| IBM Software Group

WebSphere Enterprise Service Bus V6.2
WebSphere Process Server V6.2

WebSphere Integration Developer V6.2

Message logger mediation primitive

(@ business on demand.

© 2009 IBM Corporation
Updated June 5, 2009

This presentation provides a detailed look at the message logger mediation primitive.

WBPMv62_MessageloggerPrimitive.ppt Page 1 of 25



IBM Software Group

Goals

= Understand the message logger mediation primitive
éﬁ Message logger

» Overview of function

» Use of terminals

» Definition of properties
» Custom logging option

= Default implementation
= Providing a custom logging implementation

» Database option
= Message log database table
= Retrieval and usage of log data

» Error handling
» Example usage

Message logger mediation primitive

The goal of this presentation is to provide you with a full understanding of the message
logger mediation primitive.

© 2009 IBM Corporation

The presentation assumes that you are already familiar with the material presented in the
presentations that cover common elements of all mediation primitives, such as properties,
terminals, wiring and the use of promoted properties. The general knowledge of mediation
primitives they provide is needed to understand the message logger primitive specific
material in this presentation.

In this presentation, an overview of the message logger is presented along with
information about the primitive’s use of terminals and its properties.

The message logger has two different options for logging. The custom logging option is
covered first, with a description of the default implementation and then information on how
to provide your own custom logging implementation. The database option is covered next,
which makes use of a message log database table. It is described, along with some
configuration options available to you. A discussion of how you can retrieve and make use
of the log data from the database is presented.

The presentation concludes with some error handling information and an example use of a
message logger primitive.

WBPMv62_MessageloggerPrimitive.ppt Page 2 of 25



IBM Software Group

Overview of function

= Logs selected content of the message
» Message is written in XML format
» All or part of the service message object (SMO) can be written
= Configured using XPath to identify what portion of the message to write
= Default is the message payload (/body)

= Two implementation options
» Log to a relational database

» Custom implementation
= User written logging implementation based on Java™ logging APIs
= Default implementation provided that logs to a file

= The SMO is not updated

;' @R «

Message logger mediation primitive © 2009 IBM Corporation

The purpose of a message logger primitive is to log selected content of the service
message object, or SMO. The message is written in XML format. You configure the
primitive using an XPath expression so that all or part of the SMO is written. The default is
to log the message payload, as identified by the XPath expression /body.

The message logger primitive provides you with the choice between two different
implementations. One implementation writes log records to a relational database. The
other implementation option, which was introduced in version 6.2, is custom logging. It
makes use of the Java logging APIs. With this option, you can choose a default
implementation provided by the product that writes log records to a file, or you can provide
your own Java logging implementation.

The SMO is not updated by the message logger.

WBPMv62_MessageloggerPrimitive.ppt Page 3 of 25



IBM Software Group

Overview of function

= Relational database option

» Default database location is the common database used by the
server

» A pre-configured data source points to the common database
» Message logger defaults to JNDI name of pre-configured data source
» Configuration options allow use of another database, multiple
databases or multiple tables within a database
= Custom logging implementation
» Implementation based on Java logging APIs (java.util.logging)

» Custom logging provided by implementation of these classes
= Handler

= Formatter
= Filter

Message logger mediation primitive © 2009 IBM Corporation

The relational database option logs messages to a database. The common database,
used by a WebSphere® Process Server or WebSphere Enterprise Service Bus, is the
default location for the database table used by the message logger. There is a pre-
configured data source in the server runtime environment that identifies the common
database containing the message log table. The JNDI name for this data source is used
as the default INDI name when a new message logger primitive is created. There are
various configuration capabilities that allow for the use of other databases, multiple
databases or multiple tables within a database.

The custom logging implementation is based on the Java logging APIs, found in the
package java.util.logging. The classes that are used from these APIs are the Handler,
Formatter and Filter.

WBPMv62_MessageloggerPrimitive.ppt Page 4 of 25



| IBM Software Group

Terminals

= Terminals:
» Input terminal
» One output terminal
» Fail terminal

= All terminals must be for
the same message type

BB Input terminal

I - in
= =~ [ Output terminal
- o ooout
Messagelogger =~ ¥ Fail terminal
...... — fail

Message logger mediation primitive © 2009 IBM Corporation

The message logger primitive has one input terminal, one output terminal and a fail
terminal. The output terminal must be for the same message type as the input terminal,
because the message logger primitive does not modify the message body. Shown here is

a message logger primitive with its terminals and the terminals as seen in the properties
view.

