

IBM Software Group

®

WebSphere ® MQ V7.0

Message properties in the MQ API

© 2008 IBM Corporation

Updated August 6, 2008

This unit covers the MQ API (or MQI) enhancement in WebSphere MQ version 7.0
covering the new message properties features added in this release.

This unit assumes a reasonable understanding of the existing WebSphere MQ API for
putting and getting messages to and from a queue.

iea_320_wmqv7_API_2_GetSet.ppt Page 1 of 17

After you complete this unit, you should be able to:

�Understand what message properties are.

�Understand how message properties are used by
the MQ API.

�Recognize the new API calls for dealing with
message properties.

�Use a message handle to inquire, set and delete
message properties.

IBM Software Group

2

Message properties in the MQ API © 2008 IBM Corporation

After you complete this unit, you should be able to:

�Understand what message properties are.

�Understand how message properties are used by
the MQ API.

�Recognize the new API calls for dealing with
message properties.

�Use a message handle to inquire, set and delete
message properties.

Unit objectives

After you complete this unit, you should have some understanding of what message
properties are and why they have been introduced.

Understand the concepts of message handles and the types of message property
available.

With the assistance of the information center you should be able to code MQ7 applications
that create message handles and use these handles to inquire and set message
properties.

Additionally you should understand how the information in message properties is passed
to older version queue managers.

This unit does not attempt to cover the full range of syntax and options available, for which
you should refer to the product information center.

iea_320_wmqv7_API_2_GetSet.ppt Page 2 of 17

IBM Software Group

3

Message properties in the MQ API © 2008 IBM Corporation

WebSphere MQ V6 Message

Message descriptor

Data

• Used to identify messages
• All messages support the same fixed

set of header fields

• Actual message data to be delivered
• Data is any string of bytes meaningful
to its application program

There is a type of application that it needs to add information to a message, this

information is used by some applications during the lifetime of the message but ignored by

other applications. Examples might be routing information, accounting and billing

information and a whole range of metadata not directly concerned with the message

payload. Many vendor products might want to “enrich” messages in this way.

WebSphere MQ version six and earlier messages have two parts, the Message Descriptor

(or Header) and the message data (or payload). The Message Descriptor is a fixed set of

fields and so there is only one place that applications can add such information – the

message payload.

This means that all applications reading the message must be aware that the data is

present and know how to ignore it if they don’t need it.

In V7 applications can add properties to messages using new MQI calls. A property is a

named piece of data. It is not treated as part of the message payload.

The properties are accessed by means of a message handle passed to MQPUTs and

MQGETs in the MQPMO and MQGMO.

Applications will only be aware of this information if they choose to access it.

iea_320_wmqv7_API_2_GetSet.ppt Page 3 of 17

IBM Software Group

4

Message properties in the MQ API © 2008 IBM Corporation

WebSphere MQ V7 Message

Message descriptor

Message properties

Data

• Used to identify messages
• All messages support the same fixed
• set of header fields

• Used to add optional header fields to a
message
• Categories

• JMS optional header fields
• Application-specific properties
• Provider-specific properties

• Actual message data to be delivered
• Data is any string of bytes meaningful
to its application program

In version 7.0 WebSphere MQ introduces another component to the message, in addition
to the fixed descriptor and the application data containing the payload a “Message
Properties” component is added.

The message properties are a set of name, value pairs. The name-space for the property
names is made hierarchical by splitting the name into components separated by dots.
Some of those hierarchical categories are reserved for use by specific components of MQ,
including the JMS component.

Any name beginning with “Root.” for example.

iea_320_wmqv7_API_2_GetSet.ppt Page 4 of 17

IBM Software Group

5

Message properties in the MQ API © 2008 IBM Corporation

JMS Message

Header

Properties

Body

• Used to identify and route messages
• All messages support the same set of
header fields

• Used to add optional header fields to a
message
• Categories

• JMS optional header fields
• Application-specific properties
• Provider-specific properties

• Actual message data to be delivered
• Categories

• Text
• Stream
• Map
• Bytes
• Object

Looking at the makeup of a JMS message you see that the broad structure of native MQ
messages now matches that of the JMS message.

