© IBM 2002

Finding and Collecting Availability Measurement Data

January 2002

Mike Bonett
IBM Corporation, Enterprise Systems Management Technology Support
Advanced Technical Support, Gaithersburg, MD

bonett@us.ibm.com

This document describes various data sources, provided by operating system platforms and network
protocols, that contain availability information for workloads and components. It also identifies
monitoring techniques and products that can also produce and/or report availability measurement data.
The intent isto eliminate or reduce manual efforts in gathering information on and reporting the
availability of systems, networks, and end-to-end applications.

© IBM 2002

Finding and Collecting Availability Measurement Data 1

© IBM 2002

Trademarks 6
Acknowledgements 7
Introduction 9
The Environment 9
Getting Started, 12
Data Sources Overview, 15
Event Logging Facilities 17
0S/390 and Z/OS 17
SYSLOG/OPERLOG ... e e e e e 17
Systems M anagement Facilities (SMF)

RECOIAS ... 18
Gettingdatafrom SMF e 22
ZIVM and VM/IES A . 23
Programmable Operator (PROP). e e 23
MONI T OR L e e e e e e 23
OS/A00 .. 24
UNIX and LINUX o e e e e e e e e e 25
WiIiNdows NT/2000 e e e et e e 26
NI I .. e e e 28
OS2 o 29
APPLCAtION LOgS ..ot e 29
MESSaAgES . . . 30
Z/OS and OS/390 MBS SaAgES . ..ttt ittt i e 31
VM and z/V M e e 33
IBM Communications Server SNA

MBS S A S .ottt e 34
OV IV W .o e e 34
OS/400 MBS SaAQES .+ ot ittt it ettt e 35
ADX MBS S aAg S . it e 36
Alerts 39
Getting Data From Alerts e e 42
T APS 44
Getting data from trapPsSt 47
Event Management Products 49
Monitoring Methods 51
OV IV W .o e e 51
Heartheat e e 53
Using Heartbeats for availability monitoring

AN MEASUN BMIENE . .. e 55

Finding and Collecting Availability Measurement Data 2

© IBM 2002

PING L 56
Using PING for availability monitoring and

MEASUI BBt . .o 57
Remote Commands 59
REXEC (TCP IP) . e e e e e e 59
ROUTE (ZOSand OS/390 Sysplex) . ..o vt 59
RMTCMD (Tivoli NetView for OS/390)coi it e 59
SBMRMTCMD (iSeriesand AS/400) . ..ottt e e 60
Remote Command Service (Windows NT,

WiINAOWS 2000) . ..ottt e e 60
RUNCMD (Tivoli NetView for OS/390)coiii i e e 60
Using Remote Commands for availability

MoNitoring and MeasUr eMeNtot e 61
User SimuUlation 62
Using User Simulation for availability

Monitoring and MeasUr eMeNtttt et 62
CUStOmM MONItOrING aENESottt e 64
Using Custom Monitoring Agentsfor

availability monitoringand measurement 64
Data Capture and Monitoring

Products 65
Example Productso e 66
AS/A00 Management Centralttt e 66
CICSPlex System Manager (CICSPIeX SM) i e 67
IBM Communications Server (AlX, Windows

NT/2000, OS2 Warp, LINUX)ot e et 67
IBM DIl ECOr . ottt 67
System Automation for OS/390 (SA for

O 800) .ottt 67
System Manager for AS/400 and M anaged

System Servicesfor AS/IA00 68
Teleprocessing Network Simulator (TPNS). e 68
Tivoli Application Performance M anagement

(TAPM) o e e e 68
Tivoli Business SystemsManager (TBSM) ... i i 68
Tivoli Distributed MONItoring e 69
Tivoli Enterprise Console (TEC)ot e e e 69
Tivoli NetView (AIX ,NT/2000 platforms). e 69
Tivoli NetView for Z0Sand OS/390ot e 70
Tivoli NetView PerformanceMonitor (NPM) i 71
Tivoli NetView Performance Monitor for IP

(NP I P e e e e e 71

Finding and Collecting Availability Measurement Data 3

© IBM 2002

Tivoli Web Component Manager (TWCM).o e 71
Tivoli Web ServicesManager (TWSM) ...t e 72
Product MappingsS.ot e 72
REPOrting 74
Creating a Common Record Layout of

the Captured Datai i e 74
Applying Reporting Logic Against the

Formatted Dataoi i e 75
Data AcCessibility e 76
Reporting Products- EXamples e 77
Tivoli Decision Support for OS/390t 78
Tivoli DECISION SUPPOIt . .ot e e e 78
Tivoli NetView for 0S/390 Automated

Operations Network (AON) COMPOoNentt 78
Tivoli Service Desk for OS/390 (INFOMAN) e 78
Putting It All Together 79
Data Source and Monitoring Technique

Selection Guidelines 79
Application EXample. e 81
SUMMAIY 86
Appendix 88
Z/OS and OS/390 MBS SaAgES . .. vttt ittt e 89
ZIVM MBS S a0 S o ittt ettt e e 90
z/OS and OS/390 Communications

SEBIVEI MBS S A S .ottt et e e 91
OS/A00 MBS SaAgES . v ittt ittt e e 92
ALX Error LOg MESSaAgES . ..ttt et e e e e e 93
Sample REXX Heartbeat Program i 94
Sample Shell Script Heartbeat Program 96
Example Java Servlet “UpTime”

Heartbeat Program e e e e e e 98

Finding and Collecting Availability Measurement Data 4

© IBM 2002

Preface

The information contained in this document has not been submitted to any formal IBM test and is distributed
on an "as is" basis without any warranty either expressed or implied. The use of this information or the
implementation of any of these techniques is a customer responsibility and depends on the customer's
ability to evaluate and integrate them into the customer's operational environment. While each item may
have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these techniques to their own
environments do so at their own risk.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make
these available in all countries in which IBM operates. Any reference to an IBM licensed program in this
publication is not intended to state or imply that only IBM's program may be used. Any functionally
equivalent program can be used instead.

The information in this document concerning non-IBM products was obtained from the suppliers of those
products or from their published announcements. IBM has not tested these products and cannot confirm the
accuracy of performance, compatibility, or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those products.

The information in this publication is not intended as the specification of any programming interfaces.

Questions or comments about this publication should be sent via via the Internet to bonett@us.ibm.com.

Finding and Collecting Availability Measurement Data 5

© IBM 2002

Trademarks
The following are trademarks and registered trademarks of the IBM Corporation or Tivoli Systems:
w ACF/VTAM™

w AIX®

AS/400 ®

Cics ™

DB2 ®

IBM ®

IMS/ESA ®
NetView ®
0S/2®

0S/390 ™

PS/i2®

RS/6000 ®

S/390 ™
System/390 ™
Tivoli ™

VTAM ™

z/lOS ™

=

=S £ £ £ £ £ £ £ £ £ £ £ £ =

The following are trademarks and registered trademarks of the respective companies:
w Netware ™ (Novell, Inc.)

w Omegamon ™ (Candle Corporation)

w Omegaview ™ (Candle Corporation)

w Windows ™(Microsoft Corporation)

w Windows 2000 ™(Microsoft Corporation)

w Windows NT ™(MicrosoftCorporation)

Any other company or product names are trademarks or registered trademarks of that respective
company.

Finding and Collecting Availability Measurement Data

© IBM 2002
Acknowledgements

Many thanks to the following individuals who, over the years, have provided valuable experience, information,
feedback and sanity checks related to the contents of this document:

w John Bishop

w Bob Campenni

w Linda Cook

w Bob Gelinas
w Allen Gilbert
w Pete Gordon
w Randy Greene
w Rich Grimaldi
w Carl Kindstedt
w Eric Klein

w Kevin Miller

w Mark Nixon

w Doug Orlando
w Dave Petersen
w M. Watanabe

Finding and Collecting Availability Measurement Data 7

© IBM 2002

Finding and Collecting Availability Measurement Data

© IBM 2002 Introduction

Introduction

Availability Management is the process of ensuring that all components (hardware, software, etc.) that
are supporting essential business applications and processes are active and in a state to allow:

* usersto access the applications.
* applications to access and manipulate information on behalf of the users.

This document focuses on the measur ement aspect of availability management. It identifies data
sources - either provided from system or network components, or created by using specific monitoring
techniques - from which information can be captured and used to determine the availability of
components in the information technology (I/T) environment. Complex applications require multiple
application, network, and database platforms to work to together to provide proper application
functions. Multiple sources of datawill be required to determine the true availability of these
applications, and the information from these sources will have to be gathered together and related in the
proper manner.

The process and technical aspects of identifying and collecting availability datain an efficient manner will
be covered. These activities are a subset of the overall process of availability management. Other tasks
must also be in placeto carry out full availability management, so that effective improvements can be
evaluated and implemented. The details of those other activities are beyond the scope of this document;
however, as the saying goes, “if you cannot measure it, you cannot manage it”. Measuring availability is
critical to the overall availability management process, and this document will provide guidelines and
methods for effectively finding and collecting data so that availability can be measured.

The Environment

Business systems, or applications, that are supported by the (1/T) infrastructure are increasingly
complex. No longer are they centralized on a single physical platform, and accessed through just one or
two connecting devices. Today, the components that support applications:

e Span multiple hardware platforms

* Are connected using multiple networking devices and protocols

* Usemultiple types of middleware (databases, message queues, Web Servers, “legacy” transaction
systems, and so forth)

At the same time that these applications are using more infrastructure elements, their importance to the
businessisincreasing. Application downtime, or outages, can mean the loss of thousands, or millions, of
dollars per hour. Outages also damage business reputation, can result in government or legal action,

and generate unwanted publicity. Managing application availability is required to reduce or eliminate
these exposures.

