
WPIv602_SMOsAndMedFlows.ppt Page 1 of 23

®

IBM Software Group

© 2007 IBM Corporation

Updated April 12, 2007

WebSphere ® Enterprise Service Bus V6.0.2
WebSphere Process Server V6.0.2
WebSphere Integration Developer V6.0.2

Service message objects and mediation flows

This presentation describes Service Message Objects and how they relate to Mediation
Flows.

WPIv602_SMOsAndMedFlows.ppt Page 2 of 23

IBM Software Group

2

Service message objects and mediation flows © 2007 IBM Corporation

Goals

�Understand data representation in mediation flows
�Describe the service message object (SMO)

� Basics of the SMO

� SMO structure

�Message types and relationship to the mediation flow

The goal is to provide an understanding of how data is represented in a mediation flow.
The data in a flow is described using a Service Message Object (SMO) and this
presentation explains some basic characteristics of an SMO and then describes its overall
structure. The structure of the application portion of the SMO, referred to as the body or
payload, defines a message type. Message types are an important element when
considering the logic and flow of a mediation. This presentation describes the relationship
between message types and mediation flows.

WPIv602_SMOsAndMedFlows.ppt Page 3 of 23

IBM Software Group

3

Service message objects and mediation flows © 2007 IBM Corporation

SMO basics and structureSMO basics and structure

Section

This section considers the basic characteristics and structure of an SMO.

WPIv602_SMOsAndMedFlows.ppt Page 4 of 23

IBM Software Group

4

Service message objects and mediation flows © 2007 IBM Corporation

What is a service message object (SMO)?

� Mediation flows operate on messages between endpoints

� The problem
�There is variability between different messages

� Protocol over which the message is sent (for example, JMS or web services)

� Interface, operation, input and output data types

� Request versus response message

�Mediation primitives need to be able to operate on any message

� The solution
�Provide a common representation of a message – the SMO
�SMO uses service data object (SDO) to represent messages

�All SMOs have the same basic structure as defined by the schema
� Three major sections: body, headers and context

�All information in the SMO is accessed as an SDO DataObject
� Using XPath

� Using the generic DataObject APIs

� Using SMO specific APIs which are aware of the SMO schema

In order to understand what a Service Message Object is, you must first understand some characteristics of
a mediation flow. The primary function of a mediation flow is to operate on a message between endpoints,
where a service requestor and a service provider are those endpoints. However, this presents a problem.

The first point is that a message can take on many different forms, because the protocol used to send a
message, whether JMS or Web services, can vary. Also, each message is different depending upon the
interface and operation associated with the message and whether this is the request side or response side of
the interaction between the requestor and provider.

The next point to understand is that within the mediation flow, mediation primitives are used to operate on the
message. Mediation primitives examine and update the message contents and therefore must understand
what is contained in the message. The solution is to provide mediation primitives with some kind of a
common representation of a message, and that is what a Service Message Object does. SMOs provide a
common representation of a message that accounts for differing protocols and differing interfaces, operations
and parameters that the message represents.

SMOs are built using Service Data Object (SDO) technology. SDO uses a schema that describes the basic
structure of an SMO which is composed of three major sections. The body of the message represents the
specific interface, operation and parameters relevant to this message. The headers section of the message
represents information about the protocol over which the message was sent. The context section represents
data that is important to the internal logic of the flow itself. Each of these major sections of the SMO is
examined in more detail in subsequent slides.

The data within an SMO is accessed using SDO, specifically the SDO DataObject, which enables access
using XPath, the generic DataObject APIs, and some SMO specific APIs that are aware of the SMO schema.