Indeed, the JMS component of MQ now indeed uses the newly introduced message
properties in order to carry the JMS properties data. This makes the interaction between
JMS and MQ API applications much simpler.

One of the features of the JMS messaging model is the ability to use selectors based on
any of a message’s properties to select messages to be read. In version 7.0 this is
introduced into the native WebSphere MQ API.

So both in the handing of message properties and in the ability to perform message
selection WebSphere version 7.0 provides natively the functions required of a JMS
provider.

iea_320_wmqv7_API_2_GetSet.ppt Page 5 of 17

IBM Software Group

6

Message properties in the MQ API © 2008 IBM Corporation

What is a message property?

� A message property is a named piece of data which is associated with a
message.

� Property names are made hierarchical by use of the “.”
�“A.X” and “A.Y” are both part of “A”.
�Applications are recommended to use a recognizable prefix such as domain

name – com.any.company……

� The property has a value of a specified type:
�MQBOOL – a Boolean

�MQBYTE[] – a byte string
�MQCHAR[] – a string

�MQFLOAT32, MQFLOAT64 – 32/64-bit floating-point numbers
�MQINT8, MQINT16, MQINT32, MQINT64 – 8/16/32/64-bit integers

� Each message property has an associated property descriptor
�The property descriptor describes attributes of the property itself.

As mentioned earlier the message properties are name, value pairs.

Looking first at the name. A property name is made up of a hierarchical set of simple
names separated by the “dot” or full stop character. Some high level (left hand side)
names are reserved by WebSphere MQ. For example “mq.”. Some are also likely to be
used by other applications so use of a prefix, such as domain name, for your own data is
strongly recommended.

Looking now at the values a property can have. In addition to strings, byte arrays and
Booleans version 7.0 has added data types to represent floating point numbers and
integers of various sizes.

In addition to its name and its value each message property has a descriptor that gives
additional information to the queue manager about how to handle the property. The
descriptor includes a “CopyOptions” field which indicates whether the property should be
copied when messages are being forwarded, replied to or published.

iea_320_wmqv7_API_2_GetSet.ppt Page 6 of 17

IBM Software Group

7

Message properties in the MQ API © 2008 IBM Corporation

Message properties in MQI

� The message properties of a message are
manipulated using a new MQ object the Message
Handle.

� The message handle is used to encapsulate the
message descriptor and its properties.
�Similar to the way an object handle encapsulates the

queue that the MQOPEN call has opened

� The MQGMO and MQPMO objects are extended
to (optionally) reference a message handle.
�Allowing message properties to be passed to a MQPUT

or returned from and MQGET.

A new MQ object the Message Handle is introduced in version 7.

This message handle encapsulates the set of properties for a message. MQ API calls are
provided to create and destroy message handles; to examine, add and update the
properties in a message handle.

When using the MQPUT call to place a message on a queue message handles in the Put
Message Options are used as the source of the message properties for the message. The
same is true when MQPUT is publishing to a topic.

When using a MQGET to retrieve a message then the get message options object can
supply a message handle to receive the message properties associated with the message
being retrieved.

iea_320_wmqv7_API_2_GetSet.ppt Page 7 of 17

Set up MQCMHO

IBM Software Group

8

Message properties in the MQ API © 2008 IBM Corporation

Pseudo-code – create a message handle

Q
M

gr

� Connect to the queue
manager

MQCONN(MyQmgr,Hconn,CC,RC)

Set up MQCMHO

MQOPEN(Hconn,OD,OpenInOpts,
HinQ,CC,RC)

MQOPEN(Hconn,OD,OpenOutOpts ,
HreplyQ,CC,RC)

� Open input queue

� Open reply queue

CrtMsgH.Options =
MQCMHO_VALIDATE

MQCRTMH(hConn,CrtMsgHOpts,
hMsg,CC,RC)

. . .

