Develop Faster, More Reliable C/C++
Code with Rational PurifyPlus

"l"
I

T
-|III
L

software

(@ business on demand software

IBM INTERNAL USE ONLY

Typical agenda

What is it?

How will it improve my life?

How do | get it?

How does it work?

Advanced moves

IBM INTERNAL USE ONLY

(i

Summary

C. > nyapp
...crash...

C.> purify nyapp
...bugs and bottlenecks are pinpointed automatically...

You fix the bugs and bottlenecks.

C. > nyapp
...works perfectly...

You're a rock star. Go to the beach.

.0 IBMINTERNAL USE ONLY

What is PurifyPlus?

= Help, my app...
» Crashes intermittently
» Uses too much memory
» Runs too slowly
» Isn’t well tested
» |Is about to ship

= You've felt the pain - PurifyPlus is your painkiller
» See what your code is really doing

» Spend less time finding bugs and bottlenecks

4| 1BMINTERNAL USE ONLY

What is PurifyPlus?

= A set of runtime analysis tools

Be » Runtime error detection
PURIFY

» Automatically pinpoints hard-to-find bugs

» Application profiler
» Highlights performance bottlenecks

» Source code coverage analysis

» Helps avoid shipping untested code

.0 IBMINTERNAL USE ONLY

What is PurifyPlus?

For everybody
» Unix, Windows, C, C++, Java, .NET

» Developers and testers

Thorough
» It even monitors components you don’t have source for

Easy to use
» No recompile needed

» VS, Robot, ClearQuest & ClearCase integrations
» Rich CLI and batch mode for automation

The standard by which others are measured

.0 IBMINTERNAL USE ONLY

Examples of runtime errors

= Read uninitialized memory — yields unpredictable results

void foo() {
int *ptr = new int;
cerr << "ptris " <<*ptr<<'\n'; //JUMR: no value was set in ptr
delete][] ptr;

}
= Access off the end of an allocated block — unpredictable/corrupting

void foo() {
int *ptr = new int[2];
ptr[0] = 0;
ptr1] = 1;
for (inti=0; i <= 2; i++) {
cerr << "ptr[" << i<< "] ==" << ptr[i] << \n'; //ABR wheniis 2
}
delete[] ptr;

.0 IBMINTERNAL USE ONLY

Examples of runtime errors

= And of course memory leaks

void foo() {
int *ptr = new int; // MLK: ptr lost when foo returns
*ptr = 42;
cerr << "*ptris " << *ptr << '\n';

}

= Anyone can spot these by inspection

» Now imagine these lines of code spread out over your multi-threaded
componentized monster app

£ | IBMINTERNAL USE ONLY

What if a tool would just show you the bugs?

*.. hello - Microsoft Developer Studio - [Punfy Main Window]

pEile Edit Yiew |nzert Project Build Toolk PureCowverage Punfy Quantify Window Help -|E’|5|
4 3 | B [enie Conterts 1| o |58 o % 5 [5 & 0) & |rEAE =S
[alzmaly e o mEE@lesorda [gE2EE
||& 5 & & el
x| gstarting Purify'd Missile.exe at 05/20/99 14:12:53
=il Developer Produc atarti .
ﬂ Tools and Techno o ariing maln
- il Platfiom. SDK. anc| f = 4, UMR: Uninitialized memory read in standby(void) {22 occurrence:
:gzﬁlpwewera é----Reading 4 bytes from 0x0013fe70 (4 bytes at 0x0013fe70 uninitii
- Visual Quantify ~Address 0x0013fe70 points into a thread's stack

é----Address 0x0013fe70 is the local wvariable 'launch' in standby (Wi

~Thread ID: Oxlbf
=-Error location

= standby (void) [launch.cpp:22] Pinpoints hard-to-find
| LaunchCodeType launch; errors automatically
| while ({1} {
| if {(launch == LAUNCH_OK) {
s launch_missile {);
g Sleep (1000) ;
H-WinMain [main.cpp:il7]
N — | # WinMainCRTStartup [crt0.c:249]
"[jEI...I Fi...I 7 In...l- a | D
| =
4 -
JJ [+ J, Build {Debug ¥ Findin Files 1 % Find in Files2 / KN 3 =
Ready v

IBM INTERNAL USE ONLY
i}

And show you the bottlenecks

oo 5)o¢

WinMainCRTStartup

GdiDllinitialize

SetTimer

SetWindowRan

GdiDrawstream

exit

LpkDrawTextEx ScriptstringAnalyse

maduleEntry. uxtheme EnumDesktopsW

UuidCre
.moduleEntry.msc’rﬁ .moduleEntry.ole32 E]

GetChar,

& | I | [
isible; 21324 h—ﬁghhghted 4/4 |WinNain [C:\Program Files\Rational \PurifyPlus\QuantifySamplesthello.exe] A
Ready =l Y

| IBM INTERNAL USE ONLY

0 D L1
File Edit View Settings Window Help
@|H| éilﬁl E” |EE'| @I “ll«lﬁl A|E|‘ f%li]-l I‘QE Ellg”ll\dicroseconds LI |D.DD j ‘ 4"*”
[Function Detail: hello.exe | Bl Function List: hello.exe
%o of Focus Function: WinMain - Function F+D F time F+D time Avg F | Min Fa
Calls: 1 Function | Calls| time | time | (% of Focus)| (% of Focus)| time | ftime
Function time: 001 (0.00% of Focus) SetTimer 5| 318121 318121 881 821| 63624 [
F+D time:] 18,267.88 (52.23% of Focus) GetCharABCWidths| 1| 3.158.43) 315843 874 874| 3,158.43| 3158«
Avg F time: 0.01 ExitProcess 1| 295433 1565409 218 4334| 295493| 2.954¢
Min F time: 0.01 moduleEntry.ole32 2| 266123 330450 737 9.15| 133062 363
Max F time: 0.01 SetWindowRgn 1] 112044 139467 377 5.52| 1,180.44| 1,180<
s B ted |GdiDrawStream 30| 74354| 74354 206 206 2478 13
Caller Percent | Calls e ScriptStringAnalyse 135 684.31| 480387 1.89 13.30 5.07 0:
WinMainCR T Startup I 10000 1 18.867.88 |CreateCompatibleBit. .. & 503.97 503.97 140 140 83.99 192
GetTedBExtertExPoi.| 108| 43437 43437 1.20 1.20 402 0f
StretchD|Bits 2| 40641 40641 113 113| 20320) 14f
GetModuleHandlsW/ & 36268 36Z6R 1.00 100 6045 35¢
DeleteObject 27 3102 32308 0289 029 1189 0
GetWindowDC 30| 31463 31469 0.87 087 1049 ik
Descendants D Percent | Calls | FroPagated | moduleEntry msctfime 2| 26070 1317.05 072 365 13035 61!
time GdiDllInitialize 1| 22773| 113537 063 34| 2773| 227
LpkDraw TextEx 1 22 10 438457 | \iConnectPort 1| 18220/ 18220 050 050 18220 182:
SetTimer I 1886 i 318121 lgetpc 3| 156.84| 15684 043 0.43
DrawText BW Looswn v 282043 | paseCheckAppoom... 2 il 1z 034 034
SetWindowRagn [| 10,57 g 1,994.67 | | = G :@ 47113 121973 0 gl
‘moduleErtry msctfime 1 511 1 96333 a7l 11pac —J —
GdiDrawStream i 34l 30 74354
- e me=ecee | Hjghlights bottlenecks
|@| ‘ Zoonm: _J— Highlight: |N0de: M awimum Path to Root ;I ‘ y

