
Configuring the WebSphere Plug-in
with WebSphere V5 for z/OS

IBM Americas Advanced Technical Support -- Washington Systems Center
Gaithersburg, MD, USA

Donald C. Bagwell
Certified Consulting I/T Consultant
IBM Washington Systems Center

dbagwell@us.ibm.com
301-240-3016

(This page intentionally left blank)

HTTP Requests

Browser

Traffic
Distribution

DeviceBrowser

www.mycompany.com

port 80

Balancing
Algorithm

HTTP

MVS System or LPAR

DM

CR SRA

 Node Agent

CR

Daemon

CR

MVS System
or LPAR

 Node Agent

CR

Daemon

CR

Server_B

CR SR

Server_A

CR SR

Separate servers in a cluster represent separate
HTTP listening agents ... something out front
must be in place to balance the traffic between
members.

HTTP

WebSphere Application Server V5 for z/OS does
not itself balance the HTTP requests.

But it will balance IIOP requests across members of a cluster

Lots of different solutions to balance traffic.

Topic here: "WebSphere HTTP Plugin for z/OS"

WebSphere
Cluster

In WebSphere Application Server Version 5 for z/OS, each application server acts as its own HTTP
listening agent. The configuration of each server includes the designation of the HTTP (and HTTPS)
ports that particular server will listen on. This is true even for servers that are part of a "cluster,"
WebSphere's mechanism for grouping two or more cloned servers together to form a logical "one."

It's important to understand that WebSphere Application Server itself will not intercede and balance the
incoming HTTP request across cluster members. Some other device is needed to do that. Many
different such devices exist: Sysplex Distributor, WebSphere Edge Server, various router vendors.
For the purposes of this presentation we'll focus on something known as the "WebSphere HTTP Plugin
for z/OS."

WebSphere Application Server will act to intercede and balance IIOP flows. That's a topic unrelated to
this presentation.

Note:

Let's take a look at a high-level view of the "WebSphere HTTP Plugin for z/OS."

Session Z5036

Version Date: September 22, 20041IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Agenda

Answer some up-front questions about the
"WebSphere HTTP Plugin for z/OS"

Briefly discuss what "Session Affinity" is

Show how the "HTTP Plugin" is configured in the
HTTP Server

Take a look at the contents of the plugin-cfg.xml
file

Show how WebSphere Application Server for z/OS
Version 5 can automatically generate the
plugin-cfg.xml file

Review some troubleshooting and problem
determination tips

Finish up with a quick illustration of a blended
configuration: "HTTP Plugin" + Sysplex Distributor

What
we'll
cover

This is the agenda we'll cover in this presentation. It's quite a bit of information, so settle in and let's
go.

Session Z5036

Version Date: September 22, 20042IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

WebSphere HTTP Plugin for z/OS

MVS System or LPAR

DM

CR SRA

 Node Agent

CR

Daemon

CR

 Node Agent

CR

Daemon

CR

Server_B

CR SR

Server_A

CR SR

HTTP Server

HTTP Plugin

plugin-cfg.xml

Browser

Browser

HTTP

Code provided with WebSphere for z/OS Version 5
that runs inside the HTTP Server:

z/OS HTTP Server

Distributed platform HTTP Servers

The plugin-cfg.xml file contains XML that tells
the plugin about the backend servers, and how to
route requests to maintain "session affinity"

MVS System
or LPAR

The HTTP Server "plugin"
concept the same as
used for WAS 3.5 and

V4's plugin

Focus of this presentation

WebSphere
Cluster

The "WebSphere HTTP Plugin for z/OS" -- known hereafter as merely the "Plugin," unless otherwise
noted -- is code provided with WebSphere Application Server Version 5 for z/OS. That code runs
inside the HTTP Server as a "plugin" (hence the name) to the HTTP Server. Code is supplied to run in
many different HTTP Servers, including distributed platform HTTP Servers such as Apache. For the
sake of this presentation, the focus will be on the HTTP Server that is included with the z/OS operating
system.

What's interesting is that the concept of this new Plugin is very similar to the concept of the earlier
"WebSphere Application Server for z/OS Version 3.5" product. That too was a "plugin" -- it made use
of the API function of the HTTP Server to run inside the web server. The "plugin" that came with
WebSphere Application Server for z/OS Version 4 also made use of the HTTP Server's "plugin" API,
just as this new Plugin does.

The similarity is limited to the concept of them all being plugins to the HTTP Server. Beyond that,
their functions diverge quite a bit. We'll cover that next.

Caution:

The configuration file for the new Plugin is called the plugin-cfg.xml file. We'll spend a lot of time
in this presentation covering the contents of that file.

Session Z5036

Version Date: September 22, 20043IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

What the new HTTP Plugin is NOT

It is not a servlet execution environment

It is not a replacement of the "Local Redirector Plugin" used with WAS V4

HTTP Server

WebSphere HTTP
Plugin

Servlet

In this sense it is different from:

WebSphere Application Server for OS/390
and z/OS Version 3.5

"Local Redirector Plugin" that came with
WebSphere Application Server for OS/390
and z/OS Version 4

HTTP Server

Version 4
"Local

Redirector
Plugin"

WebSphere
Application

Server
Version 4
Runtime

IIOP

WebSphere
HTTP
Plugin

WebSphere HTTP Plugin
flows HTTP, not IIOP.

We offered a caution on the previous page that the similarity between this new "HTTP Plugin" and the
older WAS V3.5 plugin or the WAS V4 plugin ended at the fact that all were plugins to the HTTP
Server. Let's now cover what the "WebSphere HTTP Plugin for z/OS" is not:

It is not an environment in which a servlet can be run. We say that to draw a distinction between it
and the WAS V3.5 and WAS V4 plugins. The original WebSphere for z/OS Version 3.5 product
was intended to be a servlet environment. The WAS V4 plugin used the V3.5 code base so the
servlet environment was still present there as well. But the "WebSphere HTTP Plugin for z/OS"
has no ability at all to run servlets inside the plugin itself.

It is, however, perfectly capable of passing through a request to run a servlet, where the servlet
executes in the WebSphere Application Server for z/OS Version 5 runtime environment.

Note:

The new "WebSphere HTTP Plugin for z/OS" is not a replacement for the Websphere for z/OS
Version 4's "Local Redirector Plugin." The "Local Redirector Plugin" had a very special purpose: it
was provided to act as a front-end HTTP listening device at a time when the WAS V4 runtime
environment had no HTTP listeners. The "Local Redirector Plugin" received HTTP as input and
flowed the request in the form of IIOP to the WAS V4 runtime.

The new "WebSphere HTTP Plugin for z/OS" has no ability to flow IIOP out the back. Therefore, it
can not be used as a replacement for the V4 "Local Redirector Plugin" where the backend runtime
environment is still the V4 product. No IIOP will flow from this new plugin.

It can front-end Version 4 to provide session affinity. That implies HTTP flowing from the Plugin to
the "Transport Handlers" of the Version 4 application servers.

Note:

Session Z5036

Version Date: September 22, 20044IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

What the WebSphere HTTP Plugin IS

MVS System or LPAR

DM

CR SRA

 Node Agent

CR

Daemon

CR

 Node Agent

CR

Daemon

CR

Server_B

CR SR

Server_A

CR SR

HTTP Server

WebSphere
HTTP Plugin

plugin-cfg.xml

Browser

Browser

HTTP

A device that takes HTTP inbound and re-routes
the HTTP to a backend server.

Routing based on:
Contents of URL

Plugin may react to "context root" of received URL

"Virtual Host"
Plugin may react to the host name and port found on URL

Affinity Requirement
Whether a JSESSIONID cookie is found in HTTP header

Backend server availability
Plugin maintains knowledge of what backend servers are up

"Weight" of each server in a WAS cluster
If "round-robin" distribution, then distribute based on defined
"weight" of the servers in the cluster

WebSphere
Cluster

MVS System
or LPAR

HTTP

We've just finished explaining what the new "WebSphere HTTP Plugin for z/OS" is not. Let's now look
at what it is.

At its most basic, the new Plugin is a redirector of HTTP based on information found in the
plugin-cfg.xml file. The objective is to match an inbound HTTP request to a defined backend
"Server Cluster," and then route the request to one of the members of that cluster.

The routing is based on a number of factors, as shown in the chart above:
Based on a pattern match against the contents of the URL. Often, this is based on the "context
root" of the URL.
Based on a match against the host value found on the URL. This is known as matching the
"virtual host."
A combination of the URL and virtual host
Once a Server Cluster has been selected, the Plugin will route to a particular server member
based on the contents of the HTTP header; specifically a special "affinity cookie" known as
JSESSIONID.
The Plugin is able to determine if a backend server is up or not, and if not, then avoid routing
the request to that server.
In the event no session affinity is necessary, the Plugin will "round-robin" the requests to the
servers in the cluster, and "weights" are used to balance the flows in proportion to the weights.

There's a lot that needs to be explained. Let's start with what "Session Affinity" is.

Session Z5036

Version Date: September 22, 20045IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

What is "Session Affinity?"

Servant Region

JVM

Appl.

Servant
Region

Server_A

Servant Region

JVM

Appl.

Servant
Region

Server_B

Session
Affinity
Plugin

Balancing
Algorithm

"Fred"

"Session Object"
created with
information

about "Fred"

1

2

3

4

???5

Which server should
second request go to?

"Session Affinity" is the routing of requests back to the server in which a client's
"session object" has been created:

Answer: Server_A ... that's where the
session object is located

Question: How does Plugin know which
server to route second request to?

Answer: based on information put in
HTTP header ... the "Unique ID"

Each server in WebSphere
is given a "Unique ID" ...

To start the discussion of "Session Affinity," it's important to describe was a "Session Object" is.
Application developers who design web applications have the opportunity to capture information about
a user and hold it in a Java object known as a "Session Object." The information they hold in there is
up to the developer ... it can be as simple as the name of the user, or it may have all sorts of different
information. Session objects by default are held in the JVM's memory.

The key to "Session Affinity" is understanding that once a "Session Object" is created, it's important to
make certain that all subsequent requests returned by that user flow back to the server in which the
session object resides. This is particularly critical when an application that uses session objects
resides in "cluster" where two or more servers are running the application at the same time.

