
Clustering DB2 for Windows NT

Achieving Scalability and High Availability

Abstract

Ask ten people what clustering means to them and you will get ten different answers. DB2 can take
advantage of clusters of Intel based servers running Windows NT in two different ways, first for
scalability and second for high availability. This document will explain these capabilities of DB2 in a
clustered environment.

Mike Logan
IBM Americas Advanced Technical Support

December 1999

As Microsoft’s Windows NT moves from being used as a departmental file or
application server into supporting mission critical business intelligence and
e-business applications, new expectations are being set for the OS. NT-based
servers must deliver higher levels of performance, scalability, and availability than
ever before. IBM’s DB2 for Windows NT helps customers meet those
expectations.

IBM developed DB2 to exploit all the key features of Windows NT and to
integrate seamlessly into the Windows environment. Capabilities like integrated
security, performance monitoring, error logging, exploitation of the multithreaded
model, and NTFS and Raw I/O filesystems have allowed DB2 to not only earn
the “Designed for BackOffice” logo but to deliver record setting performance on
the NT platform as well.

The demands of many businesses today have caused them to outgrow the
capabilities of even large 2, 4, or 8 way SMP servers. Many of these customers
are turning to clusters of these SMP servers to meet their performance and
scalability requirements. With the Enterprise - Extended Edition, DB2 is
uniquely positioned to exploit the capabilities of these clusters.

Many customers are also discovering that a traditional NT implementation
cannot meet their availability needs, particularly with e-business based
applications that have no toleration for down time. To meet these needs, DB2
integrates with the most prevalent and robust high availability solutions for NT.

This document descibes the capabilities of DB2 for Windows NT versions 5 and
6 running on the Windows NT Enterprise Edition version 4.0.

INTRODUCTION

DB2 Enterprise - Extended Edition (EEE)

DB2 Enterprise - Extended Edition (EEE) provides all the capabilities of the
DB2 Enterprise Edition (EE). This includes all the integration features, the
“Designed for BackOffice” certification, and all the performance features.
What EEE adds is the ability for a single database to span multiple Windows
NT servers for parallel, clustered processing.

In order to understand how DB2 EEE works, it is first necessary to define
some terminology used in describing a EEE environment.

� A database is simply a collection of data.
� A database manager is the software that allows users to store and

access data in a database.
� DB2 EEE implements a partitioned database system. In a

partitioned database system, each database manager manages a
portion of the entire database known as a database partition .

� A database partition server (node) refers to a single database
manager, its database partition, and the system resources that it
manages.

� A partitioned database system or instance contains all the
database partition servers (nodes), and all share a common

configuration.

Figure 1 shows a database instance that consists of four database nodes,
each of which resides on a separate physical Intel server. The database
spans all four nodes so a partition resides on each of the nodes.

It is also possible for multiple partitions or multiple logical nodes (MLN)
exist on a single machine. This type of configuration is shown in Figure 2. In
this configuration, there are still four database nodes, but only two Intel
servers. Each server contains two logical nodes and thus two partitions of

CLUSTERING FOR
PERFORMANCE
AND SCALABILITY

the database. Each of the nodes still operates independently, but may share
some system resources. Generally, this type of configuration would only be
implemented in very large SMP systems, 8-way or greater; or if other
maintenance tasks, such as backups or table reorgs, would benefit from
smaller partitions.

DB2 Shared-Nothing Architecture

DB2 EEE implements a shared-nothing architecture. This simply means
that DB2’s architecture does not require any shared hardware components.
This includes CPU, memory and disk. This architecture is important for
several reasons.

First, it eliminates contention for shared resources. Take for example a
shared disk architecture. As the number of servers or users grows, there is
an increased likelihood of an I/O bottleneck as they all compete for the same
disk resources. With the shared-nothing architecture, this contention does
not happen because each partition has its own disk.

