
IBM Software Group

®

IBM INTERNAL USE ONLY

Develop Faster, More Reliable C/C++
Code with Rational PurifyPlus

Jon Sanders, jmsanders@us.ibm.com
PurifyPlus Engineering Manager

IBM Software Group | Rational software

2IBM INTERNAL USE ONLY

Typical agenda

� What is it?

� How will it improve my life?

� How do I get it?

� How does it work?

� Advanced moves

IBM Software Group | Rational software

3IBM INTERNAL USE ONLY

Summary

C:> myapp
…crash…

C:> purify myapp
…bugs and bottlenecks are pinpointed automatically…

You fix the bugs and bottlenecks.

C:> myapp
…works perfectly…

You’re a rock star. Go to the beach.

IBM Software Group | Rational software

4IBM INTERNAL USE ONLY

What is PurifyPlus?

� Help, my app…
Crashes intermittently

Uses too much memory

Runs too slowly

Isn’t well tested

Is about to ship

� You’ve felt the pain - PurifyPlus is your painkiller
See what your code is really doing

Spend less time finding bugs and bottlenecks

IBM Software Group | Rational software

5IBM INTERNAL USE ONLY

What is PurifyPlus?

� A set of runtime analysis tools

Runtime error detection

Automatically pinpoints hard-to-find bugs

Application profiler

Highlights performance bottlenecks

Source code coverage analysis

Helps avoid shipping untested code

IBM Software Group | Rational software

6IBM INTERNAL USE ONLY

What is PurifyPlus?

� For everybody
Unix, Windows, C, C++, Java, .NET

Developers and testers

� Thorough
It even monitors components you don’t have source for

� Easy to use
No recompile needed

VS, Robot, ClearQuest & ClearCase integrations

Rich CLI and batch mode for automation

� The standard by which others are measured

IBM Software Group | Rational software

7IBM INTERNAL USE ONLY

Examples of runtime errors

� Read uninitialized memory – yields unpredictable results

� Access off the end of an allocated block – unpredictable/corrupting

void foo() {
int *ptr = new int;
cerr << "*ptr is " << *ptr << '\n'; //UMR: no value was set in ptr
delete[] ptr;

}

void foo() {
int *ptr = new int[2];
ptr[0] = 0;
ptr[1] = 1;
for (int i=0; i <= 2; i++) {

cerr << "ptr[" << i << "] == " << ptr[i] << '\n'; //ABR when i is 2
}
delete[] ptr;

}

IBM Software Group | Rational software

8IBM INTERNAL USE ONLY

Examples of runtime errors

� And of course memory leaks

� Anyone can spot these by inspection
Now imagine these lines of code spread out over your multi-threaded
componentized monster app

void foo() {
int *ptr = new int; // MLK: ptr lost when foo returns
*ptr = 42;
cerr << "*ptr is " << *ptr << '\n';

}

IBM Software Group | Rational software

9IBM INTERNAL USE ONLY

Pinpoints hardPinpoints hard--toto--find find
errors automaticallyerrors automatically

What if a tool would just show you the bugs?

IBM Software Group | Rational software

10IBM INTERNAL USE ONLY

And show you the bottlenecks

Highlights bottlenecks Highlights bottlenecks
automaticallyautomatically

IBM Software Group | Rational software

11IBM INTERNAL USE ONLY

And show you what you forgot to test

Summary of untested Summary of untested
lines and functionslines and functions

IBM Software Group | Rational software

12IBM INTERNAL USE ONLY

Even a single untested line

Untested linesUntested lines

IBM Software Group | Rational software

13IBM INTERNAL USE ONLY

Many alternatives

� Perhaps you already use some of these runtime analysis tools:
NuMega BoundsChecker (Windows)
Valgrind (Linux)
ZeroFault (AIX)
Parasoft Insure++ (SCI)
GlowCode (Lite)
Rational Test RealTime (Embedded)

… Mail me with use cases, design/capability wins, etc.
• jmsanders@us.ibm.com

� Each has its pros and cons
Some people keep several in their arsenal
In general PurifyPlus

• Goes deeper
• Runs faster
• Provides more analysis
• Works for larger apps
• Is easier to deploy and to automate

