IBM Software Group | Rational software

IBM Rational Build Forge Servers

Abstracting hardware

software

(@business on demand.

© 2008 1BM Corporation

Converted to video June 29,2015

This module covers Abstracting Hardware when using Build Forge® Servers for IBM
Rational® Build Forge Version 7.0 and above.

This module assumes you are familiar with IBM Rational Build Forge basics. For a primer
on Build Forge, exit this module and first review the Introduction to Build Forge module,
then continue with this more advanced topic.

RBF_Module3_BuildForgeServers.ppt Page 1 of 20

IBM Software Group | Rational software

Objectives

= To understand what a Build Forge agent is and
what it does

= To be able to trace the agent protocol execution

= To have a working knowledge of selectors and
collectors

s i
TN

R # Abstractific hafdware

© 2008 IBM Corporation

This module explains what the Build Forge agent is and how hardware is used in Build

Forge. It also outlines the steps that the agent takes when running a task. Additionally, this
module discusses the use of Selector and Collector constructs, and shows how to
implement them together to make hardware run a process.

RBF_Module3_BuildForgeServers.ppt Page 2 of 20

IBM Software Group | Rational software

The problem

= There are many varying computers companywide,
such as those with Linux® or Windows®, and those
with Perl or Java™,

= A user must know:
» Where to run programs
» How to use common existing hardware

» What occurs when something works on one machine and
not on another

/ % g o
A0
“ jAbsﬁacﬂ" hatdware = © 2008 IBM Corporation

There is a great deal of variance between computers, and usage must not be expanded
without consideration for how that variance is controlled. Users must be aware of how to
properly use resources, and how to appropriately track and redo Builds, if necessary. A
prime example of not dealing with this variance occurs when a user declares that
something works flawlessly on their computer, despite it not working on any other
computers. A user must be able to determine the factor that allows it to work on this one
computer.

RBF_Module3_BuildForgeServers.ppt Page 3 of 20

IBM Software Group | Rational software

[[]]
(el

The non-ideal solution

= Create a computing lab, and strictly control
changes.
» All changes are meticulously logged and made manually.

» Users tend to avoid the lab unless absolutely necessary

to avoid the administrative hassle associated with working
in the lab.

‘ T
% “:"‘ «O->

A‘ JAbsﬁaéﬂm hatdware © 2008 IBM Corporation

One way to resolve the variable environments across computers is to strictly control
changes on a set of computers. Those computers then become the “official” Build
systems, and any Build submitted must work on those computers. This effectively controls
the changes that happen on the computers, and keeps everyone on the same page.

However, this solution has its drawbacks. Users end up avoiding the lab, since it is not
likely that the given configuration in the lab fits their needs exactly. If it does not match the
required configuration, there is a great deal of paperwork, approvals, and effort needed to
make the configuration changes so the lab can test whatever it needs. This results in the

lab being used less as users either delay or circumvent using it altogether to avoid the
extra hassle associated with it.

RBF_Module3_BuildForgeServers.ppt Page 4 of 20

IBM Software Group | Rational software

Build Forge solution

= Abstract the hardware from the equation.
= No general concern for discrete computers.

= There is a need for a machine:
» That has Java 1.4 installed
» With at least 500 MB of Ram available

» Not already running a Build

= Solution: Collectors and Selectors

‘ T
b PRI

A‘ JAbsﬁaéﬂ" hatdware ! © 2008 IBM Corporation

The Build Forge solution handles the problem of uncertainty regarding what is installed on
the computer, creating varied results when tested on other computers. There is no need to
tie a task to a particular computer, as that does not optimize resource usage. It also leaves
potential problems exposed with that single fail point. What must be developed is a very
specific list of requirements for a particular task to complete. If the machine’s environment
is known or can be controlled, then the problem will disappear. The two mechanisms Build
Forge uses to introduce this feature are known as Collectors and Selectors.

