

WebSphere Business Process Management
WebSphere Integration Developer
WebSphere Enterprise Service Bus
WebSphere Process Server

Introduction to mediation primitives

© 2010 IBM Corporation

This presentation introduces mediation primitives and discusses those aspects that are
common to mediation primitives in general.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 1 of 25

Goals

� Provide the basic understanding needed before examining individual primitives
– Review concepts of mediation primitives
– Describe elements common to mediation primitives

2 Introduction to mediation primitives © 2010 IBM Corporation

The goal of this presentation is to provide a basic understanding before discussing each of
the individual mediation primitives. This is done by reviewing the concepts of mediation
primitives and describing the elements that are common across many or all of the
primitives.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 2 of 25

Place of mediation primitives in the big picture

� Mediation modules:
– Mediate messages flowing between service requestors and providers

• Handle protocol transformations
• Update content of the message
• Modify format of the message
• Dynamically route service requests and responses

– Contain a mediation flow component

� Mediation flow components:
– Used to define the mediation flow logic
– Unique flow logic defined for every operation of a service interface

� Mediation primitives
– Wiring of primitives is used to construct the logic of a mediation flow
– Each primitive performs some specific part of the flow logic

• Each primitive type performs some predefined function
• The predefined function is configured for each instance through the use of properties

3 Introduction to mediation primitives © 2010 IBM Corporation

In order to understand mediation primitives, it is important to understand where they fit into
the big picture of mediations.

Starting at the highest level of abstraction, there are mediation modules whose function is
to mediate messages flowing between service requestors and service providers. Mediating
a message might involve handling protocol transformations, updating the content of the
message, modifying the format of the message or dynamically routing the message to an
appropriate service provider.

The mediation module contains a mediation flow component, which is where the overall
logic for the mediation is defined. For every operation defined on an input interface there is
unique mediation flow logic for the operation’s request and response. The flow logic is
defined within the mediation flow component using mediation primitives.

Each type of mediation primitive provides some predefined functional capability. Each
instance of a mediation primitive has its predefined function configured through the use of
properties. The property settings define how the primitive explicitly behaves in this specific
instance. The overall logic of the flow is defined by wiring these configured mediation
primitives together into a logical flow.

To summarize, the highest level of a mediation is the mediation module, which contains a
mediation flow component, which contains mediation flows, which are composed of
mediation primitives wired together to define the logic.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 3 of 25

© 2010 IBM Corporation 4 Introduction to mediation primitives

Mediation primitive groupings

Do not update the SMO

Update contents of SMO

Change SMO schema/message type

Key for following slides

The next few slides introduce the various mediation primitive types. There are various
ways that mediation primitive types can be organized or classified. In WebSphere®

Integration Developer, they are categorized into broad groupings based on the primary
function of the primitive.

These groupings are shown using screen captures from the mediation flow editor palette.
In the upper left, you see the service invocation primitives which are used to interface with
external services. Below them are the routing primitives. They are used to either control
the path within a flow or identify endpoints for external services. In the center are the
transformation primitives which are used to access and modify data in the SMO. Some
can also manipulate the schema of the SMO, thus changing the message type. Below
them are the tracing primitives, which write data extracted from the SMO to an external
source such as a log or event queue. In the upper right are the error handling primitives
that are used to check for errors or control the flow in error situations. Finally, below them
is the mediation subflow. A subflow can be thought of as a user defined primitive. They are
used to encapsulate the logic of a flow, enabling it to be reused in other flows as if it were
a primitive.