Perhaps I’m biased, but 100,000 users can’t be too wrong

Intel vTune (Windows/Linux)
IBM tprof
Quest Jprobe (Java)
Borland OptimizeIt (Java)
RAD Profiling (Java)
Etc.

mailto:jmsanders@us.ibm.com

IBM Software Group | Rational software

14IBM INTERNAL USE ONLY

Some internal users of PurifyPlus

� AIX JVM & AIX C++ compiler - ISL
Purify C++ on AIX

� Rational ClearQuest Web server - Adam Skwersky
Purify C++ on Windows

� Rational XDE – Matt Halls
Quantify and Purify C++ and Java on Windows

� Rational PurifyPlus team – Jon Sanders
Purify, Quantify and PureCoverage C++ on all platforms

� WAS Performance – Andrew Spyker
Quantify Java

� DB2 JDBC Universal Driver – Suja Viswesan
� WebSphere Commerce Server – Priti Shah
� WPLC – David Ogle

PureCoverage Java

� Ask your friends. Tell your friends!

IBM Software Group | Rational software

15IBM INTERNAL USE ONLY

What about static analysis tools

� Static analysis tools are a great complement to Purify
� They can…

Find errors that you don’t exercise in test cases
Find richer semantic errors, e.g. type safety
Find potential errors if calling patterns change
Analyze code sections before you have a working executable

� Static analysis tools have limitations
� They…

Only find errors in the code you have source for
• Not in libraries that you pass bad data too or that are buggy

Can miss errors that are distant in time/space cause/effect
• Or bury you in “possible” errors

Can take a long time to run
Are not for profiling or coverage

� Use both as appropriate

IBM Software Group | Rational software

16IBM INTERNAL USE ONLY

How do I get PurifyPlus?

� Getting PurifyPlus takes about 15 minutes

� Download & install it from XL
http://w3.ibm.com/software/sales/saletool.nsf/salestools/bt-rational$Rational_download

Search for text “PurifyPlus Enterprise”, pick the eAssembly with the latest version (currently
v7.0), and download the binary for your platform (Linux/UNIX or Windows)

� Get a license
http://w3.ibm.com/software/sales/saletool.nsf/salestools/bt-rational$rational_licensechoose

“Option #1” - pointing at a floating license server - is the simplest move

For laptop users, this path still permits disconnected use for several days at a time

� Download & install the latest iFix/Fixpack (very important)
http://www.ibm.com/products/finder/us/finders?pg=ddfinder&C1=5000583&C2=5000623&rcss=rtlprfypls
Pick the most recently published download for your version of PurifyPlus

http://w3.ibm.com/software/sales/saletool.nsf/salestools/bt-rational$Rational_download
http://w3.ibm.com/software/sales/saletool.nsf/salestools/bt-rational$rational_licensechoose
http://www.ibm.com/products/finder/us/finders?pg=ddfinder&C1=5000583&C2=5000623&rcss=rtlprfypls

IBM Software Group | Rational software

17IBM INTERNAL USE ONLY

Supported environments

� See datasheets
http://www-306.ibm.com/software/awdtools/purifyplus/unix/sysreq/
http://www-306.ibm.com/software/awdtools/purifyplus/win/sysreq/

OS Processor OS version Compilers Bits
Linux x86/x64 RHEL2.1-4/SLES8,9 gcc 32 & 64
AIX PowerPC 5.1-5.3 XLC 6, 7, 8 32 & 64
Solaris SPARC 6-10 Studio 7-10, gcc 32 & 64
HPUX PA-RISC 10.20-11iv2 aCC, gcc 32 & 64
IRIX MIPS 6.5 SGI 32 & 64
Windows x86 NT/2000/XP/2003 Microsoft 32

Additionally supports Java on Windows and Solaris
Additionally supports .NET and VB applications on Windows
AIX 64 bit Quantify & PureCoverage is in early access - contact krangara@in.ibm.com
Some of the older platforms above are no longer formally supported in current version, but either
continue to work or the previous version of PurifyPlus can be downloaded (v2003.06.15) to run with
them

Select additional variants have best-effort support
• E.g. other compiler/OS rev levels, Intel compiler

More platforms in development
• Contact jmsanders@us.ibm.com

http://www-306.ibm.com/software/awdtools/purifyplus/unix/sysreq/
http://www-306.ibm.com/software/awdtools/purifyplus/win/sysreq/
mailto:krangara@in.ibm.com
mailto:jmsanders@us.ibm.com

IBM Software Group | Rational software

18IBM INTERNAL USE ONLY

How do I use PurifyPlus?

