
IBM Software

Rational

Electronics

Cutting-edge multicore
development techniques for the
next wave of electronics products



2 Cutting-edge multicore development techniques for the next wave of electronics products

Introduction
Miniaturization continues to drive the electronics industry.
Device form factors and their underlying components are
shrinking while capabilities and performance are increasing.

Devices are also becoming elements of a highly intercon-
nected ecosystem as a result of added communications links.
Electronics companies are adopting multicore processors, a
processing system composed of two or more independent
cores,1 to deliver these advances in their next-generation 
products.

As multicore processors become more pervasive in electronics
products—PCs, mobile phones, gaming systems, network
equipment, industrial control systems, and now even medical
devices—the demands of developing software for these 
systems has become a primary concern in the electronics
industry. The advantages of multicore architectures are many,
such as higher performance, lower power consumption, lower
cost, and more flexibility, but can be realized only if the corre-
sponding software is developed to unlock these benefits. Many
software developers in today’s electronics industry lack the
skills to write software optimized for multicore. Furthermore,
multicore architectures can become exponentially complex as
the number of cores increases from two to four to thirty-two
different cores; that is, traditional means of development no
longer scale. The only way to handle the complexity is
through automation and with a higher-level language that
allows software deployment to be automated to different
cores. Since time to market is a critical differentiator in the
electronics industry, meeting market deadlines means utilizing
an organization’s existing software code. This is mostly 
single-core source code, however, and not optimized for 
multicore technology.

This IBM® Rational® white paper discusses cutting-edge
software development methods that enable your development
teams to take advantage of new multicore technology, as well
as an automated way to reuse single-core software for multi-
core systems, enabling you to both outperform the industry
and drastically save time and money through the reuse of
existing systems.

Promise of multicore
The tide has turned in the drive to increase performance and
reduce power consumption and cost in computing platforms
used for building today’s advanced electronic products.
Traditionally processors were pushed to deliver more 
performance by increasing the number of transistors on a die
and increasing the clock rate, ever challenging Moore’s law.2

This will continue to happen, but the path to true leaps in
performance and power management lies with innovation
around multicore technologies.

Multicore-based systems deliver reduced power consumption
and typically operate at slower clock speeds, which can 
significantly improve battery life and reduce the amount of
heat production. Cooler operating temperatures mean that
organizations can use quieter and more power-efficient fanless
cooling systems. Products with smaller form factors are possi-
ble, reducing the number of distinct processors in favor of a
reduced number of multicore processors. Further, multicore
operating environments hold the promise of true multitasking
and much better application performance than is possible with
single-core-based environments, which can reach a CPU uti-
lization threshold quickly. True parallelism is now possible
when handling an increasing load of compute-intensive appli-
cations. Additionally, load balancing and separation of system
functionality with multiple cores can lead to improved 
system robustness and security.



3IBM Software

From personal computers and workstations to high-end 
smart phones and portable devices, consumer demand for
ever-improving performance, battery life and advanced 
features has led device manufacturers to build and deliver
products that use multicore technologies. The next generation
of personal electronics and smarter products will rely on mul-
ticore environments to deliver even greater connectivity,
responsiveness, usability and productivity-yielding applications
to an increasingly technology-savvy clientele. Software will be
the critical factor in delivering on the promise of multicore,
and success or failure clearly rests on the embedded 
software team.

Challenges with multicore
The promise of multicore technologies comes at a significant
cost and risk to today’s product development community.
Multicore environments introduce even greater complexity
into the design and delivery of products and the software-
intensive applications that drive them. Choices must be made
about the distribution of resources and functionality, affecting
the product architecture. For system designers, decisions
about the actual number of processors, number of cores
required, operating system (symmetric or asymmetric) 
characteristics and required middleware are more difficult. 
On the software front, designers must take into account new
issues about application partitioning, intercore and intertask
communication, and scalability of the design in a multicore-
based system. The features of the operating system(s) and the
potential middleware in use further the complexity of the
overall software design.

Organizations moving to multicore will require changes in the
skill set of their software design teams. Parallelism must
become the norm, and the way in which their applications are
built must be altered to take full advantage of the parallel
architecture that is available in a multicore operating environ-
ment. Considerations about increased use of multiple tasks,

intertask communication mechanisms and task-to-core alloca-
tion all become critical factors in successful application devel-
opment. Reuse increases in importance for tasks and
components of the software-intensive systems.

