
Forrester Research, Inc., 60 Acorn Park Drive, Cambridge, MA 02140 USA

Tel: +1 617.613.6000 | Fax: +1 617.613.5000 | www.forrester.com

Navigating The Agile Testing Tool
Landscape
by Diego Lo Giudice, July 18, 2013

For: Application
Development
& Delivery
Professionals

Key Takeaways

Temper Testing Process Rigor With The Need For Continuous Testing
Tools that model and provide a prescriptive, top-down testing process won’t work
with Agile development. Instead, Agile projects maintain quality via a continuous
testing approach: Unit testing, increased automation, test-driven development or
user acceptance test-driven development, and exploratory testing replace manual,
prescriptive processes.

Consider What Developers Want As Part Of Your Agile Testing Tool
Strategy
Gone are the days where testing was only a job for the QA specialists. In Agile,
developers are first-class testing citizens; they need testing tools that fully integrate with
their development tools, especially their IDE. Empower developers to experiment and
find out what works best for their unit, automation, and nonfunctional testing.

Integrate And Test Earlier With Service Virtualization Tools
Early integration and testing is a common challenge in Agile development, especially
for large, complex application projects. Service virtualization tools will allow your
developers to simulate access to the services -- such as mainframe access and expensive
external online services -- they need for testing their code.

Make Sure Your Agile Project Management And Test Management Tools
Work Hand In Hand
On Agile projects, testing and development are one integrated process. Make sure that
your choice of an Agile test management tool allows both testers and developers to
easily share and synchronize development and testing activities from a common backlog.
Facilitated collaboration across multiple development tools is a must.

www.forrester.com

© 2013, Forrester Research, Inc. All rights reserved. Unauthorized reproduction is strictly prohibited. Information is based on best available
resources. Opinions reflect judgment at the time and are subject to change. Forrester®, Technographics®, Forrester Wave, RoleView, TechRadar,
and Total Economic Impact are trademarks of Forrester Research, Inc. All other trademarks are the property of their respective companies. To
purchase reprints of this document, please email clientsupport@forrester.com. For additional information, go to www.forrester.com.

For Application Development & Delivery Professionals

Why Read This Report

As your developers shift to Agile practices, they will invariably perform more testing themselves. So where
does that leave your quality assurance (QA) professionals? They need to adapt by getting deeply involved
in the daily operations of the development team. Advanced practices like test-driven development,
increased testing automation, and continuous build and integration make a significant impact on the
day-to-day activities of both developers and testers. These shifts in testing practices also change how
development teams select testing tools: Developers want tools that easily plug into their integrated
development environments (IDEs), while QA and other software professionals prefer tools that offer a
higher level of abstraction and are easy to use. This report details how Agile teams are revamping their
testing tool strategy to work well in an Agile development context.

Table Of Contents

Agile Practices Are Breaking Apart
Traditional Testing Organizations

Traditional Testing Practices Struggle To Support
Agile Development Teams . . .

. . . And The Problem Can’t Be Fixed With Minor
Organizational Tweaks

The Agile Testing Landscape Remixes Existing
Test Processes With New Ones

The Tools Landscape Reflects The
Ascendency Of Agile Test Practices

Management Tools Must Support Relentless
Automation And Continuous Testing

RECOMMENDATIONS

Evaluate Agile Testing Tools With The Five
Must-Haves In Mind

What It MeaNS

Adapt Your Tool Strategy To Support Testing
Within Agile Teams

Supplemental Material

Notes & Resources

Forrester interviewed 20 vendor and user
organizations, including BetterCloud, CA
Technologies, FINRA, HomeAway, HP, IBM,
Micro Focus (Borland), Microsoft, New Relic,
NTT Data, QMetry, QASymphony, Seapine,
Silverpop, SmartBear Software, TechTalk,
ThoughtWorks, Ultimate Software, and the
US Department of the Treasury Financial
Management Service.

Related Research Documents

Consistent Performance In Agile Teams Must
Include Testing
January 17, 2013

Forrester’s Agile Testing Maturity
Assessment Tool
January 15, 2013

Five Ways To Streamline Release
Management
February 7, 2011

Navigating The Agile Testing Tool Landscape
Revamp Your Testing Tool Strategy For Agile Development
by Diego Lo Giudice
with Jeffrey S. Hammond, Tom Grant, Ph.D., and Rowan Curran

2

8

17

18

19

July 18, 2013

www.forrester.com
http://www.forrester.com/go?objectid=RES87681
http://www.forrester.com/go?objectid=RES87681
http://www.forrester.com/go?objectid=RES90341
http://www.forrester.com/go?objectid=RES90341
http://www.forrester.com/go?objectid=RES58422
http://www.forrester.com/go?objectid=RES58422
http://www.forrester.com/go?objectid=BIO1769
http://www.forrester.com/go?objectid=BIO1228
http://www.forrester.com/go?objectid=BIO1887

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 2

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

Agile Practices Are Breaking Apart Traditional Testing Organizations

Agile development changes the practice of software quality assurance in many ways.1 How? For
Agile teams, 1) product owners and/or business analysts, developers, and testers work together on
single projects — side by side and colocated whenever possible; 2) testing becomes the responsibility
of everyone in the team; and 3) being “done” means that development teams meet established
quality goals and complete testing activities for every sprint and release. Agile development puts
a larger quality burden on developers and requires that they do more. This starts with unit testing,
extends to test generation and automation, and often includes getting more involved in the daily
execution of testing activities. These changes aren’t just theoretical; data from Forrester’s Forrsights
Developer Survey, Q1 2013 shows that frequent use of testing tools is already a reality for 30% of
developers (see Figure 1).

Traditional Testing Practices Struggle To Support Agile Development Teams . . .

Traditional testing practices were designed to optimize the operation of large, centralized testing
groups using a testing center of excellence (TCOE) model. But this shared-services approach is
breaking down at Agile organizations because it can’t support the rapid delivery rates of Agile
development teams. For example, the US Department of the Treasury’s Financial Management
Service had to completely isolate a major Agile project from the regular IT department’s governance
processes, including the TCOE. The team used a new testing and development process leveraging a
behavior-driven development (BDD) approach with great success.2 The development team selected
and used Cucumber, an open source testing tool, because it supported the new approach better
than traditional testing tools. The end result was a higher degree of automation and speed in testing
that would not have been possible had the team been forced to comply with TCOE governance and
processes.3 Forrester sees the Agile team bypassing the TCOE with increasing frequency. Why can’t
traditional testing keep up with the velocity of Agile teams?

■	Large volumes of manual test activities slow down delivery. Manual testing is the oldest and
still most common approach to testing software within TCOEs. Test professionals develop
test cases that cover as much functionality as possible, which makes the velocity problem
worse. There’s no way around the fact that manual testing is time-consuming and resource-
intensive. Even throwing a phalanx of manual testers at the problem doesn’t work — manual
testing simply can’t keep up with daily builds, continuous integration, and the functional and
nonfunctional testing cadence of Agile delivery teams.

■	Teams put off testing until the end of projects, squeezing it in the process. Another anti-
pattern frequently found in traditional testing approaches is that teams only start testing once
they have developed and integrated the system — partly due to the expense and time required
for manual testing. Unfortunately, projects are often behind schedule, so teams compress and
sacrifice the activities left at the end. As a result, testing time gets sacrificed to make up for
delays in other processes, compromising quality.

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 3

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

Figure 1 Three In 10 Developers Unit-Test At Least Weekly

Source: Forrester Research, Inc.94241

8% 15% 13% 12% 52%Platform simulator/emulator

28% 19% 11% 8% 34%Software change/con�guration
management tools

10% 12% 10% 7% 61%Continuous integration tools

7% 11% 10% 8% 63%Cross-platform development tools

17% 17% 13% 10% 43%Web app development frameworks

41% 20% 10% 7% 23%Text editor

39% 18% 12% 9% 23%Integrated development environment

16% 18% 12% 13% 41%Graphic design tools

6% 11% 10% 7% 65%Rapid prototyping/wire-framing tools

Source: Forrsights Developer Survey, Q1 2013

“How often do you use the following tools when you develop software/applications?”

Base: 2,038 software developers in North America, Europe, and Asia
(percentages may not total 100 because of rounding)

Daily Weekly Monthly Less than monthly Never

Unit-testing tools are the most used on a daily basis
by developers. Service virtualization tools are the
newcomers; automation tools are starting to creep in.

14% 16% 13% 11% 47%Unit-testing tools

8% 14% 11% 9% 58%Automated regression testing tools

7% 14% 12% 13% 54%Performance-testing/load-testing tools

7% 12% 9% 7% 65%Service virtualization tools for integration
testing and integration testing automation

9% 15% 11% 10% 56%Static analysis tool/code checker

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 4

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

■	Late-breaking defects can derail projects. The longer a defect sits in code unfixed, the longer it
will take a developer to fix it, with dire consequences for project deadlines. Developers move on
to new code and new problems and lose the context of the features they’ve delivered (can you
remember what you ate for lunch last Monday?). When they have to come back to a defect that
they wrote weeks or months ago, it takes time to re-engage with the context of the code.

■	Teams build up too much technical debt. One sure-fire killer of on-time delivery is finding out
late in the development cycle that your application has major quality problems. Late discovery
of defects lead to high rates of rework and waste. It’s even worse if the quality issues are systemic,
like architecture design issues, or if someone discovers that basic user functionality is missing.
The earlier testing starts, especially system testing and user acceptance testing (UAT), the earlier
systemic risks will surface.

. . . And The Problem Can’t Be Fixed With Minor Organizational Tweaks

As TCOEs struggle to respond to the mismatch in processes that an increase of delivery velocity
creates, they find that making minor changes to process or organization structure is ineffective. Why?

■	TCOEs don’t necessarily reduce QA costs in an Agile environment. When testing teams are
separated from development, it’s typical for testers to try to find as many bugs as possible — once
developers write the code. Developers, while responsible for fixing the bugs, only see the results
of poor attention to quality in retrospect, when the consequences of their actions are harder and
more costly to fix. The net result is that TCOEs keep costs low through labor outsourcing and
less overall activity, but also by shifting costs back upstream into the development cycle through
higher levels of scrap and rework. Tools that are designed to help testers document bugs and help
developers reproduce and fix those bugs are useful, but do little to reduce the systemic issues that
result in high scrap and rework costs.

“We have no central team for regression testing, as we believe that it takes ownership of
quality away from developers. We want developers to feel that quality is part of their job.”
(Robert Sellers, director of QA, Silverpop).

■	Testers don’t adequately understand rapidly changing backlogs. When a company centralizes
its test execution activities, testing schedules can’t keep up with the rapid course corrections that
characterize Agile development teams. When user stories change, Agile teams often reprioritize
them in the backlog and don’t pay a lot of attention to developing the types of formal, detailed
requirements that traditional TCOEs use as inputs to develop test cases. Traditional front-
loaded test management (TM) and planning processes are not designed to support rapidly
changing priorities and the short cycles required by Agile. This problem is compounded when
TM tools don’t link into the Agile project management requirements backlog.

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 5

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

■	TCOEs don’t integrate well with modern continuous delivery practices. Segregating testers
from developers makes it hard to integrate their work into a continuous delivery pipeline. Fast-
moving teams don’t build code and then hand it off to a testing organization; they build code,
deploy the application, execute it, and immediately observe the results. This is especially true
for development teams that employ multivariate testing, which is common in web application
and mobile development.4 These teams make a change, deploy it to a subset of servers, compare
the results from each execution branch, and then decide if the change is successful. Teams
that employ blue/green deployment (or red/black if you’re Netflix) replace system testing and
UAT environments with multiple production environments, and they’re always expanding one
environment while bringing another one down.5

These process and organization mismatches indicate that the TCOE model is outdated and offers a
diminishing return on investment for Agile organizations. Accordingly, over the next three to five
years, increased adoption of Agile practices will speed the breakdown of the TCOE model, even in
organizations using a hybrid of waterfall, iterative, and Agile processes.6 The breakdown of the TCOE
as we know it will further accelerate as development organizations devote more resources to mobile
application development, where Agile development practices are a must for success.7 If you want to get
ahead of this trend, you’ll need to reorganize your testing processes and tools to make them an integral
part of your development teams — and your developers will need to hammer out an agreement with
the business sponsors they support on ensuring system quality. If you’re ready to take the necessary
steps to update your testing practices to support Agile development, read on — the rest of this report
is about the tools and processes that Agile teams are using to form the next-generation, Agile testing
landscape.

The Agile Testing Landscape Remixes Existing Test Processes With New Ones

What elements of traditional test practices will carry over into an Agile context? First of all, the role
of the QA tester remains crucial — but as an integral part of the Agile team.8 We also think that it’s
important to have a strong QA practice leader, even if day-to-day reporting relationships become
less significant. A forward-looking practice leader can smooth the introduction of the new practices
that are part of an Agile testing approach. These include:

■	Constant collaboration between development team members. User stories on the backlog
become shared artifacts for collaboration, coordination, and reporting between product owners,
QA testers, app-dev professionals, and other stakeholders. Product owners prioritize user stories
and collaborate with QA testers to decide on the user acceptance criteria for each user story. In
addition, testers and developers collaborate to ensure that release and sprint backlog estimates
include all testing activities. Testers track testing data and generate analytics for coverage and
quality reports. Some Agile project management tools already provide basic TM capabilities to
organize test cases in functional groupings with high-level reporting on testing activities. For
more advanced TM, many integrate with existing TM tools (see Figure 2).

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 6

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

“Rally clients push user stories into QMetry and associate these with test cases and testing
suites to gather detailed information on requirements coverage and passed and failed tests
and decide what further test cases to build. Developers can use activity streams and remote
linking to get timely, contextual information on associated test cases in their JIRA instance.”
(Devang Mehta, head of marketing and business development, QMetry)

■	A need for speed that demands a different approach to test automation. The app-dev leaders
we spoke with warn that buying expensive script recording tools does not guarantee greater
levels of automation. Instead, they recommend focusing less on the tools employed and more
on who uses scripting and automation tools and how. Agile teams that have achieved higher
levels of automation have shifted responsibility for automation into the hands of developers and
focused more time on the automated test architecture and effective reuse practices. New tools
facilitate this shift by providing tight IDE integration. Another key difference is the emphasis on
creating tests as part of the overall delivery process. Devs may not like it at first, but they quickly
get used to writing test cases when it’s a required step in their sprints.

“Tools matter, but what matters most is using them in the right way. Automation can become
a maintenance nightmare if you don’t pay attention to the right granularity of acceptance
criteria, modularity of test cases, and design for reusability.” (Christian Hassa, managing
partner, TechTalk)

■	A test suite architecture that keeps automation costs under control. Maintaining automated
tests becomes harder and more expensive as the number of automated tests increases. It’s
even worse if there is poor traceability between requirements, test harnesses, test cases, and
automated code. Poor architecture and monolithic test batteries are often at the heart of the
problem, but tools have some responsibility for promoting effective test execution suites.

“Tools don’t always support modular test creation, help spot opportunities for reuse, or
identify duplications. Linking test cases or scenarios to actual tested code is key for
traceability, but keeping the two types of artifacts separate is crucial to avoid ripple effects
during change.” (Chad Wathington, managing director, ThoughtWorks Studios)

■	Incorporating whatever works, including developer-selected tools. If an organization has a
TCOE, the budget for testing tools naturally flows there. This creates a problem for Agile teams
that want to do more testing. They don’t have budgets for expensive testing tools, so they often
adopt open source tools as a necessity. Even when budget exists, developers often don’t want to
spend time dealing with their purchasing department and don’t have the time to learn an overly
complex tool with features they might not need — so they end up working with tools that they
can easily find and which help them do a good-enough job. As a result, Agile development
teams are the primary entry point for open source testing tools, many of which are designed

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 7

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

specifically for developers. A forward-looking QA practice leader will embrace this reality, as
it leads to the right endpoint — greater developer responsibility for quality code. The opposite
approach is like trying to stem the tide.

“We use JMeter for performance testing if the scale is not too large; tests are run quarterly. As
an open source project, JMeter scales cheaply, it’s easy to stand up, and it works inside our
developers’ local environment.” (Carl Shaulis, senior engineering manager, HomeAway)

Another aspect of developer selection of testing tools is that developers generally want to test
in the programming languages they develop code in, execute tests in the browser or IDE where
they debug, and use their existing task management system. They also want to spend as little
time as possible creating and maintaining scripts. Developers focus more on the immediate
technical aspects of testing: Does it compile? Does it match the user story? Are there unit-level
defects? So focus QA professionals on the extended aspect of testing, including exploratory
testing, performance testing, and UAT activities.

■	Focus QA professionals on leading testing, not just managing it. As part of an Agile team,
QA professionals will no longer be in charge of enforcing testing activities against a testing
plan that’s fixed in advance. This would be useless, as plans need to be iterative and reviewed
at each sprint; it would be hard due to iterative and frequent course changes; and it would be
counterproductive to the new culture of self-management. Instead, QA professionals will need
to lead testing activities and help teams make important decisions on quality goals, help product
owners with acceptance criteria, make sure that developers aren’t “done” until they’ve tested,
and layer on qualitative manual testing to supplement automated testing.

“We have a QA lead, product manager, and developer manager in each project. The QA lead
starts with an open source mind-mapping tool and works with the team to brainstorm
and capture testing ideas and organize them in a meaningful way. After setting the strategy
for coverage, automation, and the key functionality to test, we pull these into Rally in the
form of ‘charters’ for later session-based testing.” (Carl Shaulis, senior engineering manager,
HomeAway)

■	Earlier and more frequent UAT. Business stakeholders need to be involved in Agile
development and provide frequent feedback. How frequent depends largely on their availability.
The fact is that UAT for Agile is less ceremonial than in traditional approaches, where it is run
at the end of long development/testing cycles. Agile teams perform UAT early and continuously
cover the incremental implementation of functionality.

