

®

IBM Software Group

© 2009 IBM Corporation

Updated June 30, 2009

WebSphere Enterprise Service Bus V6.2
WebSphere Process Server V6.2
WebSphere Integration Developer V6.2

Unmodeled faults

This presentation provides a detailed look at unmodeled faults and how they are handled
in mediation flows. Note that several of the screen captures you will see in this
presentation were take from earlier versions of WebSphere® Integration Developer.
Because of this, you will notice some visual differences from the current release, but all of
the technical concepts and details presented are correct.

WBPMv62_UnmodeledFaults.ppt Page 1 of 16

IBM Software Group

2

Unmodeled faults © 2009 IBM Corporation

Goals

� Introduce unmodeled faults
�Overview of function and behavior

�Configuration of the mediation flow

�Content of service message object (SMO)
� Contrast modeled and unmodeled faults

�Examples

The goal of this presentation is to provide you with a full understanding of unmodeled
faults. The presentation begins with an overview of the function and behavior of
unmodeled faults and then looks at how to configure your mediation flow in WebSphere
Integration Developer.

You will see how both the unmodeled fault and modeled fault information are represented
in the service message object, or SMO.

Finally, some examples are provided. These show you how you can make use of the
unmodeled fault capabilities within your mediation flows.

WBPMv62_UnmodeledFaults.ppt Page 2 of 16

IBM Software Group

3

Unmodeled faults © 2009 IBM Corporation

Modeled versus unmodeled faults

� Modeled Faults
�Are defined in the WSDL

�Are propagated in the flow from the callout fault node or service
invoke primitive

�A specific terminal exists for each modeled fault

�Fault information passed in the body of SMO

� Unmodeled faults
�Are not defined in the WSDL

�Are propagated in the flow using callout response node or service
invoke primitive

�The “fail” terminal is used for unmodeled faults

�Fault information passed in the “failInfo” element of the SMO context

One of the best ways to understand unmodeled faults is to compare and contrast them
with modeled faults.

A modeled fault is explicitly defined for the operation in the WSDL interface. When a
service returns a modeled fault, the fault is propagated in the mediation flow from either
the callout fault node, or from a service invoke primitive. Which one depends upon
whether the service was called from the callout node or from a service invoke primitive.
For each fault defined on the operation there is a terminal with a message type specific to
that fault. The fault data is carried in the body of the SMO.

In contrast, an unmodeled fault is one that is not defined in the WSDL. It is propagated
back to the flow through either the callout response node or the service invoke primitive,
again according to how the service was originally invoked. Because there is no fault
defined in the WSDL, there can not be a unique terminal, and therefore the fault is
propagated through the fail terminal. The fault data is populated in the failInfo element,
which is in the context of the SMO.

WBPMv62_UnmodeledFaults.ppt Page 3 of 16

IBM Software Group

4

Unmodeled faults © 2009 IBM Corporation

Basics of unmodeled faults

�Unmodeled faults returned in the flow only when:
�The “fail” terminal is wired

�Retry count for unmodeled faults has been exhausted

�Handling of unmodeled faults is at your discretion
�Wire a flow from “fail” terminal with logic to handle

�Leaving unwired results in a mediation exception

�Message type of the “fail” terminal defined by
�Callout response node: “in” terminal of the callout node

�Service invoke: “in” terminal of the service invoke

This slide provides some characteristics of unmodeled faults.

First, unmodeled faults do not get propagated back to the flow except in certain
circumstances. The first thing is that the fail terminal must be wired. The other
consideration is the retry count for unmodeled faults that is configured for a service invoke
or callout node. The unmodeled fault will only be propagated back to the flow once the
retry count has been exhausted.

The next thing to point out is that the handling of unmodeled faults in the flow is entirely at
your discretion. If you want to handle the fault, there must be flow logic wired from the fail
terminal that performs your application specific requirements for fault handling. The
alternative is to leave the fail terminal unwired, in which case a mediation exception is
thrown and the flow is terminated.

