

WebSphere Business Process Management
WebSphere Integration Developer
WebSphere Enterprise Service Bus
WebSphere Process Server

Tracing primitives

© 2010 IBM Corporation

This presentation introduces the tracing primitives used to capture message content and
state information at selected points in a mediation flow.

WBPMv7_TracingPrimitives.ppt Page 1 of 20

Goals and agenda

� Goal
– Provide an introduction to mediation primitives classified in WebSphere® Integration

Developer as tracing primitives

� Agenda
– Describe the overall common and contrasting characteristics of these primitives
– Introduce the basic functionality of:

• Event emitter
• Message logger
• Trace

2 Tracing primitives © 2010 IBM Corporation

The goal of this presentation is to introduce a set of primitives that share some common
characteristics, specifically those that are classified within WebSphere Integration
Developer as tracing primitives.

The presentation starts out by explaining the common and contrasting characteristics of
these primitives, and then provides a description of the basic functionality of each. The
primitives presented are the event emitter primitive, the message logger primitive and the
trace primitive.

WBPMv7_TracingPrimitives.ppt Page 2 of 20

Common and contracting characteristics

� Common characteristics of the tracing primitives
– They are used to capture and make available message content and state information at

a selected point in a mediation flow
– They do not modify the SMO
– Root property contains an XPath identifying portion of the SMO to include in the output
– Enabled property, which is promotable, allows administrative control of whether the

primitive actually produces output

� Contrasting characteristics
– Appropriate for production versus development time usage

• Event emitter – production
• Message logger – either
• Trace - development

– Whether transactional
• Event emitter – yes
• Message logger – yes with database option, no with custom implementation option
• Trace – no

3 Tracing primitives © 2010 IBM Corporation

The tracing primitives are all used to capture and make available information about
message content and state within a mediation flow. They do not modify the contents of the
SMO, so from the perspective of the flow logic, they have no effect on downstream
primitives. What portion of the SMO to include in the output is configurable using an XPath
expression in the root property. They all have the enabled property, which can be
promoted, allowing an administrator the ability to toggle the primitive off and on. This can
be useful when the primitive is used for debugging or other special case scenarios.

There are some contrasting characteristics of these primitives, one of which is appropriate
usage of the primitive. The event emitter is most likely to be used for a production system
to report error situations or other unusual and significant events. At the other end of the
spectrum, the trace primitive is most likely used during development and debug of
mediation flows. It provides you, the integration developer, a way to easily instrument your
code to examine the SMO at various points in the flow. The message logger primitive falls
more in the middle, and might be useful in a production scenario and can also be useful in
a development scenario.

Another contrasting characteristic is transactionality. The event emitter and the database
option of the message logger are both transactional. They can be configured to be
committed within a local transaction or can participate in the transaction for the flow. This
enables you to control whether a particular event or message is actually produced when
the transaction for the flow does not complete successfully. The trace primitive, and the
message logger with custom logging option, are not transactional, with the message being
produced at the time the primitive runs in the flow.

WBPMv7_TracingPrimitives.ppt Page 3 of 20

© 2010 IBM Corporation4 Tracing primitives

Event emitter primitiveEvent emitter primitive

Section

This section of the presentation provides an overview of the event emitter primitive.

WBPMv7_TracingPrimitives.ppt Page 4 of 20

Event emitter primitive - Overview of function

� Emits an event from within a mediation flow
– Enables reporting of significant events within the flow

� Fully integrated with the common event infrastructure (CEI)
– Common base event format
– Generated events are sent to the CEI server

• Can be written to the event database
• Can be forwarded using JMS topics or queues
• Filters can be used to select specific events

– Can be used by monitoring applications
• Common base event browser
• WebSphere Business Monitor
• User written event processing application

5 Tracing primitives © 2010 IBM Corporation

The event emitter primitive provides a simple and easily configured mechanism that can
be used to report significant events which have occurred within a mediation flow.

The event that is emitted is a common base event and is fully compatible with the common
event infrastructure, which is part of the service oriented architecture core within
WebSphere Enterprise Service Bus and WebSphere Process Server. The events are sent
to the CEI server, and therefore what happens with an event depends upon how the CEI
server is configured. The possibilities are that the event is written to an event database,
sent as a message on JMS queues, published to JMS topics, or some combination of
these. These capabilities make the event available to applications that query the database,
or receive the event through JMS. Through the use of configurable filters, the CEI server
can selectively decide which events to forward on specific JMS queues or topics.