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 8

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

Figure 2 Developers Are Also Participating In Exploratory Testing Activities

THE TOOLS Landscape Reflects THe Ascendency Of AGile Test Practices

The set of testing practices detailed above are changing the landscape of testing tools as new tools
and classes of tools emerge to meet the needs of Agile teams. Changes include: 1) the increasing
importance of service or test virtualization tools (these are not so new, but are becoming
increasingly important as smaller, more numerous Agile teams interact with each other, making
early integration testing more mandatory); 2) the substantial growth and proliferation of open
source testing tools; 3) the adaptation of traditional TM tools to Agile practices; 4) the growing
presence of low-cost, cloud-based TM tools; and 5) the fact that established test data management
(TDM), performance, load, and security tools are lagging behind while product teams figure out
what Agile testing means to their traditional customers (see Figure 3). As development teams adopt
Agile testing practices, they affect the use of testing tools in several ways:

■	Unit-testing tools gain in importance. Many of the app-dev and QA leaders we interviewed
for this report require the building of automated unit tests, which help build quality into code
from the very beginning of development. When teams develop unit tests for all functions and

Source: Forrester Research, Inc.94241

“Which of the following testing and release management practices
does your development team currently use?”

Source: Forrsights Developer Survey, Q1 2013

Base: 698 professional software developers, internal IT developers, game developers,
and consultants in North America, Europe, and Asia

(multiple responses accepted)

Unit testing

Exploratory testing

Performance/load testing

Automation/regression testing

Continuous integration with
multiple weekly builds

58%

20%

38%

30%

32%

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 9

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

methods, the tests help quickly identify changes — and, most importantly, regressions — that
introduce system faults. Unit tests are also the bricks that firms use to build the walls of more
comprehensive functional automation and regression testing suites. Teams further extend the
concept of unit testing with test-driven development (TDD). TDD works when developers
iterate over a very simple cycle: write a test that fails; write code to make it pass; and refactor.
Developers commonly use frameworks like JUnit, NUnit, and xUnit.net to build unit tests
and drive TDD. While it sounds great in practice, TDD can be a challenge to implement, as it
requires a substantial mind shift for developers. Tools don’t do much to help make the cultural
transition to TDD simpler, although they do aid in its execution.

“We leave the choice to teams as to where they should use TDD. Each team has a different
philosophical approach; some teams do pairing, some don’t. If you force TDD on
developers, it won’t work. We find that projects that are more API-driven work better with
TDD than UI-driven ones.” (Bjorn Freeman-Benson, VP of engineering, New Relic)

■	BDD and UAT design tools further improve code quality. BDD is an extension of TDD, but it
focuses explicitly on testing code behavior. QA professionals and/or business analysts write test
scenarios as declarative English-language statements that everyone on the team understands;
developers then write automation code for each scenario. Most of the tools that currently
support BDD are open source, including the most popular choice, Cucumber with the Gherkin
declarative language. Other options include Spec Flow (also based on the Gherkin language,
but available for .NET development) and JBehave (an extension to JUnit). User acceptance
test-driven development (UATDD) achieves the same goal of BDD, but does so by providing
a keyword-driven language to specify acceptance criteria to test the correct behavior of code.9
Open source FitNesse (based on Fit) supports UATDD, while Twist, a commercial tool from
ThoughtWorks, supports both BDD and UATDD.10

“We have more than 1,000 Cucumber test scenarios and 2,000 unit tests. Our scenarios are
written by product owners in collaboration with business analysts, developers, and testers.
Being written in the English-like Gherkin Cucumber language, they are a clear description
of business requirements that anyone in the business can understand with no cumbersome
implementation details.” (Steven Kennedy, program manager, US Department of the
Treasury Financial Management Service)

■	Automated regression testing tools speed up release checking and smoke-testing. To achieve
higher levels of automation beyond unit testing, Agile teams pay a lot of attention to verifying
each release that they build, usually multiple times a week. For example, for automated web
app testing, they make sure that teams use a model-view-controller architecture so that they
can define and drive tests at the underlying API and process/activity layers going beyond the
graphical user interface. Many of the teams we spoke with mentioned using the open source
framework Selenium for automated web app testing. Some teams use it to augment traditional

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 10

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

commercial tools; others use it to replace commercial tools.11 Other open source tools in this
area include Canoo WebTest, Sahi, Tomato, and Watir.

“We have more than 250,000 functional test cases, 244,000 of which are automated. We
have more than 6,000 manual regression tests, but they’re not run for every build. We use
Selenium because it has great multibrowser support, on top of which we have implemented
our own automation framework to simplify browser testing for QA folks. There is also a big
push to go underneath the UI for even more automation.” (Stephen Reid, VP of software
engineering, Ultimate Software)

■	Exploratory testing tools support tests that teams can’t automate. Teams can’t automate all
functional testing. Business and technically skilled testers use ad hoc exploratory approaches
to test edge cases that are either too expensive or too hard to automate. An increasing number
of vendors provide support for exploratory testing in their functional testing tools. They
allow testers to record their manual testing and then share the full context of their results
with developers at a later date. HP, IBM, Micro Focus (Borland), and Microsoft offer varying
degrees of support for exploratory testing, as do newer competitors like Atlassian, QASymphony,
QMetry, and SmartBear Software.

■	Performance and load-testing tools support projects from the very beginning. Finding
performance issues late in the life cycle of a project makes them harder to fix and can result in
major architectural rework (see Figure 4). Teams must set performance goals up front, during
test strategy and planning.12 Performance and load testing might require that project teams
include specialized testers with performance skills. If the application landscape is too complex,
the team might execute end-to-end performance and load testing in a later hardening sprint or
might delegate to a parallel specialized testing lab (part of the TCOE).

Various commercial performance testing tools exist; some vendors are starting to specifically
position their tools for Agile load testing by abstracting performance assessment to the
application level, where developers can more easily intervene.13 When no strong performance
strategy exists, developers take the easy (and cheap) way out and tend to grab open source tools
like Apache JMeter, Benerator, and OpenSTA (which also supports security testing). JUnitPerf
provides developers with a framework for instrumenting their unit tests with load performance
methods that allow the recording of execution times under varying loads.14

■	Service and test virtualization tools enable early and automated integration testing.
Early integration testing is harder in Agile, as teams must deliver working software in early
development phases. But the likelihood of dependencies on unfinished components is high in
early sprints, which complicates both integration and testing. This is especially true for large
projects that have multiple teams working in parallel. But, as IBM’s Walker Royce suggests, early
integration testing is mandatory for affordable high quality.15 One way to solve this issue is to

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 11

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

have the development and system test environments provide access to a simulation of the web
services, protocols, and systems that your application must interact with in a way that resembles
production environments as much as possible.16

Commercial service virtualization options include CA Lisa, HP Services, IBM Green Hat, and
Parasoft Virtualize. But be warned: These are expensive tools, so you’ll need to work with your
team to develop a compelling business case.17 Alternatively, we see some development teams
turning to much simpler and lower-cost tools with much less functionality. These alternatives
focus on mocking service interfaces. Open source mocking tools are readily available; examples
include Cgreen, Mocha, Mockito, and Rhino Mocks.

