

WebSphere Business Process Management
WebSphere Integration Developer
WebSphere Enterprise Service Bus
WebSphere Process Server

Routing primitives utilizing registry lookup information

© 2010 IBM Corporation

This presentation introduces the routing primitives that perform a registry lookup to obtain
information used by the flow, either influencing routing within the flow or identifying
endpoints.

WBPMv7_RoutingRegistryPrimitives.ppt Page 1 of 32

Goals and agenda

� Goal
– Provide an introduction to mediation primitives with these characteristics:

• Classified in WebSphere® Integration developer as routing primitives
• Perform a registry lookup to obtain information used to influence routing

� Agenda
– Contrast basic characteristics of these primitives
– Introduce the basic functionality the endpoint lookup primitives

• Endpoint lookup
• UDDI endpoint lookup
• Gateway endpoint lookup

– Discuss dynamic invocation following an endpoint lookup
– Introduce the basic functionality of:

• Policy resolution
• SLA check

2 Routing primitives utilizing registry lookup information © 2010 IBM Corporation

The goal of this presentation is to introduce a set of primitives that share some common
characteristics. These primitives are classified within WebSphere Integration Developer as
routing primitives. Within that grouping, these are the primitives that have the capability to
perform a registry query, obtaining information that ultimately affects some aspect of
routing or other mediation behavior. How routing is affected varies, such as selection of
endpoint addresses or controlling flow path within the mediation.

The presentation starts out by highlighting and contrasting the basic characteristics of all
these primitives. The basic functionality of the three endpoint lookup primitives is then
presented, specifically the endpoint lookup primitive, the UDDI endpoint lookup primitive
and the gateway endpoint lookup primitive. This is followed by a section looking at
dynamic invocation considerations in scenarios that include one of these primitives.

Finally, the basic functionality of the other registry based routing primitives is examined,
specifically the policy resolution primitive and the SLA check primitive.

WBPMv7_RoutingRegistryPrimitives.ppt Page 2 of 32

Contrasting the characteristics

Characteristic
Endpoint
Lookup

UDDI
Endpoint
Lookup

Gateway
Endpoint
Lookup***

Policy
Resolution

SLA Check

Registry used WSRR* UDDI** Built-in WSRR* WSRR*

Registry instance identified by
Admin
name

Admin
name

Singleton Admin name Admin name

Query based on
Port type

and
qualifiers

UDDI
information

model

Virtual
endpoint

name

Mediation or
endpoint

Endpoint,
consumer and

context IDs

Supported endpoint types Almost all
Web

service
Web service Almost all Almost all

Sets endpoint lookup context Yes Yes Yes

Sets target address and
alternate target addresses

Match
policy

Match
policy

Yes

Sets dynamic promoted
property alias values

Yes

Controls flow path by output
terminal fired

Yes

* WSRR – WebSphere Service Registry and Repository *** Gateway endpoint lookup summary ignores

** UDDI - Universal Description, Discovery and Integration
characteristics of the action lookup method

3 Routing primitives utilizing registry lookup information © 2010 IBM Corporation

This chart is a summary of the similar and contrasting characteristics of the primitives that make registry

lookups. Those shown in blue are used to discover endpoint addresses that can be used for dynamic

invocation of services. Those in green use information from the registry to control mediation flow behavior.

The endpoint lookup primitives each uses a different registry to perform the lookup, while the primitives that

control behavior each make use of WebSphere Service Registry and Repository.

Except for the built-in registry, the endpoint for the registry to use is identified by an administrative name of a

registry configuration object maintained in the server configuration. The built-in registry is a singleton

configured in the server itself.

Each of the primitives has a unique set of query parameters. These are explained in the subsequent sections

for the individual primitives.

The next characteristic is the supported endpoint types. Those primitives utilizing WebSphere Service

Registry and Repository support all endpoint types except for EJB and EIS bindings. The UDDI and gateway

endpoint lookup primitives only support Web service endpoints. Also, for the endpoint lookup primitives, the

endpoints are the result of the query, whereas for the other primitives, the endpoint is part of the data used to

make the query.

All of the endpoint lookup primitives set the endpoint context in the SMO. The gateway endpoint lookup also

sets the target and alternate target addresses in the SMO, whereas the other two only conditionally set these

fields, based on the setting of a match policy property.

The policy resolution primitive sets values into the dynamic properties context, providing values for promoted

property aliases that will influence subsequent primitives in the flow that use those aliases.

The SLA check primitive controls the flow path taken based on the response received from the registry.

