Milano - IBM Forum - 8 luglio 2010

Waste Management Ottimizzazione del flusso del rifiuto

Adriano Guarnieri

HerAmbiente

Daniele Vigo

DEIS - Università di Bologna ed Optit srl

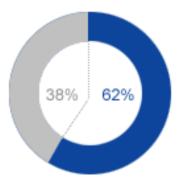
Agenda

 Presentazione del Modello di ottimizzazione dei flussi post-raccolta (Adriano Guarnieri – HerAmbiente – Resp. Flussi e Sistemi Informativi)

 Approfondimenti teorici e spunti sull'ottimizzazione della fase di raccolta (Daniele Vigo – Università di Bologna e socio fondatore di Optit srl)

Il Gruppo Hera (www.gruppohera.it)

Il Gruppo Hera, nato nel 2002 dall'unione di undici aziende di servizi pubblici dell'Emilia Romagna, ha continuato negli anni successivi la propria crescita territoriale, acquisendo nel 2004 Agea di Ferrara e concludendo nel 2005 con Meta la prima fusione italiana tra multiutility quotate in Borsa. Molte altre sono state le operazioni di consolidamento che Hera ha effettuato nel 2006, 2007 e 2008 per espandere il proprio core business.


PRIVATI

Fondazioni Bancarie: 7.5%

Altri investitori: 30.5%

N. Azionisti: ~ 22.000

Azionariato di Hera

ENTI PUBBLICI

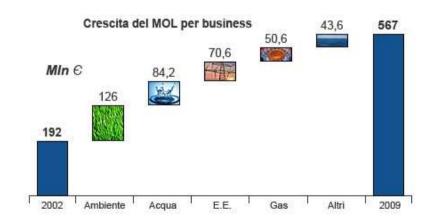
Comuni Provincia di Bologna: 18,8%

Comuni Provincia di Modena: 13,9%

Comuni Provincia di Ferrara: 3,3%

Comuni Province della Romagna: 26,0%

N. Azionisti: 193



Il Gruppo Hera (www.gruppohera.it)

I servizi

Le principali attività nelle quali è impegnato il Gruppo Hera sono la gestione:

- dei **servizi ambientali** (raccolta e smaltimento rifiuti, termovalorizzazione e compostaggio),
- del **ciclo idrico** (potabilizzazione, depurazione, fognatura),
- dei servizi energetici (distribuzione e vendita gas metano ed energia elettrica, teleriscaldamento),
- dell'illuminazione pubblica.

I numeri

- Il Gruppo Hera è il primo operatore italiano nei servizi ambientali:
- cittadini serviti ambiente: circa 2.700.000;
- tonnellate di rifiuti trattati: 5,1 milioni, dei quali 1,7 di rifiuti urbani;
- dotazione impiantistica: 73 impianti.
- Il Gruppo è la seconda società italiana nei servizi idrici:
- clienti acqua: oltre 1.050.000;
- metri cubi di acqua venduta: 229 milioni.

Hera è il terzo operatore nazionale nel settore gas e si sta affermando anche in quello dell'energia elettrica:

- clienti gas: oltre 1.070.000;
- clienti energia elettrica: 335.000;
- metri cubi di gas venduto: 2,8 miliardi;
- GWh di energia elettrica venduta: 7.047.

	2.007	2.008	2.009				
valori in milioni di euro							
ricavi	2.863	3.716	4.204				
mol	453	528	567				
utile operativo	221	281	291				
utile pre imposte	143	189	163				
utile netto	110	110	85				

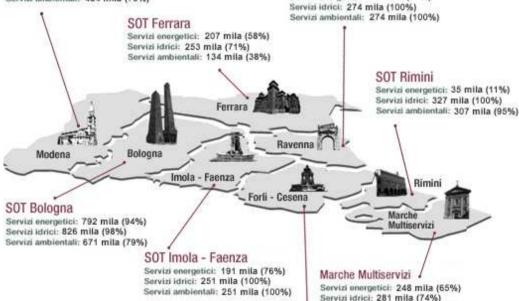
Il Gruppo Hera (www.gruppohera.it)

