
WPIv602_MediationModules.ppt Page 1 of 29

®

IBM Software Group

© 2007 IBM Corporation

Updated April 17, 2007

WebSphere ® Enterprise Service Bus V6.0.2
WebSphere Process Server V6.0.2
WebSphere Integration Developer V6.0.2

Mediation module and flow concepts

This presentation provides an overview of mediation module and flow concepts. It
examines the role a mediation module plays in enabling enterprise service bus
functionality and then looks at the mediation flow component and mediation primitives that
are used to define mediation logic.

WPIv602_MediationModules.ppt Page 2 of 29

IBM Software Group

2

Mediation module and flow concepts © 2007 IBM Corporation

Agenda

� Introduction

�Mediation module

�Mediation flow component

�Mediation primitives

�Development life cycle & deployment

The agenda of the presentation is shown here. This first section is a short introduction to
the concepts of an enterprise service bus and the role of mediations. The presentation
then takes a close look at mediation module concepts and the building blocks used to
define a mediation module. An introduction to the mediation flow component and
mediation primitives is provided. The presentation ends with looking at the development
life cycle and deployment of a mediation module.

Note that many of the screen captures in this presentation were taken before version 6.0.2
and will have slight differences from what you see in the latest version of WebSphere
Integration Developer.

WPIv602_MediationModules.ppt Page 3 of 29

IBM Software Group

3

Mediation module and flow concepts © 2007 IBM Corporation

Introduction
� In a loosely coupled SOA architecture, service requestors and providers

connect with each other through an enterprise service bus (ESB).

� Loosely coupled services provide more flexibility and the ability to introduce
mediations and qualities of service that can then be applied uniformly to the
services connecting through the bus.

� Loose coupling enables protocol transformations between service requestor and
provider.

� Mediation services can modify messages as they pass between service
requestors and providers.

� Mediation services can make routing decisions, dynamically selecting a service
provider to satisfy a request.

� Mediation services are implemented using mediation modules that contain
mediation flows.

� A mediation module uses service component architecture (SCA) in the same
way as a module in WebSphere Process Server.

� WebSphere Enterprise Service Bus and WebSphere Process Server provide
ESB capability through the use of a mediation module deployed in the server as
a J2EE application.

In a service oriented architecture, services represent business functions that can be
reused and combined to create flexible and responsive business systems. These services
can have loosely coupled connections through an enterprise service bus (ESB) rather than
being connected directly to each other.
When services are loosely coupled through an ESB the overall system has more flexibility
and can be easily modified and enhanced to meet changing business requirements. The
ESB can also be used to apply qualities of service uniformly to all the services connecting
through the bus.
The use of an ESB provides several functional capabilities which together result in the
loose coupling nature of the system. The ESB enables protocol transformations, allowing
service requestors and service providers to use different protocols for communication. The
ESB also provides mediation services which can inspect, modify, augment and transform
a message as it flows from requestor to provider. The mediation services of the ESB can
also be used to dynamically select a service provider to satisfy the request.
In WebSphere Enterprise Service Bus and WebSphere Process Server there are
mediation modules which are used to provide the enterprise service bus functionality.
These mediation modules are a part of service component architecture (SCA) and are
very similar to SCA modules. They contain an SCA component called the mediation flow
component and use exports and imports to connect to external service requestors and
providers. The mediation flow component makes use of mediation primitives to define the
logic of a mediation flow.
Mediation modules are deployed to WebSphere Enterprise Service Bus and WebSphere
Process Server as J2EE applications.

WPIv602_MediationModules.ppt Page 4 of 29

IBM Software Group

4

Mediation module and flow concepts © 2007 IBM Corporation

Agenda

� Introduction

�Mediation module

�Mediation flow component

�Mediation primitives

�Development life cycle & deployment

This section of the presentation looks at the concepts of mediation modules and the
building blocks used to define them.

WPIv602_MediationModules.ppt Page 5 of 29

IBM Software Group

5

Mediation module and flow concepts © 2007 IBM Corporation

Mediation module - Concepts
� WebSphere Enterprise Service Bus and WebSphere Process Server provide

mediation modules, that:
� Intercept and modify messages between service requester and the service provider
�Provides the ESB functions of converting protocols, routing, transformation and other

custom processing on the messages

� A mediation module is special type of service component architecture (SCA)
module, containing:
�Exports and imports
�SCA components (only certain component types are allowed)

� A mediation module is the unit of deployment that runs in WebSphere
Enterprise Service Bus or WebSphere Process Server

Service
requester

Service
provider

Requests
Responses

Requests
Responses

Mediation module

Enterprise service bus functionality is provided by WebSphere Enterprise Service Bus and
WebSphere Process Server through the use of mediation modules. They intercept and
modify messages as they flow between a service requestor and service provider. ESB
capabilities that are provided include protocol transformation, dynamic routing decisions
and message modification and transformation.

