

WebSphere Business Process Management
WebSphere Integration Developer
WebSphere Enterprise Service Bus
WebSphere Process Server

WebSphere Enterprise Service Bus overview

© 2010 IBM Corporation

This presentation provides an overview of the WebSphere Enterprise Service Bus product.

WBPMv70_WESBOverview.ppt Page 1 of 26

Goals

� Introduce the WebSphere Enterprise Service Bus
– What are the key concepts
– Relationship to the WebSphere family
– User roles

� Helpful prior knowledge:
– Basic understanding of Enterprise Service Bus concepts
– Basic understanding of Service Component Architecture

2 WebSphere Enterprise Service Bus overview © 2010 IBM Corporation

The goal of this presentation is to introduce you to the WebSphere Enterprise Service Bus
product. You will learn the key concepts needed to understand the approach that is taken
to implement mediation functionality. Then you will see how the WebSphere Enterprise
Service Bus fits into the product stack of the WebSphere family. Finally, you will learn
about the primary user roles that are associated with development and administration for
WebSphere Enterprise Service Bus.

This presentation assumes you have at least a cursory knowledge of what an enterprise
service bus is and understand the basic concepts of service component architecture,
commonly referred to as SCA.

WBPMv70_WESBOverview.ppt Page 2 of 26

© 2010 IBM Corporation3 WebSphere Enterprise Service Bus overview

WebSphere Enterprise Service Bus keyWebSphere Enterprise Service Bus key
conceptsconcepts

Section

In this section you are given a quick reminder of the concepts associated with an
enterprise service bus. With that background, the key concepts of how WebSphere
Enterprise Service Bus implements ESB functionality is presented.

WBPMv70_WESBOverview.ppt Page 3 of 26

Enterprise service bus – Key functions

An enterprise service bus (ESB) is a flexible connectivity
infrastructure for integrating applications and services

An ESB performs the following
between requestor and service
• ROUTING messages

between services

• CONVERTING transport
protocols between requestor
and service

• TRANSFORMING message
formats between requestor
and service

• HANDLING business events
from disparate sources

Shape = Protocol
Color = Data type

4 WebSphere Enterprise Service Bus overview © 2010 IBM Corporation

This slide provides a very good view on the functions of an ESB. An enterprise service bus
provides a flexible connectivity infrastructure for integrating applications and services,
enabling composite applications to be built as a loose coupling of independent services. It
is at the heart of your service oriented architecture, reducing the number, size, and
complexity of interfaces and connections that must be defined and maintained.

There are four primary functions provided by an enterprise service bus:

Its first responsibility is the routing of messages. Rather than the service requestor calling
directly to the service provider, the requestor sends the request to the ESB, and the ESB
then is responsible for making the call on the service provider.

Secondly, it is responsible for converting transport protocols. When a service requestor
called directly to the service provider, they need to use the same transport protocol. The
ESB enables the service requestor to use one transport protocol while the service provider
uses another.

Thirdly, it is responsible for transforming message formats. By eliminating the direct call
from the service requestor to the service provider, the ESB is capable of modifying the
message so that the interfaces used by the requestor and provider do not have to be
identical. In these cases of message transformation, the interfaces are semantically the
same yet syntactically different.

Finally, the ESB is capable of handling business events from disparate sources.
Therefore, the same service provider responsible for performing some particular business
function can be indirectly invoked from a variety of application contexts.

WBPMv70_WESBOverview.ppt Page 4 of 26

Business
Objects

SCA

WebSphere Enterprise Service Bus

WebSphere Application Server

WebSphere Enterprise Service Bus (1 of 8)

SOA Programming Model
5 WebSphere Enterprise Service Bus overview © 2010 IBM Corporation

This is the first of a series of diagrams which provides a fairly complete overview of
WebSphere Enterprise Service Bus. The diagrams reveal the basic building blocks used
by WebSphere Enterprise Service Bus to implement ESB functionality.

First, notice that WebSphere Enterprise Service Bus is built on top of WebSphere
Application Server. More detail on this aspect is provided in a subsequent section of this
presentation.

The next thing to notice is that WebSphere Enterprise Service Bus is built around a
service oriented architecture (SOA) programming model. The key components of the SOA
programming model are service component architecture (SCA) and business objects.