GRUPPO HERA

Servizi energetici: 2,5 milioni (72%)

Servizi ambientali:

2,7 milioni (77%)


SOT Modena

Servizi energetici: 465 mila (68%) Servizi idrici: 454 mila (66%) Servizi ambientali: 484 mila (70%)

SOT Ravenna

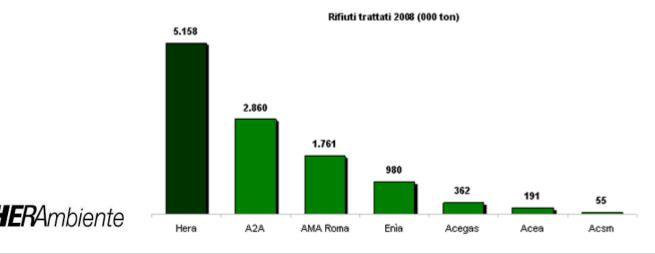
Servizi energetici: 249 mila (91%) Servizi idrici: 274 mila (100%)

Servizi ambientali: 199 mila (52%)

SOT Forli - Cesena

Servizi energetici: 332 mila (86%) Servizi idrici: 388 mila (100%) Servizi ambientali: 388 mila (100%)

HerAmbiente



Il 19uglio 2009 nasce Herambiente.

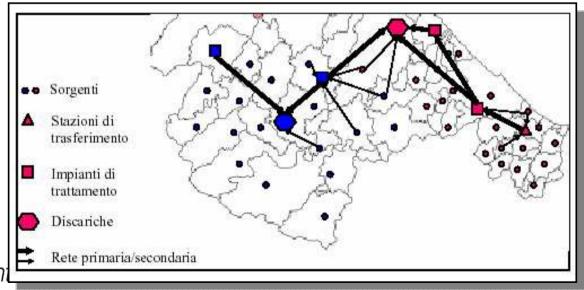
Herambiente, detenuta al 100% da Hera S.p.A., gestisce l'insieme degli impianti di trattamento recupero e smaltimento dei rifiuti urbani e speciali del Gruppo Hera, oltre che le attività commerciali e le partecipazioni societarie nelle aziende ambientali.

E' leader in Italia nel settore dello smaltimento dei rifiuti con circa **5,1 milioni di tonnellate** smaltite nel 2008 e con la dotazione impiantistica più significativa in Italia di circa **73 impianti** (termovalorizzatori, impianti di selezione, compostaggio, trattamento chimicofisico, discariche, ecc).

La società fornisce ai clienti una gamma completa di tipologie di smaltimento oltre ai servizi integrati di full service e di bonifiche ambientali.

Ambito dell'ottimizzazione

- Il territorio servito (2010)
 - 190 comuni e 2.7 mln di abitanti
 - 1,7 Mton annue di rifiuti urbani e 3.4 Mton di speciali
 - 7 inceneritori, 13 discariche, 12 impianti di selezione/separazione, 10 compostaggi ...


Ottimizzazione del flusso del rifiuto:
 Allocazione ottimale dei flussi di rifiuti dopo la raccolta al sistema di infrastrutture di trattamento e di stoccaggio

Elementi dell'ambito di ottimizzazione

- Sorgenti = zone territoriali origine dei flussi di rifiuti
- Tipologie dei rifiuti da trattare/stoccare (RSU, Differenziata ...)
- Infrastrutture per il trattamento/selezione/incenerimento
- Infrastrutture per lo stoccaggio (Discariche)
- Mercati per l'energia o i prodotti riciclabili
- Sistema logistico per il trasporto dei rifiuti (veicoli, rete stradale ...)