And show you what you forgot to test

ﬁ"'- Rational PureCoverage - [Coverage Browser:java.exe]
[52 File Edit View Settings ‘Window Help

=10l
=18

Lae Ise

= d Sl x| B B oju= Al R 8 [EEERE e+ =]
E" D:ILWINNTILE Module View File: View |
- @ Auto M; Methods | Methodz | % Methods | Lines | Lines | ¥ Lines
""" B Run@ Coverage ltem Calls | Missed Hit Hit Missed | Hit Hit
EIE Fun = 11/28/2000 14:41:16 LeakSample 32 0 2 100.00 al a1 94.19
EIE [Unkroean Directary) 32 1] a 100.00] a1 94.19
EI [Urkrioar File) 22] 1 100.00
@ JYM Garbage Collector 22 hit
E||_TE—j| LeakSample.java 10 1] 7 100.00] a1 3419
o B =3k Sarnpleddction < inits [Leaks.. 1 1 BE.EY
-~ @ LeakSampletdction actionPerfa..| 3 hit 0 B 100.00
- @ LeakSample$Process. <init>[Leal.. 1 hit 0 al 100.00
- @ LeakSample$Process.mn() 1 hit 1 13 92,86
-~ @ LeakSample.<init>[javalang Sk, 1 hit 0 41 100.00
- & LeakSample.binStart_Clicked(ja..| 2 hit 3 12 20,00
- & LeakSample. mainfjava.lang. Strin.. 1 hi 1] 2 100.00

L

/S [

Summary of untested
lines and functions

IBM INTERNAL USE ONLY
]|

Even a single untested line

ﬁ* Rational PureCoverage - [(Unknown Directory)iLeakSample.ja¥a in Coverage File ¥iew] - |I:I|_>'=
File Edit Wiew Setkings ‘Window Help =1
== Sl || = B ofx|=] AlZ] & S B 8| | =
EHEl gWINNTIE b ethods: ILeakSamplemctiunAinit>[LeakSam|:uIe] j Colors: i&
- Buto e
B Run@ Lin Hit Lines... |
Cover Missed Lines... Source
2,4 Dead Lines... ytes . addElement (new byte[8196]});
Summaries. ..
Partially Hit Multi-block Lines...
2,4 Use Default Colors =8; 1dent; 1++)
S T .
2,218 | 161 uBytes.remoueElementAt (8 Untested lines
162 ¥
163
221 164 if (bLeakDnce == true) 7
165 {
a 166 bLeakMemory = false;
167 ¥
168
221 169 txtFreeHemory.setText (String.valuedf {rt.
221 178 txtTotalHemory.setText (String.valuedf (rt
171 ¥
172 ¥
173
174 /¢4 Kill some time between processing
648 175 try {
640 176 java.lang.Thread.sleep {188);
a 177 } catch (InterruptedException e)
178 { -
1| | 3
e

|Line: 185 of 201

|Methu:u:|: LeakSamplefaction. <init =(LeakSample)

S N

IBM INTERNAL USE ONLY
]|

Many alternatives

= Perhaps you already use some of these runtime analysis tools:

» NuMega BoundsChecker (Windows) » Intel vTune (Windows/Linux)
» Valgrind (Linux) » IBM tprof
» ZeroFault (AlX) » Quest Jprobe (Java)
» Parasoft Insure++ (SCI) » Borland Optimizelt (Java)
» GlowCode (Lite) » RAD Profiling (Java)
» Etc.

» Rational Test RealTime (Embedded)

» ... Mail me with use cases, design/capability wins, etc.
* jmsanders@us.ibm.com

= Each has its pros and cons

» Some people keep several in their arsenal
» In general PurifyPlus

® Goes deeper

® Runs faster

® Provides more analysis

* Works for larger apps

® |s easier to deploy and to automate _
» Perhaps I'm biased, but 100,000 users can't be too wrong Software Test & Performance

.ai IBMINTERNAL USE ONLY

mailto:jmsanders@us.ibm.com

Some internal users of PurifyPlus

= AIX JVM & AIX C++ compiler - ISL
» Purify C++ on AIX
= Rational ClearQuest Web server - Adam Skwersky
» Purify C++ on Windows
= Rational XDE — Matt Halls
» Quantify and Purify C++ and Java on Windows
= Rational PurifyPlus team — Jon Sanders
» Purify, Quantify and PureCoverage C++ on all platforms
= WAS Performance — Andrew Spyker
» Quantify Java

= DB2 JDBC Universal Driver — Suja Viswesan
= WebSphere Commerce Server — Priti Shah
= WPLC - David Ogle

» PureCoverage Java

= Ask your friends. Tell your friends!

! © | IBMINTERNAL USE ONLY

What about static analysis tools

Static analysis tools are a great complement to Purify
They can...

Find errors that you don’t exercise in test cases
Find richer semantic errors, e.g. type safety
Find potential errors if calling patterns change

v Vv Vv Vv

Analyze code sections before you have a working executable

Static analysis tools have limitations
They...

» Only find errors in the code you have source for

* Not in libraries that you pass bad data too or that are buggy
» Can miss errors that are distant in time/space cause/effect

® Or bury you in “possible” errors
» Can take a long time to run

» Are not for profiling or coverage

= Use both as appropriate

! . IBM INTERNAL USE ONLY

How do | get PurifyPlus?

= Getting PurifyPlus takes about 15 minutes
= Download & install it from XL
» http://w3.ibm.com/software/sales/saletool.nsf/salestools/bt-rational$Rational_download
» Search for text “PurifyPlus Enterprise”, pick the eAssembly with the latest version (currently
v7.0), and download the binary for your platform (Linux/UNIX or Windows)
= Get alicense
» http://w3.ibm.com/software/sales/saletool.nsf/salestools/bt-rational$rational _licensechoose
» “Option #1” - pointing at a floating license server - is the simplest move
» For laptop users, this path still permits disconnected use for several days at a time
|

Download & install the latest iFix/Fixpack (very important)

» http://www.ibm.com/products/finder/us/finders?pg=ddfinder&C1=5000583&C2=5000623&rcss=rtlprfypls
» Pick the most recently published download for your version of PurifyPlus

& IBM INTERNAL USE ONLY

http://w3.ibm.com/software/sales/saletool.nsf/salestools/bt-rational$Rational_download
http://w3.ibm.com/software/sales/saletool.nsf/salestools/bt-rational$rational_licensechoose
http://www.ibm.com/products/finder/us/finders?pg=ddfinder&C1=5000583&C2=5000623&rcss=rtlprfypls

Supported environments

= See datasheets
» http://www-306.ibm.com/software/awdtools/purifyplus/unix/sysrea/