The message type of the fail terminal is the same type as the input message. Specifically,
the fail terminal of the callout response node will have the same message type as the in
terminal of the callout node. Likewise, the fail terminal of a service invoke is the same
message type as the service invoke’s in terminal

WBPMv62_UnmodeledFaults.ppt Page 4 of 16

IBM Software Group

5

Unmodeled faults © 2009 IBM Corporation

SMO contents for unmodeled faults

contents of correlation context
maintained

contents of shared context maintained

contents of transient context
maintained

contains body of request message

“failInfo” element populated in context

SMO element

yes yes

yes no

yes no

yes controlled by
property setting

yes yes

Service
invoke

Callout
response node

This table provides information about the contents of the SMO when an unmodeled fault is
returned to the flow. The handling is very similar for a callout and for a service invoke, but
there are some differences.

In both cases, it is the failInfo element in the SMO context that is populated with
information about the fault.

When being returned from a service invoke, the body of the original message is contained
in the fault message. However, when propagated through a callout response node, the
original body content might not be present. This is controlled by a property setting on the
callout response node. If you have logic in your response flow to make use of the original
message body, you must set this property. If not, there is a performance benefit by not
setting the property because it eliminates the need to save the original message across
the callout processing.

The remaining three are the transient, shared and correlation contexts that you configure
for your flow. In the case of the service invoke, all three contain the same content as the
original request message. However, in the case of the callout response node, only the
correlation context contains the content from the original request. This behavior is
consistent with the defined behavior for these three contexts.

WBPMv62_UnmodeledFaults.ppt Page 5 of 16

IBM Software Group

6

Unmodeled faults © 2009 IBM Corporation

Approaches to handling unmodeled faults

� Unmodeled fault handling depends on your application
requirements

� Log a message or raise an event, then stop the flow

� Map to a defined fault to return to the caller
�Interface needs a fault defined, for example “UndefinedFault” or

“OtherFault”
�Use a primitive that changes the message type of the SMO to the

fault message type
�Wire the result to an input fault node to be returned to the caller

� Recover from the fault and continue the flow
�Use a primitive that changes the message type of the SMO to the

message type of a successful result
�Possibly log a message or raise an event
�Wire the result back into the normal flow

There are several ways that you can handle unmodeled faults in your flow. The
determination of which to use is based on your application requirements. This slide
suggests three possible approaches you might want to consider.

The first suggested approach is to log a message using a message logger primitive or
raise an event using the event emitter primitive. Which you do is based on the approach
you take towards error reporting. Following this, the flow can then be terminated using a
stop primitive.

Another approach is to convert the unmodeled fault into a modeled fault that can be
returned to the caller of the mediation. To do this, some modeled fault needs to be defined
for the operation in the WSDL. For example, a fault named something like UndefinedFault
or OtherFault. Then, in the flow, you use a primitive such as XSL transformation or
business object map to transform the message type of the SMO. It can populate the
message body of the defined fault with appropriate information about the unmodeled fault.
This can then be wired to the input fault node that will return the fault to the requestor.

In some cases, the unmodeled fault can occur on a service call that is not critical to the
overall completion of the flow. When this is the case, a flow logic designed to recover from
the fault can be implemented. Typically this requires an XSL transformation or business
object map primitive that transforms the message type to the message type that is
normally returned when the call is successful. If needed, this primitive can set values into
fields in the message that simulate a successful call. At this point, you might want to write
a log message or raise an event to indicate that this error recovery processing has taken
place. Then wire the recovery flow into the normal flow path at an appropriate point to
continue the flow processing.

There are other possible approaches that can be taken. You need to decide what
approach is appropriate for your application requirements.

WBPMv62_UnmodeledFaults.ppt Page 6 of 16

IBM Software Group

7

Unmodeled faults © 2009 IBM Corporation

Tool support – Callout response node

Input fault node ­
return modeled fault

to caller

Callout response node –
“out” terminal - successful

return from service
Input response node –

successful return to caller

Callout response node –
“fail” terminal – unmodeled

fault from service

Response flow

Callout fault node ­
receive modeled fault

from service

“fail” terminal – message
type same as the

outbound message of
callout node

This slide shows a response flow that is handling an unmodeled fault by raising an event
and then stopping the flow without raising an exception.