WPIv602_SMOsAndMedFlows.ppt Page 5 of 23

IBM Software Group

5

Service message objects and mediation flows © 2007 IBM Corporation

SMO structure - Top level of SMO

�At the top level, SMOs are composed of:
�body [0..1]
� The application data (payload) of the message
� Contains the input or output values of the operation

�headers
� Information relevant to the protocol used to send the message

�context
� Other data specific to the logic of the flow
� Failure information

Shown here is an illustration of the three major sections of an SMO, introduced on the
previous slide. The body of the SMO contains the application data, sometimes referred to
as the payload. This is the data that is relevant to the endpoints, the service requestor and
the service provider. The body describes the operation being performed and the inputs or
outputs of that operation. The schema definition shows that it is possible for the body not
to be present, but in practice an SMO always contains a body. The headers of the SMO
contain protocol specific information associated with the protocol over which the message
is being sent. The context of the SMO contains data required by the logic of the flow. This
data exists within the flow itself but is not passed to or from the requestor or provider.
Under certain conditions error information is also added to the context. Each of these
sections of the SMO is examined more closely in the following slides.

WPIv602_SMOsAndMedFlows.ppt Page 6 of 23

IBM Software Group

6

Service message objects and mediation flows © 2007 IBM Corporation

SMO structure - Body
� The body contains the payload of the message

�Payload is the application data flowing in the message
�It identifies the operation and either its inputs, outputs or faults

� The operation is defined in WSDL using the Interface editor

� Inputs/outputs/faults can be simple types or XSD defined types
�XSD defined types are created using the business object editor

Operation Definition
Business Object Definitions

Body in
SMO

The body of the SMO contains the payload, which is the application data that flows
between a service requestor and service provider. The body represents a specific
operation on a specific interface. The data associated with that operation is also contained
in the body and will be either the inputs, the outputs or the faults defined for the operation.
The interface is a WSDL defined interface, and the Interface Editor in WebSphere
Integration Developer can be used to define it. The inputs, outputs and faults can be
simple types or they can be XSD defined types. The Business Object Editor in WebSphere
Integration Developer can be used to define these types. The illustration at the bottom of
this slide shows the relationship between an interface defined in the Interface Editor, a
business object defined in the Business Object Editor and the contents of the body of an
SMO. In the lower left section is an SMO body expanded to show the individual elements.
Starting at the upper left in the Interface Editor, is an operation definition for an operation
called setCustomerInformation. The body contains a section called
setCustomerInformation as its top level. This operation has an input called customer,
defined by a Customer Business Object. Since this SMO body represents the request
flow, it contains the inputs. Within the SMO, the setCustomerInformation section contains
a customer section. To understand what is contained in the customer section, look at the
Business Object Editor in the upper right where the Customer business object is defined. It
is composed of 4 fields, a customerID, firstName and lastName, which are all strings, and
a stocks field, which is an array of Stock business objects. A Stock business object is
composed of two fields, numberOfShares, which is an int, and symbol, which is a string.
The SMO body contains the same elements as the Customer business object defined in
the Business Object Editor. The body of the SMO truly is a representation of an operation
and the data associated with that operation.

WPIv602_SMOsAndMedFlows.ppt Page 7 of 23

IBM Software Group

7

Service message objects and mediation flows © 2007 IBM Corporation

SMO structure - Headers
� The headers carry information about the inbound message

�SCA binding type determines which headers are populated
� Binding type of the Export for request flows

� Binding type of the Import for response flows

� Header types:
�SMOHeader

� Protocol independent information about the message
� Contains the target URI used for dynamic callouts

�JMSHeader
� JMS Message header fields

�SOAP Header
� Array of SOAP headers contained in the message

�SOAPFaultInfo
� Contents of a SOAP fault being returned

�properties[]
� Arbitrary list of name value pairs (used for JMS user properties)

�MQHeader
� MQ Message Descriptor
� Format and encoding information describing the body

� Array of additional headers passed in the message

New
V602

New
V602

The headers section of the SMO contains information associated with the protocol over
which the inbound message was received. The binding type of the SCA Export or Import
determines which of these header types will be populated. The headers on a request flow
are determined by the binding type of the Export and the headers on the response flow are
determined by the binding type of the Import.
The first of the header types, the SMOHeader , contains protocol independent information
that defines the message, including elements such as a unique message ID and the
version number of the SMO schema. It also contains a Target element which can contain
the URI used for dynamic callouts, a new capability in version 6.0.2. The SMO header is
always present in a service message object.
The JMSHeader type contains the JMS message header properties, which are sent with
all JMS messages.
The SOAPHeader type contains an array of SOAP headers contained in the SOAP
message.
The SOAPFaultInfo type contains information about SOAP faults that are being returned.
The properties type provides the ability to include an arbitrary list of name/value pairs that
can be use to represent any information. An example of the use of the properties header is
for holding JMS user properties that were included with a JMS message.
The MQHeader type contains header information from an MQ message and is a new
addition in version 6.0.2. It contains the MQ Message Descriptor, format and encoding
information associated with the body of the message and an array of additional headers
that were passed with the message. The structure of the MQ headers in the SMO is
slightly simplified from the structure contained in the actual MQ message, eliminating the
need to walk a chain of format and encoding information when traversing the headers.

