
UNIX System Services
 Introduction

Nat Stevenson
Washington Systems
Gaithersburg, MD

UNIX on z/OS Overview

HFS & ZFS Overview

AGENDA

1-2

UNIX on z/OS Overview

AGENDA

OEPG0100

* UNIX functions defined by the Single UNIX Specification from X/Open

Application and skills portability

MVS/ESA & OS/390 Applications

Non-UNIX
Programs

Mixed
Programs

UNIX
Programs

Application Programming
Interfaces

Non-UNIX
Services

UNIX
Services

MVS
Data
Sets

HFS IRISH
Commands

UNIX Applications
And Libraries

The Hidden Gem In OS/390

System
Packs

3-4

The UNIX Kernel
Integrated into MVS BCP
Provides assembler interfaces to POSIX functions.

C Run-Time Library
Provides C interfaces to UNIX95 functions.
Over 1000 functions provided.

Shell & Utilities
Really a UNIX application
"Korn"-ish shell
200 utilities (commands)

dbx debugger

Components of USS

What Makes UNIX - "UNIX"What Makes UNIX - "UNIX"
UNIX Directories - a tree structured file system (similar to
DOS), e.g. /root/dir1/dir2/filename
UNIX Networking - TCP/IP and UDP/IP
System Calls - APIs that provide an interface to low-level
functions (open, read, write, close, fork, exec)
UNIX Shells - user level programs that handle interactive
and batch command line processing (similar to REXX)
UNIX Utilities - development and user tools (print, sort, list
directory, etc.)
UNIX Programming support - Compilers, linkers, 'make'
utility
The 'C' language (also C++) - UNIX is from a C culture.
Most of the OS, tools, and applications are written in 'C'
X Windows and Motif - Most GUI applications are written
for X-terminals

5-6

Why Integrate UNIX Into MVS?

Efficiency in a heterogeneous environment

Business requirements
Application and skills portability
Interoperability across heterogeneous
systems and networks
Transparent access and management
of heterogeneous network databases
Overall architecture for enterprise
open systems computing
Investment protection

MVS participates in a multivendor
environment with

UNIX application portability
Multivendor application interoperability

Open, Client
Server

Applications

IBM 's
z/OS

z/OS

z/OS UNIX System Environment
UNIX Applications

Shell &

Utilities

Existing Applications

CICS/IMS/TSO/BATCH

z/OS SUPERVISOR + WLM
DCE

COMMUNICATIONS

SERVER

TCP/IP
VTAM

DATA

MANAGEMENT

RACF/OTHER

SECURITY

Web
Server

Unix Services are integrated at a low level It is NOT
A Unix emulator
A separate part of the system away from the TSO/batch Environment

7-8

UNIX System Services on z/OS

Required z/OS Subsystems
DFSMS (to handle UNIX file structure)
WLM (to handle UNIX process creation)
RACF/ACF2/TopSecret (to handle UNIX security)

Communication
TCP/IP

Misc z/OS Components
TSO - ISPF (ISHELL)
WLM (in Goal Mode)
 ...

UNIX - More Than a Shell

No wall between MVS and UNIX
Unix System Services
Language Environment
POSIX (bash) shell

More than TCP/IP
Pipes
Inter Process Communication
Thread processing

Rapid development with powerful constructs

9-10

A UNIX SystemA UNIX System

I/O Reduction
Command
Chaining

 User
 Cmd
Interface

 User
 Appl
pgms

Comm &
 Netwkng
 Appl

Comm
Drivrs &
Protocols

Pipes &
Filters

 DB
Systems

Sys
Maint
Serv

 Config
Environment

 System
Commands
&Utilities

Forgnd
 & bkgnd
 executn

Dir
Exec
Pgms

Other
 Utility
 Programs

Kernel

UNIX

Hardware

Interface

System Call

A UNIX SystemA UNIX System

I/O Reduction
Command
Chaining

 User
 Cmd
Interface

 User
 Appl
pgms

Comm &
 Netwkng
 Appl

Comm
Drivrs &
Protocols

Pipes &
Filters

 DB
Systems

Sys
Maint
Serv

 Config
Environment

 System
Commands
&Utilities

Forgnd
 & bkgnd
 executn

OMVS
Kernel

Other
 Utility
 Programs

MVS

Hardware

Interface

System Call

System

11-12

OEPG0094

UNIX Applications

Shell &
Utilities

Existing Applications

CICS/IMS/TSO/BATCH

DCE

COMMUNICATIONS

SERVER

TCP/IP
VTAM

DATA

MANAGEMENT

RACF/OTHER

SECURITY

Web
Server

z/OS Supervisor

z/OS UNIX System Environmentz/OS UNIX System Environment

USS / TSO Support

Examples of using USS support
How the services are invoked
Programming in REXX
Using in a batch process
TSO Commands
Interprocess Communication
Required File Access

13-14

Using UNIX Services

Assembler Assembler
ProgramProgram

Call Call
BPX1xxxBPX1xxx

C ProgramC Program

fork()fork()

stub

C-RTLC-RTL
Transfer
Vector

Call
BPX1abc

Call
BPX1xxx

Perform
requested
function

Callable
Service

Stub

KernelKernel

Perform
requested
function

REXX Support

/* REXX */
ADDRESS SYSCALL

EXECIO - Access to HFS
using file descriptors.