On the top left you can see the callout response node. The terminal on the top of the node
is the out terminal for a normal return, and you can see that it is wired directly to the input
response node, which returns to the original caller. On the bottom left there is a callout
fault node. This node is where WSDL defined, or modeled faults, enter the response flow.
You can see that the terminals are wired directly to the input fault node, which returns the
fault to the original requestor. Returning back to the top left, the bottom terminal of the
callout response node is the fail terminal where unmodeled faults are returned. You can
see that the message type for the fail terminal is checkStockRequestMsg, the same as the
message type of the outbound message of the callout. The fail terminal is wired to an
event emitter primitive, which produces an event to the common event infrastructure, and
then proceeds to the stop primitive, which terminates the flow without raising an exception.

WBPMv62_UnmodeledFaults.ppt Page 7 of 16

IBM Software Group

8

Unmodeled faults © 2009 IBM Corporation

Tool support – Service invoke primitive

“fail” terminal –
message type same as

the “in” terminal

“out” terminal - successful
return from service

“fail” terminal – unmodeled
fault from service

“xyzFault” terminal – received
modeled fault “xyz” from service

“timeout” terminal – service
does not return

“in” terminal –
call to service

This slide shows a service invoke primitive by itself, rather than in the context of a flow. It
identifies all of the terminals, highlighting the fail terminal used for unmodeled faults.

On the left of the service invoke primitive is the in terminal that receives the message used
to call the service. On the right are several terminals. The out terminal is used for a
successful response from the service. The timeout terminal is used when an
asynchronous service request does not complete within the designated time limit. For
every fault defined on the operation being called, there is a corresponding terminal, such
as the xyzFault example shown in the screen capture. Finally, the fail terminal is where an
unmodeled fault is returned. The message type of the fail terminal, shown here as
getDelayedQuoteRequest, is the same message type as that of the in terminal.

WBPMv62_UnmodeledFaults.ppt Page 8 of 16

IBM Software Group

9

Unmodeled faults © 2009 IBM Corporation

Tool support – Including original message

� Original request message included for service invoke

� For callout response node, controlled by a property setting
�By default, this property is not selected

� Performance advantage

� Requires the entire outbound message to be saved across the call

�Should only be included if used in the unmodeled fault flow

Callout response
property used to include request

message content

Example body returned:
Not included

Included

When an unmodeled fault is returned, it varies whether the complete original message
body is included. It will always be present for a service invoke, but is controlled by a
property setting for the callout response node, as is illustrated here.

The screen capture shows the response flow on the top left, and immediately underneath
it is the Details panel of the Properties view for the callout response node. It is the check
box labeled “Include the original request message” that controls this capability. By default,
this property is not selected. There is a performance implication when the entire outbound
message needs to be saved across the call. Therefore, you should only make use of this
capability if your flow logic for the unmodeled faults makes specific use of the outbound
message data.

On the right are screen captures showing the difference between the message bodies
when the original message is not included and when it is included.

WBPMv62_UnmodeledFaults.ppt Page 9 of 16

IBM Software Group

10

Unmodeled faults © 2009 IBM Corporation

SMO content – Modeled and unmodeled faults
� Modeled faults
�Fault information defined in WSDL, returned in body

� Unmodeled faults
�Fault information defined in context/failInfo

Both unmodeled and modeled fault data are placed into the SMO, but where they are
placed is different. For a modeled fault, there is a WSDL definition that defines what is
returned with the fault. In the upper screen capture, on the right, is a business object that
has been defined to be returned for a modeled fault. On the upper left you can see that the
information is placed into the body of the SMO.

For unmodeled faults, there is no WSDL definition and therefore no definition of what to
place into the message body. The lower screen capture shows that the unmodeled fault is
returned in the failInfo element within the context of the SMO. You can see that in this
case, since the callout was for a Web service, the unmodeled fault information is returned
as a SOAP fault that is placed into the failureString of the failInfo element.

WBPMv62_UnmodeledFaults.ppt Page 10 of 16

IBM Software Group

11

Unmodeled faults © 2009 IBM Corporation

Usage scenario – Generate event

�Unmodeled fault flow generates event
�Generated with event emitter primitive

� Handled by common event infrastructure (CEI)

�Event can be used to document occurrence of the fault

�Monitoring application can take action on event
� Use CEI to filter events
� Obtain this event as a JMS message

� Read this event from the event database
� Initiate action to debug or retry operation based on event

In this example, an unmodeled fault causes an event to be generated, and then the flow
terminates without an exception being thrown. You can see that the fail terminal is wired to
an event emitter primitive and then it is wired to a stop primitive.