Altre caratteristiche

- Trattamento di diversi tipi di rifiuti:
 - flussi aggregati (es. indifferenziati, secco,...)
 - flussi disaggregati (da campane o impianti di selezione)
- Tecnologie disponibili presso gli impianti (chi tratta cosa, come ed a che costo)
- Diversa efficienza in funzione del mix in input (inceneritori e compostaggio)
- Possibilità di variare la capacità di impianti e di crearne di nuovi

Le funzionalità del modello

Breve periodo

- ➤ Costi di trasporto
- ➤ Costi di smaltimento variabili
- ➤ Fermi impianto
- ➤ Domanda mensile (stagionalità)
- ➤ Disponibilità puntuale dell'impianto
- ➤ Capacità tecniche o autorizzative mensili
- ➤ Vincoli territoriali

Piano mensile del flusso del rifiuto

Budget Mensilizzato

Medio periodo

- Costi di trasporto
- ➤ Costi di smaltimento fissi e variabili
- ➤ Autorizzazioni annuali
- ▶Capacità annuali
- >Domanda di smaltimento annuale

Lungo periodo

- ➤ Costi di investimento nuovi impianti
- ➤ Costi di smaltimento fissi e variabili
- ➤ Capacità totali discariche
- >Ampliamento impianti esistenti

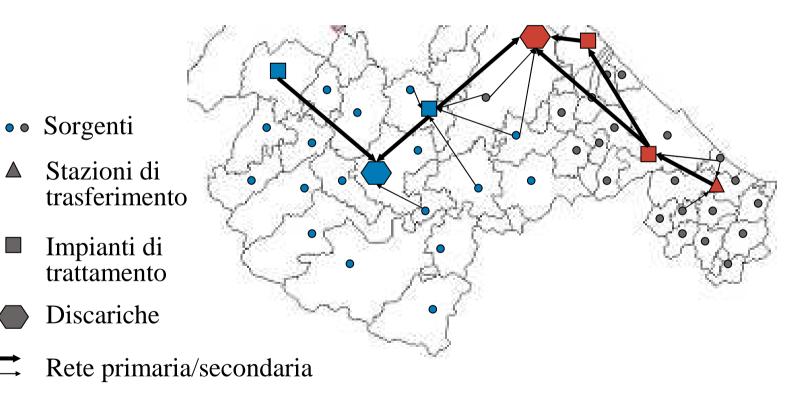
Piano pluriennale del flusso del rifiuto

