

®

IBM Software Group

© 2008 IBM Corporation

Updated May 21, 2008

WebSphere ® Enterprise Service Bus V6.1
WebSphere Process Server V6.1
WebSphere Integration Developer V6.1

Augmentation, aggregation and retry tutorials

This presentation introduces a series of tutorials designed to illustrate the mediation flow
programming model for message augmentation, splitting and aggregation of messages
and service invoke retry.

WBIV61_61ProgModelLabsIntro.ppt Page 1 of 20

IBM Software Group

2

Augmentation, aggregation and retry tutorials © 2008 IBM Corporation

Goals and agenda

� Goal
�Introduce the augmentation, aggregation and retry tutorials

�Define capability each tutorial is designed to illustrate

�Provide description of mediation flow logic and primitives used

�Illustrate the flow using example data

� Agenda
�Describe the scenario used for all flows

� Input and output business objects illustrated with example data
� Skeleton flow structure

�Tutorial one – Augmentation

�Tutorial two – Splitting and aggregating

�Tutorial three – Fault recovery and retry

�Tutorial four – Retry with alternate endpoints

The goal of this presentation is to introduce to you a series of tutorials designed to
illustrate elements of the mediation flow programming model. These include the use of the
service invoke primitive to perform augmentation of data in a message. Also, the use of
the fan out and fan in primitives to do message splitting and aggregation, enabling the
processing of an array of elements within a message. Finally, the use of service invoke
retry which performs automatic retry logic when a service call returns a fault. In the
presentation there is a description of the capability each of the tutorials is designed to
illustrate and how that is realized in the mediation flow logic. Example data is used to
illustrate what the flow actually does.

The presentation starts out by describing the overall scenario that is used in all the
tutorials. This is done by looking at the business objects used on input and output along
with example data. The basic flow, or skeleton, used in the construction of each tutorial is
described. Therefore, it does not have to be repeated in the description of each tutorial.

There are four tutorials, the first addressing message augmentation for a message with a
single element. The next tutorial looks at how splitting and aggregating is done for
augmenting a message with an array of repeating elements. The third tutorial looks at
recovery from a fault, both in flow logic and with the use of service call retry. Finally, the
fourth tutorial addresses the use of alternate endpoints for performing service call retry.

WBIV61_61ProgModelLabsIntro.ppt Page 2 of 20

IBM Software Group

3

Augmentation, aggregation and retry tutorials © 2008 IBM Corporation

request

Inventory

response
Overall flow scenario
Ordering

cust123
item21 5
item93 1
item57 2

Shipping

cust123
item21 5 598 in stock
item93 1 0 out of stock
item57 2 7 running low

Mediation
Flow

input node

callout node

item93 1

item57 2

item21 5

item21 598 in stock

item93 0 out of stock

item57 7 running low

This slide provides you with a description of the overall scenario used in this series of
tutorials. There is a mediation flow which takes as input a one way operation from an
ordering system as shown in the upper left. It receives an Order business object instance
containing a customerID field and an array of OrderItem business objects, each containing
an itemID and quantity. You can see both the business object definition and example data
on the slide. During the mediation, calls are made to an inventory service, one call for
each item. The request passes an OrderItem as input and the response is an
InventoryItem containing the itemID, the inStockQuantity and inventory status. This can be
seen on the bottom of the slide. Finally, the mediation calls out to a shipping service in a
one way operation, passing a Ship business object, as seen in the upper right of the slide.
The Ship object is composed of a customerID and an array of ShipItem business objects,
each containing the itemID, the orderQuantity, the inventoryQuantity and the
inventoryStatus.

Each tutorial uses a variation of this basic scenario.

WBIV61_61ProgModelLabsIntro.ppt Page 3 of 20

IBM Software Group

4

Augmentation, aggregation and retry tutorials © 2008 IBM Corporation

Skeleton structure of the flow

� tutorials use the same input node and callout node

� The flows start and end with primitives that write to the
console (SystemOut.log)
�The flow logic for all tutorials goes between these primitives

�Screen captures in this presentation only show the tutorial flow logic

input node

callout node

Mediation Flow

Print
Start Flow
Message

Print
End Flow
Message

Tutorial flow
logic

goes here

Before looking at the individual tutorials, this slide introduces to you the basic skeleton flow
within which the flow logic for each tutorial exists. The ordering and shipping services are
the same throughout the tutorials, so that the endpoints of the flow are always the same
and behave the same. Therefore, there are no changes to the input node or callout node.
The tutorials make use of writing to the console view containing the SystemOut.log file as
a way of illustrating what is happening in the overall processing. The skeleton flow
contains a primitive immediately following the input node which writes to the console
indicating the start of the flow. Likewise, there is a primitive just before the callout node
which writes the end of flow message. The flow logic for all of the tutorials is contained
between the two primitives used to write to the console. It is only this intervening logic that
is shown in the illustrations of the tutorials.