RBF_Module3_BuildForgeServers.ppt Page 5 of 20

IBM Software Group | Rational software

What is a collector?

= Collectors solve the abstraction issue by collecting
the “stats” of a machine.

= The collector defines what information is being
searched for on a machine.

"

= oo T
TR

R 2 Abstractint hafdware

© 2008 IBM Corporation

Collectors are the method used to bring important information about a given machine into
Build Forge. Collectors can be set up to gather the available RAM, gather the installed
JDKs, and to determine what Build Forge jobs are already running on that machine.

RBF_Module3_BuildForgeServers.ppt

Page 6 of 20

IBM Software Group | Rational software

Details on collectors

= Collector values fall into four categories:
» Set — A static user defined value

» Built-in — A list of variables being searched for.
For example: processor utilization under 5%

» Run — A user-defined custom shell command, such as
“java —version.” This also might have a regular expression
run against it.

» .include — Allows nesting for hierarchical collectors

1 i,‘lﬂ_f

[O
A‘ _‘Absirai:ﬂﬁu hatdware © 2008 IBM Corporation

When setting up the Collector, the entered values must fall under one of the four
categories listed here:

Set establishes a user-defined name/value pair that does not change. This type of value
manually defines a value to a machine in Build Forge that might not physically exist.

Built-In is a list of variable types that are built into Build Forge for values that can be
difficult to manually define outside of Build Forge. For example, it is difficult to get available
RAM on the machine, so Build Forge provides values integrated into the product that
measure various levels of available RAM.

Run is the most flexible of the commands, allowing a user to run a command on the
machine and then peruse the results. For the previous example, determining what the
installed JDK was on the system, the value can be set to “java —version.” The results can
be searched with a regular expression to find the version and Build information for the
installed Java.

include allows the abstraction of the Collectors by creating a hierarchy within the
Collectors. This establishes a main Collector that every other Collector can inherit from.

RBF_Module3_BuildForgeServers.ppt Page 7 of 20

IBM Software Group | Rational software

Details on collectors

E’Egﬂm>>5umple} Add Collector Variable ||
[TCI[Fiter | showing 1 - 17 of 17 Auto Paginate
E ENLH cPU Buit-in
E m\:,f;»w SERVICEPACK Buit-in
|E HH—LS HAME N Buit-in
B3 g os Rewease Variable Type T Regulqr
B3 g os version Buitin Expression
3 gy ceu Loapy Buitin
3 gy ceu Loaos Buitin
3 gy ceu Lonnss e
DISK FREE :

i alpoiske Command Bultin
E ﬂ PERL VER peri-v Run Command ~This is parl, ...{\d+\\d+\,\d+)
=] m;-gg VER gec-v Run Command “gee version (
B g2 ver java -version Run Command “java version "([*"]
LE mg:gx TOTAL Buit-in
e varai [Save | Dot |

Details

Type: [5& Value Ij Variable:

Value: []

T Ll

A «0-> 4
il Abstracting hafdware - © 2008 IBM Corporation

This is a screen capture of the Collector menu. The columns shown are variable,
command, type, and regular expression. Note the different types of Built-In variables that
can be drawn upon. Also, notice that the Run command has extra fields for the command
to run on the agent and the regular expression to retrieve the version information.

RBF_Module3_BuildForgeServers.ppt Page 8 of 20

IBM Software Group | Rational software

Servers

= To find and gather the required information:
» Install the Build Forge agent on a given machine.

» Provide the connection information for the machine to the
Build Forge console in the server definition.

» Set the collector to that server definition. The next refresh
gathers the collector information and stores it in the
manifest.

j R .
! Abstracting hatdware © 2008 IBM Corporation

With the Collector defined, it must be applied in order to gather the required information.
However, the underlying machine must be entered into Build Forge to abstract it. The Build
Forge logical representation of hardware is called the Server. To set up the Server, it must
be able to connect over the network. Setting up communications requires an installation of
the Build Forge agent on the machine that it is connected to. Once the agent is in place,
specify the connection information on the Management Console for how to connect to that
agent. This completes the server definition in Build Forge, allowing a Collector to be
applied. The next time the engine refreshes, the engine creates a connection to that
database, and pulls the information specified in the Collector into the manifest. The
manifest is the Management Console copy of the important information for the server,
which is refreshed at a given time interval.