WBPMv7_RoutingRegistryPrimitives.ppt Page 3 of 32

© 2010 IBM Corporation4 Routing primitives utilizing registry lookup information

Endpoint lookup primitiveEndpoint lookup primitive

Section

The endpoint lookup primitive is described in this section.

WBPMv7_RoutingRegistryPrimitives.ppt Page 4 of 32

Endpoint lookup primitive - Overview of function

� Performs a lookup of endpoints from WebSphere Service Registry and Repository
– Lookup is based on selection criteria
– Initializes the SMO with results for downstream use by the mediation flow

� Numerous criteria can be used for selection
– Which registry to use for the lookup

• Available registries are administratively defined within a WebSphere cell
– Specifics of the requested service port type

• Name, Namespace, Version
– Latest compatible version of a versioned SCA module
– Binding type specifies the protocol supported by the binding
– Associated classification, based on Web Ontology Language (OWL)
– Associated properties and property values

� Support almost all the binding types
– Requires WebSphere Service Registry and Repository V7
– Exceptions are the EJB bindings and EIS bindings

5 Routing primitives utilizing registry lookup information © 2010 IBM Corporation

The endpoint lookup primitive uses the WebSphere Service Registry and Repository to
find service provider endpoints, based on a set of selection criteria. The results of the
lookup are reflected in the service message object, allowing them to be used downstream
in the mediation flow.

There are many different criteria that can be used for selection. First, multiple registries
can be configured for use by the servers within a WebSphere cell, and the endpoint lookup
can specify which of these registries should be used. The service port type of the
requested service can be qualified based on name, namespace and version. Also, if you
are using versioned SCA modules, you can request the latest compatible version to a
specified version.

There is a binding type property that is used to indicate which protocol the selected
bindings support.

The Web Ontology Language (OWL), provides a classification system which can be used
as part of the selection criteria. Registered services can be associated with name value
pairs which can also be used as part of the selection criteria. These selection criteria
reflect the underlying capabilities of the WebSphere Service Registry and Repository.

The endpoint lookup primitive supports all the binding types supported by WebSphere
Service Registry and Repository V7. The only SCA binding types that are not supported
are the EJB bindings and the EIS bindings used by WebSphere adapters.

WBPMv7_RoutingRegistryPrimitives.ppt Page 5 of 32

EEnnddppooiinntt llooookkuupp pprriimmiittiivvee -- OOvveerrvviieeww ooff ffuunnccttiioonn (continue)

� EndpointLookupContext in SMO is set, defining for each selected endpoint
– Reference including endpoint address, port type and other properties
– Annotations associated with the endpoint in the registry

� SMO header optionally set for dynamic endpoint usage
– Setting of the target and alternate target addresses
– Controlled by the match policy property

� Match policy settings
– Return first matching endpoint and set routing target
– Return endpoint matching latest compatible SCA service version
– Return all matching endpoints and set alternate routing targets
– Return all matching endpoints

6 Routing primitives utilizing registry lookup information © 2010 IBM Corporation

The EndpointLookupContext in the SMO contains the selected endpoints returned from the registry. For each
endpoint there is the endpoint reference which defines the URL, the port type and other properties. Each
endpoint also has registry annotation information defining properties, classifications and relationships defined
for the endpoint in the registry.

The SMO header fields, target address and alternate target addresses, are optionally set with the results of
the lookup. These are the fields used by service invoke primitives and callout nodes for dynamic endpoint
invocation. The setting of these fields is controlled by specification of the match policy property. Enabling the
setting of these fields allows the primitive to initialize the SMO, preparing the SMO for dynamic endpoint
usage by service invoke primitives and callout nodes.

The match policy setting determines how the target and alternate target addresses are affected by the
endpoint lookup primitive.

The first match policy setting is called return first matching endpoint and set routing target. This policy results
in the target address being set and causes the alternate target addresses to be cleared of any addresses it
might already contain. At this point, the SMO is ready to be used by a service invoke primitive or a callout
node configured for dynamic invocation. However, it is not ready to be used for service call retry with
alternate target addresses.
The next policy, called return endpoint matching latest compatible service version, has the identical affect on
the SMO as the previous policy, and therefore results in the same downstream behavior. The difference
between them is that this policy incorporates the SCA module version into the criteria when making the
selection from the registry.

The next match policy setting is called return all matching endpoints and set alternate routing targets. This
results in the target address being set with the first endpoint returned and the alternate target addresses
being set with the other endpoints returned. At this point, the SMO is ready to be used by a service invoke
primitive or a callout node configured for dynamic invocation and for service call retry with alternate target
addresses.