� The rest is really easy!
Just instrument and run

� On AIX, SGI and Windows executables are instrumented directly
C:> purify foo.exe
ksh% purify a.out
Or use the GUI

� On Linux, Solaris and HP-UX instrumentation is at link time
Prefix link line with “purify” in makefile
a.out: foo.c bar.c

$(CC) $(FLAGS) -o $@ $?
a.out.pure: foo.c bar.c

purify $(CC) $(FLAGS) -o $@ $?

� Quantify and Purecov are invoked similarly
Purify and PureCov can be used simultaneously

IBM Software Group | Rational software

19IBM INTERNAL USE ONLY

Example: Launch Purify, press Run

IBM Software Group | Rational software

20IBM INTERNAL USE ONLY

Type in your program name, press Run

IBM Software Group | Rational software

21IBM INTERNAL USE ONLY

Wait while Purify instruments all your code

IBM Software Group | Rational software

22IBM INTERNAL USE ONLY

Your app runs, Purify logs errors alongside

This looks bad. This looks bad.
Lets open itLets open it

IBM Software Group | Rational software

23IBM INTERNAL USE ONLY

Open a message to see details

All the salient details:All the salient details:
-- what was accessedwhat was accessed

-- from wherefrom where
-- allocated whenallocated when

Examine the buggy codeExamine the buggy code

IBM Software Group | Rational software

24IBM INTERNAL USE ONLY

Pinpoints error to line of source

Purify can optionally Purify can optionally
trigger a debugger trigger a debugger

breakpoint the instant breakpoint the instant
before this happensbefore this happens

IBM Software Group | Rational software

25IBM INTERNAL USE ONLY

How does it work?

� The “tech” part of the talk

� All it does is:
Take your compiled application apart

Find interesting places to insert probes

Put your application back together again

Run it and make lights blink

IBM Software Group | Rational software

26IBM INTERNAL USE ONLY

Instrumentation using Object Code Insertion - OCI

� Stretching your code
Code- and partial data-flow analysis on exe/dll

• Separate code from data
• Find all cross-references in code and data
• Heuristics tuned to compiler behaviors

Insert inline assembly code or jumps at locations like
• Every memory read/write
• Function calls, function entries
• Source line, basic blocks

Modify imports to reference instrumented dlls
“Wrap” interesting APIs

• malloc/free, New/Delete, LoadLibrary/dlopen
Bind a runtime support library

IBM Software Group | Rational software

27IBM INTERNAL USE ONLY

Detecting memory leaks

� Purify’s best known feature
� Simple GC-like algorithm

Maintain list of all allocated blocks in all heaps
• And callchain of allocator

On demand, scan memory for all pointers
• Starting from anchors – stack, statics, registers

Any block not pointed to is “leaked” (MLK/PLK)
• All other blocks are “memory in use” (MIU)

IBM Software Group | Rational software

28IBM INTERNAL USE ONLY

Memory access errors

� Hard to find bugs
ABR/ABW – array bounds read/write

FMR/FMW – free’d memory read/write

UMR – uninitialized memory read
� Technique

Track state of each byte in process address space
• Red = logically unallocated to app
• Yellow = allocated (malloc/new) but not written to yet (uninitialized)
• Green = allocated and initialized

Add red-zone to ends of allocated blocks
• To catch array out of bounds errors

Monitor every read and write instruction

IBM Software Group | Rational software

29IBM INTERNAL USE ONLY

Purify’s memory state tracking

Unallocated

Write

Malloc

Allocated
Uninitialized

Allocated
Initialized

Free

Free

IBM Software Group | Rational software

30IBM INTERNAL USE ONLY

Purify’s array bounds detection

� Purify inserts guard zones around each block allocated using
malloc(). Guard zones are colored red. A read or write to red memory
triggers an array bounds violation.