» http://www-306.ibm.com/software/awdtools/purifyplus/win/sysreq/

OS Processor OS version Compilers Bits
Linux x86/x64 RHEL2.1-4/SLES8,9 gcc 32&64
AlX PowerPC 5.1-5.3 XLC6,7,8 32 & 64
Solaris SPARC 6-10 Studio 7-10, gcc 32 & 64
HPUX PA-RISC 10.20-11iv2 aCcC, gcc 32&64
IRIX MIPS 6.5 SGl 32 & 64
Windows x86 NT/2000/XP/2003 Microsoft 32

» Additionally supports Java on Windows and Solaris

» Additionally supports .NET and VB applications on Windows

» AIX 64 bit Quantify & PureCoverage is in early access - contact krangara@in.ibm.com

» Some of the older platforms above are no longer formally supported in current version, but either

Cﬁmtinue to work or the previous version of PurifyPlus can be downloaded (v2003.06.15) to run with
them

» Select additional variants have best-effort support
® E.g. other compiler/OS rev levels, Intel compiler

» More platforms in development
® Contact jmsanders@us.ibm.com

~ IBM INTERNAL USE ONLY

http://www-306.ibm.com/software/awdtools/purifyplus/unix/sysreq/
http://www-306.ibm.com/software/awdtools/purifyplus/win/sysreq/
mailto:krangara@in.ibm.com
mailto:jmsanders@us.ibm.com

How do | use PurifyPlus?

The rest is really easy!
» Just instrument and run

On AlX, SGI and Windows executables are instrumented directly
» C> purify foo.exe

» ksh% purify a.out
» Or use the GUI

On Linux, Solaris and HP-UX instrumentation is at link time
» Prefix link line with “purify” in makefile

a.out: foo.c bar.c
$(CO $(FLAGS) -0 $@9%?
a.out.pure: foo.c bar.c
purify $(CCO $(FLAGS) -0 $@$?

Quantify and Purecov are invoked similarly
» Purify and PureCov can be used simultaneously

IBM INTERNAL USE ONLY

Example Launch Purify, press Run

, tolPurify,
|Pleaseselectiyourifirst/step:..
l.

B Run.your program using Purify

Proceed with Purify

Contirue

ﬂ Show this screen at startup

Did you know?...

J . - ,.8 | IBMINTERNAL USE ONLY
]

Program name:

LCommand-line arguments:
Cancel |

| Settings...
whorking directary:; aethngs |
IE:HPngram FiIes'xFEatiu:unal'xF'urif_l,lF'Ius'xSamples'xF'urify"-.Stu:u:kNT'\DELI | Help |

— Collect:

" Ermor and leak data ' Coverage, emor, and leak data " Memary profiing data

Collect code coverage information as well az detect memary enars and leaks in natively compiled
C/C++ applications.

— Uze zettingz fram [MNI file;
¥ Eompute autamatically

|]

[Bun under the debugger [~ Pause conzole after exit

Ready [T [«

& IBM INTERNAL USE ONLY

| IBM INTERNAL USE ONLY

Your app runs, Purify logs errors alongside

nal Ful - rovwser. Fu .eXe
ﬁﬁ'e Edit View GSettings Window Help 18l x
=|E| 2@ Bl | 2B B Ble| =] AR B 28] 2| 2] eElEs] & E
Ermr'kﬂewl

0 Starting Purifv'd C:“~Program Files“Rational~PurifvFlu=s~Sanples~Purifiv-StockHTDebug~=toclkvc
ﬂ Starting main

0 ABW: Array bounds write in CStockdpp: CStockiApp(void) {1 occcurrence}
.:"E":. THE : initialized memory read in SetWindowTexztd {69 occurrences}

('E";. THE: T itialized memory read in strcmp {125 occurrences}

('i";. THE: TnimN\Nalized memory read in =strlen {69 occurrences}

("i";. THE: Uninat wz=d memory read in HultiBvteToWideChar {138 occurrences}
0 ABE: Arraw bo read in stromp {13 occurrencest

0 ABW: Array boun ite in zprintf {1 occurrencel}

This looks bad.
Lets open it

4| | i
isplayed Errors: 150f 15 Displayed Warnings: 401 of 414 Bytes leaked: 0+0

Ready I_I_I_ A

| IBM INTERNAL USE ONLY

Open a message to see details
(3 Rational Purify - [Data Browser: Purify'd stockvcé.exe] =JIoed
[File Edit View Settings Window Help _| 8 x
=W Sl = x| BB B Ele| =s] A2 B 2K 2| # = BlE =l E
Error View I
l ﬂ Starting Purifv'd C:~Program FilES\RatiDnal\PurifyPlus\Samples\Purify\StDDkHT\DEhug\StDDkLI|
----- 'ﬂ' Starting main

L__| o ABW: Array bounds write in CStockdpp: CStockdpp({woid) {1 occurrence} All the salient details:

Writing 1 byte to 0x00158a=8 (1 byte at 0=x00158a=8 illegal) _
Address 0x00158ze8 i= 1 byte past the end of a 80 byte block at 0=x00153a What was accessed

Addres=s 0x00158aef point= to a HeapAlloc'd block in the default heap 'from Where
Thread ID: 0x1264 - allocated when
--— Error location
-- CStoclkbpp: (CStoclkAppiwoid) TiL files\ratin:unal\purif?plus\samples\purifgr\stcu:]-
[+ $E4 (C++ ctorsdtor) [c:~program files nth=tc
W initterm [£ - \w=7Dbui ld=n3077wvonertbldnert g EXamine the buggy code I
- WinMainCRTStartup [f:~w=70build=~307 7 wc~crthld>~c o oo
E-— Allocation location
Heapilloc [C~WINDOWS ~systend2~KERHEL32 . dll]
-- CStoclkbipp: (CStoclkAppi{woid) [c:~program files~rational~purifyplusszamples-~purify-=tocl
-- $E4 (C4++ ctorsdtor) [c:~program files rational“purifyplus zamplespurify~=stoclnt-=stc
-- inittermn [f:~vw=Y0build=~3077~wccrthld crt~=srchcrtldat .o:599]
= WinMainCRTStartup [f:~w=70build=~307 7 woc~crtbld crt~srcwcrtexe. c: 336] |
EEI--& THE: Uninitialized memnory read in SetWindowTextd {69 occurrences}
EEI--& UHE: Uninitialized memory read in =trcmp {125 occcurrences=}
EEI--% UHE: Uninitialized memory read in =trlen {69 occurrences} -
l"|| TTWT . o Y [| e ————— ————] - Wee 1T L 2 Tl T TTS A i - - 4 an ___.._._.I_..___'l j_I

isplayed Errors: 15 of 15 Displayed Warnings: 401 of 414 Bytes leaked: 0+0

Ready I_ l_ I_ A

IBM INTERNAL USE ONLY

Pinpoints error to line of source

(B Rational Purify - [Data Browser: Purify'd Stockves.exe] =JoEd

ﬁﬁlle Edit WView GSettings Window Help

& x

= || S|a (e W2 BB B o] =] AR B els| 8] 2| 2] e Bes]|)

Error View I

l ﬂ Starting Purify'd C:“Program Files~Eational“PurifyFPlus~Sanples~Purifvy-StockNT-Debug~=stock +
----- 'ﬂ' Starting main

