
WPIv6_Clustering.static.ppt

This presentation covers the theory and concepts of clustering for the WebSphere

Enterprise Service Bus and the WebSphere Process Server V6. Throughout this

presentation all references to the WebSphere Process Server also apply to the

WebSphere Enterprise Service Bus.

Page 1 of 25

WPIv6_Clustering.static.ppt

This presentation assumes that you are familiar with clustering in WebSphere Application

Server Network Deployment V6. The goal is to present the underlying and motivating

issues involved with clustering and messaging in a WebSphere Process Server

environment. The next goal is to discuss high availability and scalability in terms of

Message Engines.

Page 2 of 25

WPIv6_Clustering.static.ppt

The agenda for this presentation begins with an overview of the differences between

WebSphere Application Server and WebSphere Process Server. Then it will cover

clustering basics, including some terms and definitions, before moving into Messaging

topics. Finally, deployment options, database options, and other components are

discussed.

Page 3 of 25

WPIv6_Clustering.static.ppt

This demonstrates the artifacts as they are created in the WebSphere Integration

Developer environment before they get deployed to the WebSphere Process Server

Network Deployment V6 runtime environment.

Initially everything is in the WebSphere Integration Developer, using Derby for the

databases and everything is all in one server.

Page 4 of 25

WPIv6_Clustering.static.ppt

To get to the fully network deployed configuration….

1. Create the WPRCSDB database and incorporate the tables required for the Enterprise

Service Bus mediations.

2. As the messaging component moves to the runtime environment, the data stores for the

Message Engines are consolidated to a centrally located, remote database and the JMS

resources are established on numerous servers.

3. As the business processes move to the runtime, the BPEDB database is created and

the applications are deployed on numerous servers.

4. Moving the Common Event Infrastructure component to the runtime causes the creation

of yet another database that is specifically for the Common Event Infrastructure events.

These events can be generated from any of the servers, either from the Business Process

Choreographer infrastructure or from applications directly.

The picture here provides a sense of what it takes to move from the development

environment, to a fully distributed Network Deployment environment for either test or

production. There are several databases to be created and managed and decisions about

how to distribute the infrastructure and application components.

Page 5 of 25

WPIv6_Clustering.static.ppt

As an architect or system administrator using WebSphere Process Server to implement

your business processes, you expect to have a system that will tolerate failure and allow

for maintenance without the loss of data or loss of service. You also need to be able to add

processing capacity, to grow your systems to meet increased user demand.

WebSphere Network Deployment provides the ability to create logical groups of servers,

with the servers being distributed across one or more machines. This capability provides a

mechanism to tolerate failover, apply maintenance to some servers while others keep

running, grow or shrink capacity by adding and removing servers from the group, all with a

single point of administration.

Page 6 of 25

WPIv6_Clustering.static.ppt

Shown here are the key elements of a WebSphere Network Deployment cell that are
necessary for a discussion on clustering.

A node is a logical grouping of managed servers. A node typically corresponds to a logical
or physical computer system with a distinct IP host address. Nodes cannot span multiple
computers.

The WebSphere Application Server profile defines the runtime environment for a node. To
create a node, the runtime environment to host an application server on a given host
machine, you run the profile management tool. One of the primary purposes of the profile
is to provide separation between the WebSphere runtime artifacts specific for a given
configuration, and the WebSphere Application Server binaries, which are common to all
configurations.

Clusters are sets of identical servers that are managed together and participate in
workload management. The servers that are members of a cluster can be on different host
machines.

A Bus destination is a virtual location within a service integration bus, to which
applications attach as producers, consumers, or both to exchange messages.

There is “the box” or “the host machine” which often gets confused with the server. A
server is the Application Server, which is a software entity that hosts applications, whereas
the host machine is the physical hardware that the server or servers are running on.

Page 7 of 25

WPIv6_Clustering.static.ppt

The nodes can be on separate boxes or they can be on the same box. They are shown

here on separate boxes and the deployment manager is on a separate machine as well.

To host more than one node, the host machine must have ample memory, disk space, and

processor capacity.

All four servers in the server cluster are identical.

Page 8 of 25

WPIv6_Clustering.static.ppt

If Machine Z needs to be taken off-line for maintenance then Machine Y will still have two

servers available to service requests.

Page 9 of 25

WPIv6_Clustering.static.ppt

If any one of the servers experiences a problem and depending on how the system is

configured, it is possible for one of the remaining three to recover the work in progress.

That is, failover to one of the remaining servers in the server cluster.

Page 10 of 25

WPIv6_Clustering.static.ppt

Adding additional application servers to a server cluster on the same machine is called

vertical scaling

Page 11 of 25

WPIv6_Clustering.static.ppt

Adding additional application servers to the server cluster on a different machine is called

horizontal scaling.

Page 12 of 25

WPIv6_Clustering.static.ppt

To scale up the capacity, one or more machines can be brought online and the new nodes

can be federated into the cell and more servers can be added to the cluster

Page 13 of 25

WPIv6_Clustering.static.ppt

Although service integration buses and messaging are part of WebSphere Application
Server Network Deployment V6, they are listed here because they are key elements for
WebSphere Process Server solutions.

A service integration bus supports applications using message-based and service-
oriented architectures. A bus is a group of one or more interconnected servers or server
clusters that have been added as members of the bus. Applications connect to a bus at
one of the messaging engines associated with its bus members.

A messaging engine is a server component that provides the core messaging
functionality of a service integration bus. A messaging engine manages bus resources and
provides a connection point for applications.

The JMS destination is the queue.

The Enterprise Service Bus is a feature provided with WebSphere Process Server V6
that adds additional messaging and service oriented features such as complex
transformations and mediations.

Messaging is at the heart of the WebSphere Process Server functionality. Its used for the
Common Event Infrastructure, Business Process Choreography and for the asynchronous
SCA invocations. This is why you need a thorough understanding of WebSphere
Application Server Network Deployment V6 messaging and clustering in order to
understand clustering in WebSphere Process Server. The next few slides will discuss the
fundamentals of WebSphere Application Server Network Deployment V6 messaging and
clustering.

Page 14 of 25

WPIv6_Clustering.static.ppt

Server 1 is a member of the Service Integration Bus Service Integration Bus 1.

Server 2 and 3 are both members Server Cluster A which is also a member of the Service
Integration Bus 1 and Service Integration Bus 2.

A service integration bus supports applications using message-based and service-
oriented architectures. A bus is a group of one or more interconnected servers or server
clusters that have been added as members of the bus. Applications connect to a bus at
one of the messaging engines associated with its bus members.

Each messaging engine is associated with a server or a server cluster that has been
added as a member of a bus. When you add an application server or a server cluster as a
bus member, a messaging engine is automatically created for this new member. If you add
the same server as a member of multiple buses, the server is associated with multiple
messaging engines (one messaging engine for each bus).

The bus members of a service integration bus are the application servers and server
clusters within which messaging engines for that bus can run.

Note that there are two different kinds of aggregations, the collection of servers (and
server-clusters) that are part of (members) the Service Integration Bus and then there is
another collection of servers that comprise the server cluster. A cluster member refers to
the relationship between a server and the server cluster and a bus member refers to the
relationship between the server or server-cluster and the service integration bus.

Page 15 of 25

WPIv6_Clustering.static.ppt

When a application server cluster is added as a member of the service integration bus the

message engine is created for the cluster using the active/standby pattern by default.

This configuration is appropriate when the goal is high availability, and when there must

always be a messaging engine available. This capability is also referred to as failover.

The drawback with this configuration is that there is only one queue and database table for

the cluster. This can become a bottleneck. If this happens, the only way to get more

throughput is to add a server on a faster computer with more memory.

It is possible to create a server cluster that has computers with different levels of service,

some can be faster than others. In this situation the server with the highest capacity can

be designated as the primary and the other servers can be the standbys.

When a cluster has servers that have different capacities, this is referred to as a mixed

configuration. The applications running on the servers must all be the same but the

configuration information can be unique for each server.

Page 16 of 25

WPIv6_Clustering.static.ppt

When you consider how to increase messaging throughput, it might seem that you should
add more Message Engines to the server cluster.

The drawback with this approach is that it places constraints on the kind of applications
that you can run.

When a user of the queue reconnects to the queue it can be routed to a different partition,
so messages can not be processed in the order that they were placed on the queue.

The message consumer is not able to determine which partition a message is coming
from, therefore it needs to retrieve the messages from all of the servers.

The order of the messages is indeterminant.

An application can not rely on the assumption that a message that has been put to the
queue will still be there on the next connection.

When a cluster member fails, the messages in the associated queue are not available until
that server comes back online; they are orphaned.

Because of the constraints imposed on the application, this topology is not recommended
for general use.

Note that the pub/sub configuration is a special case where affinity to the queue can be
obtained, but this is not applicable in the more general case used by the WebSphere

Page 17 of 25

Process Server components.

WPIv6_Clustering.static.ppt Page 17 of 25

WPIv6_Clustering.static.ppt

The default JMS message provider is the one that comes with WebSphere Application Server V6. It is
possible to use other JMS providers for Business Process Choreographer and the Common Event
Infrastructure. Since the Service Component Architecture requires the default JMS message provider, the
default JMS message provider should be used for the Service Component Architecture and the Common
Event Infrastructure requirements as well.