Finally, there is the match policy setting called return all matching endpoints. In this case, the target address
and alternate target addresses are not set. Therefore, when using this match policy, downstream processing
in the mediation must perform some logic that selects an endpoint and places it into the target address. The
logic might also set other endpoints in the alternate target addresses. Specifically what logic is performed
depends upon your application requirements.

WBPMv7_RoutingRegistryPrimitives.ppt Page 6 of 32

Service registry cache

� Server runtime provides a registry cache
– Intended to boost performance for registry lookups

• Caching is an effective strategy because registries are not normally subject to
frequent updates

– The cache is not exposed by the Mediation Flow editor
• It is a hidden implementation detail in WebSphere Integration Developer

– The cache is exposed to the administrator
• Registries are administratively configured in the server
• Registry definitions contain cache management information
• Registry definitions are maintained at the cell level
• Each server in the cell has one cache per configured registry

7 Routing primitives utilizing registry lookup information © 2010 IBM Corporation

Performing frequent lookups to the WebSphere Service Registry and Repository can be
expensive in terms of performance. Registries do not normally have frequent updates, so
caching is a viable way to address this. Therefore, WebSphere Enterprise Service Bus
and WebSphere Process Server provide a registry cache which is intended to boost the
overall performance of registry lookups by reducing the number of calls made to the
registry.

The endpoint lookup primitive and the mediation flow editor do not expose the registry
cache. Therefore, from an integration developers perspective, the cache is hidden.

Registries are defined administratively and therefore are exposed to the administrator. The
configuration of a registry includes configuration information for the management of the
cache. The registry information is maintained at the cell level, and therefore the registry
cache configuration information applies to all servers in the cell. There is one cache per
registered registry in each server in the cell.

WBPMv7_RoutingRegistryPrimitives.ppt Page 7 of 32

Resources

� Information center
– Endpoint lookup mediation primitive
– Selecting endpoints dynamically
– Dynamic routing using registry lookup
– WebSphere Service Registry and Repository Version 7.0 information center

� IBM Education Assistant
– Endpoint lookup primitive presentation for V6.2
– Mediations – Overview of new function in V7

• See slide entitled: Endpoint lookup primitive

8 Routing primitives utilizing registry lookup information © 2010 IBM Corporation

The links on this slide direct you to more detailed information about the endpoint lookup
primitive and its use. The information center contains a section on the endpoint lookup
primitive that describes its usage, behavior and defines all of its properties. The selecting
endpoints dynamically link brings you to a page that links to several topics on dynamic
endpoints and how they are used. This is broader coverage of the dynamic endpoint topic,
and will help you put the endpoint lookup primitive into perspective in a larger picture. The
dynamic routing using registry lookup includes a scenario description that introduces you
to how WebSphere Service Registry and Repository is used. The last information center
link is to the WebSphere Service Registry and Repository information center, where the
real details of the registry are found.

There are also a couple of links to IBM Education Assistant. The first is to the endpoint
lookup presentation from V6.2. This contains many details, including more detailed
descriptions of the properties, SCA module version handling, management of the
administrative registry definition and cache, and problem determination. The second link is
to a presentation with a single slide on enhancements made to the primitive between V6.2
and V7. Essentially, support for additional binding types and the binding type property
were added in V7.

WBPMv7_RoutingRegistryPrimitives.ppt Page 8 of 32

© 2010 IBM Corporation9 Routing primitives utilizing registry lookup information

UDDI endpoint lookup primitiveUDDI endpoint lookup primitive

Section

The UDDI endpoint lookup primitive is reviewed in this section.

WBPMv7_RoutingRegistryPrimitives.ppt Page 9 of 32

UDDI endpoint lookup primitive – Overview of function

� Performs a lookup of endpoints from a UDDI registry
– Lookup is based on selection criteria
– Initializes the SMO with results for downstream use by the mediation flow

� Selection criteria is based on UDDI information model, consisting of:
– Businesses
– Services
– Technical models
– Find qualifiers

� Usage requires understanding of OASIS UDDI V3 specification

� Works with any standard UDDI registry
– WebSphere Application Server provides a UDDI registry implementation

� Only Web service endpoints supported
– Supports both HTTP and JMS Web services

10 Routing primitives utilizing registry lookup information © 2010 IBM Corporation

As the name suggests, the UDDI endpoint lookup primitive is used to perform a lookup
from a UDDI registry. The primitive is configured with selection criteria used for the query
to the registry and the SMO is initialized with the results that are returned. The selection
criteria is based on the UDDI information model which defines businesses, services,
technical models and find qualifiers. In order to effectively use the UDDI endpoint lookup,
you need to be familiar with this information model, which is defined in the OASIS UDDI
V3 specification. The primitive should work with any compliant UDDI registry. There is a
UDDI registry implementation that is provided as part of the WebSphere Application
Server product that can be installed into any WebSphere Application Server, WebSphere
Process Server or WebSphere Enterprise Service Bus. UDDI only supports Web service
endpoints and can be used for either HTTP or JMS Web services.

