

IBM Software Group

®

IBM Java Native Memory

2: Monitoring native memory usage

© 2009 IBM Corporation

Updated July 20, 2009

This is the second of three presentations on troubleshooting Java™ memory problems.

2-MonitoringNativeMemoryUsage.ppt Page 1 of 16

IBM Software Group

2

Monitoring native memory usage © 2009 IBM Corporation

Process memory monitoring

�Examples of how to monitor memory usage on
Windows®, AIX®, and Linux®

�Detecting heap exhaustion

The last presentation covered the introduction to debugging OutOfMemory errors. This
presentation will explain how to monitor the memory usage to look for an Out Of Memory
(OOM) exception in the native heap, with some examples on Windows, AIX, and Linux
and detecting heap exhaustion.

2-MonitoringNativeMemoryUsage.ppt Page 2 of 16

IBM Software Group

3

Monitoring native memory usage © 2009 IBM Corporation

Process memory monitoring

� Monitoring of the native heap is carried out by monitoring
the process size
�Java heap and virtual machine usage are static, so process size

growth is the native heap
� Exhaustion of the process address space shows native

heap exhaustion
�Leads to OutOfMemoryError as would Java heap exhaustion

� The native heap is managed using operating system malloc
and free routines
�Therefore operating system tools are the best place to monitor

memory usage
� Garbage Collection and Memory Visualiser (GCMV) in ISA

can visualize some operating system tool output
�Currently only for AIX and Linux

Verbosegc will tell you if you have exceeded the Java heap, not the native heap, and you
will most likely see a line of text saying “excessive gc encountered” to tell you why it’s
happened.

Another option is to monitor the process memory. In the same way that you want to do
verbosegc monitoring over time to help you to identify where memory leaks might occur,
you can do process memory monitoring to spot leaks in the native heap before a failure
occurs.

This is achieved by monitoring the entire process space. The Java heap is allocated at its
maximum heap size when the process starts and this size is fixed. The VM is static in size,
so, if the process address space grows, that shows growth in native heap.

The total memory used is the Java heap size plus the native heap size, so you can deduct
the maximum Java heap to find the size of the native heap.

If the address space is exhausted, the native heap has been exhausted and you will see
an OOM error.

The memory in the native heap is allocated using malloc and released with free, so
operating system-based tools are best to monitor the memory usage. Tools vary between
platform, unlike verbosegc.

GCMV is one of the tools available that can now visualize some of the OS tool outputs,
which will be discussed later.

2-MonitoringNativeMemoryUsage.ppt Page 3 of 16

IBM Software Group

4

Monitoring native memory usage © 2009 IBM Corporation

Process memory monitoring: Windows

�Recommended tool is “Perfmon”:
�In Control Panel -> Admin Tools -> Performance

�Can also be started using perfmon on the command line

�Displays several counters for a given process:
�Relevant counter is “Virtual Bytes”

� Memory that has been allocated; for instance, a malloc() request has been
made

�“Working Set” might also be on interest
� Memory that is committed to; for instance, has been written to and is

actively in use

�Note: Maximum Java heap size is allocated at startup
� But only the minimum heap size is written to (committed)

On Windows, the tool to use is called Perfmon. The other option is task manager but task
manager is less appropriate for this.

You can start Perfmon using the command line or through the control panel.

Perfmon gives you several counters, including the one called “virtual bytes”, which tells
you about memory that has been allocated using malloc.

The “Working Set” counter is what you see in task manager, and this isn’t memory that’s
been allocated but memory that’s been committed. The difference is whether you’ve
written to it or not. Committed memory is memory that you’ve written data to.

For example, you can malloc 256 MB, and, if you write only to the bottom 5 MB at that
time, then the Working Set will show 5 MB of memory usage, but you are actually using
256 MB of the memory.

Another example is if you use a test case to set the Java heap to 512 MB, but let the Java
heap size fluctuate because the minimum and maximum are different. If you allocate to
the heap and then delete, the Working Set value goes up and down. The Working Set
shows this because a memory leak; which it isn’t, as memory was already allocated and
you were using different amounts of that allocation at any time.