EI 0 ABW: Arrav bounds write in CStoclkipp: CStockdppi(woid) {1 occurrencel}

Writing 1 byte to 0=x00158a=8 (1 byte at 0=x00158a=8 illegal)
Address 0x001532=8 i= 1 byte past the end of a 80 byte block at 0=x00158a93
Addres=s 0x00158a=8 point= to a HeapAlloc'd block in the default heap
Thread ID: 0=l1264
- Error location
=- CStoclkbipp: (CStoclkippiwoid) [c:~program files rational-purifyplus samnples~purifv-=tocl
CStockbpp: CStockAppi)
11
m _Ticlker = {(char *)Heapilloc{GetProcessHeap(). 0, TICKEE SIZE):
| > n_Ticker [TICKEE SIZE] = IJ;I
| : -
; Purify can optionally
: R R R R P R R trlggeradebugger
[+ $E4 (C++ ctorsdtor) [c:~program files rational~purifyplus- breakp()lnt the |nStant
#— initterm [f:~we7?0builds 3077 woscrthld ort erc ortda before this happens
[+ WinMainCRTStartup [:~w=70builds~3077~vwccrtbldwcrtsrccrt :
B- Allocation location
Heapilloc [C:~WINDOWS~=ystend 2~KERHEL32 . dll]

’ -
I i [¥ SRR, [N R S B SO DU R I — Y S .I:_'1__'\-\._._J._'_.._1_.._._'.I:__.I_'|.._\ ___._1___.._._':___L_f

isplayed Errors: 15 of 15 Displayed Warnings: 401 of 414 Bytes leaked: 0+0

Feady I_ I_ I_ A

. IBM INTERNAL USE ONLY

How does it work?

= The “tech” part of the talk

= All it does is:
» Take your compiled application apart

» Find interesting places to insert probes
» Put your application back together again
» Run it and make lights blink

£ | IBMINTERNAL USE ONLY

Instrumentation using Object Code Insertion - OCI

= Stretching your code
» Code- and partial data-flow analysis on exe/dll
* Separate code from data
* Find all cross-references in code and data
® Heuristics tuned to compiler behaviors
» Insert inline assembly code or jumps at locations like
* Every memory read/write
* Function calls, function entries
® Source line, basic blocks
Modify imports to reference instrumented dlls

v v

“Wrap” interesting APIs

* malloc/free, New/Delete, LoadLibrary/dlopen
Bind a runtime support library

v

! © | IBMINTERNAL USE ONLY

Detecting memory leaks

= Purify’s best known feature
= Simple GC-like algorithm
» Maintain list of all allocated blocks in all heaps

* And callchain of allocator
» On demand, scan memory for all pointers

* Starting from anchors — stack, statics, registers
» Any block not pointed to is “leaked” (MLK/PLK)

* All other blocks are “memory in use” (MIU)

.0 IBMINTERNAL USE ONLY

Memory access errors

= Hard to find bugs
» ABR/ABW - array bounds read/write
» FMR/FMW - free’d memory read/write
» UMR - uninitialized memory read
= Technique
» Track state of each byte in process address space
* Red = logically unallocated to app
* Yellow = allocated (malloc/new) but not written to yet (uninitialized)
* Green = allocated and initialized
» Add red-zone to ends of allocated blocks
* To catch array out of bounds errors
» Monitor every read and write instruction

! © | IBMINTERNAL USE ONLY

Purify’s memory state tracking

Allocated
Uninitialized

Allocated
Initialized

IBM INTERNAL USE ONLY

Purify’s array bounds detection

= Purify inserts guard zones around each block allocated using
malloc(). Guard zones are colored red. A read or write to red memory
triggers an array bounds violation.

memory returned by malloc()

= A read of yellow memory triggers an uninitialized read violation

After strcpy(buf, “RATL")

IBM INTERNAL USE ONLY
]|

Quantify

Records dynamic callgraph
» Per thread data

» Shows top 20 slowest functions by default

Counts instructions and computes runtime
» Repeatable, high detail results

» Blind to memory delays
» Simulates processor resource use per basic block

Optional timing instrumentation mode on windows
» Limited resolution and repeatability

» Function-level detail only, not per source line
» Records memory delays

Coverage is like Quantify but without the timing or callgraph

2 % IBM INTERNAL USE ONLY

How to get the most out of PurifyPlus

Use it
Use it regularly
Automate its use

The online help is really good & concise!

IBM INTERNAL USE ONLY

Use it everywhere

= Think about all your executable components
» Multiple executables

» Services, daemons

& IBMINTERNAL USE ONLY

Use it regularly

Spectrum

1.

Interactive Purify spot-check by QE before release
* Requires representative selection of use cases

2. Occasional Purify bash by a developer

Occasional Quantify bash by a developer
* Requires known slow use cases
Automated regression tests with Coverage, Purify

* Requires process to decide what to do with results
Purify & Coverage changed code before check-in

® You write unit tests, right ©

! % IBM INTERNAL USE ONLY

Painkiller
n v n
Vitamin

Getting ready

= Use a current version
» Check for updates often (see earlier fixpack url)

» Read the release notes and online help “common questions”
» If you need for support of a new or pre-release OS/compiler, call me

= Get enough RAM and swap
» Instrumentation 20x exe size

» Runtime varies, 2x VM size typical
» If it’s running very slowly check for paging
* Process/task manager VM size, paging

! % IBM INTERNAL USE ONLY

Setting expectations

= |t will run slower
» OCI instrumentation can take minutes first time

* |t's cached for next time
» Starting and stopping an instrumented app has overhead

» Runtime slowdown is from 5% (cov) to 5x (bad Purify case)
° Many tuning options
» It's worth the wait

= Limited to data from one language at a time
» C/C++, Java, .NET

» Multiple runs required for mixed language apps

IBM INTERNAL USE ONLY

Setting expectations

= Special attention needed for
» Apps using compilers not supported
* E.g. Smalltalk, BorlandC

» Analysis of/with other runtime observation tools

* Use of Windows hooks
* E.g. Robot

= We're here to help
» And we’re not from the government

» jmsanders@us.ibm.com

4| 1BMINTERNAL USE ONLY

Tips: Select your instrumentation mode per dll/so

Trade off performance/footprint for detalil

Purify
» Precise - Every memory access

» Minimal (Windows) - Only intercept APIs

Quantify

» Line - Every source line, counting cycles
» Function - Every function, counting cycles
» Timed (Windows) - Functions exported from a library, per-thread timer

PureCoverage
» Line — Every source line and basic block

» Function — Every function
» Exclude (Windows) — Nothing

Windows and AIX also support “selective” instrumentation
» Only instrument selected exe/dIl's, leave others untouched

! % IBM INTERNAL USE ONLY

Tips: Check instrumentation mode

On Windows, visit the Run:Settings:PowerCheck:Modules dialog
» See what modules are getting instrumented how

» On Unix all modules get instrumented the same way

Build optimized code with debug data (-g / pdb)

» Allows PurifyPlus to show you source files and line numbers
» If the debugger can’t show it, neither can PurifyPlus

Build Windows exes with relocs - link option “/fixed:no”
» So “precise” instrumentation is possible for exes

