
RBF_Module4_AbstractingTheProcess.ppt 

This module covers the basics of Abstracting the Process for IBM Rational® Build Forge® 

Version 7.0 and above.  

This module assumes users are familiar with IBM Rational Build Forge basics. For a 

primer on Build Forge, exit this module and first review the Introduction to Build Forge 

module, then continue with this more advanced topic.  

Page 1 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

This module discusses Build Forge projects, along with how to implement their steps. This 

module also shows how to match the current process of the organization into an 

equivalent process in Build Forge. 

Page 2 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

Projects are the logical units that Build Forge uses for handling processes. This module 

details the steps that the project goes through, along with detailing how to define a 

selector that explains where to run those steps. Additionally, the Build Forge engine only 

works with Projects, thus this module also explains how units are passed to the engine 

and executed. 

Page 3 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

Libraries are almost identical to Projects. The only difference between the two is that the 

Library does not define a selector. Therefore, the Library does not have any hardware 

information as to where it should run. The Library is dependent on a Project to give it the 

hardware execution information, and is used like a function call in code. Typically, there 

might be a sub-process shared across multiple processes, such as with a checkout 

procedure. Rather than implementing it in each process that does a checkout, call the 

library in each process that needs it. This way, it avoids duplicating work. If there is an 

update to the checkout process, the Build Forge process can be updated in one place. 

Page 4 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

The Project/Library has several configuration settings. 

The Name field defines the Build Forge logical name for the Project or Library. 

Max Threads is where to define the most concurrent steps that can run at one time. The 

Project/Library Max Thread value caps the number of threaded steps that run 

simultaneously, no matter how many threaded values can run at a given moment. 

Run Limit controls the number of instances that the Project/Library can run at one time. 

Use this setting to allow one Project/Library instance to run at a time. 

Pass/Fail Chain sets up conditional project Builds based on the result of this project as a 

whole. If, for example, this project were to fail, and a project was defined for the fail chain, 

that fail chain starts upon this project’s failure. 

Start/Pass/Fail Notify sets up e-mail notifications for events when they occur. If a Start 

notify group is defined for a project, then whenever a Build of that project is started, that 

group is e-mailed. 

Page 5 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

Class controls how long Builds of a particular project should remain on the console. Class 

is further discussed later in this module. 

Selector is where the selector for this project is defined. 

Environment sets up the environment variables for the project Build. It is important to 

note that the environment variables applied are cumulative with those applied at the server 

level. Environment is further discussed later in this module. 

Console is a setting for Globally Distributed Development. Console is further discussed 

later in this module. 

Sticky changes the default selector behavior for the project. By default, the project uses 

the selector for every step, so each step can theoretically run on different agents every 

time. However, if sticky is set, then the project will reserve the first agent it selects and use 

that agent for every step. This ensures that the agent is consistent for the entire project. 

Page 6 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

Tags are what the project uses to name Builds of a project. Tags are very flexible, and use 

any number of variables. Those variables can be set to automatically increment when 

Builds are queued. 

Registers are used for persisting information between Builds. Build Forge works to keep 

each Build a totally separate entity. 

Page 7 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

This is the project screen in Build Forge. The envelope columns on the right signify the 

notifications for the project: Start, Pass, and Fail, from left to right. Moving the mouse over 

the entries shows a popup that displays the value of that setting. The green play button on 

the left side allows users to start the project with all default settings. Clicking the link under 

the project column links directly to the steps for that project. To edit the project, click the 

pencil icon to the left of the project name. 

Page 8 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

Steps are where the smallest actions for a process are defined in Build Forge. From a 

settings standpoint, the step is not very different from the project or the library; it instead 

defines a smaller, more precise action. 

Page 9 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

Steps have certain configuration information: 

The Pass/Fail Chain, Start/Pass/Fail Notify, Class, Selector and Environment are all 
the same as the project, only now defined for the step. Note that the environment is still 
cumulative, so there are potential entries from the server, project, and step. Also, the 
Selector entry overwrites the Project Selector, allowing a step to select from a completely 
different pool than all other steps in the project. 

Active defines whether a step should be run or not when a Build is started. 

Inline allows a user to insert a project or library’s steps below the step with the inline 
defined. This is similar to the chain, and differences are further discussed later in this 
module. The inline will receive this project’s environment, and is able to make changes to 
it. 

Threaded defines if this step can be run concurrently with other steps. There are three 
options: Yes, No, and Join. The Join option runs with the threaded steps above it, but does 
not allow the subsequent steps to run until all the threaded steps above it are complete. 

Directory and Path define the location on the agent to run this step. Directory is the 
directory path, and path defines if the directory is Relative or Absolute. The common 
misconception is that Absolute  takes the path out to the root directory on the agent 
machine, which is not true. Absolute only takes the path out to the directory defined in the 
Server definition of the agent. If the Server is defined with a path of C:\Builds, checking 
Absolute here goes to that path, NOT to C:\. 

 

Page 10 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

Timeout defines how long Build Forge waits for output before failing a step. Note that the 
step timeout is clocked from the last time any output was received. It is not based on 
absolute time that a step has run, but from the last time ANY output was received. 

Result defines how a pass or fail is determined for this step. By default, this is done 
through exit code. If the step returns a zero exit code, then it passes. Any non-zero code 
fails.  The other option is a log filter, which is further discussed later in this module. It 
allows a search for specific entries in the step log to cue passes or fails. 

Broadcast alters the default behavior of the project. By default, the step selects and runs 
on one Server. However, if Broadcast is set, then the step selects all Servers that fit the 
Selector criteria, and runs the step on all those Servers simultaneously. 