Virtual Bytes is the value to monitor because it is more accurate.

2-MonitoringNativeMemoryUsage.ppt Page 4 of 16

IBM Software Group

5

Monitoring native memory usage © 2009 IBM Corporation

Setting up logging with Perfmon

1. Use the Counter Logs option in Performance Logs and Alerts.
2. Right-click under the System Overview log and select New Log

Settings.
3. Name the log as appropriate; for example, Java Memory Usage
4. Select Add Counters.
5. Select Process from the Performance Object list.
6. Check the Select Counters from List button and select Virtual Bytes

from the box underneath.
7. Check the Select instances from list button and select the process

name from the selection .
8. Click Add and Close.
9. On the Java Memory Usage window, select the Schedule tab,

check Start log manually, and select OK.
10. Right-click the Java Memory Usage row in the perfmon Counter

Logs panel and click Start to start logging.

These instructions show how to set up logging with Perfmon.

If you use Perfmon you see a graph that moves across the screen. The problem is that
you see only about 3 minutes of history, which is not good for long-term monitoring, but
you can set up Perfmon to log to files, and the instructions here tell you how to do so for
virtual byte counter.

2-MonitoringNativeMemoryUsage.ppt Page 5 of 16

IBM Software Group

6

Monitoring native memory usage © 2009 IBM Corporation

Stopping logging and displaying the output

1. Right-click the Java Memory Usage entry in the Counter Logs
window and click Stop.

2. The name of the binary log file can be found in the log
properties. (Double-click the Java Memory Usage line to view
these).

3. Locate the physical log file from the file system.
4. Select the icon for View Log Data (persistent storage symbol).
5. Select Log files and Add the log file in the System Monitor

Properties dialog box.
6. Select the Data tab, and click Add to select the data points in the

log file.
7. In the System Monitor Properties dialog on the Data tab, click the

Scale pull-down menu to select the correct scale (0.000001 for
Virtual Bytes).

The first three points explain how to stop the logging when you want to, and then how to
load the log file back into Perfmon to use the graphing capabilities to look at history over
time. The graph will show the full history.

2-MonitoringNativeMemoryUsage.ppt Page 6 of 16

IBM Software Group

7

Monitoring native memory usage © 2009 IBM Corporation

Perfmon log

�Perfmon can log to text (.csv) file or binary
�CSV file format is as follows:
"(PDH-CSV 4.0) (GMT Daylight Time)(-60)","\\MY_COMP\Process(java)\Virtual Bytes"
"05/08/2008 16:33:56.859"," 1198592000 "
"05/08/2008 16:34:11.859"," 1198592000 "
"05/08/2008 16:34:26.859"," 1198592000 "
"05/08/2008 16:34:41.859"," 1198592000 "
"05/08/2008 16:34:56.859"," 1198592000 "

�Can be imported into other tools:
�Spreadsheet

�Database

�And so on…

Perfmon can log to a text file. This output is the result if you do so for Virtual Bytes. The
first column is the time stamp, the second, shown in red, is the value in bytes.

2-MonitoringNativeMemoryUsage.ppt Page 7 of 16

IBM Software Group

8

Monitoring native memory usage © 2009 IBM Corporation

Process memory: Perfmon view

Here is the sample output for Perfmon. It shows the difference in the virtual bytes, on the
top line, and the working set, on the bottom line, for the test case mentioned earlier about
adding objects to the Java heap and then removing in a batch.

The working set, on the bottom, shows the line increasing as Java heap usage went up
and then dropped as it went down. The virtual bytes, on the top line, remains constant and
shows no change in process heap at this point, but the working set implied there was a
memory leak.