Please see the following white paper for a more in-depth overview of "session objects" and "session
affinity":
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100316

That paper was written for WebSphere V4.01, but the concepts illustrated in the first section are the
same. The methods of configuring session management in Version 5 are different now.

Also, there are ways to "persist" session objects -- store them in DB2, for example -- and thus not make
it so critical to maintain session affinity. However, affinity is generally preferred for performance
reasons. It's always better to fetch something from memory rather than a data store.

Note:

In the picture above, the initial session object for "Fred" was created in "Server_A." That means that
when Fred returns the second request, the flow should go back to "Server_A." How does the Plugin
know to send it back to "Server_A?" By interogating the HTTP header for something known as a
"Unique ID," placed in the header by WebSphere. Each server WebSphere has its own Unique ID.

Session Z5036

Version Date: September 22, 20046IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Cluster Members and "Unique ID"

WebSphere will put "Unique ID" into HTTP header after a session object is created:

File plugin-cfg.xml has information about where to route based on CloneID...

"Fred"
HTTP
Plugin

HTTP Header

DataUnique ID

"Unique ID" = "CloneID"
Two different terms for the same thing

plugin-cfg.xml

Unique ID's assigned to each

Server: azsr01a Server: azsr01b

WebSphere assigns each server a "Unique ID", which can be seen in Admin Console:

azsr01a

CR SR

azsr01b

CR SR

Fred's session
object found in
server azsr01b

All servers in WebSphere Application Server Version 5 for z/OS are given a "Unique ID." The Unique
ID for any given server can be viewed by navigating to the "General Properties" for that server in the
Admin Console. The Unique ID isn't only for clustered servers; it applies to all servers. But it's use
becomes particularly important when dealing with the Plugin and session affinity within a cluster.

Whenever an application creates a session object, the Websphere "session manager" will place in the
HTTP header the Unique ID of the server in which the object resides. The user's browser will return
that Unique ID in requests that flow back to the site.

It turns out that the phrase "Unique ID" is the same thing as "CloneID." Understanding this is important
to understanding how the Unique ID placed in the HTTP header is correlated to a particular cluster
member when the Plugin routes requests back to where the session object is created.

The file plugin-cfg.xml -- the configuration file for the Plugin -- is where the Unique ID (the CloneID) is
specified and where it's correlated to a particular server. We'll take a very high-level look at this next.

Session Z5036

Version Date: September 22, 20047IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

XML File Knows About "Unique IDs"

 :
 :
 <ServerCluster Name="azsr01Cluster">

 <Server CloneID="B9F91E06DC4511C100000C0C0000000109521845"
 LoadBalanceWeight="2" Name="aznodea_azsr01a">
 <Transport Hostname="wsc1.washington.ibm.com" Port="9548" Protocol="http"/>
 </Server>

 <Server CloneID="B9F95C1EDD90F28500000BF40000000409521845"
 LoadBalanceWeight="2" Name="aznodeb_azsr01b">
 <Transport Hostname="wsc2.washington.ibm.com" Port="9548" Protocol="http"/>
 </Server>

 <PrimaryServers>
 <Server Name="aznodea_azsr01a"/>
 <Server Name="aznodeb_azsr01b"/>
 </PrimaryServers>
 </ServerCluster>
 :
 :

Server #1
in Cluster

Server #2
in Cluster

If Unique ID = B9F91E ...

Then send request to
wsc1.washington.ibm.com:9548

Else if Unique ID = ...

Much yet to be explained:
Multiple server clusters
How URL is routed to one or the other
Other contents of this XML

First, let's look at how
the Plugin is configured
into the HTTP Server

Here's a peek at the contents of the XML file used by the Plugin. What we're showing here is one
section of the XML file, the <ServerCluster> section for one cluster. The <ServerCluster> section
is used to provide information about all the servers in a cluster, and define such necessary routing
information as the Unique ID of the server, and the host name and port to where the requests are to be
sent.

There's a very important first step to this process that's not shown on this chart. Before a request can
be handled within a <ServerCluster> section, it needs first to be routed to it. That's done with
something called the <Route> statement. We'll cover that in a bit.

Note:

Assume that a request is mapped to the <ServerCluster> shown in this chart. The Plugin then
goes through some logic that looks like this:

It sees if the HTTP header has the "Unique ID" (or CloneID) in the HTTP header. If not, then the
Plugin will round-robin between the servers in the cluster, based on the LoadBalanceWeight
values defined.

However, if a "Unique ID" is present in the HTTP header, that means session affinity routing is
necessary. The Plugin then matches the Unique ID found in the header against the CloneID=
values found in the XML. If a match is found, the request is then mapped to the <Transport>
defined.

All that said, there's still quit a bit left to explain. To start the process, we'll first go to a discussion of
how the Plugin is configured into the HTTP Server.

Session Z5036

Version Date: September 22, 20048IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

How the HTTP Plugin is Configured
Very similar to how WebSphere for z/OS V3.5 was configured, and similar to how
the V4 "Local Redirector Plugin" was configured:

z/OS HTTP
Server

HTTP
Plugin

httpd.conf

ServerInit /<path>/ihs390WAS50Plugin_http.so:init_exit /<path>/plugin-cfg.xml

Service /<URL>/* /<path>/ihs390WAS50Plugin_http.so:service_exit

ServerTerm /<path>/ihs390WAS50Plugin_http.so:term_exit

/<mount point>
HFS

/DeploymentManager

/config
/cells

/<cell name>

plugin-cfg.xml

/bin
ihs390WAS50Plugin_http.so

Of course, the location of
the plugin-cfg.xml file

doesn't have to be the
default location.

The "WebSphere HTTP Plugin for z/OS" configures into the HTTP Server in the same manner in which
the older WAS V3.5 and WAS V4 plugins did. Three statements are needed in the HTTP Server's
httpd.conf file:

ServerInit -- This statement is used to tell the HTTP Server about the Plugin's executable module,
and the configuration XML file to be used by the plugin. You will have one instance of this
statement. The Plugin code itself is:
ihs390WAS50Plugin_http.so

and is located in the /DeploymentManager/bin directory under the "Config root" of your cell,
indicated with <path> in the chart.

The "exit" that is specified on the module is critical. For the ServerInit statement the value must
be :init_exit.

Finally, the XML file to be used is specified as a parameter immediately following the :init_exit,
separated by a blank space. The default location is:
/<config root>/DeploymentManager/config/cells/plugin-cfg.xml

but may in fact be any location or file name you wish.

One advantage to having the pointer be to the default location and file name is that WebSphere has
a facility to generate the XML file for you. It'll place the generated XML file at the default location.
The downside, of course, is that if you've made hand-changes to the file, the automatic generation
process will overlay the file. So if you're planning on making hand-changes, it's better to copy the
generated file to a different location and point to your separate, customized copy.

Note:

Session Z5036

Version Date: September 22, 20049IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Service -- This statement is used to "catch" received URLs and pass them into the Plugin for
processing. You will have as many Service statements as you have different URLs you wish the
Plugin to handle.

The format of the statement has four parts:

The keyword Service

A URL mask used to "catch" a URL and apply it to the Plugin. For example, a value of
/MyIVT/* would "catch" all URLs that have /MyIVT/ as the first part of the URL after the host
value. If you have another URL -- say, /YourIVT/ -- that you wanted to also process in the
Plugin, you would simply code a second Service statement for that URL. You may code as
many Service statements as you need.

The full directory and file name of the ihs390WAS50Plugin_http.so module (which should
be identical to the directory and file name specified on the ServerInit statement, but be
careful of the "exit" value, explained next)

The "exit" value of service_exit. It is critical that this value be used, and not the exit values
for the ServerInit or ServerTerm statements.

ServerTerm -- This statement is used to gracefully stop the Plugin when the HTTP Server itself is
stopped. There will be only one ServerTerm statement. The format is fairly simple:

The keyword ServerTerm

The full directory and file name of the ihs390WAS50Plugin_http.so module (which should
be identical to the directory and file name specified on the ServerInit statement and the
Service statements, but be careful of the "exit" value, explained next)

The "exit" value of term_exit. It is critical that this value be used, and not the exit values for
the ServerInit or Service statements.

The next step is to "program control" the module.

Session Z5036

Version Date: September 22, 200410IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Program Control ".so" File

Just like with WAS V3.5, the HTTP Plugin code has to be program controlled to
load into HTTP Server and operate properly:

/<mount point>
HFS

/DeploymentManager

/config
/cells

/<cell name>

plugin-cfg.xml

/bin
ihs390WAS50Plugin_http.so

extattr +p ihs390WASPlugin_http.so

OMVS
Shell

Caution: each cell's Deployment
Manager will have its own copy
of this file. Make sure you're
program controlling the one the
HTTP Server is loading

Starting the HTTP Server with this new Plugin is just like in the past ...

When you create your Deployment Manager, the ihs390WAS50Plugin_http.so file will be copied
into the directory structure of the DMGR, under the "Config Root." That's not a symbolic link to the
actual file located somewhere else; that's an actual copy of the file. Two points on that:

1. The file needs to be program controlled before it can be used. The command to program control
the file is shown in the chart.

2. If you have multiple Deployment Managers configured, each will have a copy of this file. Make sure
the extattr +p command you enter applies to the copy of the module you intend to use.

Session Z5036

Version Date: September 22, 200411IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Starting the HTTP Server with Plugin

JESMSGLG JES2 2 BBOWEB S
JESJCL JES2 3 BBOWEB S
JESYSMSG JES2 4 BBOWEB S
SYSPRINT BBOWEB 101 BBOWEB O
SYSOUT BBOWEB 105 BBOWEB O

Licensed Material - Property of IBM
5655-I35 (C) Copyright IBM Corp. 2000, 2003

All Rights Reserved.

U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or
Disclosure restricted by GSA-ADP schedule contract with IBM Corp.
IBM is a registered trademark of the IBM Corp.

WebSphere HTTP Plug-in for z/OS and OS/390 Version 5.0 Service Level 0.0 is starting

WebSphere HTTP Plug-in for z/OS and OS/390
 initializing with configuration file : /<path>/plugin-cfg.xml

WebSphere HTTP Plug-in for z/OS and OS/390 initialization went OK :-)

MVS S <PROC>

Quite a few things can go wrong ... we'll cover those later. Next let's look at
the plugin-cfg.xml file, which is the configuration file used by the Plugin

In almost every way the starting of the HTTP Server and the Plugin is just as it has always been. The
indication of successful initialization of the Plugin is found in the SYSOUT of the started task, and the
now familiar "smiley face" is what tells the positive story.