Finding and Collecting Availability Measurement Data 9

© IBM 2002 Introduction

Availability Management consists of many tasks. These include:

* Determining the type and level of availability that must be provided.

* Designing the infrastructure and management processes to support availability.

* Monitoring and measuring availability to determine real time status and long term trends.
* Taking actions to correct exposures, or improve the current level availability.

Measuring availability is required for many reasons. Once application service levels - which include
when the application must be available for use - are established, there must be away to measure the
actual service level being achieved. If outages occur, their location and length must be known to
determine the impact, and to start investigating methods to reduce or eliminate the outage from
reoccurring.

Because applications can span the entire I/T infrastructure, availability measurements must be taken all
across that infrastructure. If only one or 2 components are measured, this information will not reflect the
true state of the application. If only the end user perspective is measured, it will not reflect the reasons
end users are encountering problems. Availability measurements must be “end-to-end” - they must
account for the following “generic” application structure:

* Users use applications to manipulate data.
* Connections must exist:
* Between the users and the application.
* Between the application and the data.
* Theentire path must be available to achieve end-to-end application availability.
* Identifying where availability is being affected must occur to begin improving availability.

This paper covers methods of finding and collecting avail ability measurement data acrossthe I/T
infrastructure. It highlights a subset of the end-to-end availability steps that are fully documented in the
white paper “Measuring End-to-End Availability: How To Get Started” (available at
http://www.ibm.com/support/techdocs, or directly from the author). The steps are:

1. Creating ageneric model to assist in identify the end-to-end components that support an
application.

2. Determining the relationships among the components that will affect how their measurement data will
be used.

3. ldentifying and selecting the sources of availability data for the components.

4. Merging and analyzing the data to derive end-to-end availability measurements.

5. ldentifying the location and impact of outages in the end-to-end path.

This paper covers step 3 in detail. It identifies the availability data sources to investigate for components.
The applicable sources for a particular component will vary, but they will fall into two categories:

Finding and Collecting Availability Measurement Data 10

© IBM 2002 Introduction

1. Event sources, which are produced by operating systems, network protocols, and systems
management software.

2. Monitoring techniques, which can be written using scripting languages, or implemented using
operating system or system management software functions.

While manual availability measurements can (and are still being) used, there are better reasons for using
these the data sources:

* The number of components that will have to be measured will overwhelm manual collection efforts.
* Theaccuracy of the measurements will come into question. It is not unusual for these measurements
to be based on perception or guesses, instead of hard facts.

All of the data sources identified in this paper can be accessed using automated techniques. For
purposes of this paper, “automation” means any operating system, network, or product function that can
be triggered based on atimer or event, can access data or issue a command, and can manipulate the
accessed data or command response. For each data source the paper will describe the role automation
can play to efficiently collect the desired information.

Finding and Collecting Availability Measurement Data 11

© IBM 2002 Getting Started

Getting Started

Finding and collecting availability data cannot begin until the following questions are answered:

* What components do | measure?
* For each component, what data has to be collected?

Consider the following I/T infrastructure. It supports an application with multiple middleware
components, and is spread across $/390, LAN, WAN, and distributed environments:

Load Web Content Web Servers
Balancer erver a o

Load
Balancer

Server

Database
Server

This type of application structure encompasses

» Distributed application logic, residing in both the S/390 and distributed application platform
environments

* Distributed data, residing in multiple locations

* Networking and middleware protocols support the information flow across the components

If all hardware and software components identified in this picture are measured, there are at least 30
elementsto consider. That is adifficult starting point, especially when trying to establish relationships
among the different components, and where to collect data from for each component. Attempting to
measure alarge number of components without a structured approach can easily lead to collecting lots
of meaningless data that does not show the impact beyond just an individual component.

It is much easier to start with a subset of components, and then expand as needed. The best way to

identify a subset of componentsisto start with amodel. Thisis useful for several reasons:

* A model can be applied consistently to multiple application environments.

* A model ensuresthat all of the key components of an application are identified.

* A model alowsfor grouping of components; these groups can sometimes be treated asa single
component, which helps simplify the data collection and measurement process.

Finding and Collecting Availability Measurement Data 12

© IBM 2002 Getting Started

More information on using a model when measuring availability is documented in the Measuring

End-to-End Availability: How To Get Started white paper. The model in that paper defines the

following component categories:

* User Platform (components that support the users as part of the application flow)

* User-Application Path (components that connect the users to the Application Platform(s))

* Application Platform (hardware and operating systems that support Application Subsystems and
Application Logic required by the application)

* Application Subsystem (middleware that provides services used by the application logic)

* Application (the application logic itself)

* Application-Data Path (components connecting the Application Platform(s) to the application data)

» DataPlatform (physical and logical components that provide data access for the application)

Experience has shown that it is best to start out with between three and 10 components types, that are
located across the key infrastructure areas of an application - the user location, application logic, data,
and connections.

Once the components are identified, measurement information must be collected. Thisis an areawhere
starting simple will make the effort much easier. Only four data el ements are needed for each
component. A data source for a component must provide all of them:

1. A component identifier that uniquely identifies this component. This can be a name based on a
protocol (e.g. TCP/IP host name or |P address), or a name based on a configuration definition.

2. The component status that is being reported. This can be anything that, for measurement purposes,
can be mapped to a"UP" or "DOWN" state for the component. For example, A data source can
report that a performance threshold has been exceeded. The result is very poor throughput or
response time for the application due to the components’ performance. . This can be mapped to a
"DOWN" state, if so desired.

3. Thedate and time that the reported status occurred. These may have to be normalized if the data
sources being used are located in different time zones.

4. The status change identifier. Thisis the specific event or monitoring activity that reported the status
change. It can be an event ID, message ID, event source, name of the monitoring software, etc.

From these data elements availability measurements for a component can be derived. For example, the
following table shows data elements for 3 different components:

Component 1D Status Date/Time Status I dentifier
(YYYY-MM-DD-HH:MM)

S390 Address Space 1 Up 2001-04-10-08:00 |EF403I

Router Interface 1 Down 2001-04-10-12:30 PING

UNIX_Database 1 Down 2001-04-10-13:00 syslog

Router Interface 1 Up 2001-04-10-15:00 PING

Finding and Collecting Availability Measurement Data 13

© IBM 2002 Getting Started

UNIX Database 1 Up 2001-04-10-16:30 syslog
S390 Address Space 1 Down 2001-04-10-22:00 | EF450I

The availability of each component for that day can be cal cul ated:

* S390 Address Space 1: SY SLOG messages indicated its status. The component was up for 14
hours (8 AM - 10 PM) and down for 10 hours (midnight- 8AM and 10PM-midnight).

* Router_Interface 1: The IP address was PINGed to determine its status. The component was up
for 21.5 hours (midnight - 12:30 PM and 3PM-midnight) and down for 2.5 hours
(12:30PM-3PM).

* UNIX_Database 1: messagesinthe UNIX syslog indicated its status. The component was up for
20.5 hours (midnight - 1 PM and 4:30 PM - midnight) and down for 3.5 hours (1 PM - 4:30 PM).

A given component, can have multiple sources for this data. The more protocols (system or network) a
component participates in, the more different data sources will have to be considered. The component
will be represented in each data source. A component that:

* |sdefined as anetwork gateway

* Isdirectly attached to an operating system platform

e Communicates to components using both SNA and TCP/IP protocol

* Isconnected to multiple LAN segments

can be represented in various data sources as.
* An operating system |/O device

* Oneor more LAN MAC addresses

* An SNA resource

* A TCP/IP node

There will be redundant information when using multiple data sources. Correlating and filtering the data
using manual methodsis adifficult, if not impossible, task. Automated techniques can be applied to
accomplish this. Automation can either identify and discard redundant information, or correlate
information for a component from multiple sources - to provide an accurate view of component status.

In general, automation is necessary, once the components and relevant data sources have been
identified, to obtain data from the event sources, analyze it, and produce availability measurements. The
benefits of using automation include:

* Implementing policies for monitoring and collecting data for specific components can be donein a
consistent fashion.

* Human errors can be reduced or eliminated from the avail ability data gathering process.

* Automation can interface (either directly or by integration with other products) to al points of the
application infrastructure.

* Datacollection, filtering, and formatting for input to the availability measurement process can be
simplified.

Finding and Collecting Availability Measurement Data 14

© IBM 2002 Getting Started

Using automation in this process increases the accuracy of the data, while reducing the complexity and
effort to collect and analyze the data.

Finding and Collecting Availability Measurement Data 15

© IBM 2002 Data Sources Overview

Data Sources Overview

Component availability datawill be found in two sets of data sources:
1. Event Sources

Event Sources are where events are placed from operating systems, networking protocols, and
management products. Functions that detect component status changes write information to the
event source, where it can be extracted for various uses. The event sources that are commonly used
arel

Logs

Messages

SNA derts

TCP/IP traps

Event management products

S oo oW

These event sources have common characteristics:

* Somelevel of programming will be required to extract the desired events

* Thedesired events can be captured in real time (when they are written), or extracted | ater,
post-processing. Deciding on when to capture the events depends on the real time availability
reporting requirement. If current, up to the minute reports are needed, then real time capture will
have to be done. The disadvantage is that this requires more of a programming and processing
effort. If daily, weekly, or monthly periodic reports are needed, it will be easier to extract the
dataon adaily basis.

* Filtering to obtain the desired eventsis required. These event sources contain many, many
events, and only a small subset of them are needed for availability measurements. Determining
which specific events to capture will require the use of event source documentation, component
documentation, or working with component experts with knowledge of events related to the
components. This can be to most time consuming task in the process.