2-MonitoringNativeMemoryUsage.ppt Page 8 of 16

IBM Software Group

9

Monitoring native memory usage © 2009 IBM Corporation

Process memory monitoring: AIX

�Recommended tool is “Svmon”:
�Available on the AIX install image

�Started using svmon –P {pid} –m –r –i {interval}

�Displays a per segment breakdown of memory:
�Relevant value is “Addr Range” for heap segments

� Memory that has been allocated; for instance, a malloc() request has been
made

�Heap segments are 0x3 -> 0xC inclusive

The recommended tool for AIX, which is an equivalent to Perfmon, is Svmon. In the same
way as the task manager is not recommended for Windows, ps is best avoided on AIX .

You can start svmon using “svmon –P {pid} –m –r –i {interval}”, and the output can be
piped to a file.

Recall that for Windows, Virtual Bytes should be used instead of Working Set. On AIX,
“Address Range” should be looked at and not “In Use”. “In Use” goes down as memory is
paged out if you are using paging. Only look at the “Address Range” data.

The last line on this slide explains that svmon breaks memory usage down into 256 MB
segments. Svmon tells you about usage in each segment. For more information, you
should read into how AIX uses user space and memory management. For example, 0x0 to
0x2 is used by the kernel, program data, and so on. User space for the Java process
starts at 0x3 and typically goes up to 0xC. With Svmon, you can look at individual bits of
memory used by Java and check program usage, thus native heap usage.

2-MonitoringNativeMemoryUsage.ppt Page 9 of 16

IBM Software Group

10

Monitoring native memory usage © 2009 IBM Corporation

Process memory: Svmon output
Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd

25084 AppS 78907 1570 182 67840 N Y
Vsid Esid Type Description Inuse Pin Pgsp Virtual Addr Range

2c7ea 3 work shmat/mmap 36678 0 0 36656 0..65513
3c80e 4 work shmat/mmap 7956 0 0 7956 0..65515
5cd36 5 work shmat/mmap 7946 0 0 7946 0..65517
14e04 6 work shmat/mmap 7151 0 0 7151 0..65519
7001c d work shared library text 6781 0 0 736 0..65535

0 0 work kernel seg 4218 1552 182 3602 0..22017 :
65474..65535

6cb5a 7 work shmat/mmap 2157 0 0 2157 0..65461
48733 c work shmat/mmap 1244 0 0 1244 0..1243

cac3 - pers /dev/hd2:176297 1159 0 - - 0..1158
54bb5 - pers /dev/hd2:176307 473 0 - - 0..472
78b9e - pers /dev/hd2:176301 454 0 - - 0..453
58bb6 - pers /dev/hd2:176308 254 0 - - 0..253

cee2 - work 246 17 0 246 0..49746
4cbb3 - pers /dev/hd2:176305 226 0 - - 0..225
7881e - pers /dev/e2axa702-1:2048 186 0 - - 0..1856
68f5b - pers /dev/e2axa702-1:2048 185 0 - - 0..1847
28b8a - pers /dev/hd2:176299 119 0 - - 0..118

Here is an example. Address range is listed on the right, and Esid is the segment number
in process address space. That’s where you’ll get values between 0 and F.

Look at the Address Range on the right for segment 3 on the top line in red. It contains 0
to 65513, so those pages are 4 KB pages, totaling around 255-256 MB per section. You
can see that segments 3, 4, 5, and 6 are filled and segment 7 is nearly filled. If you total
those, you get your native heap usage. If that grows over time, your native heap usage is
growing over time.

2-MonitoringNativeMemoryUsage.ppt Page 10 of 16

IBM Software Group

11

Monitoring native memory usage © 2009 IBM Corporation

Process memory monitoring: Linux

�Recommended data is from /proc file system:
�cat /proc/{pid}/status > {logfile}

� Produces a snapshot of memory usage

�A script can be run to generate several snapshots over
time

�Useful value is VmSize
�Memory that has been allocated; for instance, a malloc()

request has been made

Finally, the same for Linux. The recommended way of looking at process size is in /proc/
file system, where you must look at status file for pid. Within that, look at the VmSize
value. Perfmon does automatic sampling of a file, as does svmon, but there is no way of
doing this in Linux without writing a script. The VM size change over time shows growth in
memory usage.