WBPMv7_RoutingRegistryPrimitives.ppt Page 10 of 32

UDDI endpoint lookup primitive – Similar to endpoint lookup

� Similar is operation to endpoint lookup primitive
– Registry definition

• Maintained in server configuration
• Identify in primitive using administrative name
• Does not maintain a cache in the server

– Primitive populates the EndpointLookupContext with results of query
– Primitive optionally populates addresses in the SMO header target and alternate target

fields
• Based on setting of match policy property
• Same match policies as endpoint lookup except for versioned SCA modules

11 Routing primitives utilizing registry lookup information © 2010 IBM Corporation

The UDDI endpoint lookup is similar in behavior to the endpoint lookup primitive. There is
an administrative definition maintained in the server that identifies the endpoint of the
registry and the primitive identifies the registry by specification of this administrative name.
However, there is no UDDI registry cache maintained in the server as there is for the
WebSphere Service Registry and Repository.

The UDDI endpoint lookup updates the EndpointLookupContext in the SMO with the
results of the query. A match policy property setting determines whether the primitive also
sets the target address and alternate target addresses in the SMO. Other than the match
policy for versioned SCA modules, the match policy settings are the same as they are for
the endpoint lookup primitive.

WBPMv7_RoutingRegistryPrimitives.ppt Page 11 of 32

© 2010 IBM Corporation 12 Routing primitives utilizing registry lookup information

UDDI registry administrative reference in server configuration

� Name – Administrative name used in UDDI primitive to identify registry

� Inquiry URL – URL for registry inquires
– http://<host:port>/uddiv3soap/services/UDDI_Inquiry_Port

The screen captures on this slide show the administrative definition of a UDDI registry in
the administrative console. From the menu panel on the left, navigate to the UDDI
References panel by selecting Service integration, Web services, UDDI references. From
here you can create new UDDI references or open existing ones. The name specified is
the name you need to use in the UDDI endpoint lookup primitive. An example of the
correct URL syntax for a UDDI registry is shown.

WBPMv7_RoutingRegistryPrimitives.ppt Page 12 of 32

Resources

� Information center
– UDDI endpoint lookup mediation primitive

� WebSphere Application Server information center
– Using the UDDI registry in WebSphere Application Server

� Specifications
– OASIS UDDI V3

13 Routing primitives utilizing registry lookup information © 2010 IBM Corporation

The links on this slide direct you to more detailed information about UDDI and the UDDI
endpoint lookup primitive. The information center contains a section on the UDDI endpoint
lookup primitive that describes its usage, behavior and defines all of its properties. The
next link is for the WebSphere Application Server information center, to the main page
containing links to various UDDI topics. These include sections on learning about UDDI,
using the UDDI registry, installing and configuring the UDDI registry in a WebSphere
Application Server, and troubleshooting issues with the UDDI registry. Finally, there is a
link to the UDDI specification which is published by the OASIS consortium. The link
provided should take you to the latest published version.

WBPMv7_RoutingRegistryPrimitives.ppt Page 13 of 32

© 2010 IBM Corporation14 Routing primitives utilizing registry lookup information

Gateway endpoint lookup primitiveGateway endpoint lookup primitive

Section

The gateway endpoint lookup primitive is looked at in this section.

WBPMv7_RoutingRegistryPrimitives.ppt Page 14 of 32

Gateway endpoint lookup primitive – Overview of function

� Performs endpoint lookup for:
– Service gateway with action based routing
– Proxy gateway with virtualized service routing

� Service gateway with action based routing
– Request contains SOAPAction or WS-Addressing Action field
– Lookup method property = Action
– Works in conjunction with WebSphere Service Registry and Repository V7

� Proxy gateway with virtualized service routing
– Request contains a virtual service name in the URL or header
– Lookup method property = URL or XPath
– Primitive identifies one or more proxy groups
– Built-in registry used to define and manage proxy groups

• A proxy group contains one or more virtual service names
• Each virtual service name is associated with one or more service endpoints

– Primitive extracts virtual service name from the message and uses to query the registry

15 Routing primitives utilizing registry lookup information © 2010 IBM Corporation

The gateway endpoint lookup primitive is designed to perform endpoint lookups for a
couple of specialized cases. One is the service gateway with action based routing and the
other is the proxy gateway with virtualized service routing.