� Validate any property
names for this handle

� Create a message handle

The next few slides look at the code that might be used in a simple application that is

receiving messages and replying to them.

It must be stressed that this is an extremely simplified flow and in no way complete. The

information center supplies full information on coding these calls

The MQCONN Call connects to the queue manager and returns the connection handle to

the queue manager.

Next the input and reply queues are opened.

Now comes the first new element the creation of the Message Handle.

The Create Message Handle option is set to validate the property names, the new

MQCRTMH call is made to create and return the new message handle.

iea_320_wmqv7_API_2_GetSet.ppt Page 8 of 17

IBM Software Group

9

Message properties in the MQ API © 2008 IBM Corporation

Pseudo-code – return and inquire message
properties

Q
M

gr

� Set hMsg in MQGMO to
get message with
properties

. . .

GetMsgOpts.MsgHandle = hMsg

MQGET(hConn,hin,MsgDesc,
GetMsgOpts,
BufferLength,
Buffer,DataLength,
CC,RC)

Name = “com.any.HomeTeam”
ValueLength = 100

� Inquire for property
“HomeTeam”, allowing100
bytes for the return area.

MQINQMP(hConn,hMsg,
InqPropOpts,Name,
PropDesc,Type,
ValueLength,Value,
DataLength,CC,RC)

. . .

� Note : MQINQMP call does
not pass to Queue
Manager.

The first line on this slide shows how to signal to the queue manager that a message
handle allowing access to message properties is to be returned from the subsequent
MQGET.
A message handle is placed in the Get Message Options (MQGMO) object

On return from the MQGET the message handle contains the encapsulation of all the
message properties associated with the returned message.

This example then inquires the value for a particular property “com.any.HomeTeam” to be
requested.

The MQINQMP call returns the property

Variations on the MQINQMP call are available that return all properties and allow the caller
to iterate around them.

It is important to note that neither the MQCRTMH call, nor the MQINQMP call, require to
be passed to the server but are processed inline on the client side. This means that
manipulating message handles and message properties can be done without expensive
calls to a, possibly remote, queue manager.

iea_320_wmqv7_API_2_GetSet.ppt Page 9 of 17

IBM Software Group

10

Message properties in the MQ API © 2008 IBM Corporation

Pseudo-code – set properties and MQPUT

Q
M

gr

� Set new properties to be
added to output message

Name = “com.any.ResultType”
Type = MQTYPE_STRING
Value = “DRAW”

MQSETMP(hConn,hMsgNew,
SetPropOpts,Name,
PropDesc,Type,
ValueLength,Value,
CC,RC)

� Pass the original and new
message handles and
signal that this is a REPLY
Message.

PutMOpts.OriginalMsgHandle=hMsg
PutMOpts.NewMsgHandle=hMsgNew
PutMsgOpts.Action = REPLY

MQPUT(hConn,hout,MsgDesc,
PutMsgOpts,
BuffLength,
Buffer,CC,RC)

. . .

MQCRTMH(hConn,CrtMsgHOpts,
hMsgNew,CC,RC). . .

� Create new message
handle

� Put the message

This slide illustrates a simple case of setting a property in a reply message.

First a second message handle is created to contain the new properties.

The new string property “com.any.ResultType” is set in the newly created message handle.

The next step is the setting up of the Put Message options. This is a little more complex than in the get case.

When putting a message it is possible to have two sets of message properties involved. This is especially

true when forwarding a message or replying to a message.

The first set of properties is for the original message, these are treated as read only by the MQPUT operation

and some of the properties are copied to the REPLY or FORWARD message.

The property descriptor of each property together with the ACTION put message option determines if a

property is propagated to the new message.

For all the MQ and JMS properties the information center tabulates which are copied and which are not.