If you're trying to analyze Java, don’t OCI it by mistake
» Clues:
® You shouldn’t see an “instrumenting” dialog
® You shouldn’t see Windows API-looking function names in results
® You shouldn’t see Purify error reports

2 % IBM INTERNAL USE ONLY

Tips: Purify C++

= Leak hunting

» If you just want leaks, use “minimal” instrumentation (Windows) or -memory-
leaks-only option (AIX)

Look at large and repeated leaks first

Use the NewLeaks button/API to narrow time window of lost pointer
Set a watchpoint on a pointer that’s being corrupted

If growth isn’t shown as a leak, use New In Use reports

v v Vv Vv

= Use filters/suppressions
» To look at errors before warnings

To hide things you don’t want to solve today
» Store them per dll/so & check them in
» Don't forget to turn them off periodically

= Look at Coverage data
» Unexecuted code is not Purify’'d

! . IBM INTERNAL USE ONLY

Tips: Purify C++

= Run your Purify’d app under the debugger
» Use “Break on error” or breakpoint at purify_stop_here()
» See values that are about to be corrupted
» Get more clues with Purify APIs from the debugger

* Purify_what_colors(addr, len)
* Purify_describe(addr)
* Purify_new_leaks()
Filter all but the one error you're trying to track down

v Vv

Set Purify watchpoints (Unix)

* High speed address breakpoints
® See every time an address is read, written, alloc’d &/or free'd

! © | IBMINTERNAL USE ONLY

Tips: Purify C++

= Trace UMRs back via UMCs
» Uninitialized Memory Copy is a legal operation, filtered by default

int a[10];
a[l] = a[o0]; /I UMC, no foul
a[2] = a[l1] + 1; /l UMR since UMC'd data operated on

» Unix: Use Purify watchpoints to see who wrote uninitialized data
somewhere unexpectedly

° purify watch(&a[1], 4, “wW')
* Generates WPW message on every write to a[1]

.0 IBMINTERNAL USE ONLY

Tips: Quantify

Focus on subtree of interest
Filter/delete uninteresting system blocking time
Clear/Snapshot around slow use-case

» Eliminates data for use-case setup
Look for “unexpected” behavior, even if not slow today
» Unexpected recursion in callgraph

» Sort by number of function calls — unscaleable algorithms
» Sort by “F time” — compute intensive functions

! % IBM INTERNAL USE ONLY

Tips: Coverage

= First analysis to consider putting in automated regression tests
» Lowest overhead
» Use batch mode
°* E.g.C > coverage —-savedat a=foo. cfy nyapp. exe
» Merge data over multiple runs/tests

* Automerge, active merge, manual/command-line merge
» Difference coverage between two builds

= Natural QE use case
» Extend black box testing to white box

» Plan how to act on the results collected

! % IBM INTERNAL USE ONLY

Help us improve PurifyPlus

= If your instrumented app works incorrectly
= |f PurifyPlus fails to perform as advertised

» Rational folks: file a bug in ClearQuest RATLC: Product=PurifyPlus
* Detailed description & steps to reproduce
» Contact:
* Windows — gridings@us.ibm.com
® Solaris/Linux — jim.veroulis@us.ibm.com
* AIX/HPUX/SGI - krangara@in.ibm.com
* Anything — [msanders@us.ibm.com
» We’'ll reproduce locally or remote debug on your machine

! © | IBMINTERNAL USE ONLY

mailto:jim.veroulis@us.ibm.com
mailto:krangara@in.ibm.com
mailto:jmsanders@us.ibm.com

More information

= The online help is really good & concise

= The Getting Started guides really are informative, easy reads
» Installed in the Start menu with Windows

» Unix: http://publibfp.boulder.ibm.com/epubs/pdf/12653120.pdf

= developerWorks has several how-to articles and a Q&A Forum
» http://lwww-128.ibm.com/developerworks/rational/products/purifyplus

= Web-based training course DEV205
» http://www-128.ibm.com/developerworks/rational/library/4181.html

= 30 minute webcast, much like this QSE session
» “Develop Faster, More Reliable C/C++ Code with IBM Rational PurifyPlus”
» http://www-128.ibm.com/developerworks/views/rational/events.jsp?search by=purifyplus

= Formal channel for internal support requests

» http://w3.ibm.com/software/sales/saletool.nsf/salestools/bt-rational$rational support

~ IBM INTERNAL USE ONLY

http://publibfp.boulder.ibm.com/epubs/pdf/12653120.pdf
http://www-128.ibm.com/developerworks/rational/products/purifyplus
http://www-128.ibm.com/developerworks/rational/library/4181.html
http://www-128.ibm.com/developerworks/views/rational/events.jsp?search_by=purifyplus
http://w3.ibm.com/software/sales/saletool.nsf/salestools/bt-rational$rational_support

Questions?
PurifyPlus — the X-ray for your code

Use it today!

) I
.ot IBMINTERNAL USE ONLY

Backup slides

= Unix interface examples
= More Unix usage tips
= Java & .NET leaks

& IBMINTERNAL USE ONLY

Unix Purify interface

File View Actions Options

v

| Finizhed a,out,pure ¢ 1 error, 12 leaked bytes?
M| Purify instrumented a,out,pure (pid 19752 at Thu Sep 17 1h:hE:40 19983
| 9 Array bounds read

This iz occurring while in:

.......

strlen [rtlib,a]
_doprnt [libc,=0,1]
printf [libz,z0,1]
| main Chello world,ci2d]

char #myztr = malloct{strlenthellallor1dhs:

: strncpyimystr, hel lokorld, 123+
g printf{"Eshn", mystri:
Praor

_start [crtl, ol
Reading 13 bytes from O0x78b63 in the heap {1 byte at 0x7EbY4 illegali,
Address 0x78bE3 i= at the beginning of a malloc’d block of 12 bytes,
This block was allocated from:

mal loc [rtlib,ol
»| main [hello_world,c:139]
_start [crtl, ol
| Current file descriptors in use; 5§ i
<] =

IBM INTERNAL USE ONLY

IBM Software Group | Rational software

| start>mm—ain

2 AR

- quicksorti=4

Showni=-_

wbhle»<=

¢/ —shownodes

itreel=- e

T —=nodeinsert:=
“hewnodes

ﬂl uicks -

___...-I]EIIEIIIEE[:=__—____—-S\|I ap

Unix Quantify — top 10 functions by various metrics

Quantify: Function List

File View Windows

All 65 functions maich ™.
Function time (% of .root.)

bubhle
swap

_labec write
nodeinserct
balance
_doprnt
findmiddle
rand

_sbrk unlocked
fillrand

] =
Find in function list: I

| show Annotated Source | show Function Detail E Locate in Graph

o S oo S o S o S o S o B L B .