WBPMv62_MessageloggerPrimitive.ppt Page 5 of 25



IBM Software Group

C% Build Activities | = Properties &3 E_g Prnhlemq Server Logs | #74 Serverq ~ =0

@ Message Logger : MessagelLogger

Description

Terminal Eashie

Details Rook: I,l’budy'

Promatable Properties
Transaction mode: ‘Same |Z|
Logging bype: ‘ Database |z|
Data source name: \idbc;’mad\at\onjmessage\_ug |
Handler: \ com.ibm, ws, sibx, mediation, primitives.logger WESBFileHandler |
Farmatter: ‘ com.ibm.ws. sibx. mediation. primitives.logger WESBFormatter |
Eilter: | com.ibm, ws. sibi mediation, primitives. logger WESBFilter |
Lksral ({03,411, {25, 431, 4, 45% |
Level: ‘Info |Z|

= Logging type
» Selects either database or custom logging option
» Only some of the properties apply to each option

» Properties which are not applicable to the selected logging type:
= Are ignored by the runtime
= Are not disabled on the panel, so it is difficult to tell which properties apply

Message logger mediation primitive © 2009 IBM Corporation

A screen capture of the Details panel of the Properties view is shown here. Highlighted in
the middle of the screen is the Logging type property. This is how you choose between the
database option and the custom logging option. Each of the remaining properties applies
to either both options, or just to the database option or just to the custom logging option.
Unfortunately, the panel does not provide any visual clues as to which properties are
associated with which option and allows you to edit all of them. At runtime, the runtime
engine ignores the properties which are not relevant to the selected option.

WBPMv62_MessageloggerPrimitive.ppt Page 6 of 25



IBM Software Group

Properties

C% Build Activities | = Properties &3 I:z_g Prnhlemq Server Lngq 4k Servers 1 ~ =0 ‘

ﬁ Message Logger : MessageLogger

Description

Terminal Enabled

Root: I,l’budy'
Promotable Properties

= Properties common to both database and custom
» Enabled

= Determines if the message should be logged
= Typical usage is to promote property so logging can be toggled on and off

» Root
= XPath expression defining portion of SMO to log

= XPath expression can identify any element or portion of the SMO
= /body is the default (the message payload)

Message logger mediation primitive

The properties shown on this slide are those that are common to both the database and
custom implementation options.

© 2009 IBM Corporation

The Enabled property is a toggle which tells the primitive whether it should actually
perform the logging. The typical usage of this property is to promote it, thus enabling
logging to be turned on and off administratively. This allows mediation flows to contain
logging primitives that are disabled most of the time, but can be administratively enabled
when needed for problem determination or other reasons.

The Root property contains an XPath expression that identifies the portion of the SMO that
is included in the log message. When creating a new message logger, this property is set
to a default value of /body indicating the message payload should be logged. The Edit...
button opens the XPath Expression Builder dialog which can be used to drill down and
identify any portion or element within the SMO that you want to have logged.

WBPMv62_MessageloggerPrimitive.ppt Page 7 of 25



IBM Software Group

Properties
C% Build Activities | = Properties &3 B_g Prnhlemq Server Logs | #74 Serverq ~ =0

ﬁ Message Logger : MessagelLogger

Description

Terminal Enabled

Details Foot: I."bUdY Edit...

Promatable Properties

Transaction mode: ‘ Same

Logging bype: |Database

_EEI

Data source name: \idbc;’mad\at\onjmessage\_ug

= Properties only for the database option

» Data source name

= The JNDI name of a data source identifying the database
= jdbc/mediation/messagelog is the default value
= Pre-configured data source uses this INDI hame

» Transaction mode:

= same — commit database update within the flow’s transaction (default)
= new — commit database update immediately using a new transaction

Message logger mediation primitive © 2009 IBM Corporation

The properties shown on this slide are those that only apply to the database option.