SCA specifications have been evolving over the past several years. The SCA
implementation in WebSphere Enterprise Service Bus is based on the original SCA
specification, published in 2005, with extensions. The implementation is not fully compliant
with any of the SCA specifications currently published. However, it is interoperable with
the Open SCA implementation provided by WebSphere Application Server V7.0 Feature
Pack for Service Component Architecture.

The business object programming model is similar to the programming model defined by
the service data object (SDO) specifications. The business object programming model
implemented in WebSphere Enterprise Service Bus is based on an early SDO
specification with extensions. Extensions to the early specification were needed to enable
fundamental requirements that were not fully defined in the specification. Over time, the
SDO specifications have improved to address some of these requirements. However, the
WebSphere Enterprise Service Bus implementation is not fully compliant with any of the
published specifications.

WBPMv70_WESBOverview.ppt Page 5 of 26

© 2010 IBM Corporation 6 WebSphere Enterprise Service Bus overview

WebSphere
Integration
Developer

SOA Programming Model

Business
Objects

SCA

WebSphere Enterprise Service Bus

WebSphere Application Server

SMO

WebSphere Enterprise Service Bus (2 of 8)

In the center of the diagram you will see an SCA assembly diagram which is used to
define an SCA module. It contains an SCA export, an SCA component and two SCA
imports. An SCA export is used to receive service requests, an SCA import is used to
make requests to service providers and an SCA component contains processing logic. In
this case, it is a mediation flow component, the primary SCA component type for providing
ESB functionality. It encapsulates the logic needed for message transformation and
routing decisions. Protocol conversion happens based on the bindings that are configured
for the SCA exports and imports.

You can also see WebSphere Integration Developer on the right. It is the tool used to
develop SCA based mediation applications that run in the WebSphere Enterprise Service
Bus. It is through the assembly editor in WebSphere Integration Developer that you define
the assembly containing the SCA imports, exports and components.

Below the assembly diagram is shown the service message object, commonly referred to
as the SMO. The SMO is a representation of the message passing through the bus. It
contains a message body, which is the application data associated with the service
request. It also contains headers with information relevant to the transport protocol, for
example, JMS properties associated with an inbound JMS message. It also contains
context information which is data required by the internals of the flow logic.

WBPMv70_WESBOverview.ppt Page 6 of 26

WebSphere Enterprise Service Bus (3 of 8)

WebSphere Enterprise Service Bus
Message Header Custom
Element XSLT Setters Mediation
Setter

Data Database
Object Map
Business

Handler Lookup

SMO
WebSphere
Integration
Developer

WebSphere Application Server

Business SCA
Objects

SOA Programming Model
7 WebSphere Enterprise Service Bus overview © 2010 IBM Corporation

Added to the diagram you can now see a few of the mediation primitives. Mediation primitives are the
primary entities involved in the definition of mediation logic within a mediation flow component. The
processing performed by the mediation primitives is centered on the SMO. Primitives can access and update
the data in the SMO and can modify the format of the SMO. The resulting content and format of the SMO
defines what the outgoing message will be.

Mediation primitives come in several types, each performing some specific predefined function. An instance
of a mediation primitive in a flow is customized through the use of configuration properties. This defines
exactly what the predefined function will do in this instance.

Introduced on this slide are those mediation primitives whose primary purpose is to access and modify the
content of the SMO. Some can also change the SMO format.

The custom mediation primitive enables you to drop into Java code to access and manipulate the SMO. It is
the most flexible of the primitives, enabling the implementation of functionality which is not provided by the
other mediation primitives.

The XSL transformation primitive performs an extensible stylesheet language transformation on the SMO.
This capability enables the message to be modified so that the service requestor and service provider do not
have to support the identical interface.

The business object map primitive enables the use of business object maps within a mediation flow. It is
similar to the XSL transformation in that it enables the message to be modified so that the service requestor
and service provider do not have to support the identical interface.

The data handler primitive allows you to configure a data handler, similar to one used with an SCA import or
export. Data handlers convert between business object format and native data formats used by the transport
protocols.

The message element setter primitive allows elements in the SMO to be set to a fixed value or to values
copied from another part of the SMO.

The database lookup primitive enables you to use an element value from the SMO as a key for a database
lookup. Values from the database which are returned from the lookup can then be used to update the SMO.