2. Monitoring Techniques

Event sources will not always contain the desired data. Availability information made be needed in
real time, and the event source for a component may not provide that. Or, the event source may
contain events indicating when the component status changed to “down”, but does not contain
events showing when the component status changed to “up”. For these and other situations, a
monitoring technique, which checks the component periodically, can provide the desired
information. The possible techniques are:

a. Heartbeat routines

Finding and Collecting Availability Measurement Data 16

© IBM 2002 Data Sources Overview

PING commands

Remote command execution
User simulation

Custom monitoring agents

®opo

Any one of these monitoring techniques can be used to capture the availability status of a
component; each returns a different type or level of information, which will be covered in more
detail later in this paper. These techniques can be implemented using standal one programs, but this
is not necessary if performance monitoring automation of the component state is already occurring.
The necessary information may already be available from these sources, in which caseitisjust a
matter of extracting what is needed.

The monitoring techniques have common characteristics:

a. They areinvoked and scheduled using automation. This can be the automation function inherent
in an operating system, or an automation function in a product. The monitoring can be triggered
on aregular schedule (e.g. Every 5 minutes), or triggered by an event. For example, an event
indicating a component status of “down” can be detected by automation and trigger a
monitoring technique that monitors the state of the component.

b. The monitoring response must be captured for validation. The response is normally text or a
return code. The automation function that invoked the monitoring technique must be able to
capture this response and determine the component state based on the response.

c. Thereisatradeoff between the monitoring frequency and monitoring overhead. The shorter the
monitoring period, the more overhead isincurred. Monitoring a component once a minute uses
more system and bandwidth resources than monitoring a component once every 15 minutes.
However, this may be necessary when real time information on a component is required. The
size of the data used in monitoring technigque can be aminimal amount, to lessen the overhead.

There is no one single source or monitoring technique that is “best”. The benefits and drawbacks of
each one must be understood, to determine how well they fit within an environment.

Finding and Collecting Availability Measurement Data 17

© IBM 2002 Event Logging Facilities

Event Logging Facilities

Most operating systems and application subsystems log performance and status events to provide an
audit and accounting trail of resource usage. Some of these events provide information on the availability
of the operating system, subsystems, applications, and attached components.

This section gives an overview of the event logging functions that exist in the zZ/OS and OS/390, UNIX
(including LINUX), Windows NT/2000, OS/400, Netware, and OS/2 environments. Examples of
application logs will aso be given. Examples of the data from logs that can be used are given where
possible. The latest documentation on the operating system, or the application that uses the logging
facilities, should be consulted for the most up to date information.

The following considerations apply when obtaining data from the logging facilities:

* Some platforms maintain separate performance/event and message logs. Availability data can be
found in both.

* Theinformation logged may not always bein "text file" format. That is, the information may be
recorded in abinary record structure instead of text messages. The operating system platforms
provide either documentation of the record structure, or functions to read the binary information and
storeit asatext file, or both.

* The operating system or application subsystem may only log errors. While this can indicate a
workload or component outage, no information islogged that identifies when the workload or
component became available. Additional software functions (provided by the application, a
resource monitor, resource manager, or developed by the installation) may be required to get the
"end of outage” information into the log.

* Thelogging facilities provide identification of availability status "after the fact". The log information is
usually provided after the event has occurred and not in real time. Some platforms provide functions
that allow the capturing of information asit is written to the log. In generdl, if rea time information
capture is desired, some of the other sources described in this book in other chapters will be easier
to use.

* Subsystems and applications can contain their own logging functions and store performance/event
information separate from the platform logging information. This can be useful to determine the
availability of resources "internal” to the subsystem (transactions, datafiles, etc.).

Any additional considerations specific to a particular operating system will be identified in its sections.

0S/390 and z/0OS
0S/390 and z/OS logs information to the SY SLOG/OPERL OG and Systems Management Facilities
(SMF) records; both contain availability related datafor OS/390 address spaces and components.

SYSLOG/OPERLOG

Finding and Collecting Availability Measurement Data 18

© IBM 2002 Event Logging Facilities

The SY SLOG contains text messages issued from both operating system functions and applications
running on the platform that choose to use the SY SLOG facility. The OPERLOG can be used, in a
paralel sysplex environment, to merge the SY SLOGs from the images in the sysplex into asingle log
stream. (the OPERLOG isin binary format, but the information can be converted to SY SLOG text
format using a utility).

The SY SLOG contains message events that indicate when resources running on, or attached to, the
platform changed state. It is normally offloaded to afile when it isfull. Thisfile can be processed by a
user program to extract the desired information. The M essages section of this white paper provides
additional detail about messages and the information they contain.

Systems M anagement Facilities (SMF) Records

0S/390 systems produce SMF records to record system and workload related information that can be
used for avariety of purposes. Many installation use products or locally written programs to analyze
datain SMF records for billing, performance, auditing, etc.

Many different SMF record types can be produced; parametersin SY S1.PARMLIB member
SMFPRMxx control which ones are actually created by the operating system or subsystems. Several of
these records indicate the availability status of components such as:

e Address spaces

e Jobs

* JES components

* Attached I/O devices

* SNA network sessions

Each SMF record has arecord type; in some cases there are multiple subtypes for a record type.
The following table<> <>shows some of SMF record types that can be used as a source of datato
indicate the availability status of a component.

Finding and Collecting Availability Measurement Data 19

© IBM 2002

Event Logging Facilities

Record Component(s) |State Info Comments
Type
0(X'00") 0S/390 or Z/OS|Available |Indicates date/time of By obtaining date/time tha
operating systen operating system |PL the record preceding the
IPL record was written
(from the SMFxDTE and
SMFXTME fields), the
time the system incurred g
outage can be estimated
and the outage length can
be calculated.
9(X'09") I/O device Available |Indicates date/time devicg Thisrecord iswritten as
was varied online theresult of aVARY
ONLINE operator
command.
11(X'0B") |I/O device Unavailable|Indicates date/time device This record is written as
was varied offline theresult of aVARY
OFFLINE operator
command.
30(X'1E') |Addressspace |Available or|Contains address space |Subtype 1 can be used to
unavailable |start/termination obtain the time an address

information (NOTE:
consolidates information
found in SMF record
types 4 and 5; type 30
records are recommended
to be used for this data)

space started. Subtype 5
can be used to determine
when the job ended (eithel
normal or abnormal
termination).

Note: Address space
start/end times can also be
obtained from OS/390
messages
|EF4031,$HASP373,

| EF4041 ,$HA SP395,and
|EF450!.

Finding and Collecting Availability Measurement Data

20

© IBM 2002 Event Logging Facilities

Record Component(s) |State Info Comments

Type

37(X'25") |SNA defined |Available or|Contains SNA events and This record contains
components unavailable |aerts NetView hardware

monitor events, including
aerts, that have passed
through the recording filte
and are stored in the
hardware monitor
database. For details on
aerts see the "SNA Alerts
section of this document.

Finding and Collecting Availability Measurement Data

21

© IBM 2002 Event Logging Facilities

Record Component(s) |State Info Comments

Type

39(X'27') |SNA sessions |Available or|indicates SNA session | Thisrecord is created by
(LU-LU, unavailable |start/end times the session monitor
SSCP-PU, component of NetView
SSCP-LU, and will be logged to SMF
SSCP-SSCP) with the proper NetView

definitions.

* Subtype 2 can be used
to obtain session end
time

* Subtype 3 can be used
to obtain session start
time

* Subtype 5 can be used
to obtain session start
and end times. This
record is created wher
a session ends before
NetView can write the
subtype 3 (session
start) record. The
record will also
provide the primary
and secondary SNA
information for the
Session - resource
name, resource PU,
PU subarea, and
domain.

Note: The Tivoli Decision
Support for 0S/390
products uses these
records to produce sessior]
availability reports.

43(X'2B') |JES2 or JES3 |Available |Containsdate/time JES2
address space or JES3 was started

Finding and Collecting Availability Measurement Data 22

© IBM 2002 Event Logging Facilities

Record Component(s) |State Info Comments
Type
45(X'2D') |JES2 or JES3 |Unavailable|Contains date/time JES2 | This record may not
address space was withdrawn or JES3 |always be written; it
was stopped depends on how JES

ended. For some abnorma
terminations the JES
address space may not be
able to write this record.

47(X'2F') |JES2 BSC lines|Available |Containsdate/timeline |Thisrecord iscreated as
or JES3 was started/signed the result of operator
BSC/SNA lines on/logged commands to start the ling

48(X'30)" |JES2 BSC lines|Unavailable.|Contains date/timeline |Thisrecord is created as
or JES3 was stopped/sign the result of operator
BSC/SNA lines off/logged off commands to stop the ling

52(X'34') |JES2 SNA linesAvailable |Containsdate/timeline |Thisrecordiscreated as
was started/signed the result of operator
on/logged on commands to start the ling

53(X'35") |[JES2 SNA lines|Unavailable |Contains date/timeline |Thisrecord is created as
was stopped/signed the result of operator
off/logged off commands to stop the ling

For details on SMF record formats and producing and saving SMF records, refer to the publication
Systems Management Facilities (SMF), GC28-1628.

Getting data from SMF

To use SMF as a source of component availability data, the following must be considered:

* Therecord typesthat contain status information must be included in the appropriate SMFPRMxx
member of SYS1.PARMLIB that is active, or else they will not be recorded. installation uses

* SMF records are most easily processed after they are dumped from the SMF dataset(s) to a
sequential dataset. However, real time (as the record is created) access to the data can be obtained
by customizing SMF exit IEFU83, which receives control before each record is written to the SMF
data set.

* Once dumped to a sequentia file, the SMF records can be processed by any programming
language. The record layouts and fields are described in the SMF manual. For example, an analysis

Finding and Collecting Availability Measurement Data 23

© IBM 2002 Event Logging Facilities

program to determine and validate what record types are being written and their contents can be
used prior to implementing a data gathering process.

