

WebSphere Business Process Management
WebSphere Integration Developer
WebSphere Enterprise Service Bus
WebSphere Process Server

Routing primitives utilizing message content information

© 2010 IBM Corporation

This presentation introduces the routing primitives that influence the flow of control
through a mediation based on message content and configuration information.

WBPMv7_RoutingContentPrimitives.ppt Page 1 of 22

Goals and agenda

� Goal
– Provide an introduction to mediation primitives with these characteristics:

• Classified in WebSphere Integration developer as routing primitives
• Influence flow of control in a mediation based on message content and configuration

information

� Agenda
– Introduce the basic functionality of:

• Message filter
• Type filter
• Fan out and fan in
• Flow order

2 Routing primitives utilizing message content information © 2010 IBM Corporation

The goal of this presentation is to introduce a set of primitives that share some common
characteristics. These primitives are classified within WebSphere Integration Developer as
routing primitives. Within that classification, these are the primitives that influence the flow
path taken in a mediation flow. The message content, configuration information and state
of the flow can all contribute to how these primitives control the flow.

The presentation provides a description of the basic functionality of each. The primitives
presented are the message filter primitive, the type filter primitive, the fan out and fan in
primitives, and the flow order primitive.

WBPMv7_RoutingContentPrimitives.ppt Page 2 of 22

© 2010 IBM Corporation3 Routing primitives utilizing message content information

Message filter primitiveMessage filter primitive

Section

This section provides an overview of the message filter primitive.

WBPMv7_RoutingContentPrimitives.ppt Page 3 of 22

Message filter primitive – Overview of function

� Enables control of the paths taken through the flow

� Contains one or more filters – where each filter contains:
– A simple XPath expression to be evaluated to true or false
– Name of an output terminal through which to propagate the message

� A filter with a match (evaluates true) fires the output terminal

� Filters are evaluated in the order in which they are defined

� Configurable to allow propagation of the message using distribution mode property
– By firing the output terminal of only the first matching filter
– By firing the output terminal of all matching filters

� A default terminal is fired when there are no matching filters

� The service message object (SMO) is not updated

4 Routing primitives utilizing message content information © 2010 IBM Corporation

The purpose of the message filter is to enable flow of control logic within a mediation, so
that different paths can be taken based on the evaluation of values within the SMO.

The primitive contains one or more filters. Each filter contains a conditional XPath
expression that evaluates to true or false, and an output terminal through which to
propagate the message. When the expression evaluates to true, it is called a match, and
the message is propagated through the terminal of the matching filter.

Filters are defined in a table and are evaluated in the order in which they appear in the
table. A configuration option, called distribution mode, is used to specify if the message is
propagated through only the first matching filter or through all matching filters. In the case
where none of the filters results in a match, there is a default terminal through which the
message is propagated.

The SMO is not updated by the message filter primitive.

WBPMv7_RoutingContentPrimitives.ppt Page 4 of 22

Resources

� Information center
– Message filter mediation primitive
– Dynamic routing using message filtering

� IBM Education Assistant
– Message filter primitive presentation for V6.2

5 Routing primitives utilizing message content information © 2010 IBM Corporation

To further understand the message filter primitive, follow the links on this slide. The
information center contains a description of the message filter primitive that includes
usage information and defines all of its properties. The next link is to an example that
illustrates the usage of a message filter primitive to implement a dynamic routing scenario
in a mediation flow. Finally, the IBM Education Assistant for V6.2 contains a complete
presentation on the message filter primitive that is still applicable to V7. It provides
documentation of the properties, considerations for understanding the distribution mode
property, and an example usage of the primitive.

WBPMv7_RoutingContentPrimitives.ppt Page 5 of 22

© 2010 IBM Corporation6 Routing primitives utilizing message content information

Type filter primitiveType filter primitive

Section

The type filter primitive is addressed in this section.

WBPMv7_RoutingContentPrimitives.ppt Page 6 of 22

Type filter primitive – Overview of function

� Enables control of the paths taken through the flow based the type of message elements

� Contains one or more filters – where each filter contains:
– A simple XPath expression identifying an element in the SMO
– A type to compare with the type of the element
– Name of an output terminal through which to propagate the message

� A filter with matching types fires the output terminal
– Filters are evaluated in the order in which they are defined in the table
– Only the first filter with a matching type is fired
– An element that is a derived type of the filter type is a match

� A default terminal is fired when there are no matching filters

� The service message object (SMO) is not updated

7 Routing primitives utilizing message content information © 2010 IBM Corporation

The purpose of the type filter is to provide logic to control the flow within a mediation, so
that different paths can be taken based on the evaluation of element types within the
SMO.