The mediation module is a special type of SCA module used specifically for ESB
mediation capabilities. It contains SCA imports, exports and a limited set of SCA
components. Looking at the graphic in the slide, the mediation module is shown with the
blue box on the left representing SCA exports through which service requests are
received. The green box on the right of the mediation module represents SCA imports
through which service providers are called.

The mediation module represents the unit of deployment that is generated into a J2EE
application that is installed on a WebSphere Enterprise Service Bus or WebSphere
Process Server.

WPIv602_MediationModules.ppt Page 6 of 29

IBM Software Group

6

Mediation module and flow concepts © 2007 IBM Corporation

Requests
Responses

Requests
Responses

Mediation module

Mediation module - Contents
� Mediation flow component

� Provides mediation function on messages between service requestors and providers
� Interface defined by WSDL only

� Exports
� Expose the mediation module to external service requesters
� Interface defined by WSDL or Java™

� Imports
� Identify external service providers and their interfaces
� Interface defined by WSDL or Java

� SCA Java components
� Used for custom mediation function or to support use of Java interfaces
� Interface defined by WSDL or Java

Imports
Represents a service provider outside the
scope of the bus, such as a Web service

provider or a JMS application

Exports
Represents a service requester outside the
scope of the bus, such as a Web service

client or a JMS application

Service
requester

Service
provider

Mediation
flow

component

Java component

This slide takes a little closer look at a mediation module, examining its contents as shown
in the graphic. It is composed of SCA exports and imports, an SCA mediation flow
component and optionally SCA Java components.
The heart of a mediation module is the mediation flow component which provides the
mediation logic applied to a message as it flows from service requestor to a provider. It is
an SCA component that can only be used in a mediation module and cannot be used in an
SCA module. The interface for input and output of a mediation flow component must be
defined by a Web services definition language (WSDL) document. The use of Java
defined interfaces is not allowed for the mediation flow component. This component type is
examined in more detail on the next slide.
SCA exports are used to expose the mediation module to service requestors. They
provide the interface and protocol definition used by the requestor to make the call. Their
interfaces can be defined using either Java or WSDL interfaces.
SCA imports are used so that the mediation module can make calls out to service
providers. They define the interface and protocol needed to make the call. Similar to
exports, their interfaces can also be defined with WSDL or Java.
Finally, a mediation module can optionally contain SCA Java components. There are two
reasons why you might need to do this. The first is to support the use of a custom
mediation primitive using the invoke implementation type where the Java component in the
assembly contains the custom logic defined for the primitive. The second reason would be
for mapping between WSDL and Java interfaces. An example of when this would be
required is where the service provider is implemented as a stateless session bean which
requires the import to have a Java interface. A Java component is used to map the WSDL
interface of the mediation flow component to the Java interface of the import.

WPIv602_MediationModules.ppt Page 7 of 29

IBM Software Group

7

Mediation module and flow concepts © 2007 IBM Corporation

Mediation module - Mediation flow component
� Mediation flow component is a type of SCA component

�Can only be used in a mediation module, not in a module
�Can only be one per mediation module
�Source defined by an interface
�Target defined by one or more references
� Interface and references are described as WSDL interfaces, Java interfaces are not

supported

� Enables ESB functionality
�Routing decisions, selection of service provider
�Message modification and augmentation
�Covert messages to support different interfaces between requestor and provider

Imports

Service
requester

Service
provider

Mediation module

Mediation flow
component

Interface References

Exports

As previously mentioned, the mediation flow component is a type of SCA component that
can only be used in a mediation module and not in a module. Further, a mediation module
can contain only a single mediation flow component.

Looking at the graphic, you see that the mediation flow component contains a source
interface and target references similar to other SCA components. The source interface is
described using WSDL and must match the WSDL definition of the export to which it is
wired. The target references are described using WSDL and must match the WSDL
definitions of the imports or Java components to which they are wired.

The mediation module handles most of the ESB functions. These include dynamic routing
and selection of service provider, message modification and augmentation and mapping of
message formats between differing interfaces used by the requestor and provider.