If we stopped there, we'd fall far short of the total story. There's a whole bunch of things that can go
wrong and prevent the smiley face from appearing. What we'll cover next is contents of the XML file
itself and how that works, then we'll go through a fairly extensive troubleshooting and debugging
section.

Session Z5036

Version Date: September 22, 200412IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Basic Layout of Configuration XML File
<Config>

 <Log LogLevel="Trace" Name="/etc/bboweb/http_plugin.log"/>

 <VirtualHostGroup Name="[VH_group_name]">
 <VirtualHost Name="[host]:[port]"/>
 </VirtualHostGroup>

 <ServerCluster Name="[name]">
 <Server CloneID="[Unique ID]"
 LoadBalanceWeight="2" Name="[node]_[server]">
 <Transport Hostname="[host]" Port="[port]" Protocol="http"/>
 </Server>
 <Server CloneID="[Unique ID]"
 LoadBalanceWeight="2" Name="[node]_[server]">
 <Transport Hostname="[host]" Port="[port]" Protocol="http"/>
 </Server>
 <PrimaryServers>
 <Server Name="[node]_[server]"/>
 <Server Name="[node]_[server]"/>
 </PrimaryServers>
 </ServerCluster>

 <UriGroup Name="[URI_group_name]">
 <Uri AffinityCookie="JSESSIONID"
 AffinityURLIdentifier="jsessionid" Name="/[context root]/*"/>
 </UriGroup>

 <Route ServerCluster="<ServerCluster name>"
 UriGroup="[VH group name]"
 VirtualHostGroup="VH group name"/>

</Config>

Virtual Host Group (optional)

Location of logging file for plugin

Information on a
cluster and the server

members in that
cluster

One block of XML for
each server cluster. A

single server is
considered a cluster.

URIs expected
(optional)

Where to route
URL ... this is the
key to XML file Let's see how

this works ...

The XML file initially looks intimidating, but in reality is fairly simple once you get used to it. We'll
quickly review the basics here, then go into greater detail in the following pages. There are five basic
sections of the file:

1. The <Log> section -- This simply points to the log file that will be used, and the level of logging that
will be done. We'll cover this later.

2. The <VirtualHostGroup> section -- This is listed as "optional." In truth, it's optional only if
there's a <UriGroup> section. If no <UriGroup>, then <VirtuaHostGroup> becomes
necessary. One or the other must exist. The <VirtualHostGroup> section is used to define
host values that are used to compare against received URLs to see how the request received is to
be handled. Multiple <VirtualHostGroup> sections are permitted.

3. The <UriGroup> section -- Also listed as "optional" (provided there's a <VirtualHostGroup>
section), this is used to define a pattern mask that is used to compare against URIs to see how the
request received is to be handled. Multiple <UriGroup> sections are permitted.

4. The <Route> section -- This is the heart of the XML file. The <Route> section is used to connect
a <UriGroup> match (or <VirtualHostGroup> match, or both) to a Server Cluster. Ultimately,
that's the goal: take an inbound request and route it to a server cluster member. The <Route>
section is what helps do this. Multiple <Route> sections are permitted.

5. The <ServerCluster> section -- This section is used to define a server cluster and the server
members that make up the cluster. This is where the "Unique ID" of the cluster members are
provided, and this is where the host name and port numbers of the individual cluster members are
provided. Multiple <ServerCluster> sections are permitted.

Session Z5036

Version Date: September 22, 200413IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Multiple ServerClusters in XML

Next let's see how the Plugin knows to route a URL
to one ServerCluster versus another ...

<ServerCluster Name="azsr01">
 <Server CloneID="B9F0..."
 <Transport
 Hostname="wsc1.washington.ibm.com"
 Port="8500"/>
 </Server>
 <Server CloneID="A7FC..."
 <Transport
 Hostname="wsc2.washington.ibm.com"
 Port="8501"/>
 </Server>
</ServerCluster>

<ServerCluster Name="azsr02">
 <Server CloneID="C3FF..."
 <Transport
 Hostname="wsc1.washington.ibm.com"
 Port="9900"/>
 </Server>
</ServerCluster>

azsr01a

CR SR

azsr02a

CR SR

wsc1.washington.ibm.com

azsr01b

CR SR

wsc2.washington.ibm.com

Server Cluster
azsr01

Server Cluster
azsr02

8500

8501

9900

X

X

Y

plugin-cfg.xml
This is not exactly how XML

looks ... simplied here to
save space on page

Note

This illustrates how a single
server is still considered
part of a "ServerCluster"

Applications:
azsr01 cluster: "X" Context root: /X

azsr02 cluster: "Y" Context root: /Y

Let's first focus on the <ServerCluster> sections. As stated before, these are used to define a
WebSphere cluster and the cluster members that make up the cluster. The best way to explain this is
with an example. The picture on the right side of the chart illustrates a complex with two MVS images
and two Server Clusters. Cluster azsr01 has two members and spans the wsc1 and wsc2 MVS
images, while cluster azsr02 has only one member and reside on only the wsc1 system. The ports
each cluster member listens on is shown in the chart.

The examples shown hereafter are loosely based on the WP100367 white paper configuration found at
www.ibm.com/support/techdocs. Some things have been removed from the example so the
pictures are cleaner, but overall it's very close to the configuration illustrated in WP100367.

Note:

The XML file will have two <ServerCluster> sections, one for each cluster found in the actual
runtime environment.

A single server is considered to be a member of a cluster. The white paper WP100367 reinforces this
and shows why it's important to keep this consideration in mind, particularly as it relates to naming
conventions.

Note:

Notice how each <ServerCluster> section has one or more <Server> sections. The <Server>
sections define the individual serves in the cluster. Notice further how each <Server> section
provides the CloneID value, the Hostname= and Port= for the server. It is that information that
provides what's necessary to take a URL and route it to the actual application server that will service
the request. Now imagine that server cluster azsr01 has application /X and azsr02 has application
/Y. What would map an inbound URL to one cluster or another? That's covered next.

Session Z5036

Version Date: September 22, 200414IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

URIGroups and the <Route> Block
<ServerCluster Name="azsr01">
 <Server CloneID="B9F0..."
 <Transport
 Hostname="wsc1.washington.ibm.com"
 Port="8500"/>
 </Server>
 <Server CloneID="A7FC..."
 <Transport
 Hostname="wsc2.washington.ibm.com"
 Port="8501"/>
 </Server>
</ServerCluster>

<ServerCluster Name="azsr02">
 <Server CloneID="C3FF..."
 <Transport
 Hostname="wsc1.washington.ibm.com"
 Port="9900"/>
 </Server>
</ServerCluster>

<UriGroup Name="ApplX">
 <Uri Name="/X/*"/>
</UriGroup>
<UriGroup Name="ApplY">
 <Uri Name="/Y/*"/>
</UriGroup>

<Route ServerCluster="azsr01"
 UriGroup="ApplX"/>
<Route ServerCluster="azsr02"
 UriGroup="ApplY"/>

azsr01a

CR SR

azsr02a

CR SR

wsc1.washington.ibm.com

azsr01b

CR SR

wsc2.washington.ibm.com

Server Cluster
azsr01

Server Cluster
azsr02

8500

8501

9900

X

X

Y

http://www.plugin.com/X/index.html

Assume this host is
where HTTP Server

with Plugin is running Context
Root

1

2

3

???
Which Server?

Next: routing between servers in a Cluster ...

Let's take an example of a mapping a URL to a cluster using a match on the URI contents. Let's use
as an example a URI of /X/index.html. The plugin-cfg.xml file is the one shown in the chart
(some of the XML is not shown; this was done to save space on the chart).

1. The URL is matched against the contents of the XML, specifically the <UriGroup> information. In
this configuration file there are two <UriGroup> sections. One has a Uri Name= value of /X/*
and the other has a Uri Name= value of /Y/*. The two <UriGroup> sections are differentiated
with a Name= value of "ApplX" and "ApplY" respectively.

There could be a hundred different <UriGroup> sections; there's no limit on how many. Also, any
given <UriGroup> section might have multiple Uri Name= values specified (we cover that later).
Finally, in this example we're showing what happens when only <UriGroup> (and not
<VirtualHostGroup>) is present. We'll show later what happens when both are present.

Note:

The URL itself has a value of /X/index.html, so it matches against the Uri Name="/X/*"
found in the "ApplX" section. With that in hand, the Plugin now goes in search of a <Route>
block that references the "ApplX" Uri Group.

2. It finds the <Route> section with UriGroup="ApplX". This <Route> section has a value of
ServerCluster="azsr01" specified on it. This is the pointer to the <ServerCluster> block
of XML that is to be used for this request. The next step is to find the <ServerCluster> block of
XML.

Session Z5036

Version Date: September 22, 200415IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

3. Sure enough, there's a <ServerCluster> block with Name="azsr01". The incoming request
has been successfully associated with a cluster. But that cluster has two different servers in it. So
how does the Plugin know which server to send the request to? That's next.

Session Z5036

Version Date: September 22, 200416IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Affinity or Round-Robin Routing

<ServerCluster Name="azsr01">
 <Server CloneID="B9F0..."
 <Transport
 LoadBalanceWeight="2"
 Hostname="wsc1.washington.ibm.com"
 Port="8500"/>
 </Server>
 <Server CloneID="A7FC..."
 <Transport
 LoadBalanceWeight="2"
 Hostname="wsc2.washington.ibm.com"
 Port="8501"/>
 </Server>
</ServerCluster>

<UriGroup Name="ApplX">
 <Uri AffinityCookie="JSESSIONID"
 Name="/X/*"/>

<Route ServerCluster="azsr01"
 UriGroup="ApplX"/>

azsr01a

CR SR

azsr02a

CR SR

wsc1.washington.ibm.com

azsr01b

CR SR

wsc2.washington.ibm.com

Server Cluster
azsr01

Server Cluster
azsr02

8500

8501

9900

X

X

Y

HTTP Header

DataUnique ID

We saw how <UriGroup> and <Route> worked together to get URL to
ServerCluster. Server it goes to depends on if HTTP Header has "AffinityCookie"

JSESSIONID="A7FC..."

