
IBM GLOBAL SERVICES

IBM
Aug. 9 - 13, 2004

Chicago, IL

© IBM Corporation 2004

Technical Conference
xSeries

O12

Matilde L. Valdez

Red Hat Package Manager

Objectives
After completing this unit, you should be able to:

Describe the basic principles of RPM

Install RPM packages

RPM Package Manager (RPM)

Used for package management
Management of source files
Build process
Distribution of binary files

Developed by Red Hat Software Inc, but GPLed
Other Linux distributions use it too, e.g. SuSE
Requirement of LSB

.rpm files can be created by distributor or others

RPM database (/var/lib/rpm) contains database of
installed packages

Can use PGP/GPG for package signing (verification of
authenticity)

Notes:

developer

application.tar.gz application.tar.gz SPEC file

patches sample config files

application.i386.rpm application.s390.rpmapplication.sparc.rpm

rpm -bb on sparc

rpm -bb on i386 rpm -bb on s390

distributor

application.src.rpm

RPM Philosophy

Note: Red Hat 8.0 and up uses rpmbuild instead of rpm for building RPMs

Notes:

RPM Installing, Freshening and
Upgrading

Installs, freshens or upgrades an RPM
Freshen: only install if an older RPM was installed
Upgrade: always install, but uninstall older RPM first

Basic syntax:
rpm -i package-filename.rpm (install)
rpm -F package-filename.rpm (freshen)
rpm -U package-filename.rpm (upgrade)

Useful options:
-v be verbose
-h print 50 hash marks during installation

rpm -ihv package-10.2-67.i386.rpm
package: ##

Notes:

Installing an RPM can only be done if it was not already installed. If the RPM was already installed, you need to do an
upgrade or a freshen. The difference between an upgrade and a freshen is that an upgrade will always install an RPM, even
when a previous version was not installed. (It will act like a regular installation in that case.) A freshen only installs packages
that actually have been installed previously. A freshen therefore is very handy to use if you downloaded a lot of patches from
the Red Hat site, and you are not sure which patches you actually need. You can then just freshen all the packages, and
only the things you need will actually be installed.
The basic syntax for installing, freshening and upgrading is respectively:

rpm -i package-filename.rpm
rpm -F package-filename.rpm
rpm -U package-filename.rpm

Note that there is a difference between the package name and the package filename. The RPM file which contains the
package foo would generally be called foo-version-release.architecture.rpm.

There are a number of options which make life a little easier on you:
• -v gives more information on what rpm is doing (verbose).
• -h prints 50 hash marks while installing, so that you can track the progress. If you run
rpm from a script, you can use these hash marks to make your own progress bar.
• --nodeps disables dependency checking.
Files in an RPM are marked as program, documentation or configuration files. When doing an upgrade or freshen, program
and documentation files are automatically overwritten. Configuration files are another matter altogether: Depending on the
MD5 checksum of the original, actual and new configuration file, the configuration file may be left in place, may be
overwritten, may be saved with an extension .rpmsave, or may be saved with an extension .rpmorig. In fact, rpm can
distinguish between six different cases. For more information, see the Maximum RPM book.

When installing, freshening or upgrading packages, you may also specify the Web address of the package file instead of the
package file itself. This allows you to do upgrades even on systems which are very tight on disk space, but do have access
to a network (for instance the Internet). Just ensure that the RPM files can be reached, either through FTP or HTTP, and you
can do an upgrade. If you need to go through a proxy, there are options available to specify this proxy as well. Look at the
rpm manual page for details.

RPM Uninstalling
For uninstalling an RPM use the -e option

Options:
--nodeps ignore any dependency breaks

rpm -e kdelibs3
error: removing these packages would break dependencies:

 kdelibs3 >= 3.1 is needed by kdebase3-3.1.1-63
 libDCOP.so.4 is needed by kdelibs3-cups-3.1.1-13
...

Notes:

RPM Querying

Queries the contents of an installed RPM

Basic syntax:
rpm -q package-name

Options:
-a query all installed packages
-f <file> query package which owns file.
-p <package-file> query package-file
-i display package information
-l display package files
-s display state of all files
-d display documentation files
-c display configuration files

Notes:
RPM Querying is the process of retrieving information about installed packages. The basic syntax is rpm -q
package-name, but that will only display the package name. It's the options that make querying interesting:
-a queries all packages which are installed on the system.
-f <file> queries which package contains <file>.
-p <package-file> queries the (not yet installed) <package-file>.
-i displays all package information: name, version, release, install date, group, size,
summary, description, build information and so forth.
-l lists all files in the package.
-s displays the state of each file in the package. The state is either normal, not installed
or replaced.
-d displays all files that are listed as documentation.
-c displays all files that are listed as configuration files.