WPIv602_SMOsAndMedFlows.ppt Page 8 of 23

IBM Software Group

8

Service message objects and mediation flows © 2007 IBM Corporation

SMO structure - Context

� The context contains flow specific data
�Used to pass data between mediation primitives

�Fundamental to enabling flow logic

�Four sections with unique purposes
� correlation, transient and failInfo will be described in subsequent slides

� primitiveContext
�Array of mediation primitive type specific elements

�Endpoint lookup primitive is the only user so far

New
V602

The context section of the SMO is used for passing data that is required internally by the
mediation flow logic. Mediation primitives can place data into the context so that it can be
accessed by subsequent mediation primitives in the flow. The context is divided into 4
sections, and the first three sections, correlation, transient and failInfo are discussed in
subsequent slides. The fourth section, the primitiveContext, was added in version 6.0.2
and provides an extensible array containing elements that are specific to individual
mediation primitive types. This enables the implementation of a mediation primitive to
store data into the SMO that will most likely be needed later in the flow. The only
mediation primitive that is currently making use of this section is the Endpoint Lookup
primitive, but the structure allows for extensibility if it is needed at a later date by other
primitives.

WPIv602_SMOsAndMedFlows.ppt Page 9 of 23

IBM Software Group

9

Service message objects and mediation flows © 2007 IBM Corporation

SMO structure - Correlation and transient
context
� The context includes the correlation and transient context

� Both of these are:
�Defined by an XSD data object (defined with business object editor)
�Specified on the Input node properties of a mediation flow

� Correlation
�Maintains data across a request/response flow

� Transient
�Maintains data only during one direction (request or response)
�One data object definition used for both the request and response

Context in SMO Business object definition

Specified as transient
context in input node’s

properties

No correlation
context specified

The context section of an SMO contains the correlation and the transient context, which
have several things in common. For instance, they are both used to pass flow specific
information between mediation primitives. An XSD defined data object, such as one
created using the Business Object Editor, is used to define the elements of a correlation
context or a transient context. Each of these is associated with a flow by specifying the
appropriate business object on the input node of the mediation flow. Correlation contexts
and transient contexts differ however, in the scope over which they maintain data. A
correlation context retains data across a request/response flow and therefore can be used
to pass data from a mediation primitive on the request flow side to a mediation primitive on
the response flow side. A transient context can be used during either the request or
response flow but does not retain the data set in the request for access by the response.
Only one business object is used to define the transient context. Therefore, if you want to
use it on both the request and response flows, the business object definition must contain
the fields required for both sides of the flow. This is true even though the values set in the
request flow will not be available for the response flow. The bottom of the slide on the
right side shows an expanded context section of an SMO. In this particular example, there
is no correlation context specified, but there is a transient context. The left side shows the
definition of the transient context in the Business Object Editor and the fields defined in the
business object are the same as the fields that appear in the SMO.

WPIv602_SMOsAndMedFlows.ppt Page 10 of 23

IBM Software Group

10

Service message objects and mediation flows © 2007 IBM Corporation

SMO structure – FailInfo Context

� The context also includes the failInfo
�Contains failure information

�Added to the SMO when a Fail terminal flow
occurs

� The information provided includes:
�failureString - describes the failure

�origin – mediation primitive in which failure
occurred

�invocationPath – the flow taken through the
mediation

�predecessor – previous failure

Shown on the right is an expanded view of the failInfo portion of the context section, which
is used to contain information about a failure that occurred during the flow. It is only
populated when a failure occurs in a mediation primitive and the mediation primitive has its
fail terminal wired to another primitive or node. This allows a mediation flow to examine a
failure and determine how the failure should be handled. The failInfo contains a string that
describes the failure, the name of the mediation primitive in which the failure occurred and
information about the path taken through the flow before the failure. In the event that a
second failure occurs while processing the first failure, the predecessor section is used to
retain the information about the original failure.