Piano Industriale Piani Provinciali di Gestione Rifiuti

Piano annuale del flusso del rifiuto

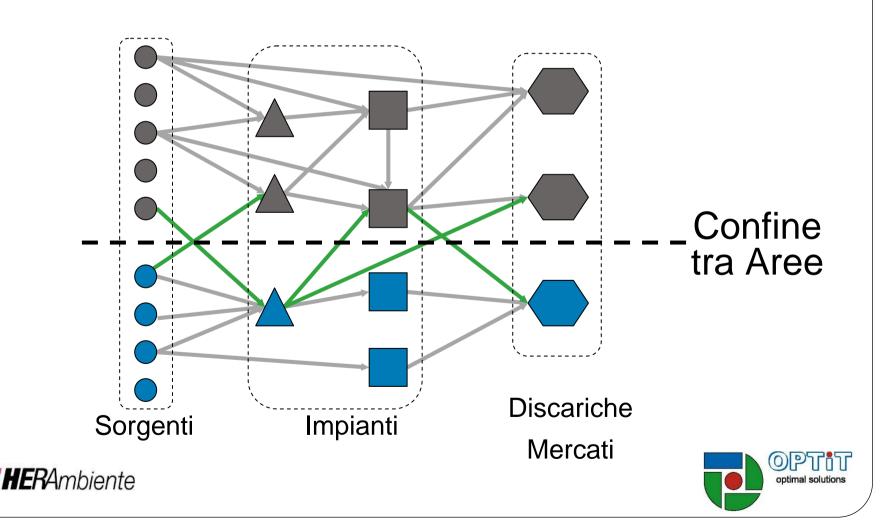
Budget

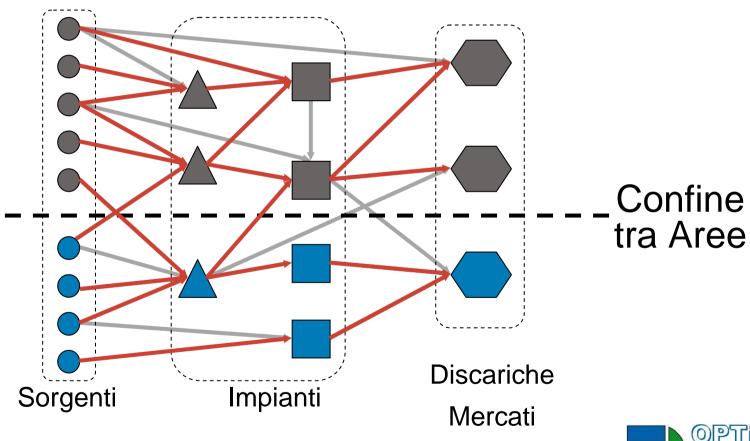
Il progetto


- 2004: Studio di fattibilità e messa a punto di un prototipo per la soluzione del problema
- 2005: Ingegnerizzazione di una versione desktop del modello per l'analisi strategica
- 2006-2009: Integrazione con i sistemi informativi gestionali ed uso del modello
- 2009: (nascita di HerAmbiente)
- 2010: avvio di un progetto per l'ingegnerizzazione di un modello per la gestione annuale e mensile

Modellazione del problema (1/3)

Territorio servito: zonizzazione ed infrastrutture

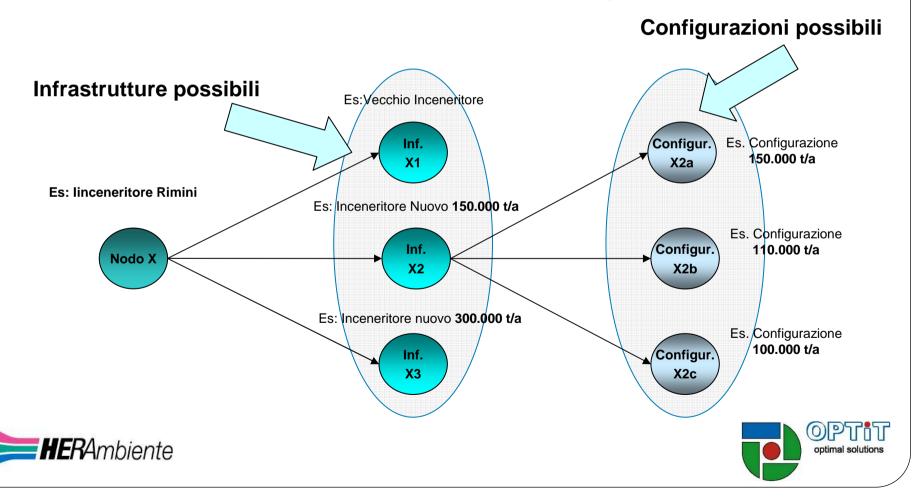


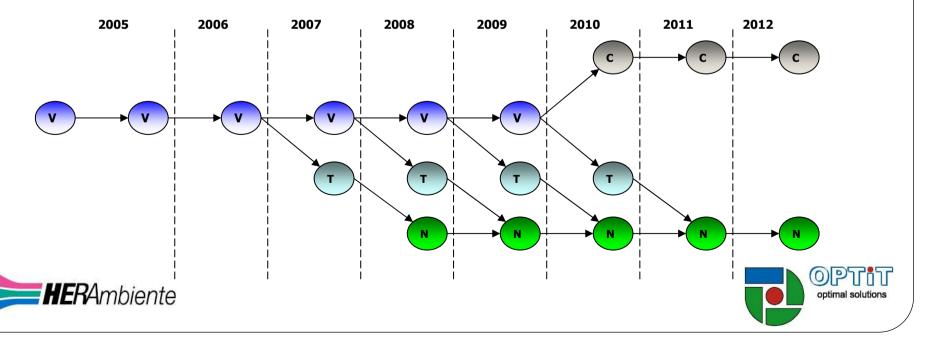

Modellazione del problema (2/3)

• Rete di flusso a più livelli:

Modellazione del problema (3/3)

