
Mariangela Orme

Executive Architect – IBM RationalExecutive Architect – IBM Rational

Rational Agile Day

Agile -- La sfida per un nuovo modo di

sviluppare software

Challenges to effective software delivery today

Complexity Challenges Team Challenges

� More granular service functionality
in composite business applications

� Large number of projects and
assets including custom, outsourced
and packaged

� Geographically dispersed teams
that often include business partners

� Effective cross-organizational
visibility and synchronization,
sharing becomes an imperative

How do I control this new world to gain advantage?

and packaged sharing becomes an imperative

Process Challenges Tools Challenges

� Need for market experimentation

� Blind adherence to process insensitive
to potential business trade-offs

� Need for agility at scale

� Lack of standards impacts ability
to collaborate, automate and report
across teams and assumptions

� Frequent asset updates and
changing interdependencies

How Do these Challenges Affect Us?

From deliver all at one time …to deliver less sooner

…to business driven solutionsFrom technology driven solutions

From software development …to software delivery

From too little or too much
process with blind adherence

…to right-sized process
aligned with desired result

Process
maturity

Time-to-
market

We Need a Balanced Focus to Business Goals

e.g, Average time for a project

decreased to 9 months (from

the current 14 months)

e.g., Establish and evolve the
foundation for continuous
improvement of development

processes –CMMI level 3

QualityProductivity

e.g., Productivity increased

by 10% (based on function

points per time unit)

e.g., The number of defects in
production caused by project

deliverables reduced by 10%

What is Agile?

• An iterative and incremental (evolutionary)
approach performed in a highly collaborative
and self-organizing manner with just the right
amount of ceremony to frequently produce high
quality software in a cost effective and timely
manner which meets the changing needs of its
stakeholders.

• Core principles

– “Fits just right” process

– Continuous testing and validation

– Consistent team collaboration

– Rapid response to change

– Ongoing customer involvement

– Frequent delivery of working software

Agile values

Working
Software
Working
Software

Individuals
Interactions
Individuals
Interactions

Comprehensive
Documentation
Comprehensive
Documentation

Processes
and Tools
Processes
and Tools

overWe value

Customer
Collaboration
Customer
Collaboration

Source: www.agilemanifesto.org

Following
a Plan
Following
a Plan

Contract
Negotiation
Contract
Negotiation

While there is value in the items on the right, we value
the items on the left more.

Responding
to Change
Responding
to Change

The Development Organization’s View

The Customer’s View

I falsi Miti dell’Agile Software Development

• Non richiede pianificazione

• Non richiede documentazione

• Non richiede training

• Non è prevedibile

• Il piano è flessibile e adattabile

• Si produce solo la documentazione che porta
valore al progetto

• Occorre training e mentoring per gestire i team
Agile

• La pianificazione è a più livelli. Solo il piano a Falso!• Non è prevedibile

• Non è scalabile

• Non c’è disciplina

• Non occorre controllare il
processo

• La pianificazione è a più livelli. Solo il piano a
breve termine è prevedibile in dettaglio. Il piano
a lungo termine è più reattivo alle variazioni

• Per scalare, un team Agile richiede un maggiore
livello di cerimonia di un team piccolo e co-
localizzato

• Per collaborare in team e rispondere
rapidamente ai cambiamenti occorre una certa
disciplina

• Non c’è un processo “a taglia unica”. Il processo
deve essere adattato al contesto di ogni
progetto

Falso!

How Agile is Different?
• Focus on collaboration:

– Less paperwork and more conversation

– Stakeholders actively involved

• Focus on quality:
– We have a full regression test suite for our systems

– We develop loosely-coupled, highly cohesive architectures

– We refactor to keep them this way

• Focus on working software:
– Greater feedback makes agile projects easier to manage

– Less documentation is required

– Less bureaucracy

• Agilists are generalizing specialists:
– Less hand offs between people

– Less people required

– Specialists find it difficult at first to fit into the team

• Agile is based on practice, not theory:
– This is a significant change from traditional development methods

Agility is Relative

Organizational Drivers

Team Size
Geographical Distribution
Organization Distribution

Entrenched process, people, policy

� Maturing projects

� Mature or existing projects
� 50+ developers
� Complex, multi-platform applications
� Distributed teams
� Need for scalability, reproducibility,

and traceability
Agility at Scale

Dealing with Complexity

Technical and Regulatory
Drivers

Compliance
Governance

Application complexity

� Small team
� New projects
� Simple application
� Co-located
� Minimal need for documentation