� A read of yellow memory triggers an uninitialized read violation

memory returned by malloc()

After strcpy(buf, “RATL”)

R A T L (null)

IBM Software Group | Rational software

31IBM INTERNAL USE ONLY

Quantify

� Records dynamic callgraph
Per thread data
Shows top 20 slowest functions by default

� Counts instructions and computes runtime
Repeatable, high detail results
Blind to memory delays
Simulates processor resource use per basic block

� Optional timing instrumentation mode on windows
Limited resolution and repeatability
Function-level detail only, not per source line
Records memory delays

� Coverage is like Quantify but without the timing or callgraph

IBM Software Group | Rational software

32IBM INTERNAL USE ONLY

How to get the most out of PurifyPlus

� Use it
� Use it regularly
� Automate its use

� The online help is really good & concise!

IBM Software Group | Rational software

33IBM INTERNAL USE ONLY

Use it everywhere

� Think about all your executable components
Multiple executables

Services, daemons

IBM Software Group | Rational software

34IBM INTERNAL USE ONLY

Use it regularly

� Spectrum
1. Interactive Purify spot-check by QE before release

• Requires representative selection of use cases
2. Occasional Purify bash by a developer

3. Occasional Quantify bash by a developer
• Requires known slow use cases

4. Automated regression tests with Coverage, Purify
• Requires process to decide what to do with results

5. Purify & Coverage changed code before check-in
• You write unit tests, right ☺

Painkiller

Vitamin

Painkiller

Vitamin

IBM Software Group | Rational software

35IBM INTERNAL USE ONLY

Getting ready

� Use a current version
Check for updates often (see earlier fixpack url)

Read the release notes and online help “common questions”

If you need for support of a new or pre-release OS/compiler, call me

� Get enough RAM and swap
Instrumentation 20x exe size

Runtime varies, 2x VM size typical

If it’s running very slowly check for paging
• Process/task manager VM size, paging

IBM Software Group | Rational software

36IBM INTERNAL USE ONLY

Setting expectations

� It will run slower
OCI instrumentation can take minutes first time

• It’s cached for next time
Starting and stopping an instrumented app has overhead

Runtime slowdown is from 5% (cov) to 5x (bad Purify case)
• Many tuning options

It’s worth the wait

� Limited to data from one language at a time
C/C++, Java, .NET

Multiple runs required for mixed language apps

IBM Software Group | Rational software

37IBM INTERNAL USE ONLY

Setting expectations

� Special attention needed for
Apps using compilers not supported

• E.g. Smalltalk, BorlandC

Analysis of/with other runtime observation tools
• Use of Windows hooks
• E.g. Robot

� We’re here to help
And we’re not from the government

jmsanders@us.ibm.com

IBM Software Group | Rational software

38IBM INTERNAL USE ONLY

Tips: Select your instrumentation mode per dll/so

� Trade off performance/footprint for detail

� Purify
Precise - Every memory access
Minimal (Windows) - Only intercept APIs

� Quantify
Line - Every source line, counting cycles
Function - Every function, counting cycles
Timed (Windows) - Functions exported from a library, per-thread timer

� PureCoverage
Line – Every source line and basic block
Function – Every function
Exclude (Windows) – Nothing

� Windows and AIX also support “selective” instrumentation
Only instrument selected exe/dll’s, leave others untouched

IBM Software Group | Rational software

39IBM INTERNAL USE ONLY

Tips: Check instrumentation mode

� On Windows, visit the Run:Settings:PowerCheck:Modules dialog
See what modules are getting instrumented how
On Unix all modules get instrumented the same way

� Build optimized code with debug data (-g / pdb)
Allows PurifyPlus to show you source files and line numbers
If the debugger can’t show it, neither can PurifyPlus

� Build Windows exes with relocs - link option “/fixed:no”
So “precise” instrumentation is possible for exes

� If you’re trying to analyze Java, don’t OCI it by mistake
Clues:

• You shouldn’t see an “instrumenting” dialog
• You shouldn’t see Windows API-looking function names in results
• You shouldn’t see Purify error reports

IBM Software Group | Rational software

40IBM INTERNAL USE ONLY

Tips: Purify C++

� Leak hunting
If you just want leaks, use “minimal” instrumentation (Windows) or -memory-
leaks-only option (AIX)
Look at large and repeated leaks first
Use the NewLeaks button/API to narrow time window of lost pointer
Set a watchpoint on a pointer that’s being corrupted
If growth isn’t shown as a leak, use New In Use reports