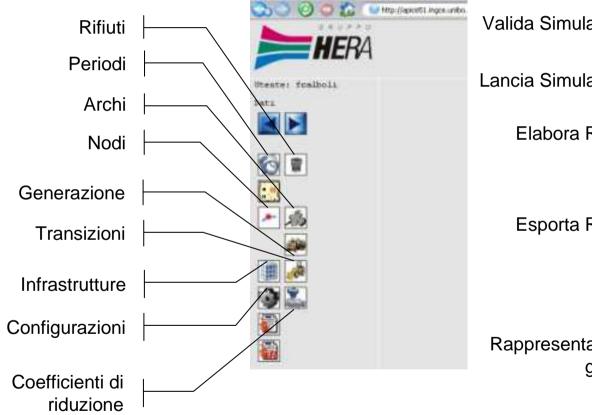
 Individuazione dei percorsi dei flussi dalle Sorgenti alle Discariche ed ai Mercati




Estensione: Pseudo-impianti

 Per ogni impianto potenziale possono essere previste diverse infrastrutture e configurazioni

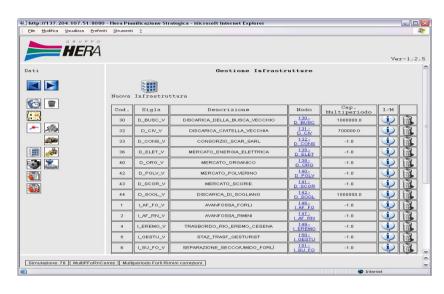
Estensione: Multi-periodo


- Evoluzione della rete nell'arco di diversi anni
 - Aumento dei rifiuti da trattare e variazione del loro mix
 - Descrizione della rete mediante:
 - Infrastrutture che operano in diverse configurazioni (capacità e costi fissi e variabili di trattamento)
 - Transizioni tra infrastrutture

Il Modello realizzato

Input data

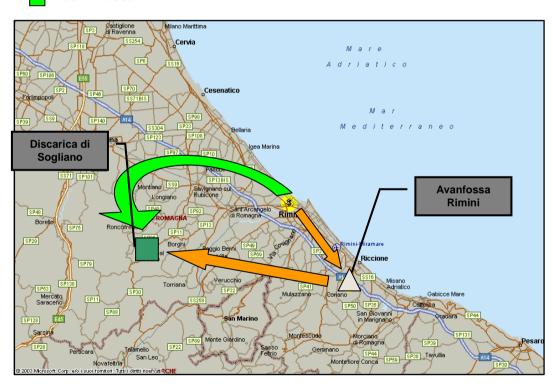
Cruscotto solver



Il modello realizzato: alcuni screenshot

Infrastructures

Reports: an example


siglaPeriodo descrNodoIniziale	descrNodoFinale	descrRifiuto	costoUnitario	qtà	costoTotale
2005 Bertinoro	DISCARICA_DELLA_BUSCA	Rifiuto indifferenziato	19,30	4.018	77.561
2006 Bertinoro	DISCARICA_DELLA_BUSCA	Rifiuto indifferenziato	18,45	3.885	71.686
2007 Bertinoro	DISCARICA_DELLA_BUSCA	Rifiuto indifferenziato	17,64	3.588	63.292
2008 Bertinoro	DISCARICA_DELLA_BUSCA	Rifiuto indifferenziato	16,86	3.660	61.713
2011 Bertinoro	DISCARICA_DELLA_BUSCA	Rifiuto indifferenziato	14,73	3.884	57.213
2012 Bertinoro	DISCARICA_DELLA_BUSCA	Rifiuto indifferenziato	14,08	3.962	55.785
2009 Bertinoro	AVANFOSSA_FORLÌ	Rifiuto indifferenziato	11,42	3.733	42.615
2010 Bertinoro	AVANFOSSA_FORLÌ	Rifiuto indifferenziato	10,91	3.808	41.553
2005 Borghi	DISCARICA_DI_SOGLIANO	Rifiuto indifferenziato	15,73	897	14.108
2006 Borghi	DISCARICA_DI_SOGLIANO	Rifiuto indifferenziato	15,03	867	13.040
2007 Borghi	DISCARICA_DI_SOGLIANO	Rifiuto indifferenziato	14,37	801	11.513
2008 Borghi	DISCARICA_DI_SOGLIANO	Rifiuto indifferenziato	13,74	817	11.226
2009 Borghi	DISCARICA_DI_SOGLIANO	Rifiuto indifferenziato	13,13	833	10.945
2010 Borghi	DISCARICA_DI_SOGLIANO	Rifiuto indifferenziato	12,55	850	10.673
2011 Borghi	DISCARICA_DI_SOGLIANO	Rifiuto indifferenziato	12,00	867	10.407
2012 Borghi	DISCARICA_DI_SOGLIANO	Rifiuto indifferenziato	11,47	885	10.148
2005 Castrocaro Terme e Terra Del Sole	AVANFOSSA_FORLÌ	Rifiuto indifferenziato	16,23	3.121	50.647
2006 Castrocaro Terme e Terra Del Sole	AVANFOSSA_FORLÌ	Rifiuto indifferenziato	15,51	3.017	46.810