Second, it is completely hardware independent. There are no special
requirements for hardware or hardware drivers for this architecture, which
translates into less expensive implementation. Since each server owns and
manages its own resources, nothing special is required. The nodes don’t
even have to be identical, although it is often desirable. In contrast, a
shared-disk implementation requires either special hardware or at least
special drivers for the hardware to manage the concurrency.

This flexibility of architecture frees DB2 from many of the scalability
limitations that plague other architectures. The best demonstration of this
was the 1 terabyte TPC-D benchmark published by IBM using DB2 EEE
for NT spanning 32, 4-way SMP servers. No other parallel database
solution for NT has demonstrated scalability that compares to DB2’s
capabilities.

How does it work?

Remember that DB2 EEE implements this shared-nothing architecture by
partitioning the data. Each partition consists of a subset of the entire
database. One very important thing to understand is that DB2 automatically
maintains the partitioning. DB2 uses a hash-based partitioning algorithm to
determine the location for any given row.
This concept is illustrated in Figure 3. For each database, DB2 has a
partition map that consists of 4096 slots as shown. DB2 assigns partitions
to the slots on a round-robin basis. When placing new data in a table, DB2
uses the table’s partitioning key to hash the row into one of the slots and
thus a specific partition.

The partitioning key is a column or group of columns in the table. In the
example, our partitioning key consists of columns c1, c2, and c3. These
columns are combined and hashed to a number between 0 and 4095. The
row is then placed on the partition assigned to that slot. The same function is
used when retrieving data so DB2 knows exactly which partition to get the
row(s) from to satisfy a query.

As you may have guessed, the key to a successful implementation of DB2
EEE is chosing a good partitoning key. There are usually two goals in
choosing a partitioning key: spreading data evenly and achieving table
collocation.

Achieving an even data distribution is usually easier than you might think.
Unlike range-based partitioning (partitioning based on A - E on node 0, F -
K, node 1, etc.), the hash based approach usually results in an even
distribution. Frequently, simply ensuring that the chosen key has high
cardinality (number of distinct entries) is sufficient. In the event that the key
you wish to use does not produce an even distribution, you can still achieve
it by using a custom partition map to favor certain nodes.

Choosing a partitioning key that results in table collocation often has the
greatest impact on performance. Table collocation simply refers to the
ability to keep related pieces of data within a single partition. To illustrate
this concept, consider the following SQL statement:

SELECT A.NAME
FROM STAFF A, ORG B
WHERE A.DEPT = B.DEPTNUMB AND B.DEPTNUMB = 10

If DEPT is the partitioning key for STAFF and DEPTNUMB is the
partitioning key for ORG, all rows in both tables that reference department
10 will be on the same partition, or collocated. DB2 will recognize that fact
and only process the query on that one node. If they are not partitioned that
way, DB2 will use inter-node communication between multiple nodes to
resolve the query. Collocation is particularly desirable in an OLTP
environment.

In cases where collocation is not possible, users may choose to implement
some tables as replicated summary tables. With replicated summary
tables, an entire copy of the table may be stored at each node, allowing all
access to that table to be contained within a partition.

Inter-node Communication

In order to complete the explanation of how this architecture works, let’s
define some more terminology. These concepts are illustrated in Figure 4.
First of all, in a DB2 EEE environment, not all nodes are created equal. The
catalog node is a single node in the cluster that contains the DB2 system
catalog. The system catalog contains all the tables that DB2 uses to define

its resources such as tables, indexes, etc. The system catalog always resides

on one and only one node.

Even though the database physically spans multiple machines, an application
may connect to any of the machines in the cluster and have access to the
entire database. The partitioning is completely transparent to the application.
Any application code or SQL statement that runs against the non-partitioned
version of DB2 will run unmodified against DB2 EEE (no recompile, recode,
or optimizer hints necessary). When an application connects to the
database, the node it connects to becomes its coordinating node. A DB2
agent (NT thread) on that machine will coordinate the efforts of any node
that must participate to resolve a particular SQL request. The request enters
DB2 at this node, an access plan is generated here by the optimizer, and the
coordinator sends the request to the correct node(s), and performs any final
processing on the result set.

