
RBF_Module6_BuildForgeGDD.ppt

This module covers the basics of Globally Distributed Development for IBM Rational®

Build Forge® Version 7.0 and above.

This module assumes users are familiar with IBM Rational Build Forge basics. For a

primer on Build Forge, exit this module and first review the Introduction to Build Forge

module, then continue with this more advanced topic.

Page 1 of 9

RBF_Module6_BuildForgeGDD.ppt

This module provides an overview of the benefits of Globally Distributed Development

(GDD), and the problems it is meant to bypass. It also discusses the architecture of GDD.

Page 2 of 9

RBF_Module6_BuildForgeGDD.ppt

GDD is a feature added to Build Forge to relieve problems experienced on widely

distributed Build Forge configurations. Problems occur in situations where the agent is

geographically distant from the console. There are many inconsistencies with

performance, as the Build Forge engine and Agent have trouble staying in sync over the

Wireless Area Network (WAN). The solution involves finding a way to reduce the amount

of traffic between the Agent and the Engine to minimize the exposure to WAN

performance inconsistencies.

Page 3 of 9

RBF_Module6_BuildForgeGDD.ppt

This is a diagram of the problem before GDD is implemented. The Build request is small,

and not necessarily affected by distance. The problem emerges when the results need to

be sent back to the console. In some cases, this can be hundreds of pages of log files, or

large files generated at the Agent. If there are any problems on the WAN during the

transmission of that data, bad data will end up in the database.

Page 4 of 9

RBF_Module6_BuildForgeGDD.ppt

The solution to this situation is to bring the engine closer to the Agent. To accomplish this,

add additional engines to the configuration, which will act as local engines for the Agent.

This allows the remote engine to store just the project configuration data, leaving the local

engine to store the potentially large amount of data that comes back from the Build

request. The problem transmit is kept local, thus avoiding the problem.

Page 5 of 9

RBF_Module6_BuildForgeGDD.ppt

This diagram shows the new behavior after GDD is set up. The Build request is still sent

from the remote console. However, once the agent runs and completes the task, the Build

Logs and files are kept local, as they are only sent to the local Console, and not to the

remote one. When a user wants to access those logs or files they can do so from the

remote console, and the request is forwarded to the local console where the data actually

resides. To the user, there is no difference between this and a non-GDD environment.

Page 6 of 9

RBF_Module6_BuildForgeGDD.ppt

By implementing GDD, Build Forge allows users to regionalize their processes without

penalty for having the agents geographically remote. The data stays local, and the WAN is

not overburdened with Build Forge traffic. Also, Build Forge allows those secondary

consoles that exist in the other locations to be set up as failover consoles, as they are

Build Forge installations complete with their own engine and database. This is different

than clustering in Build Forge. Clustering is when two engines point to a single database.

This improves performance by balancing the load from a single database across multiple

engines. In a GDD environment, each engine has its own engine and database, and

improves performance by keeping data transmits local.

Page 7 of 9

RBF_Module6_BuildForgeGDD.ppt

In summary, GDD is Build Forge’s way of breaking large architectures into regional

chunks. This breakdown improves performance by keeping the potentially large data

transmits local to the agent that is running the Build.

Page 8 of 9

RBF_Module6_BuildForgeGDD.ppt Page 9 of 9

