= … ZPARM

0 – DBM1 cannot free cached dynamic statements to relieve DBM1 below-
the-bar storage

1 – DBM1 can free.



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Dynamic Statement Cache Summary

CACHEDYN
NO

CACHEDYN
YES

KEEPDYNAMIC
NO

no skeletons cached in 
EDMP
only full prepares
no prepared statements 
kept across commits
no statement strings 
kept across commits 

skeletons cached in EDMP
only first prepare full
otherwise short prepares
no prepared statements 
kept across commits
no statement strings kept 
across commits

KEEPDYNAMIC
YES

no skeletons cached in 
EDMP
only full prepares
no prepared statements 

kept across commits
statement strings kept 

across commits – short 
prepares

skeletons cached in EDMP
only first prepare full, 
otherwise short prepares 
prepared statements kept 
across commits – avoided 
prepares
statement strings kept 
across commits – short 
prepares



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

REOPT Enhancement For Dynamic SQL

We currently have for dynamic SQL
REOPT(NONE), REOPT(ONCE) and REOPT(ALWAYS) for dynamic SQL

Static only supports REOPT(NONE) and REOPT(ALWAYS)

V9 ZPARM REOPTEXT = YES / NO
NO works as per V8 (default)

YES

New bind option will be available for REOPT(AUTO)

REOPTEXT = NO
REOPT – NONE, ONCE & ALWAYS

REOPTEXT = YES
REOPT – NONE, ONCE, AUTO & ALWAYS



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

REOPT - SMART/AUTO

Ok, so what does it do?
For dynamic SQL queries with parameter markers 

DB2 will automatically reoptimize the statement when DB2 
detects that the filtering of one or more of the 
predicates changes significantly

The newly generated access path will replace the current one 
and be cached in the statement cache.

Will reopt at beginning and then monitor runtime 
values supplied for parameter markers.

First optimization is the same as REOPT(ONCE)



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Invalidating Statements in the Global Cache

You may want to invalidate statements in the Global DSC if:
An index used by the statement is in RBDP

Otherwise index access reverts to relational scan

You’ve added a new index to improve access path selection

You’ve used OPTHINTS to modify the access path

For data collection reasons when monitoring the cache

V8, V9 use RUNSTATS UPDATE NONE REPORT NO on object accessed by 
the statement

Will invalidate ALL statements accessing that object

Will NOT run RUNSTATS, merely performs invalidation



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Dynamic Statements and OPTHINTS

Poorly performing SQL:

Add QUERYNO clause and explain

SELECT *
FROM EMP E, EMPPROJACT EPA
WHERE ...

EXPLAIN ALL FOR
SELECT *
FROM EMP E, EMPPROJACT EPA
WHERE ...
QUERYNO 729

Explain to get
access path

Add queryno clause to 
map
dynamic SQL to specific
Queryno.



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Checking Plan Table

Notice bad join method
Compare to previous explain

Your analysis indicates hybrid join is inefficient

Poor performance

QUERYNO METHOD TNAME PREF BINDTIME OPTHINT

2007-12-12 …

2007-12-12 …

2007-12-12 …

L

EMP

EMPROJACT

0

4

3

729

729

729



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Update Plan Table

QUERYNO METHOD TNAME PREF BINDTIME OPTHINT

2007-12-12 … DYNHINT

DYNHINT

DYNHINT

2007-12-12 …

2007-12-12 …

L

EMP

EMPROJACT

0

1

3

729

729

729

UPDATE PLAN_TABLE
SET METHOD = 1
WHERE TNAME = 
'EMPPROJACT‘
AND QUERYNO = 729;

UPDATE PLAN_TABLE
SET OPTHINT = 
'DYNHINT'
WHERE QUERYNO = 729

TIPS:
1. Need to set OPTHINT for ALL rows in 

query block, so use multiple updates!!!
2. Double check to ensure access path 

UPDATES to PLAN_TABLE update only 
intended rows.



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Use EXPLAIN to Validate the HINT

QUERYNO METHOD TNAME PREF BINDTIME OPTHINT HINTUSED

DYNHINT

DYNHINT

DYNHINT

DYNHINT

DYNHINT

DYNHINT

729 0 EMP 2007-12-12 …

729 1 EMPROJACT L 2007-12-12 …

729 3 2007-12-12 …

2007-12-12 …

2007-12-12 …

2007-12-12 …

L

EMP

EMPROJACT

0

1

3

729

729

729

SET CURRENT OPTIMIZATION HINT = 'DYNHINT';
EXPLAIN ALL FOR
SELECT *
FROM EMP E , EMPPROJACCT EPA
WHERE ...
QUERYNO 729;

SQL CODE +394 ??

Hybrid always uses list prefetch, we changed from HYBRID to
Nested Loop Join, but didn’t change the prefetch flag…
Let’s be careful out there… (check prefetch, sort flags, etc)



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

Implementation

SET CURRENT OPTIMIZATION HINT = 'DYNHINT';
SELECT *
FROM EMP E , EMPPROJACCT EPA
WHERE ...;

Final validation:
SQLCODE = +394, Optimization hint used.
You’ve already used EXPLAIN and PLAN_TABLE to validate how the hint is 
used. 
To be thorough, use PERFORMANCE TRACE CLASS(30) IFCID 22, 63 to 
see runtime access path



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation

References

Redbooks at www.redbooks.ibm.com
DB2 UDB for z/OS V8 Everything you ever wanted to know… SG24-
6079

DB2 UDB for z/OS V8 Performance Topics SG24-6465

DB2 9 for z/OS Performance Topics SG24-7473

Squeezing the Most Out of Dynamic SQL with DB2 for z/OS and 
OS/390 SG24-6418

More DB2 for z/OS information at 
www.ibm.com/software/db2zos

E-support (presentations and papers) at 
www.ibm.com/software/db2zos/support.html



DB2 for z/OS Technical Conference

April 2008  © 2008 IBM Corporation


	Dynamic SQL Best Practice�and Multi-row FETCH and�INSERT
	Important Disclaimer
	Multi-row FETCH and INSERT
	Multi-row FETCH and INSERT
	Host Variable Arrays
	COBOL Example
	C++ Example
	Multiple Row Insert
	ATOMIC vs NOT ATOMIC
	Rowsets
	Multiple Row FETCH – coding DECLARE CURSOR
	FETCH Examples
	Row and Rowset Positioned Fetches
	Partial Results Sets
	Fetching Outside the Result Set – Absolute or Relative
	Positioned DELETE 
	Positioned UPDATE 
	GET DIAGNOSTICS
	GET DIAGNOSTICS C++ Example
	DYNAMIC SQL Usage
	Static SQL Compared to Dynamic SQL
	Execution of  Dynamic and Static SQL Requests
	Why Dynamic SQL?
	DB2 Statement Caching - 1
	DB2 Statement Caching  - 2
	DB2 Statement Caching – Global Caching
	DB2 Statement Caching  - 3
	DB2 Statement Caching - Global and Local Caching�
	Dynamic Statement Cache Controls
	Dynamic Statement Cache Summary
	REOPT Enhancement For Dynamic SQL
	REOPT - SMART/AUTO
	Invalidating Statements in the Global Cache
	Dynamic Statements and OPTHINTS
	Checking Plan Table
	Update Plan Table
	Use EXPLAIN to Validate the HINT
	Implementation
	References