* Macros are provided to allow other products to create SMF record types and write them to the
dataset; these records may also be sources of data.

e SMF normally runs whenever the operating system is running. Automation is recommended for
offloading the active SMF dataset when it isfull, to avoid the loss of records. When thisis done, the
only time records are not written are during an operating system outage. In this manner SMF also
acts as a "heartbeat” to verify if the system was up at a particular time, or to determine the true
length of a system outage.

z/VM and VM/ESA

VM logsinformation via the Programmable Operator (PROP) and the MONITOR functions.

Programmable Operator (PROP)

The PROP virtual machine is normally set up to receive VM system messages. These messages can be
logged to a CMSfilein plain text, which can them be processed by user programs. Then VM

M essages section of this document provides additional detail about PROP, VM messages, and
examples of message contents.

MONITOR

The MONITOR function generates records that contain information about the performance and status
of the VM environment. The MONITOR command is used to control which type of records are
recorded and the frequency. The records are stored in a saved segment; virtual machines can connect to
the CP*MONITOR System Service to retrieve and process the records.

The records are stored in a binary structured format; the layout of each record is documented in the
MONITOR LIST1403 file supplied with VM/ESA and z/VVM. The records are grouped into "domains’
that correspond to areas of system interest for which performance or event datais collected. The
following table summarizes the key monitor records that can be used as a source of datato indicate the
availability status of a component.

Finding and Collecting Availability Measurement Data 24

© IBM 2002

Event Logging Facilities

VM monitor records
Domain Record Component State Description
Number
(NAME)
4 (USER) |1 Virtual Machine |Available Written when a
(MRUSELON) virtual machineis
logged on.
4(USER) |2 Virtual Machine |Unavailable Written when a
(MRUSELOF) virtual machineis
logged off.
6 (1/0) 1 Attached I/0 Available Written when an
(MRIODVON) |device I/O deviceis varief
online.
6 (1/0) 2 Attached 1/0O Unavailable Written when an
(MRIODVOF) |device I/O deviceisvarief
offline.
6 (1/0) 5 I/O device Available Written when an
(MRIODATD) I/O deviceis
attached to a virtus
machine.
6 (1/0) 6 Virtual Machine |unavailable Written when an
(MRIODTDD) I/O deviceis
detached from a
virtual machine.

For details on CP Monitor and the Monitor records, refer to the publications
VM/ESA: Performance (SC24-5642) or z/VM: Performance (SC24-5292).

0S/400

The OS/400 history log (QHST) logs system information (system, subsystem, job information, device
status) and messages from the QHST message queue. Information sent to the queue are written by the
system to the current log version physical file. Thelog is stored in a database file. If the current log file
fillsup, anew oneis created and becomes the current log file for recording information.

The records in the log file have a structured format with three main sections:
e System date and time

* Record number (a 2-byte field).

* Message data

Finding and Collecting Availability Measurement Data 25

© IBM 2002 Event Logging Facilities

User programs can process the QHST log files to extract data that indicates the avail ability of the
system, jobs, and I/O devices. The OS/400 M essages section of this white paper provides additional
detail about OS/400 messages and the types of availability information they contain.

Note:
For details on the OS/400 history log, refer to the AS/400 Workload Management Guide (SC21-8078).

UNIX and LINUX

Variations of the UNIX operating system run on many different operating system platforms. The
common ones in the market include:

w AIX (IBM)

w Solaris (Sun Microsystems)

w HP-UX (Hewlett-Packard)

On the Z/OS and OS/390 operating systems, UNIX System Services (USS) is available for running
UNIX applications under these operating systems.

Linux, a popular derivative of the UNIX operating system, comes in many distributions. The common
ones used today include:

e Red Hat
e SuSE
e Cddera

e TurboLinux

Each variation has added extensions to the “base” UNIX operating system functions for optimized
execution on the respective hardware platforms, and to provide unique capabilitiesin the market. This
paper will not discuss al of the extensions for al of the variations. The Al X M essages section covers
some of the enhanced functionsin AlX that can provide availability information.

All versions of UNIX and LINUX support a syslog function. The syslog is where system messages on
the status of hardware and software resources are sent. Information written to the syslog can be
directed to any UNIX output device, such as.

* A physical terminad

o Afile

* A printer

e Thenull device (/dev/null) - i.e., itisdiscarded

Event information is written to the syslog in plain text with no "formal" structure (other than a date and
time stamp). The actual content and structure are determined by the operating system function or
application that is writing to the syslog. Sometimes this information indicates the availability status of a
component. The syslog must be captured to afile for processing to extract that information..

Finding and Collecting Availability Measurement Data 26

© IBM 2002 Event Logging Facilities

It isaso possible, through the use of UNIX commands such astail, to capture information asit is
written to the syslog. Thisis done if the information has to be sent to a process that requires the
information in real time.

Documentation for syslog messages is scattered, and usually found among the application
documentation. Those wishing to use the syslog as a source of availability datawill have to analyze, for
the desired platforms, the type and content of messages being written to the syslog, by both the
operating system and applications.

Windows NT/2000

Windows NT and Windows 2000 platforms contain a central event logging function to record status
information from the operating system and applications. These events can include the status of attached
devices, applications, and network connections. They are recorded in threefiles - the system log,
application log, and security log.

The event log contain records that are in a structured binary format. These records contain the following
information:

Date The date the event occurred.
Time The time (local) the event occurred.
User The user ID active when the event occurred. This may or may not be reported depending

on the type of event.

Computer The name of the computer where the event occurred.
Event ID A number identifying the particular event type.
Source The software function that logged the event. This can be a system function, a driver, or

an application.

Type The Event classification: Success, Information, Warning, Error or Failure. Success or
Failure types only appear in the security log; the other types occur in both the system
and application log.

Category Classification of the event by the event source (primarily used in the audit log).

Data An optional field containing binary data displayed as bytes or words. This optional field
is not kept if the record is exported to a text file.

Finding and Collecting Availability Measurement Data 27

© IBM 2002 Event Logging Facilities

Many types of events are recorded in the event |log; these are documented in the Windows NT and
Windows 2000 Resource Kits (CDROM help file and database). Applications can also record events
to thelogs. For example, the NT and 2000 Resource Kits provide the LOGEVENT command, which
can be used by batch files to create an event and place it in the application log.

The event logs can be exported to atext file so that the information can be processed by other
programs. There are various utilities that can do this.

The uptime command, available with Windows NT Service Pack 4 and later, and Windows 2000,
reads the event logs to measure the operating system availability; certain customization isrequired for it
to record this information accurately (the Heartbeat section of this paper has more details).

The following table shows examples of recorded events recorded that indicate changes in he avail ability
status of a component.

Windows NT Events

Event ID |Log Category |Component |Status Description
512 Security |System Operating Available |Windows is starting up.
Event System
513 Security |System Operating Unavailable Windows is shutting down.
Event System
6005 Event None Operating Available |The Eventlog has started (a
system good indication that
functions applications are about to be
started).
6006 Event None Operating Unavailable The Eventlog has stooped (a
System good indication that Window,
is shutting down).
6008 Event None Operating Unavailable Records the date and time of
System the previous shutdown, if it
was abnormal.
6009 Event None Operating Available |Windows has started.
System
8033 Event System Operating Unavailable (Appears to be the last event
Event system written to the log before NT
functions shuts down).
592 Security |Detailed Application |Available |A new process has been
Tracking created (also contains detail e
process identification
information).

Finding and Collecting Availability Measurement Data 28

© IBM 2002 Event Logging Facilities

Windows NT Events
Event ID |Log Category |Component |Status Description
593 Security |Detailed Application |Unavailable A process has ended (also
Tracking contains process identificatio
information).

The Resource Kits for Windows NT and Windows 2000 also contain detailed information on events,
and provide a CDROM with useful tools and information.

Netware

Netware Serverslog eventsto alog file in text format; this file can be viewed or printed using Netware
utilities. Information written to a Netware 3.11 (or later) server console can be logged to afile using the
CONL OG command; this allows console information to be saved so that any availability related
information can be extracted at alater time. CONLOG will record messages related to errors, Novell
Directory Services (NDS) messages, |oad/unload of Netware Loadable Modules (NLMs), and
RCONSOLE connections and disconnections.

Netware 4.x provides an additional audit logging capability , the AUDITCON utility. AUDITCON can
be used to audit and log specific events; these can be filtered by event type, user, file/directory, or
volume. AUDITCON logs are stored in binary format. Report files can be generated from the audit log
filesto allow user programs to extract the desired availability information.

The following table shows some of the event numbers and types AUDITCON reports, which can
indicate a change in the availability status of a component.

Netware AUDITCON Events

Event Event Name Component(s) |[Status

Number

18 A_EVENT_DOWN_SERVER Server Unavailable

50 A_EVENT_UP_SERVER Server Available

55 A_EVENT VOLUME_MOUNT Server disk Available
volume

56 A_EVENT_VOLUME_DISMOUNT Server disk moun Unavailable

Further details on AUDITCON can be found in the Netware - Auditing The Network
documentation.

Finding and Collecting Availability Measurement Data 29

© IBM 2002 Event Logging Facilities

0S/2 (WARP)

First Failure Support Technology/2 (FFST/2) ships with many OS/2 applications. It provides a common
message and error logging facility. Messages from applications that support FFST/2 are logged and can
be viewed, printed, or saved in afile in text format using the message log formatter utility provided with
FFST/2.

Applications that do not have "built-in" FFST/2 support can use this common message logging facility
via APIs or acommand line program.

If OS/2 LAN Server or Warp Server isinstalled, the AUDIT function can record the status of users
connecting to/disconnecting from the domain, and usage of shared devices. This information can be
useful when measuring the availability of OS2 LAN Server resources and public applications. The audit
information can be directed to atext file to allow user programs to process and extract the desired
information.