WBIV61_61ProgModelLabsIntro.ppt Page 4 of 20

IBM Software Group

5

Augmentation, aggregation and retry tutorials © 2008 IBM Corporation

Tutorial one – Augmentation

� Key illustration
�Use of service invoke primitive for message augmentation

�Requires use of XSL transformation and transient context

� Primitive usage
�Order2Inventory XSL transformation

� Modify body from order request message to inventory request message
� Save order data in transient context

�CheckInventory service invoke
� Call inventory service to check item status
� The results returned as an inventory response message

�Inventory2Ship XSL transformation
� Modify body from inventory response message to ship request message
� Inventory data moved from body to body

� Order data moved from transient context to body

The key purpose of tutorial one is to illustrate the use of the service invoke primitive.
Calling out to a service from within a mediation flow can have many useful purposes. In
this example it is used to obtain additional data that is then used to augment the contents
of the message as it flows through the mediation. To perform a message augmentation
scenario using a service invoke primitive, there is a need to transform the message to and
from the message type used by the service invoke. This requires a primitive, such as the
XSL transformation, that can modify the message type. It also typically requires use of the
transient context to save information from the input message body that is needed by the
callout message.
The logic for this flow requires three primitives as can be seen in the screen capture. The
first is an XSL transformation, called Order2Inventory, whose primary purpose is to
transform the message body from the order request message received by the mediation to
an inventory request messaged needed to call the inventory service. It also places data
into the transient context that needs to be saved across the call to the inventory service.
The second primitive is a service invoke, called CheckInventory, which makes a call to the
inventory service which is external to the mediation flow. It passes information about the
item being ordered and returns inventory information about that item.

The last primitive is another XSL transformation, called Inventory2Ship. Its purpose is to
modify the message body from the inventory response message, returned by
CheckInventory, into a ship request message, which is required by the callout. The body of
the ship request message is created with data from two sources. Inventory information is
taken from the body of the inventory response message and order information is taken
from the saved data in the transient context.

WBIV61_61ProgModelLabsIntro.ppt Page 5 of 20

IBM Software Group

6

Augmentation, aggregation and retry tutorials © 2008 IBM Corporation

Tutorial one – Augmentation

� Key assumption
�Input array contains exactly one item

�Array references are all indexed � [1]

cust123
item005 1

cust123
item005 1 25 OK – sufficient stock levels

item005 1 item005 25 OK – sufficient stock levels

Mediation
Flow

input node

callout node

There is a key assumption made in the construction of this flow. Even though the input
from order and the output to shipping are defined to have an array of items, this flow
assumes that there is exactly one item in the input array containing the order. This
requires, throughout the flow, using an index of one when dealing with the item arrays.

The illustration in the lower part of the slide shows the data flow associated with this
mediation. The data coming from the order system is seen on the left. On the bottom of
the illustration you see the data for the request and response with the inventory service.
Finally, on the right, is the message to the shipping service. You can see that only one
item is being processed and you can also see the augmentation of the data sent to the
shipping service.

WBIV61_61ProgModelLabsIntro.ppt Page 6 of 20

IBM Software Group

7

Augmentation, aggregation and retry tutorials © 2008 IBM Corporation

Tutorial two – Splitting and aggregating

� Key illustration
�Use of fan out and fan in for splitting and aggregating

� Enabling augmentation of multiple array elements

�Requires:
� Augmentation scenario elements - service invoke, XSL transformation and transient

context
� Use of fan out context containing array element for each iteration
� Use of shared context for aggregation of results
� Use of message element setter append option for building up array

� Primitive usage
�StartIteration fan out

� Configured to iterate over item array in input message
� SMO cloned at the start of each iteration
� Fan out context set with current element at the start of each iteration