Because event emitter primitives generate common base events handled by the common
event infrastructure, or CEI, you have several options regarding how you want to handle
the event. The CEI server provides filtering capabilities that are used to determine what it
does with the event. For example, the event can be added to the CEI event database and
it can also be sent as a message to a JMS queue or published to a JMS topic. This
enables a monitoring application that is searching the database or receiving the JMS
message to act on the event appropriately, such as initiating debugging activities or
retrying the operation.

WBPMv62_UnmodeledFaults.ppt Page 11 of 16

IBM Software Group

12

Unmodeled faults © 2009 IBM Corporation

� Return unmodeled faults to caller as modeled fault
�Operation defines faults for

� Expected fault conditions

� One additional fault for unexpected conditions

�Flow transforms unmodeled fault to modeled fault
� Use XSL transformation or business object map primitive

� Transform the input request message to response fault message

� Copy the error information from the context/failInfo/failureString to the fault body

� Screen capture on next slide �

Usage scenario – Convert to modeled fault

Expected fault condition

Unexpected fault condition

This next example is presented over two slides. This is the case of converting an
unmodeled fault to a modeled fault so that it can be returned to the original caller.

Looking at the screen capture, you can see an interface with an operation that has an
input, an output and two faults. There is an InvalidStockNumber fault that represents an
expected fault condition that the service returns. In addition, there is another fault, named
OtherFaults, that is used to return any unmodeled faults that occur. An XSL transformation
primitive is used to transform the message from the request flow message type to the
OtherFaults message type. The transformation includes copying the failureString from the
failInfo section of the message context to the body of the fault message.

The next slide provides an illustration of how this is handled.

WBPMv62_UnmodeledFaults.ppt Page 12 of 16

IBM Software Group

13

Unmodeled faults © 2009 IBM Corporation

Usage scenario – Convert to modeled fault

XSLT moves failureString

“fail” terminal – message
type is request message,
failInfo contains fault data

“otherFaultsMsg”
terminal – message type
is fault message, body

contains fault data

On the bottom portion of the slide is the response flow. On the bottom of the flow you can
see that the callout fault node has two terminals, one for each of the defined faults. These
are wired to the two terminals on the input fault node that are for the same two WSDL
defined faults. These wires represent the flow that occurs if the service explicitly returns
either of these two faults. In addition, the fail terminal of the callout response node is wired
to an XSL transformation primitive, which is then wired to the OtherFaults terminal of the
input fault node. The unmodeled faults flow through here. The upper portion of the slide
shows, in the XML mapping editor, the map that is used to copy the unmodeled fault
information from the failureString in the context to the body of the fault message.

WBPMv62_UnmodeledFaults.ppt Page 13 of 16

IBM Software Group

14

Unmodeled faults © 2009 IBM Corporation

Summary

� Examined unmodeled faults
�Overview of function and behavior

�Configuration of the mediation flow

�Content of the SMO for modeled and unmodeled faults

�Reviewed examples

In this presentation you were provided with an introduction to unmodeled faults. The
presentation began with an overview of the function and behavior of unmodeled faults and
then looked at how to configure your mediation flow in WebSphere Integration Developer.
A description of how fault information is represented in the SMO for both modeled and
unmodeled faults was provided. Finally, there were a couple of examples to show how you
can make use of the unmodeled fault capabilities within your mediation flows.

WBPMv62_UnmodeledFaults.ppt Page 14 of 16

IBM Software Group

15

Unmodeled faults © 2009 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WBPMv62_UnmodeledFaults.ppt

This module is also available in PDF format at: ../WBPMv62_UnmodeledFaults.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WBPMv62_UnmodeledFaults.ppt Page 15 of 16

IBM Software Group

16

Unmodeled faults © 2009 IBM Corporation

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States,
other countries, or both:

WebSphere

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S.
registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in
other countries. A current list of other IBM trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY
DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to
update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained
from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this
publication and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

WBPMv62_UnmodeledFaults.ppt Page 16 of 16