� Use filters/suppressions
To look at errors before warnings
To hide things you don’t want to solve today
Store them per dll/so & check them in
Don’t forget to turn them off periodically

� Look at Coverage data
Unexecuted code is not Purify’d

IBM Software Group | Rational software

41IBM INTERNAL USE ONLY

Tips: Purify C++

� Run your Purify’d app under the debugger
Use “Break on error” or breakpoint at purify_stop_here()

See values that are about to be corrupted

Get more clues with Purify APIs from the debugger
• Purify_what_colors(addr, len)
• Purify_describe(addr)
• Purify_new_leaks()

Filter all but the one error you’re trying to track down

Set Purify watchpoints (Unix)
• High speed address breakpoints
• See every time an address is read, written, alloc’d &/or free’d

IBM Software Group | Rational software

42IBM INTERNAL USE ONLY

Tips: Purify C++

� Trace UMRs back via UMCs
Uninitialized Memory Copy is a legal operation, filtered by default

Unix: Use Purify watchpoints to see who wrote uninitialized data
somewhere unexpectedly
• purify_watch(&a[1], 4, “w”)
• Generates WPW message on every write to a[1]

int a[10];
a[1] = a[0]; // UMC, no foul
a[2] = a[1] + 1; // UMR since UMC’d data operated on

IBM Software Group | Rational software

43IBM INTERNAL USE ONLY

Tips: Quantify

� Focus on subtree of interest
� Filter/delete uninteresting system blocking time
� Clear/Snapshot around slow use-case

Eliminates data for use-case setup
� Look for “unexpected” behavior, even if not slow today

Unexpected recursion in callgraph

Sort by number of function calls – unscaleable algorithms

Sort by “F time” – compute intensive functions

IBM Software Group | Rational software

44IBM INTERNAL USE ONLY

Tips: Coverage

� First analysis to consider putting in automated regression tests
Lowest overhead

Use batch mode
• E.g. C:> coverage –savedata=foo.cfy myapp.exe

Merge data over multiple runs/tests
• Automerge, active merge, manual/command-line merge

Difference coverage between two builds

� Natural QE use case
Extend black box testing to white box

Plan how to act on the results collected

IBM Software Group | Rational software

45IBM INTERNAL USE ONLY

Help us improve PurifyPlus

� If your instrumented app works incorrectly
� If PurifyPlus fails to perform as advertised

Rational folks: file a bug in ClearQuest RATLC: Product=PurifyPlus
• Detailed description & steps to reproduce

Contact:
• Windows – gridings@us.ibm.com
• Solaris/Linux – jim.veroulis@us.ibm.com
• AIX/HPUX/SGI - krangara@in.ibm.com
• Anything – jmsanders@us.ibm.com

We’ll reproduce locally or remote debug on your machine

mailto:jim.veroulis@us.ibm.com
mailto:krangara@in.ibm.com
mailto:jmsanders@us.ibm.com

IBM Software Group | Rational software

46IBM INTERNAL USE ONLY

More information

� The online help is really good & concise

� The Getting Started guides really are informative, easy reads
Installed in the Start menu with Windows
Unix: http://publibfp.boulder.ibm.com/epubs/pdf/12653120.pdf

� developerWorks has several how-to articles and a Q&A Forum
http://www-128.ibm.com/developerworks/rational/products/purifyplus

� Web-based training course DEV205
http://www-128.ibm.com/developerworks/rational/library/4181.html

� 30 minute webcast, much like this QSE session
“Develop Faster, More Reliable C/C++ Code with IBM Rational PurifyPlus"
http://www-128.ibm.com/developerworks/views/rational/events.jsp?search_by=purifyplus

� Formal channel for internal support requests
http://w3.ibm.com/software/sales/saletool.nsf/salestools/bt-rational$rational_support

http://publibfp.boulder.ibm.com/epubs/pdf/12653120.pdf
http://www-128.ibm.com/developerworks/rational/products/purifyplus
http://www-128.ibm.com/developerworks/rational/library/4181.html
http://www-128.ibm.com/developerworks/views/rational/events.jsp?search_by=purifyplus
http://w3.ibm.com/software/sales/saletool.nsf/salestools/bt-rational$rational_support

IBM Software Group | Rational software

47IBM INTERNAL USE ONLY

Questions?
PurifyPlus – the X-ray for your code

Use it today!