WebSphere "Session Manager" places
JESSIONID cookie into HTTP Header when
(and if) session object created

If no JSESSIONID in HTTP Header, then
round-robin based on "LoadBalanceWeight"

The previous chart showed how a URL was interogated to see how to map it to a <Route> block, and
how the <Route> block was mapped to a <ServerCluster> block. The cluster had two servers in it,
so the question is: how does the Plugin know which server to send the reqeust to?

It depends on whether the HTTP header has an "affinity token" inside it. This "affinity token" may or
may not be present, depending on whether the application to which the user is connected makes use
of session objects, and whether a session object has yet been created. If no session object has been
created, then no "affinity token" will be placed in the HTTP header by WebSphere. If the token is
present, it'll be the "Unique ID" of the WebSphere server in which the session object was created.

In the <ServerCluster Name="azsr01"> block of XML there is defined two <Server> blocks.
Each has associated with it the CloneID (equal to the "Unique ID") of the server. The Plugin will
compare the UniqueID found in the HTTP header (if one exists) with the CloneID= value found in the
XML. If it finds a match, it'll route the request to the <Server> defined with that CloneID= value.

If the received request has no Unique ID in the HTTP header, then the Plugin will simply round-robin
the request between the servers defined in the <ServerCluster>. The distribution will be based on
the LoadBalanceWeight= values defined in the XML>.

Under what conditions would a URL not have a Unique ID in the HTTP header?
When the application doesn't make use of session objects
The very first request to an application that does use session objects
Any time during connectivity with an application but before a session object is created
After the application destroys the session object

Note:

Now let's look at matching on the "virtual host."

Session Z5036

Version Date: September 22, 200417IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Virtual Hosts and Routing to Cluster

azsr01a

CR SR

azsr02a

CR SR

wsc1.washington.ibm.com

azsr01b

CR SR

wsc2.washington.ibm.com

Server Cluster
azsr01

Server Cluster
azsr02

8500

8501

9900

X

X

Y

In addition to routing based on Context Root, you may also route based on host
value found on URL:

z/OS HTTP
Server

HTTP
Plugin

www.police.gov/X/index.html

www.fire.gov/Y/index.html

80
DNS

<VirtualHostGroup Name="Police">
 <VirtualHost Name="www.police.gov:80"/>
</VirtualHostGroup>
<VirtualHostGroup Name="Fire">
 <VirtualHost Name="www.fire.gov:80"/>
</VirtualHostGroup>

<ServerCluster Name="azsr01">
<ServerCluster Name="azsr02">

<Route ServerCluster="azsr01"
 VirtualHostGroup="Police"/>
<Route ServerCluster="azsr02"
 VirtualHostGroup="Fire"/>

Processing within ServerCluster just as before
(Including affinity processing and round-robin)

Backend server host names/ports need not be
the same as what comes from clients

XML in ServerCluster block points to actual backend host
names and ports to be used
You can "hide" actual backend host name values from
public

To start this discussion, let's first review what a "virtual host" is and why that function is in the product.
Virtual hosts in WebSphere go way back ... Version 3.5 at least. The purpose of the function was to
provide a way to logically isolate applications from one another, based on the host name found on the
URL.

Users out in the world who point their browsers at a host like www.police.gov have that address
resolved to an actual IP address (the familiar dotted decimal address) by the Domain Name Service
(DNS). It turns out the DNS will support the resolving of many different host name to the same
address. So both www.police.gov and www.fire.gov could be configured to be the same HTTP
server.

Suppose in this example that the police department's application ("X") and the fire department's
application ("Y") are hosted in the same WebSphere cell, but in different server clusters. The desire is
to make sure that only those people with www.police.gov are able to run the "X" application, and
only people with www.fire.gov are able to run the "Y" application. Nobody with www.police.gov
can run the "Y" application, or www.fire.gov the "X" application.

How to keep them separate? By coding a <VirtualHostGroup> definition in the XML and
referencing that virtual host in the <Route> definition. Consider the example above: two users, each
going to their respective hosts. The inbound URL is, let's say, www.fire.gov/Y/index.html.
Here's what happens:

Session Z5036

Version Date: September 22, 200418IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

The Plugin looks to see if it can locate a match between the host name found on the URL and a
VirtualHost Name= definition in a <VirtualHostGroup> .

On the previous chart it was suggested that the Plugin looks first at a match on <UriGroup>. In
truth, it checks <VirtualHostGroup> first, then <UriGroup>. In the example we're showing here
it's not relevant what the search order is: the XML so far has had either <UriGroup> or
<VirtualHostGroup> but not both ... yet: we'll show an example of that in a bit.

Note:

Finding a hit with the <VirtualHostGroup> with VirtualHostName="www.fire.gov:80", it
stores the Name= value for that <VirtualHostGroup> (in this case, Name="Fire"), and then it
goes in search of a <Route> block with the a reference to <VirtualHostGroup> named "Fire".

There is in fact a <Route> block with VirtualHostName="Fire" ... it's the <Route> block with
<ServerCluster Name="azsr02"> specified on it.

The Plugin then goes to the <ServerCluster> definition and then routes to the cluster member
in the same way it did in the previous example with the <UriGroup> processing.

There's a subtle but important thing that went on here ... the virtual host matching is based on what's
on the URL used to get the request to the Plugin, not necessarily the host of the backend server where
the application actually resides. For example, the actual application to which the request was routed
might have been something like prod3.applhost.com. That value -- prod3.applhost.com --
would have been defined in the <Server> block so the Plugin could get the request back to the
server. But the user supplied a different host -- www.fire.gov -- on the URL. That host resolved to
the IP address of the HTTP Server, and the virtual host matching was done on that host, not the host
name of the backend server where the application resides.

The application installed in the backend application server would still have to be bound to a virtual
host alias. The key there is to have it bound to a virtual host alias that'll match the definition found
in the <Server> definition of the <ServerCluster> block of XML. For example, let's say the
client's URL specified www.fire.gov, but the <Server> definition mapped that to
prod3.applhost.com listening on port 9900. The virtual host alias to which the application is
bound would be either *.9900 or prod3.applhost.com:9900, but not www.fire.gov:80

Important:

Session Z5036

Version Date: September 22, 200419IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Combination: URI and Virtual Host

<VirtualHostGroup Name="Police">
 <VirtualHost Name="www.police.gov:80"/>
</VirtualHostGroup>
<VirtualHostGroup Name="Fire">
 <VirtualHost Name="www.fire.gov:80"/>
</VirtualHostGroup>

<ServerCluster Name="azsr01">

<ServerCluster Name="azsr02">

<UriGroup Name="ApplX">
 <Uri Name="/X/*"/>
</UriGroup>
<UriGroup Name="ApplY">
 <Uri Name="/Y/*"/>
</UriGroup>

<Route ServerCluster="azsr01"
 UriGroup="ApplX"
 VirtualHostGroup="Police"/>
<Route ServerCluster="azsr02"
 UriGroup="ApplY"
 VirtualHostGroup="Fire"/>

azsr01a

CR SR

azsr02a

CR SR

wsc1.washington.ibm.com

azsr01b

CR SR

wsc2.washington.ibm.com

Server Cluster
azsr01

Server Cluster
azsr02

8500

8501

9900

X

X

Y

www.police.gov/X/index.html

www.fire.gov/Y/index.html

z/OS HTTP
Server

HTTP
Plugin80

Only requests with both www.police.gov and
context root of /X will get routed to azsr01 cluster

If only UriGroup on Route, then all requests with that context root get
routed there, regardless of host name on URL

If only VirtualHostGroup on Route, then all requests for that host get
routed there, regardless of context root value

One more variation on this, then we'll get to
troubleshooting

You knew it was coming, and here it is ... both <UriGroup> and <VirtualHostGroup>! It is
possible -- and indeed this the default -- to code both on a <Route> definition so the mapping to the
server cluster. This means that before a URL is mapped to a backend server, it has to pass two tests:
does the virtual host match and does the URI match?

The coding in the <Route> statement is fairly straight-forward: both a UriGroup= and
VirtualHostGroup= value is provided, as shown in the chart.

This then requires that the referenced <UriGroup> and referenced <VirtualHostGroup> be present
in the XML file. If they're not there -- that is, if they're referenced in the <Route> but not actually present
elsewhere in the XML -- then the Plugin won't initialize. More on initialization failures later.

Note:

This brings up an interesting set of questions: when both are not coded, what's allowed to be routed to
the server cluster?

If only <UriGroup> is found on the <Route> statement, then all URL's with the URI values in the
referenced <UriGroup> will be mapped to the <ServerCluster>, regardless of the virtual host
value. No virtual host checking is done.

Conversely, if only <VirtualHostGroup> is found on the <Route> statement, then all URLs that
match the virtual host values defined in the referenced <VirtualHostGroup> will be mapped to
the <ServerCluster>, regardless of the URI value.

It's only by coding both that you get the greater degree of granularity.

One more variation on this, then on to the troubleshooting section.

Session Z5036

Version Date: September 22, 200420IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Multiple Context Roots per UriGroup

<VirtualHostGroup Name="Police">
 <VirtualHost Name="www.police.gov:80"/>
</VirtualHostGroup>
<VirtualHostGroup Name="Fire">
 <VirtualHost Name="www.fire.gov:80"/>
</VirtualHostGroup>

<ServerCluster Name="azsr01">

<ServerCluster Name="azsr02">

<UriGroup Name="ApplX">
 <Uri Name="/X/*"/>
 <Uri Name="/A/*"/>
 <Uri Name="/B/*"/>
 <Uri Name="/C/*"/>
 :
</UriGroup>

<UriGroup Name="ApplY">
 <Uri Name="/Y/*"/>
</UriGroup>

<Route ServerCluster="azsr01"
 UriGroup="ApplX"
 VirtualHostGroup="Police"/>
<Route ServerCluster="azsr02"
 UriGroup="ApplY"
 VirtualHostGroup="Fire"/>

You may code multiple URIs in
the <UriGroup> block of XML

Many different context roots will get routed to
ServerCluster azsr01

In this example <Route> has
VirtualHostGroup as well.