WPIv602_SMOsAndMedFlows.ppt Page 11 of 23

IBM Software Group

11

Service message objects and mediation flows © 2007 IBM Corporation

Mediation flowsMediation flows
and theand the

service message objectservice message object

Section

This section describes the relationship between SMOs and mediation flows, in particular
how message type plays a major role when defining a mediation flow.

WPIv602_SMOsAndMedFlows.ppt Page 12 of 23

IBM Software Group

12

Service message objects and mediation flows © 2007 IBM Corporation

Message types

� Message type defines the content of the SMO body

� Message type is determined by:
�Interface
�Operation
�Message category

� Specifies if message contains the operation’s Input(s), Output(s) or Fault(s)

A message type defines what the structure of an SMO body will be and is defined by the
interface and the operation associated with the message and the message category. The
message category indicates if the message contains the operation’s inputs, outputs or
faults. The screen capture in this slide shows the Change Message Type dialog, which is
used by first browsing for and selecting an interface. Once that is done, the Operation
dropdown box is used to select an operation from the list all of the operations defined on
that interface. Finally the Message Category is set indicating if it is the operation’s inputs,
outputs or faults that will be included. From these three settings, the Message Type field
will be set to some specific type.

WPIv602_SMOsAndMedFlows.ppt Page 13 of 23

IBM Software Group

13

Service message objects and mediation flows © 2007 IBM Corporation

Message types (cont.)

� Message type is a key factor in Mediation Flows

� Terminals on nodes and primitives
�Are associated with a specific message type
�Can only be wired together with terminals of like message type

� Naming convention applied to message types:
�Input <operation_name>RequestMsg

�Output <operation_name>ResponseMsg

�Fault <operation_name>_<fault_name><?>Msg
� <?> - additional qualifier sometimes generated

� Message type is fully qualified, including namespace
�Example:

� {http://CustomerBackend/CustomerService}getCustomerInformationRequestMsg

Message types are a key factor when defining a mediation flow. In a mediation flow the
nodes and mediation primitives have terminals and each terminal is associated with a
specific message type. When wiring a flow, only terminals of like message type can be
wired together. There is a naming convention that is used for the definition of message
types.

For an input message the convention is: operation name, RequestMsg.

For an output message the convention is: operation name, ResponseMsg.

The convention for a fault is: operation name, _faultnameMsg. In this case, there
sometimes is also a generated qualifier placed in between fault name and Msg. When a
qualifier is generated. It can have one or more characters.

These naming conventions are actually the shortened form of the message type that
appears in the mediation flow editor, whereas the real message type appears in the
properties view. The real message type is a fully qualified name and includes both the
namespace and interface as shown in the example above. This example shows a
namespace of http://CustomerBackend, an interface of CustomerService, an operation of
getCustomerInformation and it ends in RequestMsg to indicate this is for a request flow
and contains the inputs.

WPIv602_SMOsAndMedFlows.ppt Page 14 of 23

IBM Software Group

14

Service message objects and mediation flows © 2007 IBM Corporation

� Message type for nodes are defined by a combination of:
�The Interface and References on the Mediation Flow Component

� These define the service requestor and service provider interfaces

�The operation connections on the Mediation Flow
� These define the operation names on the requestor and provider interfaces

Mediation flow definition - Defining the nodes

Service Requestor
Interface

Service Providers
Interfaces

getNumber
Operation Connection

getAddr
Operation Connection

Service Requestor
Interface

and all of its defined
operations Service Provider

Interfaces and all
of their defined

operations

The next several slides are used to show how a mediation flow is defined. The specific
focus is on the message types associated with the terminals of the nodes and mediation
primitives that make up the flow. Every mediation flow has nodes that represent the entry
and exit points for the flow and the nodes have terminals that have fixed message types.
The interfaces and operations associated with the flow determine which nodes are present
in the flow and the message types associated with their terminals. It starts with the
definition of the Mediation Flow Component in the assembly diagram as shown in the top
of this slide. The Mediation Flow Component contains an interface that is used by a
requestor and it also has references defining the interfaces used for calling providers. In
the lower portion of the slide, the Operation Connections panel of the Mediation Flow
Editor shows all of the operations associated with the defined interfaces. Using this panel
the operations on the input interface are connected to operations on the interfaces used to
call providers.