■	Static and dynamic analysis testing tools improve technical quality. Given the evolutionary
design approach that Agile teams take, it’s not uncommon for architecture to take a back
seat to refactoring. Static and dynamic analysis tools can help ensure a basic level of security
and architectural design by checking for common programming errors that affect software
performance, stability, adaptability, and security. These tools scan code and collect useful
technical information on cyclomatic complexity, API dependencies, and code inconsistencies;
they also instrument code at runtime, making it easier to diagnose defects based on complex
runtime interactions. In our research, we found that some development teams also use these
tools during retrospectives to identify opportunities for improvement.

Tools in this space include those from Cast, Coverity, and Klocwork. Another option is adding
a collaborative peer code and documentation review tool, like the one offered by SmartBear
Software.18 The teams we spoke with also mentioned a few open source options, including Nikto
and Rips (for security testing of malicious back-door code).

■	Security and TDM tools struggle for acceptance. TDM is an area where developer adoption of
tools lags. Few teams recognize that data is the “glue” that holds quality deliveries together and
that they need to deal with it early on in testing. Copying data over from production is not an
option in many industries; privacy regulations prevent it. Yet teams need the sort of high-quality
test data that production systems hold. TDM tools can make processing production data within
regulations possible, by providing acceptable masking and transfer of the data on demand.

Vendors like IBM and Informatica offer TDM products, but they have yet to really hit their
mark with Agile teams. One reason: They are designed for use by data professionals and a
TCOE instead of Agile developers. There are also some up-and-coming alternatives in this tool
category, like those from Camouflage and Grid-Tools , but for the Agile teams we spoke with, it
doesn’t seem like any one tool has really cracked the nut of the problem yet.19

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 12

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

Figure 3 The Landscape Of Testing Tools Is Becoming More Crowded And Dynamic

Source: Forrester Research, Inc.94241

Testing
activity Description Recommended Agile criteria Vendors/tools

Quality/test
management

Tools for managing testing
strategy, plans, test cases,
testing processes, exploratory
testing, bug tracking,
reporting, etc.

• Supports team collaboration
• Incremental planning

capabilities
• Supports self-managing

teams
• Supports continuous

integration
• Change management

integration
• Supports traceability from

user stories to UAT criteria
• Integrates into developer

IDEs
• Integrates with Agile

project management tools

Commercial: Altassian, HP
Quality Center, Microsoft
Visual Studio Test Professional,
IBM Rational Quality Manager,
Oracle, Micro Focus (Borland)
Silk Central, Parasoft Test,
QMetry, QASymphony qtest,
Seapine Software, SmartBear
Software, SmarteSoft,
ThoughtWorks GO*, Tricentis,
Zephyr
Open source: Tarantula
(speci�c to Agile), Bugzilla
Testopia, FitNesse, IST, Limus,
QA Manager

Unit testing Frameworks for developers
supporting various
programming languages;
open source software is
almost always the �rst choice
of developers

• Developer IDE integration
• Supports test automation in

the programming languages
and platforms developers
are using

Commercial: Typemock,
Parasoft C/C++ test, AgitarOne,
Micro Focus (Borland) Silk
Open source: xUnit.net, JUnit,
NUnit.org, Jmock.org, Cgreen

TDD/BDD/
UATDD

Speci�cation languages for
driving development from
test cases; good tools enable
test design intent to be clear
and persistent through
iterations and releases

• The tool and/or language
helps describe the tester’s
design intent

• The tool and/or language
helps perpetuate the
developer’s design intent

Commercial: ThoughtWorks
Twist, EggPlant
Open source: Fit/FitNesse,
Cucumber, JBehave,
SpecFlow (Gherkin for .NET)

Test
automation
(functional
and
regression)

Frameworks or tools for
automating functional tests

• The tool helps achieve high
high levels of:

• API automation
• Process/activity

automation
• Provides features to maintain

automation
• Supports e�cient and

modular test design

Commercial: HP UFT, IBM
Rational Test Workbench,
Original Software, TestDriver,
Ranorex UI, TAF, Seapine QA
Wizard Pro, OpKey, Watcher,
Test Complete, Robot,
SmartBear Test Complete,
Micro Focus/Borland Silk Test,
Sahi PRO, SOASTA
Open source: Selenium, Watir,
Sahi, Sauce Labs, Canoo

*Agile project management tools are often stretched for UAT and TM.

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 13

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

Figure 3 The Landscape Of Testing Tools Is Becoming More Crowded And Dynamic (Cont.)

Source: Forrester Research, Inc.94241

Testing
activity Description Recommended Agile criteria Vendors/tools

Test/service
virtualization

Frameworks or tools for
automating nonfunctional
tests, API testing

• Enables testing even when
pieces of the system are not
yet built

• Protocol support
• Supports performance

testing

Commercial: HP, IBM Test
Virtualization (Green Hat), CA
Lisa, Parasoft Virtualize, HP
Service Virtualization, IBM
Rational Test Virtualization,
CrossCheck Cloud Port

Load,
performance
testing

Tools for testing load and
performance (web, services,
access, etc.)

• Easy to deploy
• Integrates with the IDE
• Leverages existing

automated scripts
• Incorporates real-world

networking and public
infrastructure

• Simulates service failures or
reduced quality of service

Commercial: HP PC & Load
Runner, Microsoft, IBM PTS,
SOASTA CloudTest,
Parasoft Load Test, BlazeMeter,
SmartBear Software,
Micro Focus (Borland) Silk
Performer, Compuware
Gomez and dynaTrace, New
Relic, MKS, Neotys
Open source: Benerator,
JMeter, DBMonster, WebLOAD,
OpenWebLoad, JUnitPerf,
Jailer

Test data
management

Tools for creating test data
loads, data masking,
production data sync, etc.