The Data source name property is a JNDI name used to lookup the data source that
identifies the database containing the table in which the messages are logged. When
creating a new message logger, this property is set to a default value of
jdbc/mediation/messagelog, which also happens to be the JNDI name for the pre-
configured data source identifying the common database.

The Transaction mode property determines when the update to the message log database
is committed. The default value is ‘same’, which means that the update is committed as
part of the transaction configured for the mediation flow. The value of new indicates the
update is committed immediately by using a new transaction.

WBPMv62_MessageloggerPrimitive.ppt Page 8 of 25



IBM Software Group

Properties

€25 Buid Activiies | = Properties £7 . |2 Problems | 17 Server Logs | 4k servers | =D

5] y
[ 1» Message Logger : Messagel.ogger

Handler: | com,ibm.ws. st logger WESEFileHandier

Formatter: | comuibm. ws. sk, mediation. primi logger. WESBFormatter

Bter; [com.ibm.ws, sk medistion, prinitives ogger WESEFilter

Ureral: Hop Atk A2} 43k 4) 454 J
Level: | Info a

= Properties only for the custom option

» Handler, Formatter and Filter
= Implementation classes as defined by Java logging APIs (java.util.logging)
= Default implementations are provided
= Handler is required, Formatter and Filter are optional
» Literal
= The message to log, with {n} representing substitution parameters
» Level
= The severity level assigned to this message, as defined by Java logging APIs

Message logger mediation primitive

The properties shown on this slide are those that only apply to the custom option.

© 2009 IBM Corporation

The Handler, Formatter and Filter properties each identify the concrete Java class to be
used for the Handler, Formatter and Filter as defined by the Java logging APIs. These
APIls are found in the java.util.logging package. There are default implementations
provided which are part of the package com.ibm.ws.sibx.mediation.primitives.logger and
have the class names WESBFileHandler, WESBFormatter and WESBFilter. When
customizing the properties for these classes, the Handler class is required but the
Formatter and Filter classes are optional.

The Literal property is the format of the message to be logged, with the numbers in
brackets representing substitution parameters.

The Level property defines the severity level assigned to the message. How the level
designation affects the behavior of logging is described by the Java logging API
documentation.

WBPMv62_MessageloggerPrimitive.ppt Page 9 of 25



IBM Software Group

Promotable properties
7 Build Activities | = Propertiss 52 = Problems] Sarver Logs | 47k Servers} ¥ =0
ﬁ Message Logger : Messagelogger
?:;r;iﬂﬂ Filter | Property 'I|<Type in the Filter string =
Detad - Froperk | Promated | Group | Alias | Alias walue Description |
Promotable Properties Enabled 0
Roat ]
Transaction mode O
Logging kype O
Level |
= Promotable = Not Promotable
» Enabled » Data source name
» Root » Handler
» Transaction mode » Formatter
» Logging type » Filter
» Level » Literal

Message logger mediation primitive

This slide shows the Promotable Properties panel for the message logger.

© 2009 IBM Corporation

The Enabled property is promotable. As described earlier, this allows logging to be toggled
on and off administratively.

The Root property is promotable, enabling you to modify what portion of the SMO is
written to the log.

Promoting the Transaction mode property can be useful in a case where the mediation
flow is failing downstream from the message logger primitive. You can administratively
change the transaction mode to new to ensure the log is written even though the
mediation itself is failing.

The Logging type property enables you to switch between the database option and custom
option. If doing this, you need to ensure the configuration for the message logger is
complete with the properties needed by each option specified.

The level option is also promotable.

The remaining properties are not promotable. The Data source name property contains
the JNDI name of the database that is used for logging. The property is not promotable
because the JNDI name gets associated with a resource reference in a generated EJB.
Therefore, this requires a redeployment of the mediation application if it were to change.

Most of the properties for configuring the custom implementation are not promotable,
specifically the Handler, Formatter, Filter and Literal properties.