In the slides that follow, the organization just described is used as the highest level of
organization. In addition, another way to group primitives is according to their behavior and
abilities for updating the SMO as it flows through the mediation. The following slides
address that as well, using color coding as an indicator, which you can see in the key on
the bottom right. Primitives which can change message type are shown in blue, those that
update the SMO without changing the message type are shown in yellow and finally those
that do not update the SMO are shown in red.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 4 of 25

© 2010 IBM Corporation 5 Introduction to mediation primitives

Mediation primitive types (1 of 6)

Downcasts element to more specific type Set message type

Message elements are set, copied or deleted Message element setter

Set elements from contents of a database row Database lookup

Read, update, copy and delete SOAP header elements SOAP header setter

Read, update, copy and delete MQ header elements MQ header setter

Read, update, copy and delete JMS header elements JMS header setter

Read, update, modify message using Java™ code Custom mediation

Update, modify message using a data handler Data handler

Read, update, copy and delete HTTP header elements HTTP header setter

Update, modify message using business object maps Business object map

Update, modify message using XSLT XSL transformation

Transformation primitives

This slide looks at transformation primitives, starting with those that can change the
message type, which are shown in blue. This is the truest sense of transformation, as the
message type of the SMO is being transformed.

The XSL transformation primitive is used to update or transform messages using XSLT,
which can be used to change the format of the message. An example of when the format
needs to change is when the target provider has a different interface than the incoming
message.

The business object map primitive is very similar in function to the XSL transformation
primitive, but it uses business object maps rather than XSLT to perform the
transformation. These are the same business object maps that are used in WebSphere
Process Server to perform parameter mapping within an interface map. As a result,
change logging and the relationship service are enabled.

The data handler primitive allows you to configure a data handler to transform the
message. A data handler can be one supplied with the product or one that you provide.
The data handler and any associated configuration data are supplied as a resource
configuration that defines the exact behavior of the transformation to be performed. These
data handlers and resource configurations are the same as those used with SCA imports
and exports.

The custom mediation primitive is used to do any message processing not covered by
the other mediation primitives. This is done through Java code that can be written as a
visual snippet or as a Java snippet.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 5 of 25

© 2010 IBM Corporation 6 Introduction to mediation primitives

Mediation primitive types (2 of 6)

Downcasts element to more specific type Set message type

Message elements are set, copied or deleted Message element setter

Set elements from contents of a database row Database lookup

Read, update, copy and delete SOAP header elements SOAP header setter

Read, update, copy and delete MQ header elements MQ header setter

Read, update, copy and delete JMS header elements JMS header setter

Read, update, modify message using Java code Custom mediation

Update, modify message using a data handler Data handler

Read, update, copy and delete HTTP header elements HTTP header setter

Update, modify message using business object maps Business object map

Update, modify message using XSLT XSL transformation

Transformation primitives

Continuing with the transformation primitives, the next grouping are those that update the contents of the
SMO but do not actually transform the message type.

The first four, the header setter primitives, are all similar in nature. They provide you with an easy way to
access protocol specific headers within the header section of the SMO. Although these headers can be
accessed with other mediation primitives, the header setter primitives make it much easier because they are
aware of how these protocol specific headers are structured. This allows you to focus on those aspects of the
header you are interested in reading or updating, without having to be concerned with specifically how they
are represented in the SMO.

The HTTP header setter primitive enables you to access HTTP headers, which are grouped into control
elements, standard elements and user elements.

The JMS header setter primitive enables you to access JMS headers, which are grouped as standard
elements and user elements.

The MQ header setter primitive enables you to access MQ headers. The headers exposed are the message
descriptor, the CICS® bridge header, the IMS™ information header and the rules and formatting header two.

The SOAP header setter primitive enables you to access SOAP headers. Any XSD containing an element
can be a SOAP header. Some are provided by standards such as WS-Security and others are user defined.

The database lookup primitive is used to access information from a database and insert it into the message.
A field in the message is used as a key for the database access and selected fields from the resulting
database row can be placed into the message.

The message element setter primitive can be configured to update elements of the SMO. Individual
elements can be set to a specific value or can have their value deleted. Individual elements or sub-trees in
the SMO can be set by copying the values from another location in the SMO. Arrays in the SMO can have an
element appended.