RBF_Module3_BuildForgeServers.ppt Page 9 of 20

IBM Software Group | Rational software Zgﬁ
Server details

= Servers have the following settings:
» Name — Logical Build Forge server name
» Path — Agent directory
» Host — Location of the agent
» Authentication — Who is connecting to the agent
» Access — Owner of the server
» Collector — Stats designated for collection
» Environment — Details the server specific environment

» Files — Allows files to be deposited on the server

. n EE T
Qe = W O ’
il Uh N RBa o hajowars © 2008 1BM Corporation

When setting up the server definition, the following information can be set:

The Name value is the logical name within Build Forge for the server definition. This is the
name that Build Forge uses to track the server.

Path is the value that indicates where on the Agent machine Build Forge creates its
folders and runs the Builds.

Host defines the network address where the agent is located. This can be any value as
long as it resolves on the network. For example, this can be a host name or an IP address,
as long as it resolves to an address on the Management Console machine.

Authentication is the credentials used when connecting to the Agent.

Access defines the Access Group for the agent. This is further explained in other
modules. For this module, a user must know that this defines whom the owner of the
Server is in Build Forge.

Collector has previously been discussed in this module. This is where collection
information is applied to the server definition.

Environment defines the environment variables associated with this server. PATH or
other variables for this server definition can be redefined to ensure that the environments
are uniform across various machines. Environments are further explained in other
modules. For this module, a user must know that this is where the initial environment on a
particular Server definition can be set.

Files determines whether to allow files to be deposited on this server from the Build Forge
Management Console.

RBF_Module3_BuildForgeServers.ppt Page 10 of 20

IBM Software Group | Rational software

Server details

(5 servers | Add Server |

L [feeer]s
Hame |
6 myrsty

howing 1 - 1 of 1 Display Al
Access

Build Enginser

] [<] Page
murata

ci\bfbuilds

Here is where to define the name,
path, host, authentication, and

access fora server
C=murata| Save || Copy

Details

Test Results
[osatie

Name: [murata

Reset Job Count |/|’H|ai| Manifest ” Test Connection |

Host:

Path: [c:\bfbuilds
coae
b

Access: Build Engineer

Environment:

~MNone ~
Fas:

L b =
& Abstracting hal

fdware -
This is the Server Definition menu in the Management Console. All servers are required to
define a name, path, host, access, and authentication.

© 2008 IBM Corporation

RBF_Module3_BuildForgeServers.ppt

Page 11 of 20

IBM Software Group | Rational software

[l]
(el
i

Hyll
uH]

Manifest

= Every server has a manifest associated with it.

= The manifest holds the “stats” of the associated
agent machine.

» The collector associated with that server controls the
tracked stats.

= The manifest refresh cycle is automatically

handled by the refresh process on the console
machine.

» The interval between refreshes is configurable on the
console.

‘ T
b PRI

A‘ JAbsﬁaéﬂﬁ‘ﬁ hatdware © 2008 IBM Corporation

This section of the module focuses on the Manifest. As stated earlier, the Manifest is the
compilation of the Collector information gathered in the last refresh. The Manifest is stored
on the Management Console database. The information exists locally on the Management
Console server, and does not have to be retrieved from the remote Agent every time. Note
that this can cause lags between the information in the Manifest and the actual

configuration on the Agent. Ensure that the refresh cycle for the Agents is set to work for
the particular configuration.

RBF_Module3_BuildForgeServers.ppt Page 12 of 20

IBM Software Group | Rational software

[[]]
lI:u:lI|
"""}l

What is a selector?
= Upon abstracting the hardware to a manifest, it
must be determined where to run the process.