WPIv602_MediationModules.ppt Page 8 of 29

IBM Software Group

8

Mediation module and flow concepts © 2007 IBM Corporation

Mediation module - Imports and exports

� Imports and Exports are configured with bindings
�Support varying protocols

�Enables the ESB function of protocol transformation
between requester and providers

�Supported binding types
�Built-in SCA (default) binding

� Used for communication between SCA modules

� Can be administratively modified using the administrative console or wsadmin

�Web services bindings
� SOAP/HTTP or SOAP/JMS
� Can be administratively modified using the administrative console or wsadmin

SCA exports and imports play a major role in supporting ESB functionality in a mediation
module. They are configured with bindings that specify and configure the protocol used for
communication between requestor and mediation module and between mediation module
and provider. The ESB functionality of protocol transformation is enabled through the use
of exports and imports.
There are several different binding types, or protocols, that are supported. The type of
binding and its configuration are defined at development time and some bindings also
allow modifications to their configuration at runtime.
The first binding type is the built-in default binding provided by SCA which allows imports
to communicate with exports in a different SCA module or mediation module. These can
be configured be administratively at runtime.
There are also Web services bindings which support both SOAP over HTTP and SOAP
over JMS protocols. Similar to the default SCA bindings, these can also be
administratively configured at runtime.

WPIv602_MediationModules.ppt Page 9 of 29

IBM Software Group

9

Mediation module and flow concepts © 2007 IBM Corporation

Supported binding types (cont.)
�JMS binding

� Uses the default messaging provider built into in WebSphere Application Server,
utilizing the service integration bus (SIB)

� Can interoperate with MQ based messaging using MQLink and MQClientLink

�JMS MQ binding
� Uses the WebSphere MQ JMS provider
� Works directly with WebSphere MQ JMS applications without requiring SIB and

MQLink interaction

�MQ binding
� Enables interaction with MQ applications that are not based on JMS
� Exposes MQ header handling conventions and provides access to all header data
� Support for a variety of different request/reply correlation techniques common to MQ

�Adapter bindings
� WebSphere Adapters (JCA based)
� WebSphere Business Integration Adapters (JMS based)

�Session bean binding
� Imports only, used to call session bean as a service

There are a few different variations of bindings that support messaging protocols. JMS
bindings make use of the default messaging provider that is a built-in component of
WebSphere Application Server and uses the service integration bus (SIB). These are used
for JMS communication with other applications using the default messaging provider or to
MQ applications through configuration of an MQLink or MQClientLink in the SIB.

The JMS MQ bindings make use of JMS with the MQ JMS provider. This enables direct
interaction with MQ JMS applications without having to go through the SIB with MQLink or
MQClientLink. This enables better performance and more flexibility in configuring the use
of JMS.

The MQ bindings provide support for direct communication with MQ applications that are
not based on JMS. These bindings are probably the most familiar to MQ knowledgeable
users, since they expose the entire chain of MQ headers and support various
request/reply correlation techniques.

There are two basic forms of adapters, the WebSphere Adapters based on JCA and the
WebSphere Business Integration Adapters which use a specific protocol over JMS. There
are adapter specific import and export binding types that can be generated for both of
these adapter varieties.
Finally, there is the session bean binding. These are supported only for imports to enable
a stateless session bean to be called as a service. These import bindings only support
Java interfaces and thus an intervening Java component is required when wiring a
mediation module to one of these imports.

WPIv602_MediationModules.ppt Page 10 of 29

IBM Software Group

10

Mediation module and flow concepts © 2007 IBM Corporation

Exports Imports

Requestor

Mediation flow
component

Mediation module

Service
providerMediation flow

component

Service
requester

Requests
Responses

Requests
Responses

Mediation module – Assembly diagram

An assembly diagram is used to represent the contents of a mediation module.
WebSphere Integration Developer provides an assembly editor which enables you to
define and configure the imports, exports and mediation flow component that make up the
mediation module. It is only the interface, references and associated wiring of the
mediation flow component that is defined in the assembly diagram. Other editors are used
to define the contents of the mediation flow component.

In addition to introducing the assembly diagram, the graphic on this slide shows you how
to relate the diagrams that are used in this presentation to what you will see in WebSphere
Integration Developer.

WPIv602_MediationModules.ppt Page 11 of 29

IBM Software Group

11

Mediation module and flow concepts © 2007 IBM Corporation

Agenda

� Introduction

�Mediation module

�Mediation flow component

�Mediation primitives

�Development life cycle and deployment

This section provides the next level of details about the mediation flow component. It
discusses operation connections, request and response flows, flow logic, service message
objects and the tools in WebSphere Integration Developer.

WPIv602_MediationModules.ppt Page 12 of 29

IBM Software Group

12

Mediation module and flow concepts © 2007 IBM Corporation

Mediation flow component –
Operation connections

� Operation connections
�Establish relationship between source operations and target operations

�A source operation can be related to one or more target operations

�There must be an operation connection for each source operation

�Not all target operations need to be connected

�Define source and target of mediation flows

� Source operation can connect to
�Same operation

� Reference with the same WSDL

�Different operation
� Reference with a different WSDL

� Reference with same WSDL

�More than one operation
� Enables flow to make routing decisions

Mediation module

Mediation flow component
Operation connections

op1
op2
op3

op1
op2
op3

opA
opB

Interface References

Once a mediation flow component has been defined on an assembly diagram it has both a
source interface and one or more target references. These are each associated with a
WSDL interface which defines the operations and their associated inputs, outputs and
faults. The first part of defining the implementation of a mediation flow component is to
define the operation connections that establish the relationships between source and
target operations. There must be an operation connection defined for every operation on
the source interface and each source operation can be connected to one or more target
operations. Not all target operations need to be part of a connection.

