
RBF_Module5_BuildingBuilds.ppt

This module covers the basics of building builds for IBM Rational® Build Forge® Version

7.0 and above.

This module assumes users are familiar with IBM Rational Build Forge basics. For a

primer on Build Forge, exit this module and first review the Introduction to Build Forge

module, then continue with this more advanced topic.

Page 1 of 17

RBF_Module5_BuildingBuilds.ppt

This module discusses Build Forge builds, and the parts associated with the build. It

further details the Build Forge build log and how to read, filter and navigate it. The bill of

materials is covered as well. Classes are explored, and this module describes what they

are used for and how they are related to purges. Finally, this module explains scheduling.

Page 2 of 17

RBF_Module5_BuildingBuilds.ppt

When a project is run, the build is the result. The build is a collection of logs compiled by

the result of each of the steps in the project. The logs are kept on the console database,

but the build artifacts are kept in the agent where they were generated by default.

Page 3 of 17

RBF_Module5_BuildingBuilds.ppt

The build log captures everything that occurs during the execution of the project.

Generally, this shows the manifest of the Server where the step ran, along with the

environment information. It also shows the execution and the results of that step.

Page 4 of 17

RBF_Module5_BuildingBuilds.ppt

A prevailing problem is how to determine if a step was a pass or a fail. By default, the step

looks at the exit code of the command that was run. If the exit code was zero, then the

step passes. However, any non-zero value fails the step. This potentially can be used to

base a step pass or failure on. One example where this does not work is with Ant scripts.

Ant scripts always return an exit code of one, even when they are successful.

The Build Forge solution for this situation is to define a log filter. The log filter is a

collection of regular expressions that define actions to take when the regular expression is

tripped. This is particularly powerful, as multiple actions can be defined that will resolve

from top to bottom in the step log. For example, a particular regular expression can be set

to fail the build, but if another condition occurs, it can be changed to pass. This allows for

very flexible rules in determining a step’s final state.

Page 5 of 17

RBF_Module5_BuildingBuilds.ppt

This slide shows the screen for setting up a log filter. Note the available options for usable

actions when a particular regular expression is tripped. The expressions are evaluated top

to bottom, so multiple rule log filters should be set accordingly.

Page 6 of 17

RBF_Module5_BuildingBuilds.ppt

The steps in the build produce the logging information, but that can be unwieldy, especially

when projects can scale to the magnitude of several hundred steps. In such a situation, it

becomes a hassle to click through each step to determine what happened in the build. To

avoid this, use the bill of Materials (BOM). The BOM is the Build Forge method for

condensing data into something easily and quickly perused. While designing the project,

particular information can be designated for the BOM. When the build is complete, users

can open the BOM and quickly get a sense of what happened during the build.

Page 7 of 17

RBF_Module5_BuildingBuilds.ppt

Build Forge offers scheduling capabilities for setting up specific Build runs. This allows for

the automation of the execution of Builds in the Management Console. When a Build is

scheduled, the console allows users to set up options specific to that Build. In particular, a

user can redefine the Selectors, Environment variables, and other options for that Build.

Page 8 of 17

RBF_Module5_BuildingBuilds.ppt

The Schedule has several configuration options:

Class, Environment, and Selector can all be overridden for the schedule. Additionally,

the Schedule allows users to specifically change the value of the variables in the

environment for the scheduled Build.

Project defines the project the schedule is being set for.

Owner sets up who owns the Schedule. Currently, the Schedule is owned by a user and

not by an access group, which is different from all other ownership dynamics in the

Management Console.

Minutes, Hours, Days, Months, and Dates all define the schedule. The format is the

same as cron for Linux.

Page 9 of 17

RBF_Module5_BuildingBuilds.ppt

Purges are the delete function for Build Forge. Purges delete the Build log, files, and

whatever other information might be stored on the Build. Note that purges consume job

slots on the agent, as they must go to the agent to clean up files that might have been left

behind. The purge does not show up in the Build queue though. This is further discussed

later in this module.

Page 10 of 17

RBF_Module5_BuildingBuilds.ppt

Classes are used in Build Forge for automatically determining what Builds to purge.

Classes allow users to define what criteria to consider when deciding whether a Build

should be purged from the console or not. The two criteria that can be set up are Build

number and age. For example, a class can be established to delete all Builds of a

particular project older than three days, or the Builds exceeding age five.

Page 11 of 17

RBF_Module5_BuildingBuilds.ppt

Classes have varied configuration information:

Start of Entry, Exit, and Purge set up chained actions to take on particular events. Entry

and Exit are events defined as when a Build is Entering or Exiting this particular class. For

example, if a user has additional actions to take before moving the Build from Scratch to

Production, users can set those up here. The Purge event happens upon purging.

Delete File defines what the class should delete when the purge takes place. There is a

mix of options to delete just the data on the console, just the Build artifacts on the Agents,

or a combination of both.

Days and Count set up the criteria for determining what Builds should be purged.

Which defines the Builds to consider with the Days and Count criteria, whether it should

be all Builds, or just failed Builds.

Page 12 of 17

RBF_Module5_BuildingBuilds.ppt

This slide shows the configuration menu for the Class. Note here that the Days and Count

are pre-determined, and are not completely definable.

Page 13 of 17

RBF_Module5_BuildingBuilds.ppt

By default, the Build Forge console checks every 15 minutes to see if there are any new

builds eligible for purging based on their class. However, this can become too

cumbersome if several builds appear for purge simultaneously. Upon rechecking the

schedule, the project setting on the schedule can alternatively be set to class purge

schedule. If that is set, the class field in the schedule becomes the class purge cycle being

defined. This allows a particular time to be set that the console will consider a class for

purging. Doing this avoids the problem of having too many builds appear for purge at one

time.

Page 14 of 17

RBF_Module5_BuildingBuilds.ppt

The class mechanism is a common problem for new users. This stems from the Build

Forge default class, whose production does not delete any builds. If a user has been using

a project for a few weeks and has accumulated a stack of builds, then decides to set up

the class to something else more practical, those builds eligible for purge will begin

purging simultaneously. This becomes a performance problem, as the purge job takes

precedence over regular build jobs in the engine. Since the purge does not appear on the

console job queue, it shows the engine running very hard, but not doing anything. To avoid

this situation, ensure that the classes are set up before starting any builds to ensure that

the build count stays under control.

Page 15 of 17

RBF_Module5_BuildingBuilds.ppt

In summary, builds are the collection of logs from running a project. They show all the

actions that happened, and what the results of those actions were. A schedule can be set

for both builds and purges in Build Forge. Finally, to avoid trouble with excess builds in the

future, always set up a class for the project to be run on.

Page 16 of 17

RBF_Module5_BuildingBuilds.ppt Page 17 of 17

