

WebSphere Business Process Management
WebSphere Integration Developer
WebSphere Enterprise Service Bus
WebSphere Process Server

Transformation primitives to manipulate message content

© 2010 IBM Corporation

This presentation introduces the transformation primitives that are capable of manipulating
the message content.

WBPMv7_XFormContentPrimitives.ppt Page 1 of 19

Goals and agenda

� Goal
– Provide an introduction to mediation primitives with these characteristics:

• Classified in WebSphere Integration developer as transformation primitives
• Either:

– Capable of accessing and modifying any part of the SMO
– Augmenting the message type without modifying the message

� Agenda
– Introduce the basic functionality of:

• Message element setter
• Database lookup
• Set message type

2 Transformation primitives to manipulate message content © 2010 IBM Corporation

The goal of this presentation is to introduce a set of primitives that share some common
characteristics. These primitives are some of those classified within WebSphere
Integration Developer as transformation primitives. This is really a catch all group, and not
all of the primitives have one common characteristic. A couple of the primitives are
capable of modifying element values within any part of the service message object (SMO).
The other one is unique, and does not modify the message, as all the other transformation
primitives do. Rather, it augments the message type with additional type information for
loosely typed elements.

The primitives presented are the message element setter, the database lookup and the
set message type.

WBPMv7_XFormContentPrimitives.ppt Page 2 of 19

© 2010 IBM Corporation3 Transformation primitives to manipulate message content

Message element setterMessage element setter

Section

The message element setter is described in this section.

WBPMv7_XFormContentPrimitives.ppt Page 3 of 19

Message element setter - Overview of function

� Updates the service message object (SMO)
– Assignment of a constant value
– Copying from one part of an SMO to another

• Leaf element
• Sub-trees, provided source and target types match

– Appending to an array
– Deleting elements

• Setting the element value to “null”

� XPath expressions used to identify elements
– Target elements
– Source elements of a copy operation

4 Transformation primitives to manipulate message content © 2010 IBM Corporation

The function of the message element setter primitive is to enable an easy and efficient
mechanism to make updates to the service message object (SMO). There are four
different types of updates that can be made. The first capability is the assignment of a
constant value to a leaf element of the SMO. Secondly, a copy capability is provided which
allows you to copy from one part of the SMO to another. The copy might be for a leaf
element or for a sub-tree, provided that the source and target sub-trees have a matching
structure. Similar to the copy operation is the append, which enables you to add an
element to the end of an array, providing the array target and source types match. Finally,
an element can be deleted. This does not actually delete the element completely from the
SMO, but rather sets the value of the element to null.

XPath expressions are used to identify the target elements in the SMO that are updated
by the primitive. The source elements of copy and append operations are also identified
using XPath expressions.

WBPMv7_XFormContentPrimitives.ppt Page 4 of 19

Message element setter - Overview of function (continue)

� Multiple elements can be updated
– Table based specification of properties

� Easier than coding other primitive types
– Custom mediation
– XSL transformation
– Business object map

� More efficient than other primitives
– XSL transformation
– Business object map primitives

5 Transformation primitives to manipulate message content © 2010 IBM Corporation

The message element setter primitive allows multiple elements to be updated. It makes
use of a table property where each row of the table defines a single update.

The other primitives that can be used to perform the same kind of function are the custom
mediation, business object map and the XSL transformation primitives. The message
element setter primitive provides an easier mechanism to define the updates than these
other primitives. In addition, the updates made by a message element setter are done in
place rather than making a totally new copy of the SMO. Therefore, it is much more
efficient at runtime than the XSL transformation or business object map primitives.

WBPMv7_XFormContentPrimitives.ppt Page 5 of 19

Message element setter - Processing details

� Target element is created if it does not exist

� Deleting elements
– Only optional or repeating elements can be deleted
– Deleting an element sets it to null
– For non-leaf node elements, this results in the sub-tree being deleted

� When multiple elements are set it appears simultaneous
• Example:

– Original values: A=1, B=2, C=3
– Message Element table: (1) copy A to B (2) copy B to C
– Result: A=1, B=1, C=2 (not 1)

• The order of elements in the table is not important

� When same element set more than once, the last one wins
– Example:

• Original values: A=1, B=2, C=3
– Message Element table: (1) copy A to C (2) copy B to C
– Result: A=1, B=2, C=2 (not 1)

• The order of elements in the table is important

6 Transformation primitives to manipulate message content © 2010 IBM Corporation

For some cases, it can be important to understand the nuances of behavior exhibited by
the message element setter primitive. Several of the processing details for the primitive
are provided here.

When the target XPath expression identifies an element in the SMO that does not
currently exist in the SMO, it is created.

When deleting elements, there are a few things to be considered. First of all, only optional
or repeating elements can be deleted. When an element is deleted, it is not removed from
the SMO, rather it is set to null. Also, if the element is not a leaf node element, setting it to
null results in the sub-tree for that element being deleted.

Although the table is an ordered list of updates, the results of processing updates to
multiple elements appears to have occurred simultaneously. For example, suppose the
table specifies to copy A to B, and then specifies to copy B to C. The result is that C is set
to the original value for B, not to the value for A.