The primitive contains one or more filters contained in a table. Each filter contains a simple
XPath expression that identifies an element within the SMO, a specification of type used to
compare with the element, and an output terminal through which to propagate the
message. When the types match, the message is propagated through the terminal of the
matching filter. It is considered a match if the element is of the same type. It is also a
match if the element is a derived type of the type specified in the filter.

Filters are defined in a table and are evaluated in the same order that they appear in the
table. The message is propagated through only the terminal of the first matching filter. In
the case where none of the filters results in a match, there is a default terminal through
which the message is propagated.

The SMO is not updated by the type filter primitive.

WBPMv7_RoutingContentPrimitives.ppt Page 7 of 22

Resources

� developerWorks articles
– What's new in WebSphere Enterprise Service Bus V6.2, Part 2: Service gateway

patterns

� Information center
– Type filter mediation primitive

� IBM Education Assistant
– Type filter primitive presentation for V6.2

8 Routing primitives utilizing message content information © 2010 IBM Corporation

The links on this slide provide you with additional resources to help you fully understand
the type filter primitive. There is a developerWorks article based on V6.2 describing the
service gateway patterns. The type filter primitive was added to WebSphere Enterprise
Service Bus in V6.2, specifically to support the static service gateway pattern. The article
goes into detail explaining the static service gateway pattern and the part that the type
filter plays in the scenario.

The information center contains a description of the type filter primitive that includes usage
information and defines all of its properties. Finally, the IBM Education Assistant for V6.2
contains a complete presentation on the message filter primitive that is still applicable to
V7 usage of the primitive. It provides documentation of the properties, considerations for
some property settings, and an example usage.

WBPMv7_RoutingContentPrimitives.ppt Page 8 of 22

© 2010 IBM Corporation9 Routing primitives utilizing message content information

Fan out and fan in primitivesFan out and fan in primitives

Section

Both the fan out and fan in primitives are addressed in this section. They are combined
into the same section because the fan in primitive is always paired with a fan out primitive,
and they are best understood in combination.

WBPMv7_RoutingContentPrimitives.ppt Page 9 of 22

Fan out primitive - Overview of function

� The fan out primitive provides either:
– The front of an aggregation scenario
– Message broadcast

� For an aggregation scenario
– There is a fan in primitive which acts as the point of aggregation
– A fan in must be associated with a specific fan out instance

� Fan out has two modes of operation
– Iterate mode

• Iterates though a repeating element contained within the input message
• Output terminal fired once for each element instance
• Output message contains input message plus copy of element instance

– Once mode
• Output terminal is fired once

– Causes the message to be propagated on each of multiple flow paths wired to
the terminal

• Output message is identical to the input message

10 Routing primitives utilizing message content information © 2010 IBM Corporation

When considering a fan out primitive, there are two basic ways in which it can be used,
either participating in an aggregation scenario or used for enabling message broadcast.
When used as part of an aggregation scenario, there is a specific fan in primitive instance
in the flow that is associated with the fan out. The fan out is the beginning and the fan in is
the end of the flow segment that performs the aggregation. You can think if it as the start
and end of a processing loop.

The fan out primitive has two modes of operation, the first being the iterate mode. In this
mode, the fan out iterates through a repeating element that is contained in the input
message. The output terminal of the fan out is fired once for each element. When the
output terminal is fired, the SMO contains the original message, plus a copy of the
element instance to be processed during this iteration. The copy of the element instance is
contained in a designated location in the SMO context. This allows code within the
aggregation flow to access the current element without having to index into the repeating
element.

When in once mode, the output terminal is fired once. For this mode to be used in an
aggregation, the flow must be constructed with multiple flow paths following the fan out.
So in actuality, each flow path wired to the output terminal is driven. In this case, the SMO
propagated on each path is unchanged from the inbound SMO received by the fan out.