The set message type primitive does not update the SMO contents, but is used to augment the message
type. It is used in conjunction with loosely typed elements in the SMO, such as an XSD:anyType, allowing it
to be downcast to a more specific type. This enables tools, such as the simple XPath expression builder, to
represent the element to you as the more specific type.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 6 of 25

© 2010 IBM Corporation 7 Introduction to mediation primitives

Mediation primitive types (3 of 6)

Control order of execution for multiple flow paths Flow order

Selectively forward message based on registry SLAs SLA check

Selectively forward message based on element types Type filter

Selectively forward message based on element values Message filter

Check completion of a split/aggregate flow Fan in

Starts iterative or split flow for aggregation Fan out

Set policy constraints from registry query Policy resolution

Set potential endpoints from internal registry query Gateway endpoint lookup

Set potential endpoints from a UDDI registry query UDDI endpoint lookup

Set potential endpoints from registry query Endpoint lookup

Routing primitives

This next grouping of primitives are those that are categorized as routing primitives. The
first group are those that update the SMO.

The endpoint lookup primitive is used to perform a query of the WebSphere Service
Registry and Repository. The SMOHeader section of the SMO is updated with potential
service endpoints that can be used by a callout node or service invoke primitive. Looked at
from this perspective, the endpoint lookup is not actually doing the routing, but rather is
providing the information used later in the flow to perform routing.

The UDDI endpoint lookup primitive performs the same function as the endpoint lookup,
with the exception that the registry query is to a UDDI registry rather than WebSphere
Service Registry and Repository

The gateway endpoint lookup primitive is used in proxy gateway scenarios. It performs a
query to an internal registry to access potential service endpoints based on a virtual
service name obtained from the message. It updates the SMO header with the endpoint
information, similar to the operation of the other two endpoint lookup primitives.

The policy resolution primitive performs a query of the WebSphere Service Registry and
Repository. Based on a conditional query, it looks up policy information and updates the
dynamicProperty section of the SMO with property values. These property values are then
used by subsequent primitives in the flow to influence their configured behavior.

The fan out primitive is used to start an iteration for a message splitting and aggregation
flow. It can be used to process an array of repeating elements within the SMO and can
also be used as the head of a flow with multiple paths. For a simple splitting scenario the
fan out can be used without a fan in, but for a splitting and aggregation scenario it has an
associated fan in. When used with an aggregation scenario, the primitive updates the
FanOutContext section of the SMO.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 7 of 25

© 2010 IBM Corporation 8 Introduction to mediation primitives

Mediation primitive types (4 of 6)

Control order of execution for multiple flow paths Flow order

Selectively forward message based on registry SLAs SLA check

Selectively forward message based on element types Type filter

Selectively forward message based on element values Message filter

Check completion of a split/aggregate flow Fan in

Starts iterative or split flow for aggregation Fan out

Set policy constraints from registry query Policy resolution

Set potential endpoints from internal registry query Gateway endpoint lookup

Set potential endpoints from a UDDI registry query UDDI endpoint lookup

Set potential endpoints from registry query Endpoint lookup

Routing primitives

Continuing with the routing primitives, the next group are those that do not update the SMO.

The fan in primitive is always used in conjunction with a fan out primitive as part of a message
splitting and aggregation scenario. The primitive controls the flow based on the state of the flow
and the fan in configuration information. Either the flow returns to the fan out for another iteration
or the flow proceeds from the fan in, passing the aggregated results.

The message filter primitive is used to modify the path through a flow by selectively forwarding
the message based on values of elements within the SMO. The primitive contains a table of simple
XPath expressions, each associated with an output terminal defining where the message is
forwarded. The message is forwarded based on the results from evaluation of the XPath
expressions.

The type filter primitive is very similar to the message filter. It selectively forwards the message
based on the evaluation of element types within the SMO. The primitive contains a table with
elements and associated types, each associated with an output terminal defining where the
message is forwarded. The message is forwarded when an element in the SMO is of the same
type as that defined in the table.