• Could be disruptive
• Usually specialized testers

Commercial: Camou�age,
Grid-Tools, Oracle,
IBM Optim, Informatica
Open source: Data Generator,
JMeter

Technical/
code quality,
security

Tools for code quality
checking, cyclomatic
complexity, defect prevention,
static and dynamic code
analysis, architectural quality
(software performance,
stability, adaptability)

How the tools can be
integrated or adapted for
continuous testing/
integration/development/
testing

Commercial: CAST,
Compuware, Coverity,
Klocwork, Lidra, GrammaTech,
Vector Software, Mathworks,
Ranorex Spy, Microsoft Visual
Studio Lint, Parasoft Insure
Open source: RIPS, Nikto,
OpenSTA, FlawFinder

Exploratory
testing

Commercial: Microsoft, IBM,
HP, Micro Focus (Borland),
QASymphony, qTrace, Seapine
Defect Scribe

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 14

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

Figure 4 Late Testing Means Higher Costs Of Change

Management Tools Must Support Relentless Automation And Continuous Testing

Most of the tools discussed in the previous section focus on test development and execution.
But how does Agile change test management tools? From the interviews we’ve conducted and
many client inquiries on Agile testing, we’ve observed four different approaches that Agile teams
employ: 1) ad hoc tools like Excel, wikis, or mind-mapping; 2) Agile project management tools
with integration but minimal test management capabilities; 3) new, low-cost, SaaS-based test
management tools; and 4) a corporate standard test management tool that integrates into their
current application life-cycle management (ALM) solution and supports prescriptive governance
and compliance. We also observe a general movement from ad hoc toward more integrated and
mature approaches as organizations scale Agile throughout (see Figure 5).

“We used Excel for a while. We had multiple tabs of requirements; when tabs were not
enough, we used different colors in tests. After five or six sprints — when we got to around
1,000 user stories — we decided that we needed a test management tool and went for
QASymphony.” (David Hardwick, CTO, BetterCloud).

Source: Forrester Research, Inc.94241

change

change

change

Time

Design Test Deploy

Costs

Analysis

ADDTD

Develop

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 15

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

No matter which approach to TM a team employs, tools must support the fast pace of Agile testing.
How?

■	Tools must enable a free flow of collaboration. Agile team members share testing tasks and
artifacts at the user story level in the backlog.20 The backlog governs which testing tasks each
team member must complete. There is no fixed testing workflow process, but rather a fast
reprioritization of stories and the test cases associated with them. Team members share artifacts;
each team member needs to define testing artifacts, execute tests, and have visibility into the
overall progress of testing for each sprint and release. Leading ALM vendors like HP, IBM,
Micro Focus (Borland), and Microsoft are extending their TM suites by adding their own Agile
project management tools or integrating with third-party ones.21 While there are open source
test management tools, we haven’t seen much evidence that Agile teams are adopting them yet.22

■	TM tools must also integrate into continuous delivery processes. When Agile teams practice
continuous delivery, they declare a build either as qualified for further testing or not qualified
(rejected) based on an initial set of “smoke tests.”23 TM tool integration with commonly used
build and continuous integration (CI) tools is crucial to facilitating the automation of tests for
each build and synchronizing test execution with CI. Integrating TM with CI tools enables the
flow of useful data from the TM tool and informs developers when they create a bad build —
even if it’s compiling correctly. At the same time, passing test results from the software build
and integration process informs testers that a build is ready for more extensive automated and
manual testing.

■	Developers need to know why a test fails so they can debug and fix problems. On Agile teams,
developers try to fix the defects as soon as they’re caught. TM tools need to facilitate rapid
debugging by integrating their test results analysis workflow with developer debugging tools so
teams can quickly identify and isolate problems. Integration between the TM tool, Agile project
management, and bug-tracking tools makes it easier for developers to look in one place to get
context for their next development task, whether it’s a bug to fix or a new user story from the
sprint backlog. Most TM tools integrate with developer favorites like Atlassian JIRA or the free
open source Bugzilla. Microsoft offers .NET developers a real-time solution for bug-squashing
with IntelliTrace, which allows for recording and tracing the execution histories of production
code and recreating the production trace in development to help developers find bugs without
setting lots of break points in code.

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 16

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

Figure 5 Four Approaches To Using TM Tools And Three Common Migration Paths

Source: Forrester Research, Inc.94241

To control quality, teams migrate from Excel to low-
cost, easy-to-use TM toolsA

A

Some teams move to their Agile project management
tool if it has TM capabilitiesB

To increase QA, control teams adopt specialized TM
tools that integrate with their Agile PM toolC

4. Use of market leaders’ test management tools
• HP QC, IBM Rational, Microsoft Visual Studio Test Professional,

Borland Silk
• Tools are often part of a larger ALM suite

1. Use of ad hoc tools
• TM strategy in wikis, mind maps, Word
• TM plans and test cases in Excel

2. Use of Agile project management tools
• TM strategy in form of charters, goals, mission
• TM planning of sessions, exploratory testing, debriefs, reporting
• Example: Rally

3. Use of low-cost, SaaS TM tools
(often combined with Agile project management tools)
• QMetry, QASymphony, Sopra (integrated with Agile PM tools)
• SmartBear, Zephyr (integrated with bug-tracking tools like Jira)

C

B

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 17

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

R e c o m m e n d at i o n s

Evaluate Agile Testing Tools With The Five Must-Haves In Mind

Evaluating testing tools to support your Agile transformation? Assessing the tools you already own?
Look for the following capabilities when selecting which ones you’ll take forward:

■	Collaboration. Agile testing tools must support seamless collaboration among Agile team
members. Social features like wikis, chat, IM, and discussion streams are table stakes; more
important is programmatic interoperability via APIs and open data formats. Example of
effective Agile collaboration include being able to easily share artifacts and tasks, like a user
story from the sprint backlog, a burn-down chart to see development and testing progress,
and quick, universal access to testing specific reports. If test management tools aren’t open
and interoperable, via a repository, APIs, or other mechanisms, it will seriously impede the
flow of changes through your deployment pipeline.

■	A simple user experience and a short learning curve. Ease of use matters when team
members are juggling multiple tasks, including development, testing, and deployment. How
easy is a team member’s journey as they go through daily testing tasks? How intuitive is the
user interface overall, and especially the organization of test plans, test suites, and test case
execution? How long does it take team members to learn how to use the test management
tools? Are one or two weeks enough, or does it take more? Look for test management tools
that organize and store test cases using folders as a simple structure, or that map to user
stories and scenarios.