Application Logs

Applications may provide their own event log, specific to the resources used by or provided from the
application. Information in these logs can be used to measure the application availability, or the
availability of a specific application component.

For example, Web Servers record access activity in their accesslog. This can provide availability
information on resources such as pages, images, or servlets that users request. It can also be used to
calculate the Web Server availability (thiswill be discussed further in the Heartbeat section of this

paper).

Finding and Collecting Availability Measurement Data 30

© IBM 2002 Messages

Messages

Messages are events indicating that something has happened, and are usually meant to be seen by a
human being. Operating systems and applications produce messages regarding the status of resources
they control.

Messages are in areadable text format. The ones relevant for availability purposes will include:
* A timestamp (date and time)

* A component identifier

e Statusinformation (“up”, “down”, “started”, “abended”, “error”, etc.)

Messages have two destinations:

1. A display screen. Thiscan be a“system” console, where messages are centralized across a system.
It can also be an “application” display, where messages specific to the application are displayed
(this might not be the application itself; it can also be an management application that is monitoring
the application).

2. A log, which has been described in the preceding section.

Messages sent to alog can be processed as has been described earlier. Messages sent only to a display
screen can be processed in several ways.

1. Anautomation product may be able to directly receive the messages.
2. Anautomation product may be able to “screen scrape” the display to capture the message.

Both of these methods can require more work than ssimply processing alog. The advantage is that the
messages can be captured as soon as they occur. This allows availability measurements to be provided
in real time, updated as soon as events occur.

The various operating system platforms have different methods of providing access to system and
application messages; these methods will be covered in this section. Regardless of the platform, these
considerations will apply:

* Some type of automation function, either provided by the operating system or a separate product,
can be used to capture the message data and extract the relevant information.

* If the message is not written to the log, the automation function can write it. This supports
“centralizing” processing to extract availability information.

* Many more messages are produced than are needed. System and application message
documentation will have to be reviewed to determine which messages to capture for availability
measurement purposes.

Finding and Collecting Availability Measurement Data 31

© IBM 2002

Messages

z/OS and OS/390 Messages

0S/390 messages are created when programs use operating system facilities to create WTO/WTOR
(Write To Operator/Write To Operator with Reply) requests. Messages can be issued by operating
system functions, subsystems, or application programs. Certain messages contain information on the
availability status of:

Platform hardware components
Operating system components

Subsystems

Subsystem components
Application programs
Attached I/O devices

After amessageisissued, it is processed by several functions:

Message Processing Facility (MPF)
The MPF can influence how a message is handled. Thisincludes display suppression, handling
action messages, making the message eligible to be automated, and invoking an installation exit.
Subsystem Interface (SSI)

After MPF processing, the SSI broadcasts the message to all active subsystems, which can
determine what action should be taken. Automated console operations products normally attach to
the SSI as a subsystem so that they can access the messages and determine if additional actions
should be taken.

Multiple Console Support (MCS) and Extended Multiple Console Support (EMCS)
After broadcast on the SSI the message is passed to MCS/EMCS, and displayed at all consoles
with a matching message routing code. These consoles can be physical consoles or "logical”
consol es (associated with a software task such as NetView or a TSO user ID).
Hardcopy log

The final step taken is having the message written to the "hardcopy” log. In redlity, thisis usualy the
system log data set - SY SLOG or (if enablein aparalle sysplex) OPERLOG..

Thereisamessage ID associated with every message. Examples of the message IDs used for
availability measurement purposes include the following:

IEA371I The system is being IPLed. The time between this message and the preceding
message indicates how long the platform has been down.

IEA389I The IPL is complete and the operating system can now start processing work.

|EF403I A unit of work (job/started task) is starting.

|EF404I A unit of work (job/started task) has ended.

|EF450I A unit of work (job/started task) has abended.

Finding and Collecting Availability Measurement Data

32

© IBM 2002 Messages

In addition to the system level messages, applications running under z/OS or OS/390 can issue
messages that indicate their specific availability. For example, here are some of the messages issued by
the IBM HTTP Server on OS/390 that indicate its avail ability:

MW 3536l The HTTP Server isready to processing URL requests.

IMW 3537I The HTTP Server isterminating but will restart (triggered by an operator reques
IMW 3538l The HTTP Server successfully restarted, and can begin processing URL request
again.

MW 3540l The HTTP Server has stopped processing requests and has begun to shutdown.

The Appendix lists examples of common z/OS and OS/390 messages, the components about which
the message is reporting, and the availability state indicated by the message.

Many messages can be used to develop availability measurements for the z/OS or OS/390 platform and
attached components. The messages to use that best indicate the status of a particular component have
to be identified. If the messages are written to the SY SLOG/OPERL OG, a program can be written to
analyze the SY SL OG/OPERL OG and determine which "availability status messages’ appear most
frequently, and therefore are to be used to create measurements.

If asubsystem or application issues messages that are not normally written to the SY SLOG, more work
has to be done to direct the message to the SSI or MCS/EM CS. Some subsystems (such as IMS and
CICS) provide exits to allow messages internal to the subsystem to be directed to the SSI and EMCS,
where they can be processed by MPF and automation. Other subsystems may require certain
initialization parameters to be specified to send messages to the SSI or MCS/EMCS.

Automation functions efficiently filter the desired messages. They interface to the SSI or to EMCS to
monitor the message traffic. All messages contain a date and time stamp, information on the source of
the message, and within the message text the name or location (I/0O address) of the component.
Automation can monitor the message contents and extract the desired information in real time. The
SY SLOG can also be used to extract the desired message information if post-incident or historical
collection is desired.

Additional steps may be needed to derive the component ID. For example, most messages refer to an
I/O devices by its unit address. This has to be correlated with other information to obtain, for example,
the volume serial of aDASD device. Access to configuration information, especialy if it can be done by
the automation that collects the availability data, is needed to correlate and provide this level of
information.

For details on OS/390 message syntax and contents, refer to the zZ/OS and OS/390 Messages manuals
for the appropriate release of zZ/OS or OS/390, and supported products, that are being used.

Finding and Collecting Availability Measurement Data 33

© IBM 2002 Messages

VM and z/VM

Messages in the VM environment are issued by operating system components (CP, CMS, IUCV, for
example) aswell as by virtual machines. Certain messages contain information on the availability status
of:

e Platform hardware components

* Operating system components

e Virtual machines

e Virtua machine components

* Real devices

* Virtual devices

VM has asingle "system operator” virtual machine where system messages are sent. Messages from
other virtual machines can be routed to it, if thisis required.

The Programmable Operator Facility (PROP) is provided by VM to assist in handling messagesin the
VM environment. PROP would normally be run in the system operator virtual machine to intercept
messages sent to that virtual machine. It can also receive messages sent to that virtual machine’ s console
from another virtual machine by other means (CP SMSG, NetView, etc). PROP can log the messages
into afile and can take actions based on a message entry in the active routing table (including
suppression, logging, programmed response) or route the message to alogical operator - which can be
an automation program (for example, NetView).

The Appendix lists some of the VM CP messages, affected components and the indicated availability
status.

Many messages that can be used to measure availability of various VM platform and attached
components. Messages specific to resources within a virtual machine will also have to be considered.
Additional work may be needed to get messages within a virtual machine directed to the CP system
operator, or to PROP. Some virtual machines subsystems will need certain

parameters defined for this to take place.

The messages that best indicate the availability status of a component will have to be selected.

The message can be either aVM system message or a message issued by a virtual machine. PROP can
log messages it receivesinto aCMS file. Thisfile can be analyzed to determine which "availability status
messages” tend to appear most frequently, and therefore are to be used to indicate the state of a
component.

Automation functions can provide some efficiency for filtering the desired messages. They interface to
PROP (so that PROP can route messages to them) to see the message traffic. All messages contain a
date and time stamp, information on the source of the message, and within the message text the name or
location (/0 address) of the component. Automation can monitor the message contents and extract the

Finding and Collecting Availability Measurement Data 34

© IBM 2002 Messages

desired information in real time. The message log file created by PROP can be processed for
post-incident or historical data collection.

Additional steps may be needed to derive the component ID. For example, most messages refer to an
I/O devices by its unit address. This has to be correlated with other information to obtain, for example,
the volume serial of aDASD device. Access to configuration information, especialy if it can be done by
the automation that collects the availability data, is needed to correlate and provide this level of
information..

For details on the topics discussed in this section, please refer to the following manuals for the release of
VM/ESA or z/VM that is being used:

* Planning and Administration

* System Messages and Codes

e CP Command and Utility Reference

IBM Communications Server SNA Messages

The IBM Communications Server produces messages for both the SNA and I P functions on §/390.
This section focuses on VTAM messages related to components that participate in the SNA network.

Devices are logically defined as SNA network physical and logical units (PUs and LUS). These units
represent hardware components, applications, and users:

* Components such as gateways and cluster controllers are usually defined as physical unit nodes.

* Applications and users are usually defined as logical unit nodes (an end user intelligent workstation
can be defined as a physical unit, with each possible SNA session connection asalogical unit).

* Connections can be defined as lines (physical), cross-domain (logical) or inter-network paths
(logical).

Unsolicited VTAM messages - messages that indicate an unexpected change in the state of a
component - go to the defined primary program operator application program (PPO). Thisis normally
Tivoli NetView for OS/390, or an equivalent product. Thisis defined in the NetView VTAM APPL
definition, and allows NetView to received these messages. If NetView (or its equivalent) is not active,
the messages will flow to the normal message facility for the operating system..