In the case of service gateway with action based routing, you configure the lookup method
to the value action. The inbound messages need to contain a SOAPAction or
WS_Addressing Action field. The primitive queries WebSphere Service Registry and
Repository V7 which can be configured to have actions associated with the endpoints.
Endpoints with a matching action are returned.

For the proxy gateway, a virtual service name is passed in the inbound message, either as
part of the URL or contained within the header. The lookup method property identifies if
the virtual service name is found in the URL or by using an XPath expression to its
location in the header. The primitive also identifies one or more proxy groups. Within the
server there is a built-in registry that you configure to contain the proxy group information.
Each proxy group contains one or more virtual service names, and each virtual service
name is associated with one or more endpoints. The primitive extracts the virtual service
name from the message, queries the built-in registry, which returns the appropriate
endpoints for the specified virtual service name.

WBPMv7_RoutingRegistryPrimitives.ppt Page 15 of 32

Gateway endpoint lookup primitive –
Overview of function (continue)

� The primitive sets the endpoint information in the SMO:
– EndpointLookupContext
– Target and alternate target addresses fields

� Only Web service bindings are supported

� Proxy gateway
– Patterns explorer in WebSphere Integration Developer used to create a proxy gateway
– Business space widget provided to define and manage the proxy groups
– Supports generation of the WSDL needed to invoke the gateway for a virtual service

• Invoke gateway with � http://<PGExport>/<VirtualServiceName>?wsdl
• Returns a WSDL definition of the service provider with the endpoint and WS-Policy

information associated with the proxy gateway

16 Routing primitives utilizing registry lookup information © 2010 IBM Corporation

For both the action based and virtualized service routing, the primitive takes the result
returned by the registry and sets the EndpointLookupContext and the target address and
alternate target addresses in the SMO. Also, in both cases, only Web service bindings are
supported

WebSphere Integration Developer provides a patterns explorer that can be used to
generate the basic implementation of a proxy gateway. The gateway is generated based
on some configuration parameters you provide, and then you complete the implementation
to perform the specific function you require. This simplifies the work needed to develop a
proxy gateway.

When you install a proxy gateway application into the server, the proxy groups specified in
the gateway lookup primitive are registered with the built-in registry. You then use a
business space widget that allows you to administer the virtual service names and
endpoints associated with the proxy group.

When a client invokes a service endpoint through a proxy gateway, they need to have a
WSDL definition that has both the service providers definition combined with the gateway’s
endpoint and Web service policy information. This WSDL can be generated by invoking
the gateway, passing a URL containing the proxy gateway export, the virtual service
name, with ?wsdl appended to the end.

WBPMv7_RoutingRegistryPrimitives.ppt Page 16 of 32

© 2010 IBM Corporation 17 Routing primitives utilizing registry lookup information

Implementation architecture of proxy gateway

Proxy Gateway
Service

Consumer A

Service
Consumer B

Service
Consumer X

Proxy Group A

Service
Provider A

Service
Provider B

Service
Provider X

Mediation Flow
Component

Built-in Configuration Store

Proxy
Gateway

Proxy
Group

Service
Provider A

Service
Provider X

WebSphere Enterprise Service Bus

The architecture of a proxy gateway is shown in this diagram, providing a better view of
how the gateway endpoint lookup participates in the proxy gateway. At the middle of the
picture you can see the gateway endpoint lookup within the mediation flow component,
showing that there is likely flow logic of some kind before and after it. The mediation flow
component is contained within an SCA mediation module with an export and import that
support the service gateway interface. This is the proxy gateway application.

At the bottom center of the slide is shown the built-in registry, containing proxy groups with
the virtual services and defined endpoints. You can see that both the export and the
gateway endpoint lookup interact with this registry. On the lower left you can see the
business space widget that you use to administer the registry.

The service consumers are seen on the left and the service providers are seen on the
right. The service provider endpoints are associated with proxy groups defined in the
registry.

A basic flow goes like this. A consumer invokes the export in the proxy gateway specifying
a virtual service name. The message is passed from the export to the mediation flow
component where some processing takes place, such as header manipulation. The
gateway endpoint lookup then extracts the virtual service name and queries the registry
for endpoints associated with that virtual name defined within a proxy group specified by
the primitive. The endpoints returned are set into the SMO, which are used to control the
dynamic invocation to the specified service provider through the service gateway import.