To minimize network traffic and data movement, DB2 uses a
function-shipping model as opposed to a data-shipping model. When the
DB2 optimizer processes a statement, it breaks the statement into its lowest
level operations and then attempts to order those operations such that most
of the predicates, joins, etc. can be done within a single partition. Through
this process, DB2 can perform much of the work local to the data and avoid
shipping data between nodes, especially in cases where there is a high
degree of collocation.

At this point a skeptic might say that this design is actually a
“shared-interconnect” instead of a shared-nothing architecture. While that
viewpoint could be argued, it is not necessarily relevant. Because DB2’s
optimizer strives to minimize data shipping, there may not be enough traffic

to cause a problem with the interconnect. Many smaller implementations, 2
- 4 nodes, can easily support the traffic with standard 100 Mb ethernet. For
larger or more heavily used systems there are a number of alternatives
including gigabit ethernet or Virtual Interface (VI) Architecture based
switches. VI is a standards based architecture designed to meet the need
for a high-volume interconnect for Intel based servers. Many of these
switches actually allow for a dedicated path between each node in the
cluster, eliminating any shared interconnect concerns.

Maintenance

A common concern with new or prospective DB2 EEE customers is
maintenance of a EEE environment. The good news is that it is not much
different than any DB2 NT implementation. You have a few new tasks, like
choosing partitioning keys, but for the most part everything remains the
same. You have the same graphical tool set to assist with administrative
tasks, the same scheduling capabilites, and the same integration with NT for
things like performance monitoring and error reporting.

Creating the database is only a little different. With the exception of adding
the partitioning keys, the same DDL can be used to define EEE databases as
any other DB2 database. Loading data into the tables can be slightly
different. If using INSERTS or IMPORT to load a table, nothing is
different. If using the LOAD utility, then DB2 requires that the data be
partitioned prior to loading. Fortunately, DB2 provides a utility that
automates the loading process for EEE called the DB2 Autoloader. This
simple utility performs the partitioning of the input data (split), any movement
of data, and the loading of data very efficiently.

Although there have been a number of improvements in the reliability and
availability of Intel servers, like RAID storage, redundant components, and
hot-swap capability, there are still cases where a single NT/Intel based
solution will or must come down. If you’ve ever experienced the infamous
blue-screen-of-death, then you undertstand . In an NT world, the solution
to this possibility tends to be a failover scenario. In this scenario, when one
machine fails another takes over its function with minimal downtime or
interruption to the user. On NT, as on other platforms, DB2 exploits the
best of the high availability offerings for the platform. On NT, this is
Microsoft Cluster Services(MSCS) or IBM’s Netfinity Availability
Extensions for MSCS(NAE).

Microsoft Cluster Services (MSCS)

MSCS is the Microsoft clustering-solution software used with Windows NT
Server, Enterprise Edition. MSCS version 1.0 supports clusters of two
specially linked servers running Windows NT Server, Enterprise Edition.
The primary function of MSCS occurs when one server in a cluster fails or is
taken offline. When this occurs, the other server in the cluster takes over the
failed server’s operations. MSCS does not provide load balancing or
parallel processing.

All server versions of DB2 (Workgroup Edition, Enterprise Edition, and
Enterprise - Extended Edition) are MSCS aware. In a MSCS environment,
DB2 supports both active-passive (hot standby) and active-active (mutual
takeover) configurations.