Assuming that the applications are to be clustered then grouping the applications and the Message Engine
into the separate clusters allows for greater flexibility in configuration and tuning and is the recommended
approach.

When you consider the case with the applications and the Message Engine in the same cluster there are two
alternatives to consider.

1.Active/Standby

•This is the default provided when a cluster is added to a Service Integration Bus as a bus member.

•There is one message driven bean per Message Engine and only one Message Engine is active at a time
therefore this will limit the throughput of the applications.

2.Active/Active

•This requires extra configuration because it is not the default

•Having multiple Message Engines per cluster will result in the partitioned queue problem discussed
previously.

Neither of these alternatives is suitable.

Keeping the Message Engine in a separate cluster will create a highly available message server.

Separating the message engine and the applications is the recommended approach for achieving high
availability.

Page 18 of 25

WPIv6_Clustering.static.ppt

There are many facets to consider when deciding how to configure the Cell topology. Is

the goal high availability or scalability or some combination of both? If so, which one is

most important based on the requirements of the application?

Will the databases be remote or local?

Will there be several databases or will tables be combined into one or two databases,

where it is feasible?

Ultimately it will depend on the administrative processes already in place and the quality of

service required by the applications. There are many ways to configure the cell topology

and WebSphere provides the flexibility to do what is needed.

Based on typical customer requirements for scalability and high availability, there are three

available pre-configured topologies that are presented as a vehicle for discussing how to

configure a complex WebSphere Process Server topology. These are discussed in a

separate presentation.

Page 19 of 25

WPIv6_Clustering.static.ppt

The topology being presented here is recommended as the most likely topology based on
the quality of services available to the applications. It is used to demonstrate the steps for
setup and configuration of a clustered topology. Once you understand the principles and
the steps, you can easily develop alternative solutions.

The Common Event Infrastructure will likely be an integral part of all WebSphere Process
Server applications and it is therefore considered to be an infrastructural component of the
system.

The principle of “Separation of Concerns” is used as a guide for deciding how to partition
the system and distribute the function. Based on the previous discussion regarding the
message engine and the applications, there are message engine clusters and application
clusters.

Considering functional boundaries, you can partition the system based on whether it is an
administrative function or functionality associated with the end-user application. An
example of a administrative function can be the Common Event Infrastructure (CEI) or the
business rules manager. Both of these are WebSphere Process Server components and
therefore part of the overall infrastructure.

Using this criteria, the resulting topology starts with three server clusters. As the system
grows there can be additional application cluster pairs, but only one administration cluster
may be necessary.

Page 20 of 25

WPIv6_Clustering.static.ppt

With WebSphere Process Server there are quite a few databases introduced.

In a typical production environment there are several databases, the ESBLogMedDB, the

EVENTDB, the BPEDB, the WPRSCDB, the MEDB, along with the end-user application

databases. It is expected that they are remote, residing on database server, managed by

database administrators.

For the configuration being presented there are two databases. The tables for the

EVENTDB, ESBLogMedDB and BPEDB are created in the WPRCSDB, keeping the

Message Engine data stores isolated in the MEDB. This decision is made for convenience

only.

Page 21 of 25

WPIv6_Clustering.static.ppt

Note that the creation of the WPRCSDB before creating the Deployment Manger node

(DMGR) is needed when manually creating a network deployment environment. There are

scripts available that can be modified to help do this.

The decision to use two databases rather than many simplifies things for demonstration

purposes.

Page 22 of 25

WPIv6_Clustering.static.ppt

Here are a few considerations regarding the use of other Service Component Architecture

components, which can impact the design of the cell, the databases and application server

clusters.

The global nature of the WebSphere Process Server components presents challenges

when deploying and redeploying applications.

The potential for name clashes prohibits duplicate names in many situations and the use

of common components means that an entity might not be removed during uninstallation

as expected, causing a deployment failure on the next deployment cycle.

WebSphere Adapters that are used for inbound traffic can only be deployed once in a cell.

Page 23 of 25

WPIv6_Clustering.static.ppt

Moving to WebSphere Process Server V6 introduces a lot of new parts and pieces to

consider and work with.

There are many combinations for deployment and configuration, some work, some work

better than others and some just do not work in a realistic manner.

The key element in business process applications and all WebSphere Process Server

applications is messaging. Messaging lies at the heart of everything and when it comes to

creating applications that use the WebSphere clustering capabilities the Message Engine

is the component that must be considered first.

The deployment patterns discussed here has two features. First separating the Message

Engine cluster from the application cluster. This is imperative for reliable messaging. The

second feature presented as part of this pattern is the separation of the administrative or

infrastructural components of the system from your application components. This second

feature is optional and may not be necessary in all cases. For any enterprise deployment,

it is the approach to use.

Page 24 of 25

WPIv6_Clustering.static.ppt Page 25 of 25