Looking at the graphic, you see that the interface on the left is defined by a WSDL with
operations op1, op2 and op3. On the right, the bottom reference is defined by the same
WSDL and the upper reference is defined by a WSDL with opA and opB. Using this as an
example, you can see an operation connection between op3 and op3 showing a
connection between the same operation defined on the same WSDL. There is also an
operation connection between op1 and opA showing a connection between different
operations of different WSDLs. This connection will require the message be transformed
by the mediation. Looking at op2, it is connected to both op2 and opB. This connection will
require some type of routing decision and when the target is opB it will also require a
message transformation.

WPIv602_MediationModules.ppt Page 13 of 29

IBM Software Group

13

Mediation module and flow concepts © 2007 IBM Corporation

Mediation flow component –
Request and response flows

� For each operation connection there is a flow
�Separated into request flow and response flow

� One-way operations only have a request flow

�Defines the mediation logic for that specific source operation

� The flow logic enables the ESB functions of:
�Routing decisions, selection of service provider
�Message modification and augmentation
�Covert messages to support different interfaces and operations

� Request flow capable of building a response without calling a provider
�For example, if the mediation module implemented a cache

Imports

Service
requester

Service
provider

Mediation module

Mediation flow
component

Request flow
Response flow

Exports

After defining the operation connections, the next step in building a mediation flow
component implementation is to define the flows. Every source operation and its
associated operation connections has a flow associated with it. When the operation is a
request response operation there are actually two parts of the flow to define, the request
flow and the response flow. The logic of the mediation is defined in the flow, providing the
ESB functions of dynamic routing and service selection, message modification and
augmentation and message transformation.

One of the interesting capabilities of the request flow is to enable the flow to respond
directly to the service requestor without making a call to any service provider. This might
be used for various reasons, such as the mediation module implementing a caching
scheme to optimize response time by eliminating certain calls to service providers.

WPIv602_MediationModules.ppt Page 14 of 29

IBM Software Group

14

Mediation module and flow concepts © 2007 IBM Corporation

Mediation flow component – Flow logic
� Each request and response flow has its own logic

� Mediation primitives are used to define the processing
�Each primitive performs some specific function

� Interrogate the message
� Update the message
� Transform the format of the message
� Make routing decisions

� Flow of logic defined by wiring
�Defines connection between source operations, primitives and target

operations
�Source operation can be wired directly to the target operation

� Flow is a pass thru with no logic

Mediation module

Mediation flow component - Flow logic

op2
op2

opB

Interface – source operation References – target operations

Mediation
primitive

Mediation
primitive

Mediation
primitive

Each request flow and response flow has its own logic. The logic is defined using
mediation primitives where each primitive performs some function within the flow. A
primitive might interrogate the values in the message to do something like write a log
message or raise an event. It might update elements within a message, such as filling in
input parameter values from a database lookup or the primitive might need to transform
the message format because the source and target operations are different. Or the
primitive could be involved in making routing decisions based the message content.

In addition to the primitives which each perform a function, the overall logic for the flow is
defined by wiring the source operation to primitives, primitives to other primitives and
finally primitives to a target operation. The message flows through the wires and is acted
upon by the primitives.

When the source and target operation are the same, they can be wired directly together
without any primitives being in the flow, defining a mediation flow that is essentially a pass
thru operation.

WPIv602_MediationModules.ppt Page 15 of 29

IBM Software Group

15

Mediation module and flow concepts © 2007 IBM Corporation

Mediation flow component –
Mediation flow editor

� WebSphere Integration Developer provides a mediation flow editor

� The editor is divided into the 3 sections:
�Operation connections – top section

� You define the mapping of each source operation to one or more target operations

� Once the connection is defined, you select a source operation to display the flow

�Message flow – middle section
� Displays a flow diagram for the selected source operation

� Tabs let you select between seeing the request flow or the response flow

� Flow diagram contains a canvas where the logic is defined

� Canvas contains nodes representing the source and target operations

� You drag mediation primitives from a palette onto the canvas

� You define the wiring between the source operation, primitives and the target operations

�Properties view – bottom section
� Displays the properties used to define the element selected in the message flow section

� Selected elements can be for a mediation primitive, an individual wire, the source and target
operations and the overall flow itself

Mediation flow components, which were described on the last several slides, are
implemented in WebSphere Integration Developer using the mediation flow editor. There
are three major sections in the mediation flow editor, the operation connections section,
the message flow section and the properties view.