Existing applications must be refactored to run on the new
multicore architecture to take advantage of the underlying
performance improvements of the parallel architecture and,
more important, to ensure that they are able to function 
properly. What ran correctly and safely on a single-core 
system, even in a multitasking operating system, might exhibit
erroneous and even unsafe behavior in the parallel environ-
ment offered by a multicore system.

Debug and test become even more critical when deploying
software to a multicore system. Traditional code-level debug
and late-cycle testing techniques often do not scale to multi-
core environments. New techniques and test environments are
needed to ensure that software is operating correctly and pro-
viding the required level of functionality.

IBM Rational methods for developing for
multicore
Three methods are recommended for effective multicore
development:

● Perform trade-off studies to assess alternatives
● Use existing software to accelerate development
● Automate software generation to improve quality

Perform trade-off studies to assess alternatives
Simply taking an existing system and moving it to a multicore
processor can actually cause it to run at the same speed or
even slower.3 This is because the actual cores typically are
slower on an individual basis than on the original processor.
This is especially true because shared data can slow down the



4 Cutting-edge multicore development techniques for the next wave of electronics products

communication. The whole application might even run at the
speed of a single core. Performing trade-off studies is critical
to assessing alternatives and ensuring that the desired
improvements in performance, speed and resource utilization
will be realized.

Modeling your product’s software architecture and creating
different options for it to run on multiple cores is critical to a
successful implementation. Existing tasks are mapped to the
cores and additional tasks are added, if needed. Further, mod-
eling enables you to gain an understanding of how to optimize
communications between the tasks and processes that your
applications involve.

Another key method is to simulate the model you built to 
verify that everything works as expected. Without such simu-
lation, all you have is an expectation that the system works.

As you make your trade-offs, the model enables you to docu-
ment the reasons why you made specific decisions. Another
important aspect is to map your design to the original require-
ments that were agreed upon. Understanding the real-time
aspects of the requirements helps you to make decisions about
what tasks should map to each core. For example, you might
not want the user interface of your product’s software on the
same cores as the real-time or critical control components.

Trade-off studies are important for understanding the options
of what part of your software should go on which cores.
Without it, you simply cannot assess the best alternatives and
you cannot be sure whether your application is running opti-
mally on the cores.

Use existing software to accelerate development
Your existing product might be running successfully with key
application software already. It runs well in the existing single-
core operating environment and it might even function 

properly in the new multicore environment. You want to
retain its value by reusing as much as you can, as you work to
ensure that it will perform better and scale to meet the
demands in the new environment.

Development for multicore anchored by a model-driven
approach allows for significant reuse opportunities for your
existing software. From the simple visualization of the struc-
ture and relationships of the software and its component parts
to refactoring the code to optimize for deployment to a multi-
core environment, to integration and extension into a com-
pletely new design and application architecture, the right
model-driven tooling can greatly accelerate your ability to
reuse the software you have come to rely on.

Visualization of your existing application software yields
immediate gains by increasing your understanding of how the
software has been architected and how the individual compo-
nents are related. It enables you to identify the optimal and
suboptimal aspects of your design and generate documentation
of the current design to aid in the analysis of how best to use
the code in the new design, even without having to change it.
This visualized code can be targeted at the new multicore
environment and you can perform trade-off studies to deter-
mine how best to proceed with the application, either using it
as is or refactoring it.

If you decide that the existing software does not perform as
well in the new environment or is poorly architected for the
multicore environment, refactoring is a valuable option. By
importing the code as model elements, it can be refactored
and regenerated to support a much better application architec-
ture that is tailored for multicore. Modeling and automated
generation of the code make refactoring existing code a cost-
effective alternative to rewriting the application.



5IBM Software

Finally, existing software components can be used in new
designs and applications that are built for the products that
target a multicore environment. Again, visualization, refactor-
ing and automated generation capabilities in a strong model-
driven development tool greatly enhance your ability to make
these reuse decisions. New applications can be written and
delivered for products, and limit the need to design from
scratch. Further, the components being reused have a track
record of success in earlier products so their behavioral aspects
are understood and tested, limiting the new test-and-debug
effort to their performance as part of the new application.

In moving to new hardware, reuse of legacy code is always
critical because it is too time consuming to write everything
from scratch. Additionally, having code that has already 
been tested is critical for an on-time project completion.
Graphically viewing the reusable code helps you understand
how it will fit with the functionality you are adding as you
switch to a new multicore hardware platform.

Automate software generation to improve quality
Because multicore inherently provides a highly parallel envi-
ronment, communications between tasks within an application
and between applications becomes a critical factor in the suc-
cessful deployment of these applications. Tasks must commu-
nicate, in most situations with different mechanisms as they
switch from being on the same core to different cores. This
heavy reliance on efficient communications further increases
the importance of having good interfaces between the tasks
and using a modeling environment to enable automatic 
generation of the supporting mechanisms.