Based on your application requirements, the contents of events might need to be
displayed or otherwise interpreted by monitoring applications. The common base event
browser is provided as part of the WebSphere Enterprise Service Bus and WebSphere
Process Server. It provides a mechanism to filter, sort and display events. The
WebSphere Business Monitor has capabilities to provide analysis of events. For some
requirements, you might need to write your own application to analyze and act upon
events.

WBPMv7_TracingPrimitives.ppt Page 5 of 20

Event emitter primitive - Overview of function (continued)

� Configurable event formats are supported
– V6.1 and later event format – the default configuration

• Event data is based on XML schema definition (XSD) wbi:event
• XML for the event wrapped in a common base event

– V6.0.2 and earlier event format – optional configuration
• Application data is placed into extendedDataElement of the common base event
• Event definitions can be exported for use by monitoring applications

� All event emitters within a mediation flow component use the same format
– Configured at the individual operation level in the mediation flow component properties
– However, the setting for all operations are synchronized

6 Tracing primitives © 2010 IBM Corporation

You are able to configure what event format you prefer for the emitted events. By default,
the version 6.1 and later format is used, but you can change the configuration to use the
version 6.0.2 and earlier format if needed for compatibility.

The version 6.1 format is based on the wbi:event XML schema definition (XSD). The XML
representation of the event is placed into a common base event wrapper, so that it is
compatible with the common event infrastructure. This results in a small amount of
information being duplicated in the common base event and the XML, but the application
data itself is only present in the XML.

In the version 6.0.2 format, the application data follows the common base event format,
using the extendedDataElement to contain the application data. Because this data is not
self describing, event definitions using the version 6.0.2 format can be exported for use by
monitoring applications.

The configuration option for choosing between the formats is specified at the individual
operations level of the mediation flow component; however, changing the setting for one
operation changes it for all the operations of the interface. Because of this, the result is
that all event emitters within all the flows for the mediation flow component use the same
event format.

WBPMv7_TracingPrimitives.ppt Page 6 of 20

Resources

� Information center
– Event emitter mediation primitive
– Emitting common base events

� IBM Education Assistant
– Event emitter primitive presentation for V6.2

7 Tracing primitives © 2010 IBM Corporation

The first link is to the information center for the event emitter mediation primitive
documentation. It provides the details of the primitive and its use, including a description of
its properties and information about the two different event formats that are supported.
The next link in the information center, emitting common base events, is to a page
containing many other links that will help you understand the big picture of using event
emitters with your mediation applications. It includes topics such as the common base
event infrastructure and common base events, guidelines for selecting an event format,
generating monitor models and best practices.

There is a more detailed presentation on the event emitter primitive in IBM Education
Assistant for V6.2. The presentation provides more details on usage, properties, event
formats and best practices.

WBPMv7_TracingPrimitives.ppt Page 7 of 20

© 2010 IBM Corporation8 Tracing primitives

Message logger primitiveMessage logger primitive

Section

This section provides an overview of the message logger primitive.

WBPMv7_TracingPrimitives.ppt Page 8 of 20

Message logger primitive - Overview of function

� Logs selected content of the SMO

� There are two implementation options
– Log to a relational database
– Custom implementation based on Java™ logging APIs

� Data that can be included in the log
– UTC timestamp of when message was logged
– Message ID from the SMO header
– Name of the message logger primitive
– Name of the mediation module
– Requested portion of SMO, identified by the root property, in XML format
– The SMO version

9 Tracing primitives © 2010 IBM Corporation

The purpose of a message logger primitive is to log selected content of the service
message object (SMO). The message logger primitive provides you with the choice
between two different implementations. One implementation writes log records to a
relational database. The other implementation option is custom logging, which makes use
of the Java logging APIs.

The data that can be logged includes the UTC timestamp of when the message was
logged, the message ID taken from the SMO header, the names of the message logger
primitive and mediation module, the portion of the SMO identified by an XPath expression
in the root property, and the version of the SMO.

WBPMv7_TracingPrimitives.ppt Page 9 of 20

Message logger primitive – Database option

� Default message log database
– Used the server’s common database
– Pre-configured data source identifies the default message log database

• JNDI name = jdbc/mediation/messageLog
– Schema qualifier and table = ESBLOG.MSGLOG

• Table contains a column for each of the data items indicated on the previous slide

� Configuration options allow use of another database, multiple databases or multiple tables
within a database

– Create ESBLOG.MSGLOG table in a different database
• Set appropriate JNDI name in message logger to identify the database

– Use different schema qualifier in the same database
• For example, MYLOG

– Resulting in table MYLOG.MSGLOG
– Set environment variable: ESB_MESSAGE_LOGGER_QUALIFER=MYLOG

– DDL and scripts provided for creation using each of the supported databases

10 Tracing primitives	 © 2010 IBM Corporation

The database option provides you with a default message log database table located in
the server’s common database. The server is pre-configured to contain a JNDI name that
identifies the message log database, with the JNDI name jdbc/mediation/messageLog.
The message logger primitive writes to the database using the table named MSGLOG with
a schema qualifier of ESBLOG. This table contains a column for each of the six data items
indicated on the previous slide.