� Maturing projects
� Multi-platform
� Growing in complexity
� Remote or offshore work
� Greater need for

coordination and handoffs

Dealing with Complexity

There is No Single Agile Process

Organizational Drivers

Team Size
Geographical Distribution
Organization Distribution

Entrenched process, people, policy

Technical and Regulatory
Drivers

Compliance
Governance

Application complexity

Adopting agile development practices help us
achieve the defined goals

• Relative proportion of effort used on
management is too high

• Requirements definition and the
requirements sign-off process is too lengthy

• A high degree of efficiency in the development effort
(improvement of 10% or more compared to today)

• Focus on the most revenue generating or cost
saving deliverablesrequirements sign-off process is too lengthy

• The change request process is cumbersome
and time consuming

• Integration of the different solution elements
is infrequent and done late in the project
lifecycle

• A considerable “Hardening period” for the
solution is needed just before and just after
release in order to achieve an acceptable
level of quality

• Further potential for reuse, consolidation and
automation exists

saving deliverables

• Higher quality solutions provided at a cost that is the
same or lower than previously

• Sourcing options (including reuse potential)
identified and leveraged

• Deliver solutions to the business within short
releases (always <12 months but typically releases
every 3-4 months for agile projects)

• Risk associated with project business deliverables
and project schedule are identified and mitigated
early and efficiently

• Ability to change scope as required with minimal
impact on schedules and commitments

• Ability to change schedules as required with limited
notice

Rethinking Software Delivery

Stovepiped

Operations

C
re

a
tiv

e
 B

e
h

a
v
io

r

P
ro

c
e

d
u

ra
l R

ig
o

r

Development

Analysis
Design
Automation

Code/test
Automation
Platform

Production
Automation
Platform

Waterfall

Process

Platform

IBM & Shell confidential

Stovepiped
Tools

Consumers
Users

Operations

C
re

a
tiv

e
 B

e
h

a
v
io

r

P
ro

c
e

d
u

ra
l R

ig
o

r

Development Common
Software Delivery Automation

Analysis
Design
Code
Automation

Software
Delivery
Automation

Agile

Delivery

Process

Platform

Collaborative Automation Platform

Implications

Automation

Measurement

Close Customer Relationship

Project visibility

Application life-cycle management

The coordination of development life-cycle activities, including
requirements, modeling, development, build, and testing,
through:

1) Process Automation - Enforcement of processes that span these

activities.

2) Traceability - Management of relationships between development

artifacts used or produced by these activities.

3) Reporting - Reporting on progress of the development effort as a 3) Reporting - Reporting on progress of the development effort as a

whole.

Entire contents © 2007 Forrester Research, Inc. All rights reserved.

• ALM doesn’t support specific life-cycle activities; rather, it keeps them in
sync.

• ALM doesn’t live in practitioner tools; it lives in the integrations between
them.

• A collection of development life-cycle tools is not necessarily ALM. They
need to be integrated

The Business Promise of ALM is Widely Anticipated

• Companies acquire ALM
tools with the best of
business-centric aspirations

– Higher quality

– More customer satisfaction

– Aligning business and IT– Aligning business and IT

– Faster time to market

• Motives internal to IT also
feature

– Lower costs/higher productivity

– More predictable delivery

• So every vendor wants to
stake a claim in the ALM
value proposition

For the full study cited on this slide, see http://wipro.us/pdf/whitepaper/alm_ppm_tools_investments_gone_awry.pdf

The Business Value Outcome is Often
Disappointing

• Only 38% of surveyed respondents believe they

captured the expected value from ALM tools.

• The other 62% were disappointed

For the full study cited on this slide, see http://wipro.us/pdf/whitepaper/alm_ppm_tools_investments_gone_awry.pdf

There are Multiple Reasons for the
Disappointment

These Problems are at least 20 Years old

“A recent
survey of over 1000 businesses
indicated that the
backlog for applications is

approximately
four years…”

“businesses
are also faced with the high
costs of maintaining
existing inventories of
applications and a shortage of

experienced programming
skills..”

Source: Presentation on IBM’s AD/Cycle, circa 1990!