The SLA check primitive provides a mechanism to incorporate service level agreements into
mediation flows. The primitive makes a call to the WebSphere Service Registry and Repository
which contains configuration information for service level agreements. Different paths are then
taken through the flow based on the response from the registry. The response indicates whether
the request conforms to the configured service level agreements.

The flow order primitive is used in the case where you normally have multiple paths wired to an
out terminal. By inserting the flow order primitive, you can explicitly define the order in which those
paths are executed.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 8 of 25

© 2010 IBM Corporation 9 Introduction to mediation primitives

Mediation primitive types (5 of 6)

Invoke external service, result returned to response flow Callout

Invoke an external service, result modifies message Service invoke

Service invocation primitives

Write a trace record to the system log or specified file Trace

Raise a common base event to CEI Event emitter

Write a log message to a database or custom destination Message logger

Tracing primitives

This next grouping are the service invocation primitives.

The service invoke primitive is used to make a call from within a mediation flow to an
external service defined on the mediation module assembly. The service can be defined
by a Java component or by an import. This primitive changes the message type of the
service message object. The input terminal message type conforms to the input to the
service and the output terminal message type conforms to the output from the service.

The callout is actually not a primitive, rather it is a node in a request flow. It is the only
non-primitive that is made available on the mediation flow editor palette. It is handled
similar to a primitive in that it is dropped onto the canvas and wired into the flow. It has an
input terminal, but no output terminal. The purpose of the callout it to make a call to an
external service, ending the request flow. The response from the external service initiates
the response flow in the mediation. It does not change the service message object as the
SMO is not passed beyond the callout. A new copy of the SMO is created when the
response flow is initiated.

The next grouping are the tracing primitives. None of these primitives updates the SMO.

The message logger that is used to log all or part of the contents of the message. The
primitive provides two different options. The first option logs the message to a message
log database which is identified through configuration of the primitive. The other option
allows you to specify a custom logging implementation based on the Java logging APIs. A
default implementation of this is provided that logs to a file.

The event emitter primitive is used to raise an event containing all or part of the contents
of the message. The event is emitted as a common base event which is handled by the
common event infrastructure.

The trace primitive writes all or part of the message as a trace record to either the system
log or to a specified tracing file.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 9 of 25

© 2010 IBM Corporation 10 Introduction to mediation primitives

Mediation primitive types (6 of 6)

Validates contents of message against defined schema Message validator

Stop entire flow and raise an exception Fail

Stop single path in flow without an exception Stop

Error handling primitives

Represents a user defined subflow Subflow

Mediation subflow primitives

The next category are the error handling primitives.

The stop primitive is used to stop an individual path through the mediation flow without
raising an exception or affecting other paths through the flow.

The fail primitive is used for error conditions and will stop the entire mediation flow and
cause an exception to be raised.

The message validator primitive enables you to designate a portion of the SMO to check,
ensuring that the actual data is consistent with the schema for that portion of the SMO.
Different out terminals are taken depending upon the success or failure of the validation.

Finally, there is the mediation subflow primitive which represents flow logic that you have
provided as a reusable subflow. A mediation subflow is a preconfigured set of mediation
primitives that are wired together to create a common pattern or use case. The logic of the
subflow determines if the SMO contents are update and if the message type is changed.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 10 of 25

Mediation primitive input and output terminals

� Terminals:
– Define a mediation primitive’s input and output message type
– Message types define the content of the service message object body

� Input terminals
– Defines input message type
– Generally one per primitive (with a few exceptions)

� Output terminals
– Defines output message type
– Zero, one or more output terminals per primitive, either fixed or variable
– Possibly required to have same message type as input terminal

� Fail terminal
– Used when a primitive fails during the flow
– Message type must be the same as input terminal message type
– Propagates the original message updated to contain failure information

11 Introduction to mediation primitives © 2010 IBM Corporation

All mediation primitives have terminals, which are used to define the input and output of
the primitive, identifying the message type that flows through the terminal. The message
type is defined by the structure of the service message object body that is present in that
part of the flow.