The operation connections section is located in the top section of the editor. It enables you
to define the connections between source operations and target operations. In the editor,
selecting the source operation will display the flow for that operation.

The middle section of the editor contains the message flow for the selected operation, with
tabs enabling you to switch between the request flow and the response flow. It contains a
canvas with nodes representing the source and target operations. You drag mediation
primitives from a palette, drop them unto the canvas and wire the nodes and primitives
together to define the flow.

The bottom section of the editor has the properties view which is used to display and edit
configuration properties. Whatever element is selected in the message flow section will
have its properties displayed in the properties view. The elements which can be selected
include mediation primitives, a wire, the source or target operations or clicking on the
canvas will select the flow itself.

The next few slides provide diagrams of the different sections of the editor.

WPIv602_MediationModules.ppt Page 16 of 29

IBM Software Group

16

Mediation module and flow concepts © 2007 IBM Corporation

Mediation flow editor

Operation
connection

Palette with
mediation

primitive icons

Operation
connections section

Message flow
section

1

2

3

Canvas
Mediation primitives

added here and
wired to create the flow

Input
response node

a

b

Callout
Callout
nodes

Input
node

1

2

3

Mediation flow component on
assembly diagram

Source
operation

target
Operation

Target
operation

This slide shows how a mediation flow component on an assembly diagram is represented
in the mediation flow editor. At the top of the graphic you see a mediation flow component
as it would appear in the assembly diagram. It has an interface labeled 1 and two
references labeled 2 and 3.

The operations connections section of the mediation flow editor shows the source
interface on the left and the two target references on the right. The name of the interface
and references are shown in the title bar for each. All the operations defined for each are
listed below the title bar, but in this case they all contain only one operation, called
getQuote. The lines labeled a and b define the operation connections for the getQuote
source operation, showing that its flow might possibly call either of the two getQuote target
operations.

The message flow section contains the input node on the left side, representing the
message as it is received from the requestor. On the right side are the two callout nodes,
representing the message as it is sent to a target service. At the bottom right of the
message flow section is the input response node which can be used to respond to the
requestor without calling a service provider.

The nodes that were just described are on the canvas. Mediation primitives are dragged
from the palette on the left and dropped onto the canvas. Wires are then used to create
the flow by connecting the nodes and primitives to perform the mediation function required
for the flow.

WPIv602_MediationModules.ppt Page 17 of 29

IBM Software Group

17

Mediation module and flow concepts © 2007 IBM Corporation

Operation connections and mediation flows

1 2

3

1a

1b

2a

3a

2b

3b

1b

1 Input

2 Callout 1

3 Callout 2

a = Request
b = Response

Operation connections

Canvas
Mediation
primitives

added here

CalloutCallout

Canvas
Mediation
primitives

added here

Response flow

Request flow

This page shows more details of the mediation flow editor, relating the operation
connections to both the request and response in the message flow section of the editor.
The middle of the slide shows the operation connection, with the source input operation
being labeled 1 and the target callout operations being labeled 2 and 3.

The top of the slide shows the request flow. Notice that in the lower left corner is a tab
used to display the request flow portion of the message flow panel. The label 1a is by the
input node where a request flow will start with an incoming request. The labels 2a and 3a
are by the callout nodes where the request flow ends with a call to a service provider.
Label 1b is by the input response node which can be used to return to the caller without
making a call to a provider. The mediation flow logic is built on the canvas by wiring
together primitives.

The bottom of the slide shows the response flow. On the lower left is the response flow tab
used to display the response portion of the message flow panel. The labels 2b and 3b are
by the callout response nodes, where the response flow will begin upon return from the
service provider. Label 1b is by the input response node, which is where the response flow
ends as it returns to the original requestor. The mediation flow logic for the response is
built on the canvas in the same way it is done for the request flow.

WPIv602_MediationModules.ppt Page 18 of 29

IBM Software Group

18

Mediation module and flow concepts © 2007 IBM Corporation

Mediation flow component –
Service message object (SMO)

� Service message object (SMO) provides a common representation of a
message in a mediation flow

� The SMO is a service data object (SDO)

� The SMO contains three major sections
�The body is the application data for the message
�The headers is protocol specific header information for the message
�The context is data used within the flow itself

� An SMO has a schema definition
�The headers schema is predefined and the same for all flows
�The context schema

� Mostly predefined and the same for all flows
� Correlation and transient contexts specified on a per flow basis

�The body schema varies by flow and within flow, based on:
� Interface and operation the message represents
� Whether application data is the operations input, output or fault data

� The body schema defines the SMOs “message type”

In a mediation flow, the message is represented as a service message object (SMO). It
provides a common representation of the message so that mediation primitives are able to
access it within a flow. The SMO is built using service data object (SDO) technology and
can be accessed using the generic DataObject APIs, type specific SMO APIs and XPath
expressions.