WBPMv62_MessageloggerPrimitive.ppt Page 10 of 25



IBM Software Group

Custom logging usage of Literal property

= Literal property defines the message format

» {0} through {5} are substitution parameters representing:
= {0} — Time stamp — indicates when the message was logged
= {1} — Message ID — the message ID from the SMO

= {2} — Mediation nhame — the name of the message logger primitive that logged the
message

= {3} — Module nhame — the name of the mediation module containing the message
logger

= {4} — Message — the message defined by the root property
= {5} — Version — the version of the SMO

= Example
» Literal: MsgID={1} written at {0} from module {3}

» Result:
MsgID=C9D315CF-0120-4000-E000-346009034B8E written at 4/21/09 12:57 PM from module CustomMsgLogTest

Message logger mediation primitive

The next few slides look at some specifics of the custom logging implementation, starting
with this slide that describes the Literal property. This property is used to define the
message to be written. The message will contain exactly what is defined in the literal, with
the exception of six substitution parameters, bracket enclosed numbers from zero through
five. Substitution parameter zero is for the timestamp that indicates when the message
was logged. Parameter one designates the message ID from the service message object.
Parameter two is for the name of the message logger primitive which wrote the log and
parameter three is the name of the mediation module containing the message logger.
Parameter four represents the message to be logged as defined by the root property.
Finally, parameter five defines the SMO version used by the mediation flow that wrote the
log.

© 2009 IBM Corporation

In the example there is a literal parameter which contains the message to be written,
which contains three substitution parameters. A log message resulting from this is shown
in small text at the bottom of the slide.

WBPMv62_MessageloggerPrimitive.ppt Page 11 of 25



IBM Software Group

Custom logging default implementation

= The default Handler implementation:

» Calls the Filter implementation to determine if the
message should be logged

» Calls the Formatter implementation to format the
message

» Writes log records to a file

= The file is named Messagelog.log
= The file is located in the system temporary directory
— Defined in Java by System.getProperty(“java.io.tmpdir");
— For example
— C:\Documents and Settings\Administrator\Local Settings\Temp
— Ivar/tmp or /tmp

Message logger mediation primitive © 2009 IBM Corporation

The custom logging default implementation of the Handler class is described here, which
is the class WESBFileHandler. The implementation first calls the Filter implementation, if
configured, to see if the message should be logged. If so, it calls the Formatter
implementation, if configured, to format the message. The Handler then writes the
formatted log record to a file named MessagelLog.log located in the system temporary
directory. This directory, in Java, is defined by the system property java.io.tmpdir. On a
Windows® system, this is typically something like

c:\Documents and Settings\Administrator\Local Settings\Temp
and on a UNIX® system is typically either

Ivar/tmp or /tmp.

WBPMv62_MessageloggerPrimitive.ppt Page 12 of 25



IBM Software Group

Custom logging default implementation

= The default Filter implementation:
» Always indicates the message should be logged

= The default Formatter implementation
» Formats the insertion parameters

= Message parameter — insertion parameter {4}
— If parameter is a DataObject, then it is serialized into XML
= Remaining parameters are not modified
» Inserts substitution parameters into the literal message
= Uses the java.text.MessageFormat class

Message logger mediation primitive © 2009 IBM Corporation

The default Filter implementation is very simple, always returning true to indicate that the
message should be logged.

The default Formatter implementation formats the insertion parameters. Actually, most of
the insertion parameters are not changed by the Formatter. Only the message parameter,
insertion parameter four, is modified. If it is a DataObject it is converted to a serialized
XML string, otherwise it is also left unchanged. The Formatter then uses the
java.text.MessageFormat class to insert the substitution parameters into the literal string
and returns the resulting string.

WBPMv62_MessageloggerPrimitive.ppt Page 13 of 25



IBM Software Group

Custom logging implementation tips

= Understand the Java logging APIs

— http://java.sun.com/j2se/1.4.2/docs/quide/util/logging/overview.html
— http://java.sun.com/j2se/1.4.2/docs/api/javalutil/logging/package-summary.html

= Implementing the Handler class
» Responsible for exporting the log messages
» Extend the java.util.logging.Handler abstract class

» Implement the abstract method publish
= Receives the log record as a java.util.LogRecord
= Calls Filter to determine if record should be logged
= Calls Formatter to format the message
= Writes the formatted log record to the appropriate output, for example:

— To afile
— To a system logging message queue

Message logger mediation primitive © 2009 IBM Corporation

Now that you understand what the default custom logging classes do, the next couple of
slides look at how you can develop your own custom logging classes. You can do this if
the behavior of the default implementation does not meet your requirements. First, it is
important for you to understand the Java logging APIs, the framework that is the basis for
your implementation. The two URLSs on this slide point you to an overview of the logging
framework and to the javadoc for the interfaces and classes.