IBM Software Group | Rational software

48IBM INTERNAL USE ONLY

Backup slides

� Unix interface examples
� More Unix usage tips
� Java & .NET leaks

IBM Software Group | Rational software

49IBM INTERNAL USE ONLY

Unix Purify interface

IBM Software Group | Rational software

50IBM INTERNAL USE ONLY

Unix Quantify – callgraph, thick lines = more time

IBM Software Group | Rational software

51IBM INTERNAL USE ONLY

Unix Quantify – top 10 functions by various metrics

IBM Software Group | Rational software

52IBM INTERNAL USE ONLY

Unix Quantify – callers and descendants

IBM Software Group | Rational software

53IBM INTERNAL USE ONLY

Unix PureCoverage – metrics by dir/file/function

IBM Software Group | Rational software

54IBM INTERNAL USE ONLY

Unix PureCoverage – coverage per line

IBM Software Group | Rational software

55IBM INTERNAL USE ONLY

Unix Purify Suppressions
� To suppress an error, select the error, and click

To make your
suppression
permanent, click on
the “Make
permanent” button.

IBM Software Group | Rational software

56IBM INTERNAL USE ONLY

Unix Tips: Kill Directive

� Sample suppression directives in .purify file.
suppress abr newnode

suppress abw newnode; btree

suppress fnh newnode; b*

suppress umr newnode; …; btree

suppress * *

unsuppress * new_*

suppress * …; “libc*”

kill umr …; “libnsl*” (undocumented)

IBM Software Group | Rational software

57IBM INTERNAL USE ONLY

Unix Tips: Compiler Options (Solaris)
-g Generate Debug info
-xs Pull Debug info into the library

IBM Software Group | Rational software

58IBM INTERNAL USE ONLY

Unix Tips: Purify Build-time Options

Caching options

-cache-dir Cache directory
-always-use-cache-dir Place all instrumented files in cache

Example: purify -cache-dir=/pure/cache -always-use-cache-dir ….

IBM Software Group | Rational software

59IBM INTERNAL USE ONLY

Unix Tips: Purify Run-time Options

Show instruction offsets. (Useful if you don’t have debug info).

-show-pc Absolute.
-show-pc-offset Relative to the start of the function.

Example: setenv PURIFYOPTIONS “-show-pc”
<Run executable>

IBM Software Group | Rational software

60IBM INTERNAL USE ONLY

Unix Tips: Reporting Options

Specify -log-file=<log file> to save output to a file.
Use conversion characters to name the output files. For example,

to use the program name and PID in the log file name, use:

-log-file=%v_%p.log.

(%v is the program name, %p is the process id)

IBM Software Group | Rational software

61IBM INTERNAL USE ONLY

Unix Tips: Reporting Options

� Specify -mail-to-user=<user> to mail purify output on
termination (only if there are errors).

� Specify -run-at-exit=“<cmd>” to run a shell command on
termination.

IBM Software Group | Rational software

62IBM INTERNAL USE ONLY

Unix Tips: Output Options

� To report repeated occurrences of errors only once, use -messages=first (default).

� To elect to defer message generation until end of run, use -messages=batch.

� To elect to see all messages, use -messages=all.

IBM Software Group | Rational software

IBM INTERNAL USE ONLY

Unix Tips: Purify API

� The Purify API consists of functions that you can use to
help debug and diagnose memory errors.

� Some functions are meant for use from within a
debugger:

purify_stop_here
Set a breakpoint here to stop when Purify reports an error.

purify_describe(addr)
Tells how Purify sees the memory: “global data” or “on the stack” or “X bytes from
the start of the malloc’ed block at Y.”

purify_what_colors(addr, count)
Dumps the “colors” (red/yellow/green) of a range of memory to the log window.

IBM Software Group | Rational software

IBM INTERNAL USE ONLY

Unix Tips: Purify API (contd.)

