

IBM Software Group

®

WebSphere® MQ V7.0

Asynchronous message consumption

© 2008 IBM Corporation

Updated October 22, 2008

This unit covers the MQ API (or MQI) enhancement in WebSphere MQ version 7.0
covering the new asynchronous message consumption feature added in this release. This
unit assumes a reasonable understanding of the existing WebSphere MQ API for putting
and getting messages to and from a queue.

iea_350_wmqv7_API_5_CallBack.ppt Page 1 of 16

After completing this unit, you should be able to:

�Understand what asynchronous message
consumption is

�See the advantages of using asynchronous
message consumption

�Know the new MQ APIs used with asynchronous
message consumption

IBM Software Group

2

Asynchronous message consumption © 2008 IBM Corporation

After completing this unit, you should be able to:

�Understand what asynchronous message
consumption is

�See the advantages of using asynchronous
message consumption

�Know the new MQ APIs used with asynchronous
message consumption

Unit objectives

After you complete this unit, you should have some understanding of what asynchronous
message consumption in MQ version 7 is.

The advantages of asynchronous message consumption in certain circumstances should
be clear.

The outline of the new API calls required for asynchronous message consumption should
also be understood.

This unit does not attempt to cover the full range of syntax and options available, for which
you should refer to the product information center.

iea_350_wmqv7_API_5_CallBack.ppt Page 2 of 16

IBM Software Group

3

Asynchronous message consumption © 2008 IBM Corporation

What is an asynchronous message consumer

�An asynchronous consumer is a message-driven
function or routine, directly invoked by the queue
manager to process the messages

� The message data is delivered in a buffer so you
normally do not need to do the MQGET by yourself,
just process the passed data

� The advantage of this is:
�Fewer critical resources spent waiting

�Do not need to allocate a buffer and 'guess' the message
size

An asynchronous message consumer is a routine that is initiated by one program. But that
then runs independently of the original program consuming and processing messages.

In MQ version 7 the API is extended to allow asynchronous message consumers to be
created and managed.

The new API commands are about defining the routines that will be invoked by the queue
manager to consume messages from queues and about starting and stopping the
message consumption by these routines.

The routines that run asynchronously can use the normal range of MQ API calls, but they
do not have to use MQGET to get the message they are processing. That message is
passed in a buffer to the routine.

This style of processing can significantly reduce the amount of polling and waiting in
applications.

The message consumer routines themselves can be designed to be relatively simple.
They can be designed to process the message they receive in a buffer and return.

iea_350_wmqv7_API_5_CallBack.ppt Page 3 of 16

MQCONN

MQOPEN(QUEUE1,&hObj1)

MQDISC

MQGET(&hObj1, buffer)

Process message
MQPUT reply msg

IBM Software Group

4

Asynchronous message consumption © 2008 IBM Corporation

A typical V6 MQI program processing a single
queue

MQCONN

MQOPEN(QUEUE1,&hObj1)

MQDISC

MQGET(&hObj1, buffer)

-
Process message
MQPUT reply-msg

�Simple application
design for processing
a single queue.

�Polling loop

�With MQGET wait

�Into buffer

Here is a typical version 6 MQ API program processing all the messages from a single
queue.

Messages are read from the queue into a buffer supplied by the application program. The
buffer size must either be known in advance or the application must first attempt to read
the message into a small buffer. If this fails a larger buffer must be allocated and the
operation retried.

After processing a message and (for example) putting a reply message the program loops
to another MQGET, if no message is available the application waits.

If the message arrival rate on the queue is low in relation to the message processing time,
this application will spend most of its time waiting for messages.

If the application needs to read messages from more that one queue, a much more
complex programming model is required where MQGETS for each queue must be made
and a wait issued only when each queue returns no message available. No way exists
have the application “wake up” when a message arrives on ANY queue.