= The selector searches the manifest and “selects”
the best candidate machine for the current needs.

w e 1
TR

“ i Abstractifts hafdware

© 2008 IBM Corporation

After running Collectors, Build Forge now has the hardware information and the
information flagged as important. A user must next decide what hardware to run this
information on. The mechanism in Build Forge that decides what hardware to use is the
Selector. The Selector takes the Manifest information in the database and searches for

criteria that has been defined in the Selector. It then picks the agent that best fits that
criteria.

RBF_Module3_BuildForgeServers.ppt Page 13 of 20

IBM Software Group | Rational software

(el

Selector details

= The following fields are definable in a selector:
» Name — The name of the variable

» Operator — The logical operation associated with this
entry. For example, whether the collector variable value
should be greater than or equal to a value

» Value — What the name variable is compared to

» Required — Determines if this is a required criterion for

the Selector, or whether it should be used to rank valid
choices

‘ T
b PRI

A‘ JAbsﬁaéﬂﬁu hatdware © 2008 IBM Corporation

Selectors are set up from one to many criteria. Each criterion needs to define the following
values:

Name defines the Collector variable being sought for comparison.

Operator controls how to logically compare this value in the Selector. For example, this is

used when determining whether the collector variable value is greater than or equal to a
value.

Value defines what the Collection variable is being compared to.

Required states if this criterion is necessary for the selection of the server. If this is set to

“No,” it is used to rank the available Agent resource choices rather than exclude those
choices.

RBF_Module3_BuildForgeServers.ppt Page 14 of 20

IBM Software Group | Rational software

Selector details

Consol

{3y Selectors-»Any | Add Selector Variable |

[[E][FMer | showing1-1of 1 pisplayAll

Variable Operator . Valve | Required .
% B5 naue = I Yo

Change the value of “BF_NAME”
to something other than “null”

(e varistie)[_Save | [Dl |
Details
Name: [BF_NAME | operstor: [== B vale: Required:[Yes

T 2 m -
© 2008 IBM Corporation

2 Abstractifis hakiware
This screen capture shows the Selector menu in the Build Forge Management Console,
and the list of criteria defined in the Selector. In this case, there is only one criterion
defined, the BF_NAME. This must not be equal to “null” to ensure that this Selector will
return a pool of agents whose logical name is not “null.”

RBF_Module3_BuildForgeServers.ppt Page 15 of 20

i
[

ElEEEe

IBM Software Group | Rational software

|

Il
[l

Benefits

= Agent installs are very small and lightweight, thus
adding hardware is easy.

" Processes are not tied to a particular physical
machine, but rather by requirements.
» This allows spread Build work to occur around a pool of

Agents defined by their requirements, rather than their
physical boxes.

‘ T
b PRI

A‘ JAbsﬁaéﬂﬁ‘ﬁ hatdware © 2008 IBM Corporation

The benefit of the Selector/Collector dynamic is the fact that adding new hardware to the
Build Forge agent pool is easy. The agent daemon process has a very small memory and
processor footprint, so it is easy to install and leave the agent daemon running on any
machine. As long as that machine is connected to the Management Console by way of the
network, that Agent can be added.

Since the processes entered into Build Forge are freed from physical machine constraints,
there is no longer a concern about where the Build runs. The Agent that it is run on has all
the necessary requirements, and will return the same result regardless of what agent was
selected from the Agent pool with the Selector.

RBF_Module3_BuildForgeServers.ppt Page 16 of 20

IBM Software Group | Rational software

Agent protocol

, 8 « de 1 ol
LU EE P - ;
e o <1 Abstracting hatdware © 2008 IBM Corporation

This slide lists the steps during the Agent contact with the Management Console.