All those URLs must have host of
www.police.gov

Yes, multiple VirtualHost
names permitted per
VirtualHostGroup

Lots of permutations to this

There's an opportunity to
introduce ambiguity into the
XML. You should be careful
to avoid this ...

You may have already picked this up ... the <UriGroup> may accept any number of <UriName=...>
values. This is how you would map a lot of different applications to the same server cluster. In this
example, four different application context roots would all map to azsr01.

Multiple <VirtualHost Name=...> values can be added to a <VirtualHostGroup> as well.
Same concept as with <UriGroup>.

There are a lot of different ways in which you can combine these things to map requests to server
clusters. There's also an opportunity to introduce some ambiguity, and you should avoid doing this.
The next chart covers such a case.

Session Z5036

Version Date: September 22, 200421IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Avoid Ambiguity

<ServerCluster Name="azsr01">

<ServerCluster Name="azsr02">

<UriGroup Name="ApplX">
 <Uri Name="/X/*"/>
 <Uri Name="/Y/*"/>
</UriGroup>

<UriGroup Name="ApplY">
 <Uri Name="/Y/*"/>
</UriGroup>

<Route ServerCluster="azsr01"
 UriGroup="ApplX"/>
<Route ServerCluster="azsr02"
 UriGroup="ApplY"/>

Next: Where does plugin-cfg.xml
file come from initially?

http://www.plugin.com/Y/index.html

???
Which

ServerCluster?

z/OS HTTP
Server

HTTP
Plugin80

azsr01a

CR SR

azsr02a

CR SR

wsc1.washington.ibm.com

azsr01b

CR SR

wsc2.washington.ibm.com

Server Cluster
azsr01

Server Cluster
azsr02

8500

8501

9900

X

X

Y

Y

Y

Avoid ambiguity like this. Use
VirtualHosts to resolve to a
single ServerCluster.

Or don't code second ServerCluster's
<Uri Name="/Y/*"> in XML

It appears the last <Route> statement in XML that
matches is the one that applies ... but my testing
wasn't that exhaustive. Other rules may apply.

Just like there was in Version 4's webcontainer.conf file, there's an opportunity to get too tricky
with the coding of the plugin-cfg.xml. Consider this example: The server cluster azsr01 has two
application installed: X and Y. Server cluster azsr02 has application Y installed as well. Two
<UriGroups> are provided, both with <Uri Name="/Y/*"/> defined.

Notice how there's no <VirtualHostGroup> specification.Note:

There's ambiguity here. A received URL with a context root of /Y/index.html will match on both
<UriGroup Name="ApplX"/> and <UriGroup Name="ApplY"/>. Now which <Route> block will
be chosen? Based on some testing, it appears that the Plugin will match the last <Route> statement it
sees in the XML file that maps to a <UriGroup>. In this case that would be server cluster azsr02.

Be careful, though: that conclusion isn't based on exhaustive testing. There might be other things that
come into play that wasn't tested for. The basic point here is this: ambiguity is unpredicatable. Avoid it.

Note:

Does this mean that the same application -- application "Y" in this example -- can't be installed in two
different server clusters? That's not the right conclusion. The same application can be installed in two
different server clusters. But if you're going through the Plugin to get to the application, you need to
remove the ambiguity from the XML. One way to do that is to use <VirtualHostGroup> (or a
combination of that and <UriGroup>), and route the requests to the appropriate server cluster.

The next question is: where does this XML file come from? Is it necessary to code it up from a blank
sheet of paper?

Session Z5036

Version Date: September 22, 200422IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Generating plugin-cfg.xml

/<mount point>
HFS

/Daemon
/DeploymentManager
/config
/cells

/<cell name>

plugin-cfg.xml

Admin
Console

Collects information about
cell configuration -- servers,

clusters, virtual hosts,
CloneID values, etc. -- and

generates the file

Use this copy if plugin is
running inside of z/OS
HTTP Server

Or download and use on
a distributed platform

Thankfully, you don't have to develop the XML file from scratch. WebSphere Application Server for
z/OS Version 5 will generate the plugin-cfg.xml file.

The generated copy is based on information about the WebSphere Application Server configuration
seen by the administrative application. The administrative application rummarges around in the
configuration files for the application server, and from that it generates an XML file.

On the next chart we'll look at what is in the generated file.

Session Z5036

Version Date: September 22, 200423IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Few Notes About Generated XML

<?xml version="1.0" encoding="Cp1047"?>
<Config>
 <Log LogLevel="Trace" Name="/wasv5config/azcell/DeploymentManager/logs"/>
 <VirtualHostGroup Name="default_host">
 <VirtualHost Name="wsc1.washington.ibm.com:9518"/>
 <VirtualHost Name="wsc1.washington.ibm.com:9519"/>
 <VirtualHost Name="wsc2.washington.ibm.com:9548"/>
 <VirtualHost Name="wsc2.washington.ibm.com:9558"/>
 </VirtualHostGroup>
 <ServerCluster Name="azsr01Cluster">
 <Server CloneID="B9F91E06DC4511C100000C0C0000000109521845"
 LoadBalanceWeight="2" Name="aznodea_azsr01a">
 <Transport Hostname="wsc1.washington.ibm.com" Port="9548" Protocol="http"/>
 </Server>
 <Server CloneID="B9F95C1EDD90F28500000BF40000000409521845"
 LoadBalanceWeight="2" Name="aznodeb_azsr01b">
 <Transport Hostname="wsc2.washington.ibm.com" Port="9548" Protocol="http"/>
 </Server>
 </ServerCluster>
 <ServerCluster Name="dmgr_azdmnode_Cluster">
 <Server CloneID="B9F9295C449786C4000001380000001E09521845" Name="azdmnode_dmgr">
 <Transport Hostname="wsc1.washington.ibm.com" Port="9518" Protocol="http"/>
 </Server>
 </ServerCluster>
 <UriGroup Name="default_host_azsr01Cluster_URIs">
 <Uri AffinityCookie="JSESSIONID"
 AffinityURLIdentifier="jsessionid" Name="/mem/*"/>
 <Uri AffinityCookie="JSESSIONID"
 AffinityURLIdentifier="jsessionid" Name="/MyIVT/*"/>
 </UriGroup>
 <Route ServerCluster="azsr01Cluster"
 UriGroup="default_host_azsr01Cluster_URIs" VirtualHostGroup="default_host"/>
</Config>

Virtual Host for the Plugin
itself won't appear here.
You'll probably need to

hand-code another.

Creates ServerCluster for
Deployment Manager.

Unnecessary unless you're
coming through Plugin to get

to Admin Console

Routes generated use both
UriGroup and

VirtualHostGroup

Generated XML a great starting point, but probably not exactly what you need ...

May not look
exactly like actual

generated file

The generated XML file will serve as a great starting point, but you will still likely have to go into it and
perform a few updates.

The Virtual Host list will contain those Virtual Host aliases created in the WebSphere Application
Server runtime. But those most likely will not be what you'll need to do virtual host checking at the
Plugin level. The Plugin will do virtual checking based on the host name found on the client's URL
coming into the HTTP Server. That's most likely a different port from the runtime application
servers, and may very well be a different system altogether. So take a good look at the virtual
hosts generated and see if you need to add another one for the host used by clients to access the
HTTP server.

In fact, any virtual host beyond that found on the client's URL is not necessary in this file. And if
you're not doing any virtual host mapping down in the <Route> block, no virtual hosts are necessary.

Note:

A <ServerCluster> for the Deployment Manager will be created. This is probably unnecessary
because you won't be putting any applications in the Deployment Manager. And it's unlikely (and
not recommended for security purposes) to access the administrative application through the
Plugin. So that whole <ServerCluster> could be removed. It's presence does not harm, unless
it permits someone from gaining access to the administrative application you don't want accessing
it.

The <Route> blocks at the bottom of the generated XML file will match based on both URI and
virtual host. If that's what you want, then fine. But if you want to match on one or the other but not
both, then you'll need to change that.

Session Z5036

Version Date: September 22, 200424IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

One Update Needed in Runtime
Must create a "Virtual Host Alias" with port 80:

Admin
Console

The "Host Name" must match what
client used to access HTTP server

Easiest: asterisk wild card ...
permits any value

Interestingly, the port must be 80,
regardless of the port on which the
HTTP server is listening

To run application, that application
must be bound to Virtual Host in
which this alias is defined. On to troubleshooting ...

There is one thing you must do on the WebSphere Application Server for z/OS runtime to ready it to
accept traffic from the Plugin: you need to create a "Virtual Host Alias." The HTTP flow coming from
the Plugin will carry with it the host name of the system on which the Plugin runs, as well as --
interestingly -- port 80 (regardless of what port the Plugin is actually listening on).

What the chart shows is a Virtual Host Alias created with an asterisk for the "Host Name" and 80 for
the "Port." The asterisk means any host value found on the URL will be accepted, and port 80 is what
makes this whole thing work.

If you wanted to code an explicit host name, you would code the host name the client would use to get
the request to the system running the Plugin. That may be a host value completely different from the
host on which the WebSphere Application Server for z/OS runtime is running. Whatever the client
uses to get the URL to the Plugin is the host you code into the virtual host alias. (Or code asterisk,
which permits any host value.)

To run the application, the application itself must be bound to the Virtual Host in which this alias is
defined. It's quite possible to have multiple Virtual Hosts defined to WebSphere Application Server. If
one application is bound to one VH and another application is bound to another, and you want to run
both applications with traffic from the Plugin, then you would have to code the port-80 alias in both
Virtual Hosts.

Session Z5036

Version Date: September 22, 200425IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Troubleshooting Overview

azsr01a

CR SR

azsr02a

CR SR

wsc1.washington.ibm.com

azsr01b

CR SR

wsc2.washington.ibm.com

Server Cluster
azsr01

Server Cluster
azsr02

z/OS HTTP Server

HTTP Plugin

1
Browser

3

2

plugin-cfg.xml

httpd.conf

4

5

6, 7, 8

1 URL gets to HTTP Server

2 URL passed into Plugin

3 Plugin initialized

4 URL matches XML processing

5 Plugin sees Server as up

7 Server recognizes context root

6 Plugin's "VH Alias" present

8 Application is running

Here's a schematic diagram showing the things that need to go right to permit this whole system to
work. The troubleshooting charts that follow all key off this chart.