The SMO is divided into three major sections, the context, headers and body. The body is
the application specific data which is defined by the operation and the input, output or fault
data that is being passed for that operation. The headers contain protocol specific header
information that is related to the protocol used by the export or import associated with this
flow. The context contains flow specific data that is useful within the flow but is not passed
outside of the flow.

The SMO has a schema definition for all three sections. The schema for the headers is the
same for all flows, but which of the specific headers contain data will depend upon the
protocol used by the export or import. The schema for most of the context is the same for
all flows except for the correlation and transient sections. The correlation context and
transient context are flow specific extensions to the context that are used to pass data
within the flow that is required by the flow logic. The body varies for every flow and can
also vary within a flow. This is based first on the interface and operation the message
represents at that point in the flow and whether the data for the operation is input, output
or fault data. These elements of the body of the message define an SMO message type
which becomes an important factor when developing flow logic.

WPIv602_MediationModules.ppt Page 19 of 29

IBM Software Group

19

Mediation module and flow concepts © 2007 IBM Corporation

Agenda

� Introduction

�Mediation module

�Mediation flow component

�Mediation primitives

�Development life cycle and deployment

This section provides more details related to mediation primitives and lists the primitives
available for use. There is also an example mediation flow explained.

WPIv602_MediationModules.ppt Page 20 of 29

IBM Software Group

20

Mediation module and flow concepts © 2007 IBM Corporation

Mediation primitives

� Mediation primitives perform functions within a flow
�Updating or adding data elements to the SMO
�Transforming the SMO to a different schema
�Making routing decisions

�Perform logging or event generation

� Built-in primitives provide a predefined configurable function

� Custom mediation primitives allow you to implement the function in Java

� Mediation primitives have input and output terminals
�Terminals are the endpoints for wires in a mediation flow

�Primitives have one input terminal and zero, one or more output terminals
�A fail terminal is an output terminal taken with the mediation primitive has an

exception

�Each terminal has a specific message type defining the schema of the SMO
at that point in the flow

Mediation primitives are the core building blocks used to process the request and
response messages in a flow. They are used to update, add to and transform the SMO, to
make routing decisions and perform logging and event generation.

There are built in primitives which perform some predefined function that is configurable
through the use of properties. There are also custom mediation primitives which allow you
to implement the function in Java.

Mediation primitives have input and output terminals, through which the message flows.
The terminals are the endpoints for the wires used to connect primitives and nodes into a
flow. Primitives have one input terminal and can have zero, one or more output terminals.
There is also a special terminal called the fail terminal through which the message will be
propagated when the processing of a primitive results in an exception.

Every terminal on primitives and nodes has a specific message type associated with it. It
defines the exact schema for the SMO at that point in the flow. Some primitives are able to
change the message type between the input and output terminals, but most do not change
the message type.

WPIv602_MediationModules.ppt Page 21 of 29

IBM Software Group

21

Mediation module and flow concepts © 2007 IBM Corporation

Mediation primitives – Types

Primitives that ignore the SMO

Stop single path in flow without an exceptionStop

Stop entire flow and throw an exceptionFail

Read, update, modify message using Java codeCustom mediation

Update, modify message using XSL transformationXSLT

Primitives which can modify the SMO message type

Set potential endpoints from registry queryEndpoint lookup

Set elements from contents of a database rowDatabase lookup

Message elements are set, copied or deletedMessage element setter

Primitives which can update SMO elements

Selectively forward message based on conditionMessage filter

Raise a common base event to CEIEvent emitter

Write a log message to the configured log databaseMessage logger

Primitives which read but do not update the SMO ele ments

New
V602

New
V602

New
V602

This slide introduces the various mediation primitive types. They are organized according to their behavior
and abilities for updating the service message object as it flows through the mediation.
The first group includes those primitives that read from but do not update the SMO. The message logger
primitive is used to log all or part of the contents of the message to a message log database which is
identified through configuration of the primitive. The event emitter primitive is used to raise an event
containing all or part of the contents of the message. The event is a common base event which will be
handled by the common event infrastructure. The message filter primitive is used to modify the path through
a flow by selectively forwarding the message based on the evaluation of simple XPath expressions. Each
expression is associated with an output terminal defining where the message will be forwarded.
The next group contains the primitives that have the ability to update elements of the SMO but do not modify
the type of the message. The message element setter primitive can be configured to update elements of the
SMO. Individual elements can be set to a specific value or can have their value deleted. Individual elements
or sub-trees in the SMO can be set by copying the values from another location in the SMO. The database
lookup primitive is used to access information from a database and insert it into the message. A field in the
message is used as a key for the database access and selected fields from the resulting database row can
be placed into the message. The endpoint lookup primitive is used to perform a query of the WebSphere
Service Registry and Repository. The SMO is updated with potential endpoints that can be used for the
callout to a service.
The next group includes those primitives that have the ability to modify the message type. The XSLT
primitive is used to update or transform messages using XSL transformation. This can be used to change the
format of the message. An example of when the format needs to change is when the target provider has a
different interface than the incoming message. The custom mediation primitive is used to do any message
processing not covered by the other mediation primitives. This is done through Java code that can be written
as a visual snippet, a Java snippet or a Java SCA component.
The remaining primitives do not access the SMO. The stop primitive is used to stop an individual path
through the mediation flow without raising an exception or affecting other paths through the flow. The fail
primitive is used for error conditions and will stop the entire mediation flow and cause an exception to be
thrown.