Order is important when the same element is updated more than once. In this case, the
last update is the effective one. For example, suppose the table specifies to copy A to C,
and then specifies to copy B to C. The result is C contains the original value for B since
that was the last update to C.

WBPMv7_XFormContentPrimitives.ppt Page 6 of 19

Resources

� Information center
– Message element setter mediation primitive

� IBM Education Assistant
– Message element setter primitive presentation for V6.2

7 Transformation primitives to manipulate message content © 2010 IBM Corporation

The information center provides documentation of the message element setter primitive,
describing its usage, documenting its properties and providing some considerations for its
use. A more complete presentation of the message element setter is provided in IBM
Education Assistant for V6.2, which is still applicable to V7.

WBPMv7_XFormContentPrimitives.ppt Page 7 of 19

© 2010 IBM Corporation8 Transformation primitives to manipulate message content

Database lookupDatabase lookup

Section

The database lookup primitive is the topic of this section.

WBPMv7_XFormContentPrimitives.ppt Page 8 of 19

Database lookup primitive - Overview of function

� Updates the SMO with data from a user database
– A key value is obtained from the message
– The database row associated with that key is accessed
– The message is updated with values obtained from selected fields

� You must:
– Create a database or use an existing database
– Configure the data source identifying the database

9 Transformation primitives to manipulate message content © 2010 IBM Corporation

The purpose of the database lookup is to update the service message object with data
obtained from a user database.

The database lookup primitive first obtains a key value from the SMO and uses that key
value to access a row from a database table. Values from selected fields in that row are
then used to update the SMO. Depending upon your requirements, you must either create
a new database or use an existing database. You must configure a data source that is
used to identify the database.

WBPMv7_XFormContentPrimitives.ppt Page 9 of 19

Database lookup primitive - Overview of function (continue)

� Configuration data used to define database access
– Data source JNDI name
– Table name
– Key column
– Data columns

� Configuration information for the SMO:
– XPath expression identifying the element containing the key value
– XPath expressions identifying the message elements to update
– Validation of input SMO

10 Transformation primitives to manipulate message content © 2010 IBM Corporation

There is quite a bit of configuration data associated with a database lookup primitive.
Some of the configuration data is associated with the database and other configuration
information refers to the SMO. The database configuration information includes the JNDI
name for the data source and the name of the table on which to do the lookup. It also
includes the column used for the key and the columns from which to extract data. The
SMO configuration data includes the XPath expression that identifies the key value
element in the SMO and the XPath expressions identifying the elements in the SMO to be
updated with values from the database. There is also a configuration option to request
validation of the incoming SMO.

WBPMv7_XFormContentPrimitives.ppt Page 10 of 19

Resources

� Information center
– Database lookup mediation primitive
– Example: Database Lookup mediation primitive
– Dynamic routing using a database

� IBM Education Assistant
– Database lookup primitive presentation for V6.2

11 Transformation primitives to manipulate message content © 2010 IBM Corporation

The information center provides documentation of the database lookup primitive,
describing its usage, documenting its properties and providing some considerations for its
use. There is an example of using the database lookup showing how you might configure
a database lookup primitive to lookup information from an employee database.
Additionally, there is a discussion on how you might use a database, rather than a registry,
to implement dynamic routing.

The IBM Education Assistant for V6.2 provides a more complete presentation of the
database lookup primitive that is still applicable to V7.

WBPMv7_XFormContentPrimitives.ppt Page 11 of 19

© 2010 IBM Corporation12 Transformation primitives to manipulate message content

Set message typeSet message type

Section

This section introduces the set message type primitive.

WBPMv7_XFormContentPrimitives.ppt Page 12 of 19

Set message type primitive - Background

� Business object fields can be:
– Strongly typed – type and structure is known
– Weakly typed – more than one type of data allowed for the field

� Mediation flow editor uses type information
– Contents of SMO understood through type information

• SMO message type defines the contents of the body
• SMO message type plays a key role in the wiring together of a mediation flow
• Transient, correlation and shared contexts are defined through configuration of

business objects
– Type information critical for tools, such as:

• XPath expression builder
• Business object and XML mapping editors

13 Transformation primitives to manipulate message content © 2010 IBM Corporation

Before explaining the function of the set message type primitive, it is useful to highlight
some background information that provides a basis for understanding the function it
provides.

The first key point to understand relates to the definition of fields in business objects.
Some fields are strongly typed, so that the exact type and structure of data contained in
the field is well known. However, some fields are weakly typed, allowing different types
and structures of data to exist for that field.

The next major point is that the mediation flow editor makes extensive use of type
information. At any point in a mediation flow, the service message object has an explicit
message type which defines the contents of the message body. This message type
defines the operation the message represents, including its parameters, which can be
simple types or complex types defined by business objects. Message types are critical in
the role that they play when constructing a mediation, particularly when it comes to wiring
together the primitives in the flow. Additionally, the transient, correlation and shared
contexts are all defined by business objects. Therefore, the SMO body and contexts can
potentially have elements that are defined by weakly typed business object fields. This
affects tools, such as the XPath expression builder, the business object map editor and
the XML map editor, as they are highly dependent upon type information for the SMO
context, headers and body.