Typically, there is just one input terminal per primitive and it defines the input message
type. Exceptions to this are the custom mediation primitive, allowing a variable number of
input terminals, and the fan in primitive, which has two defined input terminals.

An output terminal defines the output message type. The number of output terminals
varies by the primitive type. A primitive type can have zero, one, two or a variable number
of output terminals. For many mediation primitives, the output terminal must be of the
same message type as the input terminal. This is because the primitive is not capable of
changing the structure of the SMO body. However, for primitives that can change the SMO
body structure, the output terminal can be for a different message type.

The fail terminal is used when the mediation primitive fails in some way while processing
the message. Because the original message is propagated when there is a failure, the fail
terminal is always for the same message type as the input terminal. The message is
updated to contain information about the failure.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 11 of 25

© 2010 IBM Corporation 12 Introduction to mediation primitives

Terminals in the mediation flow editor

Hover over terminal displays
name and message type

Input Terminal Output Terminals

Fail Terminal

Terminal representation

Hover over primitive displays icon
and clicking icon displays

terminals and message types

Terminals are shown in the Properties view

This slide examines how terminals are represented in the mediation flow editor. Starting in
the upper left is a mediation primitive. It has an input terminal, which is always on the left
side; output terminals, which are on the right side; and the fail terminal, which is the lower
terminal on the right side. Notice that the fail terminal has a different shape than either the
input or output terminals. Moving down to the illustration in the left center, the behavior
when hovering the mouse pointer over a terminal is illustrated. When this is done, a popup
opens specifying the name of the terminal and the message type associated with that
terminal. The illustration on the upper right shows you what happens when you hover the
mouse pointer over the primitive. An icon is shown in the upper right portion of the
primitive and clicking on this icon causes a dialog to appear. The dialog provides the name
of the primitive, the names of the primitive’s terminals and the message type associated
with each terminal. This dialog allows you to select the message type for any terminal and
expand the SMO details for that message type. From the expanded SMO, you can also
launch a dialog to change the message type for that terminal. Finally, on the bottom is a
screen capture of the terminal tab in the properties view of the mediation primitive.
Selecting any terminal in the list on the left displays the name and message type of the
terminal on the right. Notice the Change… button next to the message type. This is used
to open the change message type dialog for modifying the message type associated with
the terminal.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 12 of 25

Wiring of mediation primitive terminals (1 of 5)

Wire

Matching message types
� Connections between terminals:

– Are represented with wires
– Connected terminals must have matching message types

� Message types can be augmented
– Provides additional type information for weakly typed fields
– Wiring considerations for augmented message types

• Wiring allowed when target terminal is less specific type than source
• Wiring not allowed when target terminal is more specific type than source

� Terminals can be designated to accept “any message type”
– Enables input terminals to have multiple wires with differing message types
– Wiring considerations for “any message type” terminals

• Wiring allowed if target terminal is “any message type” no matter what the source
terminal message type

• When source is an “any message type”, the target must be an “any message type”

13 Introduction to mediation primitives © 2010 IBM Corporation

The next few slides look at the behavior of the mediation flow editor relative to the
assignment of message types to terminals during the process of wiring a mediation flow.
As illustrated in the graphic, connections between terminals are represented with wires.
When two terminals are wired together, they must have matching message types.

Message types can be augmented with additional type information. This is used when
needing to provide additional type information for weakly typed fields, such as those
defined as an xsd:anyType. When wiring terminals that have augmented message types,
the two terminals are not required to have exactly the same augmentation. Wiring is
allowed when the target terminal has a less specific type than the source terminal.
However, if the target has a more specific augmented type than the source, they can not
be wired together.