� Some API functions are meant for use from within your
program:

purify_is_running
Return TRUE when the program is Purify’d.

purify_printf (_with_call_chain)
Print a message to the log (with call-stack information).

purify_new_leaks / purify_new_inuse
Report how much more memory is leaked/in use since the last call.

� Linking your program with purify_stubs.a eliminates the need for
conditional compilation.

IBM Software Group | Rational software

65IBM INTERNAL USE ONLY

Unix Tips: PureCoverage Adjustments
Use Adjustments to mark code as Deadcode, or Inspected, or Tested

IBM Software Group | Rational software

66IBM INTERNAL USE ONLY

Unix Tips: PureCoverage Adjustments
Before Adjustments After Adjustments

IBM Software Group | Rational software

67IBM INTERNAL USE ONLY

Unix Tips: Merge Data Over Multiple Runs

� Automatically merges data from one execution to the next.
� Ability to merge different execution data into one file:

%setenv PURECOVOPTIONS -counts-file=filename.pcv
%purecov -merge=results.pcv a.pcv b.pcv

� Merge data from different versions of same object file (use with caution):
%purecov -view -force-merge version1.pcv version2.pcv

IBM Software Group | Rational software

68IBM INTERNAL USE ONLY

Unix Tips: Differences Among Multiple Runs

� Ability to report the list of files for which coverage has changed
%pc_diff old.pcv new.pcv

� Ability to compare coverage data from two builds of an application
%pc_build_diff old.pcv new.pcv

IBM Software Group | Rational software

69IBM INTERNAL USE ONLY

Unix Tips: Measure Coverage difference

� Script: pc_covdiff

IBM Software Group | Rational software

70IBM INTERNAL USE ONLY

Unix Tips

� Write scripts to analyze ASCII data.
� Some pre-written scripts available:

pc_summary
pc_below -percent=pct
pc_email -percent=pct
pc_ssheet
pc_annotate

IBM Software Group | Rational software

71IBM INTERNAL USE ONLY

Java and .NET specific capabilities

� Quantify and PureCoverage work the same as for C++
� Purify detects Java/.NET memory leaks

IBM Software Group | Rational software

72IBM INTERNAL USE ONLY

Leaks in Java and .NET

� Purify can find “leaks” in Java and .NET apps
Garbage collection eliminates classic leaks

“Memory in use” can still grow without bounds

� Identify even small leaks to avoid field failure over time

� Powerful “net allocation callgraph” pinpoints the source of leaks

IBM Software Group | Rational software

73IBM INTERNAL USE ONLY

Java/.NET are immune to this

void runForEver () {
while (true) {

String s = new String(“Java is Great”);
process(s);
s = null; // GC frees the unused memory

}
}

--- A.N.Other component ---

void process (String s) { // do something with the string

}

IBM Software Group | Rational software

74IBM INTERNAL USE ONLY

..but not this

void runForEver () {
while (true) {

String s = new String(“Java is Great”);
process(s);
s = null; // The memory is no longer freed

}
}

--- A.N.Other component ---
Vector bottomLess;
void process (String s) { // do something with the string

bottomLess.add (s); // and cache it for later reference
} // expect caller to DoneProcess()

// to release cache

IBM Software Group | Rational software

75IBM INTERNAL USE ONLY

Watch memory use grow,
even in small increments
Watch memory use grow, Watch memory use grow,
even in small incrementseven in small increments Snapshot the heap

before and after leaks
then compare

Snapshot the heap Snapshot the heap
before and after leaks before and after leaks

then comparethen compare

IBM Software Group | Rational software

76IBM INTERNAL USE ONLY

Identifies methods
leaking the most

memory
Drill down…

Identifies methods Identifies methods
leaking the most leaking the most

memorymemory
Drill downDrill down……

IBM Software Group | Rational software

77IBM INTERNAL USE ONLY

Sort object list
by age and size

Drill down…

Sort object list Sort object list
by age and sizeby age and size

Drill downDrill down……

Detailed memory
consumption per

method

Detailed memory Detailed memory
consumption per consumption per

methodmethod

IBM Software Group | Rational software

78IBM INTERNAL USE ONLY

…anchored by
Vector object

……anchored by anchored by
Vector objectVector object

String objectsString objectsString objects

…allocated in forEver
class constructor

……allocated in allocated in forEverforEver
class constructorclass constructor

IBM Software Group | Rational software

79IBM INTERNAL USE ONLY

What is Memory Corruption?
� Points to Remember:

What happens when software misbehaves?

• Software problems in the Therac-25 radiation therapy machine caused
it to deliver fatal doses of radiation to 6 patients.

• Software (and mechanical) problems with the automated baggage
handling system at the Denver International Airport resulted in the
airport opening 16 months later than originally planned. (The estimated
cost of the delay was $330,000 per month).

• According to unnamed White House sources, it was actually a software
glitch that caused Dick Cheney’s 28-gauge shotgun to shoot millionaire
attorney Harry Whittington in the face while quail hunting in Texas.

IBM Software Group | Rational software

80IBM INTERNAL USE ONLY

What is Memory Corruption?
� Memory corruption can cause an application to crash or misbehave.

IBM Software Group | Rational software

81IBM INTERNAL USE ONLY

What is Memory Corruption?
� Memory corruption can cause an application to crash or misbehave.

IBM Software Group | Rational software

82IBM INTERNAL USE ONLY

What is Memory Corruption?
� Memory corruption can cause an application to crash or misbehave.

IBM Software Group | Rational software

83IBM INTERNAL USE ONLY

What is Memory Corruption?
� Memory corruption can cause an application to crash or misbehave.

IBM Software Group | Rational software

84IBM INTERNAL USE ONLY

What is Memory Corruption?
� Memory corruption can cause an application to crash or misbehave.

	Develop Faster, More Reliable C/C++ Code with Rational PurifyPlus�
	Typical agenda
	Summary
	What is PurifyPlus?
	What is PurifyPlus?
	What is PurifyPlus?
	Examples of runtime errors
	Examples of runtime errors
	What if a tool would just show you the bugs?
	And show you the bottlenecks
	And show you what you forgot to test
	Even a single untested line
	Many alternatives
	Some internal users of PurifyPlus
	What about static analysis tools
	How do I get PurifyPlus?
	Supported environments
	How do I use PurifyPlus?
	Example: Launch Purify, press Run
	Type in your program name, press Run
	Wait while Purify instruments all your code
	Your app runs, Purify logs errors alongside
	Open a message to see details
	Pinpoints error to line of source
	How does it work?
	Instrumentation using Object Code Insertion - OCI
	Detecting memory leaks
	Memory access errors
	Purify’s memory state tracking
	Purify’s array bounds detection
	Quantify
	How to get the most out of PurifyPlus
	Use it everywhere
	Use it regularly
	Getting ready
	Setting expectations
	Setting expectations
	Tips: Select your instrumentation mode per dll/so
	Tips: Check instrumentation mode
	Tips: Purify C++
	Tips: Purify C++
	Tips: Purify C++
	Tips: Quantify
	Tips: Coverage
	Help us improve PurifyPlus
	More information
	Questions?
	Backup slides
	Unix Purify interface
	Unix Quantify – callgraph, thick lines = more time
	Unix Quantify – top 10 functions by various metrics
	Unix Quantify – callers and descendants
	Unix PureCoverage – metrics by dir/file/function
	Unix PureCoverage – coverage per line
	Unix Purify Suppressions
	Unix Tips: Kill Directive
	Unix Tips: Compiler Options (Solaris)
	Unix Tips: Purify Build-time Options
	Unix Tips: Purify Run-time Options
	Unix Tips: Reporting Options
	Unix Tips: Reporting Options
	Unix Tips: Output Options
	Unix Tips: Purify API
	Unix Tips: Purify API (contd.)
	Unix Tips: PureCoverage Adjustments
	Unix Tips: PureCoverage Adjustments
	Unix Tips: Merge Data Over Multiple Runs
	Unix Tips: Differences Among Multiple Runs
	Unix Tips: Measure Coverage difference
	Unix Tips
	Java and .NET specific capabilities
	Leaks in Java and .NET
	Java/.NET are immune to this
	..but not this
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	What is Memory Corruption?
	What is Memory Corruption?
	What is Memory Corruption?
	What is Memory Corruption?
	What is Memory Corruption?
	What is Memory Corruption?