The key purpose of tutorial two is to illustrate the use of the fan out and fan in primitives to
perform a splitting and aggregating scenario. Basically, this takes the previous
augmentation scenario and enables the augmentation of multiple items in the message.
Looking at the screen capture, you can see that the Order2Inventory, CheckInventory and
Inventory2Ship primitives used in the previous tutorial are still part of the flow. To
accomplish this scenario there are some additional requirements. The fan out context,
which is initialized by the fan out primitive, is used to obtain the current item during each
iteration. The shared context, which is a shared memory area, must be used to
accumulate the results of each iteration. The message element setter append option is
needed to build up the array in the shared context.

The best way to understand this flow is to walk through it to see what each primitive does
in the flow. The first primitive is the StartIteration fan out primitive which is configured to
iterate over the item array in the order request message. This primitive serves as the top
of a loop in the flow, which is used to process the individual items. As each iteration is
begun, the fan out primitive clones the SMO and sets the value of the current item into the
fan out context. As a result of this, the SMO used to start each iteration is almost the same
as the SMO in every other iteration. The only differences are that each SMO is in a
separate memory area and the value of the fan out context is different.

WBIV61_61ProgModelLabsIntro.ppt Page 7 of 20

IBM Software Group

8

Augmentation, aggregation and retry tutorials © 2008 IBM Corporation

Tutorial two – Splitting and aggregating

� Primitive usage (continue)
�Order2Inventory XSL transformation (different map from tutorial one)

� Modify body from order request message to inventory request message

� Save order data in transient context
– Customer data moved from the body

– Item information moved from the fan out context

�CheckInventory service invoke (same as tutorial one)
� Call inventory service to check item status

� The results returned as an inventory response message

�SaveInventoryInfo message element setter
� Inventory data moved from body to transient context (combined with order data)

The next primitive is the Order2Inventory XSL transformation, which has the same
purpose as its counterpart in the previous tutorial, but contains a different mapping. It
modifies the body of the message from the order request message to the inventory
request message, in preparation for calling the inventory service. Information about the
order is saved in the transient context, with the customer data coming from the body of the
order message and the item information coming from the fan out context. The order
information saved in the transient context is placed into a ShipItem structure in preparation
for being combined with inventory information.

The next primitive, CheckInventory, is unchanged from the previous tutorial and is used to
call the inventory service.

The next primitive in the flow is a message element setter named SaveInventoryInfo. It
takes inventory information about the item and moves it from the body of the inventory
response message to the transient context. It is placed into the ShipItem structure in the
transient context, thus combining it with the order data for the item already placed there.

WBIV61_61ProgModelLabsIntro.ppt Page 8 of 20

IBM Software Group

9

Augmentation, aggregation and retry tutorials © 2008 IBM Corporation

Tutorial two – Splitting and aggregating

� Primitive usage (continue)
�AggregateItemInfo message element setter

� Order and inventory combined data for this item taken from transient context and
appended to array in shared context

�EndIteration fan in
� Configured to complete when input array fully processed

� Flow returns to StartIteration fan out if not complete

�Inventory2Ship XSL transformation (different map from tutorial one)
� Modify body from inventory response message to ship request message

� Customer information moved from transient context to body

� Completed item array with order and inventory information moved from shared
context to body

Continuing in the flow, another message element setter appears next, which is named
AggregateItemInfo. This is used to move the completed ShipItem from the transient
context and append it to the array of ShipItem elements in the shared context. The shared
context is in a memory area shared by all of the SMO clones, and therefore this provides a
mechanism for accumulating the results of each iteration.

The next primitive is the fan in, called EndIteration. This primitive serves as the end of the
iterative loop. It has configuration information defining its completion criteria, indicating that
it completes when an entire item array has been processed. If the item array processing is
not complete, the flow returns to the StartIteration fan out for the next iteration. If the item
array processing is complete, the flow continues from the fan in.

When the fan in completes, the flow proceeds to the Inventory2Ship XSL transformation.
Similar to the previous tutorial, this primitive modifies the message so that it can be sent to
the shipping service. However, the actual mapping required is different. The customer
information is moved from the transient context, where it was saved at the beginning of the
flow, to the body. The array of ship items, which as been built up in the shared context
during the iterative flow, is moved from the shared context to the body.