WPIv602_MediationModules.ppt Page 22 of 29

IBM Software Group

22

Mediation module and flow concepts © 2007 IBM Corporation

Mediation primitives in the mediation flow editor

Operation
connections

Mediation
primitives

1

2

3

This slide shows a mediation flow component in the assembly editor and in the mediation
flow editor, similar to a previous slide. However, in this slide mediation primitives have
been added to the request flow. The request flow show here will be used on the next slide
to illustrate the flow of a message. The flow is designed to provide a stock quote, with
quotes being supplied by a service returning quotes that are delayed 20 minutes, except
for premium customers who receive real time quotes.

The request flow starts at the input node and goes to a message logger primitive that will
log the message to the message database. Then a database lookup primitive that
determines if the request is for a premium customer, making an update to the transient
context to indicate their status. The next primitive is a message filter which looks at the
transient context and directs the flow based on the type of customer. Depending upon the
result of the message filter, the message request is then transformed to the interface of
the delayed quote service or the real time quote service by an XSLT primitive. The
appropriate service is then called through one of the callout nodes.

The response flow is not shown in this example, but it would need to contain XSLT
primitives to translate the responses to the interface used by the requestor.

WPIv602_MediationModules.ppt Page 23 of 29

IBM Software Group

23

Mediation module and flow concepts © 2007 IBM Corporation

Mediation flow example

Mediation module

DelayedDelayed
IBM Hurley
England

IBM Hurley
England

RealtimeRealtime

Mediation – request flow

XSL
transform

SMO Message
logger

Message
filter

Database
lookup

XYZ

Mediation
flow

component

Requestor

Provider

Provider

SMOSMOSMO SMO

1

2

3

1

2

3

SMO

This is an illustration of the request flow shown on the previous slide. There is one
difference: the delayed quote service uses the same interface as the requestor, so there is
one less XSLT primitive in the flow. The color of the boxes labeled SMO is intended to
indicate when changes have occurred to the SMO content or message type.
Starting in the upper left, a request for a stock quote is made. It is received by the
mediation module through an export, the SMO is constructed and the request flow begins
in the mediation flow component as shown on the bottom at the label 1. The SMO is
passed from the input node to a message logger which writes the message to a log
database. The unchanged SMO is then passed to the database lookup primitive which
performs a lookup of the customer in a database to determine if they are a premium
customer. This information is placed into the transient context of the SMO and the
modified SMO is passed to the message filter primitive. The message filter primitive
contains an XPath expression that checks to see if the transient context says this is a
premium customer. If not, the unchanged SMO is propagated from the message filter to
the callout for the delayed service at label 2. The call to the delayed service is then made
through the import labeled 2. If it was a premium customer, the unchanged SMO is
propagated from the message filter to the XSLT primitive that modifies the message type
of the SMO to be compatible with the interface of the real time service. The transformed
SMO is then passed to the callout for the real time service as shown at label 3. The real
time service is called using the import labeled 3.
When the service provider returns, the result will be processed through a response flow
that is not shown here, and the result is then passed back to the requestor. For the
delayed quote service, the response flow would not need to do any processing. However,
for the real time quote service there would need to be an XSLT primitive to change the
message type of the response message to be compatible with the interface used by the
requestor.

WPIv602_MediationModules.ppt Page 24 of 29

IBM Software Group

24

Mediation module and flow concepts © 2007 IBM Corporation

Agenda

� Introduction

�Mediation module

�Mediation flow component

�Mediation primitives

�Development life cycle and deployment

This section looks at the development, test and deployment life cycle for a mediation
module developed in WebSphere Integration Developer and deployed to a WebSphere
Process Server or WebSphere Enterprise Service Bus server.