There are alternatives to the use of the ESBLOG.MSGLOG table in the common
database. One approach is to use a different database that contains an
ESBLOG.MSGLOG table. When configured this way, it is the use of the JNDI data source
configured for the message logger that identifies the database to use. Another approach is
to use the common database but write to a MSGLOG table that has a different schema
qualifier, for example, MYLOG. When doing this, it is the use of the environment variable
ESB_MESSAGE_LOGGER_QUALIFER that identifies the schema qualifier to use. Of
course, the two approaches can be combined, using a different database in addition to
different schema qualifiers.

The DDL and scripts needed to create a message log database are provided with the
product, with variations for each of the supported database types.

WBPMv7_TracingPrimitives.ppt	 Page 10 of 20

Message logger primitive – Custom logging option

� Implementation based on Java logging APIs (java.util.logging)

� Default implementation provided that logs to a file
– The file is named MessageLog.log
– The file is located in the system temporary directory

• Defined in Java by System.getProperty("java.io.tmpdir");
• For example

– C:\Documents and Settings\Administrator\Local Settings\Temp
– /var/tmp or /tmp

� Provide your own custom logging implementation using these classes:
– Handler

• Extend the java.util.logging.Handler abstract class, implement the publish method
– Formatter

• Extend the java.util.logging.Formatter abstract class, implement the format method
– Filter

• Implement the isLoggable method of the java.util.logging.Filter interface

11 Tracing primitives © 2010 IBM Corporation

The custom logging implementation is based on the Java logging APIs, defined in the Java
package java.util.logging.

The default implementation provided with the server logs messages to a file named
MessageLog.log. This file is located in the system temporary directory that is identified by
the Java property java.io.tmpdir. The value of this will vary by system, but typical locations
are C:\Documents and Settings\Administrator\Local Settings\Temp on a Windows® system
and /var/tmp or /tmp on a UNIX® system.

When you are providing your own custom implementation, there are three classes that
need to be implemented. The abstract class java.util.logging.Handler needs to be
extended to implement the publish method. This is the method that writes the formatted
log message. The abstract class java.util.logging.Formatter needs to be extended to
implement the format method, which does the formatting of the log message. Finally, the
interface java.util.logging.Filter needs to be implemented with the isLoggable method
providing an indication if this message should be logged. This might always return true,
unless you have some filtering criteria by which you determine which messages should
actually be logged.

WBPMv7_TracingPrimitives.ppt Page 11 of 20

Message logger primitive – Custom logging option (continue)

� Message logger primitive has a literal property used with a custom logging implementation
– Property contains a literal string that is the message
– Substitution parameters in the string allow insertion of the data elements listed on the

overview slide.

� Message from default formatter implementation
– Inserts data elements into the literal based on the substitution parameters
– Only data elements with specified substitution parameters are included

� Message from custom formatter implementation
– Implementation is passed the literal string and the six insertion elements
– Construction of message controlled by implementation

12 Tracing primitives © 2010 IBM Corporation

When using the custom logging option, the message logger has a property called literal
that contains the message to be logged. The string provided can contain substitution
parameters for the six variable data elements listed on the overview slide of this section.
When using the default implementation, the variable data elements are inserted into the
literal string based on the occurrence of substitution parameters. Any elements without a
corresponding substitution parameter are not included in the message.

If you are using your own implementation of the formatter, the literal string and the six
variable elements are made available. Your implementation can uses them as it chooses
to format the message.

WBPMv7_TracingPrimitives.ppt Page 12 of 20

Resources

� Information center
– Message logger mediation primitive
– Enterprise service bus logger mediation database configurations

� IBM Education Assistant
– Message logger primitive presentation for V6.2

� Java logging API documentation
– http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html
– http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/package-summary.html

13 Tracing primitives © 2010 IBM Corporation

On this slide are several links that you can reference to get a better understanding of the
message logger primitive. The information center contains documentation of the primitive
itself, describing the details of its usage for both options, defining all of the properties and
providing several considerations for its usage. There are also links from there to other
topics with further considerations when using the database option. There is another link on
this slide to information about supported database types, configuration script names and
their locations; profile creation configuration actions; schema upgrades and user ID
privileges.