With these options you can do a number of great things. Below are some examples:
• Do you want to know which package the dig program is in? Try rpm -qf `which dig` or rpm -qif `which dig`
• Need to know what documentation is available for a specific command, and man -k commandname does not work? Try
rpm -qdf `which nslookup`
• Need a lot of data to test a network connection? Try rpm -qila
• Need to know which not yet installed RPM package file contains the program "pico"?
Sorry, you are out of luck here. RPM only queries one rpm package at a time, so you need to do something like this:
for package in *.rpm
do
rpm -q -l -p $package | grep -q pico
if [$? = 0]
then
echo $package
fi
done

rpmdb Database (Red Hat only)
rpmdb-version.rpm: Database of all capabilities that all
RPMs provide

Allows you to use the --redhatprovides option

Note: SuSE solves dependency conflicts through YaST

rpm -iv rpmdb-redhat-7.0-0.20000830.i386.rpm
rpmdb-redhat

rpm -iv xboard-4.0.7-3.i386.rpm
error: failed dependencies:
chessprogram is needed by xboard-4.0.7-3

rpm -q --redhatprovides chessprogram
gnuchess-4.0.pl80-6
rpm -iv gnuchess-4.0.pl80-6.i386.rpm
gnuchess
rpm -iv xboard-4.0.7-3.i386.rpm
xboard

Notes:

The dependency information that is used by the RPM system is not based on actual package names, but rather on
capabilities. This is done because multiple packages might actually offer the same capability. Suppose for instance that a
certain package requires the availability of a mail reader. Then it doesn't matter whether pine, elm, mail or mailx is
installed, as long as at least one of these is present. This works fine, but obviously makes it a little difficult to determine
which packet to install if a certain capability is missing.

Red Hat has solved this with the rpmdb database. What basically happens is that, when the distribution is created, all
rpm files are queried for the capabilities they provide. This is stored in the rpmdb database, which is an rpm file itself and
can be installed like any other rpm. When installed, this database can be queried using the --redhatprovides option.
Starting with 8.0, Red Hat automatically suggests packages if a capability is missing, but the rpmdb database is installed
and the capability is listed there. Unfortunately, there is no way of automatically installing all required packages.
SuSE does not solve this within the rpm program, but instead has integrated automatic dependency checking in yast.
yast also installs all the missing RPMs automatically.

RPM Verifying
Verifies the actual files with the original RPM

size S
MD5 checksum 5
permissions,type M
owner U
group G
modification time T
symbolic link L
device D

rpm -V kdelibs3
.M...... /opt/kde3/kpac_dhcp_helper
.......T /opt/kde3/share/mimelnk/application/x-applix.desktop

a dot (.) means: test passed

Notes:

The verify option verifies all files that are supposed to be present in the RPM against the files that are available on disk.
This is a very easy way to check for any unauthorized configuration changes.

The following checks are performed on each file in an RPM:
5 MD5 checksum. This is a very hard to fool checksum which checks whether the contents of a file have changed.
S File size. This checks whether the size of the file has changed.
L Symbolic link. This verifies whether a certain symlink has changed.
t File modification time. This checks whether the file modification timestamp (mtime) has changed.
d Device. This verifies whether the major and minor numbers of a device are still intact.
U User. Is the owner of the file still the same?
G Group. Is the group of the file still the same?
M Mode. Are permissions, SUID, SGID bits and the file type still the same?

If a file checks out ok, there will be no output. If there is a discrepancy however, the name of the involved file will be
listed, prepended by the discrepancy information. The output line will then look like this:
rpm -V sendmail
SM5....T c /etc/sendmail.cf

This means that a discrepancy was found in the file /etc/sendmail.cf. This is to be expected, since this file is a
configuration file (hence the "c" in the line. The discrepancy information in this case is SM5....T, in which each letter
denotes a certain discrepancy from the list above. In this case the following discrepancies were found: size, mode, MD5
checksum, modification time.

RPM Signatures
RPM's can be signed by the distributor

To verify signature:
Obtain public key of distributor

CD-ROM
Internet

Add public key to keyring using gpg --import (RPM v3)
or rpm --import (RPM v4)
Verify package with rpm --checksig

Note: You can list the installed keys with "gpg --list-keys"
(RPM v3) or "rpm -qa gpg-pubkey*" (RPM v4)

redhat# rpm --import /mnt/cdrom/RPM-GPG-KEY
suse# gpg --import /mnt/cdrom/pubring.gpg

rpm --checksig passwd-0.64.1-1.i386.rpm
passwd-0.64.1-1.i386 md5 gpg OK

Notes:

The RPM Package format also features the ability to include a digital signature of a package, and most distribution builders
actually make use of this feature as an effective measure against trojan horses introduced in an RPM after release by the
distribution builder.