Esempio di risultati

- Vecchio Flusso
- Nuovo Flusso

- Verifica economicità / diseconomicità di flussi di trasferimento a valle dell'introduzione di nuovi impianti
- Supporto al dimensionamento degli impianti sulla base delle variazioni dei flussi
- Analisi what-if su opzioni alternative

Risultati

- Il prototipo ottiene risparmi di qualche punto percentuale sui costi di gestione dei flussi
- Cplex è in grado di risolvere i problemi necessari (centinaia di sorgenti, decine di impianti) in qualche minuto (contro ore di risolutori alternativi public domain)
- Nuova applicazione basata su Cplex/Opl in corso di sviluppo per maggiore flessibilità per la gestione di nuovi vincoli e scenari, integrazione strumenti GIS, gestione di scenari operativi semplificati su base annuale e mensile

Agenda

 Presentazione del Modello di ottimizzazione dei flussi post-raccolta (Adriano Guarnieri – HerAmbiente – Resp. Flussi e Sistemi Informativi)

 Approfondimenti teorici e spunti sull'ottimizzazione della fase di raccolta (Daniele Vigo – Università di Bologna e socio fondatore di Optit srl)

La modellazione matematica (base)

- Il problema può essere rappresentato da un modello matematico di ottimizzazione
- Rete → Grafo orientato G=(V₁ U V₂ U V₃,A)
 - Nodi: sorgenti ed impianti
 - Archi: possibilità di trasporto con capacità e costo
- Incognite (var. decisionali) del modello:
 - attivazione degli impianti: y_i (binarie)
 - flusso di tipo h su collegamento da i a j: x_{ijh}
- Funzione obiettivo:
 - costo complessivo in funzione di x ed y
- Vincoli: condizioni su x ed y per ammissibilità

Dati di input

- Caso per singolo periodo
 - Capacità e costi si riferiscono ad unità temporali e di capacità omogenee (ad esempio sono flussi e capacità medi giornalieri, mensili o annuali).
- H : insieme dei tipi di rifiuto
- Per ogni sorgente i∈ V₁ sono definiti:
 - G_{ih} quantitativo di rifiuti di tipo h generati nell'unità di tempo
- Per ogni impianto j∈ V₂ U V₃ sono definiti:
 - p_{ih} costo variabile di trattamento di un'unità di rifiuti di tipo h nell'impianto
 - F_i costo fisso di attivazione dell'impianto.
 - Q_{ih} capacità di trattamento materiale di tipo h nell'unità di tempo.
 - a_{jhk} coefficiente di riduzione di un'unità di flusso entrante di tipo h rispetto al flusso uscente di tipo k.
- Per ogni arco (i, j) della rete, con i∈ V1 UV2 e j∈ V2 UV3 :
 - c_{iih} costo unitario di trasferimento di rifuti di tipo h tra il nodo i ed il nodo j.