The next link is to IBM Education Assistant that provides a more in-depth presentation on
the message logger primitive in V6.2. It provides more background on the two
implementation options, including guidance on creating your own custom implementation.
The last two links on the slide are to the documentation for the Java logging APIs, which
you will need if developing your own custom implementation.

WBPMv7_TracingPrimitives.ppt Page 13 of 20

© 2010 IBM Corporation14 Tracing primitives

Trace primitiveTrace primitive

Section

The trace primitive is examined in this section.

WBPMv7_TracingPrimitives.ppt Page 14 of 20

Trace primitive – Overview of function

� Enables writing of a user defined trace record to a file
– User specified string with substitution parameters for inserts

• UTC timestamp of when message was logged
• Message ID from the SMO header
• Name of the message logger primitive
• Name of the mediation module
• Requested portion of SMO, identified by the root property, in XML format
• The SMO version

� Trace records are written to a configurable file destination

� Useful during development and debug of a mediation flow
– Eliminates need to use custom mediation primitive with Java code
– Can be toggled on and off by promoting the enabled property

15 Tracing primitives © 2010 IBM Corporation

The trace primitive enables the writing of a user defined trace record to a file. Similar to
the message logger with custom logging option, the trace record is defined by a string
containing substitution parameters identifying six variable elements that can be inserted.
The substitution parameters are the UTC timestamp of when the message was written, the
message ID taken from the SMO header, the names of the trace primitive and mediation
module, the portion of the SMO identified by an XPath expression in the root property, and
the version of the SMO.

The trace records are written to a configurable file destination, which is explained in more
detail on the next slide. As was mentioned at the beginning of the presentation, the trace
primitive is intended for use during the development and debugging of a mediation flow.
The promotable enabled property can be used to toggle the actual tracing on and off,
allowing code instrumented with trace primitives to be deployed to production without
actually tracing. The trace record eliminates the need to insert custom mediation primitives
with Java code to write trace records, as was commonly done in releases before V7.

WBPMv7_TracingPrimitives.ppt Page 15 of 20

Trace primitive – Properties controlling file used

� Destination - set to one of these choices
– Local error log

• Writes to the console (SystemOut.log)
– User trace

• Writes to the UserTrace.log file in the ${LOG_ROOT}/<servername> directory
– File

• Writes to the file specified in File property

� File
– Only required when the Destination property is set to File
– Absolute file path

• Writes to the specified file
– Relative file path

• Writes to the relative file path located from the ${LOG_ROOT}/<servername>
directory

16 Tracing primitives © 2010 IBM Corporation

The file to which the trace records are written is controlled by the destination and file
properties. The destination property is set to one of three values. Setting local error log
causes the trace records to be written to the console, which is the SystemOut.log file. The
setting user trace causes the trace records to be written to a file named UserTrace.log that
is located in the $(LOG_ROOT)/<servername> directory. $(LOG_ROOT) is typically the
logs directory in the server profile. Finally, if the destination property is set to file, the file
property defines the file to be used. This is the only case in which the file property is used.
If it contains an absolute path, the trace records are written to that file. If the file property
contains a relative path, then trace records are written to that file relative to the
$(LOG_ROOT)/<servername> directory.

WBPMv7_TracingPrimitives.ppt Page 16 of 20

© 2010 IBM Corporation 17 Tracing primitives

Trace – Example output

This is an example of the properties for a trace primitive along with a corresponding trace
record. Notice the property message, which contains the literal string for the message
including substitution parameters. The property message and the actual message are
color coded so that you can see the relationship. The yellow indicates the literal part of the
message, the gray is the substitution parameter for the timestamp, and the yellow is the
substitution parameter for the trace primitive’s name. The green is the substitution
parameter for the SMO content, which is defined by the XPath expression in the root path
property.

WBPMv7_TracingPrimitives.ppt Page 17 of 20

Summary

� Described the overall common and contrasting characteristics of these primitives

� Introduced the basic functionality of:
– Event emitter
– Message logger
– Trace

18 Tracing primitives © 2010 IBM Corporation

The presentation started out by explaining the common and contrasting characteristics of
these primitives, and then provided a description of the basic functionality of each. The
primitives presented were the event emitter primitive, the message logger primitive and
the trace primitive.

WBPMv7_TracingPrimitives.ppt Page 18 of 20

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WBPMv7_TracingPrimitives.ppt

This module is also available in PDF format at: ../WBPMv7_TracingPrimitives.pdf

19 Tracing primitives © 2010 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WBPMv7_TracingPrimitives.ppt Page 19 of 20

 Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, and WebSphere are trademarks or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM trademarks is
available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Windows, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Java, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2010. All rights reserved.

20 © 2010 IBM Corporation

WBPMv7_TracingPrimitives.ppt Page 20 of 20