■	Improved levels of automation. Unless you achieve a high level of test automation, your
Agile transformation will sputter, held back by repetitive manual testing. So ask yourself the
following questions: Do the tools you are evaluating enable you to create modular, reusable,
and well-designed test automation code? Do they support defining and reusing architecture
patterns and practices? How do the tools support an increasing level of automation and
how will they help maintain large automation test suites as your test cases grow into the
thousands and beyond? Does the test automation tool provide features for visualizing
redundant test cases? Can test cases be abstracted and reused in multiple places? Do the
tools also help automate some of the manual steps of your process and capture successful
execution of manual test runs? Can you easily integrate the results of mixed manual and
automated testing?

■	Continuity and accuracy of information flow. In Agile, testing is a continuous process
from start to finish, within sprints and within releases. The above characteristics of
automation and improved collaboration are key drivers for continuous testing. However,
there also needs to be constant synchronization between the artifacts across the different
tools, status of activities, and data sharing. Accordingly, all of these activities should revolve

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 18

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

around common artifacts like a change management request and a unified task management
system. Anytime a team member has to stop and manually cross-reference information or
import artifacts from one tool to another, you’ve impeded the flow of status and created an
opening for the subjective measurement of progress.

■	Instant accessibility. Agile teams don’t have time to engage in long sales cycles to get hold
of new tools. They also tend to want to demonstrate value before investing in commercial
tools. Make it easy for teams to get access to tools they need, especially during early sprints.
Expensive tools with per-user licenses can be a problem at scale, because testing can easily
shift from team member to team member as sprints progress. A flexible licensing policy (or an
entry-level open source product) can lead to broader adoption. In some cases, you may need
to differentiate between team members who have change rights on artifacts versus those who
only need read access. Be wary if the vendor recommends an extensive proof of concept to
justify purchase — you may get strong pushback from your Agile teams. For specialized testing
tools, such as test data management, test virtualization, and performance and load testing,
you’ll need to assess how long it will take to install and configure them in your preproduction
environments. Other factors to consider include how much training is required and whether
the tools are offered as SaaS services that you can quickly deploy when needed.

w h at I t M e a n s

Adapt your Tool Strategy to support testing WIthIN Agile TEams

Whether you’re inheriting an existing testing tool strategy from past development approaches like
waterfall or are just firing up your Agile testing practices and have to build a tool strategy, consider
the following:

■	Your tool choice will vary with your level of Agile adoption. The more your business
peers demand rapid software innovation, the more you’ll find that a standalone TCOE
impedes the flow of rapid change. As you adopt Agile processes, expect an increased need
for collaboration, simplicity, automation, continuity, and accessibility to drive development
teams toward tools that fulfill these needs.

■	Improved quality starts with effective test management, even for Agile. Small to
medium-size application development and delivery organizations (less than 100 people)
often start with no test management tools, thinking that ad hoc tools like Excel will suffice
to manage test plans and test cases. If you are in this situation, we recommend adopting
a test management tool sooner rather than later, as it will improve your overall quality
management process. If you’re in a large company with a corporate standard TM tool, make
sure that it enables the practices described in this research before just adopting it. If not,
look for alternatives that are better suited to Agile development.

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 19

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

■	A range of testing tools are still necessary for Agile development. Performance, load,
security, and test data management are just as important for Agile projects as waterfall
or iterative projects. But like functional testing tools, they have to be part of the entire
development cycle and capable of frequent use from the very beginning of a project.
Designating certain sprints as “hardening sprints” can work in the short run, but easy,
frequent test execution is a must-have for a long-term approach.

■	Tools matter, but how you use them matters more. Tools make a difference, but how you
use them will ultimately determine your level of success. Learn about and apply the new
Agile testing practices mentioned in this report first, and then determine what support
you need from a tool to execute practices effectively or scale them to multiple Agile teams.
Where possible, experiment first with open source and then decide if the investment in a
commercial tool is warranted. Make sure that the entire team is on board with your selection
or risk seeing substitute open source software tools popping up as alternatives.

Supplemental Material

Companies Interviewed For This Report

BetterCloud

CA Technologies

FINRA

HomeAway

HP

IBM

MicroFocus (Borland)

Microsoft

New Relic

NTT Data

QASymphony

QMetry

Seapine

Silverpop

SmartBear Software

TechTalk

ThoughtWorks

Ultimate Software

US Department of the Treasury Financial
Management Service

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 20

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

Endnotes
1	 Agile disrupts everything that developers have learned about testing. From practices to skills to

organizational models, companies need to act now to move to the forefront of Agile development. See the
January 17, 2013, “Consistent Performance In Agile Teams Must Include Testing” report.

2	 BDD focuses explicitly on testing code behavior. QA professionals and/or business analysts write test
scenarios as declarative English-language statements that everybody on the team understands. Developers
then write automation code for each scenario.

3	 Cucumber is an open source tool that is becoming quite popular; it enables an extended test-driven
development approach called behavior-driven development.

4	 Mobile app development is part of a larger structural change in the way we build applications. We’re
entering a new age of application development that creates modern, compelling systems of engagement
and links them with systems of record and systems of operation. See the January, 17, 2013, “The Future Of
Mobile Application Development” report.

5	 Jez Humble and Dave Farley describe one trick that shops use to reduce their risk of a bad deployment in
their book, Continuous Delivery. Shops alternate deployment to two different but highly similar production
environments (one “blue,” the other “green”). See the February 7, 2011, “Five Ways To Streamline Release
Management” report.

6	 Clients mix various Agile methods with more traditional waterfall and iterative methodologies. See the
April 30, 2012, “Survey Results: How Agile Is Your Organization?” report.

Forrester defines this approach as “Water-Scrum-Fall.” See the July 26, 2011, “Water-Scrum-Fall Is The
Reality Of Agile For Most Organizations Today” report.

7	 Mobile development presents a completely different set of challenges than any of the enterprise
development projects you’ve delivered in the past. These challenges aren’t limited to your development
teams. They will permeate all aspects of your software development life cycle, enterprise architecture, and
the methodologies you use to develop and deliver mobile applications. See the May 28, 2013, “Mobile
Development — Smooth Sailing Or Titanic Voyage?” report.