Terminals can also be configured to be “any message type”. This allows input terminals to
have multiple inbound wires that have differing message types. When wiring to a target
terminal set to “any message type”, it doesn’t matter what the message type of the source
terminal is. However, when the source terminal is an “any message type”, the target
terminal must also be an “any message type”.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 13 of 25

Wiring of mediation primitive terminals (2 of 5)

Message type assigned

Message type unset until wired

� The editor dynamically manages message types
– Input and callout nodes:

• Have fixed terminal message types
• Interface and operation associated with the node defines the message type

– Primitives:
• Have dynamically configured terminal message types
• Message type unset unless:

– Implicitly set through message type propagation
– Explicitly set through the change message type dialog

14 Introduction to mediation primitives © 2010 IBM Corporation

During the process of wiring terminals together, the editor dynamically manages the
message types of the terminals. In the graphic, you see a mediation flow that has an input
node on the left, a callout node on the right, and two mediation primitives in the middle. At
this point, none of these are wired together. Notice that the nodes have message types
assigned to their terminals, whereas the mediation primitives do not yet have message
types assigned to their terminals. Terminal message types are either implicitly set through
message type propagation or explicitly set using the change message type dialog.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 14 of 25

Wiring of mediation primitive terminals (3 of 5)

� Wiring and message type propagation

Wiring two unset terminals keeps message type as unset

Adding a wire from a terminal with a defined message type …

propagates that message type through the flow

15 Introduction to mediation primitives © 2010 IBM Corporation

Continuing from the flow shown on the previous slide, this slide examines message type
propagation associated with wiring. The top graphic shows a wire added from the output
terminal of the LogMessage primitive to the input terminal of the DBLookup primitive.
Before wiring, both terminal’s have a message type that is unset. After wiring, the
message type for these terminals remains as unset.

In the next graphic, the output terminal of the input node is wired to the input terminal of
the LogMessage primitive. Because the output terminal of the input node has a specific
message type assigned, that message type is dynamically assigned to the input terminal
of the LogMessage primitive so that the wire connects terminals of like message type.
Since a message logger primitive must have the same output message type as its input
message type, the editor dynamically assigns the message type to the output and fail
terminals of the LogMessage primitive. Since there is a wire between the output terminal
of the LogMessage primitive and the input terminal of the DBLookup primitive, the
message type is propagated so that the wire is connecting terminals of like message type.
Finally, since a database lookup primitive must have the same output message type as its
input message type, the editor dynamically assigns the message type to the output and
fail terminals of the DBLookup primitive.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 15 of 25

Wiring of mediation primitive terminals (4 of 5)

� Additional message type propagation behaviors
– Terminals with explicitly assigned message types

• The change message type dialog can be used to explicitly assign a message type
• Explicitly assigned message types are not changed by propagation
• In a situation where propagation normally occurs

– The message type to be propagated and the explicitly assigned type must be
compatible

– If not compatible:
» Wiring might be prevented
» Otherwise, incompatible message types warning/error occurs on the wire

– Removing a wire
• Terminals whose message type had been dynamically set through propagation are

returned to being unset
• Terminals with explicitly assigned message types are not affected

16 Introduction to mediation primitives © 2010 IBM Corporation

Having covered the basic behaviors of message type propagation, the exceptions to the
rule now need to be discussed. The first consideration is for terminals that have an
explicitly assigned message type, which has been assigned using the change message
type dialog. These terminals are not affected by the message type propagation. However,
when in a situation where propagation normally occurs, the explicitly assigned message
type and the message type that normally is propagated for this case must be compatible.
Generally in the situation where they are not compatible the wiring is prevented. However,
in some cases the wiring is allowed or maintained, but an incompatible message types
warning or error occurs.

Another consideration is the removal of a wire. When this is done, the propagation is done
in reverse. Any terminals whose message type is dependent upon message type
propagation through that wire is returned to being unset. This does not have any affect on
terminals with explicitly assigned message types.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 16 of 25

Wiring of mediation primitive terminals (5 of 5)

� Primitives with differing message type propagation behavior
– XSL transformation, business object map, data handler, custom mediation primitives

• These primitives are capable of changing the message type
• Message type propagation does not occur between the input and output terminals
• Message type propagation does occur between the input and fail terminals

– Service invoke primitives
• Terminal message types explicitly set based on interface and operation being

invoked
• Not possible to have unset or dynamically set message types

– Subflows
• Terminal message types can be explicitly set or left unset by the subflow

implementation
• When unset, propagation between input and output terminals occurs

17 Introduction to mediation primitives © 2010 IBM Corporation

This slide looks at some message type propagation behavior differences for specific
mediation primitives. There are four transformation primitives that are capable of changing
the message type, specifically the XSL transformation, business object map, data handler
and custom mediation primitives. No message type propagation occurs between the input
and output terminals of these primitives, but message type propagation does occur
between the input and fail terminals.