Note that on z/OS, the wait with SIGNAL option can be used to achieve this, but only on
z/OS.

iea_350_wmqv7_API_5_CallBack.ppt Page 4 of 16

MQCONN

MQOPEN(QUEUE1,&hObj1)

MQCB(hObj1, func1)

MQCTL(MQOP START)

MQDISC

func1(....)

return

Process message
MQPUT reply msg

Other processing

MQCTL(MQOP STOP)

IBM Software Group

Asynchronous consumption with V7 MQ API

MQCONN

MQOPEN(QUEUE1,&hObj1)

MQCB(hObj1, func1)

_MQCTL(MQOP_START)

MQDISC

Other processing

_MQCTL(MQOP_STOP)

func1(....)

return

-
Process message
MQPUT reply-msg

5

Asynchronous message consumption © 2008 IBM Corporation

This slide shows the same application, but this time using an asynchronous message consumption model.

As before the main program uses MQCONN to connect to the queue manager and MQOPEN to open the
target queue. Notice this means that MQOPEN can be used with a message selector to limit the messages
that will be delivered to the consumers.

This time the new call back registration call (MQCB) is used to register the routine that will process the
messages. Here this is a function within the main program but could equally be an external program loaded
from a DLL or equivalent.

The MQCB call merely identifies the routine that will be used for processing; it does not in itself start the
processing of messages.

The MQ Control (MQCTL) command controls the starting and stopping of all the call back routines registered
for this connection handle. The MQOP_START parameter starts the asynchronous processing of messages
by the registered routines. In this case the func1 procedure highlighted in blue.

After the MQCTL call to start processing, the main program can continue processing other non MQ work, or
can open another connection using MQCONN to do more MQ work. What it must NOT do is use the
connection handle that was used in the MQCTL start command – this handle is not available to the main
program while asynchronous processing is running.

The main program can eventually stop asynchronous processing with a further MQCTL call as shown and
eventually disconnect.

The Asynchronous routine “func1” has a very simple job. It is invoked every time a message is available for
processing; the message is presented to the routine in a buffer so no MQGET is required. It has to process
the single message to perform any MQ work and return.

The routine can be called for other reasons than message arrival – for example to be notified that the queue
is or has become GET INHIBITED, but the main purpose is to process messages.

This design has some clear advantages over the traditional application; first, the processing routine func1 is
called only when a message is available. No loop and wait code is required. Second, the main program can
continue to do other processing while messages are being consumed. Third, the message buffer is supplied
to the application; it does not have to “guess” the maximum size for a message.

The next slide shows how these advantages are multiplied in the case where multiple input queues are being
processed.

iea_350_wmqv7_API_5_CallBack.ppt Page 5 of 16

MQCONN

MQOPEN(QUEUE1,&hObj1)

MQCB(hObj1, func1)

MQCTL(MQOP START)

MQDISC

func1(....)

return

Process message
MQPUT reply msg

Other processing

MQCTL(MQOP STOP)

MQOPEN(QUEUE2,&hObj2)
MQOPEN(QUEUE3,&hObj3)

MQCB(hObj2, func1)

MQCB(hObj3, func1)

IBM Software Group

Asynchronous consumption with multiple queues

MQCONN

MQOPEN(QUEUE1,&hObj1)

MQCB(hObj1, func1)

_MQCTL(MQOP_START)

MQDISC

Other processing

_MQCTL(MQOP_STOP)

MQOPEN(QUEUE2,&hObj2)
MQOPEN(QUEUE3,&hObj3)

MQCB(hObj2, func1)
MQCB(hObj3, func1)

func1(....)

return

-
Process message
MQPUT reply-msg

6

Asynchronous message consumption © 2008 IBM Corporation

This slide shows the code that is required to process input messages from multiple
queues, in this case three.

The only differences are that the main program opens all the required queues with
MQOPEN and sets up callback routines for each of them, in this case all pointing to the
same routine.

The MQCTL processing is the same – this is because the START and STOP applies to all
callbacks set up for this connection handle.

Equally the asynchronous processing code func1 does not need modifying at all.
Whenever a message is available from any queue, it will be supplied to the routine.