WBPMv7_RoutingContentPrimitives.ppt Page 10 of 22

Fan out primitive - Overview of function (continue)

� There are four basic scenarios possible
– Aggregation with iterate mode
– Aggregation with once mode
– Broadcast with iterate mode
– Broadcast with once node

� Aggregation scenarios and fan in completion criteria
– A fan in is configured with completion criteria
– Completion criteria affects overall flow path

• Between the fan out and fan in
• Flow following the fan in

– Configuration of fan out and fan in completion criteria must be complementary

11 Routing primitives utilizing message content information © 2010 IBM Corporation

Consider the fact that a fan out can be used in an aggregation or broadcast scenario, and
that it also has two modes of operation, iterate mode or once mode. The result is that
there are four overall basic usage scenarios in which a fan out can participate. The first is
an aggregation using iterate mode to loop through an array of elements, performing the
same processing for each element. When all the elements have been processed, the
associated fan in completes and the results of the aggregation are constructed in the SMO
by the flow following the fan in. The next is also an aggregation, with the fan out
configured in once mode. In this case, there are multiple flow paths between the fan out
and fan in, with each flow path running once. When all the flow paths have completed, the
fan in completes and the results of the aggregation are constructed in the SMO by the flow
following the fan in. The third is a broadcast with iterate mode. This allows each element
of an array in the incoming message to have the same processing performed. However,
there is no fan in and the results of processing each element are not aggregated together.
Finally, there is broadcast with once mode. In this case, the fan out serves as the head of
multiple flow paths, each of which is passed the same message, and the results of
processing are not aggregated together.

In aggregation scenarios, the fan in associated with the fan out is configured with
completion criteria. The completion criteria will affect the overall flow, controlling the flow
between the fan out and fan in, and determining when the flow following the fan in should
be driven. Because of this, it is important that the configuration of the fan out, the
construction of the flow between the fan out and fan in and the completion criteria of the
fan in complement each other. This is addressed further in a subsequent slide.

WBPMv7_RoutingContentPrimitives.ppt Page 11 of 22

Fan in primitive - Overview of function

� The fan in primitive is used in aggregation scenarios
– Acts as the point of aggregation in the flow
– Is associated with a specific fan out primitive instance
– Completion criteria determines when the aggregation is complete

� A fan in and mode of operation of its associated fan out
– Fan out operating with iterate mode on

• There is one flow path between the fan out and fan in
• The fan out is iterating over a repeating element in the message
• The fan in receives a message for each instance of a repeating element

– Fan out operating with iterate mode off
• There are multiple flow paths between the fan out and fan in
• The fan in receives one message from each of the flow paths

12 Routing primitives utilizing message content information © 2010 IBM Corporation

The fan in primitive is a key element of mediation flows implementing aggregation
scenarios. It provides the point of aggregation in the flow, bringing together multiple flow
paths or serving as the end point of an iteration within a flow. Each instance of a fan in
primitive is associated with a specific fan out primitive instance in the same flow. The fan
in is configured with completion criteria that is used to determine if the flow will proceed
from an output terminal of the fan in or return to the fan out to process another iteration or
flow path.

Fan out primitives have two different modes of operation which affect the characteristics of
the flow between the fan out and fan in primitives. In iterate mode the fan out iterates
through a repeating element that is contained in the input message. The output terminal of
the fan out is fired once for each element. The fan in receives an input message for each
instance of the repeating element.

When iterate mode is off, the output terminal of the fan out is fired once. In this mode, the
flow is constructed with multiple flow paths from the out terminal of the fan out which join
back together at the fan in. Each flow path wired from the fan out primitive's out terminal is
driven sequentially, and the fan in receives the result of each flow path as input.

WBPMv7_RoutingContentPrimitives.ppt Page 12 of 22

Fan in primitive - Overview of function (continue)

� A fan in is configured with completion criteria

� Completion criteria affects overall flow path
– Flow does not continue out of the fan in until completion criteria is met

• Flow remains between the fan out and fan in, processing messages from the fan out
• After completion the flow continues following the fan in

� Completion criteria is configured with properties
– Count – set number of messages received at fan in
– XPath – evaluation of XPath expression
– Iterate – waits until it receives all messages from the fan out in iterate mode

13 Routing primitives utilizing message content information © 2010 IBM Corporation

A fan in primitive is configured with completion criteria, which is very important for defining
the overall flow path that will occur when the flow is run. There are two major divisions in
the flow, the part that occurs between the fan out and fan in primitives and the part that
proceeds after the fan in primitive. When a message reaches the fan in, if the completion
criteria is not satisfied, the flow will return to the fan out to process the next iteration or
flow path. If the completion criteria is met, the flow proceeds following the path after the
fan in.

There are three mutually exclusive options for specifying the completion criteria. The first
is a count of the messages received at the fan in, with completion occurring when a pre­
defined number of messages has been received. The next is the specification of an XPath
expression that is evaluated and completion occurs when the expression is true. The final
option, which is only valid if the fan out is in iterate mode, is for completion to occur after
all the repeating elements have been processed.

