
WBIV61_IEA_WAT_InOut_Details.ppt

This presentation covers the high level details on how to use the WebSphere® adapter

toolkit to develop custom WebSphere JCA adapters.

Page 1 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

The next section provides a brief overview of a scenario where adapters can be used.

Page 2 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

This slide shows an end-to-end integration scenario involving adapters. This is not the

only scenario adapters are involved in, but it does place several requirements on adapters.

Walking through the scenario, data in EIS X is changed. The adapter for EIS X is

configured to receive those changes. The adapter will convert the data into the runtime’s

format (SDO for WebSphere Process Server), then publish it to the listening application.

The application is a business process of some sort that can involve mapping,

relationships, or any number of runtime components. The business process will eventually

call the service for the Adapter for EIS Y. This adapter will call the EIS to perform the

necessary actions on the data such as creating or deleting the represented object.

If you are synchronizing data between EIS X and EIS Y, it is important to get an

uninterrupted stream of events from EIS X. If any events are missed, then EIS Y might not

have the complete copy. If any are duplicated, that might cause errors in the business

process. If events arrive in the wrong order (an update before a create of the same

object), that will also cause errors. Adapters provide assured once delivery, which allows

the adapters to deliver the events, and keep the events from the source EIS in order.

Page 3 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

In WebSphere Process Server, WebSphere Enterprise Service Bus, adapters are

represented as EIS exports and EIS imports. The imports and exports are generated

during the enterprise service discovery process by the external service wizard in

WebSphere Integration Developer.

Page 4 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

It is important to understand the different interaction patterns. The common interaction

patters used in WebSphere Adapters are outbound and inbound. Outbound is a two-way

interaction with synchronous flow of information and inbound interaction style involves

asynchronous one-way flow of information and data.

WebSphere adapter for SAP supports inbound two-way communication but it is not a

common scenario.

In inbound, synchronous or asynchronous is set in the assembly editor and is a property of

the EIS binding. Asynchronous in this context means that the EIS binding will place the

data on a queue and return immediately. Synch means that the binding will call the next

component directly, blocking the current thread until the entire process is finished. This

has implications for your transaction boundaries. When the export is in asynchronous

mode, the transaction is between the adapter and the queue only. When the export is in

synchronous mode, the transaction can be propagated through the entire system.

Page 5 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

WebSphere adapters implement J2CA which is the base runtime contract, Enterprise

Metadata Discovery (EMD) specification for tool support which is a service building

contract.

Data Exchange Service Provider Interface (DESPI) which is the contract that allows to

abstract the data format and run in multiple runtime environments. Support is also

provided for various monitoring and problem determination API.

Page 6 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

The goal of the base classes is to establish a standard for building resource adapters that
conform to the Java™ 2 Connector Architecture 1.5 specification.

J2EE Connector Architecture defines a series of contracts that must be provided by a
resource adapter. So anyone can develop a resource adapter without need of additional
tools or support beyond what is provided by the J2EE SDK. However, repeatedly writing
resource adapters from scratch is obviously not an efficient approach as implementation of
many of the contracts defined by the connector architecture are similar regardless of the
underlying enterprise information system (EIS). So developing resource adapters can be
made more effective (and consistent) by identifying those areas of the JCA contracts that
are generic and then providing a means for developers to take advantage of this common
logic.

The chosen approach was to provide a set of abstract “base” classes that can be
extended by developers. This set of base classes provides implementations of those
contracts and methods which can be done generically and can be re-used by more than
one adapter. Any methods for which EIS-specific logic is required are left abstract and the
individual adapter developer needs to provide implementation for those methods.

For most of the resource adapters, developers can implement the abstract methods and
have a working resource adapter. For those resource adapter designs requiring
functionality that is different or beyond that which is provided by the base implementation,
developers are left free to override the methods of interest in the connector specification.

Page 7 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

The base classes or the adapter foundation classes provide support for inbound, outbound
and enterprise metadata discovery.