On Fail states that the Build should be stopped if the step fails, or if there can be no 
further progress made. 

Pass/Fail Wait applies when Pass or Fail chains are defined for the step. It determines 
that if a Pass or Fail chain has been defined, then the step should wait for that Chain to 
complete before continuing on to the next step. 

 

 

Page 11 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

The final setting for the Step is the command field, where a user defines the actions to 

take. This is the literal command run on the shell of the Agent selected to run this step. 

Page 12 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

This slide shows the Step menu for a project. Note that in addition to the Pass/Fail notifies, 

there are also pencil icons. These define Inline, Pass, and Fail Chain, from left to right. 

Moving the mouse over these icons shows the values of the settings. When moving the 

mouse over the far left program icon, a popup menu opens that allows users to move and 

copy steps. The box column to the right of that icon is the shortcut for disabling steps. If a 

step has an “X,” it is not included in the Build. 

Page 13 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

Now that steps have been explained, this module will examine the differences between a 

Chain and an Inline. 

A chained Build is a completely separate Build entity. The chain begins and creates its 

own copy of the environment. This Build then runs separately and parallel to the currently 

running Build, and is now unable to affect anything in the original Build directly. This 

situation is commonly known as “Fire and Forget.” The chaining Build starts it and never 

thinks about it again, unless Pass or Fail Wait is defined for the step. 

Inline is similar to a function call, as everything still occurs in the currently running Build. If 

a project or library is inlined for a step, it is as if those steps had been cut out from the 

project or library and pasted below the step defining the inline. Any changes to the 

environment are reflected in the Build, and those steps appear in the Build. 

Page 14 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

Access Groups allow Build Forge to assert its ownership. If a particular group owns a 

particular object in Build Forge, such as a Selector, then only that group can view that 

object. Ideally, Access Groups should be established to match particular roles. A user’s 

particular roles should be assigned to that user, providing access to all objects that a user 

needs. However, Access Groups also control permissions on the Build Forge console. In 

addition to assigning object ownership, Access Groups control what actions can be 

performed on the Management Console. The user’s permission set is determined as the 

sum of all the permissions to all Access Groups a user belongs to.  

Access Groups also allow a user to define subgroups, or separate Access Groups, that 

inherit all permissions from the parent. More permissions can be added to the child, and 

the parent does not receive those permissions. The child sees all objects assigned to the 

parent, but objects assigned to the child cannot be seen by the parent. When creating 

these Access Group hierarchies, they must be carefully planned to prevent unintended 

inherited visibility and permissions. 

Page 15 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

This diagram shows a potential Access Group hierarchy. Access Group C is a child of 

Access Group B, and B is a child of Access Group A. Permissions pass from A to B to C. 

Note that if permissions are added to B, then permission set C receives those new 

permissions. C is ultimately the most powerful class, as it receives everything from the 

classes above, in addition to any other permissions given to C. 

Page 16 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

This is an Access Group hierarchy that is a bit more complex. Note that any projects 

assigned to Access Group B are only visible if a user is a part of group B. However, it is 

completely possible for a user to be assigned to Access Groups B and D. In this case, a 

user is able to see everything, as the set of permissions then encompasses all four 

groups. 

Page 17 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

Environments are essential for creating the reproducibility and hardware abstraction that 

makes Build Forge work. The most important thing to remember is that environments are 

cumulative. Upon changing something in the Build environment, the Build remembers it 

until it is complete. Everything persists unless Build Forge is given instructions not to 

continue, or unless the Build terminates. 

Page 18 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

This diagram illustrates the flow of a Build and how it affects the environment. First, notice 

that the Server and Project level environments are immediately put together to constitute 

the beginning environment set. Each step then adds its environment as the Build runs. For 

step A, note that the inline chain takes place in the same environment set as the step 

before it. Step C chains, but the chain receives the environment from the step. At that 

point, the Build does not care what the chain does with the environment. It is a copy of the 

step level environment, and this Build will no longer be affected by the other Build. The 

same base environment that B received is applied to D, but note what the chain is called in 

D. The environment applied there does not affect the original Build. 

Page 19 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

The environment configuration has several settings: 

Name declares the variable and sets its value. 

Action defines what to do when the variable is set. There are several options here. Build 

Forge can delete the variable if it is found, set the variable if it is not already set, can 

append the value to the end of the existing variable, and so on. 

On Project defines what should be done on the Build Forge end with a specific variable. 

Again, there a few options here: whether Build Forge should require this variable to be set 

before starting a Build,  whether the variable should be visible on the start screen, and so 

on. 

For the full set of options, look at Build Forge help for further reading. 

Page 20 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

This is the Environment setting screen in Build Forge. Examine all available options for the 

Action and On Project settings. 

Page 21 of 23 



RBF_Module4_AbstractingTheProcess.ppt 

In summary, this module explained various aspects of abstracting the process in Build 

Forge. Projects and Libraries are the basic unit of process in Build Forge and are largely 

identical, except Projects define the hardware where they will run. Steps are the smallest 

unit of process that Build Forge defines, and should be as small as possible when they are 

defined. Chained projects are “fire and forget.” They receive the environment of the calling 

step or project, but from then on, the Build is autonomous. The inlines become part of the 

Build that called them. Environments are cumulative as the Build runs, making any 

changes made to the environment persist until the Build terminates. 

Page 22 of 23 



RBF_Module4_AbstractingTheProcess.ppt Page 23 of 23 