2-MonitoringNativeMemoryUsage.ppt Page 11 of 16

IBM Software Group

12

Monitoring native memory usage © 2009 IBM Corporation

Process memory: proc/pid/status output
Name: java
State: T (stopped)
SleepAVG: 102%
Tgid: 15266
Pid: 15266
PPid: 15218
TracerPid: 0
Uid: 604 604 604 604
Gid: 123 123 123 123
FDSize: 64
Groups: 122 123 124 30009
VmSize: 599888 kB
VmLck: 0 kB
VmRSS: 26340 kB
VmData: 560636 kB
VmStk: 204 kB
VmExe: 56 kB
VmLib: 7504 kB
Threads: 11
SigPnd: 0000000000000000
ShdPnd: 0000000000000000
SigBlk: 0000000000000000
SigIgn: 0000000000001000
SigCgt: 20000001800044ff
CapInh: 0000000000000000
CapPrm: 0000000000000000
CapEff: 0000000000000000

Here is some sample output; note the VmSize highlighted here in red on the 12th line. In
this, VmSize is just under 600 MB. If that’s growing, you have a potential problem.

The sampling rate for the status file itself is generated when you read it, and is only
accurate at the point at which you read it. You could use a script to regularly read it.

The recommended tool for z/OS® is a tool by Rocket Software with a utility called MXI,
which tells you about LE subpool usage.

2-MonitoringNativeMemoryUsage.ppt Page 12 of 16

IBM Software Group

13

Monitoring native memory usage © 2009 IBM Corporation

Analyzing native memory with GCMV

�Garbage collection and memory visualizer
(GCMV):
�GCMV is capable of graphing some operating system

memory logs:
� Currently Linux and AIX only

– Windows version is under development, but you are able to graph the logs using
Perfmon

� GCMV provides scripts to capture the data in the help file

�Visualization makes it easier to see trends over
time:
�Look for memory leak

�Look for native heap footprint issues

GCMV is capable of graphing some of OS logs (AIX and Linux only at the moment)

Windows is under development, but can graph Perfmon output using Perfmon so you still
have a way to visualize it.

For AIX and Linux, GCMV provides a script to generate data and ensures that it is a
format that the GCMV can parse.

Visualization is useful for seeing trends over time

The GCMV can also be run stand-alone

2-MonitoringNativeMemoryUsage.ppt Page 13 of 16

IBM Software Group

14

Monitoring native memory usage © 2009 IBM Corporation

Is the native heap exhausted?

�Native heap exhaustion is likely if the memory
usage is approaching the user space limit:

2 GB Windows

3 GB /3GB

4 GB Hugemem Kernel

3 GB Linux

3.25 GB -Xmx >= 3GB

3 GB 2.3G <= -Xmx < 3GB

2.75 GB -Xmx < 2.3GB AIX

User space Additional options? Operating system

The reason for looking at this is to determine if the problem is a native or Java heap
OutOfMemory error. While it is useful to monitor trace over time to see if leaks will happen,
if you want to know if your error came from the native heap or not you have to guess by
looking at whether usage of the process address space is close to the limits available to
you.

This table shows these limits, depending on the Java heap size affects usable space on
Linux.

Finally, if you know that the OutOfMemory error is in the native heap, you need to profile it
to find the cause using profiling.

That concludes the second part of this presentation on monitoring the memory usage and
determining heap exhaustion. The final part is about using profiling to find the cause of the
leak.

2-MonitoringNativeMemoryUsage.ppt Page 14 of 16

IBM Software Group

15

Monitoring native memory usage © 2009 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_2-MonitoringNativeMemoryUsage.ppt

This module is also available in PDF format at: ../2-MonitoringNativeMemoryUsage.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

2-MonitoringNativeMemoryUsage.ppt Page 15 of 16

IBM Software Group

16

Monitoring native memory usage © 2009 IBM Corporation

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

AIX z/OS

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Windows, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Java, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

2-MonitoringNativeMemoryUsage.ppt Page 16 of 16