The next primitive to consider is the service invoke. It is not possible to have a service
invoke primitive with unset terminal message types. They are always set to the
appropriate message types for the interface and operation configured for the service
invoke. Therefore, they behave in the same way as terminals with explicitly assigned
message types.

Subflows can be implemented to have explicitly defined message types or unset message
types for its terminals. When unset, propagation of message type does occur between the
input and output terminals.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 17 of 25

Mediation primitive exceptions

� Exceptions associated with mediation primitives:
– MediationConfigurationException

• For a configuration problem or a transient external resource failure
• Example: Database table cannot be found or accessed

– MediationBusinessException
• For business error when running the primitive
• Example: A key that should be in a message is not found

– MediationRuntimeException
• There are runtime problems when setting up the mediation flow
• Example: Incorrect JNDI name for a data source

18 Introduction to mediation primitives © 2010 IBM Corporation

The specific exceptions that mediation primitives can raise are described here.

A MediationConfigurationException is used when there is a configuration problem. It is
also used for a transient problem with an external resource, such as not being able to find
or access a database.

A MediationBusinessException is used when an error that seems to be a business logic
problem occurs while running a primitive. An example of this kind of problem is when the
database key value configured for a primitive cannot be found in the message.

A MediationRuntimeException occurs when there is some kind of problem initializing a
mediation flow. An example of this is when the JNDI name for a data source is incorrect.

These exceptions and associated error processing are described in more detail in the next
few slides.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 18 of 25

Mediation primitive exception handling (1 of 2)

� Mediation primitive exceptions can be raised:
– While setting up and initializing the flow

• MediationRuntimeException
• MediationConfigurationException

– While processing the primitive itself
• MediationConfigurationException
• MediationBusinessException
• MediationRuntimeException

19 Introduction to mediation primitives © 2010 IBM Corporation

In order to provide an understanding of the exception processing behavior, it is important
to know the different points at which a mediation exception can be raised.

First of all, some initialization is done by the runtime to set up a mediation flow. This
initialization occurs before control is given to any mediation primitives. Exceptions that
might be raised at this time are the MediationRuntimeException or the
MediationConfigurationException, with the MediationRuntimeException being the most
common.

Secondly, after initialization of the flow, an exception can be raised during the processing
of a mediation primitive. Normally these are a MediationConfigurationException or a
MediationBusinessException, but in some cases a MediationRuntimeException can also
be raised.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 19 of 25

Mediation primitive exception handling (2 of 2)

IF
exception raised during processing of primitive itself
AND the fail terminal is wired

THEN
continue without logging exception
follow connection from fail terminal

ELSE
log the exception
terminate the mediation flow

20 Introduction to mediation primitives © 2010 IBM Corporation

The behavior for processing exceptions is different based on a couple of factors. The first
factor is whether the exception is raised during initialization processing or during the
processing of a primitive. The second factor is whether the fail terminal for the primitive is
wired.