The header setter primitives are four protocol specific primitives used for accessing and manipulating the
headers within the SMO. There are header setter primitives for JMS, HTTP, MQ and SOAP.

WBPMv70_WESBOverview.ppt Page 7 of 26

WebSphere Enterprise Service Bus (4 of 8)

WebSphere Enterprise Service Bus
Custom

Mediation XSLT
Message
Element
Setter

Header
Setters Message

Validator

Business Data Database
Object Map Handler Lookup Service

Invoke

Fan Out
& Fan In

WebSphere
Service Registry
and Repository

SLA
Check

SMO Flow
Order

Fail
& Stop

Message
Filter

Type
Filter WebSphere

Integration
Developer

WebSphere Application Server

Business SCA
Objects

SOA Programming Model
8 WebSphere Enterprise Service Bus overview © 2010 IBM Corporation

Several more primitives are now added to the diagram. Generally speaking, these primitives influence the
path taken through a mediation flow by providing some form of flow of control logic.

The message filter and type filter primitives enable you to control the flow through the mediation based on
what is contained in the SMO. The message filter controls the flow based on element values and the type
filter controls the flow based on element types.

The fail and stop primitives provide a mechanism to terminate a path of execution through the mediation flow.
The fail primitive raises an exception and terminates the entire flow. The stop primitive terminates the current
path, allowing other paths to continue.

Flow order provides a mechanism to control the order in which multiple paths are given control when those
paths start from the same point in the flow.

The fan out and fan in primitives are used in conjunction with each other to provide aggregation support
within mediation flows. The fan out enables iterating through the individual elements of an array within the
message. The fan in is used to aggregate the results of each iteration. If you consider the fan out primitive to
be the beginning of a loop, the fan in primitive effectively is the end of the loop.

Service invoke is a primitive which enables the calling of an external service from within a mediation flow.
Following the invoke, different paths are subsequently taken through the flow, depending upon whether the
service returns normally or returns a fault.

The message validator provides a way to check the actual SMO contents against the schema definition for
the SMO. Different paths are taken based on whether the SMO content conforms to the schema definition or
not.

The SLA check primitive provides a mechanism to incorporate service level agreements into mediation flows.
The primitive makes a call to the WebSphere Service Registry and Repository which contains configuration
information for service level agreements. Different paths are then taken through the flow based on the
response from the registry which indicates whether the request conforms to the configured service level
agreements or not.

WBPMv70_WESBOverview.ppt Page 8 of 26

WebSphere Enterprise Service Bus (5 of 8)

WebSphere Enterprise Service Bus

Built-in

Gateway
Endpoint
Lookup

Custom
Mediation XSLT

Message
Element
Setter

Header
Setters Message

Validator

Configuration
Store

UDDI
Endpoint
Lookup

Business
Object Map

Data
Handler

Database
Lookup Service

Invoke

Endpoint

UDDI
Lookup Fan Out

& Fan In

WebSphere
Service Registry
and Repository

Registry
Policy

Resolution

SLA
Check

SMO Flow
Order

Fail
& Stop

Message
Filter

Type
Filter WebSphere

Integration
Developer

WebSphere Application Server

Business SCA
Objects

SOA Programming Model
9 WebSphere Enterprise Service Bus overview © 2010 IBM Corporation

The diagram now contains mediation primitives that update the SMO based on lookups
from registries. The data in the updated SMO then influences subsequent behavior of the
mediation.

Three of the primitives have to do with resolution of endpoint addresses which are then
used to control dynamic invocation capabilities. Dynamic invocation applies to calling
services from within a flow using the service invoke primitive or calling the target provider
of the mediation using a callout. The primitives update the target address fields in the
SMO based on information returned from the registry. Those target address fields are then
used by a service invoke or a callout to invoke an operation on a designated endpoint.

The first of these primitives is the endpoint lookup. It interacts with the WebSphere Service
Registry and Repository to find appropriate endpoints.

The UDDI endpoint lookup primitive interacts with a UDDI registry to discover endpoints.

The gateway endpoint lookup is used in conjunction with a configuration store that is built
into WebSphere Enterprise Service Bus. This primitive is used as part of a proxy gateway
pattern. The proxy gateway is a specialized type of mediation flow that can be constructed
using a wizard provided by the patterns explorer in WebSphere Integration Developer. The
built-in configuration store is administered through business space widgets provided with
the WebSphere Enterprise Service Bus.