WBPMv7_RoutingContentPrimitives.ppt Page 13 of 22

The shared context

� Problem
– Each time the fan out output terminal is fired a new SMO instance is created
– Each new SMO instance is a deep copy
– How are results from each iteration/flow between the fan out and fan in aggregated?

� Solution
– Shared context in the SMO
– Single memory area that is not deep copied with each SMO instance

� Shared context usage
– It is defined by a business object (similar to transient and correlation contexts)

• In iterative aggregations, the business object typically contains an array
– Flows between fan out and fan in set values to be aggregated into the shared context
– After the fan in completes, subsequent primitives use the contents of the shared context

to build the aggregated message

14 Routing primitives utilizing message content information © 2010 IBM Corporation

This slide examines the shared context used during aggregation scenarios, examining why
it is needed, what it provides and how it is used. The first thing to look at is how the fan out
handles the SMO when firing its output terminal. The original message arriving at the fan
out is saved by the primitive, and a new deep copy is created and passed through the
output terminal to the flow. Whatever changes are made to the SMO during the flow are
not seen by the other iterations or flow paths. Each receives a new copy of the message
as it arrived at the fan out. This poses a problem in an aggregation scenario where the
results of processing each iteration or flow are to be aggregated together.

The solution to this is the shared context, which is kept in a shared memory area. Each
time the SMO is deep copied, rather than copying the shared context, the SMO contains a
reference to the shared memory area.

When building your aggregation flow, you define what the shared context will contain using
a business object, similar to how you define the transient or correlation contexts. For an
iterative aggregation, the business object typically contains an array. Each iteration or flow
between the fan out and fan in needs to update the shared context with the data it is
contributing to the aggregated result. Once the fan in completion criteria is met, the flow
following the fan in can take the contents of the shared context and use it to build the
aggregated message in the SMO body.

WBPMv7_RoutingContentPrimitives.ppt Page 14 of 22

Completion criteria and flow characteristics

� Completion criteria must be complementary to:
– Configuration of the fan out
– Design of the flow between fan out and fan in
– Design of the flow following the fan in

� Firing of the fan in primitive’s out terminal
– Only happens when completion criteria is met
– Typically occurs when the last message received from the fan out

� When completion criteria met before the fan out is finished
– Flow proceeds following the fan in
– When flow following the fan in is finished, fan out sends the next message
– If using count, the count is reset

� Incomplete terminal fired when:
– Completion criteria is not met by the message received at the fan in
– The fan out has no more messages to send

15 Routing primitives utilizing message content information © 2010 IBM Corporation

It is very important that the configuration of the fan out, the construction of the flow
between the fan out and fan in and the completion criteria of the fan in complement each
other. This slide discusses the relationship between the completion criteria and the flow
characteristics so that you have an understanding of the expected behavior. With this
knowledge, you can define your flows so that they behave in a well define way according
to your requirements.

The first consideration is that the out terminal of the fan in primitive is fired only when the
completion criteria is met. In most typical flow definitions, the completion criteria is
designed so that it is met by the last message to arrive at the fan in.

It is possible for the completion criteria to be met before the last message has arrived at
the fan in. When this happens, the flow proceeds from the out terminal of the fan in and
continues until that flow path ends, such as reaching a callout node or stop primitive in the
path. At that point, the fan out again receives control and sends either the next iterative
message or initiates the flow on the next path wired to its out terminal. If the fan in
primitive is configured with a count completion criteria, it is reset to start a new count.

The fan in primitive’s incomplete terminal is fired in the case where the fan in receives a
message, the completion criteria is not met and the fan out primitive has no more
messages to send.

WBPMv7_RoutingContentPrimitives.ppt Page 15 of 22

Resources

� developerWorks articles
– Aggregation functionality in IBM WebSphere Enterprise Service Bus V6.1

• Part 1: Introduction to aggregation
• Part 2: Service invocation
• Part 3: Best practices and patterns for aggregation

� Information center
– Fan out mediation primitive
– Fan in mediation primitive
– Aggregating and broadcasting messages

� IBM Education Assistant
– Fan out primitive presentation for V6.2
– Fan in primitive presentation for V6.2
– Service invoke primitive presentation for V6.2

16 Routing primitives utilizing message content information © 2010 IBM Corporation

The links on this slide provide you with additional resources to help you understand
aggregation scenarios and how fan out and fan in primitives play a role in these scenarios.