SPAWN - Create new USS
process and exec a new
program or REXX exec
residing in the HFS.

TSO, BATCH

"Traditional" REXX programs
can now call UNIX services.

/* REXX */
ADDRESS SH - Access to shell

& utilities. REXX support
remaps file descriptors.

SAY 'Hello World' -
Mapped to STDOUT (fd=1)

PARSE EXTERNAL - Mapped
to STDIN (fd=0)

EXECIO - Access to HFS.

Shell

"Shell" REXX programs can mix
shell commands and REXX, and
pipe output between them.

15-16

Batch

JCL EXEC statement.
//jobname JOB ...
//stepname EXEC PGM=BPXBATCH,PARM='SH ps
-ej'
//STDOUT DD PATH='stdout file path'
//STDERR DD PATH='stderr file path'
TSO CALL command.
As a TSO command. BPXBATCH SH ps -ej
CLISTS or REXX Execs.
OSHELL command. oshell ps -ej

BPXBATCH -- Execute a program in the HFS. Invoked
via:

TSO COMMANDS

HFS

HFS

DASD01 DASD02

DASD03

PDS

SAM

VSAM

mem.1
mem.2
mem.3
....
mem.n

MKDIR

OCOPY

MOUNT UNMOUNT

TSO/E
ALLOC PATH()

OGET

OPUT

EBCDIC <-> ASCII

OPUTX

OGETX

OGETX/OPUTX REXX execs do PDS and directories

17-18

Interprocess Communication
Message Queues
Strength in n to 1 or n to m
communications
Ideal for small messages
feeding a server

Signals
Basis for error handling
Can be from system events or
application programming

Local Sockets
Used by servers that have the
option of local or remote clients

Shared Memory
Ideal for large data
Avoids data movement
ESQA overhead to map
storage

Semaphores
Generally used to serialize
shared memory

Named Pipes
First-in first-out Queue
Intended for point to point
Can have multiple readers
and writers

HFS & ZFS Overview

AGENDA

19-20

HFS DATA SET ORGANIZATION

/ (ROOT)

bin u tmp

LARGE
TEMPORARY

FILESSYSTEM FILES
USER

DIRECTORIES

SEPARATE HFS FILES FOR USERS OR GROUPS

USE AUTOMOUNT TO MOUNT ON DEMAND

alloc da('hfs.filesys') dsntype(hfs) space(10,10)
dsorg(po) cyl

Must be SMS managed
Allocated like a PDSE using DSNTYPE=HFS
Up to 123 extents (keep to 1 extent)
Single Volume
May be shared by multiple read-only systems
Maximum file size is 2GB
Cannot be mounted at multiple mount points

HFS Data Set ConsiderationsHFS Data Set Considerations

21-22

Address Space Address Space

Process

Each Process
has an ID(PID)
number

Each Process
is either a
Parent or Child

Process

UNIX Execution ControlUNIX Execution Control

Fork and Exec
Parent A.S.

PID=fork();
select(PID){
when(-1):
fork failed

when(!0):
parent stuff
waitpid(PID);

when(0)
child stuff
exec(abc);
not reached

}
Data

System Areas
file descriptors

Child A.S.
PID=fork();
select(PID){

when(-1):
fork failed

when(!0):
parent stuff
waitpid(PID);

when(0)
child stuff
exec(abc);
not reached

}
Data

System Areas
file descriptors

Copy

Child A.S.
/*New Program*/
{
abc stuff
exit;

}

abc Data

abc
System Areas

Overlay

23-24

Parent Process Child Process
PID=Fork()
Select(PID)
When(-1)
 Fork Failed
When(!0)
 Parent Things
 waitpid(pid)
When(0)
 Child Things
 exit

PID=Fork()
Select(PID)
When(-1)
 Fork Failed
When(!0)
 Parent Things
 waitpid(pid)
When(0)
 Child Things
 exit

Address Space Address Space

Fork: Creating a New ProcessFork: Creating a New Process

Parent Process(A) Child Process(B)
PID=Fork()
Select(PID)
When(-1)
 Fork Failed
When(!0)
 Parent Things
 waitpid(pid)
When(0)
 exec(ProgB,args)
 ProgB Things
 exit

PID=Fork()
Select(PID)
When(-1)
 Fork Failed
When(!0)
 Parent Things
 waitpid(pid)
When(0)
 exec(ProgB,args)
 ProgB Things
 exit