1. First, the URL must be able to get to the system running the Plugin. All manner of things can keep
that URL from getting there: DNS problems, firewall problems, HTTP server not up, etc. We'll
assume all those are working and focus on the Plugin and the other stuff downstream.

2. The URL must be passed from the HTTP Server into the Plugin. That requires a properly coded
Service statement.

3. The Plugin must be initialized inside the HTTP Server. There's a bunch of things that'll prevent that
from happening.

4. Once inside the Plugin, the URL must match against the XML in the Plugin's configuration file. If a
match against the XML doesn't take place, the XML can't process the URL.

5. The Plugin will maintain knowledge of which of the defined servers in the WebSphere Application
Server for z/OS runtime are up and accessible. So a match on the XML will work only if the
backend server is actually up.

6. Once the URL gets passed back to the runtime, a Virtual Host alias must be defined in the runtime
to permit the received URL to be processed.

7. The runtime must recognize the context root on the received URL

8. Finally, the application must be up, of course.

Session Z5036

Version Date: September 22, 200426IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Request Must Match "Service"
z/OS HTTP

Server

HTTP
Plugin

SYSOUT

http_plugin.log

Service /ApplX/* /<path>/ihs390WAS50Plugin_http.so:service_exit

Service /ApplY/* /<path>/ihs390WAS50Plugin_http.so:service_exit

 :

Pass /* /<document root>

httpd.conf

Request never gets "over the wall" into Plugin,
so you'll see nothing in here about request

http://www.plugin.com/ABC/index.html

Lack of a proper "Service" statement for the
URL typically results in 404 message

Remember to update httpd.conf when new
applications deployed in backend runtime

Error seen here is simply URL failing to match on any statement and HTTP
server throwing 404 message

Before the Plugin will be able to handle any request, the Plugin has to receive the request from the
HTTP Server. This is done with a Service statement. The received URL must match a properly
coded Service statement for the request to even be considered for handling by the Plugin. If no
Service statement matches, the request will fall through and be considered a request for a static web
page, and it'll probably result in a failure to find the requested page. This is the standard 404 error
coming out of the HTTP Server.

The key is the fact the message is coming out of the HTTP Server. That tells you the request never
made it beyond the HTTP Server.

Note:

Just because a request matches a Service statement doesn't necessarily mean the request will be
handled by the Plugin. There are many things that can go wrong. We'll cover those next.

Session Z5036

Version Date: September 22, 200427IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Did Plugin Initialize?
JESMSGLG JES2 2 BBOWEB S
JESJCL JES2 3 BBOWEB S
JESYSMSG JES2 4 BBOWEB S
SYSPRINT BBOWEB 101 BBOWEB O
SYSOUT BBOWEB 105 BBOWEB O

WebSphere HTTP Plug-in for z/OS and OS/390 initialization went OK :-)

Let's take a look at all the things that must be present in
httpd.conf configuration to permit Plugin to intialize ...

Look for the "Smiley Face"

WebSphere HTTP Plug-in for z/OS and OS/390 initialization FAILED (rc = 4) :-(

If no "Smiley Face," then look for the "Frowny Face:"

It's possible that the Plugin failed to initialize even though no " :-(" is present:

Failed to load DLL module /<Config Root>/DeploymentManager/bin/ihs390WAS50Plugin_http.so
EDC5205S DLL module not found. (errnojr=0534011c)

Hint: when no " :-(" found,
search on 'Failed to'

For example, if
pointer to Plugin's
module is incorrect

Assuming that the URL from the client found its way to the HTTP server and was picked up by the
HTTP listener and matched on a Service statement, the first question is whether the Plugin is
initialized. Much like the old WebSphere V3.5 product, what you look for as evidence of the Plugin's
initialization is the "smiley face" in the SYSOUT.

If you don't find the smiley face, look for a "frowny face." Presence of that is a solid indication that the
Plugin did not initialize, and it suggests the failure lies somewhere in the Plugin itself, as opposed to
the Plugin's configuration settings in the httpd.conf file.

If no smiley or frowny face is present, it will mean the Plugin has failed to initialize for reasons related
to the inability of the HTTP Server to load the plugin. Search for the string "Failed to" to find the error
pointer.

What do you see on your browser if the Plugin isn't initilized? That's next.

Session Z5036

Version Date: September 22, 200428IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Browser Symptom: No Plugin

http://www.plugin.com/ApplX/index.html

ServerInit /<path>/ihs390WAS50Plugin_http.so:init_exit /<path>/plugin-cfg.xml

Service /ApplX/* /<path>/ihs390WAS50Plugin_http.so:service_exit

ServerTerm /<path>/ihs390WAS50Plugin_http.so:term_exit

httpd.conf

But the Plugin isn't
initialized, so the
service_exit isn't
available

Caution! "Service Handler
Performed No Action" may
result even when Plugin is
initialized.

Always check for Plugin
initialization as first thing

If the Plugin isn't initialized and you try to drive a URL against it, you'll get a browser message that says
"Service Handler Performed no Action".

This error message can result even when the Plugin is initialized. It's a fairly generic error symptom
and should not automatically be used to suggest the Plugin isn't initialized.

Caution:

The problem here is that the URL was received by the HTTP server, and it matched against a valid
Service statement, but the Plugin wasn't there to receive the request.

You should always check to make sure the Plugin has initialized before driving any work against the
HTTP Server. This is particularly true when changes have been made to any configuration files.

Session Z5036

Version Date: September 22, 200429IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Primary Causes of Initialization Failures
z/OS HTTP

Server

HTTP
Plugin

httpd.conf

ServerInit /<path>/ihs390WAS50Plugin_http.so:init_exit /<path>/plugin-cfg.xml

Service /<URL>/* /<path>/ihs390WAS50Plugin_http.so:service_exit

ServerTerm /<path>/ihs390WAS50Plugin_http.so:term_exit

1 2 3 4

1 Plugin ".so" module not found or can't be loaded
Check directory path to module
Check case (it matters on directory paths)
Check file name, including case
Check permissions on directories and file itself (HTTP Server ID needs "read" minimum)

2 The "exit" specified on module incorrect
Must be init_exit, not service_exit or term_exit like the other statements

3 Plugin's XML file not found or can't be loaded
Plugin's XML file specified as parameter on end of ServerInit statement
Check directory path to file, file name, case and permissions

4 Bad contents of Plugin's XML file
See Plugin's log file for pointer to line of XML file that's in error

If Plugin doesn't initialize, look at four
primary causes first. All have to do
with the ServerInit statement in the
htttpd.conf file:

There are a few key things that'll prevent the Plugin from initializing. The focus area is the
ServerInit statement in the httpd.conf file.

1. The executable file for the Plugin -- the "*.so file" -- must be located and loaded. If the HTTP
Server can't find, or can't load, that module, initialization will fail. Check the things shown on the
chart to make sure the pointer is absolutely correct.

2. The "exit" on the end of the ServerInit must be init_exit. If you copied one of the other lines
to use as a model for the ServerInit statement, there's a possibility that one of the other "exits" is on
the statement (service_exit or term_exit).

3. The pointer to the plugin-cfg.xml file is either wrong or permissions don't permit the loading of
the file.

4. Finally, the contents of the plugin-cfg.xml file may prevent the initialization of the Plugin.

Let's explore the symptoms you'll see for each of these.

Session Z5036

Version Date: September 22, 200430IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Plugin Module Not Found or Loaded

 :

Failed to load DLL module /<path>/DeploymentManager/bin/ihs390WAS50Plugin_http.so
EDC5205S DLL module not found. (errnojr=0534011c)

 :

z/OS HTTP
Server

HTTP
Plugin

SYSOUT

http_plugin.log

Error symptom seen here

ServerInit /<path>/ihs390WAS50Plugin_http.so:init_exit /<path>/plugin-cfg.xml

Anything that prevents the
HTTP Server from locating

and loading module will
cause this problem

Incorrect directory; incorrect case
Wrong module name; incorrect case
Restrictive permissions

httpd.conf

No "smiley," no "frowny" ... just the following:

HTTP Server must be able to locate module before it can load it

If the ServerInit statement is coded in such a way that the Plugin's module can't be found or
loaded, what you'll see is an error symptom in the HTTP Server's SYSOUT log. You won't find the
smiley face, of course, nor the frowny face. What you'll see is a message saying "Failed to load DLL
module." Again, search on "Failed to" when you can't find the smiley or frowny faces.

The key message here is that the HTTP Server must be able to find and load the module. That's the
fundamental first step.

Session Z5036

Version Date: September 22, 200431IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Wrong "Exit" on ServerInit
z/OS HTTP

Server

HTTP
Plugin

SYSOUT

http_plugin.log

Error symptom seen here

ServerInit /<path>/ihs390WAS50Plugin_http.so:wrong_exit /<path>/plugin-cfg.xml

Anything other than

:init_exit
is incorrect exit.

httpd.conf

API... Successful loading shared library "/<path>/ihs390WAS50Plugin_http.so"

API... Trying to get fn pointer "wrong_exit" from module "/<path>/ihs390WAS50Plugin_http.so"

Failed to load function wrong_exit: EDC5214I Requested function not found in this DLL.

IMW0437E Return code 123 loading function wrong_exit from DLL module /<Plugin module>

IMW0438E Serverinit Error: server did not load functions from DLL module /<Plugin module>

Common error: copying Service statement line to form
ServerInit and then forgetting to change exit

Plugin module has three exits: init_exit, server_exit and term_exit.
Only init_exit used to load module.

If the "exit" specified on the ServerInit statement is anything other than init_exit, you'll get an
error initializing the Plugin. Again, no smiley or frowny face. What you'll see is what's illustrated on the
chart:

The string "Failed to" will be found

On that same line you'll see the HTTP Server telling you that the exit specified on the ServerInit
statement (wrong_exit in this example) could not be loaded because it wasn't found in the DLL.

You'll see something very similar if you specify one of the other valid exits -- service_exit or
term_exit -- on the ServerInit. Those are valid exits in the DLL, but not valid for the
ServerInit.