The Handler class is responsible for exporting the log messages to whatever medium they
are to be sent to. Your handler should extend the abstract class java.util.logging.Handler
and implement the abstract method publish. The publish method receives a log record
defined by the java.util.LogRecord class. Your method needs to call the Filter and
Formatter to determine if the log should be written and to format the log appropriately. You
handler then writes the log to the appropriate media, such as to a file or putting the log on
a message queue.

WBPMv62_MessageloggerPrimitive.ppt Page 14 of 25



IBM Software Group

Custom logging implementation tips

= Implementing the Formatter class
» Responsible for formatting the log record for output
» Extend the java.util.logging.Formatter abstract class

» Implement the abstract method format
= Passed the log record as a java.util.LogRecord
= Use the method getMessage() to obtain the literal string for the message
= Use the method getParameters() to obtain the six insertion parameters
= Format and return the message as a string

= Implementing the Filter class
» Responsible for determining if the log record should be logged

» Implement the java.util.logging.Filter interface

» Implement the method isLoggable
= Passed the log record as a java.util.LogRecord
= Returns a boolean indicating if the record should be logged

- < ',

Message logger mediation primitive © 2009 IBM Corporation

The Formatter class is responsible for formatting the log message. Your implementation
should extend the abstract class java.util.logging.Formatter and implement the method
format which is passed a java.util.LogRecord. The LogRecord supports methods
getMessage to obtain the literal string and getParameters to get the substitution
parameters. Your code should then format the message as you require and return it as a
string.

The Filter class is responsible for indicating if a particular message should actually be
logged, indicating this by returning a boolean from the method isLoggable. You
implementation needs to inherits the interface java.util.logging.Filter and implement the
isLoggable method. It is passed a java.util.LogRecord which you can interrogate to make
your determination about logging.

WBPMv62_MessageloggerPrimitive.ppt Page 15 of 25



IBM Software Group

Message log database table

= Default message log database

» Common database used by server
= |dentified by data source with JNDI nhame jdbc/WPSDB
= For message logger, identified by data source jdbc/mediation/messagel.og

» Schema qualifier and table = ESBLOG.MSGLOG

= Options for message log database table:
» Create ESBLOG.MSGLOG table in a different database

= JNDI name used by message logger used to identify the database

» Use different schema qualifier in the same database

= For example, MYLOG
— Resulting in table MYLOG.MSGLOG
— Set environment variable: ESB_MESSAGE_LOGGER_QUALIFER=MYLOG

= 16
Message logger mediation primitive © 2009 IBM Corporation
The next few slides look at some specifics of the database option, starting with this slide
that describes the message log database table. As indicated earlier, the message log
table, by default, is contained in the common database used by a WebSphere Process
Server or WebSphere Enterprise Service Bus. The server runtime environment provides a
variety of options for the type of database used for the common database. In any case,
whatever database is used, it is identified by a data source with a INDI name of
jdbc/WPSDB. The default data source used by the message logger identifies the same
database and has the JNDI name of jdbc/mediation/messagelLog. The message logger
primitive writes into the database using the table named MSGLOG with a schema qualifier
of ESBLOG.

There are alternatives to the use of the ESBLOG.MSGLOG table in the common
database. One approach is to use a different database that contains an
ESBLOG.MSGLOG table. When configured this way, it is the use of the JNDI data source
configured for the message logger that identifies the database to use. Another approach is
to use the common database but write to a MSGLOG table that has a different schema
gualifier, for example, MYLOG. When doing this, it is the use of the environment variable
ESB_MESSAGE_LOGGER_QUALIFER that identifies the schema qualifier to use. Of
course, the two approaches can be combined, using a different database in addition to
different schema qualifiers.