Doing this provides sufficient information for any input operation to define the nodes for the
flow, including the message types associated with the terminals for the nodes. This will be
examined in detail on subsequent slides.

WPIv602_SMOsAndMedFlows.ppt Page 15 of 23

IBM Software Group

15

Service message objects and mediation flows © 2007 IBM Corporation

Mediation flow definition - Request flow nodes

� Input node – <source_operation_name>RequestMsg
�Starting point of the request flow receiving the service request
�A flow can have only one input node

� Callout node – <target_operation_name>RequestMsg
�End point of the request flow sending the request to the service provider
�There is one callout node for each target operation

Input Node

Callout Nodes

Input Response
Node

Input Fault
Node

Request
Flow

Terminals Define
Message Type

This slide shows the canvas of the Mediation Flow Editor for the request flow before the
addition of any mediation primitives. Shown at the upper left of the canvas is the Input
Node, which is the starting point for the request flow. There is only one input node for a
mediation request flow and it has an output terminal with a message type of: source
operation name, RequestMsg.

On the right side of the canvas, the top two nodes are the Callout Nodes. These are the
end points for the request flow where a call is made to a service provider. There will be
one callout node for every target operation defined in the Operations Connections panel.
The callout nodes each have an input terminal with a message type of: target operation
name, RequestMsg.

The remaining nodes are described on the next slide.

WPIv602_SMOsAndMedFlows.ppt Page 16 of 23

IBM Software Group

16

Service message objects and mediation flows © 2007 IBM Corporation

Mediation flow definition - Request flow nodes

� Input response node – <source_operation_name>ResponseMsg
�Enables mediation flow to reply to requestor without calling a service provider

� Input fault node – <source_operation_name>_<fault_name><?>Msg
�Enables mediation flow to return a WSDL fault message to the requestor

without calling a service provider
�Each fault defined for the source operation has its own terminal on this node

Input Node

Callout Nodes

Input Response
Node

Input Fault
Node

Request
Flow

Terminals Define
Message Type

The third node on the lower right side is the Input Response Node, which enables the
mediation flow to return directly to the requestor without calling a service provider and can
be used where the mediation flow can satisfy the request. The input response node has an
input terminal with a message type of: source operation name, ResponseMsg.

The bottom node on the right is the Input Fault Node, which enables the mediation flow to
return a WSDL fault to the requestor and can be used when some error has been detected
within the mediation flow. This node can have multiple input terminals, one for each of the
faults defined on the source operation. The message type associated with each terminal
is: source operation name, underbar, fault name, optional qualifier, Msg. If there are no
faults defined for the source operation, the input fault node will not be present on the
canvas.

WPIv602_SMOsAndMedFlows.ppt Page 17 of 23

IBM Software Group

17

Service message objects and mediation flows © 2007 IBM Corporation

Mediation flow definition - Response flow
nodes

� Callout response node – <target_operation_name>ResponseMsg
�Starting point of the response flow receiving the response from the service provider
�There is one callout response node for each target operation

� Callout fault node – <target_operation_name>_<fault_name><?>Msg
�Starting point of the response flow receiving a WSDL fault message from the provider
�Each fault defined for the target operation has its own terminal on this node

Callout
Response Nodes

Input Response
Node

Input Fault
Node

Response
Flow

Terminals Define
Message Type

Callout
Fault Nodes

This slide shows the canvas of the Mediation Flow Editor for the response flow before the
addition of any mediation primitives.