The JCA 1.5 specification is designed around EISs that provide 'push' models for event
delivery where EIS calls the adapter when event is available and provides little support for
polling models. To bridge this gap base classes provide pre-built event management logic
that can be used by adapter developers. Outbound support involves sending service
request to the EIS. Enterprise Metadata Discovery or a discovery service is a component
within an adapter that enables the generation of business object definition and other
artifacts required by SCA. Adapter foundation classes also provide a set of base faults,
data exchange implementations for SDO, Java Bean, and much of the monitoring and
problem determination capabilities that adapters need.

Page 8 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

The next section goes into details of various classes and methods that you need to

implement to support outbound and inbound interactions. The code stubs for these two

interaction styles are created by using the J2C project wizard in WebSphere Integration

Developer.

Page 9 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

The adapter foundation classes in conjunction with the appropriate EIS-specific

subclasses provide a JCA-compliant resource adapter implementation that can be

managed by the application server to enable bi-directional connectivity to an EIS.

Requests can be sent to the resource adapter by any J2EE component by making use of

the Common Client Interface (CCI) defined by the JCA specification. For inbound, the

adapter defines a “listener” interface and those message-driven beans that implement the

interface are registered with the adapter enabling them to receive any appropriate inbound

events from the EIS.

Page 10 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

WBIResourceAdapter is a javax.resource.spi.ResourceAdapter instance and acts as a

central authority for the state and instance-specific information about the adapter. It

provides a means for the JCA container to register endpoints for inbound event delivery.

The WBIResourceAdapter implementation provides support for asynchronous event

notification. This includes tracking of endpoints and activation and deactivation for inbound

communication, creation and destruction of polling timers, and communication with the

event manager to publish events from the EIS to endpoints. The implementation also

includes generic Java bean logic for the tracking of property change listeners and firing of

property change events when configuration properties are changed.

You need to extend the WBIReosurceAdpater class, implement the start method and the

interface WBIPollableResourceAdapter if event polling quality of service (QOS) is

needed. Implementing WBIPollableResourceAdapter interface requires you to

implement the method createEventStore. You can add custom configuration properties

specific to resource adapter. Any addition of properties to the ra.xml file using the wizard

provided by the toolkit automatically generates the accessor methods in the appropriate

code stubs.

Page 11 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

Event polling or callback are the two ways to implement inbound support. Polling is the

most common because most EISs don’t have a way to publish events directly to the

adapter. In this implementation, the adapter is in control. When polling, the adapter

foundation class’s event manager component provides the timer threads, the publishing

mechanism, assured delivery algorithms, and so on. You need to provide implementation

for Event Store interface.

Certain EISs can publish events to the adapter directly. Callback option is generally

preferred if the EIS provides this capability. Note, however, that the adapter will lose

control over how many events will arrive and it might be necessary to add some throttling

or provide some custom way to assure delivery.

Page 12 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

The role of event-notification is to enable business processes to be notified of changes or

new information about a given EIS.

As depicted in the diagram in the slide, user or external process modifies the EIS. Event

detection mechanism implemented in the EIS detects any changes of interest in the EIS

and records them in the event store. An event retrieval mechanism (event store interface)

is implemented in the adapter that can detect and retrieve events from the event store. A

data transformation mechanism is implemented in the adapter to convert the EIS events to

WebSphere Business Integration business objects consumable by target business

processes.

Use of the adapter foundation classes can dramatically simplify the often complicated

implementation of event retrieval and publication. Adapter foundation classes will

automatically track endpoints for the adapter, control the polling for and delivery of events,

and handle recovery of any events if the adapter unexpectedly terminates and assures

once-and-only once event delivery.

Page 13 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

In order to use adapter foundation classes for inbound event management, there are some

requirements on how the events should be maintained on the EIS side. Event information

should be stored in an event store. The event store can be a database or any other

mechanism that you want to use to store the information.