Finally, the policy resolution primitive interacts with WebSphere Service Registry and
Repository to discover policy information. Policies can be associated with the mediation
module or with an endpoint that is contained in the target address field of the SMO. The
primitive places the returned policy data into the SMO. Subsequent mediation primitives in
the flow can have properties designated to have their values overridden by the policy data.
In this way, policies can be used to modify values used in the flow or can be used to
influence the flow of control.

WBPMv70_WESBOverview.ppt Page 9 of 26

WebSphere Enterprise Service Bus (6 of 8)

WebSphere Enterprise Service Bus

Built-in

Gateway
Endpoint
Lookup

Custom
Mediation XSLT

Message
Element
Setter

Header
Setters Message

Validator

Configuration
Store

UDDI
Endpoint
Lookup

Business
Object Map

Data
Handler

Database
Lookup Service

Invoke

Endpoint

UDDI
Lookup Fan Out

& Fan In

WebSphere
Service Registry
and Repository

Registry
Policy

Resolution

SLA
Check

Message
Logger

Event
Emitter

Trace

SMO

Set
Message

Type

Flow
Order

Fail
& Stop

Message
Filter

Type
Filter WebSphere

Integration
Developer

WebSphere Application Server

Business SCA
Objects

SOA Programming Model
10 WebSphere Enterprise Service Bus overview © 2010 IBM Corporation

The set of primitives shown is now complete, with the addition of primitives that do not
update the SMO or affect the flow of control.

The first of these is the set message type. This primitive is used to further qualify the
schema of the SMO by setting more specific type information for loosely typed fields in the
SMO. This enables subsequent primitives in the flow to access the field based on the
more specific type. This can be compared with the function of a cast operation in a
programming language.

The last three primitives provide ways to write some or all of the contents of the SMO to
an external location.

The trace primitive enables the writing of SMO data to the system log or to a designated
log file. The intended usage of the trace primitive is to help during development of
mediation flows.

The message logger primitive enables the writing of SMO data to a message log
database. It can also be configured to provide the SMO data to a custom Java logging
implementation, which allows the data to be used in whatever way the custom logging
implementation chooses. This primitive can be useful in either development or production
environments.

Finally, the event emitter primitive writes the SMO data as part of a common base event
that is passed to the common event infrastructure. The common event infrastructure
enables the event to be written to an event database or forwarded to a message queue. It
also makes the event potentially available to the WebSphere Business Monitor. The use of
this primitive is primarily intended for production environments.

WBPMv70_WESBOverview.ppt Page 10 of 26

WebSphere Enterprise Service Bus (7 of 8)
SCA EIS
Bindings

SCA Messaging
Bindings

SCA Web
Services
Bindings

SCA
HTTP

Bindings

WebSphere
Adapter
JCA 1.5

JMS
WebSphere
Messaging

JMS
WebSphere

MQ

Other
JMS

providers

Native
WebSphere

MQ

SOAP/
JMS

SOAP/
HTTP

HTTP

SCA EJB
Bindings WebSphere Enterprise Service Bus
EJB 2.1 Gateway Message

Custom Header
Endpoint XSLT Element EJB 3.0 Mediation Setters Message Lookup Setter

Validator
UDDI

Built-in
Business Data Database Configuration

Endpoint Object Map Handler Lookup Service Store Lookup
Invoke

Endpoint
Lookup Fan Out

UDDI & Fan In
Registry

Policy
Event Type SMO Flow Resolution WebSphere Emitter Filter Order

Integration
Set WebSphere SLA Message Message Fail Developer Trace Message Service Registry Check Logger Filter & Stop Type and Repository

WebSphere Application Server

Business SCA
Objects

SOA Programming Model
11 WebSphere Enterprise Service Bus overview © 2010 IBM Corporation

The SCA import and export binding types are now shown in the diagram. These define the possible transport
protocols that can be used with the WebSphere Enterprise Service Bus, for receiving service requests and
for making calls to service providers.

First, there are the EJB bindings. These allow mediations to be exposed to clients as EJB stateless session
beans. The also enable mediations to call enterprise beans as services. The EJB 2.1 and 3.0 specifications
are supported and both local and remote beans are supported.