“requirements and specifications
are
passed on paper from product
planners to designers
and from designers to coders…”

“proliferation
of unrelated tools,
methodologies, and
manual data transformations…”

Traditional Approaches To ALM Integration
Have Fallen Short

Single repository
- Hard to add existing (legacy)

tools
- Difficult to evolve tools
individually

- Limited to a single vendor’s

Point-to-point integrations
- Limited coverage: there are too
many tools to cover more than a
small fraction of possibilities
- Tight dependencies between
tools require lockstep upgrades

Limited choice and coverage

Monolithic
Repository

Universal metadata standard
- Too slow to complete to keep pace
with the market
- Hostage to vendor in-fighting
- Difficult to migrate existing project
data and assets

- Limited to a single vendor’s
tools or affiliates - Proprietary APIs create vendor

lock-in

Standard implementations
- Requires “forklift” rip and
replace of existing tools
- Hard to get widespread vendor
support
- Insufficiently flexible to address
different user approaches

Slow to emerge and disruptive to adopt

Repository

Provides

� A scalable, extensible team
collaboration platform

� End-to-end, artifact traceability

� Flexible and configurable

Jazz is Something Different
An Open and Extensible Software Development Platform

Supporting Collaborative ALM

c

Collaboration Automation Reporting

� Flexible and configurable
team-specific process

� Integrated collaboration around
the lifecycle artifacts

� Access to real time information
for decision making

Jazz is a project & software delivery platform for

transforming how people work together to deliver

greater value & performance from software investments.

The Jazz Foundation Architecture

Rational Quality Manager

Jazz
Products

3rd Party

3rd Party Product

3rd Party Products
integrating with

Existing Jazz
applications

REST API

Rational Team Concert Requirements Composer

3rd Party Products
built using Jazz

Foundation

22
22

Discovery

Presentation

Administration (users,

projects)

Query

Collaboration Additional Services Storage

REST APIs

Rational Quality Manager

Jazz
Foundation

Services

(Additional Services
may be added to the

foundation)

Process

Rational Team Concert Requirements Composer

Workflow

Team Concert

Collaborative software delivery

Collaborative SCM, work item,

build automation & iteration planning

Quality Manager and
Test Lab Manager

Lifecycle quality management

Coordinate quality assurance

plans, processes and resources

First wave of products built on Jazz technology

Requirements Composer

Elicit, capture, elaborate, discuss

and review requirements

Business Expert Collaboration

Product Collaborative Business

Rational Insight
Cross-project and -team reporting

Performance management and

measurement for integrated

lifecycle intelligence

23

Storage

Collaboration

QueryDiscovery

Administration:
Users, projects,

process

Best Practice Processes

Presentation:
Mashups

Future
IBM

Capabilities

Product
& Project

Management

Collaborative
Lifecycle

Management Engineering
& Software
Tools

Business
Planning &
Alignment

Your
existing

capabilities
3rd-Party
Jazz

Capabilities

Compliance
& Security

Jazz Enables Collaborative ALM

� Win-Win Tool Adoption

� Development more effective
� Enables Team to Focus on their Day Job, rather than

Producing Status Presentations (fosters grass roots adoption)

� Organization more effective
� Access to real-time project status enables reality-based

decisions (encourages top-down support)decisions (encourages top-down support)

� Grass Roots adoption within IBM

� Over 60 Rational development teams using Rational Team
Concert

� More than 125 other teams around IBM

� WebSphere Development, Lotus Development, Tivoli
Development, Research, GBS, etc

Rational’s Collaborative ALM

Delivering real-time, global access to project
information
Example: requirements

Analyst

Developer

Tester
Quality Management

Change / Config Mgmt

Requirements

Developers link to requirements
from work-items

26

Testers link to requirements
from test plans and test cases

Analysts communicate
requirements with links to
development and test plans

from work-items

Accelerating in-context workflow
Example: Log a defect in context of test failure and requirements

Analyst Developer
Tester

Quality Management
Change / Config MgmtRequirements

27

Defects can link to
requirements

Defects link to Test Execution
results

Test Execution Results link to
defects

Collaborate using Workitems and Plans

Various levels of
work planning

Discuss work
with
members

Collaborate
in context

Check the project status and health

Burndown
charts

Various
project health
dashboards

Team
communication

www.jazz.net - Transparent
development visibility

Suppose we did our development
out on the Internet?

� A transparent software
delivery laboratory where
you can...

� Communicate with the
development team

� Track the progress of � Track the progress of
builds and milestones

� Get the latest product
trials and betas

� Join developers and
product managers in
discussion groups

� Submit defect and
enhancement requests