Event data must be persistent. An event detected in the event store should remain

available in the event store until deleted by the adapter regardless of connection failure or

time elapsed. The event store must allow adapter to both identify and change the state of

event records in the event store. The event store must be able to store and modify a

transaction ID (XID.)

Page 14 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

If you want to take advantage of the functionality provided by the adapter foundation

classes (AFC) for inbound, you need to ensure that any subclass of

com.ibm.j2ca.base.WBIResourceAdapter implements interface

com.ibm.j2ca.WBIPollableResourceAdapter. This interface allows the adapter

foundation classes to acquire an event store implementation specific to the underlying EIS

application. If this interface is implemented, the AFC will automatically begin checking for

and publishing events as dictated by polling-related configuration properties like

“PollPeriod” and “PollQuantity” as specified by active adapter endpoints.

You also need to implement the

com.ibm.j2ca.extensions.eventmanagement.EventStore interface. This interface

allows the AFC to manage events in the store without requiring specific knowledge of how

and where the event store is implemented.

Page 15 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

The CallbackEventSender is an API used to provide some help for the “callback” method

of implementing inbound support. The adapter is responsible for setting up any necessary

threads, connecting at the appropriate time, and managing “endpoints” (the message

endpoint factory and activation spec pair passed in at endpointActivation.)

Assured delivery is supported by passing in an EventStore implementation to keep track of

which events have been committed.

Page 16 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

This slide shows the list of classes that you need to provide implementation for supporting

outbound calls. You must extend the WBIManagedConnectionFactory and

WBIManagedConnection base classes which implement the service provider interfaces

managedconnectionfactory and managedconnection.

You must extend the WBIConnection, WBIInteraction base classes which implement the

cci interfaces connection and interaction.

Page 17 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

A managed connection factory is used for the container-managed configuration and

creation of physical connections to the underlying EIS.

WBIManagedConnectionFactory Implements the service provider interfaces

javax.resource.spi.ManagedConnectionFactory and

javax.resource.spi.ResourceAdapterAssiociation.

You must provide implementation for the methods createConnectionFactory and

createManagedConnection.

For any custom EIS-specific outbound configuration properties defined for this class, you

need to provide the appropriate get and set methods. If the resource adapter deployment

descriptor editor in the toolkit is used to add these properties, the tool automatically

generates the appropriate code stubs in the managed connection factory subclass.

Properties defined in this class are generally intended for use by the

WBIManagedConnection implementation when connecting to the EIS.

Page 18 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

ManagedConnection instance represents a physical connection to the underlying EIS. You

need to provide logic for connecting to the EIS. ManagedConnection instance provides

generic logic for the tracking of property change listeners and firing of property change

events when configuration properties are changed. It provides support for managed

connection optimization as described in JCA specification. ManagedConnection instance

provides private communication with WBIConnection instances providing support for

tracking active connection handles, dissociating and re-associating handles, cleaning up

handles and keeping the JCA container informed of connection handles no longer used by

a client. It also provides support for tracking of connection event listeners and notifying

them of connection failures.

Page 19 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

You should implement connection creation logic as part of the constructor and connection

closure logic as part of method destroy. Each instance should encapsulate at most one

connection to the EIS. Since there can be more than one connection instance for each

ManagedConnection instance, you should implement private contracts between their

WBIManagedConnection subclass and their WBIConnection and WBIInteraction

subclasses to ensure thread-safe access to the underlying EIS connection or API. If

transactions-either XA or local are supported by the EIS, you should override method

getXAResource or getLocalTransaction . Do not invoke the super implementations of

these methods as the foundation classes throw exceptions. You should override method

getMetaData to provide information about the EIS to users. At the start of any EIS-specific

method implementation, you should always invoke super.checkValidity(); this method

checks the state of the ManagedConnection instance to ensure that it hasn’t been

closed, encountered an error, and so on..

Page 20 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

WBIConnectionFactory is a ConnectionFactory that enables a client to request handles
to the underlying EIS connection. You must implement the constructor. GetConnection
method can be used to return a new connection handle to the underlying EIS.