Next, there is the HTTP binding which is used with HTTP protocols. Using this binding, the HTTP message
can contain data in any format.

Next there are the Web services bindings. These are used with messages conforming to SOAP and can be
configured in several ways. You can use JAX-WS with SOAP 1.1 or SOAP 1.2 over HTTP. Alternatively, you
can have JAX-RPC with SOAP 1.1 over either JMS or HTTP.

The next set of bindings are the messaging bindings. There are JMS bindings that can be used with the
messaging support that is built directly into WebSphere Enterprise Service Bus and is also available with
WebSphere Application Server and WebSphere Process Server. There are also JMS bindings that can be
used with a WebSphere MQ JMS provider. Additionally, there are generic JMS bindings, which can be used
with other JMS providers that conform to the JMS 1.1 specification. Finally, there are messaging bindings,
which can be used directly with native WebSphere MQ without JMS.

Another kind of binding is the SCA EIS binding, which is used in conjunction with WebSphere Adapters.
These are built following the JCA 1.5 resource adapter specification. They include both technology adapters,
such as the e-mail adapter, and application adapters, such as the SAP adapter.

Not shown in the diagram, but also supported, are the SCA bindings, sometimes referred to as the SCA
default binding. This binding type is based on the SCA messaging model and can be used between SCA
imports and exports.

WBPMv70_WESBOverview.ppt Page 11 of 26

WebSphere Enterprise Service Bus (8 of 8)
Q Q Q Q Q SCA Web SCA SCA EIS SCA Messaging Internet Services HTTP

Bindings Bindings Bindings Bindings

WebSphere JMS JMS Other Native
SOAP/ SOAP/ Adapter WebSphere WebSphere JMS WebSphere HTTP
JMS HTTP JCA 1.5 Messaging MQ providers MQ

SCA EJB
Enterprise Bindings WebSphere Enterprise Service Bus application

Gateway Message EJB 2.1
Custom Header

Endpoint XSLT Element EJB 3.0 Mediation Setters Message Lookup Setter

Built-in Validator

UDDI Business Data Database Configuration Enterprise Endpoint Object Map Handler Lookup Service Store Beans & Lookup
Invoke Java EE Clients

Endpoint
Lookup Fan Out

UDDI & Fan In

Registry

Policy
Event Type SMO Flow Resolution WebSphere Emitter Filter Order

Integration
Set WebSphere SLA Message Message Fail Developer Trace Message Service Registry Check Logger Filter & Stop Type and Repository

WebSphere Application Server

Business
Java, C & C++

Web 2.0 C++ .Net SCA

client client client
 Objects

Web services
client SOA Programming Model Clients

12 WebSphere Enterprise Service Bus overview © 2010 IBM Corporation

In this completed picture you will now see those things that are external to the WebSphere
Enterprise Service Bus. There are queues associated with the various messaging
bindings. The information defining queues, topic, queue managers and so forth, are part of
the configuration information for each of the bindings. You can see that the HTTP and
SOAP over HTTP bindings are connected to the internet or an intranet. The SCA EIS
bindings with their associated WebSphere Adapters talk to whatever backend system is
supported by the adapter configured for that binding. The EJB bindings can be called from
Java EE clients or call out to enterprise beans. Finally, you can see that calls can be made
to the WebSphere Enterprise Service Bus using various types of clients.

WBPMv70_WESBOverview.ppt Page 12 of 26

WebSphere Enterprise Service Bus – Key concepts

� Mediation module:
– Special type of service component architecture (SCA) module
– Mediates messages flowing between service requestors and providers

� Mediation flow component:
– Contains the mediation flow logic
– In general, unique flow logic for every operation of a service interface

� Mediation primitives
– Used to construct the logic of a mediation flow
– Each primitive performs some specific part of the flow logic
– Primitives contain properties used to configure their specific behavior

� Service message object (SMO)
– Internal representation of a message body and headers
– Mediation primitives act upon the SMO within the mediation flow

13 WebSphere Enterprise Service Bus overview © 2010 IBM Corporation

The previous slides showed and explained to you the functionality of the WebSphere
Enterprise Service Bus. This slide summarizes the key concepts already presented that
are needed to understand mediations as implemented in WebSphere Enterprise Service
Bus.