IBM Communications Server uses the message facilities of the operating system, so the same
considerations for using messages on the appropriate platform apply. Automation products that interface
to the message stream via NetView or (if unsolicited messages flow to the operating system) the
operating system message interface (SSI or Extended Consoles for OS/390, PROP for VM, OCCF

for VSE) can capture and filter the desired messages. The messages contain the information needed for
availability measurements - a time stamp, and message text containing a component identifier and

Finding and Collecting Availability Measurement Data 35

© IBM 2002 Messages

availability status. Automation products can extract the required availability information from these
messages.

Communications Server will also generate or forward SNA aertsto NetView to report component
status changes. Information from both alerts and messages may be needed to provider complete status
information. NetView can capture both sources of information, so it is agood candidate for usein
collecting these message/aert indicators. NetView can invoke real time processing, or log the
information for post-incident or historical processing.

Status information collected by NetView can also be reflected in NetView's Resource Object Data
Manager (RODM); thisis another function that could be used to get availability status information.

The Appendix identifies some Communications Server messages, affected components, and the
indicated availability status. For details on message syntax and contents, refer to the IBM
Communications Server or VTAM Messages manuals for the appropriate release of Communications
Server or VTAM that is being used.

0S/400 Messages

Messages in the OS/400 operating system flow between users or programs using message queues.
Each user, program (represented as a batch or interactive job) and display station has an associated
message queue; messages are that are sent to a user or display are directed to the appropriate message
gueue, where they can be displayed on aterminal or processed by a program.

The system operator queue (for system messages or messages directed to the operator) is named
QSY SOPR. Optionally, a message queue named QSY SM SG can be created; certain messages will be
directed to it instead of, or in addition to, the QSY SOPR message queue.

Certain OS/400 messages contain availability status information for:

* Operating system components

* Subsystems

* Jobs

* Files

* |/Odevices

* Network components (links, controllers, workstations)

0OS/400 CL programming can be implemented to monitor message queues, including QSY SOPR and
QSY SMSG. When messages are received, the program can take actions (reply to a message, invoke a
program, execute a command, forward a message, etc.) based on the message attributes. For example,
aprogram could be invoked to record the availability status of a component when a particular message
containing or indicating that information occurs.

Finding and Collecting Availability Measurement Data 36

© IBM 2002 Messages

The QHST history log contains information on system events. It logs a high-level trace of system
activities such as system, subsystem and job information, device status, and system operator messages.
All messages written to the QSY SOPR message queue go to QHST. The QHST log can be processed
to determine which messages occur that should be used to indicate component availability status, or
processed as a source of availability data, either through online commands or by writing it to afile and
extracting information from thefile.

When dealing with multiple systems, the OS/400 operating system can convert messagesto SNA alerts
and forward them to afocal point. Availability monitoring and data collection could be consolidated by
having the appropriate messages sent as alerts to the focal point, where they could be processed. Many
messages are shipped as "alertable"; additional messages can aso be defined to create alertsif they
occur.

The Appendix identifies examples of OS/400 messages that are useful for availability measurements.
For more details on OS/400 messages and syntax, please refer to manuals for the appropriate OS/400
release, such as:

* AS/400 Basic System Operation, Administration, and Problem Handling (SC41-5206-04)
* AS/400 System Operation (SC41-4203)

* 0S400 CL Programming (SC41-5721)

* 0S/400 Workload Management (SC41-5306)

AIX Messages

Messages in the AIX environment are issued by operating system components and applications. Some
messages contain availability information for:

* AIX operating system and components
* Attached I/O devices

* Network interfaces

* Subsystems

* Processes

Messages are directed to, and can be found in, two locations:
1. Systemlog (syslog)
Thisisthe “traditional” method of logging messages in UNIX operating systems Messages from the
operating system or applications, using either the syslog() function or the logger command, can be
directed to one or more files based on:
* Message source - function or product process that sent message
* Message priority (emergency, adert, critical, error, warning, notice, information, or debug)
Normally messages sent will go to the system console (represented by the /dev/consolefile); the
output from the console deviceis called the syslog.

Finding and Collecting Availability Measurement Data 37

© IBM 2002 Messages

Error log

System error messages are logged in the AIX error log (/dev/error file). Error logging is normally
enabled when the system isinitialized. Commands are provided to clear the error log or to generate
error reports from the data. Errors are classified by:

e FErrorID

e Timestamp

* Error type (PERM, TEMP, PERF, PEND, UNKN)

* Error Class (hardware, software, created by a command message)

* Resource Name

* Resource Type

* Resource Class

Detailed description and product information will aso be included in the logged information..

Information from the two sources can be consolidated in various ways. For example:

1.

2.

Syslog messages can be sent to the error log by specifying it as one of the destination filesfor all or
certain sources of and/or severity level messages.

Error log messages can be sent to the error log by creating an error notification object that will send
the message to the syslog using the logger command. The object can be customized to send all or
only certain classes of messages.

Syslog messages can be processed directly from the file that they have been written to. If they are being
sent to the console, the swcons command can direct the console output (syslog) to afile. Thisfile can
then be processed to extract the appropriate information.

The errpt command reads the error log and puts the datainto a readable file that can be processed to
extract the appropriate information.

If real-time data capture is desired, automation functions can be used to accomplish this:

For the error log, create an error notification object with an associated method (a program or
command language script). When an error log message is created, the object will be invoked and
the message will be passed to the program/script, which can examine the message contents and take
appropriate actions. For example, this can be used to send an SNMP trap whenever a particular
type of error occurs.

For error log messages, have desired messages made "alertable” viathe errupdate command.
Alertable errors are presented as SNA aertsto SNA network management software (such as
Tivoli NetView for OS/390, assuming there is a properly configured connection from the AIX
platform to NetView).

For the syslog, have a program monitor the file the desired messages are be written to and take
appropriate analysis and action(s) as message lines are received.

Finding and Collecting Availability Measurement Data 38

© IBM 2002 Messages

The Appendix contains some of AlX error log messages that contain component and status information
useful for availability measurements. For details on AIX messages, syslog, and error log, refer to the
manuals for the appropriate level of AlX, including:

* AIX Genera Programming Concepts

* AIX System Management Guide

* AIX Problem Solving Guide and Reference

Finding and Collecting Availability Measurement Data 39

© IBM 2002 Alerts

Alerts

The Systems Network Architecture (SNA) communications protocol contains SNA Management

Services Units. and Network Management Vector Transports (NMVTSs) that are commonly

known as alerts. They are notifications sent to report a changein a SNA component. Generated alerts

can indicate component availability status changes, and provide availability measurement information.

The types of components reported on include:

* Applications known to Communications Server viaLU definitions

* SNA network devices (communicators controllers, lines, cluster controllers, etc.)

* Gateway devices that communicate between SNA and non- SNA entities

» Software that issues SNA alerts (applications, performance monitors, network management
software, etc.)

An alert isanotification from a component to an SNA network management product that some aspect
of acomponent has changed. Tivoli NetView for OS/390 is commonly used as the SNA management
product that receives alerts. For the AS/400 and e-server iSeries platforms, the OS/400 operating
system contains network definition and management functions that include sending and receiving SNA
alerts.

The alert may be viewed as good, bad, or indifferent by the installation. The notification is unsolicited
(meaning it occurs without anything querying for it) and "one way" (meaning it cannot be directly replied
to). Since alerts may be caused by all sorts of conditions, many more alerts are generated than are
actually needed to determine the availability of SNA components in the environment.

For S/390 networks, the path an aert takes from the component to the management product (which is
also called the alert focal point) shown in the following picture:

Process

Display | Discard
]

mmunication @
AR O.:SH NetView For OS/390

Server

0S/390

Finding and Collecting Availability Measurement Data 40

© IBM 2002 Alerts

1. A component, or software that manages the component, generates an alert (based on the
component and software alerts can be created for specific situations).
The alert goes to Communications Server (VTAM).
3. Communications Server (VTAM) sends the aert to the Alert Receiver focal point (usually
NetView).
4. Theaert focal point takes action on the alert. The action can be:
* Discarding it
* Displaying it on an operator terminal (for NetView, on the NetView Hardware Monitor)
* Loggingto alog file (For OS/390, to SMF record type 37(X'25"))
* Invoking automated actions or procedures (for NetView, viathe NetView Automation Table)

N

An address space running on the same OS/390 image as the NetView program can issue alerts directly
to the NetView address space using the NetView Program-to-Program Interface (PPI).

For iSeries and AS/400 networks, the aert flow is similar, except that the alert generation and focal
point functions are part of the OS/400 operating system (no separate SNA protocol product or
NetView is needed). An OS/400 can be the focal point for any SNA aertsin the network, and can log
them in a database. Alerts can aso be forwarded to and received from Tivoli NetView for OS/390.

An aert contains one major vector and one or more subvectors; each subvector may have several
subfields .The contents of these vectors, subvectors, and subfields can be checked and used by the
NetView automation table. There are also NetView programming functions, usable in NetView REXX
or CLIST language automation routines, to access the alert contents.

Valid values for the vectors and fields are documented in the SNA FORMATS manual. Products can
provide their own aerts, and install ations can implement customized alerts aswell. The major vector
types that may contain component availability information are:

X'0000 Alert (most alerts use this major vector)
X'0001 Link problem
X'0002 Resolution aert (a problem has been resolved)

The subvectors to be examined are:
X'05' Thisisausually alist of the resources from the component having the problem up
through the network that sent the aert to NetViewl he information includes:
. Resources names - the SNA network names (PU, LU, line etc. From
configuration information).
. Resource type codes - codes that indicate what type of component thisis
(line, controller, adapter, etc.). NetView supplies atable (which can be
updated) that is used to associate resource type codes with generic component
descriptions.