WBIV61_61ProgModelLabsIntro.ppt Page 9 of 20

IBM Software Group

10

Augmentation, aggregation and retry tutorials © 2008 IBM Corporation

Tutorial two – Splitting and aggregating

� Best practices for handling of array elements in aggregation
�Target array element type is used throughout the flow

� Use this as a guide to design the transient and shared contexts you use

�Array type in shared context is identical to the target array type

�Have single element in the transient context

�Build up single element during an iteration
� Use whatever primitives are needed for your scenario
� For example, in this scenario an XSL transformation and message element setter

�Append single element to shared context array at end of an iteration

�Move shared context array to message body array when all iterations
complete

This slide is a tangent to the specific tutorial discussion, but is inserted here to highlight
key factors about the processing done in this tutorial. These points are worth mentioning
as they are considered best practices for implementation of an aggregation scenario.

The scenario assumes there is a target array of repeating elements that is being
constructed during the aggregation. You should use the array element type of the target
array when defining your shared and transient contexts for use in the flow. The array
defined in the shared context should be the same type as the target array, composed of
the same element types. In the transient context, define a single element of the type
contained in the array. During the iterative flow, build up the contents of the single element
in the transient context, using whatever primitives are needed for your particular scenario.
For example, in this scenario, an XSL transformation was used to move in the order
information and a message element setter was used to move in the inventory information.
At the end of each iteration, use a message element setter to append the single element
built in the transient context to the end of the array being built up in the shared context.
When the entire input array has been processed, move the array built up in the shared
context to the message body.

WBIV61_61ProgModelLabsIntro.ppt Page 10 of 20

IBM Software Group

11

Augmentation, aggregation and retry tutorials © 2008 IBM Corporation

Tutorial two – Splitting and aggregating

cust123
item001 3 5 OK – but stock is running low
item009 5 45 OK – sufficient stock levels
item002 15 10 Backorder – insufficient stock to fill order

item001 3

item009 5

item002 15

item001 3 OK – but stock is running low

Mediation
Flow

input node

callout node

cust123
item001 3
item009 5
item002 15

item009 45 OK – sufficient stock levels

item002 10 Backorder – insufficient stock to fill order

This slide shows an example of the processing that occurs as a result of this flow,
assuming the input order contains three items. This is shown on the left. The three
inventory service requests and responses, one for each item, can be seen on the bottom.
The callout to the shipping service, with augmented data for all three items, appears on
the right.

WBIV61_61ProgModelLabsIntro.ppt Page 11 of 20

IBM Software Group

12

Augmentation, aggregation and retry tutorials © 2008 IBM Corporation

Tutorial three (first section) – Fault recovery

� Key illustration
�Recover from a fault returned to the flow

� Allows full array to be processed regardless of the fault returned from the inventory
service for one item

� Primitive usage
�Same flow a tutorial two with addition of one primitive
�FaultRecovery XSL transformation

� Wired between the CheckInventory service invoke primitive’s terminal for
InventoryFault and the AggregateItemInfo message element setter

� Converts message from inventory fault message to inventory response message
� Sets inventory quantity to 0 and inventory status to indicate an error occurred
� Other than actual inventory data values the entry to AggregateItemInfo appears as if

the call worked

The third tutorial is broken into two sections, the first for fault recovery and the second
illustrates service call retry.

This first section describes fault recovery in the flow, allowing the flow to continue rather
than terminate when a fault is returned from the inventory service. This enables the entire
list of items to be passed to the shipping service, but without inventory information for the
item being processed when the fault occurred.

To do this the same flow is used as tutorial two, with the addition of one primitive, the
FaultRecovery XSL transformation. The InventoryFault terminal, of the CheckInventory
service invoke primitive, is wired to this XSL transformation. It converts the SMO from an
inventory fault message to an inventory response message. The inventory quantity is
explicitly set to zero and the inventory status is set to indicate that an error occurred
calling the inventory service. By performing this transformation, the SMO appears as if the
inventory service call worked, with the exception of the actual data values for inventory
quantity and status. The FaultRecovery XSL transformation is then wired to the
AggregateItemInfo and processing proceeds as if no fault occurred.