Address Space Address Space

Fork: Executing A New ProgramFork: Executing A New Program

25-26

UNIX System Services Thread Model

PROGA
Rtn

PROGA
Rtn

PROGA
Rtn

Address Space

PROGA
Main

pthread_create

RACF - Unix System Services Interface

SMF

RACF
Verification:
 RACF USER = UID
 RACF GROUP =
GID

Access Control:
 UID = RACF USER
(USP)
 Type of access
 Security Packet
(FSP)

Audit Records

OMVS
Shell

Commands

OMVS
Application

OMVS
Utility

OMVS
Kernel

RACF
Callable
Service

SAF

27-28

User / File Security

Superuser is able to access
any file in the system. UID=0

User is able to access own and
authorized files. UID>0

User within Group is able to
access authorized files. GID

Using ISHELL to ease into the Shell

ISHELL is not the shell. It is a TSO program that gives
 you an ISPF interface to work with HFS files.

29-30

How do I get to the real shell
OMVS - familiar ISPF interface.

How do I get to the real shell

31-32

 Root (/)

u usr notesdata

mail

path: /notesdata/mail
files
mailfile.nsf

File System StructureFile System Structure

 Root File
 System

/
D2

D4

D1

D3

/

F F

F

D5

F F F

/

F F
 HFS
 Data Set

 HFS
 Data Set

Mount
Unmount
Automount

File System Mount PointsFile System Mount Points

33-34

 Root (/)

u usr notesdata

File System is a HFS data set

files
mailfile.nsf

mail

DSNTYPE=HFS

File System Data SetsFile System Data Sets

POSIXMVS ALLOCATION

OPEN
GET
PUT

CLOSE
UNALLOCATION

SECURITY VIA
DATA SET PROFILES

EXCP
BDAM
BSAM
BPAM
ISAM
VSAM

VTAM

open()
read()
write()
fcntl() advisory locking
close()

permission bits
on each file

byte stream -
file organization is
appl responsibilityKSDS

ESDS

RECORD
ORIENTED

ENQ

FILE ACCESSFILE ACCESS

35-36

zSeries File System (zFS)zSeries File System (zFS)

z/OS zSeries File System

Overview
A new UNIX file system to meet the changing needs of new
workloads
Complementary to the existing Hierarchical File System
(HFS)
In many environments we have seen significant performance
improvements over HFS.
Based on the DCE Local File System used by DFS
Improved crash recovery
Underlying architecture supports additional function
zFS file systems can be shared in a sysplex

37-38

z/OS zSeries File System

Overview
zFS is a Physical File System (PFS) that runs in a Colony
Address Space
zFS needs a FILESYSTYPE entry in BPXPRMxx
FILESYSTYPE TYPE(ZFS) ENTRYPOINT(IOEFSCM)
ASNAME(ZFS)
zFS requires a JCL PROC in PROCLIB
zFS file systems are mounted just like HFS file systems
except the TYPE is ZFS
zFS first became available in z/OS V1R2
Available for OS/390 V2R10 and z/OS V1R1 via APAR
OW51780

z/OS zSeries File System

Administration
Format a zFS aggregate
IOEAGFMT
Manage a zFS aggregate / file system
zfsadm command suite
pfsctl API
Define configuration options for aggregates
IOEFSPRM parmlib member
Define zFS to UNIX System Services
add FILESYSTYPE entry in BPXPRMxx parmlib member
Define zFS PROC

39-40

z/OS zSeries File System

Crash Recovery
zFS is a logging file system. It logs metadata updates. If a
system crash occurs, the log is replayed to bring the file
system to a consistent state.
I/O requests are started immediately asynchronously so that if
a system crash occurs, most data is already on disk

Backup / Restore
A zFS aggregate can be backed up and restored using
IDCAMS REPRO
A zFS aggregate can be backed up and restored using
DFSMSdss
The aggregate must be quiesced before the backup

z/OS zSeries File System

POSIX Removal (V1R3)
Problem

zFS is a POSIX process which causes some unwanted
restrictions
zFS mount commands must be placed in /etc/rc
zFS does not support OMVS restart

Solution
Remove POSIX calls
Replace with basic MVS calls
zFS mounts can be put in BPXPRMxx
OMVS restart supported for zFS

Migration
Mount commands can be moved to BPXPRMxx or left in
/etc/rc

41-42

z/OS zSeries File System

UNIXPRIV Support (V1R3)
Problem

zFS Adminstration should not require UID=0

Solution
Support the UNIXPRIV class profile
READ authority to SUPERUSER.FILESYS.PFSCTL instead
of UID=0 to manage zFS

z/OS zSeries File System

Publications
z/OS Distributed File Service zSeries File System
Administration (SC24-5989-01)
Available online by choosing Library from the z/OS home
page
http://www.ibm.com/servers/eserver/zseries/zos

43-44