Finding and Collecting Availability Measurement Data 41

© IBM 2002

X'10'

X'51

X'92'

X'93
X'94'

X'95'

X'96'

Alerts

|dentifies one or more products. It usually contains information about the product the
alert occurred on. It may contain inventory type information such as machine type,
serial number, etc.
If the alert isfor aLAN attached component, this subvector contains information on
the LAN link connection (adapter address, ring/bus identifier, bridge identifier, etc.).
Contains detailed alert information:
w A code indicating the event type:

X Permanent loss of availability

X temporary loss of availability

X performance impacted

X permanently affected resource

X impending problem

X unknown

X Bypassed

X redundancy lost
w The Alert ID (4 bytes)
w A description code (documented in the SNA Formats manual; installations can

add additional codes). Categories include:

X Hardware

X Software

X Communications

X Performance

X Congestion

X Microcode

X Operator

X Specification

X Intervention Required

X Notification

X Security

X Undetermined
Probable Cause Code(s) that denotes possible causes of the event.
Probable User Cause Code(s) that denotes probable user actions that may have
been taken that caused the error, and recommended actions to take to try to resolve
the problem.
Probable Install Cause Code(s) that denotes probable causes of the problem due to
install activities (initial installation or setup of the component).
Probable Failure Cause Code(s) that denotes condition(s) that have resulted in the
failure of aresource, and recommended actions to take to resolve the problem.

Action(s) invoked for an aert will vary based on the contents of the alert, and how the installation
chooses to handlef/filter alerts based on those contents.
Hereis an example of an alert, as displayed on Tivoli NetView for OS/390:

Finding and Collecting Availability Measurement Data 42

© IBM 2002 Alerts

HCBNV BONETT
Fommmmmma +

DOVAI N | PHON |
Fommmmmma +

DATE/ TI ME: RECORDED - 12/06 15:10
EVENT TYPE: UNKNOWN
DESCRI PTI ON: SOFTWARE PROGRAM ABNORVALLY TERM NATED

PROBABLE CAUSES:
APPL| CATI ON PROGRAM

APPL| CATI ON PROGRAM TEXT:
TEST ALERT
UNI QUE ALERT | DENTI FI ER: PRODUCT I D - 5642010 ALERT ID - 03728157

NWT - 41038D 0000000000
MAJOR VECTOR 0000 - 004F 0000
SUBVECTOR 92

0B920000 12200003 728157
SUBVECTOR 10

1010000D 110EOAO0 40F5F6F4 F2FOF1FO
SUBVECTOR 93

04931001
SUBVECTOR 31

15310201 02110321 110C30E3 CS5E2E340 C1D3C5D9 E3
SUBVECTOR 03

11030301 09C2D6D5 C5E3E340 40D7C8D6 D5
SUBVECTOR 97

06970481 1012

Getting Data From Alerts

Using automation, such as NetView (or a product that interfaces with NetView), is the best option for
capturing availability data. However, analysis of the aerts that can be generated for a component is
required to identify the ones that carry meaningful availability information. Both standard alerts
(document in the SNA Formats manual) and custom alerts (documented in the individual component
manual s) exist.

Once the desired alerts are determined, the following actions on the S/390 platform are necessary to

obtain availability information:

* Definethe NetView alert filters so that the desired aerts are passed to the automation table.
Filtering is based on a combination of alert event type and the component generating the alert.

Finding and Collecting Availability Measurement Data 43

© IBM 2002 Alerts

Define the NetView automation table to check for valuesin specific subvectors and subfields of an
alert, to determine when automation routines are to be invoked to access the information contained
in the alert. Thisis necessary if further data examination or analysis has to occur.

If availability data collection automation is being done outside of NetView, NetView can act as an
"agent" to convert the alert data to aformat the outside automation function work with (message,
global variable, object repository, TCP/IP trap, etc.).

For the AS/400 environment, the actions to take include the following:

Messages sent to the QSY SOPR message queue or the QHST history log can be converted into
alerts. A subset of OS/400 messages are predefined to be "aertable"; any message can be defined

to be alertable by updating a parameter in the message description.

At the remote site where the alert is generated, or at the focal point, the aerts can be filtered so that
only the desired ones are processed.

Alerts can be directed to a data queue; a program can monitor the data queue and take action when
an alert arrives, thus allowing further processing and/or automation based on the detailed contents of
an adert.

Isit very possible that alerts will not be generated when problem conditions return to normal. For
example, an aert may be generated when a component outage or severe performance problem occurs.
When the component returns to an available, or normal, state, no alert is generated. Addressing these
situations requires using a monitoring technique (discussed in the “Monitoring Techniques’ chapter” in
the following manner:

1.

2.

When the aert that indicates an outage is received, an automation routine invokes the desired
monitoring technique.

When the monitoring technigue determines that the component has returned to the normal state, it
records that information to alog file or amessage and then stops monitoring the component. This
avoids unnecessary monitoring overhead.

For further details on alert syntax, and using automation to detect and process aerts, use the following
manuals:

SNA Formats
Tivoli NetView Automation Guide (for the appropriate Tivoli NetView software level)

Finding and Collecting Availability Measurement Data 44

© IBM 2002 Traps

Traps

TCP/IP traps can be used when the components that are being monitored support Transmission Control
Protocol/Internet Protocol, and have an SNMP agent. These components include:

* UNIX based application platforms (AlX, Linux, HP-UX, Solaris, etc.).

* Application platforms that support TCP/IP (including z/OS, OS/390, VM, zZ/VM, AS/400,
Windows platforms, OS/2, and Netware).

* Devicesthat interconnect TCP/IP components and networks (switches, bridges, routers, etc.).

* Gateway devices that communicate between TCP/IP and non-TCP/IP environments.

» Software that can interface with SNMP to issue traps.

The Simple Network Management Protocol (SNMP) is used to support the management of TCP/IP
networks. The maor components of SNMP consists of the following:

* Managed Node: acomponent in the TCP/IP network that needs to be monitored/controlled. Each
managed node must have a TCP/IP network address, and run an SNM P agent software that
receives, processes, and sends SNMP requests and notifications. A single physical component can
have multiple TCP/IP network addresses, both physical (multiple physical interfaces) and logical
(multiple addresses per physical interface).

* Management Information Base (MIB): aMIB isrequired for SNMP management. It is a set
of objects (with a standard naming method) that represent component information or status (for
example, number of hard drives or current CPU utilization). An SNMP agent has a default MIB;
components can also have component-specific MIBs. The MIB contains both object and trap
definitions.

* Management Station: a platform that runs SNMP manager software (such as Tivoli NetView or
HP OpenView) to processes management information from SNM P agents on the managed nodes.

* Management Protocol: the communication between the management station and the managed
node, to obtain information about, or change some attribute of, the managed node. There are 3
major functions supported by the management protocol :

* GET thevalue of one or more MIB variables. The management station must be authenticated
by the managed station before information is returned.

e SET thevalue of one or more MIB variables. Thisresultsin a change of state in the managed
node - assuming (for security reasons) that the SNM P agent software on managed platform
allows MIB variable changes to physically change the managed node.

* TRAP: thisisan unsolicited notification from the managed node to the management station that
something has changed on the managed node.

The follow figure depicts the communication flow when using SNMP:

Finding and Collecting Availability Measurement Data 45

© IBM 2002 Traps

Display | Discard
P

= m

SNMP Manager

| Operating|System[Platform |

TCP/IP
Network

IP Components

=

Each component in the | P network to be managed has a SNMP agent and MIB.

2. The SNMP Manager software issues GET/SET commands to retrieve monitored information, or to
set amonitored object value (which in turn may cause some physical change in the component).

3. When certain conditions occur, the SNMP agent sends a TRAP to the SNMP Manager (atrap can
be sent to multiple SNMP Managers).

4. The SNMP Manager can process the trap (for example, storeit, or, if it has automation, invoke an

action such as running a program), display it on its console, or discard it.

A TCP/IP trap is very analogous to an SNA Alert, and can be used as a source of availability data for
TCP/IP components. the easiest way to work with trapsis viathe SNMP management software that is
used to monitor and capture traps.

Some management stations can convert atrap into an alert. Thisis useful if:
* Thereisan SNA network.

e Tivoli NetView isinstalled on a S/390 system.

* S/390 automation is being used to collect availability data.

Thisis one way to consolidate availability data.

A trap contains the following values:

enterprise The MIB object ID assigned to the vendor implementing the
agent. This MIB variable uniquely identifies the agent.
agent-address The TCP/IP network address that generated the trap.

Finding and Collecting Availability Measurement Data 46

© IBM 2002

Traps

generic-trap

A number from 0-6 that indicates trap type:

0: The SNMP agent is reinitializing and may be resetting M
variables.

1: The SNMP agent isreinitializing but MIB variable valug
are not being changed.

2: The SNMP agent has detected a linkdown condition. A
network interface monitored by this agent has been disableq
3: The SNMP agent has detected a linkup condition. A
network interface monitored by this agent has been enabled
4:. The SNMP agent received a message that could not be
authenticated.

5: If the agent is running on a platform that is also running
exterior gateway protocol (a TCP/IP protocol used for
routing information between groups of networks and
gateways), it has detected the loss of a neighboring platforn
that is also running EGP.

6: The SNMP agent has issued an enterprise-specific trap.
Thisisatrap defined specific to this component type (usual
by the component vendor).

specific-trap

May contain more information about what caused the trap. For
example, for enterprise-specific traps this can contain a numbey
uniquely identify this defined trap.

time-stamp

Elapsed times (hundredths of seconds) from the time the agent
was last initialized to the time the trap was generated.

variable-bindings

A of name=value pairs, where ‘name’ isaMIB object and ‘vall
isthe object’ svalue, that isincluded in the trap information. Tk
allows enterprise-specific traps to send MIB data as part of the

trap.