WBPMv62_MessageloggerPrimitive.ppt Page 16 of 25



IBM Software Group

Your own message log database table

= Supported databases:

» Cloudscape, DB2®, Derby, Informix®, Oracle, Sybase,
Microsoft® SQL Server®

» Data definition language (DDL) files are provided:
= <install_root>/util/EsbLoggerMediation/<database_type>/Table.ddI

= Script for creating resources is provided:
= <install_root>/bin/createMessagelLoggerResource.jacl
» Can be used to create

= Database table
= Data source
= Schema qualifier

Message logger mediation primitive © 2009 IBM Corporation

You can configure the message logger primitive to use a database other than the common
database. The data definition language (DDL) needed to create the message logger
schema and table is provided. There are separate Table.ddl files for each of the supported
databases, which include Cloudscape, DB2, Derby, Informix, Oracle, Sybase and
Microsoft SQL Server. The DDL files are located in the server directory structure as
indicated in the slide.

To help with the configuration of your environment, the script
createMessageloggerResource.jacl is provided in the bin directory. It can be used to
create a database table, data source or schema qualifier.

WBPMv62_MessageloggerPrimitive.ppt Page 17 of 25



IBM Software Group

Your own message log database table

= Options for using your own message log database

» Option one:
= Delete the pre-configured data source
= Create a data source with the default JINDI name
= Use the default name in the message logger primitives
» Option two:
= Create a data source with a unique JNDI name
= Configure the message logger primitives to use the unique name

= Using multiple message log tables
» Multiple databases and multiple data sources
= Uses option two above

» Single database with different schema qualifiers
= Required approach for z/OS® and i5/0S®

Message logger mediation primitive

When using your own database, it is best to have a strategy on how you plan to configure
your data source and your message loggers. The first option is to delete the pre-
configured data source and create a new data source for your database that uses the
default INDI name. This approach allows you to continue to use the default JNDI name for
each of your message logger primitives. The second option is to create a new data source
with its own unique JNDI name and configure your message loggers to use the new JNDI
name. The first approach makes the configuration of your message loggers easier and
less prone to error because the JNDI name property does not need to be changed from its
default value.

© 2009 IBM Corporation

You might also want to have multiple tables used for logging. In this case, there are two
approaches. The first is to follow option two, creating multiple databases and data
sources, and then configuring each individual message logger to use an appropriate data
source. The second approach is to use only one database containing multiple schema
qualifiers, with a message log table contained with each schema qualifier. When this is
done, the environment variable ESB. MESSAGE_LOGGER_QUALIFER must be set to
indicate the appropriate schema qualifier to use. This approach is required when running
on the z/OS and i5/0S platforms which provide the capability for only a single database.

WBPMv62_MessageloggerPrimitive.ppt Page 18 of 25



IBM Software Group

Retrieval of log data

= Possible message log data usage:
» Audit trails of enterprise service bus message handling
» Data mining of business data contained in messages
) Statistics of service usage

= No tools or applications are provided
» Users must create their own tools

= Message log table schema:

Column Type Key | Description

TimeStamp TIMESTAMP Y UTC timestamp of when message was logged
Messagel D VARCHAR Y Message ID from the Service Message Object
MediationName VARCHAR Y Mediation primitive that logged the message
ModuleName VARCHAR N Mediation module containing mediation primitive
Message CLOB N Requested portion of Service Message Object in XML
Version VARCHAR N The Service Message Object version

Message logger mediation primitive © 2009 IBM Corporation

There are many possible uses of the log data contained in the message log database. For
example, the log might be used to maintain an audit trail of the message handling within
the enterprise service bus. Another possibility is to do some data mining of business data
that is contained in the messages. A third possibility might be to compute statistics about
service usage through the bus. Although there are these and many other possible uses of
the log data, there are no tools provided to extract or analyze the data contained in the log.
You must provide your own applications for extracting and analyzing the data based on
your own requirements. The table in the slide shows the schema for the message log
database. There is a timestamp containing the time the message was logged, a unique
message 1D, and the name of the message logger primitive that wrote the log, which
together form the key. Additional fields include the name of the mediation module, the
message content in XML format as defined by the Root property, and finally the SMO
version associated with this log message. You need to understand this schema in order to
develop an application to retrieve and analyze the log message data.

WBPMv62_MessageloggerPrimitive.ppt Page 19 of 25



IBM Software Group

Error processing

= MediationRuntimeException thrown for:
» Root XPath value of “null”
» Incorrect JINDI name for data source
» Custom logging Handler, Formatter or Filter class not found

= MediationConfigurationException (Fail terminal flow)
» Problems accessing database

= Failure of flow downstream of message logger primitive
» Transaction mode = new — message is logged
» Transaction mode = same - message is rolled back if the mediation
flow has been configured to run in a global transaction
= Root XPath value not found in Service Message Object
» Not considered an error condition
» The log is written with the Message field empty

B 20
© 2009 IBM Corporation

Message logger mediation primitive

The error processing details and considerations are examined in this slide.