Variabili decisionali

$$x_{ijh}$$
 = quantitativo di rifiuti di tipo h assegnato al collegamento da i a j

 per ogni (i, j, h) ∈ A. Le variabili decisionali per l'attivazione degli impianti sono invece definite per ciascun j ∈ V₂ U V₃ e sono:

$$y_j = \begin{cases} 1 & \text{se l'impianto } j \text{ è attivo} \\ 0 & \text{altrimenti.} \end{cases}$$

Modello matematico

$$\min \sum_{(i,j,h)\in A} c_{ijh} x_{ijh} + \sum_{j\in V_2 \cup V_3} \sum_{h\in H} \sum_{i\in V_1 \cup V_2} x_{ijh} + \sum_{j\in V_2 \cup V_3} F_j y_j$$
 (1)

con i vincoli

$$\sum_{j \in V_2 \cup V_3} x_{ijh} = G_{ih}$$

$$\sum_{j \in V_2 \cup V_3} \sum_{j \in V_2} x_{ijh} - \sum_{j \in V_2} \sum_{j \in V_2} a_{jhl} x_{jkl} = 0$$

$$i \in V_1, h \in H$$

$$j \in V_2$$

$$h{\in}H \ i{\in}V_1{\cup}V_2 \qquad h{\in}H \ k{\in}V_2{\cup}V_4 \ l{\in}H$$

$$\sum x_{ijh} \leq Q_{jh} y_j$$

$$i \in V_1 \cup V_2$$

$$x_{ijh} \ge 0$$

$$y_j \in \{0,1\}$$

$$j \in V_2$$

$$j \in V_2 \cup V_3, h \in H \quad (4)$$

$$(i,j,h) \in A$$

$$j \in V_2 \cup V_3$$

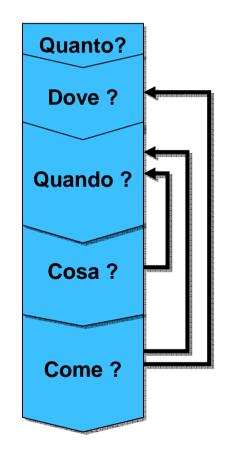
Considerazioni

- La costruzione di modelli di ottimizzazione richiede competenze di Ricerca Operativa che non si possono improvvisare
- Il solver è il fattore chiave per la risoluzione di problemi molto complessi, ma la creazione di valore richiede dalla modellizzazione del problema in soluzioni "a prova di business", che richiede competenze scientifiche, informatiche e di business
- Il flusso del rifiuto copre la fase post-raccolta, ma esistono soluzioni avanzate anche per la fase di raccolta

La pianificazione della raccolta rifiuti

Analisi della domanda:

stima/misura dei conferimenti e individuazione dei siti delle postazioni


Pianificazione dell'offerta:

- Individuazione delle frequenze di svuotamento delle postazioni ed omogeneizzazione delle frequenze nelle zone di raccolta
- Dimensionamento delle postazioni (numero e tipo di contenitori)

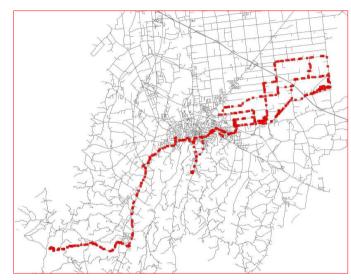
Pianificazione della raccolta:

- Determinazione degli itinerari di raccolta (vehicle routing)
- possibili retroazioni tra le fasi



OptiRoute: ottimizzazione percorsi

- Routing per applicazioni urbane (Distribuzione merci e Raccolta rifiuti)
- Sperimentazioni presso strutture operative territoriali del Gruppo Hera
- Migliaia di punti di raccolta in pochi minuti di tempo di calcolo
- Saving potenziali molto interessanti





OptiTrack: valorizzazione dati GPS

- Acquisizione e georeferenziazione delle rilevazioni GPS + address matching
- Ricostruzione del servizio
- Aggiornamento della rete e rilevazione dei tempi di viaggio
- Monitoraggio flotte

Grazie per l'attenzione