Starting at the highest level of abstraction, there are mediation modules, which are a
special type of SCA module. They make use of SCA exports and imports to communicate
with service requestors and service providers. These provide the key to handling protocol
conversions within the bus. The mediation module also contains a mediation flow
component, which is a type of SCA component implementation.

The mediation flow component is where the overall logic for the mediation is defined. In
general, for every operation defined on an input interface there is unique mediation flow
logic defined for the operation’s request and response. It is in this mediation flow logic that
message transformation and dynamic routing decisions take place.

The flow logic is defined within the mediation flow component using mediation primitives.
Each mediation primitive provides some specific portion of the logic. The overall logic is
defined by wiring these mediation primitives together into a logical flow.

The data that is acted upon by the mediation primitives is contained in a representation of
the message called a service message object. The SMO contains a body, which is the
application data and headers, which provide protocol and control data.

To summarize, the highest level of a mediation is the mediation module, which contains a
mediation flow component, which contains mediation flows defined using mediation
primitives which act upon service message objects.

WBPMv70_WESBOverview.ppt Page 13 of 26

© 2010 IBM Corporation14 WebSphere Enterprise Service Bus overview

WebSphere Enterprise Service Bus productWebSphere Enterprise Service Bus product
familyfamily

Section

In this section you will learn about the relationship between WebSphere Enterprise Service
Bus and other products that are part of the WebSphere server stack.

WBPMv70_WESBOverview.ppt Page 14 of 26

© 2010 IBM Corporation 15 WebSphere Enterprise Service Bus overview

WebSphere product stack

WebSphere
Application

Server

WebSphere
Application Server

Network Deployment

WebSphere
Enterprise Service Bus

WebSphere Process Server

App Server

Virtualization

Mediation

WebSphere
Virtual Enterprise

Clustering

Business
Processes

This slide shows the product stack of the WebSphere servers.

The core of the stack is the WebSphere Application Server which provides the base Java
EE application hosting environment.

The WebSphere Application Server Network Deployment product then adds the ability to
cluster application servers for scalability and high availability and centralizes server
administration.

The next part of the stack is WebSphere Virtual Enterprise, which is optional. It provides
for virtualization that helps to balance hardware resources and reduce the hardware
requirements needed at times of peak demand.

WebSphere Enterprise Service bus is built on top of WebSphere Application Server
Network Deployment with or without WebSphere Virtual Enterprise being present. As you
have seen in this presentation, WebSphere Enterprise Service Bus provides a service
oriented architecture and enterprise service bus functionality to be able to mediate
message flows between service requestors and providers.

The top of the stack is WebSphere Process Server which focuses on enabling business
processes. It provides the facilities for business process automation and integration to
enable business process management applications.

Built as a stackable architecture, each product makes use of the functionality of the
products on which they are built, easily allowing the extension of capabilities as needed.

WBPMv70_WESBOverview.ppt Page 15 of 26

Mediation Flows (ESB)

© 2010 IBM Corporation 16 WebSphere Enterprise Service Bus overview

WebSphere Enterprise Service Bus components

Supporting
Services

WebSphere Application Server ND (Java EE Runtime)

SOA Core Service Component
Architecture

Business
Objects

Common Event
Infrastructure

Mediation Flows (ESB)

In this slide you can see the components that make up the WebSphere Enterprise Service
Bus. As has been previously mentioned, it is built on WebSphere Application Server
Network Deployment. This provides a robust Java EE application server runtime with
capabilities that the ESB server implementation can exploit, such as JMS messaging, Web
services support and enterprise Java beans. It can also make use of the application server
qualities of service such as transactions, security and clustering. Overall, this provides a
well proven and scaleable runtime environment for WebSphere Enterprise Service Bus.

The service oriented architecture core is the foundation for the WebSphere Enterprise
Service Bus. The main components of the SOA core are the service component
architecture, business objects and the common event infrastructure.

SCA is the uniform programming and invocation model for business services that publish
or operate on business data. Business objects represent the data that is passed within
that framework. Business objects are extensions to service data objects, carrying
additional information needed for some integration scenarios.

The common event infrastructure, also known as CEI, provides the basis for the
management and handling of events. It provides facilities for the generation, propagation,
persistence and consumption of events.