WBPMv7_XFormContentPrimitives.ppt Page 13 of 19

Set message type - Overview of function

� Allows weakly typed fields in the SMO to be treated as strongly typed

� Enables editors to show and manipulate the strong rather than weak type

� Eliminates the need for custom Java code and hand written XSL style sheets

� Weakly typed fields can be:
– xsd:any
– xsd:anyType
– xsd:anySimpleType
– Concrete types from which other types are derived

• For example, type Student from which UndergraduateStudent and GraduateStudent
are both derived

14 Transformation primitives to manipulate message content © 2010 IBM Corporation

With the information provided on the previous slide as background, the purpose of the set
message type primitive can now be described. The set message type primitive provides a
mechanism that allows weakly typed fields in the SMO to be treated as if they were
strongly typed. If you are familiar with programming languages such as Java or C++, the
use of a cast operation in these languages is a good analogy for what this primitive
provides within a mediation flow. It declares a weakly typed field to be of a stronger type,
therefore enabling the editors and other tools to show and manipulate the strong rather
than the weak type. If you wanted to map elements within a weak type, you need to write
custom Java code for business object maps or hand written XSL style sheets for XSL
transformations. By using the strong type instead, you can create the maps directly in the
editor without custom coding.

Being more specific about what is meant by a weakly typed field, the types xsd:any,
xsd:anyType and xsd:anySimpleType are all used to define weakly typed fields. However,
concrete types can also be considered weakly typed if they are inherited by other types,
referred to as derived types. As an example of this, suppose there is a business object
Student containing fields common to all students. From this, two other business objects
are derived, UndergraduateStudent and GraduateStudent, each containing the appropriate
additional fields for that type of student. An operation that defined a parameter of Student
results in a weakly typed field in the SMO body.

WBPMv7_XFormContentPrimitives.ppt Page 14 of 19

Set message type - Overview of function (continue)

� Set message type primarily affects development tools
– Enables editors to work with the more specific strong types
– Simplifies the tasks required of the integration developer

� At runtime:
– Has no effect on SMO structure or content
– Optional validation enables checking content to ensure it is of asserted type

� Effect of set message type on terminal message type
– Does not change the message type
– The message type is augmented with additional type information
– Wiring rules are adjusted for handling augmented message types

15 Transformation primitives to manipulate message content © 2010 IBM Corporation

The set message type is different from all the other mediation primitives because it
essentially provides only development time function. Use of this primitive enables editors
to work with more specific types, thus making your tasks as an integration developer much
easier. At runtime, this mediation primitive has no effect on the SMO in either structure or
content. The only runtime functionality it provides is optional, allowing you to choose to
have the set message type validate the SMO at runtime to ensure it contains the stronger
type asserted by the primitive.

One last point about the function of this primitive is that it does not actually change the
message type of the SMO that gets associated with a terminal. Rather, it augments the
message type with additional type information. This results in some differences in the
wiring rules for terminals and the affect that message type has on defining a flow.

WBPMv7_XFormContentPrimitives.ppt Page 15 of 19

Resources

� Information center
– Set message type mediation primitive
– Mapping weakly typed elements using the set message type mediation primitive
– Building a static service gateway

� IBM Education Assistant
– Set message type primitive presentation for V6.2

16 Transformation primitives to manipulate message content © 2010 IBM Corporation

The information center provides documentation of the set message type primitive,
providing details of its usage, describing its properties and providing some considerations
for its use. There is another section on mapping weakly typed fields with the set message
type primitive that goes into more details on its usage. Because the set message type
primitive has a key role in the logic of a static service gateway, a link is provided to the
section of the information center describing how to build a static service gateway.

The IBM Education Assistant for V6.2 provides a more complete presentation of the set
message type primitive that is still applicable to V7.

WBPMv7_XFormContentPrimitives.ppt Page 16 of 19

Summary

� Introduced the basic functionality of:
– Message element setter
– Database lookup
– Set message type

17 Transformation primitives to manipulate message content © 2010 IBM Corporation

In this presentation you were introduced to the basic functionality of three of the
transformation primitives, specifically the message element setter, the database lookup
and the set message type primitive.

WBPMv7_XFormContentPrimitives.ppt Page 17 of 19

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WBPMv7_XFormContentPrimitives.ppt

This module is also available in PDF format at: ../WBPMv7_XFormContentPrimitives.pdf

18 Transformation primitives to manipulate message content © 2010 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WBPMv7_XFormContentPrimitives.ppt Page 18 of 19

 TTrraaddeemmaarrkkss,, ddiissccllaaiimmeerr,, aanndd ccooppyyrriigghhtt iinnffoorrmmaattiioonn

IBM, the IBM logo, ibm.com, and WebSphere are trademarks or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM trademarks is
available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Java, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2010. All rights reserved.

19 © 2010 IBM Corporation

WBPMv7_XFormContentPrimitives.ppt Page 19 of 19