Page 21 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

WBIConnection represents a client connection handle to the underlying EIS connection.

Client gets this connection handle by calling the getConnection method of the

ConnectionFactory instance.

You must define a constructor that accepts a WBIManagedConnection instance. Once

constructed with a WBIManagedConnection instance, the WBIConnection will register

itself with the managed connection and start communicating events. You must also

implement method createInteraction and provide an EIS-specific Interaction instance so

that clients can invoke functions on the underlying EIS. Since WBIManagedConnection

instance can have multiple connection instances, you should make sure that that the

connection handles do not concurrently access the physical connection if the EIS

connection does not support multiplexing. Always invoke getManagedConnection() to

locate the WBIManagedConnection instance with this connection handle before trying to

access either the managed connection or the underlying EIS.

Page 22 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

WBIInteraction instance enables clients to process app-specific operations on underlying

EIS. Most of the implementation of this interface is EIS-specific. You must provide

implementation for execute method and provide logic to call an EIS operation represented

by the InteractionSpec and return an output Record.

The client and adapter exchange data using the record model. WebSphere Business

Integration adapters use the WebSphere Business Integration business object model

which is not compatible. So the base classes will provide a record implementation that

wraps the WebSphere Business Integration business object to allow it to be passed

between clients and the resource adapter implementation.

Page 23 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

For systems that support a typical create, retrieve, update, and delete pattern of

operations, adapters are responsible for carrying out these operations in the EIS based on

the structure and contents of the incoming business object.

For example, if you have an incoming business object that represents an after-image

update, the adapter must take steps to update the EIS such that the object in the EIS

matches the structure and contents of the incoming business object.

To accomplish this, the adapter has to retrieve the structure currently in the EIS, compare

it to the incoming SDO and perform the operations necessary to make the EIS match the

input. These operations are to be done as the comparisons happen. This makes an

adapter potentially quite complex. The command pattern abstracts this functionality into a

generic logic

The command pattern breaks down a hierarchical update into a hierarchy of small sub-

commands. These sub commands are fed to an interpreter, which retrieves and executes

the code necessary to do the sub-command.

This makes it possible for you to deal with operations on node level entities, without having

Page 24 of 28

to walk the structure and compare.

WBIV61_IEA_WAT_InOut_Details.ppt Page 24 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

For snapshot object update, normally you have to retrieve the object from EIS and

compare the input business object to EIS business object at each node and make

changes as you compare. But with use of commandmanager and interpreter, you can just

create sequence of commands and interpreter executes them. This separates EIS logic

from generic operations.

The same logic works for delta objects. You can look at the change summary and make

use of command manager to generate the commands. No-op commands are used where

there are no entries in change summary.

Page 25 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

You have to provide implementation for the create update, delete, retrieve, retireveall and

no-op commands. You need to provide a command factory implementation that will create

instances of these EIS-specific commands. You also need to provide implementation for

Interaction.execute() method that calls the CommandManager and Interpreter in your

WBIInteraction subclass.

You have an abstract base command for your EIS, and have the operation-specific

commands extend that. This way, if all your commands need similar data, you can reduce

your coding effort. WebSphere Adapter Toolkit creates stubs for only abstract methods.

The result is that the BaseCommand stub has an execute() method and the subclasses do

not have this method. Therefore you have to manually create the execute() method in the

subclasses.

Page 26 of 28

WBIV61_IEA_WAT_InOut_Details.ppt

WebSphere Adapter Toolkit helps adapter developers build custom IBM WebSphere

Adapters to be used within WebSphere Process Server, WebSphere Enterprise Service

Bus or build a basic J2EE JCA adapter. The underlying adapter foundation classes used

by the toolkit simplify the process of adapter development by providing implementation for

most generic contracts so you only provide the implementation logic for your backend

EIS.

Page 27 of 28

WBIV61_IEA_WAT_InOut_Details.ppt Page 28 of 28