8	 Forrester has previously reported on how the role of testers and the overall testing organization changes.
See the January 17, 2013, “Consistent Performance In Agile Teams Must Include Testing” report. For more
on how testing has to change to mature toward Agile testing, see the January 15, 2013, “Forrester’s Agile
Testing Maturity Assessment Tool” report.

9	 SpecFlow was developed by Austrian vendor TechTalk.

10	Fit is a tool for enhancing collaboration in software development. FitNesse is a wiki-based integrated
development environment for Fit. Twist specifically provides some interesting features to improve
maintenance of test cases and code automation.

http://www.forrester.com/go?objectid=RES87681
http://www.forrester.com/go?objectid=RES89181
http://www.forrester.com/go?objectid=RES89181
http://www.forrester.com/go?objectid=RES58422
http://www.forrester.com/go?objectid=RES58422
http://www.forrester.com/go?objectid=RES73742
http://www.forrester.com/go?objectid=RES60109
http://www.forrester.com/go?objectid=RES60109
http://www.forrester.com/go?objectid=RES92101
http://www.forrester.com/go?objectid=RES92101
http://www.forrester.com/go?objectid=RES87681
http://www.forrester.com/go?objectid=RES90341
http://www.forrester.com/go?objectid=RES90341

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 21

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

11	Commercial test automation tools are: HP Integrated Functional Tester (market leader), Microsoft Visual
Studio Test Professional, Micro Focus/Borland Silk Test, IBM Rational Functional Tester, Worksoft (SAP),
Ranorex UI, Seapine Software QA Wizard Pro, and SmartBear Software TestComplete. Most of these tools
have been on the market for quite some time.

12	A performance baseline is established during performance testing. Then maximum loads are then specified
along the baseline and verified during all regression testing to make sure performance goals are met under
the different loads.

13	The commercial players are HP, the market leader with LoadRunner, IBM with Rational Performance Tester,
Microsoft with Visual Studio Ultimate, Borland Silk Performer, and Parasoft Load & Performance testing.
Compuware is positioning dynaTrace as a performance testing tool that is more natural for developers
to use, providing a higher level of abstraction than more traditional performance-testing tools. Other
solutions are New Relic with more of a monitoring bent, or cloud performance testing tools like Neotys
with NeoLoad and Cloud Test from SOASTA.

14	Other open source software tools used by clients include Jailer and Webload.

15	Walker Royce from IBM demonstrates how integration testing should precede unit testing. Source: Walker
Royce, “Measuring Agility and Architectural Integrity,” ISCAS, 2011 (http://walkerroyce.com/PDF/
Measuring_Agility.pdf).

16	Duplicating the production environment in the testing environment is becoming more and more cost-
prohibitive as production environments become more complex, leading to the need for simulation. Service
virtualization tools enable other nonfunctional testing besides integration testing: performance testing
against a simulated connection to a mainframe or online service avoiding costs, load-testing simulating
connections and scaling up and down, and more. Service virtualization tools enable various aspects of
nonfunctional testing besides integration like performance and load testing against a simulated connection
to a mainframe or expensive online services. In a test virtualization environment, you can simulate
upscaling and downscaling, increasing and decreasing loads, and more.

17	The business case will leverage the saved costs of early integration versus late extended testing, lower costs
for a virtual production environment, lower costs for virtual access instead of expensive real online or
mainframe services access, higher precision of web services versus stubs/mockups, and automation versus
error-prone manual. The business case is usually favorable in large complex application and middleware
integration environments and decent-size Agile transformation programs.

18	The usual suspects here are the traditional corporate players like HP, IBM, Compuware, Microsoft, and
Micro Focus/Borland.

19	For more information, please check out Grid-Tools. Some vendors offer TDM capabilities in their service
virtualization tools — e.g., CA Lisa.

20	Acceptance criteria, testing charters, test scenarios, automated tests, test outcome, unit tests, test coverage,
and others get associated to user stories in backlogs.

For Application Development & Delivery Professionals

Navigating The Agile Testing Tool Landscape 22

© 2013, Forrester Research, Inc. Reproduction Prohibited July 18, 2013

21	Microsoft has built its TM tool with exploratory testing in mind and collaboration is enabled through the
TSF integration. HP, IBM, and Micro Focus/Borland started from existing pre-Agile TM tools based on the
TCOE model.

22	Tarantola is the only open source TM tool that our clients mentioned during the interviews.

23	Source: Martin Fowler, “Continuous Integration,” ThoughtWorks, May 1, 2006 (http://martinfowler.com/
articles/continuousIntegration.html).

Forrester Research, Inc. (Nasdaq: FORR) is an independent research company that provides pragmatic and forward-thinking advice to
global leaders in business and technology. Forrester works with professionals in 13 key roles at major companies providing proprietary
research, customer insight, consulting, events, and peer-to-peer executive programs. For more than 29 years, Forrester has been making
IT, marketing, and technology industry leaders successful every day. For more information, visit www.forrester.com.	 94241

«

Forrester Focuses On
Application Development & Delivery Professionals
Responsible for leading the development and delivery of applications

that support your company’s business strategies, you also choose

technology and architecture while managing people, skills, practices,

and organization to maximize value. Forrester’s subject-matter expertise

and deep understanding of your role will help you create forward-thinking

strategies; weigh opportunity against risk; justify decisions; and optimize

your individual, team, and corporate performance.

Andrea Davies, client persona representing Application Development & Delivery Professionals

About Forrester
A global research and advisory firm, Forrester inspires leaders,

informs better decisions, and helps the world’s top companies turn

the complexity of change into business advantage. Our research-

based insight and objective advice enable IT professionals to

lead more successfully within IT and extend their impact beyond

the traditional IT organization. Tailored to your individual role, our

resources allow you to focus on important business issues —

margin, speed, growth — first, technology second.

for more information

To find out how Forrester Research can help you be successful every day, please
contact the office nearest you, or visit us at www.forrester.com. For a complete list
of worldwide locations, visit www.forrester.com/about.

Client support

For information on hard-copy or electronic reprints, please contact Client Support
at +1 866.367.7378, +1 617.613.5730, or clientsupport@forrester.com. We offer
quantity discounts and special pricing for academic and nonprofit institutions.

www.forrester.com
mailto:clientsupport@forrester.com