Starting at the upper left of the canvas, there are two Callout Response Nodes, which are
the starting points for the response flow where the return from the service provider is
received. There is one callout response node for every target operation defined in the
Operations Connections panel and they each have one output terminal with a message
type of: target operation name, ResponseMsg. A Callout Response Node has another
terminal which is used for unmodeled fault handling, the terminal type of which is beyond
the scope of this discussion.

The lower two nodes on the left side are the Callout Fault Nodes, which are the starting
points for the response flow when a service provider returns a fault. There is one callout
fault node for every target operation that has one or more faults defined. These nodes
may have multiple output terminals, one for each defined fault on the target operation. The
message type for the terminals is: target operation name, underbar, fault name, optional
qualifier, Msg.

The remaining nodes are described on the next slide.

WPIv602_SMOsAndMedFlows.ppt Page 18 of 23

IBM Software Group

18

Service message objects and mediation flows © 2007 IBM Corporation

Mediation flow definition - Response flow
nodes

� Input response node – <source_operation_name>ResponseMsg
�End point of the response flow returning a response to the original requestor
�A flow can have only one input response node

� Input fault node – <source_operation_name>_<fault_name><?>Msg
�End point of the response flow returning a WSDL fault message to the original

requestor
�Each fault defined for the source operation has its own terminal on this node

Callout
Response Nodes

Input Response
Node

Input Fault
Node

Response
Flow

Terminals Define
Message Type

Callout
Fault Nodes

On the right side of the canvas, the top node is the Input Response Node, the end point
for the response flow, which returns to the original service requestor. There will be only
one input response node in a response flow and the input terminal of this node has a
message type of: source operation name, ResponseMsg.

The bottom node on the right is the Input Fault Node, which is used to return a WSDL fault
to the original service requestor. There can be multiple input terminals on this node, one
for each of the faults defined on the source operation. The message type associated with
each terminal is: source operation name, underbar, fault name, optional qualifier, Msg. If
there are no faults defined for the source operation, the input fault node will not be present
on the canvas.

This completes an examination of the nodes, their terminals and associated message
types.

WPIv602_SMOsAndMedFlows.ppt Page 19 of 23

IBM Software Group

19

Service message objects and mediation flows © 2007 IBM Corporation

Mediation flow definition – Primitives

� Mediation primitives have terminals just like the nodes do
�Input, output and fail terminals

�Each terminal has a specific message type associated with it

� Mediation primitives operate on the SMO
�They can access and update elements of the SMO
�They can reformat the SMO which changes the message type

� Mediation primitives are used to define the flow logic
�Flow logic is define by wiring nodes and primitives from left to right

� Start at the left nodes output terminals
� End at the right side nodes input terminals
� Mediation primitives are wired in between to define the logic

�Terminals must be of the same message type to be wired together

�Only the XSLT and custom primitives can modify message type

Now that nodes have been covered, including their terminals and associated message
types it is time to consider mediation primitives and how they are used to define the logic
of a mediation flow.
Similar to nodes, the mediation primitives have terminals too. An SMO is passed to a
mediation primitive through the input terminal and is passed out of the primitive through an
output or fail terminal. Each of these terminals has a specific message type associated
with it.

The mediation primitives operate on the SMO. Some primitives can only access element
values from the SMO, others can access and update values and some can also reformat
the SMO. Reformatting of the SMO changes the message type.

The flow logic of the mediation is defined by adding mediation primitives to the canvas
between the nodes and then wiring the nodes and mediation primitives together. The flow
is defined from left to right, starting with the left side nodes, wiring through some
combination of mediation primitives and ending with the right side nodes.
When wiring together the terminals for the nodes and primitives, any terminals that are
wired together must be for the same message type. This is because the format of the
SMO as it flows out of one terminal will be the same when it flows into the terminal it is
wired to. When there is a need to connect nodes or primitives having terminals with
differing message types, the XSLT or Custom Mediation primitive must be used between
them. This allows the SMO to be reformatted to the other message type.

The following slide will provide an example mediation flow.