WBPMv7_RoutingRegistryPrimitives.ppt Page 17 of 32

Resources

� Information center
– Gateway endpoint lookup mediation primitive
– Overview of proxy gateway
– Proxy gateway
– Tutorial: Administering proxy gateways using Business Space
– WebSphere Service Registry and Repository Version 7.0 information center

18 Routing primitives utilizing registry lookup information © 2010 IBM Corporation

The links on this slide direct you to more detailed information about the gateway endpoint
lookup primitive and its use. The information center contains a section on the gateway
endpoint lookup primitive that describes its usage, behavior and defines all of its
properties. The overview of proxy gateway explains the basic concepts of how a proxy
gateway works, reinforcing what has been presented here. The next link, proxy gateway,
brings you to a page with links to several topics mostly concerned with how you administer
a proxy gateway using the business space widget. To complement that, the next link is to
a tutorial that also brings you through administering a proxy gateway, providing specific
steps and screen captures to guide you.

Finally, the link to the WebSphere Service Registry and Repository Version 7.0
information center is provided for information about configuring the repository to support
action base routing.

WBPMv7_RoutingRegistryPrimitives.ppt Page 18 of 32

© 2010 IBM Corporation19 Routing primitives utilizing registry lookup information

Dynamic invocation following an endpointDynamic invocation following an endpoint
lookuplookup

Section

In this section there is a short discussion about managing dynamic invocation in a flow
after one of the endpoint lookup primitive types has initialized the SMO with target service
information.

WBPMv7_RoutingRegistryPrimitives.ppt Page 19 of 32

Dynamic invocation and endpoint lookup primitives

� Basic Background
– Service invoke primitives and callout nodes support dynamic invocation
– The target and alternate target fields in the SMO specify the endpoints to call
– Endpoint lookup primitives set the target and alternate target fields
– Nothing additional needs to be done between the endpoint lookup and the dynamic call

� However, you might need to consider
– Is the address set in the target actually the preferred endpoint to call?
– Is the ordering of alternate addresses appropriate when retry with alternate address?

� Providing your own logic
– EndpointLookupContext contains all of the results of the registry query

• Properties, classifications, relationships
– Provide mediation flow logic that initializes the target and alternate target addresses

according to your criteria

20 Routing primitives utilizing registry lookup information © 2010 IBM Corporation

Service invoke primitives and callout nodes can be configured to support dynamic
invocation. When they are configured this way, the endpoint supplied in the target address
field of the SMO header is used to invoke the service. They can also be configured to retry
failing calls by using the endpoints supplied in the alternate target addresses field. These
are the target address fields that the various endpoint lookup primitives set when
configured to do so. When this is done, the endpoint lookup fully initializes the target fields
so that dynamic invocation can be done without further processing between the endpoint
lookup primitive and the service invoke primitive or callout node.

However, when designing your flow, you should be aware that the endpoint set into the
target address field might not be the optimum one for you scenario. You might have some
criteria you want to apply to selecting which of the returned endpoints is most appropriate
to use. This is also true of the order of endpoints in the alternate target addresses field.

In the case where you have some criteria that you require to be applied, you can make
use of the results set into the EndpointLookupContext. This includes additional information
for the endpoints returned from the registry, such as property settings, classifications and
relationships. You can use this information to perform some logic to select the most
appropriate endpoint based on your criteria, and then setting the target address and
alternate target addresses accordingly.

WBPMv7_RoutingRegistryPrimitives.ppt Page 20 of 32

Resources

� IBM Education Assistant presentations from V6.2
– Dynamic invocation
– Service call retry
– Service invoke mediation primitive

21 Routing primitives utilizing registry lookup information © 2010 IBM Corporation

The links here direct you to presentations that provide additional background information
relevant to the discussion presented on the previous slide. They cover the topics of
dynamic invocation, the automatic service call retry capabilities and the workings of the
service invoke primitive.

WBPMv7_RoutingRegistryPrimitives.ppt Page 21 of 32

© 2010 IBM Corporation22 Routing primitives utilizing registry lookup information

Policy resolution primitivePolicy resolution primitive

Section

The next primitive to be examined is the policy resolution primitive.