First, the engine sends the command request to the agent. It is assumed that the engine
has already selected this Agent by way of the Selector as the best option. The agent then
receives the command and creates a command shell. The shell reads the protocol request
from the engine, and derives the command and environment from the protocol.
Afterwards, the shell runs the user credentials from the protocol to switch the shell to the
given user. The agent brings in the environment defined in the protocol. Upon its
completion, the Agent generates a batch script containing the command sent from the
Engine. With the batch script done, the Agent runs it in the generated shell. The output
from the batch script execution, in addition to the exit code, is captured by the Agent, and
is sent back to the Engine.

Note that it is not required that the engine begins the agent process. The process can be
started using a telnet connection to that agent service. When telnetting into the agent on
the agent port, a user will receive a “Hello” message from the agent. This allows the
manual definition of an Agent protocol request to determine what response it produces.

RBF_Module3_BuildForgeServers.ppt Page 17 of 20

IBM Software Group | Rational software

Review

+ Windows 2003 Influences

such as: Define Variables like
+ Operating System PATH, to include

+ Java Version tools in the system’s
profile.

% o Vi
4 AP n

A g & 1 g
& Abstracting hatdware .m © 2008 IBM Corporation

This slide summarizes the interaction between the Agent, Selector, and Collector. The
Selector looks at the data in the Manifest generated by applying the Agent environment to
an agent, which then looks for the information defined in the Collector. The information
from the Collector can be derived from anything in the Agent operating system accessible
through the command line.

RBF_Module3_BuildForgeServers.ppt Page 18 of 20

IBM Software Group | Rational software

[[]]
lI:u:lI|
"""}l

Summary

= Agent process are accessed by servers.

= Build Forge abstracts hardware into logical units in
the console.

= Collectors collect “stats,” and selectors select a
machine based on that data.

w e 1
TR

! . - iAbsﬁaéﬂ'ﬁﬁ hatdware . © 2008 IBM Corporation

In summary, Server definitions are the logical Build Forge representations of Agents
installed on remote computers. A Collector is then applied to that server, and gathers
defined information. Once the data is gathered, it is placed in the server manifest. When a

process is called in Build Forge, a Selector is used to search the manifests to determine
the best candidate to run that particular process.

RBF_Module3_BuildForgeServers.ppt Page 19 of 20

IBM Software Group | Rational software

Trademarks, copyrights, and disclaimers

The following terms are tr or registered tr of International Corporation in the United States, other countries, or both:
Build Forge IBM Rational

A current list of other IBM trademarks is available onthe Web at

Rational is a trademark of International Business Machines Corporation and Rational Software Corporation in the United States, Other Countries, or both.
‘Windows and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or bath,

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this documentto IBM products, programs, or services does not imply
that IBM intends to make such products, programs or senvices available in all countries in which 1BM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe |IBM's intellectual property rights, may
be used instead.

\nfurmatmn is provided "AS 18" without warranty l]f any klﬂd THE INFDRMATIDN F‘RD\IIDED IN THIS DOCUMENT 15 D\STRIBUTED “AS 18" WITHOUT ANY WARRAN HER

ESS OR IMPLIED. 1BM EXPRESSLY D RCHANTABILITY, FITNESS FOR A PAR LAR PURPOSE OR NDNINFRINGEMENT IBM shall
have no responsibility to update this mfnrmalmn IBM pmdun‘ts are warramsd \f at a\l according to the terms and conditions nfms agreements (for example, IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc) under which they are provided. Information conceming non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Caorporation

Narth Castle Drive
Armonk, NY 10504-17285
USA

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
howthose customers have used IBM products and the resultsthey may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogrammingin the user's job stream, the /0 configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance |mprovemems equivalent to the ratios stated here

@ Copyright International Business Machines Corporation 2008. All rights reserved.

MNote to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subjectto restrictions setforth in GSA ADP Schedule Contract and IBM Corp.

.i.

2 Abstracting haidware _ © 2008 IBM Corporation

RBF_Module3_BuildForgeServers.ppt Page 20 of 20