Hot Standby

The hot standby
configuration is the
simplest. As shown in
Figure 5, this
configuration consists of
DB2 actively running on
one server in the
cluster pair. The
second server is a
dedicated hot standby
that does nothing until a
failure occurs. In the
event of a failure, all

CLUSTERING FOR
HIGH
AVAILABILITY

MICROSOFT
CLUSTER
SERVICES (MSCS)

The above examples have shown high availability of non-partitioned
databases. Since EEE databases often span more than the two machines
supported by MSCS, can it be used to provide high availability in this
environment? Absolutely. Because of the shared nothing architecture of
DB2 EEE where each node has its own resources, any two nodes in a EEE
cluster can be paired together in an MSCS cluster. For example, Figure 7
shows a four node EEE implementation that would span two MSCS
clusters in an mutual takeover scenario. In a EEE/MSCS environment you
can have either a mutual takeover configuration , a hot standby
configuration, or a mixture of both. You might want a mixture in a situation
where you had an odd number of EEE nodes. Since MSCS only supports

pairs, you would still need one extra to provide failover for the odd node.
This environment is illustrated in Figure 8.

How Does It Work?

IBM Netfinity Availability Extensions for MSCS (NAE)

As suggested by its name, the Netfinity Availability Extensions for MSCS
extend the capabilites provided by MSCS. NAE provides the same failover
type availability, but does so for clusters of up to eight nodes. With NAE,
multiple server failures can be tolerated without loss of service. This ability
for larger clusters makes NAE ideal for providing high availability for DB2
EEE databases or for a farm of non-partitioned DB2 Servers. Figure 9
show an example of an eight-node EEE system with cascading failover
support. This example is similar to the mutual takeover scenario of MSCS.
Each node is running one DB2 partition and acting as the backup node for
another.

Figure 10 shows
and example of a
many-to-one
failover scenario.
This scenario is
similar to the hot
standby
configuration of
MSCS.
However, with

NAE, only one node is inactive to support 7 active nodes. This can be a
much more cost-effective way to provide high availability with no
degradation in performance. Performance would only begin to degrade with
the failure of two or more cluster nodes. Another good possiblity is that

some of these nodes could be database, some file and print servers, etc
allowing a single spare to server a variety of functions. Perhaps the best part
of NAE is the way it is sold and packaged. IBM only sells the product as
part of a complete availability solution. The availability cluster is delivered
configured and functional.

The Ultimate in NT Availability and Scalability

Just like with MSCS, DB2 EEE can span multiple NAE clusters for high
availability scenarios that go beyond the current eight node limitation. This
allows incredible possiblities in terms of scaling to support any database size
or any number of users on the NT platform while maintaining system
availability and reliability. Figure 11 shows one example of how a EEE
/NAE configuration of greater than 8 nodes might look. This configuration
has 13 of the 16 nodes active as database partitions. Two of the 16 nodes
are acting as hot spares. This system could operate at consistent
performance levels with a loss of a single node in each cluster and continue
processing with failure of several nodes.

How Does it Work?

In most aspects, NAE behaves exactly like MSCS. In fact, behind the
scenes each node is installed as a single node MSCS cluster. NAE manages
all the interaction between these single node clusters to provide one large
cluster. NAE uses the same API as MSCS, with a few extensions, and a
very similar user interface. Like MSCS it requires a shared interconnect and
a shared storage bus (currently only supports fibre). Each node will still
have one or more disk resources assigned exclusively to that node. The
failure detection and failover works just like MSCS. Cluster resources
belong to virtual servers and the physical location of the resources is
transparent to clients just as in MSCS. DB2 clients would be affected by a
failure in an NAE resource exactly as they would with MSCS.

IBM has committed to making DB2 the database of choice on Windows.
This is being done by delivering the best in relational technology and by
exploiting the capabilities of Windows. DB2’s clustering capabilities for
both scalability and high availability are key examples of this effort.

SUMMARY

IBM DB2 for Windows NT Home Page:
http://www-4.ibm.com/software/data/db2/udb/udb-nt

IBM Data Management Home Page:
http://www.software.ibm.com/data

IBM DB2 Product and Service Technical Library
http://www.software.ibm.com/data/db2/library

IBM Netfinity Avalability Extensions for MSCS
http://www.pc.ibm.com/us/netfinity/mscs.html

Microsoft Cluster Services
http://www.microsoft.com/ntserver/ntserverenterprise/exec/overview/Cluster
ing/Default.asp

FOR MORE
INFORMATION