WBIV61_61ProgModelLabsIntro.ppt Page 12 of 20

IBM Software Group

13

Augmentation, aggregation and retry tutorials © 2008 IBM Corporation

Tutorial three (first section) – Fault recovery

� Inventory service
�Implementation randomly works or returns a fault

�Because random, your output will vary

cust123
item001 3 5 OK – but stock is running low
item009 5 0 ERROR during inventory check, failure …….
item002 15 10 Backorder – insufficient stock to fill order

Mediation
Flow

input node

callout node
item001 3 item001 3 OK – but stock is running low

cust123
item001 3
item009 5
item002 15

item009 5

item002 15

ERROR during inventory check, failure accessing inventory information for item = item009

item002 10 Backorder – insufficient stock to fill order

fault

When doing this part of the tutorial, the endpoint for the inventory service is changed to an
implementation that is designed so that it sometimes works and sometimes returns a fault.
Because the results are random, the output you see when testing can be different than
what is illustrated in this example. In the example, the input is the same three items used
in the previous tutorial. Notice that the call to the inventory service for the second item,
item009, returned a fault. The output sent to the shipping service shows all the items in the
list but with the inventory information for item009 indicating a problem calling the inventory
service.

WBIV61_61ProgModelLabsIntro.ppt Page 13 of 20

IBM Software Group

14

Augmentation, aggregation and retry tutorials © 2008 IBM Corporation

Tutorial three (second section) – Retry

�Key illustration
� Service invoke automatically retries when fault returned

� Reduces chance of fault actually being returned to the flow

�Primitive usage
�No changes to flow

�CheckInventory service invoke primitive
� Configured for retry on modeled fault with retry up to three times

The second section of tutorial three illustrates the use of the service call retry capabilities
of the service invoke primitive. By performing a retry automatically, the likelihood of the
service invoke primitive having to return a fault is reduced because the retry might be
successful. To do this, there are no changes made to the flow other than the configuration
for the CheckInventory service invoke primitive. It is modified so that it performs a retry on
the occurrence of a modeled fault, performing up to three retries. If any retry is successful,
the flow continues. If not, the fault returned on the third retry is passed to the flow.

WBIV61_61ProgModelLabsIntro.ppt Page 14 of 20

IBM Software Group

15

Augmentation, aggregation and retry tutorials © 2008 IBM Corporation

Tutorial three (second section) – Retry
� Expected behavior in the tutorial
�Inventory service randomly works or returns a fault

�Inventory service will not return more than two sequential faults

�Inventory service will not work more than two time sequentially

�Retry count on service invoke is set to three (result is the fault
terminal is never used in this tutorial)

cust123
item001 3 5 OK – but stock is running low
item009 5 45 OK – sufficient stock levels
item002 15 10 Backorder – insufficient stock to fill order

Mediation
Flow

input node

callout node

item001 3 item001 3 OK – but stock is running low

cust123
item001 3
item009 5
item002 15

item009 5

item002 15

ERROR during inventory check, failure accessing inventory information for item = item009

item002 10 Backorder – insufficient stock to fill order

item009 5 item009 45 OK – sufficient stock levels

fault
with retry

In this tutorial, the inventory service that randomly works is being used. It is implemented
so that it will never return more than two sequential faults, nor will it work more than two
times in a row. Therefore, the results are not entirely random. Consequently, when you are
running the test, at least one fault will occur. Also, the retry limit is never reached, so the
inventory calls for every item will always eventually be successful.

In the example data for the flow, the same three order items previously used are being
passed into the mediation. Notice that there are actually four calls made to the inventory
service rather than three. The call for the second item, item009, returned a fault. This
resulted in the service invoke primitive performing a retry which was successful. In the
output data sent to the shipping service you can see that inventory information has been
included for all three items. The only evidence that a fault occurred is the extra call to the
inventory service, which was only seen by the CheckInventory service invoke primitive.

WBIV61_61ProgModelLabsIntro.ppt Page 15 of 20

IBM Software Group

16

Augmentation, aggregation and retry tutorials © 2008 IBM Corporation

Tutorial four – Retry with alternate endpoints

� Key illustration
�Service invoke uses alternate endpoints when performing retry

� Primitive usage
�SetEndpoints message element setter

� Added at beginning of the flow to initialize the target and alternate target URLs

�CheckInventory service invoke primitive
� Configured to use dynamic target address on initial call
� Configured for retry on modeled fault with retry up to three times
� Configured to use alternate addresses on retry

Tutorial four illustrates the use of alternate endpoints when doing a service call retry. To
do this, the target address field and alternate target address array in the SMO must be
initialized with appropriate endpoint URLs. The initialization of these fields is typically
accomplished using the endpoint lookup primitive which calls the WebSphere Service
Registry and Repository. However, in this tutorial the fields are set using a message
element setter.