On top of the SOA core, the heart of the WebSphere Enterprise Service Bus is provided
by mediation flows. These are defined within the mediation flow component which has
been fully described in the previous slides of this presentation.

With SOA core and mediation flows, the WebSphere Enterprise Service Bus includes all
the functions and services necessary to provide the ESB services in any given integration
solution.

WBPMv70_WESBOverview.ppt Page 16 of 26

- Dynamic

Service
Selection

Human
Tasks

Business
State

Machines

Business
Rules

Business
Processes

Mediation Flows
(ESB)

© 2010 IBM Corporation 17 WebSphere Enterprise Service Bus overview

WebSphere Process Server components

WebSphere Application Server ND (Java EE Runtime)

SOA Core Service Component
Architecture

Business
Objects

Common Event
Infrastructure

Interface
Maps

Business
Object
Maps

Relation
ships

Dynamic
Service

Selection

Human
Tasks

Business
State

Machines

Business
Rules

Business
Processes

Service
Components

Mediation Flows
(ESB)

Supporting
Services

This slide expands on the previous slide to show the additional components that
WebSphere Process Server introduces. As you can see, all the components of
WebSphere Enterprise Service Bus are included in the WebSphere Process Server.

WebSphere Process Server introduces some additional supporting services to the
mediation flows provided by WebSphere Enterprise Service Bus.

Interface maps, business object maps and relationships combine to handle transformation
essential to enabling the integration and synchronization of disparate backend systems
within an enterprise.

Dynamic service selection provides the capability to invoke different component
implementations of the same interface based on a date and time criteria.

On top of the supporting services are the service components, which are the primary SCA
components for enabling business process application function.

Business processes provide an implementation of a process model that describes the
logical order in which the different activities of the process take place, making calls out to
the individual SCA services that implement the specific activities.

Human tasks allow people to participate in a business process. A human task can
integrate into the overall business process in a machine-to-human scenario, a human-to­
machine scenario and in a human-to-human scenario.

The business state machine component provides another way of modeling a business
process. It is used when the business process can be easily thought of in terms of a state
transition diagram.

Business rules provide a means for implementing and enforcing business policy through
externalization of business function. Externalization enables the business rules to be
managed independently from other aspects of an application.

WBPMv70_WESBOverview.ppt Page 17 of 26

© 2010 IBM Corporation18 WebSphere Enterprise Service Bus overview

User rolesUser roles

Section

This section takes a look at user roles that are typically associated with the WebSphere
Enterprise Service Bus.

WBPMv70_WESBOverview.ppt Page 18 of 26

© 2010 IBM Corporation 19 WebSphere Enterprise Service Bus overview

ESB user roles and tasks

� Operates in “administrative space”

� Understands basic interaction patterns
of business processes.

� Focuses on deployed mediation
modules and their external interactions

� Operates in “development space”

� Understands semantics of business
process components and its integration
within a business solution

� Focuses on Mediation module
construction

Integration
developer Solution

administrator

ESB
Solution

There are two primary user roles that are associated with the WebSphere Enterprise
Service Bus.

The first of these is the integration developer. They use the WebSphere Integration
Developer tool and they focus on creating the mediation module and defining the
mediation flows. Integration developers need to understand the semantics of the various
services available and how they can be integrated together within a business solution.

The solution administrator uses WebSphere Enterprise Service Bus or WebSphere
Process Server to manage the mediation module within the server runtime environment. In
some situations, the solution administrator might need to understand the basic interaction
patterns of the business processes to change the routing of the business process if
needed.

WBPMv70_WESBOverview.ppt Page 19 of 26

© 2010 IBM Corporation 20 WebSphere Enterprise Service Bus overview

Integration developer tasks

This slide takes a closer look at some of the tasks performed by the integration developer
for developing a mediation flow using the WebSphere Integration Developer tool.

First they need to identify the service requestors and providers that are interacting with the
bus. They need to understand the interface and the protocols used by the requestors and
providers. The mediation module is then started by defining the appropriate SCA exports
and imports needed to communicate with the requestors and providers.

For each operation on the requestors interface, flow logic must be defined for the request
and the response. If the service provider supports a different interface, the first thing the
integration developer must do is determine which operations on the provider interface can
be used to satisfy incoming requests. Then each of the flows must be constructed by
selecting the appropriate mediation primitives, wiring them together and customizing their
properties to perform the required functions. This might also include the need to write Java
code for a custom mediation primitive.