Jsort.g (pid 6167)

IBM INTERNAL USE ONLY
]|

Unix Quantify — callers and descendants

Quantify: Function Detail

File ¥iew Windows

Function name: bubble

Filename: /s mldl shome frajk/Training/350ct 3s0ct. o
Called: d times

Finction time: 186413558 cycles (79 742 of root.)
Finction+descendants time: 21979375 cycles (94 .0E% of oot)

hverage function time: BE213T85 cycles

Minimum function time: 1949 cycles

Maztimum function Lime: 18633430 cycles

¥
=] i
Distribution to callers: Contributions from descendants:

B times { 1.47%) shown
9 times 0.62%) printt

f- 3 times maln 238974 times (13.05%) s=swap
B times { 0.05%) malloc

=] 3 |l

Find: |I I

| show Annotated Source | S Fusncliog Diatag | Locate in Graph

Jsort.g (pid B167)

¥ abyvees 2 7» 4 1BM INTERNAL USE ONLY 52

Unix PureCoverage — metrics by dir/file/function

% PureCoverage
File WView Actions Adjustwents Help
O 0fts
Sorting order: FUNCTTONS ADJUSTED L INES ADJS
Adjusted wmsed lines Buns Calls wmwmsed used nsed: wmsed used usedt total
v| Total Coverage 1 5 83 3 6 66% o |-
] JArajk/Training/example/ 1 2 Bb% 3 6 6Bb% 0
| hello_world.c 1 1 2 Bb% 3 b Bb% 0
E| display message 0| wused 2 0 153 0
=| main 1 used 1 4 8D 0
=| display hello world 1 used 0 2 100% 0
M ... /SUNWspro/SCd.0/1ib/ 1] 3 100% 0 [faiies 0 {7
| |

IBM'IN:TERNAL USE ONLY
]|

Unix PureCoverage — coverage per line

. PureCoverage: Annotated Source -- hello_world.c [Adjusted coverage] [Read only]
Line | D I T | Hits | ivmotated Source
14 -
15 woid display hello world():
16 void display wessage();
17
18 wain{argc, argv)
19 int argce;
20 char** argv;
21 {
22 1 if {arge ==
23 1 display hello_world(}:
24 else
25 [0
26 1 exitil);
27 1]}
28
29 void
30 display hello world()
1
32 1 printf{"Hello. Worldn"}:
33 1]}
34
35 void
36 display message(s)
37 char *s;
38
BEE printf("%s, World\n", s}:
40 }
| Next urmsedl Prev unusedl Go to line #: Find:
/nfs/ul91 /honef rajk/ Training/example/hello world.c

RNAL USE ONLY

Unix Purify Suppressions ‘g
= To suppress an error, select the error, and click

e A | m
RTTLY n
LU TS [
RTTLY n
LU TS [
RTTLY n
- [

iiiiil
ey

Purify: Suppressions

Hessage to suppress: HMLK: Hemory leak

Hhere to suppress: In call—chain_ll

To make your

cCall chain: |ma110|:
. Imain
suppression e
permanent, click on

the “Make
permanent” button.

Isuppr‘ess mlk malloc? main: _start

Hake permanent | in file |./.purify

Select File...

Applyl Dismiss | Help |

IBM INTERNAL USE ONLY

Unix Tips: Kill Directive

= Sample suppression directives in .purify file.
suppress abr newnode

suppress abw newnode; btree
suppress fnh newnode; b*
suppress umr newnode,; ...; btree
suppress * *

unsuppress * new_*

suppress * ...; “libc*”

v Vv Vv Vv VvV Vv V9v v

kill umr ...; “libns|*” (undocumented)

£ | IBMINTERNAL USE ONLY

Unix Tips: Compiler Options (Solaris)
- Generate Debug info
-XS Pull Debug info into the library

.00 | IBM INTERNAL USE ONLY

]|

Unix Tips: Purify Build-time Options
Caching options

-cache-dir Cache directory
-always-use-cache-dir Place all instrumented files in cache

Example: purify -cache-dir=/pure/cache -always-use-cache-dir

.0 IBMINTERNAL USE ONLY

Unix Tips: Purify Run-time Options

Show instruction offsets. (Useful if you don’t have debug info).

-show-pc Absolute.
-show-pc-offset Relative to the start of the function.

Example: setenv PURIFYOPTIONS “-show-pc”
<Run executable>

.0 IBMINTERNAL USE ONLY
]

Unix Tips: Reporting Options

Specify -log-file=<log file> to save output to a file.

Use conversion characters to name the output files. For example,
to use the program name and PID in the log file name, use:

-log-file=%v_%p.log.
(%v is the program name, %p is the process id)

£ | IBMINTERNAL USE ONLY

Unix Tips: Reporting Options

= Specify -mail-to-user=<user> to mail purify output on
termination (only if there are errors).

= Specify -run-at-exit="<cmd>"to run a shell command on
termination.

IBM INTERNAL USE ONLY

]

Unix Tips: Output Options

= To report repeated occurrences of errors only once, use -messages=first (default).
= To elect to defer message generation until end of run, use -messages=batch.

= To elect to see all messages, use -messages=all.

IBM INTERNAL USE ONLY

]

Unix Tips: Purify API

= The Purify API consists of functions that you can use to
help debug and diagnose memory errors.

= Some functions are meant for use from within a
debugger:

> guri _stop_here
et a breakpoint here to stop when Purify reports an error.

» purify describe(addr)

ells how Purify sees the memory: “global data” or “on the stack” or “X bytes from
the start of the malloc’ed block at Y.’

> Burify what_colors(addr, count)
umps the “colors” (red/yellow/green) of a range of memory to the log window.

! % IBM INTERNAL USE ONLY

Unix Tips: Purify API (contd.)

= Some API functions are meant for use from within your
program:

» purify_is_running
Return TRUE when the program is Purify’d.

» purify_printf (_with_call_chain)
Print a message to the log (with call-stack information).

» purify_new_leaks / purify_new_inuse
Report how much more memory is leaked/in use since the last call.

. Linking your program with purify _stubs.a eliminates the need for
conditional compilation.

.0 IBMINTERNAL USE ONLY

Unix Tips: PureCoverage Adjustments
Use Adjustments to mark code as Deadcode, or Inspected, or Tested

% PureCoverage: Annotated Source -- 3sort.c [Adjusted coverage]

File View

2% PureCoverage: Annotated Source -- 3sort.c [Adjusted coverage]

‘ | Next l.musedl Prev wmased | Go to line #: I Find: I

Tt File View Help
46 Line | D I T | Hits | Avnotated Source
:; 46 void shown{arr, size) -
49 47 long int *arr;
5[' 43 i'nt SizE;
51) { :]
Lo 50 /* dont want to show ALL the elements of such potentially large arrays.
£3 5 s0 we set a show-liwit, and omly show “lin® many. */
L4 L2 int 1:
cg 53 int lim;
56 L
L7 55 15 switch(size]) {
P L1 5 case SMALL: lim = SMSHOW; break;
59 57) case MEDIUM: liwm = MEDSHOW; break;
60 L8 L case LARGE: lim = LARSHOW: break:
61 59 T | TEST case ¥LARGE: lim = ¥LARGE: break: /* purecov: tested */
62 60 T | TEST defanlt: printf("‘\nshowm: Error: No case for switch size."); /* purecov: tested */
63 | 61 T | TEST lin = SMSHOW; /* purecov: tested */
64 62 15 break;
65 gi }
22 65 /* example of over-coverage [(missing break statements) */
68 6b 15 switch(size) {
69 67 5 case SMALL: printf{"'\nHere are the first %d mmbers of %d.\n", lim, SMALL)};
70 [t 10 case MEDIUM: printf{'\nHere are the first %d mabers of %d.\n", liwm, MEDIUM);
69 15 case LARGE: printf("\nHere are the first %d mmbers of %d.\n", lim, LARGE}:
70 15 case XLARGE: printf{"\nHere are the first %d mmbers of %d.\n", lim, XLARGE}; 7
Next wnsed I <] | =