In the case illustrated the action indicates that a REPLY is being carried out. The original message handle

with the properties returned on the earlier MQGET are passed in the call. These are merged with those in the

new message handle which contains the new properties.

The MQPUT operation will:

Examine the Action from the Put message options.

As a REPLY message is indicated it will add all the properties from the original message handle whose

descriptors indicate they are propagated to reply messages.

Merge all the properties from the new message handle.

Merge any of the properties generated as a result of the MQPUT operation

Return in the new message handle all the properties of the message just put.

Once more note that the MQSETMP calls do not involve a call to the queue manager bur are performed

inline.

And once more recall that this is a very much simplified flow.

iea_320_wmqv7_API_2_GetSet.ppt Page 10 of 17

IBM Software Group

11

Message properties in the MQ API © 2008 IBM Corporation

API summary

� MQCRTMH creates a message handle

� MQDLTMH destroys a message handle.

� MQINQMP inquires a property from a message handle.
�Can iterate over properties

� MQSETMP sets a property in a message handle
�Can set application or MQ defined properties.

� MQDLTMP deletes a message property from a handle

� MQMHBUF and MQBUFMH

Here is a summary of the major API calls related to the message properties.

The MQCRTMH call is used to create message handles for subsequent use in
manipulating message properties.
One thing not referred to earlier was the lifetime of a message handle. These message
handles will persist until the application disconnects from the connection that the message
handles were associated with, when they are deleted implicitly. Alternatively the
MQDLTMH call can be used to delete the handle programmatically. One exception is the
use of message handles that have no connection affinity, these are created using a
special connection handle value of MQHC_UNASSOCIATED_HCONN, in this case the
message handle must be explicitly deleted.

The MQINQMP and MQSETMP calls are used to inquire and set the message properties
in a message handle as seen earlier. MQINQMP can also iterate through some or all of
the properties.

The MQDLTMP call deletes a particular property from a message handle.

The last two calls are included for completeness. MQMHBUF will take a message handle
and return a MQRFH2 version of the properties in a buffer, MQBUFMH performs the
reverse operation. These functions are likely to be of particular use in API exit routines.

Full details of all these, and other, API calls can be found in the information center.

iea_320_wmqv7_API_2_GetSet.ppt Page 11 of 17

IBM Software Group

12

Message properties in the MQ API © 2008 IBM Corporation

Compatibility with older versions

� In V6 MQRFH2 headers are used to store MQ JMS
properties.

� Messages containing RFH2 headers might be passed to
version 7.0 queue manages.
�This is OK, the queue manager can parse the contents.
�V7.0 applications can choose how to have the properties presented.

� Messages with message properties might be read by a pre
version 7.0 client
�This is OK the properties can be delivered as MQRFH2 headers
�Fully partially or not at all – this is a queue attribute.

� Messages with properties might be sent down a channel to
a pre version 7.0 queue manager.
�The properties are passed as MQRFH2 headers
�Fully partially or not at all – this is a channel attribute

Older queue managers are of course unable to manipulate message properties. However applications might
need to access some of the information contained in message properties.

Because the MQ JMS implementation in older MQ versions used MQRFH2 (MQ Rules and Formatting
header v2) headers, they are the chosen mechanism to pass any message properties to these older
applications.

The problem with MQRFH2 headers is that they are part of the message body and unless an application is
expecting the header and knows how to parse it a problem will occur.

When a version 7.0 queue manager receives a message with MQRFH2 headers it is quite able to parse the
contents and can deliver the headers to the application programs either in the version 7.0 style. That is in a
message handle, or as MQRFH2 headers. This is an application choice and is controlled by get message
options – detailed in the next slide – or by queue properties if no relevant get message option is supplied.

If an MQ6 application connect to version 7.0 queue manager and reads messages with message properties
then these properties are ignored or passed as MQRFH2 headers depending on the queue definition.