A MediationRuntimeException is thrown for the case where the root property has been
specified as a null XPath value. When using the database option, an incorrect JNDI name
for the data source causes this exception. When using the custom implementation option,
this exception occurs if the class specified for the Handler, Formatter or Filter can not be
found.

A MediationConfigurationException occurs for any kind of problems accessing the
message log database, such as not being able to establish a connection. If the Fail
terminal is wired, that flow is followed rather than the exception being thrown.

When using the database option, if there is a failure in the mediation flow downstream
from the message logger, the message normally remains logged in the database.
However, if the transaction mode has been set to same and the flow has been configured
to run in a global transaction, the message is removed from the log by the global
transaction rollback.

It is not considered an error condition when the root property contains an XPath
expression that is not found in the Service Message Object. The log message is still
written but has an empty message field.

WBPMv62_MessageloggerPrimitive.ppt Page 20 of 25



IBM Software Group

Example usage

= Example — Use log to enable statistics of service usage
» Mediation routes requests to an old or new service
» Want to be able to track usage of the old versus new service
» Log the input request and log the callouts to the old and new services

Log Old
> CustomerService_get... 7 mputRequestiog SerVICe Ca”out CustomerServicePart.., |l

CustomerServiceExte. .. "}p
Log Input Request - & custombediztion:

CustomerService_get... DG
i (5 CaloutDidServicelog :
.

L_j DatabaselLookup 1

:I:S‘l MessageFilter 1

£ é-,;,‘ CallouthewServiceLog

— Log New

Service Callout

"E| ¥5LTransformation1

NOTE: Version 6.0.2 screen capture

Message logger mediation primitive

This slide illustrates a possible use of the message logger primitive used with the
database option. The screen capture is taken from the mediation flow editor using
WebSphere Integration Developer version 6.0.2. You might notice some differences in the
visual appearance in later versions, but the flow being described is the same.

© 2009 IBM Corporation

In this example, the requirement is to enable the keeping of statistics about service usage
as requests flow through the enterprise service bus. The scenario involves a flow where
the requestor uses an interface that is for the original service provider but there is now
also a new service provider with a new interface. Based on some criteria involving the
values in the message body a decision is made to use the old or the new provider. To
meet this requirement, appropriate log messages are written so that statistics can be
computed from the log database regarding usage of the old and new services. Looking at
the flow diagram, you can see that there is a message logger at the beginning of the flow
that records every request. There is also a message logger before the callout node to
each of the service providers, so for any given request flow, there are two messages
logged. Not shown in this screen capture is the message logger in the response flow
which logs every response as it goes back to the requestor. Given this set of logs, it is
possible to write an application that computes service usage statistics for the old and new
versions of the service.

WBPMv62_MessageloggerPrimitive.ppt Page 21 of 25



IBM Software Group

Example usage

= Example log data
» Input request, service callout (old or new) and response all logged

Message IDs on request flow the same
Response flow has its own unique message ID

— Second request/response

First request/response

Callout to old service
/ Callout to new service

F TIMEST AP MESS&Q{EID MEDIATIONNAM# MODULERAME MESSAGE
7.3

/ I
30 |2006-01-1213:15:4 453800k=0-0501 -0000-0080-9f2d60343154 ) InputRequestLogj / CustomerRoutinghedistion |=7xml version="1.0

31 |2006-01-12 13:15:4f |d9500bc0-05801 -0000-0050-9f 20603431 54 CallomoldService'Log/ CustomerRoutinghedistion |=7xml version="1.0
32 | 2006-01-12 131548 | d9570be0-0801-0000-0050-91 2060343154 JResponzelog / CustomerRoutinghedistion |=7xml version="1.0
33 |2006-01 -1213:15:5ﬁ SEa00bc0-0501-0000-0080-912d60343154 | InputRequestlog j CustomerRoutinghedistion |=7xml version="1.0
34 |2006-01-12 13:15:5h SEa00bc0-0501 -0000-0050-9f 20603431 54 CallomNawService‘Log CustomerRoutinghedistion |=7xml version="1.0