Looking at the slide you can see pseudocode describing the actual behavior. If the
exception is raised during the processing of the primitive and the fail terminal is wired to
some other primitive or node, then the exception is not logged. The mediation flow
continues, following the wire from the fail terminal. In all other cases, the exception causes
a log message to be written and the mediation flow to terminate.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 20 of 25

Mediation primitive configuration exceptions

� Configuration parameters are checked at different times
– During setup and initialization of the flow
– During the processing of the primitive itself

� Handling of these exceptions is therefore different
– Database Lookup mediation primitive

• Fail terminal is wired
• Configuration parameters include:

– Data source JNDI name
– Database table name

– Data source JNDI name not found is discovered during setup, therefore
• MediationRuntimeException raised
• Log written
• Flow terminates

– Database table not found is discovered during primitive processing
• MediationConfigurationException raised
• No log written
• Fail terminal connection followed

21 Introduction to mediation primitives © 2010 IBM Corporation

When there is a problem with something in the configuration of a mediation primitive, you
see the different behaviors described on the previous slide. This is because configuration
parameters are checked at different times, some being checked at the initialization of the
flow and others being checked during the processing of the mediation primitive. For
example, assume you have a database lookup primitive that has its fail terminal wired.
Two of the configuration parameters for a database lookup are the data source JNDI
name and the database table name. The data source JNDI name is checked during the
setup of the flow, therefore the result of an incorrect JNDI name is a
MediationRuntimeException raised with a log written and the mediation flow terminated.
However, the database table name is checked during the processing of the primitive itself.
Therefore, when the MediationConfigurationException is initially raised it is caught, no log
is written, and the mediation flow continues by following the wire from the fail terminal of
the database lookup. Only if the fail terminal is not wired will the
MediationConfigurationException be logged and the flow terminated.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 21 of 25

© 2010 IBM Corporation 22 Introduction to mediation primitives

Error information in SMO

� When the fail terminal connection is followed:
– Error information is added to the service message object
– It is placed inside of the “context” with a “failInfo” tag

<context >
<failInfo xml:lang ="en">

<failureString >CWSXM3450E: An exception occurred when attempting to set the value
'null' into the message with a location path of '/body/submitOrder/order/customerID'.
Ensure that the path specified is a valid location to store the value. This has been
reported by the following entity: java.lang.IllegalArgumentException

</failureString >
<origin >MessageElementSetter1</ origin >
<invocationPath >

<primitive inTerminal= "in" name="MessageLogger1" outTerminal ="out"/>
<primitive inTerminal= "in" name="MessageElementSetter1" outTerminal ="fail"/>

</invocationPath >
</failInfo >

</context >

Error Message

Failing Primitive

Path taken through flow

When the fail terminal is wired and an exception occurs within a mediation primitive,
information about the error is added to the failInfo section of the context section of the
service message object. The following information is added:

The failureString contains a text description of the error that occurred.

The origin contains the name of the mediation primitive in which the exception occurred.

The invocation Path contains a list of every mediation primitive that was encountered in
the message flow, up to and including the primitive in which the error occurred. In addition,
the names of the terminals through which the message passed are also listed with each
primitive.

With this information, logic in the flow following the fail terminal might be able to determine
what action to take in response to the failure.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 22 of 25

Summary

� Reviewed basic concepts of mediation primitives
– Where they fit in the overall mediation picture
– Types of primitives
– Terminals, wiring and the mediation flow editor
– Exceptions and error handling

23 Introduction to mediation primitives © 2010 IBM Corporation

In this presentation, the basic concepts of mediation primitives were reviewed. This
included a description of where mediation primitives fit into the overall mediation picture
and what types of mediation primitives there are and how they are classified into groups. A
discussion of mediation primitives terminals was provided along with a description of
wiring behavior in the mediation flow editor. An explanation of exceptions and some
aspects of error handling were also provided.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 23 of 25

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WBPMv7_MediationPrimitiveIntroduction.ppt

This module is also available in PDF format at: ../WBPMv7_MediationPrimitiveIntroduction.pdf

24 Introduction to mediation primitives © 2010 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WBPMv7_MediationPrimitiveIntroduction.ppt Page 24 of 25

 Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, CICS, IMS, and WebSphere are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other
IBM trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Java, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2010. All rights reserved.

25 © 2010 IBM Corporation

WBPMv7_MediationPrimitiveIntroduction.ppt Page 25 of 25