Fully understanding, specifying and exploring alternatives
involving the switch to target different hardware and 
communication protocols necessitates the use of models and
specifically automatic code generation. This allows for the
visualization of design and systematic replication of this design
in the generated code. When moving a task from one core to
another, the modeled change can then be regenerated and
reflected in code that is specific for the new core as needed,
even if it uses a different operating system or has to use a dif-
ferent protocol to communicate to tasks on the original core.
Typically this would require hand-coding the change, but with
a modeled application this change would occur by simple
assignment of the options with the automatic generation capa-
bilities of a model-driven development tool taking care of the
rest of conversion. In every phase of development, modeling
and code generation are critical to helping developers test and
deploy their multicore applications. This is especially true in
time-sensitive markets such as the electronics industry.

Conclusion
In its quest to bring innovative and differentiated products to
market in shorter time frames, the electronics industry 
as a whole will increasingly adopt multicore processing in
order to reap the benefits of higher performance, lower power
consumption, longer battery life, lower cost and increased
flexibility. But these benefits cannot be realized unless the 
corresponding software is architected for multicore. Several
cutting-edge methods can be used to simplify and accelerate
software development for multicore. By using model-driven
development, software design teams can perform multicore
design trade-off studies, visualize and refactor code leading to
greater reuse, and generate code automatically depending 
on the hardware configuration and communication protocols
in use.



Please Recycle

For more information
To learn more about multicore development techniques, con-
tact your IBM representative or business partner or visit:
ibm.com/software/rational/info/multicore/

Additionally, financing solutions from IBM Global Financing
can enable effective cash management, protection from tech-
nology obsolescence, improved total cost of ownership and
return on investment. Also, our Global Asset Recovery
Services help address environmental concerns with new, more
energy-efficient solutions. For more information on
IBM Global Financing, visit: ibm.com/financing

© Copyright IBM Corporation 2010

IBM Corporation
Software Group
Route 100
Somers, NY 10589 U.S.A.

Produced in the United States of America
March 2010
All Rights Reserved

IBM, the IBM logo, ibm.com, and Rational are trademarks or 
registered trademarks of International Business Machines Corporation in
the United States, other countries, or both. If these and other
IBM trademarked terms are marked on their first occurrence in this
information with a trademark symbol (® or ™), these symbols indicate
U.S. registered or common law trademarks owned by IBM at the 
time this information was published. Such trademarks may also be
registered or common law trademarks in other countries. A current list of
IBM trademarks is available on the Web at “Copyright and trademark
information” at ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service
marks of others.

References in this publication to IBM products or services do not imply
that IBM intends to make them available in all countries in which
IBM operates.

The information contained in this documentation is provided for
informational purposes only. While efforts were made to verify the
completeness and accuracy of the information contained in this
documentation, it is provided “as is” without warranty of any kind, express
or implied. In addition, this information is based on IBM’s current
product plans and strategy, which are subject to change by IBM without
notice. IBM shall not be responsible for any damages arising out of the
use of, or otherwise related to, this documentation or any other
documentation. Nothing contained in this documentation is intended to,
nor shall have the effect of, creating any warranties or representations
from IBM (or its suppliers or licensors), or altering the terms and
conditions of the applicable license agreement governing the use of
IBM software.

1 http://en.wikipedia.org/wiki/Multicore_processor

2 http://en.wikipedia.org/wiki/Moore’s_law

3 http://www.forbes.com/2009/11/23/google-microsoft-programming-
technology-cio-network-multicore-hardware.html

RAW14209-USEN-00

http://www.ibm.com/software/rational/info/multicore/
http://www.ibm.com/financing
http://www.ibm.com/legal/copytrade.shtml
http://en.wikipedia.org/wiki/Multicore_processor
http://en.wikipedia.org/wiki/Moore's_law
http://www.forbes.com/2009/11/23/google-microsoft-programming-technology-cio-network-multicore-hardware.html
http://www.forbes.com/2009/11/23/google-microsoft-programming-technology-cio-network-multicore-hardware.html

	Untitled
	IBMSoftwareRational
	Electronics
	Cutting-edge multicoredevelopment techni
	Introduction
	Promise of multicore
	Challenges with multicore
	IBMRational methods for developing formu
	Perform trade-off studies to assess alte
	Use existing software to accelerate deve
	Automate software generation to improve 
	Conclusion
	For more information