Another decision the integration developer must make is to determine which of the
configuration properties of the mediation flow should be exposed at runtime, this allowing
a level of runtime configuration of the flow’s behavior.

Finally, the integration developer can use the WebSphere Integration Developer unit test
environment servers to test and debug the message flow through the mediation module.

When it has been fully tested, it can be exported from the WebSphere Integration
Developer as a Java EE application and provided to the solution administrator.

WBPMv70_WESBOverview.ppt Page 20 of 26

© 2010 IBM Corporation 21 WebSphere Enterprise Service Bus overview

Solution administrator tasks

� Uses the administrative console or wsadmin commands

� Installs mediation applications into the ESB
– Normal installation procedures for Java EE applications
– Provides custom values for mediation flow configuration options exposed by the

integration developer

� Manages the installed mediation application
– Ensures SCA imports are correctly configured for target endpoints
– Modifies SCA imports as required to setup or reconfigure the environment
– Modifies mediation flow configuration options as appropriate

Solution
administrator

The solution administrator operates in the runtime environment for WebSphere Enterprise
Service Bus, using the administrative console or the wsadmin commands to administer the
ESB applications.

The first task is to install the mediation application. Mediation applications are installed in
the same way any other Java EE application is installed into WebSphere Application
Server. However, the mediation application might contain mediation flow configuration
properties which the integration developer choose to expose to the solution administrator.
If so, the default values specified at development time might need to be changed during
the installation of the application.

Once the application is installed, the solution administrator needs to make sure that the
SCA imports are correctly configured for the service provider endpoints they should be
associated with. If not, these can be administratively changed at this time.

Finally, while the mediation application is running, there might be a need to modify
configuration options if the behavior of the flow needs to be changed.

WBPMv70_WESBOverview.ppt Page 21 of 26

© 2010 IBM Corporation22 WebSphere Enterprise Service Bus overview

Summary and referencesSummary and references

Section

The last section of the presentation provides a summary and some references.

WBPMv70_WESBOverview.ppt Page 22 of 26

Summary

� You learned about:
– The key concepts of WebSphere Enterprise Service Bus

• Mediation modules
• Mediation flow components
• Mediation primitives
• Service message objects

– The place of WebSphere Enterprise Service Bus in the WebSphere family
– Key user roles associated with WebSphere Enterprise Service Bus

• Integration developer
• Solution administrator

23 WebSphere Enterprise Service Bus overview © 2010 IBM Corporation

In this presentation you learned about the key concepts of the WebSphere Enterprise
service bus, specifically the mediation module, mediation flow component, mediation
primitives and service message objects. Then the place of the WebSphere Enterprise
Service Bus in the WebSphere application server stack was examined. Finally, you
learned that the integration developer and the solution administrator are the primary user
roles that are associated with the WebSphere Enterprise Service Bus.

WBPMv70_WESBOverview.ppt Page 23 of 26

References

� IBM WebSphere Business Process Management Version 7.0 Information Center
– http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r0mx/index.jsp

� Supported platforms and system requirements:
– WebSphere Integration Developer

• http://www.ibm.com/software/integration/wid/sysreqs/
– WebSphere Enterprise Service Bus

• http://www.ibm.com/software/integration/wsesb/sysreqs

24 WebSphere Enterprise Service Bus overview © 2010 IBM Corporation

On this slide you will find a link to the IBM WebSphere Business Process Management
Information Center, which includes the documentation for the WebSphere Enterprise
Service Bus and the WebSphere Integration Developer.

There are also links to the IBM software pages defining the platforms supported and
system requirements for WebSphere Integration Developer and WebSphere Enterprise
Service Bus.

WBPMv70_WESBOverview.ppt Page 24 of 26

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WBPMv70_WESBOverview.ppt

This module is also available in PDF format at: ../WBPMv70_WESBOverview.pdf

25 WebSphere Enterprise Service Bus overview © 2010 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WBPMv70_WESBOverview.ppt Page 25 of 26

 Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, and WebSphere are trademarks or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM trademarks is
available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. in the United States, other
countries, or both.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2010. All rights reserved.

26 © 2010 IBM Corporation

WBPMv70_WESBOverview.ppt Page 26 of 26