Session Z5036

Version Date: September 22, 200432IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

plugin-cfg.xml Not Found or Specified
z/OS HTTP

Server

HTTP
Plugin

SYSOUT

http_plugin.log

Error symptom seen here

ServerInit /<path>/ihs390WAS50Plugin_http.so:wrong_exit /<path>/plugin-cfg.xml

httpd.conf

Anything that prevents the
Plugin from locating and

reading XMLwill cause this
problem

Incorrect directory; incorrect case
Parameter simply missing
Wrong file name; incorrect case
Restrictive permissions

WebSphere HTTP Plug-in for z/OS and OS/390 initializing with configuration file : /<path>/<file>

ws_common: websphereUpdateConfig: Failed parsing the plugin config file

WebSphere HTTP Plug-in for z/OS and OS/390 initialization FAILED (rc = 3) :-(

IMW0438E Serverinit Error: server did not load functions from DLL module /<Plugin module>

Note "rc=3" ... bad XML contents is a "rc=4". "rc=3" means
file itself can't be found, rather than what's inside file is bad.

Find on
:-(

Plugin module must be able to find XML file. There's no "default" that's taken.

Once the proper DLL and exit is loaded, the Plugin will go in search of the configuration XML file.
Unlike the old WAS V3.5 product, there is no default was.conf that's pulled from the installation
directory. If the Plugin can't find the XML file pointed to, the Plugin won't initialize.

This error will generate a frowny face. You'll also see the key message: "Failed parsing the plugin
config file" and "rc=3". The return code is important because it's drawing a distinction between a file
that can't be found or loaded (rc=3) and one that was found, read, and full of errors (rc=4).

Session Z5036

Version Date: September 22, 200433IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Where Plugin Logging Goes

<?xml version="1.0"?>
<Config>
 <Log LogLevel="[level]" Name="/[path]/http_plugin.log"/>
 :

z/OS HTTP
Server

HTTP
Plugin

httpd.conf

plugin-cfg.xml

Error Error messages

Warn Warning + Error messages

Trace Trace + Warning + Error messages

http_plugin.log.Jan032004.16843100

The Plugin's log file is important
for debugging problems related to
the Plugin's processing

Name
provided
in XML

Date
created

HTTP
Server's

PID

File is in EBCDIC and is quite readable.
Beware of "Trace" -- lots of output.
Default location:

/<config root>/DeploymentManager/logs

Once we're past the other issues, and the Plugin itself is initialized, we're facing the next wave of
potential problems. Those problems will be logged into the Plugin's log, which goes to the location
specified in the plugin-cfg.xml file.

The <Log> statement in the plugin-cfg.xml file provides two things: the amount of logging to be
performed, and the place where the logging will be written:

Amount of logging -- three options here: Error, Warn and Trace. Error has the least amount
of logging, Trace the most. Be careful with Trace: it puts out a lot of messages.

Location of logging -- here you specify the directory and file name of the logging file. Be sure the
HTTP Server's ID has the ability to write to the directory specified. The Plugin will modify the
supplied file name and append the date and the "Process ID" of the HTTP server from which the
logging is occurring.

There is no time-stamp in the file name itself, so be aware when multiple files are present.Note:

By default the log will be written to the Deployment Manager's /logs directory down under the
configuration root. If you want to change that location, then do so. However, remember this each time
you re-generate the plugin-cfg.xml file because the generated file will be back to the default
location.

Session Z5036

Version Date: September 22, 200434IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Bad Contents of plugin-cfg.xml
z/OS HTTP

Server

HTTP
Plugin

SYSOUT

http_plugin.log

Error symptom seen here

And cause pointed to here

ws_common: websphereUpdateConfig: Failed parsing the plugin config file

WebSphere HTTP Plug-in for z/OS and OS/390 initialization FAILED (rc = 4) :-(

ERROR: ... Expected '=' token; got 'Server'. line 5 of /<path>/plugin-cfg.xml

****** ***************************** Top of Data ************************
000001 <?xml version="1.0" encoding="Cp1047"?>
000002 <Config>
000003 <Log LogLevel="Error" Name="/etc/bboweb/http_plugin.log"/>
000004 <ServerCluster Name="azsr01Cluster"
000005 <Server CloneID="B9F91E06DC4511C100000C0C0000000109521845"
000006 LoadBalanceWeight="2" Name="aznodea_azsr01a">

SYSOUT

plugin-cfg.xml

"rc=4" implies XML found, but
contained bad data

Missing > at
end of line 4

http_plugin.log.<date>.<pid>

"Error"
tracing is all

that's needed
Much better than V3.5 or V4 plugin, which offered no hint
as to where in "was.conf" file problem could be found.

Let us assume that the Plugin successfully initialized, and the plugin-cfg.xml file was located and
read. Now, let's look at what happens if there's a problem inside the XML.

Here we are fortunate, for the Plugin log will tell you what line the error was on (this is a departure from
the WAS V3.5 days, where it did not indicate where the problem was). In the example above, the
absence of a closing right-bracket is the culprit. Even still, the error message is still a touch cryptic:
the problem is actually on line 4, but the parser doesn't "see" the problem until it gets to line 5 and
encounters something it didn't expect.

Bad contents of the XML file results in a RC=4 status, not 3. Recall that RC=3 meant the XML file was
not found. RC=4 means it was found, but contained errors.

Note:

Session Z5036

Version Date: September 22, 200435IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Can't Resolve Host Name in XML
z/OS HTTP

Server

HTTP
Plugin

SYSOUT

http_plugin.log

Error symptom seen here

And cause pointed to here

ws_common: websphereUpdateConfig: Failed parsing the plugin config file

WebSphere HTTP Plug-in for z/OS and OS/390 initialization FAILED (rc = 4) :-(

SYSOUT

plugin-cfg.xml

"rc=4" implies XML found, but
contained bad data

http_plugin.log.<date>.<pid>

"Error"
tracing is all

that's needed
Watch out for typos in your host name values
(IP addresses aren't resolved; wrong addresses are treated like an IP stack that's not
present; Plugin will simply balance to other server in cluster if possible)

ERROR: ws_transport: transportSetServerAddress: unable to resolve host name: <host name>
ERROR: lib_sxp: sxpParse: End element returned FALSE for Transport. line 7 of <plugin-cfg.xml>

000004 <ServerCluster Name="azsr01Cluster">
000005 <Server CloneID="B9F91E06DC4511C100000C0C0000000109521845"
000006 LoadBalanceWeight="2" Name="aznodea_azsr01a">
000007 <Transport Hostname="www.not-there.com" Port="9548" ...

Hostname specified
can't be resolved

Here's a somewhat obscure problem: the host name specified on the Hostname= values in the XML
can't be resolved to an actual host. This problem will not likely result from the default generated
plugin-cfg.xml file, but may result if you hand-edit the file. What you'll see is this:

Plugin not initialized (frowny face with rc=4)

Log shows error and points to line where host name is found in plugin-cfg.xml

Tells entire story: can't resolve the host name.

One way around this is to code the actual IP address rather than the host name. But if the host name
you code can't be resolved, and you're certain it's the right value, then there's something wrong with
the IP configuration of your system that would prevent that name from being resolved properly.

Session Z5036

Version Date: September 22, 200436IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Request Must Get Mapped to "Route"

 <VirtualHostGroup Name="VH_Cluster1">
 <VirtualHost Name="www.myhost.com:80]"/>
 </VirtualHostGroup>

 <ServerCluster Name="Cluster1">
 <Server CloneID="B9F9..."
 <Transport Hostname="www.myhost.com" Port="9080"/>
 </Server>
 </ServerCluster>

 <UriGroup Name="URI_Cluster1">
 <Uri Name="/ABC/*"/>
 </UriGroup>

 <Route ServerCluster="Cluster1"
 UriGroup="URI_Cluster1"
 VirtualHostGroup="VH_Cluster1"/>

It all depends on how you have your <Route> block coded. Rule is <Route> must
have:

UriGroup
reference

VirtualHostGroup
reference Bothor or

This example has
both UriGroup and
VirtualHostGroup
references on the
<Route> statement

www.yourhost.com/ABC/... No No match on Virtual Host

www.myhost.com/XYZ/... No No match on URI

www.myhost.com/ABC/... Yes Matches both Virtual host and URI

URL Match? Why

Let's see the error
symptoms ...

Now we get into the very heart of the XML file and the mapping of the received URL to the <Route>
block that applies. A <Route> block needs to have either a UriGroup reference, a
VirtualHostGroup reference or both. It can't have neither. Something has to be used to map the
URL to the <Route>.

The example above shows the default mapping where the <Route> block has both the UriGroup and
the VirtualHostGroup references. The virtual host is www.myhost.com and the URI is /ABC/*.
What that means is that the only URL that'll map to that is one that has both www.myhost.com and
/ABC/* on it. Anything different from that will not map.

Recall that the <Route> block does not need to have both UriGroup and VirtualHostGroup
references. It may have one or the other. So if it had only a UriGroup reference and the received
URL didn't match any of the URIs, then a failure would occur. The same holds for a
VirtualHostGroup reference where the host on the URL doesn't match.

What happens when a received URL fails to map to a <Route>? That's next.

Session Z5036

Version Date: September 22, 200437IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Route Not Mapped Symptom

TRACE: ws_common: websphereUriMatch: Failed to match: /Test/index.html
TRACE: ws_common: websphereFindServerGroup: No route found
TRACE: ws_common: websphereHandleRequest: Failed to find a server group
TRACE: ws_common: websphereEndRequest: Ending the request

Regardless of type of failure:
Failure to match URI
Failure to match VirtualHost
Failure to match combination of both

The browser error is the same:
Error 500 -- "Service handler performed no action."

Caution: this might also indicate the
Plugin isn't initialized.

The Plugin's log tells the story:

TRACE: ws_common: websphereVhostMatch: Failed to match: www.plugin.com:8070
TRACE: ws_common: websphereFindServerGroup: No route found
TRACE: ws_common: websphereHandleRequest: Failed to find a server group
TRACE: ws_common: websphereEndRequest: Ending the request

No
match
of URI

No match
of VHost

Need
Loglevel="Trace"

set for this
information

If both VH and URI are mismatched, VH error will appear in Trace

Next up: when the backend server isn't available ...

What we see here is that the "Error 500" message gets used for lots of different problems. This is true
regardless of the mapping failure: failure on URI, failure on VH, failure on both.

The only way to isolate this down the actual failure is to go into the Plugin's log. If you can't locate the
log file, it may be because the Plugin isn't initialized. "Error 500" can result for that cause as well.