This design is very much simpler than the same design without callback.

iea_350_wmqv7_API_5_CallBack.ppt Page 6 of 16

IBM Software Group

7

Asynchronous message consumption © 2008 IBM Corporation

New API calls

�MQCB – manage call back
�A message consumer
� Registers function to be called when a message, meeting the

selection criteria specified, is available on an object handle

�Event handler
� Registers a function not related to an object handle to be called

when an event, such as a queue manager or connection stopping or
quiescing, occurs

�MQCTL – control call back
�Starts and stops the asynchronous processing for a

connection handle

This slide shows the two new calls Manage Call Back and Control Call Back. The Manage
call back call (MQCB) is used to register or deregister a function as an asynchronous
message consumer. In fact it can register both message consumers, which are routines
that are associated with particular queues and are expected to process messages - and
event handlers, which are routines that are invoked for more global events such as queue
manager stopping or quiescing. This allows cleanup operations to be carried out.

Manage callback is primarily about registering routines to consume messages. Registering
the routines does not start them consuming; that is the purpose of the control call back
(MQCTL) call. MQCTL can be used to START, STOP, SUSPEND or RESUME
asynchronous processing for ALL the registered routines for a particular connection
handle.

iea_350_wmqv7_API_5_CallBack.ppt Page 7 of 16

IBM Software Group

8

Asynchronous message consumption © 2008 IBM Corporation

MQCB – register message consumer

�MQCB (Hconn, operation, CallbackDesc, Hobj,
MsgDesc, GetMsgOpts, CompCode, reason)

�Operation
�MQOP_REGISTER, MQOP_DEREGISTER

�MQOP_SUSPEND, MQOP_RESUME

�CallbackDesc - MQCBD
�New structure defining function to be called with options

�MsgDesc and GetMsgOpts
�Options used to get the message that will be passed to

the call back function

This slide looks a little more closely at the register call parameters.

The Operation allows you to REGISTER or DEREGISTER a consumer and to suspend or
resume a previously define consumer.

The callback descriptor is covered in the next slide and is used to identify the routine to be
called together with additional options.

Message descriptor and Get Message options can also be specified here. These are the
options that will be used to get the messages for delivery to the message consumer
routine. These can determine, for example, whether messages are to be browsed or
consumed. A table later in the presentation shows how some of the options have subtly
different meanings in asynchronous message consumption.

iea_350_wmqv7_API_5_CallBack.ppt Page 8 of 16

IBM Software Group

9

Asynchronous message consumption © 2008 IBM Corporation

MQCBD – callback descriptor
� CallBackType
�MQCBT_EVENT_HANDLER or MQCBT_MESSAGE_CONSUMER

� Options
�Can control if callback is invoked at REGISTER, START STOP and

so on

� CallbackArea
�User data passed to the function

� CallbackFunction
�Pointer to local function (this or name must be specified)

� CallbackName
�Name of external program to invoke (this or function must be

specified)

� MaxMsgLength
�Max length of message to be passed – or unlimited

Call back descriptor is a new control block used for registering call backs. The callback
type specifies either message consumer or event handler.

The Options field is used to indicate when (apart from a message being available) the
routine should be called. For example, immediately at registration, when message
consumption STARTS and STOPS and so on. This allows initial setup and cleanup to be
performed.

The CallbackArea is a user area that is made available to the asynchronous routines. It is
not referenced by the queue manager and can contain any application data required.

Either CallbackFunction or CallbackName must be supplied. CallBackFunction is a pointer
to a local function to be invoked. CallbackName is a string identifier of an external program
to be invoked. Each operating environment has its own way of naming and invoking
external programs. In Windows® for example this is the name of an object in a DLL.

MaxMsgLength can be used to limit the size of messages passed to the message
consumer; the actual full length is also supplied to the routine

iea_350_wmqv7_API_5_CallBack.ppt Page 9 of 16

IBM Software Group

10

Asynchronous message consumption © 2008 IBM Corporation

MQCTL – control consumer

� MQCTL (Hconn, Op, ControlOpts, CompCode, Reason)

� Op - Operation
�MQOP_START - Start the consuming of messages for all defined

Message Consumer functions for the specified connection handle,
application can continue processing other work.
� MQOP_START_WAIT – as ShTART but this thread waits for all consumers to

complete.

�MQOP_STOP - Stop the consuming of messages and wait for all
currently active consumers to complete.

�MQOP_SUSPEND MQOP_RESUME

� ControlOpts
�MQCTLO_THREAD_AFFINITY - message consumers for the same

connection must use the same thread.

�MQCTLO_FAIL_IF_QUIESCING

The MQCTL call is used to start, stop, suspend and resume ALL the message consumers
and event handling routines that have been registered for this connection. The MQCTL
with MQOP_START starts all the handlers and flow of control continues in the main
program.

From this point the main program can do non-MQ work, or open another connection to
process other MQ requests, but should not use the connection handle used in the MQCTL
start for any call other than MQCTL with MQOP_STOP or MQOP_SUSPEND (or
MQDISC, which performs an implicit STOP).

Note that although the main thread may likely be the task to issue an MQCTL with
MQOP_STOP to stop message consumption, this call could be issued by any of the
asynchronous consumers. In fact a handler may well terminate message consumption in
response to an error situation.

The Start_Wait is a special case where a start is issued but instead of the program
continuing, it is suspended until all message consumers have deregistered or suspended
or some other thread issues an MQCTL MQOP_STOP or SUSPEND.

The ControlOpts field, and allowing the fail if quiescing option, also allows the message
consumers and event handlers to be run in an environment where they are all run on the
same thread. Without this option the handlers will run on any thread of the queue
managers choosing.

iea_350_wmqv7_API_5_CallBack.ppt Page 10 of 16

IBM Software Group

11

Asynchronous message consumption © 2008 IBM Corporation

Message consumer and event handler

�When an asynchronous message or event
consumer is invoked a fixed parameter set is
passed.
�MQHCONN the connection handle

�MQMD message descriptor of the returned message

�MQGMO message options after message get

�MQBYTE message buffer
� Null for event consumers

�MQCBC call back context – new data area

This slide shows what parameters are passed to a message handler or event consumer. A
fixed set of parameters is passed; these are tailored for message handlers and some will
be null or meaningless to event handlers.

First is the connection handle required for any MQ calls that the routine may make.

The next two parameters are the message descriptor and the get message options fields
with the values that they have after the message has been retrieved from the queue.

The buffer parameter contains the message if one has been returned, and null otherwise.

The last parameter is the MQCBC or Callback Context – a new data area in MQ version 7.
This context block contains additional information for the routine.

iea_350_wmqv7_API_5_CallBack.ppt Page 11 of 16

IBM Software Group

12

Asynchronous message consumption © 2008 IBM Corporation

MQCBC – call back context – key fields

� CallType why function was called
�Message returned; start, stop, and so on

� CallbackArea user data passed from MQCB

� ConnectionArea user data passed from MQCTL

� CompCode and reason from the MQGET

� State of the consumer
�Suspended or stopped

� DataLength of the message

Here are some of the key fields from the Callback Context.

CallType contains information about why this function has been called. Two are message
delivery call types. MQCBCT_MSG_REMOVED asserts that the message (if any) in the
buffer has been destructively removed. MQCBCT_MSG_NOT_REMOVED means that the
message has not been removed. These two calltypes will have DataLength set to the
amount of data returned. CompCode and ReasonCode should be tested because the
message may have been truncated or another failure may have occurred.

Other calltypes do not contain message data and will be delivered if requested in the
options field of the call back descriptor when the callback was registered. These include
MQCBCT_START_CALL. The purpose of this call type is to allow the callback function to
perform some setup when it is started, for example, reinstating resources that were
cleaned up when it was previously stopped. The callback function is invoked when the
connection is started using either MQOP_START or MQOP_START_WAIT.

CallbackArea is the userdata set in the MQCB call; ConnectionArea is a similar area set in
the MQCTL call.