WBPMv7_RoutingRegistryPrimitives.ppt Page 22 of 32

Policy resolution primitive – Overview of function

� Performs lookup of mediation policies from WebSphere Service Registry and Repository

� Mediation policies are used to dynamically control the mediation flow
– Used to dynamically set property values for promoted properties

� Mediation policies can be associated with
– The SCA module containing the flow
– An endpoint identified in the target address field of the SMO

� Policy scope property set to specify which polices you want to retrieve
– Module
– Target service
– Intersection

� Gate conditions can be associated with policies
– Condition added as attachment to the policy in the registry
– Policy resolution primitive specifies the name of the condition and an XPath to its value

23 Routing primitives utilizing registry lookup information © 2010 IBM Corporation

The policy resolution primitive is used to lookup mediation policies from the WebSphere
Service Registry and Repository. Mediation policies are used to dynamically control the
mediation flow by setting property values for promoted properties that influence the
processing of other primitives in the flow. The policies can be associated with an SCA
module within which the policy resolution primitive is running or with a service endpoint
that is identified by the value in the target address field of the SMO. You must configure
the policy resolution primitive using the policy scope property to indicate which of the
policy types you want retrieved. One of the options is intersection, which merges the
policies for module and target service. You can use gate conditions associated with
policies to further qualify which policies are returned. These conditions are associated with
the policies in the registry The primitive is configured to include the condition in the query.
The value for the condition is obtained from a field in the message identified using an
XPath expression.

WBPMv7_RoutingRegistryPrimitives.ppt Page 23 of 32

Business space widgets supporting policy

� Business Space widgets provided to interface to WebSphere Service Registry and

Repository for policy administration

– Easier to administer than when using WebSphere Service Registry and Repository
interface directly

– Interface is designed to reflect the WebSphere ESB policy concepts

� Business space widgets can be used to
– Create new mediation policies
– Create policy attachments

• Module scope
• Target Service scope

– Definition of gate conditions

24 Routing primitives utilizing registry lookup information	 © 2010 IBM Corporation

There are business space widgets provided that enable administration of policy artifacts in
the WebSphere Service Registry and Repository. These might be administered using the
WebSphere Service Registry and Repository administrative interfaces. However, the
business space widgets provide an interface that is closely aligned with WebSphere ESB
concepts of policy and therefore are more intuitive when configuring policy to be used with
WebSphere ESB.

The business space widgets provided enable you to create new mediation polices, create
the policy attachments at either the module or target service scope and associate gate
conditions with the attachments.

WBPMv7_RoutingRegistryPrimitives.ppt	 Page 24 of 32

Resources

� developerWorks
– What's new in WebSphere Enterprise Service Bus V6.2, Part 3: Mediation policy
– Mediation policy for target services: Constructing a dynamic mediation for WebSphere

ESB V7 based on which target service has been selected

� Information center
– Policy resolution mediation primitive
– Mediation policy patterns
– Mediation policy processing model
– Example: mediation policy conditions
– Tutorial: Creating mediation policies for modules, using Business Space
– Tutorial: Creating mediation policies for services, using Business Space
– WebSphere Service Registry and Repository Version 7.0 information center

� IBM Education Assistant
– Usage pattern details of promoted properties

25 Routing primitives utilizing registry lookup information © 2010 IBM Corporation

The policy resolution primitive cannot be understood without some understanding of
mediation policy as it applies in WebSphere Enterprise Service Bus. This slide provides
you links to many topics related to mediation policy that will help you understand the big
picture.

To start out, there are a couple of developerWorks articles. The first was published in the
V6.2 timeframe and addresses the topic of mediation policy, which was first introduced in
that release. The second one addresses the scenario where mediation policies are
attached to target services, which is a new capability added in V7.

There are several links to the information center, the first being to the policy resolution
primitive itself, describing its usage, behavior and defines all of its properties. Following
that are links that describe mediation policies and how they are used, along with an
example and a couple of tutorials. A link to the WebSphere Service Registry and
Repository for V7.0 is also provided as information about configuring the registry with
policy information is provided there.

Finally, in IBM Education Assistant, the presentation on usage patterns for promoted
properties contains several slide describing the use of dynamic properties, a fundamental
element of mediation policy in WebSphere ESB.

WBPMv7_RoutingRegistryPrimitives.ppt Page 25 of 32

© 2010 IBM Corporation26 Routing primitives utilizing registry lookup information

SLA check primitiveSLA check primitive

Section

This section introduces the SLA check primitive. SLA stands for service level agreement.

WBPMv7_RoutingRegistryPrimitives.ppt Page 26 of 32

SLA check primitive – Overview of function

� Provides capability to enforce a service level agreement (SLA) within a mediation flow

� SLAs are maintained in WebSphere Service Registry and Repository
– They are part of governance enablement profile

� Enforces SLAs that can be between
– Client and mediation
– Mediation and service
– Client and service

� Three values can be sent in the query
• Endpoint – required
• Consumer ID – optional
• Context ID – optional

� The registry responds indicating if the there is an acceptable SLA
– The SLA check primitive fires different output terminals depending upon the response

27 Routing primitives utilizing registry lookup information © 2010 IBM Corporation

The purpose of the SLA check primitive is to enable the enforcement of service level
agreements within a mediation flow. The service level agreements are maintained in
WebSphere Service Registry and Repository as part of the governance enablement
profile. The service level agreements can be between the client and the mediation,
between the mediation and the service or between the client and the service. It is through
queries to the registry that the check is performed, passing in an endpoint, consumer ID
and context ID. All three of these can be specified as a literal value or as an XPath to the
value. The endpoint is required and the consumer ID and context ID are optional. When
the primitive sends the query, the registry responds indicating if it accepts or rejects the
request based on the configured SLAs. Different output terminals are fired by the primitive
based on the response.

WBPMv7_RoutingRegistryPrimitives.ppt Page 27 of 32

© 2010 IBM Corporation 28 Routing primitives utilizing registry lookup information

SLA check primitive - Governance enablement profile example

accept terminal fired
if SLA with correct

parameters
found in referenced WSRR

reject terminal fired
if SLA with correct

parameters
not found in referenced

WSRR

Service
Version

Service
Level

Definition

Service
Level

Agreement

contains

contains
contains

consumerId endpoint

contextId

In the upper right corner you can see the relationships that come into play in the registry.
There is a service level definition that contains an endpoint and identifies a service version
and a service level agreement. The service level agreement contains the context ID. The
service version contains the consumer ID. In the lower left is a mediation flow containing
an SLA check primitive. When the registry responds that a service level agreement has
been found that matches the parameters in the query, the primitive fires the accept
terminal, otherwise it fires the reject terminal.

WBPMv7_RoutingRegistryPrimitives.ppt Page 28 of 32

Resources

� Information center
– SLA check mediation primitive
– Service level agreement scenarios

• Contains links to three different examples
– WebSphere Service Registry and Repository Version 7.0 information center

29 Routing primitives utilizing registry lookup information © 2010 IBM Corporation

Here are the links to additional resources for understanding the SLA check primitive. The
first is to the documentation for the primitive itself, describing its usage, behavior and
detailing the properties. The next link describes service level agreement scenarios. It also
contains links to three examples, covering the SLAs between client and the mediation,
between the mediation and the service and between the client and the service. The last
link is to the information center for WebSphere Service Registry and Repository V7.0
where the details about governance enablement profiles and service level agreements is
found.

WBPMv7_RoutingRegistryPrimitives.ppt Page 29 of 32

Summary

� Examined the routing primitives that perform registry lookups
– Contrasted basic characteristics of these primitives
– Introduced the basic functionality the endpoint lookup primitives

• Endpoint lookup
• UDDI endpoint lookup
• Gateway endpoint lookup

– Discussed dynamic invocation following an endpoint lookup
– Introduced the basic functionality of:

• Policy resolution
• SLA check

30 Routing primitives utilizing registry lookup information © 2010 IBM Corporation

The presentation began by highlighting and contrasting the basic characteristics of the
routing primitives that perform registry lookups. The basic functionality of the three
endpoint lookup primitives was presented, specifically the endpoint lookup primitive, the
UDDI endpoint lookup primitive and the gateway endpoint lookup primitive. This was
followed by a section looking at processing scenarios that include one of these primitives.
Then the basic functionality of the other registry based primitives was examined,
specifically the policy resolution primitive and the SLA check primitive.

WBPMv7_RoutingRegistryPrimitives.ppt Page 30 of 32

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WBPMv7_RoutingRegistryPrimitives.ppt

This module is also available in PDF format at: ../WBPMv7_RoutingRegistryPrimitives.pdf

31 Routing primitives utilizing registry lookup information © 2010 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WBPMv7_RoutingRegistryPrimitives.ppt Page 31 of 32

 TTrraaddeemmaarrkkss,, ddiissccllaaiimmeerr,, aanndd ccooppyyrriigghhtt iinnffoorrmmaattiioonn

IBM, the IBM logo, ibm.com, developerWorks, and WebSphere are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other
IBM trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2010. All rights reserved.

32 © 2010 IBM Corporation

WBPMv7_RoutingRegistryPrimitives.ppt Page 32 of 32