You'll need the "Trace" option set to capture the failure cause here. And what you'll see is what's
presented in the chart:

When the <Route> block contains only UriGroup, a failure to match a URI will show a "Failed to
match" message with the URI value received.

When the <Route> block contains only VirtualHostGroup, a failure to match a host will show a
"Failed to match" message with the host value received.

When both UriGroup and VirtualHostGroup are coded on <Route>, the error message will
be the same as what appears when only VirtualHostGroup is coded.

Session Z5036

Version Date: September 22, 200438IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Plugin Must See Server as "Up"

TRACE: ws_common: websphereExecute: Executing the transaction with the app server
TRACE: ws_common: websphereGetStream: Getting the stream to the app server
TRACE: ws_transport: transportStreamDequeue: Checking for existing stream from the queue
ERROR: ws_common: websphereGetStream: Failed to connect to app server, OS err=1128
ERROR: ws_common: websphereExecute: Failed to create the stream
ERROR: ws_server: serverSetFailoverStatus: Marking aznodea_azsr01a down
 :
TRACE: ws_common: websphereExecute: Executing the transaction with the app server
TRACE: ws_common: websphereGetStream: Getting the stream to the app server
TRACE: ws_transport: transportStreamDequeue: Checking for existing stream from the queue
ERROR: ws_common: websphereGetStream: Failed to connect to app server, OS err=1128
ERROR: ws_common: websphereExecute: Failed to create the stream
ERROR: ws_server: serverSetFailoverStatus: Marking aznodeb_azsr01b down
 :
ERROR: ws_common: websphereWriteRequestReadResponse:
 Failed to find an app server to handle this request

What happens when a URL maps to a <Route>, but all the servers in that Cluster
are down? (For example, you simply forgot to start those servers)

Browser error is the
ubiquitous "Error 500"

Tries first server in
Cluster and fails.
Marks server as

"down"

Tries second server
in Cluster and fails.

Marks server as
"down"

Runs out of servers in
cluster and gives up

Let's assume that the received URL has mapped to a <Route> block and thus to a
<ServerCluster> group. For the request to go back to the runtime servers, those servers have to
be up and running. What happens if they're not?

You'll see the same "Error 500" on the browser screen. We're starting to see that "Error 500" is not a
very valuable debugging indication. In the Plugin's log -- again, with Trace on -- you'll see the Plugin
trying the first server in the <ServerCluster> and failing that, try the second. Eventually it'll run out
of servers in the cluster and give up: "Failed to find an app server to handle this request."

Session Z5036

Version Date: September 22, 200439IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

"TrustedProxy" Not Set
If the server's HTTP port does not have the custom property "TrustedProxy" set,
then the server won't permit the flow from the Plugin:

Application Servers <server> Web Container HTTP Transport <port> Custom Properties

Do this for both the non-SSL and SSL port

Do this for all servers that receive plugin
flows

Stop/restart server to pick up change

The plugin serves as a proxy
-- it forwards requests on to
the application server. This
tells the server to "trust" the
inbound request.

The plugin acts as a proxy, forwarding requests on to the application server in the WebSphere runtime.
In order to tell the server that the flow from the proxy can be trusted, it's necessary to create a custom
property under the application server's HTTP ports with name of TrustedProxy and a value of True.

Failure to do this will result in an error message of "403 Request not permitted" coming back from the
application server. You can tell this isn't coming from the plugin itself because it's not a "500" message
and there's no indication that it's coming from the HTTP server. Therefore, both those pieces of the
puzzle -- the HTTP server and the plugin -- are doing their job. The flow goes up to the application
server in the WebSphere runtime, but the server rejects it because the "TrustedProxy" setting is not
there.
To set this value, drill down in the Admin Console under the application server as shown in the chart
above. You'll have to do this for all the servers that will receive flows from the plugin, and you'll have to
do it for both the non-SSL port and the SSL port for each of the servers. When you've set the property,
then stop/restart the servers to pick up the change.

Session Z5036

Version Date: September 22, 200440IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

No Virtual Host Match for Client URL
If no virtual host alias in the WebSphere runtime matches the URL sent in by the
client, then WAS runtime will reject:

Key Points:

Plugin is doing its job ... Plugin trace will show normal processing

This illustrates the difference between virtual host in plugin XML and
virtual host in WAS runtime

Key off the browser error message -- this is Application Server message,
which means flow got to application server

All issues related to Plugin initialization, route mapping and servers being up are not the issue

z/OS HTTP
Server

HTTP
Plugin

azsr01a

CR SR

azsr01b

CR SR
This is error

message coming
back from WAS V5

runtime

This is the case where the virtual host alias in the WebSphere Application Server for z/OS runtime
doesn't match the value found on the URL sent by the original client. There's a couple of reasons why
this may happen:

The virtual host alias was never coded in the first place

The virutal host alias was coded, but is slightly different from the value received from the client

The application is mapped to a different VH from the one in which this alias was created.

The error you'll see on the browser is "Error Calling Application," and you'll see also that the message
came from the "WebSphere Application Server." This is a telling piece of information: it indicates that
the request got back to the WAS runtime environment. That means the Plugin is doing it's job ... don't
bother poring through the Plugin's trace ... you'll see it simply reporting that everything worked okay.

Notice how we have two different Virtual Host values in play here: one in the Plugin's XML file, one in
the WAS V5 runtime. The Plugin's XML file is only invoked if the <Route> block has a
VirtualHostGroup reference. But if it does, then the request received from the client must match
that VH in order for the Plugin to consider sending the request back to the server runtime. The
application server runtime has its own Virtual Host definitions, and here they're a requirement.
Applications must be mapped to a Virtual Host, and an inbound URL must pass muster with the
defined Virtual Host before the application will be invoked.

Provide a virtual host with the port used by the HTTP server. Coding a virtual host with a host value of
asterisk makes things easier.

Note:

Session Z5036

Version Date: September 22, 200441IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

URL Context Root Must Match Appl's
The UriGroup values in the plugin-cfg.xml may not match the actual Context
Roots in the server. The Plugin will pass the request back, only to have it fail:

z/OS HTTP
Server

HTTP
Plugin

azsr01a

CR SR

azsr01b

CR SR
This is error

message coming
back from WAS V5

runtime

Get the exact same
message if you

pointed browser
directly at server.

Key Points:

Plugin is doing its job ... Plugin trace will show normal processing

This illustrates Plugin has no idea what applications are installed
Generated XML will have the Context Roots of actual applications. But XML file is open to hand-editing and Plugin
will send along any request that maps to a route.

Debugging this will require looking at application server traces
Plugin trace can be used to determine which application server request went to

If the context root on the URL doesn't match a defined context root for a deployed application,
WebSphere will reject the request with the same "Error Calling Application." Again, given that the error
message came out of the WebSphere runtime, we know we're past the Plugin. This shows that the
Plugin knows nothing of the applications that are deployed back in the runtime. The generated XML
will have the context roots of the deployed application at the time the XML was generated. But
subsequent application installations won't be reflected in the XML until the file is regenerated, or the
XML file is hand-edited.

This is different from the Version 4 "Local Redirector Plugin," which did maintain knowledge of the
deployed applications. But that plugin performed a completely different role from this one.

Note:

Session Z5036

Version Date: September 22, 200442IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Application Must Be Started
If the application is valid in every respect except just not started, then you get error
message out of WebSphere Application Server runtime:

Key Points:

Plugin is doing its job ... Plugin trace will show normal processing

This illustrates Plugin doesn't know about application status

Key off the browser error message -- this is Application Server message,
which means flow got to application server

All issues related to Plugin initialization, route mapping and servers being up are not the issue

z/OS HTTP
Server

HTTP
Plugin

azsr01a

CR SR

azsr01b

CR SR
This is error

message coming
back from WAS V5

runtime

Get the exact same
message if you

pointed browser
directly at server.

Once you've gotten past all the other hurdles, the runtime will try to drive the application itself. The
application has to be started, of course. If the application is down you get ... that's right, the "Error
Calling Application" message.

Session Z5036

Version Date: September 22, 200443IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Success!

azsr01a

CR SR

azsr02a

CR SR

wsc1.washington.ibm.com

azsr01b

CR SR

wsc2.washington.ibm.com

Server Cluster
azsr01

Server Cluster
azsr02

z/OS HTTP Server

HTTP Plugin

1Browser
3

2

plugin-cfg.xml

httpd.conf

4

5

6,7,8

Get all these things right ...

And the system will perform and return
application result to the browser

Last point: combining Plugin with
Sysplex Distributor ...

With all those things in place, you're able to drive the application.

Session Z5036

Version Date: September 22, 200444IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

Sysplex Distributor and Plugin

MVS Image D

MVS Image A

HTTP
Plugin

HTTP
Server

MVS Image B

HTTP
Plugin

HTTP
Server

MVS Image C

Cluster
Member

WAS Node C

Cluster
Member

WAS Node D

plugin-cfg.xml

www.dvipa.comBrowser

DVIPADNS

Even if Session Affinity is a requirement, it's possible to incorporate Sysplex
Distributor out front of multiple Plugins:

Key Points:
Multiple HTTP Plugins provides
elimination of "single point of
failure"
Sysplex Distributor will load
balance between HTTP Servers
HTTP Plugin running in each
web server using same XML file

single file or identical copy of file
If using VH, make sure DVIPA address
coded, not system IP

Plugin maintains Session
Affinity to backend servers

The final topic we'll address is that of providing some redundancy for the Plugin. This will involve using
Sysplex Distributor to route the inbound requests to multiple copies of the HTTP Server, each running
the Plugin.

Doesn't this break session affinity? No. Sysplex Distributor will balance between two identical HTTP
servers. The Plugin running inside each will be identical to one another. From there the Plugin will
maintain affinity to the proper backend server.

???

The key to this is making sure that the two HTTP Servers make use of identical plugin-cfg.xml
files (or the same file, if shared). If both copies of the Plugin are running the same configuration file,
then the inbound request will be handled the same way, regardless of which HTTP server Sysplex
Distributor routed the request to.

End of Document

Session Z5036

Version Date: September 22, 200445IBM Americas Advanced Technical Support
Washington Systems Center, Gaithersburg, MD