/nfs/ul191 howe/rajk/ Trainingy 3Sort/ Isort . c

INTERNAL USE ONLY

Unix Tips: PureCoverage Adjustments

Before Adjustments After Adjustments
. PureCoverage
f File WView Actions Help
Adjuste || oo ting order: FUNCTIONS ADJUSTED LINES ADJS
v Tota Unsorted Buns Calls wmsed used usedt wmsed used used: total
dl = *| Total Coverage 2 18 90 16 137 8% 3 ||=
— w ...frajktTraining/3Sorty 2 15 88 16 137 89% 3
| 3sort.c 1 2 15 88 16 137 8%)
=| delnodes 0 wused g 1] 13 0
_ =| delLinklList 0| wnsed 4 1] 14 0
= 0 17 100%) 3
=| btrxee 3 used 1 10 90= 0
=| findmiddle 1349 used 1 g 88 1]
=| main 1 used 1 18 94z]
=| gquicks 1349 used 1 7 87 1]
=| balance 673 used 0 11 100% 1]
=| bubble 3 used 0 24 100% 1]
=| fillrand 9 used 0 3 100%]
=| nalloc 1030 used 0 2 100% 1]
= nevmode 1030 used 1] 7 100% 0
=| nodeinsert 10K+ used 1] 8 100 0
=| quicksort 3 used 0 & 100% 1]
=| shoxmodes 3 nsed 1] 4 100% 0=
=| swap 10K+ used 0 4 100 0
<] =| wallmodes 3 used 1] 8 100 0 ¥
<] 1=

IBM INERNAL USE ONLY
|

Unix Tips: Merge Data Over Multiple Runs

Automatically mer?es data from one execution to the next.
= Ability to merge different execution data into one file:

» %setenv PURECOVOPTIONS -counts-file=filename.pcv
» %purecov -merge=results.pcv a.pcv b.pcv

= Merge data from different versions of same object file (use with caution):
» %purecov -view -force-merge versionl.pcv version2.pcv

00| IBM INTERNAL USE ONLY

Unix Tips: Differences Among Multiple Runs

= Ability to report the list of files for which coverage has changed
» %pc_diff old.pcv new.pcv

= Ability to compare coverage data from two builds of an application
» %pc_build_diff old.pcv new.pcv

.8 IBMINTERNAL USE ONLY

Unix Tips: Measure Coverage difference

> cat test.c@@/main/LATEST
main{()

{

o wm F LN e > cat test .C

> et diff -diff test.c@@/main/LATEST test.c | pc_covdiff —-file=test.c -lines=no -width=37

test.pov
Change 0ld Version New Version Usage
main () main()
{ 1
printf ("Coverage diff examplei\n") printf ("Coverage diff example\n") 1
5¢5,8 printf ("This file is wversion 1\n" | printf ("This file is wversion 2\n" 1
>
> if (0) 1
> printf({"This line is not execut 0
return 0; return 0; 1
} } 1
|

IBM'INiE__ERNAL USE ONLY
i}

Unix Tips

Write scripts to analyze ASCII data.
= Some pre-written scripts available:

> pc_summary
» pc_below -percent=pct
» pc_email -percent=pct
» pc_ssheet

» pc_annotate

IBM INTERNAL USE ONLY

(i

Java and .NET specific capabilities

= Quantify and PureCoverage work the same as for C++
= Purify detects Java/.NET memory leaks

IBM INTERNAL USE ONLY

(i

Leaks in Java and .NET

= Purify can find “leaks” in Java and .NET apps
» Garbage collection eliminates classic leaks

» “Memory in use” can still grow without bounds

= |dentify even small leaks to avoid field failure over time

= Powerful “net allocation callgraph” pinpoints the source of leaks

.0 IBMINTERNAL USE ONLY

Java/.NET are immune to this

void runForEver () {
while (true) {
String s = new String(“Javais Great”);
process(s);

s=null; /I GC frees the unused memory

--- A.N.Other component ---------=-=-======-=-mmmmm oo

void process (String s) { // do something with the string

IBM INTERNAL USE ONLY

(i

..but not this

void runForEver () {
while (true) {
String s = new String(“Javais Great”);
process(s);

s=null; // The memory is no longer freed

--- A.N.Other component ---------=-=-======-=-mmmmm oo
Vector bottomlLess;

void process (String s) { // do something with the string
bottomLess.add (s); /[and cache it for later reference
} Il expect caller to DoneProcess()

// to release cache

§ IBMINTERNAL USE ONLY

o Rateamal Pundy - [IDaka BrowsenPorily" o javaene]

B Fie Edt Vew Settngs ‘Window Help

S| S|a| i) v e m o] e)s] AlZ] e 2] 2w 2Tl S s+ =]
Hemary S —

T I O I I T L I L]
EEENANENEEENERENENENNEEEER =
EEEEN NN AL e s armgle
FFEFIENEENEENEFF NN NEEE

SARENEEEEEEENSRANSNENEEE
FEIEENEEEEEEFEEEEEEEEE
FEE SIS SN SESEENNESESEEEEE

|11EE41$

[3145720

aich Memory Use grow,
aVen Inismall icrements
ef

wElcksd = Puriy '

ffJ’:‘f] OHUEF&‘

u Wakirsg 1[0

= Rurring

Ml i use
D600 KE A

1550 KR o

LZ00 KR

BS0 KB

Fd6c 1T M Fotdidd PH

) || Correrk mem usage: 2,534,952 Mem & since snapshot : 0
5 b K oot il 1| Peak mem usage 2,554,552 Garbage Collect #: 22

Eratus: Running [Elepsed Time: 00:00:27 I

.0 IBMINTERNAL USE ONLY

.}:‘ Rational Purify - [Data Browser:java.exe [Diff]]
'(.'E File Edit “iew Settings Window Help

== 2lal E=la] %) e = Blo] g A2

& 28] 2|0 =l

2|) |

28 javacre Call Graph | Function List Yiew |
E Fun & 04/20/2000 10:59:56 -clas

ﬁ Snapshot & 04/20/2001 11:00:02

ﬁ Snapshot @ 04/20/2001 11:00:0¢
€D Diff @ 0472042001 11:00:46 -class

Thread-0

Secondary finalizer

Finalizet

Reference Handler

N

Signal dizpatcher forEver =int=
Thread-1 B/

: ‘ Zoom; '_J—

Highlight: Iﬁllu:uu:atic:n Changes

iifies metnoeads
' e most
MEMmorny.

PDrllfdewn...

Wisible: 12412 Highlighted: 5/5

|fanver.runFan wer[] [forE wver]

1

IBM |

NTERNAL USE ONLY

3.‘. Rational Purify - [Function Detail: java.exe [Snapzhot]]

‘B Fle Edt View Settngs Window Help -5 x|
=2 | e e 2 L e =i I ol o N ol e s N B
EI-- iava.e:-:e X of Focus Iél:ItI:_ﬁd: QDrEver.runFanver
== G AR Current method bytes allocated: | 120,260 (38.35% of Focus)
Total method bytes allocated: F1a.ron
Number of Objects: 4,008
M+D bytes: 1 130,504 [41.61% of Focus)
Avg M bytes: 718,700 i
Min M bytes: 718,688
Max M bytes: 718,688 hd
Object Clazs 5i GCs Creation Line Ref 3
Mame Mame 128 Survived Time Humber BIEEHEE
Stiing 2117FA30 | Sking 20 3| 111037 A 12 1
Sting 2117FA48 | Sking 20 3] 111037 Ak 12 1
Stiing Z117FADD | Sking 20 3 11037 Ak 12 1
Sting 2117F3BE | Sking 20 3] 111037 Ak 12 1
Stiing 2117F970 | Sking 20 3| 111037 A 12 1
Sting 2117F928 | Sking 20 3] 11037 Ak 12 1 j
Callers Cumrent method -
Caller Calls bytes allocated —
farEverun |l 1 130,504
SO 0 OJ [
Descendants Cumrent method ~ a o
Descendant | Calls bytes allocated .Oy CI.U e Cl.“ d —
farEver proces. | 2.000 10,244
Drllfaewns.. -
4] J
| | J Callers: 1 |Descendarts: 1 |FarEver.mnForE ver)
Ready i

IBM INTERNAL USE ONLY

Rational Purify - [Object Detail: java.exe [Snapshot]]
ile Edit “iew Setting: ‘window Help

B 22 ==lea] x| =] =] Bo] =G Al R 2 EE] 2] eleEEe] = TLEEE
Fﬁ:liava.eue |Q| Zoom: '_J— H

e-B Run @ 0442052001 11:10:14 clag. | ———

F
|

String 21170010 = =]
String 21150018
String 21150318

String 211:3C793

char [10] 2113BC0E
Thread 2115BC85 [
nknowwn Class= [211 2EE2EI+IZ

f———bg—{{; CollectionsFEmptyhagp 211 2EC53 =Unknown Clazs= [7] 21171800
farEver 21158800 E}\ E/ |

String 21173E30

String 2113BCF0

String 21158008

String 211:5BE98 1=

|« oy
Object Mame: Yector 2115BC80 |« Name VYalue
Clazs Mame: Wectar javadang/Object [] ... [21171800
Method Mame: forEwer <init> it elementCount 2000
Size: 20 int capacitylncrement |0
0+R Size: 0
« | ﬂ GCs Survived: E ﬂ
|Rreferences: 1 |Referees: 1

Feady

|

IBM INTERNAL USE ONLY

What is Memory Corruption?

= Points to Remember:
» What happens when software misbehaves?

e Software problems in the Therac-25 radiation therapy machine caused
it to deliver fatal doses of radiation to 6 patients.

¢ Software (and mechanical) problems with the automated baggage
handling system at the Denver International Airport resulted in the
airport opening 16 months later than originally planned. (The estimated
cost of the delay was $330,000 per month).

* According to unnamed White House sources, it was actually a software
glitch that caused Dick Cheney’s 28-gauge shotgun to shoot millionaire
attorney Harry Whittington in the face while quail hunting in Texas.

0| IBM INTERNAL USE ONLY
= il

IBM Software Group | Rational software

Memory corruption can cause an application to crash or misbehave.

A fatal exception BE has occurred at AB828:CBA11E36 in UXD UHMM(B1)
ABA1BAE36. The current application will be terminated.

= Presz any key to terminate the current application.
= Press CTRL+ALT+DEL again to restart your computer. You will
lose any unzaved information in all applications.

Press any key to continue

What is Memory Corruption?

Memory corruption can cause an application to crash or misbehave.

aRE aue ,1
Balt LR I:l.y‘
Birslsghan Sedlhbunat Mo e
Burbabk Baail it

Char latis 8 Mirwapn 1R
Chionge-MW Bailbaiad
Ehlonge R0 Uniiwd

{5
5 Tina
L Tina
oy LAY
A lEah L HAF T Y Mo
Lo H L S
BRI

(R

Departures

IBM INTERNAL USE ONLY
]|

What is Memory Corruption?

= Memory corruption can cause an application to crash or misbehave.

! © | IBMINTERNAL USE ONLY
]|

What is Memory Corruption?

= Memory corruption can cause an application to crash or misbehave.

~ IBM INTERNAL USE ONLY
]|

What is Memory Corruption?

= Memory corruption can cause an application to crash or misbehave.

CONFIRM ORDER HERE

IBM INTERNAL USE ONLY
]|

	Develop Faster, More Reliable C/C++ Code with Rational PurifyPlus�
	Typical agenda
	Summary
	What is PurifyPlus?
	What is PurifyPlus?
	What is PurifyPlus?
	Examples of runtime errors
	Examples of runtime errors
	What if a tool would just show you the bugs?
	And show you the bottlenecks
	And show you what you forgot to test
	Even a single untested line
	Many alternatives
	Some internal users of PurifyPlus
	What about static analysis tools
	How do I get PurifyPlus?
	Supported environments
	How do I use PurifyPlus?
	Example: Launch Purify, press Run
	Type in your program name, press Run
	Wait while Purify instruments all your code
	Your app runs, Purify logs errors alongside
	Open a message to see details
	Pinpoints error to line of source
	How does it work?
	Instrumentation using Object Code Insertion - OCI
	Detecting memory leaks
	Memory access errors
	Purify’s memory state tracking
	Purify’s array bounds detection
	Quantify
	How to get the most out of PurifyPlus
	Use it everywhere
	Use it regularly
	Getting ready
	Setting expectations
	Setting expectations
	Tips: Select your instrumentation mode per dll/so
	Tips: Check instrumentation mode
	Tips: Purify C++
	Tips: Purify C++
	Tips: Purify C++
	Tips: Quantify
	Tips: Coverage
	Help us improve PurifyPlus
	More information
	Questions?
	Backup slides
	Unix Purify interface
	Unix Quantify – callgraph, thick lines = more time
	Unix Quantify – top 10 functions by various metrics
	Unix Quantify – callers and descendants
	Unix PureCoverage – metrics by dir/file/function
	Unix PureCoverage – coverage per line
	Unix Purify Suppressions
	Unix Tips: Kill Directive
	Unix Tips: Compiler Options (Solaris)
	Unix Tips: Purify Build-time Options
	Unix Tips: Purify Run-time Options
	Unix Tips: Reporting Options
	Unix Tips: Reporting Options
	Unix Tips: Output Options
	Unix Tips: Purify API
	Unix Tips: Purify API (contd.)
	Unix Tips: PureCoverage Adjustments
	Unix Tips: PureCoverage Adjustments
	Unix Tips: Merge Data Over Multiple Runs
	Unix Tips: Differences Among Multiple Runs
	Unix Tips: Measure Coverage difference
	Unix Tips
	Java and .NET specific capabilities
	Leaks in Java and .NET
	Java/.NET are immune to this
	..but not this
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	What is Memory Corruption?
	What is Memory Corruption?
	What is Memory Corruption?
	What is Memory Corruption?
	What is Memory Corruption?
	What is Memory Corruption?