The SetEndpoints message element setter is added to the flow before the StartIteration
fan out primitive. It sets the SMO target address field and two alternate target addresses
using URLs that point to exports in the module containing the inventory service. The
CheckInventory service invoke is modified so that it uses the target address URL for the
initial call, and then uses the alternate target addresses for the retries. In the screen
captures, you can see the URLs for the targets set by the message element setter. You
can also see the CheckInventory service invoke and the assembly diagram for the
inventory service containing the three exports which are the service endpoints.

WBIV61_61ProgModelLabsIntro.ppt Page 16 of 20

IBM Software Group

17

Augmentation, aggregation and retry tutorials © 2008 IBM Corporation

Tutorial four – Retry with alternate endpoints
� Understanding the endpoints
�Target InvFails always returns fault
�Alternate 1 InvRandom sometime returns fault, sometimes works
�Alternate 2 InvWorks always works

cust123
item001 3 5 OK – but stock is running low
item009 5 45 OK – sufficient stock levels
item002 15 10 Backorder – insufficient stock to fill order

Mediation
Flow

input node

callout node

cust123
item001 3
item009 5
item002 15

item001 3 ERROR during inventory check, failure accessing inventory information for item = item001 Target InvFails

item001 3 item001 3 OK – but stock is running low Alternate 1 InvRandom

item009 5 item009 45 OK – sufficient stock levels Alternate 2 InvWorks

item009 5 ERROR during inventory check, failure accessing inventory information for item = item009 Alternate 1 InvRandom

item002 15 item002 10 Backorder – insufficient stock to fill order Alternate 1 InvRandom

item009 5 ERROR during inventory check, failure accessing inventory information for item = item009 Target InvFails

item002 15 ERROR during inventory check, failure accessing inventory information for item = item002 Target InvFails

The three endpoints used in the tutorial are implemented so that one will always return a
fault, one will randomly work or return a fault and the third will always work. To aid in
illustration of this function, the target address is set to the endpoint that will always fail.
The first alternate target is set to the endpoint that will randomly work and the second
alternate target is set to the endpoint that always works. As a result, the first call to the
inventory service for each item will always result in a fault. The first retry may be
successful or return a fault. If the first retry returns a fault, the second retry is performed
and it will always work.

Looking at the data, the same three order items are passed in. You can see seven calls to
the inventory service. For item001 and item002, there is one failing call followed by
success on the first retry. For item009, the first call fails as does the first retry, but the
second retry works. Looking at the output going to the shipping service, you can see that
the item array is fully populated with inventory information. The only evidence that faults
occurred are the extra calls to the inventory service, which were only seen by the
CheckInventory service invoke primitive.

WBIV61_61ProgModelLabsIntro.ppt Page 17 of 20

IBM Software Group

18

Augmentation, aggregation and retry tutorials © 2008 IBM Corporation

Summary

� Introduced the augmentation, aggregation and
retry tutorials

�Defined the capability each tutorial is designed to
illustrate

�Provided a description of the mediation flow logic
and the primitives used

� Illustrated the flows using example data

In summary, this presentation examined a series of tutorials. The tutorials are designed to
illustrate message augmentation, message aggregation and service call retry. Each of the
four tutorials was described in terms of the capability the tutorial is designed to illustrate.
The mediation flow logic and primitives used were described. Finally, for each tutorial,
example data was used to illustrate the behavior of the scenario.

WBIV61_61ProgModelLabsIntro.ppt Page 18 of 20

IBM Software Group

19

Augmentation, aggregation and retry tutorials © 2008 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WBIV61_61ProgModelLabsIntro.ppt

This module is also available in PDF format at: ../WBIV61_61ProgModelLabsIntro.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WBIV61_61ProgModelLabsIntro.ppt Page 19 of 20

IBM Software Group

20

Augmentation, aggregation and retry tutorials © 2008 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere

A current list of other IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2008. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

WBIV61_61ProgModelLabsIntro.ppt Page 20 of 20