Finally messages with properties might be sent down a channel to an older queue manager, a channel
attribute can be used to control the MQRFH2 headers that are sent down the channel.

iea_320_wmqv7_API_2_GetSet.ppt Page 12 of 17

IBM Software Group

13

Message properties in the MQ API © 2008 IBM Corporation

Property Control Attributes

PROPCTL is a new attribute of a queue or of a
channel

� COMPAT – if any V6 JMS properties are in a message
�Then ALL properties are returned

�Else NO properties are returned

�This is the default.

� NONE – all properties are removed from messages.

� ALL – all properties included in MQRFH2 headers.

� FORCE – properties returned in MQRFH2 header only.
�Properties are not accessible by message handle even if application

supplies one.

�Not for channels

These are the property control attributes that can be specified on a queue.

The reasoning behind the COMPAT default goes like this.

If the message has any V6 JMS attributes then probably the application processing it
knows how to parse and process MQRFH2 headers. In that case MQ delivers all the
properties to it – the application should be able to find the properties it needs. These JMS
properties are the same properties that might also be set by WebSphere Message Broker.

If the message had no properties then perhaps the application cannot parse MQRFH2
headers so do not deliver any.

This value always defines what MQRFH2 headers are supplied to older MQ clients
connecting to a version 7.0 queue manager.

Version 7.0 clients can use equivalent get message options values to override the queue
definition EXCEPT in the FORCE case where the queue property overrides the get
message options.

The COMPAT, NONE and ALL options, but not FORCE, can also be set on Sender,
Server, Cluster Sender and Cluster Receiver channels.

iea_320_wmqv7_API_2_GetSet.ppt Page 13 of 17

IBM Software Group

14

Message properties in the MQ API © 2008 IBM Corporation

MQMD properties

� Fields in the message descriptor can also be
handled as message properties
�Root.MQMD.<Field> as the message property name,

where <Field> is the C language declaration for the
MQMD field name

�For example, Root.MQMD.MsgType

�StrucId and Version fields are not available as message
properties

� This gives JMS applications access to and ability to
set MQMD properties

All the fields in the fixed header on MQ messaged, the MQMD, can also be accessed and

set as message properties.

The stem Root.MQMD is used for these properties.

A consequence of this is that the JMS API can now be used to access and set all fields in

the MQMD. Additionally the entire MQ message payload can be accessed as a byte

stream by a JMS application.

iea_320_wmqv7_API_2_GetSet.ppt Page 14 of 17

Now that you have completed this unit, you should
be able to:

�Understand what message properties are.

�Understand how message properties are used by
the MQ API.

�Recognize the new API calls for dealing with
message properties.

�Use a message handle to inquire, set and delete
message properties.

IBM Software Group

15

Message properties in the MQ API © 2008 IBM Corporation

Now that you have completed this unit, you should
be able to:

�Understand what message properties are.

�Understand how message properties are used by
the MQ API.

�Recognize the new API calls for dealing with
message properties.

�Use a message handle to inquire, set and delete
message properties.

Unit summary

This completes the introduction to the new message properties features.

It has covered what message properties are and why they have been introduced. How
message handles are created and the types of message property available.

The outline of an application using message properties has been shown. With the
assistance of the information center you should be able to code MQ V7 applications that
create message handles and use these handles to inquire and set message properties.

This unit did not attempt to cover the full range of syntax and options available, for which
you should refer to the product information center.

This is the end of this unit.

iea_320_wmqv7_API_2_GetSet.ppt Page 15 of 17

IBM Software Group

16

Message properties in the MQ API © 2008 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_iea_320_wmqv7_API_2_GetSet.ppt

This module is also available in PDF format at: ../iea_320_wmqv7_API_2_GetSet.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

iea_320_wmqv7_API_2_GetSet.ppt Page 16 of 17

IBM Software Group

17

Message properties in the MQ API © 2008 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere

A current list of other IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2008. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

iea_320_wmqv7_API_2_GetSet.ppt Page 17 of 17