CompCode and Reason relate to the MQGET that got the message.

The state of the consumer will normally be NONE, but can indicate that it is suspended or
stopped.

The actual dataLength returned for processing is in the DataLength field.

iea_350_wmqv7_API_5_CallBack.ppt Page 12 of 16

IBM Software Group

13

Asynchronous message consumption © 2008 IBM Corporation

MQGMO differences

MQGET will never return with
MQRC_NO_MSGS_AVAILABLE

MQGMO_WAIT with
MQGMO.WaitInterval =
MQWI_UNLIMITED

The message consumer will never be
called with
MQRC_NO_MSGS_AVAILABLE

MQGMO_NO_WAIT

Only called with
MQRC_NO_MSGS_AVAILABLE if this is
first call or if a message has been
returned since last
MQRC_NO_MSGS_AVAILABLE.

MQGET will return immediately
with
MQRC_NO_MSGS_AVAILABLE
if there are no messages

MQGMO_WAIT with
MQGMO.WaitInterval = 0

Not allowed Allowed MQGMO_SET_SIGNAL

Delivers first message then
automatically switches to
BROWSE_NEXT

MQRC_OPTIONS_ERROR
MQGMO_BROWSE_FIRST
+ MQGMO_BROWSE_NEXT

Asynchronous consumption MQGET call

The MQCB call provides an MQGMO (get message options) structure that you will be
familiar with from using MQGET. The MQGMO is used both for asynchronous
consumption and for MQGET. It is used to describe how to consume your message ­
synchronously or asynchronously. Some of the attributes or options in the MQGMO
operate slightly differently when used for asynchronous consumption and this slide details
those differences.

Specifying MQGMO_BROWSE_FIRST together with MQGMO_BROWSE_NEXT would
be an error in an MQGET Call. But in a message consumer it means read the first
message on first invocation – from then on return the next.

MQGMO_WAIT with MQGMO.WaitInterval = 0 operates just like MQGMO_NO_WAIT
when you code an MQGET. But in the case of asynchronous consumers NOWAIT means
only invoke the routine when messages are available.

In contrast, MQGMO_NO_WAIT and MQGMO_WAIT with a WaitInterval of
MQWI_UNLIMITED are quite different when passed to MQGET but in a message
consumer their behavior is the same. The consumer will only be passed messages and
events; it will never be passed the reason code indicating no messages. Effectively
MQGMO_NO_WAIT will be treated as an indefinite wait. This is to prevent the consumer
from endlessly being called with the no messages reason code.

iea_350_wmqv7_API_5_CallBack.ppt Page 13 of 16

Having completed this unit, you should be able to:

�Understand what asynchronous consumption is

�See the advantages of using asynchronous
consumption

�Know the two new MQ APIs used with
asynchronous consumption

IBM Software Group

14

Asynchronous message consumption © 2008 IBM Corporation

Having completed this unit, you should be able to:

�Understand what asynchronous consumption is

�See the advantages of using asynchronous
consumption

�Know the two new MQ APIs used with
asynchronous consumption

Unit summary

Now that you have completed this unit, you should have some understanding of what
asynchronous message consumption in MQ version 7 is, and know the advantages of
asynchronous message consumption in certain circumstances. The outline of the new API
calls required for asynchronous message consumption should also be understood. This
unit does not attempt to cover the full range of syntax and options available, for which you
should refer to the product information center.

iea_350_wmqv7_API_5_CallBack.ppt Page 14 of 16

IBM Software Group

15

Asynchronous message consumption © 2008 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_iea_350_wmqv7_API_5_CallBack.ppt

This module is also available in PDF format at: ../iea_350_wmqv7_API_5_CallBack.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

iea_350_wmqv7_API_5_CallBack.ppt Page 15 of 16

IBM Software Group

16

Asynchronous message consumption © 2008 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere

A current list of other IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2008. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

iea_350_wmqv7_API_5_CallBack.ppt Page 16 of 16