Verifying this signature is a two-step process. The first step is to obtain the public key of the distribution builder. This key is
stored in a text file which can usually be found on the original CD-ROMs or on the distribution website. This public key
needs to be added to your "keyring", your database of public and secret keys in your home directory. This is done with
the following command: rpm --import /mnt/cdrom/RPM-GPG-KEY. Note that some distributions (for instance, SuSE),
perform this step automatically while installing.

The second step is to verify each individual package. This is done with the command rpm --checksig packagename. If the
output is "gpg OK", then you can be sure that it was indeed the distribution builder that built this individual package, and
that no one has tampered with it since.

Integrated Package Management

redhat-config-packages yast (install and remove software)

Notes:

Keeping Up To Date (Red Hat)
"Red Hat Network" (RHN)

Free and commercial subscriptions available
Create and manage account and systems on
http://rhn.redhat.com
Register individual systems with up2date --register
Use up2date to bring system up to date, or use web
interface at http://rhn.redhat.com (requires rhnsd
daemon running on system)

Notes:

Keeping Up To Date (SuSE)
you (Yast Online Update): Program that
downloads/installs patches from any SuSE mirror

Notes:

Debian Package Management
Debian uses its own package format and management
tools

Red Hat Debian
Filenames hello-1.0-1.src.rpm

hello-1.0-1.i386.rpm
hello_1.0-1.tar.gz
hello_1.0-1.deb

Install
Upgrade
Deinstall
Query

rpm -i
rpm -U, rpm -F
rpm -e
rpm -q

dpkg -i
dpkg -i
dpkg -r
dpkg -p

Front-ends redhat-config-packages
yast, up2date, you

apt-get
dselect

Package descriptor file hello.spec hello/debian/control
hello/debian/rules

Build a package {rpm|rpmbuild} -b dpkg -b,
dpkg-buildpackage

To convert between DEB and RPM packages use Alien

Notes:

The Red Hat Package Manager

Section O12

Lab

Exercise Instructions With Hints

Retrieving information about installed packages

__ 1. Make a list of all packages that are installed on the system.
» # rpm -q -a

__ 2. Find out which package installed the /etc/inittab file.
» # rpm -q -f /etc/inittab

__ 3. List the information of that package.
» # rpm -q -i -f /etc/inittab

__ 4. List all files in that package.
» # rpm -q -l -f /etc/inittab

__ 5. Verify whether all files in that package are still the same. Which file has changed
and in what respect? Why?
» # rpm -V -f /etc/inittab

Installing packages

__ 6. Create a directory /mnt/install. Mount the installation directory from the installation
server on /mnt/install. List all the package files that are available on the install
server.
» # mkdir /mnt/install
» # mount server: directory /mnt/install
» # cd /mnt/install
» # find . -name "*.rpm" -print

__ 7. Add the public key from the distribution to your keyring.
» redhat# rpm --import RPM-GPG-KEY
suse# gpg --import pubring.gpg

__ 8. Verify that the package xsnow is not installed. Verify the package on the CD, and
install it. Then verify that it installed, and list the files in the package.
Note: Distributions change, and xsnow might not be included on your CD. In that
case, use another entertaining X application, such as xearth, xjewel, xhangman
or xbill.
» # xsnow
» # rpm -q xsnow
» # rpm -K xsnow- version.rpm
» # rpm -ivh xsnow- version.rpm
» # rpm -qil xsnow
» # xsnow

The Red hat Package Manager

2

__ 9. Deinstall the xsnow package
» # rpm -e xsnow

Using a package management frontend

__ 10. If necessary, start X. Then, start the preferred RPM frontend tool for your
distribution. Use this to install xsnow again.
Note: Red Hat does not include GnoRPM or kpackage, and its own frontend tool
(redhat-config-packages) can only install packages from package groups that are
predefined in RedHat/base/comps.xml on CD1. xsnow is not in any of these
groups,so there is no frontend tool on Red Hat that allows you to install xsnow.
On Red Hat, use redhat-config-packages to install a package that is in one of the
predefined groups.
» redhat# redhat-config-packages -t /mnt/install
suse# yast2

The Red hat Package Manager

3

	Return to Index:

