Finding and Collecting Availability Measurement Data for
the IBM HTTP Server and WebSphere Application Server for
z/OS and OS/390

Mike Bonett
IBM Advanced Technical Support, Gaithersburg, MD
bonett@us.ibm.com
October 2001

Many |I/T environments are finding that the ZZOS and OS/390 operating system platforms are prime
candidates to support e-business applications. These applications rely on the technical foundation
provided by the IBM HTTP Server for OS/390 and the WebSphere Application Server for OS/390.
These products become part of the end-to-end path for an application, to allow users to submit
requests to application logic, and application logic to retrieve data for presentation back to the user.

Monitoring and measuring the availability of the IBM HTTP Server and WebSphere in the OS/390 and
z/OS environment must be done as part of proper management of the applications or business systems
supported by these components. This paper identifies the datathat is available to support these tasks,
and how to collect it from two sources of measurement data:

1. Event Sources, locations where products can directly place status information. Thisincludes:
a. Product logs
b. SMF
Cc. System messages
d. SNA derts
e. TCP/IPtraps
2. Monitoring Techniques, which can be used (either directly or as part of a product function) to
monitor a product component to determine its status. These include:
a. Heartbeats
b. “Ping” functions
c. Remote commands
d. User smulation
e. Custom monitoring agents

Detailed descriptions of these sources can be found in the White Paper Finding and Collecting
Availability Measurement Data, which is available from the author.

Each event source or monitoring technique has advantages and disadvantages for both products. The

skills and policies within aparticular I/T environment will determine which sources can be accessed or
which monitoring techniques can be deployed. Information from the appropriate event sources and

Page 1 of 20 ©IBM 2001

monitoring techniques provides, in various levels of detail, dataon IBM HTTP Server and WebSphere
Application Server availability.

The information in this white paper is based on the following product levels:
* |IBM HTTP Server for 05390 V5R3

* WebSphere Application Server V3.5 Standard Edition for OS/390

* WebSphere Application Server V4.0 for Z/OS and OS/390.

References to OS/390 in the paper also apply to z/OS.

Architecture Basics

Before measurement starts, what is being measured has to be defined. For the HTTP Server and the
different WebSphere levels, their configuration and architecture influences how they are measured.

IBM HTTP Server
The IBM HTTP Server can run in two modes: standalone and scalable server.

In standalone mode, each IBM HTTP Server environment is an independent address space. Requests
are received by the server on the defined port, and serviced by the address space. The standalone
address space, and the resources within that address space, are the focus of the availability
measurements.

In scalable mode, each IBM HTTP Server environment runs as a collection of address spaces. Within
each collection is a queue manager address space, which receives requests, and one or more queue
server address spaces, which the queue manage sends the request for processing. The queue server
address spaces are created and dispatched by the Workload Manager (WLM) based on defined
policies, or manually. The combination of the queue manager address space and one or more queue
server address spaces are the focus of availability, since application requests require both to be active.

WebSphere Application Server 3.5

WebSphere 3.5 runs entirely with an IBM HTTP Server address space. It executes all application code
within that address space. The focus of availability isthe HTTP address space environment (either
standalone or scalable, as described above) and the WebSphere functions within that environment.

WebSphere Application Server 4.0

WebSphere 4.0 runs as a collection of servers. Each server is comprised of one or more server
instances. Each server instance is made up of a control region and zero or more server regions. Asin

Page 2 of 20 ©IBM 2001

the HTTP Server scalable mode, the control regions route work submitted to the server to a server
region.

WebSphere 4.0 requires the following serversto be running, to support applications:
* Daemon Server (asingle control region)

¢ Systems Management Server

* Interface Repository Server

e Naming Server

The applications themselves run in the following types of servers:
* J2EE Server, for Java applications (servlets, jsps, EJBS)
* MOFW Server, for CORBA (Component Broker) applications

The focus of availability for WebSphere 4.0 is twofold:

1. Theavailability of the WebSphere “subsystem” servers (Daemon, Systems Management, Interface
Repository, Naming) and their functions.

2. Theavailability of the appropriate application servers, which require the WebSphere subsystem
serversto be available.

Event Sources

Event sources are where information (including status information) is normally recorded about a product
or function. Typically these are provided without the need for an additional product (though product
customization may be required to activate the event recording). On OS/390 the primary event sources
are product logs, SMF, system messages (recorded in the SY SLOG/OPERL OG), SNA aerts, and
TCP/IP traps.

Product Logs

IBM HTTP Server
TheIBM HTTP Server creates severa different logs:

e Server AccessLog

* Fast Response Cache Accelerator (FRCA) Access Log
* Proxy AccessLog

* CacheAccessLog

* Agent Log

* Referrer log

e Server Error log

e CGl Error Log

Page 3 of 20 ©IBM 2001

Of these, the access log is best for determining when the HTTP Server was or was not available to
serve pages. Each entry in the access log records a request against the server. The entry istime
stamped, and shows:

* What was requested

* Who requested it

* Therequest method

* Thefile being requested

* A return code indicating the request success or failure

Using thisinformation, different types of availability can be determined. For example:

* When was the server available or unavailable in terms of serving pages? If the HTTP Server
normally receives one or more requests per minute, gapsin record time stamps that are greater than
aminute indicate periods when the HTTP Server was down. In addition, a succession of failure
requests for al requests to the server can reveal periods when the HTTP Server was up, but unable
to service requests for some reason (a configuration error, missing files, etc.).

* When were specific server resources available or unavailable? Since each request contains the name
of requested resource (usually afile, but it can also be the invocation of an executable process such
as a CGl program, servlet, or EJB), the log shows when specific resources where available or
unavailableto all users, or to particular sets of users.

WebSphere Application Server 3.5

WebSphere Application Server also creates additional logs:
* native.log (messages produced by WebSphere C code)
* ncf.log (messages sent to system.out and system.err from WebSphere applications)

The content of these logs will depend upon the applications running in WebSphere Application Server
using them to write status and error information. Because of this, these two logs “as-iS” may not be the
best source of availability information for WebSphere Application Server or its applications. Later in this
paper monitoring techniques will be discussed which can be used to log availability information to the
ncf.log file.

WebSphere Application Server 4.0

The error log stream in WebSphere 4.0 is a system logger application. There can be acommon log
stream for all of WebSphere 4.0, or individual log streams for servers and server instances. The error
log stream contains primarily WebSphere error information:

* Assertion failures

* Unrecoverable error failures

* Vital resource failures, such as memory

Page 4 of 20 ©IBM 2001

* Operating system exceptions
* Programming defects in WebSphere code

Since it meant primary for diagnosis, it may not be the best source of WebSphere availability status by
itself.

WebSphere Java applications can use the provided message logger function. This built upon using JRas
support (interfaces and methods), which are extensions to the Ras Toolkit for Java. Using the message
logger alows:
* Defining messages inline, or via a separate message propertiesfile.
* Assigning the message type - error, warning, or informational.
* Sending the message to one or more of these destinations: SY SLOG, error log stream, or

CTRACE data set.

An example of Java code using the message logger function is provided in the WebSphere
Application Server for ZOS and OS/390: Assembling J2EE Applications manual. This can be

used to have the application log a“ready for processing” message when it starts, and a“terminating
processing” message when it finishes, which can then be used for availability measurement purposes.

SMF

IBM HTTP Server
SMF record type 103 contains configuration and performance statistics for the IBM HTTP Server. The
layout and content of this record type is documented in the IBM HTTP Server Planning, I nstalling,

and Using manual. The statistics in these records are very useful for determining HTTP Server
performance and required tuning, but not as well suited for availability measurements.

WebSphere Application Server 3.5

WebSphere Application Server 3.5 does not record information to SMF.

WebSphere Application Server 4.0
SMF record type 120 contains interval and activity record subtypes for WebSphere Application Server

version 4.0. The layout and content of this record type is documented in the WebSphere V4.0 for
Z/OS and OS/390 Operations and Administration manual.

Page 5 of 20 ©IBM 2001

The server activity record records activity within an Application Server (a J2EE or MOFW server); a
singlerecord is created for each activity that isrun inside a server or server instance. The container
activity record records activity within a container located in a WebSphere transaction server.

Since activity records are timestamped when the activity occurred, server or server instance availability
can be derived if the activity occurs frequently enough. If server transactions are expected at least once
aminute, gapsin activity record timestamps that are greater than a minute can indicate server
unavailability.

System Messages

IBM HTTP Server

For performance reasons the HTTP Server is best run as a started task under OS/390.
Several key messages are issued to the console and SY SLOG/OPERLOG to indicate the availability
status of the HTTP Server:

Message | D Description

IMW 35341 The HTTP Server task has begin the initialization process.

MW 3536l The HTTP Server task has completed initialization and can begin processi
requests

IMW3535E The HTTP Server failed to initialize. Errors need to be fixed and the serve
restarted before requests can be processed.

IMW3537I The HTTP Server has been requested to terminate and restart, usually as g
result of an operator request.

IMW 3538l The HTTP Server restart was successful, and request processing can resur|

IMW3539E The HTTP Server restart was unsuccessful. Errors need to be fixed and th
server restarted before requests can be processed.

MW 3540I The HTTP Server has stopped processing work and has begun to shut
down, usually as aresult of an operator request.

IMW354l | The HTTP Server has completed shutdown and the address spaceis
terminating.

IMW 3542E The HTTP Server is ending due to a program check. A dump is taken for
problem diagnosis purposes and then it shuts down.

These messages can be captured in real time (using an automation product) or extracted from the
SYSLOG or OPERLOG, and used to determine when the HT TP Server was or was not available. For
example:

* Messages IMW35361 and IMW3538I indicate availability or “up” status.
* Messages IMW3535E, IMW35371, and IMW3540I indicate “ unavailability” or “down” status.

Page 6 of 20 ©IBM 2001

Calculating the time periods between “up” and “down” messages provides availability and unavailability
measurements, in terms of when the HTTP Server was available to process requests. Note that the
HTTP Server can be available even though the WebSphere Application Server is unavailable, so these
messages by themselves will not give a complete view of availability for WebSphere applications.

WebSphere Application Server 3.5

No messages are logged to the console or SY SLOG that report the state of WebSphere Application
Server (Messages do appear in the SY SOUT file of the HTTP Server started task, but these are not
visible to the console or SY SLOG/OPERLOG). Any messages from WebSphere Application Server
to the console have to be generated by applications. Java applications (servlets, JSPs, or EJBS) can
send messages to the console by calling the exec method of the Java runtime class to send one of the
following command to the UNIX System Services (USS) shell.
a. Thelogger command, which will send a message to the console.
b. If using Tivoli NetView for OS/390, the netvemd REXX program (supplied with Tivoli
NetView), which sends arequest to NetView. NetView receives the requests and issues a
message using the NetView WTO function.

The calls alow applications to write status messages to the log (active, terminating, etc.) for usein
availability measurements. This method can be used to have a servlet loaded at startup time and write a
message that indicates WebSphere is active. The termination routine of that servlet (assuming itis
terminated only when WebSphere ends) can be used to write a message indicating that WebSphere is
terminating.

The following Java code:

Runtime rt
Process pr
try

{
pr = rt.exec(“logger -dl1 -a MABOO5I Message froma Java application”);

Runti me. get Runti ne();
nul | ;

Will result in the follow message on the console and in SY SLOG:
+MABOO5I : STCRACF: 33554574: Message from a Java application

The UpTime sample servlet in Appendix A illustrates how thisis done using Tivoli NetView for
0S/390.

WebSphere Application Server 4.0

Page 7 of 20 ©IBM 2001

Several key messages are issued by WebSphere 4.0 to the console and SY SLOG, that indicate control

and server region address spaces start up and shutdown:

Message | D Description

BBOUOOO7I The daemon address space is starting.

BBOUOO16I The daemon address space initialization is compl ete.
BBOUOOSI The daemon address spaced ended normally.
BBOUOO9SE The daemon address space ended abnormally.
BBOUOOO1I The control region address space is starting.
BBOUO0020I The control region address space initialization is complete.
BBOUOOO2 The control region address space has ended normally.
BBOUOOO3E The control region address space has ended abnormally.
BBOUOOO4I The server address space is starting.

BBOUOO21l The server address space initialization is complete.
BBOUOOOSI The server address space has ended normally.
BBOUOOOGI The server address space has ended abnormally.

These messages can be captured in real time (using an automation product) or extracted from the
SYSLOG or OPERL OG, and used to determine when an address space component of WebSphere
4.0 was or was not available. For example:

* Messages BBOUOOO1l or BBOUOO020I indicate availability or “up” statusfor a control region
address space.

* Messages BBOU0002I or BBOUOOO3E indicate “unavailability” or “down” status for a control
region.

Calculating the time periods between “up” and “down” messages provides availability and unavailability
measurements, for a single address space. By aggregating this data across all appropriate address

spaces, the availability of a WebSphere server (either a subsystem server or an application server) can

be determined). Aggregating the server data for the Daemon, Systems Management, Naming, and
Interface Repository servers will determine “WebSphere Subsystem™ availability. Aggregating the data
for a particular application server will determine the “ Application Subsystem” availability - which may or
may not be the same as the application availability, depending on the application characteristics.

Details on aggregating component measurements to get accurate availability measurements for a group
of components can be found in the white paper Measuring End-to-End Availability: How To Get
Started, which is available from the author.

Page 8 of 20 ©IBM 2001

SNA Alerts

The IBM HTTP Server and WebSphere Application Server do not send out SNA alerts. Alerts can be
generated from applications running in this environment (e.g. CGI programs or servlets) by using the
USS interface provided by Tivoli NetView for OS/390 V1R2 or later. An aert can be sent by following
these steps:

1. Theapplication calsthe netvemd REXX program (supplied with Tivoli NetView) and passesto it

the NetView GENALERT command with appropriate parameters.
2. NetView receives the command string and executesit.

SNMP Traps

IBM HTTP Server

A SNMP management information base (MIB) and SNMP subagent is supplied with the IBM HTTP
Server. This allows any SNM P-capable management system to retrieve status and performance
information about the server. Details on implementing the SNMP function arein the IBM HTTP Server
for OS390 Planning, Installing, and Using manual.

Currently the HTTP Server does not issue traps. However, the MIB variables can be queried and, in
some cases, set. For example, the MIB variable appl Oper Status indicates the operational status of the

server. An SNMP manager can query thisvariable at aregular interval and use the query results to
determine the HTTP Server availability status.

WebSphere Application Server 3.5and 4.0

Thereis no SNMP support in WebSphere. Code to issue SNMP traps will have to be embedded in
WebSphere applications.

Monitoring Techniques

If the event sources do not provide sufficient information for the desired measurements, the following
monitoring techniques can be evaluated for use. All require some work to implement, but can provide

Page 9 of 20 ©IBM 2001

greater detail on availability. These techniques all provide rea time information on product/function
status. Thisinformation that can be captured and saved for longer term availability reporting.

Each monitoring technique described can be used in the following “generic” process:

1. The monitoring function (standalone or part of a systems management product, running on the same
platform asHTTP Server or WebSphere or on a connected platform) begins an observation by
invoking a monitoring technique against the HTTP Server or WebSphere.

2. A responseisreturned from the HTTP Server or WebSphere to the monitoring function.

3. The monitoring function examines the response, or determines if there was aresponse, and uses that
to determine the availability status (the specific function being measured depends on the type of
monitoring technique employed).

4. The monitoring function records status in a data repository somewhere. It may choose to record
status from all observations, or record only when an observation indicates a status change from the
previous observation.

Heartbeat

A heartbeat isasignal at aregular interval indicating that the component is still functioning. When the
heartbeat is present -- either logged to afile, or sent as an event to receiving software -- the component
isavailable. It indicates that the component is executing -- but it may not show that it is able to service
requests. Absence of a heartbeat indicates the component is unavailable.

IBM HTTP Server

There is no built-in heartbeat function for the IBM HTTP Server. An indirect one can be created from
the contents of the server access log. For example, if an automated function requests a URL from the
HTTP Server at regular intervals, the access log will record the request whenever the HTTP Server is
able to accept them. The access log then has to be processed to analyze when the “heartbeats’ did or
did not occur, and determine when the server was available. Periods when the automated function that
issues the heartbeats was not running would also have to be accounted for.

WebSphere Application Server 3.5and 4.0

Aswith the IBM HTTP Server, there is no built-in heartbeat function for the WebSphere A pplication
Server. Anindirect one can be created in severa ways:

Page 10 of 20 ©IBM 2001

* For application requests from the HT TP Server, using the contents of the server accesslog, as
described above. The major differenceis that the automated function requestsa URL that is
normally processed by WebSphere. The log information for both the request and the request return
code determines if the recorded heartbeat was successful -- a heartbeat recorded but with an
unacceptable request code indicates that the HTTP Server was running, but WWebSphere
Application Server was not.

* From aservlet. Servlets can be autoloaded and started when WebSphere starts. Thisallows a
servlet to write heartbeat time stamp records to afile on the server, to one of the WebSphere logs
(ncf.log in 3.5, using the message logger in 4.0), or to send them to another platform. Aslong as the
servlet is aways running when WebSphere is running, the created heartbeats indicate WebSphere
availability.

* For WebSphere 4.0, SMF activity records. Since these are timestamped when the activity
occurred, they can be considered “heartbeats’, assuming that they occur frequently enough for an
application. When there is no activity there will be gaps in the timestamps, which may indicate
unavailability of an application server or container.

A program running on the same OS/390 platform as the HTTP Server or WebSphere can provide a
heartbeat function, by checking at aregular interval for the existence of the appropriate address spaces
(e.g. Using the system command D A,L) and recording the results to afile.

Ping

A ping sends an event or query to atarget component; the response (or lack thereof) from the target is
used to indicate if the component is available. A ping timeout can mean the component is unavailable, or
some other component in path between the ping source and the target is unavailable. This situation must
be accounted for when using ping type functions for measuring availability.

The TCP/IP ping command is the most well known implementation of this type of monitoring. It
conveys that a component’s TCP/IP stack is able to communicate and the response time for its “ base”
communication. It does not report on specific applications or ports. But it is very easy to implement
ping-like functions at the port or application level, by knowing what port(s) an application is using and
the command strings to which it will respond. Sending a command string to a port, and measuring the
time it takes the responseto return, isall the ping function hasto do.

IBM HTTP Server

A ping measurement can be implemented for the HTTP Server by sending an HTTP protocol command
string to the server port (normally 80 or, for SSL, 443) and measuring the time it takes to receive a
response. A programmed function can, at regular intervals, send an HTTP request to the server port,
capture the response, calculate the time it took to receive the response, and use the information to
determine if the server isavailable. The function could send the request using TCP/IP socket

Page 11 of 20 ©IBM 2001

programming or, using alanguage with URL constructs built in such as Java, send a URL to the server
port. A timeout waiting for a response, or a response time above a defined threshold, indicates that the
server is unavailable.

WebSphere Application Server 3.5

WebSphere 3.5 runs in the same address space as the HTTP Server and receives requests via the same
port, so the same technique can be used as described for the HTTP Server. The difference is that the
ping request should be a URL that is normally processed by WebSphere, to accurately determine if
WebSphere is running. WebSphere provides the SnoopServlet servlet, which is used to verify that it has
been installed properly; this servlet can be used asa“ping”, by invoking it from an automation program,
determining if aresponse was received, and measuring the length of time to receive the response.

WebSphere Application Server 4.0

WebSphere 4.0 can receive requests from the HTTP Server or from a Java or CORBA application
running on the same or different platform. Based on the method of application invocation, monitoring
software can send a ping-like message and use the response to determine if WebSphere (or the
resource being pinged) is active.

Remote Command

A remote command is sent from a monitoring platform to the target component. The results of the
command are sent back to the monitoring platform, which looks at the response to determine the
component status. The response indicates that the component is running and able to respond to service
requests.

IBM HTTP Server
Two types of remote commands can be sent to determine HTTP Server status:

1. Console commands to determine if the server processis active. On OS/390 the HTTP Server runs
best as a started task. The D A, <name> command (where <name> is the name of the HTTP
Server started task address space) returns whether or not the server is active. The server aso
supports modify commands, which are documented in the HTTP Server for OS390 Planning,
Installing, and Using manual. A command such as F <name>,APPL =-d stats (where <name> is

Page 12 of 20 ©IBM 2001

the name of the HTTP Server started task address space) returns server statistics; the response (or
absence of one) can be used to determine server availability for measurement purposes.

The console commands can be sent from an automation program or function running on another
platform. The ROUTE command can be used if the HTTP Server runsin asysplex. Tivoli NetView
for OS/390 RMTCMD can be used if NetView connectivity exists between the OS/390

monitoring platform and the HTTP Server image. If the monitoring platform is not OS/390, another
technique such as TCP/IP socket programming can be used. In all cases, security for sending
commands to the target platform must be in place.

HTTP commands to the server port to determine if the server processis active. Thisisthe same as
sending “pings’ to the server port as described earlier, but more information is requested and
(hopefully) returned than with a ping function. The HTTP can be URLs normally called viaa
browser. An automation function or programming language can send the URL request to the server
port at aregular interval, capture the response, and analyze it to get detailed server status
information.

The HTTP Server provides a Server Activity Monitor. Details on its use are documented in the IBM
HTTP Server for OS390 Planning, Installing, and Using manual. It provides severa URL s that
can be called to retrieve various server statistics such as request activity, request response times,
and network traffic to/from the server. For example, the default URL to access server activity
statistics is http://<server name>/Usage/I nitial. ThisURL returns an HTML page containing rea
time statistics that are updated each time the URL is called.

Custom URLs can also be written that invoke programs supported by the HTTP Server (such as
CGI or GWARI) to provide information for availability measurements of specific applications or
functions within the server.

WebSphere Application Server 3.5

There are no 0S/390 console commands that interface with WebSphere on 0S/390. However, HTTP
commands, as described above for the HTTP Server, can aso be used with WebSphere. The URLS
would invoke WebSphere programs (servlets, JSPs, EJBS, etc.) that return information on WebSphere
status. The more detailed the programs, the more information that can be returned about WebSphere.

An example of acommand that can be written isthe UpTime Servlet, whichislisted isin Appendix A.
The servlet performs two functions:

1. Whenitisfirst invoked (normally loaded when WebSphere starts), it records the time when it was

loaded.

Page 13 of 20 ©IBM 2001

2. When it receives a URL request, it returns the time when it was loaded (which is aso the time the
WebSphere functions became available), and the elapsed time since it was loaded (which isthe
length of time WebSphere has been running since it was last started).

Calling the UpTime servlet using a URL such as http://<servername>/servlet/UpTime at regular
intervals provides a running update on WebSphere availability. A failed URL call (no response returned)
isagood indication of WebSphere unavailability.

Additional modifications can be made to UpTime to report WebSphere availability in different ways.
Simple changes to UpTime can cause it to take actions such as issuing an OS/390 message or alert at
startup and shutdown (using the methods described earlier in this white paper), or monitor and report on
the status of back end connections from WebSphere to database or transaction systems.

WebSphere Application Server 4.0

The Systems Management Scripting APl provides a command-driven method of configuring and
monitoring WebSphere 4.0 The API allows status and control commands to be issued from a REXX
program running in USS, to carry out the same functions that can be performed by the WebSphere
Systems Management End User Interface. An example of aremote command is REXX program that
issuesthe APl CB390CM D(* -action list”) command; the command returns the status of servers and
related server instances. The response to this command can be examined to determine if the desired
Servers or server instances are active.

WLM system commands also report WebSphere Application Server status, specifically the status of
application environments. Since an application environment equates to an application server, WLM
commands that provide application environment information may contain server status information.

For example, the command D WL M ,APPLENV=<server name> returns the state of <server name>

- available, quiesced, or stopped. An automation product, such as Tivoli NetView for OS/390, can

issue this command on aregular interval. The results returned can be recorded as the avail ability state of
the monitored application server.

User Simulation

User simulation attempts to measure availability as an end user would see it. It interacts with the
application, either at a keystroke or function level, asarea end user would, and measures the
availability and response time of the application. Implementing user simulation is more complicated that
any of the other monitoring techniques, but can provide the most accurate measure of the availability
experienced by users of applications running on HTTP Server and WebSphere.

Page 14 of 20 ©IBM 2001

For both IBM HTTP Server and WebSphere, implementing user measurements can be done using
languages that can easily interact with URLs and the HTTP protocol. For WebSphere 4.0, the
languages may also have to directly invoke a WebSphere application, if the application code is accessed
by a method other than a URL. Programming a user simulation would include:

* Building the proper HTTP protocol headings and URL

* Invoking form processing by passing the form data a user would normally fill in

e Capturing the HTML response

* Analyzing the response to determine if additional HTTP requests are required

* Measuring the elapsed time from sending a request and receiving a response

* Feeding the appropriate datainto a measurement repository (log, relational database, etc.)

Languages such as C, C++, Java, and REX X can be used to implement this function

Another technique, usually as part of a software product or a specialized “script” language, is * screen
scraping” or “playback/record”. Actual keystrokes using the application user interface are recorded (or,
if supported, coded into a*“script” file), and then played back under control of the scripting program.
The response back to the scripting program is captured and analyzed to determine application
availability.

The program or script sees only the HTTP protocol, web browser, or keystrokes; it does not matter
what platform the server runs on. Any language or product with support for these functions, and that
can connect to an IBM HTTP Server or WebSphere application residing on OS/390, can be used.
Once the user simulation is created, automation products can invoke the program or script at regular
intervals to capture the data that will be placed in a measurement repository.

Custom Monitoring Agents

All of the above monitoring techniques can be devel oped using various programming tools. They are
also contained in various software products. These products usually use some sort of agent, running on
either the same or different platform as HTTP Server or WebSphere, to invoke one or more of these
monitoring techniques and provide information into the data sources to be used for measurements. The
products that provide these functions include:

* Event management products, which provide agents to capture events from avariety of components.

* Application management products, which provide APIs to imbed in application code to measure
transaction availability and response time.

* Application stress testing products, which provide scripting languages and/or record/playback
functions to run against web based applications and produce availability and performance
measurements.

Examples of IBM products in these categories are:

Page 15 of 20 ©IBM 2001

e Tivoli Business Systems Manager (TBSM), which can monitor the HTTP Server and
WebSphere components, and associate them with a*“line of business’ to provide business views
levels of monitoring.

* Tivoli Web Services Manager (TWSM), which can measure IBM HTTP Server and
WebSphere applications for availability and response time.

* Tivoli Applications Performance Management (TAPM), which provides an APl to user for
defining transactions in an application and obtaining availability and response time measurements for
that transaction.

e Tivoli NetView Performance Monitor for [P (NPM/IP), which can monitor the availability and
“ping” response time of any IP port, including those used by HTTP Server.

Summary

The techniques outlined above are simple actions that provide powerful information. The IBM HTTP
Server on OS/390 and WebSphere on OS/390 are becoming critical components for providing

end-to-end service for increasingly important business applications. Collecting measurement data from
the event sources or monitoring techniques described above, and merging it with existing availability data
from the operating system, network, database systems, and transaction systems, will provide a total
end-to-end availability picture than can be managed and improved as business requirements dictate.

Page 16 of 20 ©IBM 2001

Appendix A - UpTime Serviet

The following is example code for a servlet that reports WebSphere start time and elapsed time. When
called using the URL http://<servername>/serviet/UpTime, it returns the following:

UpTime Servlet loaded at: 2001.02.19 23:32
Uptime Servlet uptime: 1176111016 milliseconds
Uptime Servlet uptime: 326:41:51

Thefirst line shows the date/time the servlet was loaded; since it was defined to load when WebSphere
started, it shows when WebSphere began to execute requests.

The second line shows the elapsed time since the servlet was loaded, in milliseconds.
The third line shows the elapsed time since the servlet was loaded, in HH:MM:SS.

Thisversion uses the Tivoli NetView for OS/390 USS command interface to send messages to the
console when it isload and when it is unloaded (shutdown).

/*UPTI ME SERVLET (Author: M ke Bonett)

This servlet perforns the follow ng functions:

- When | oaded, wites a nessage to the System Log

- When invoked, returns the anount of time since |oaded (if | oaded at
WebSphere Application Server (WAS) startup, this is the ambunt of tine WAS
has been active)

- When destroyed, wites a nmessage to the SystemLog. If only destroyed
when WAS stops, indicated that WAS i s down

- This is an exanple. No warranties intended, inplied, or assuned. Use at
your own risk. Mddify to your hearts’ content.

*/

i mport Java.io.?*;

i mport Java.util.?*;

i mport Java.text.?*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

public class UpTime extends HttpServl et

{

| ong StartupTine;
Dat e startdate;
Dat eFor mat df ;

Page 17 of 20 ©IBM 2001

public void init(ServletConfig config) throws Servl et Exception
{

//The init nmethod is run once, when the servlet is first |oaded.
/1 This is where the current date/tinme is obtained and used as
//the WAS startup tinme, and where the startup nessage is

/1is sent to the SYSLOG via Tivoli NetView for OS/ 390
super.init(config);

df = new Si npl eDat eFormat ("yyyy. MM dd HH nmi') ;

StartupTi ne=System currentTineM I |is();

startdate = new Date(StartupTi ne);

Runtine rt = Runtine.getRuntime();
Process pr=null;

try
{
pr=rt.exec("netvcmd TESTWO WASO001l WebSphere Application Server
Has Started at " + df.format(startdate));
int rc = pr.waitFor();
}
cat ch(Exception e)
{
Systemout.printin("UpTinme init error: " + e.getMssage());
}
}

public void doGet(HttpServl et Request req, HtpServl et Response res) throws
Servl et Excepti on, | OException

{

/1 The doGet nethod is run for every URL request.
/1 The el apsed tine since startup is cal cul ated and
//Returned in a sinple HTM. page.

long Ctime, Dtine, htime, ntinme, stineg;

Cime = SystemcurrentTimreM I 1is();

Diime = Ctinme - StartupTi ne;

htime = Dtime / 3600000;

nmime = (Dtime - (htinme * 3600000)) / 60000;

stime = (Dtine - ((htine * 3600000) + (ntinme *60000))) / 1000;

res. set Content Type("text/htm");
PrintWiter out = res.getWiter();
out. printl n("<HTML><BODY><P>") ;

out.println("UpTine Servlet |oaded at: " + df.fornat(startdate));
out.println("<P>");

out.println("Uptine Servlet uptinme: " + Dtine + " mlliseconds");
out.println("<P>");

out.println("Uptine Servlet uptinme: " + htime +":"+ ntinme + "

+stime);
out. println("</BODY></HTM.>");

Page 18 of 20 ©IBM 2001

public void doPost (HtpServl et Request req, HttpServl et Response res) throws
Servl et Excepti on, | OException

{

/11f UpTinme is called with the HTTP Post nethod, invoke doGet
doGet (req,res);

}

public void destroy()
{

/1 This method is executed when the server is destroyed (unl oaded).
//Wite out a “shutdown” nessage to the SYSLOG using
/1 Tivoli NetView for OS/ 390

Date stopdate = new Date(SystemcurrentTineMIlis());

Runtine rt = Runtine.getRuntime();
Process pr=null
try
{
pr=rt.exec("netvcmd TESTWO WAS9991 WebSphere Application Server
Has Been Stopped at " + df.format(stopdate));
int rc = pr.waitFor();

}
cat ch(Exception e)
{
Systemout.printin("UpTinme init error: " + e.getMssage());
}

Page 19 of 20 ©IBM 2001

Appendix B. Reference Publications

e HTTP Server for OS/390 - Planning, Installing, and Using (SC31-8690)

* WebSphere Application Server V3.5 Standard Edition Planning, Installing, and Using
(GC34-4806)

* WebSphere Application Server V4.0 for z/OS and OS/390 Installation and Customization
(GA22-7834)

* WebSphere Application Server V4.0 for zZ/OS and OS/390 Operations and Administration
(SA22-7835)

* WebSphere Application Server V4.0 for Z/OS and OS/390 Systems Management Scripting AP
(SA22-7839)

* WebSphere Application Server V4.0 for z/OS and OS/390 Messages and Diagnosis
(GA22-7837)

* Enterprise JavaBeans for zZ/OS and OS/390 (SG24-6283 - redpiece as of 10/1/2001)

* AnIntroduction to Tivoli NetView for OS/390 V1R2 (SG24-2254)

* Measuring End-to-End Availability: How To Get Started (White Paper available at
http://www.ibm.com/support/techdocs)

Page 20 of 20 ©IBM 2001