WPIv602_SMOsAndMedFlows.ppt Page 20 of 23

IBM Software Group

20

Service message objects and mediation flows © 2007 IBM Corporation

Mediation flow definition - Example

� Two possible providers, one with a different interface than the requestor

� Errors in the flow result in a fault being returned to the requestor

� XSLT primitives used to modify message type when required

� Message types of terminal identified with color coded arrows

= getNumberRequestMsg

= getNumber_FlowErrorMsg

= getNumberResponseMsg

= getCellRequestMsg

This slide contains a realistic example of a mediation flow, illustrating the wiring of nodes and mediation primitives
together, while taking into account the constraint of only being able to wire terminals of like message type. This example
shows two possible target service providers, one of which has a different interface than the service requestor. The flow
also handles errors and returns a fault to the requestor if there is a failure in the flow.
The flow in the upper left shows that the Input node is for the getNumber operation of the Contact interface. Therefore, it
has an output terminal with a message type of getNumberRequestMsg. Looking at the flow in the upper right, the top
Callout node is for the same interface and operation as the Input node and therefore has an input terminal of the same
message type. The other Callout node is for the getCell operation of the Client interface and it therefore has an input
terminal with a message type of getCellRequestMsg.
Continuing down the right side, the Input Response node’s input terminal will be for message type
getNumberResponseMsg. Finally, on the lower right is an Input Fault node with an input terminal for message type
getNumber_FlowErrorMsg, corresponding to the FlowError fault defined in the getNumber operation of the requestor.
Before examining the flow, notice that each terminal in the flow is marked with an arrow of a different color, with each
color representing the message type of the terminal it is pointing to.
In the flow, the Input Node is wired to a Message Filter mediation primitive. This primitive contains some logic that
differentiates between requests that should be passed to the provider with the Contact interface versus requests that
should be passed to the provider with the Client interface. As you can see, all terminal message types for this primitive
are for the getNumberRequestMsg. In the case where the request goes to the provider with the Contact interface, the
wire can go directly to the Callout node. In the case where the request goes to the provider with the Client interface, the
message type must be changed from a getNumberRequestMsg to a getCellRequestMsg. This is done using the XSLT
primitive that is labeled XSLT-ToClient and which is then wired to the Callout.
The description of the non-error paths through the flow is now complete and the error paths can now be examined.
Coming out of the Message Filter and XSLT primitives are Fail terminals which are used when the primitive raises some
kind of an error. Fail terminals always have the same message type as the input terminal, so both of these have a type
of getNumberRequestMsg. The flow logic is designed to return a fault to the requestor when either of these primitives
fails. In order to do this, both Fail terminals are wired to the primitive labeled XSLT-ReturnFault, which changes the
message type from a getNumberRequestMsg to a getNumber_FlowErrorMsg. It is then wired to the Input Fault node
which returns the fault to the requestor.
Finally, there is a possibility that the XSLT used to modify the SMO to a fault message can fail. In this case, the Fail
terminal of the XSLT-ReturnFault primitive is wired to a Fail primitive. This results in the mediation flow ending in an
exception with no response returned to the requestor.

WPIv602_SMOsAndMedFlows.ppt Page 21 of 23

IBM Software Group

21

Service message objects and mediation flows © 2007 IBM Corporation

Summary

�Examined service message objects
�Described the service message object (SMO)
� Basics of the SMO

� SMO structure

�Discussed message types
� Looked at how message types relate to the mediation flow

In summary, this presentation examined the use of Service Message Objects by first
describing what an SMO is and how it is structured. The concept of message types was
explained and a detailed description of how message types affect the construction of a
mediation flow was given. Finally, an example of a mediation flow was provided,
illustrating how the message type affects the wiring of the flow.

WPIv602_SMOsAndMedFlows.ppt Page 22 of 23

IBM Software Group

22

Service message objects and mediation flows © 2007 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WPIv602_SMOsAndMedFlows.ppt Page 23 of 23

IBM Software Group

Service message objects and mediation flows © 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or
both:

WebSphere

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document
could include technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at
any time without notice. Any statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent
goals and objectives only. References in this document to IBM products, programs, or services does not imply that IBM intends to make such products,
programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this document is
not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS"
WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are
warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty,
International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with
this publication and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights.
Inquiries regarding patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples
described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. The actual
throughput or performance that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's
job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user
will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2007. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA
ADP Schedule Contract and IBM Corp.