35 |2006-01-12 13:15:54 | 3oda1 Obc0-0501 -0000-0080-912d60343154  |Responselog CustomerRoutinghedistion |=7xml version="1.0
al I

Message IDs on request flow the same even
when message type changes during the flow

Message logger mediation primitive

This screen capture shows the contents of a message log produced from the example on
the previous slide. It shows two service requests, the first of which used the old service
provider and the second of which used the new service provider. There are several things
you can take note of in this screen capture. First, note that the columns for the database
include the timestamp, message id, mediation name, module nhame and the message.
There is also an SMO version column which does not show in this screen capture.

© 2009 IBM Corporation

There are three logs for each request, which represent the incoming message, the callout
to the old or new service provider and the response from the provider. In the mediation
name column you can see that the first request went to the old service and the second
request went to the new service.

The message ids are also interesting to examine. On the first request, the first and second
logs, both of which are on the request flow, have the same message id, whereas the third
log for the response flow has a different id. From this you see that the request and
response have unique message ids. On the second request, the one that uses the new
service, the SMO body was changed during the request flow by an XSLT primitive to
match the new service interface. Notice that the message ids are still the same, showing
that the unique message ID is associated with an SMO throughout a flow even if the
structure of the SMO body is modified by a primitive.

WBPMv62_MessageloggerPrimitive.ppt Page 22 of 25



IBM Software Group

Summary

= Examined the message logger mediation primitive

éﬁ Message logger

» Overview of function

» Use of terminals

» Definition of properties

» Details of the custom logging option
» Details of the database option

» Error handling

» Example usage

;' @R «

Message logger mediation primitive © 2009 IBM Corporation

In summary, this presentation provided details regarding the message logger mediation
primitive. It presented an overview of the message logger, along with information about the
primitive’s use of terminals and its properties. Details of the custom logging option were
presented, including an explanation of the default implementation and considerations for
providing your own implementation. Details of the database option were then covered,
explaining that the message logger makes use of a message log database table. A
description of some configuration options available to you was presented followed by a
discussion of how you can retrieve and make use of the log data from the database. Some
error handling information was described that applies to both the database and custom
options. Finally, an example use of a message logger primitive was presented.

WBPMv62_MessageloggerPrimitive.ppt Page 23 of 25



| IBM Software Group

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better
meet your needs by providing feedback.

= Did you find this module useful?
= Did it help you solve a problem or answer a question?

= Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback _about WBPMv62 MessagelLoggerPrimitive.ppt

This module is also available in PDF format at:; ../WBPMv62_ MessagelLoggerPrimitive.pdf

Message logger mediation primitive © 2009 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WBPMv62_MessageloggerPrimitive.ppt Page 24 of 25



| IBM Software Group

Trademarks, copyrlghts and disclaimers

IBM, the IBM logo, ibm.com, and the following terms are or reg of { Business ines C ion in the United States, other countries, or both:
DB2 i5/0S Informix WebSphere z/0S

If these and other IBM trademarked terms are marked on their first in this i ion with a symbol S@ or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this i was Such may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and i ion" at http:/Awww.ibm legal/cop: html

Microsoft, SQL Server, Windows, and the Windows logo are regi: of Microsoft C ion in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

EJB, Java, and all J based and logos are of Sun Mi Inc. in the United States, other countries, or both.
Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs descnbed herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and goals and only. in this to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this

docsmem nsdnot intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc. ) under which they are provided. Information concerning non-IBM products was obtained from the su?‘pllers of those products, their published announcements or other
publicly avallabclie sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

Per is based on and { using standard IBM All customer described are p i
how those customers have used IBM products and the results they may have achieved. The actual !hroughpu! or performance that any user will experience will vary dependlng upon
considerations such as the amount of multiprogramming in lhe user's job stream, the /O e storage and the workload processed. Therefore, no assurance
can be given that an individual user will achieve r per p m the ratios stated here.
© Copyright i Business i C ion 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Message logger mediation primitive © 2009 IBM C

WBPMv62_MessageloggerPrimitive.ppt Page 25 of 25