There is a series of developerWorks articles on aggregation based on V6.1, the release in
which aggregation was introduced. These articles are still applicable to V7 as the basic
functionality of aggregation has not changed since that release. One possible exception to
this might be service invocation which was enhanced in V6.2 to enable asynchronous
parallel aggregation scenarios using service invoke primitives.

The information center contains a descriptions of both the fan out and fan in primitives that
includes usage information and defines all of their properties. The next link, aggregating
and broadcasting messages, is to a page that itself is a set of links to related topics. These
include usage of the shared context, combining results from multiple services,
broadcasting messages, performing chained aggregation and an iterative aggregation
example.

Finally, the IBM Education Assistant for V6.2 contains a complete presentation on the
primitives, all of which address usage and define the properties of the primitive. In
addition, the fan out presentation addresses parallel processing of service calls, and has
four examples that address the four basic scenarios in which a fan out is used. The fan in
presentation provides more detail on fan in completion criteria and how it affects flow
behavior, understanding timeout processing, and examples of scenarios utilizing a fan in.
A link to the service invoke primitive is provided because it goes into detail on invocation
style and how it relates to an aggregation with asynchronous parallel processing.

WBPMv7_RoutingContentPrimitives.ppt Page 16 of 22

© 2010 IBM Corporation17 Routing primitives utilizing message content information

Flow order primitiveFlow order primitive

Section

This section looks at the characteristics of the flow order primitive.

WBPMv7_RoutingContentPrimitives.ppt Page 17 of 22

Flow order primitive – Overview of function

� Controls the order in which branches of the flow are fired

� It has one input terminal and two or more output terminals

� A copy of the unmodified input message is fired on each of the output terminals

� The terminals are fired in the order defined on the primitive

� There are no properties

� Other behavior of the flow is identical to wiring multiple branches from an output terminal of
a primitive

– Waits for a branch to complete before firing the next terminal
– If branch contains asynchronous service invoke the next terminal is fired after service is

invoked
– An unhandled exception on any branch terminates further processing

18 Routing primitives utilizing message content information	 © 2010 IBM Corporation

The flow order primitive is used to control the order in which multiple branches on a flow
are fired. It has one input terminal and two or more output terminals, one for each branch
on which the message is to be propagated. The message is not modified by the flow order
primitive, with a new copy of the SMO propagated on each branch. The order in which the
terminals are fired is the order in which they appear on the primitive, from top to bottom.
This primitive is unique in that it has no properties.

To put this primitive into perspective, the behavior of the flow with a flow order primitive is
identical to the behavior when there are multiple wires coming off of an out terminal. The
only difference is that the order in which the message is propagated onto the branches is
prescriptive rather than being undefined. Therefore, these behaviors still exit. The
mediation flow waits for one branch to complete before the message is propagated onto
the next branch. The exception to this is when a branch contains an asynchronous service
invoke primitive, in which case the next branch receives control after the service is
invoked. Finally, if there is an unhandled exception on any branch, the processing
terminates.

WBPMv7_RoutingContentPrimitives.ppt	 Page 18 of 22

© 2010 IBM Corporation 19 Routing primitives utilizing message content information

Resources

� Information center
– Flow Order mediation primitive

The information center contains a description of the flow order primitive.

WBPMv7_RoutingContentPrimitives.ppt Page 19 of 22

Summary

� Introduced the basic functionality of these primitives:
• Message filter
• Type filter
• Fan out and fan in
• Flow order

20 Routing primitives utilizing message content information © 2010 IBM Corporation

This presentation provided a description of the basic functionality of the routing primitives
that influence flow of control in a mediation based on message content and configuration
information . The primitives presented were the message filter primitive, the type filter
primitive, the fan out and fan in primitives, and the flow order primitive.

WBPMv7_RoutingContentPrimitives.ppt Page 20 of 22

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WBPMv7_RoutingContentPrimitives.ppt

This module is also available in PDF format at: ../WBPMv7_RoutingContentPrimitives.pdf

21 Routing primitives utilizing message content information © 2010 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WBPMv7_RoutingContentPrimitives.ppt Page 21 of 22

 TTrraaddeemmaarrkkss,, ddiissccllaaiimmeerr,, aanndd ccooppyyrriigghhtt iinnffoorrmmaattiioonn

IBM, the IBM logo, ibm.com, developerWorks, and WebSphere are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other
IBM trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2010. All rights reserved.

22 © 2010 IBM Corporation

WBPMv7_RoutingContentPrimitives.ppt Page 22 of 22