WPIv602_MediationModules.ppt Page 25 of 29

IBM Software Group

25

Mediation module and flow concepts © 2007 IBM Corporation

Deployment

� A mediation module is deployed in the same way as an
SCA module

� WebSphere Integration Developer generates J2EE artifacts

� A J2EE EAR is generated from the J2EE artifacts using:
�WebSphere Integration Developer

�serviceDeploy

� Install into the server using standard J2EE EAR installation
�Administrative console application installation panels

�Using wsadmin $AdminApp install from the command line

� Can be installed into either:
�WebSphere Enterprise Service Bus

�WebSphere Process Server

The packaging and deployment for a mediation module is the same as that of an SCA
module. There are J2EE artifacts generated by WebSphere Integration Developer that are
used to build a J2EE EAR that can be deployed to a server. The building of the J2EE EAR
can be done by WebSphere Integration Developer or using a command line tool named
serviceDeploy. The J2EE EAR can then be installed into a WebSphere Enterprise Service
Bus or WebSphere Process Server using the normal installation capabilities of the
administrative console or the wsadmin $AdminApp install command line tool.

WPIv602_MediationModules.ppt Page 26 of 29

IBM Software Group

26

Mediation module and flow concepts © 2007 IBM Corporation

Development, test and deployment life cycle

Local or remote

Administrative
console

Single
server

Single
server

WebSphere cell

Deployment
manager

Deployment
manager

Node

Managed
server

Managed
server

Node
agent

Node

Managed
server

Managed
server

Node
agent

WebSphere Integration
Developer

Generated
artifactsMediation

module

Unit
test

server

Unit
test

server

Deploy

configure

server = WebSphere Enterprise Service Bus
or WebSphere Process Server

- Using WebSphere Integration Developer

- You create a mediation module

- It generates the J2EE artifacts

- Test it in unit test server, which is a real
server, administered with administrative
console or wsadmin

- Can also test in single local or remote server

- Can also test in a managed server in a
WebSphere cell

- When testing complete, deploy J2EE EAR to
production in single server or managed servers

J2EE EAR

This diagram shows the end to end development, testing and deployment life cycle of a
mediation module. Using WebSphere Integration Developer, you construct your mediation
module with SCA imports and exports, a mediation flow component and possibly some
Java components.
As you are developing your mediation module, WebSphere Integration Developer will be
generating J2EE artifacts.
When you are ready to unit test your module, WebSphere Integration Developer generates
a J2EE EAR and installs it into the unit test server that is installed with WebSphere
Integration Developer. This can be either a WebSphere Enterprise Service Bus or
WebSphere Process Server. The unit test server is a fully functional server and is
administered using the administrative console or wsadmin commands. However, while unit
testing the mediation module you interact with WebSphere Integration Developer to deploy
the mediation application and to refresh it in the server as you make iterative changes.
In addition to the unit test servers, WebSphere Integration Developer enables you to
configure a stand-alone WebSphere Enterprise Service Bus or WebSphere Process
Server to use for unit testing. A possible reason for doing this would be to do your unit
testing on a server running on a different operating system than the development tools,
such as an AIX system.
You can also do your testing using a managed server which belongs to a WebSphere cell
that is managed by a deployment manager.
Once you have finished with your development and unit testing you may want to continue
your testing without the WebSphere Integration Developer. Using WebSphere Integration
Developer you can export a J2EE EAR containing your mediation application.
The EAR file can then be installed into a stand-alone or managed server using the
administrative console or wsadmin command line tools. You would do this in your quality
assurance test environment and your production environment.

WPIv602_MediationModules.ppt Page 27 of 29

IBM Software Group

27

Mediation module and flow concepts © 2007 IBM Corporation

Summary

� ESB mediation capabilities are provided by both:
�WebSphere Enterprise Service Bus
�WebSphere Process Server

� ESB capabilities are enabled by mediation modules
�Follow the SCA module of imports, exports and components
�Provide loosely coupled connectivity between service requestor and

provider
� Protocol transformation
� Dynamic message routing
� Message augmentation and transformation

� Mediation modules contain a mediation flow component
�Contains the flow logic for service operation requests and responses
�Built using mediation primitives that act on the message in the flow
�The message is represented as a service message object (SMO)

In summary, enterprise service bus functionality can be deployed into either WebSphere
Enterprise Service Bus or WebSphere Process Server.

The ESB capabilities are provided using a special type of SCA module called the
mediation module. Using the mediation module, a loose coupling of service requestors
and providers can be obtained. This includes enabling protocol transformations, dynamic
routing of messages and the augmentation and transformation of messages.

The mediation module contains a mediation flow component. The mediation flow logic is
defined in this component through the use of mediation primitives. The message that flows
through the mediation flow component is a type of SDO called a service message object.

WPIv602_MediationModules.ppt Page 28 of 29

IBM Software Group

28

Mediation module and flow concepts © 2007 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WPIv602_MediationModules.ppt Page 29 of 29

IBM Software Group

Mediation module and flow concepts © 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere

J2EE, Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2007. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

29