Enterprise specific traps are defined in the component MIB. Here is an example trap definition:

ent erpri se3174St at usCodeChange TRAP- TYPE
ENTERPRI SE i bnB174Ent er pri seTrap
VARI ABLES { gen3174SscChanges }

DESCRI PTI ON
" The enterprise3l74St at usCodeChange trap indi cates

that the 3174's system status code has changed.

This could be any addition or renoval of system status.
The tabl e gen3174SscTabl e contains the current status
codes in the system status queue.

Note: this trap is generated only at the end of each
time period where the val ue of gen3174SscChanges is
different fromthe previous period."

Finding and Collecting Availability Measurement Data 47

© IBM 2002 Traps

RFC1215 can be used to determine what al the fields mean. The key items here are:

* Thisisan enterprise-specific trap, since the ENTERPRISE section contains a specific identifier
(MIB object).

* The specific trap typeis 1.

* Thevariable-bindings list will contain the object 1D represented by ‘ gen3174SscChanges’ (defined
elsewhere in the MIB) and the values associated with that object.

Generic-trap types 2,3, and 6 can be used to indicate the change in the availability status of a

component. Trap type 6 will require further investigation, to determine which of these enterprise-specific
traps contain relevant availability information. Be aware that the SNMP agent periodically pollsthe
network interfaces (based on values that can be customized) to determine their status - which means

that some traps may not be generated at the time the status actually occurs.

Getting data from traps

Almost all TCP/IP operating system and component implementations include, as part of the TCP/IP
application suite, SNM P agent software. Some may include SNM P management software, but these
are more likely found incorporated into vendor products that support SNM P management.
Theoretically, amost any point on the TCP/IP network can be the management station, or one of
several management stations. Placement of the management station will depend upon SNMP traffic
volume and trap processing requirements. The choice of the appropriate platform depends on various
technical, performance, political, and financial considerations that are far beyond the scope of this
document).

Use TCP/IP network management software products to gather and analyze information from a trap.

The potential traps that could be issued for a component can be determined from the MIB for that
component. Some management software products may also provide a‘ command-line” program that

can generate atrap, useful when using a monitoring technique (described in the * Monitoring Techniques
chapter) on a component.

Once the desired traps are identified, one (or more) management stations should be defined to receive
the trap. Trap transmission is "connectionless;; that is, once the agent sends the trap, nothing comes
back to indicate that a managing system has received it. Sinceit is an unsolicited notification, the
management station has nothing to indicate that atrap may be arriving. This should be taken into
consideration when planning where the traps will be received.

After the trap is received by the managing station, the SNMP Manager should have the capability to do

one or more of the following:

* Record the statusin afile or database, either directly, or, have enough automation capability to start
alocal program when a particular type of trap is received that saves the appropriate information.
This allows later collection or processing of the data to measure and report availability, either on the
SNMP manager platform or at another location the information can be forwarded to.

Finding and Collecting Availability Measurement Data 48

© IBM 2002 Traps

* Convert thetrap into an alert, if a SNA network exists and it is desired to do so. The management
software should have access to service point functions (either directly or interfacing to another
product) that allow the conversion from atrap to an dert that is forwarded into the SNA network
(an exampleis Tivoli NetView on AlX interfacing with Tivoli NetView for OS/390 to accomplish
this task).

Isit very possible that, asin the case with alerts, traps will not be generated when problem conditions

return to normal. A trap may be generated when a component outage or severe performance problem

occurs. When the component returns to an available, or normal, state, no trap is generated. Addressing

these situations requires using a monitoring technique (discussed in the “Monitoring Techniques’

chapter) in the following manner:

1. When thetrap that indicates an outage is received, an automation routine invokes the desired
monitoring technique.

2. When the monitoring technique determines that the component has returned to the normal state, it
records that information to alog file or amessage, or generates a unique trap on its on, and then
stops monitoring the component. This avoids unnecessary monitoring overhead.

Finding and Collecting Availability Measurement Data 49

© IBM 2002 Event Management Products

Event Management Products

Event Management products can provide an easier path for using the data sources that have been
described, or can create their own data sources for availability events. These products are able to:

Access log, message, aert and trap data sources, to extract the desired information.

Provide agents, or use other products as agents, to create new event sources.

Filter information coming from the event sources, so that only the data relevant for what is being
measured is obtained.

Correlate events coming from multiple sources, which may reflect status on the same component, to
eliminate redundant information.

Invoke automation, triggered by events or by a schedule, to invoke monitoring techniques against
resources.

Store captured data in aformat that is easily accessible from other programs, particularly reporting
programs.

Products providing these functions are very useful in collecting availability data. The more data sources
they can access, the better they can help consolidate data for a variety of components. Their agents, or
interfaces to other products, can create new event sources. They reduce or eliminate the amount of
“custom coding” necessary to access information in the event sources. They can create, or feed, a
repository against which measurement reports can be run; they may even have enough automation
function to extract the “raw” data from the event source and format it in a consistent manner for
reporting, regardless of where the data originated.

Examples of these products from IBM include:

Tivoli Enterprise Console (TEC)

Tivoli Enterprise Console provides adapters to capture events from a variety of sources, such as.

* Logfiles

e Traps (viaSNMP Managers such as Tivoli NetView or HP OpenView)

e Tivoli Distributed Monitoring events

* 0S/390 messages and SNA aerts (viaTivoli NetView for OS/390)

* Tivoli Management products for specific applications (DB2, WebSphere, Web Services,
Notes, Oracle, etc.)

e Third party products

TEC aso provides the automation to correlate, store, and extract specific data from these sources.

Tivoli NetView for OS/390

Tivoli NetView for OS/390 captures events from:
* 7/OS and OS/390 messages

* SNA derts

e Traps

» 3270 applications (via screen scraping)

Finding and Collecting Availability Measurement Data 50

© IBM 2002 Event Management Products

* TEC events(viaTivoli Enterprise Console)
Tivoli NetView for OS/390 also provides the automation to correlate, store, and extract specific
data from these sources.
e |BM Director
IBM Director provides agents to capture availability and performance events from Intel
workstations, and the automation to store and extract data from these events.

There are al so products from other vendors that can perform these functions.

Finding and Collecting Availability Measurement Data 51

© IBM 2002 Monitoring Methods

Monitoring Methods

Overview

There will be times when the data sources described in the earlier sections of this white paper will not
provide the availability information needed to create measurements. When those sources are not
adequate, monitoring of the component to detect availability status will be required.

An active monitoring method or technigque can be used to capture this status. This does not need to be a
separate task if performance monitoring or automation of the component state is already occurring. The
necessary information may already be available from this activity; it isjust a matter of extracting what is
needed.

This section discuss the monitoring methods that can be used. They vary in complexity; in general, the
more complex a method is to implement, the more detailed, specific measurement data it can provide.
The monitoring methods that will be covered are:

* Heartbeats

* PINGs

* Remote command execution

* Enduser simulation

e Custom monitoring agents

These methods will be covered from a “standalone” implementation standpoint. However, these
functions may also be part of existing or planned management or monitoring software for an particular

environment.

All of the methods are used in a similar manner, as shown in the following diagram:

1. Send a monitoring requesb_

Monitoring Monitored
Function 2. Receive response Resource

: |

3. Determine
Availability Status

4. Record
information

1. The monitoring method is invoked and sends a request to the monitored resource.
2. The monitored resource returns a response to the monitoring function.

Finding and Collecting Availability Measurement Data 52

© IBM 2002 Monitoring Methods

3. Based on receiving or not receiving aresponse, or the content of a received response, the

monitoring function determines the availability status of the resource.

4. The monitoring function records the status in a repository.

Common considerations when implementing any of these techniques include the following:

The technique must be invoked or scheduled using automation functions (provided by the operation
system platform or a product). This provides consistent usage and eliminates human errors from the
process.

The response returned from a monitoring request must be captured for validation. Ideally the
automation function that invoked the monitoring provides functions to analyze whatever datais
returned, if that is needed to determine availability status.

There is atradeoff between monitoring interval size and monitoring overhead. The smaller the
monitoring interval, the more accurate measurements will be, and the more quickly a status change
can be discovered. However, this uses more “overhead” than alarger monitoring interval.
Components that are very critical to the availability of an application should be monitored often,
perhaps once or twice a minute.

The technique can be used in conjunction with message/alert/trap events, when a verification of
“return to normal” state is needed. Thisis most efficiently done by having the event that indicates a
“down” or “problem” state trigger automation invoking the appropriate monitoring technique. The
technique runs at aregular interval, sending requests to and checking the responses (or lack of
response) from the resource. When the technique receives a response that indicates normal
operation, it records this (as an event), and stops monitoring.

Products already installed in the environment may already contain these monitoring functions. While
most are easy to program in one' s favorite complied or interpreted language, there is no reason to
duplicate the effort if the function already exists in a product.

Finding and Collecting Availability Measurement Data 53

© IBM 2002 Monitoring Methods

Heartbeat

A heartbeat is perhaps the simplest type of monitoring technique to implement. It isafunction that runs
continuously and periodically records or reports the status of the component on which it executes. As
long asit isrunning and able to record heartbeats, the component is available The heartbeat function
must always be started when the component is started, and is only stopped when the component is
stopped. This ensures an accurate reflection of the component’ s availability.

The heartbeat can report status (a*“ pulse’, so to speak) in two ways.

1. Loca - recorded in data storage on the component (e.g. log file).
2. Remote - sent to another component, or monitoring function running el sewhere, and recorded there.

Availability reporting normally uses a metric of minutes. The heartbeat reporting interval must be no
greater than a minute to best support this metric

When a component restarts after an outage, the time of the last recorded pul se indicates when that
outage occurred. Calculating the time between that record pulse, and the time the heartbeat program
starts, provides an outage measurement length. For example, when a component starts, the heartbeat
function determines that the current timeis 16:00, and the time the last pul se was recorded was 14:00.
Therefore, the outage length was 2 hours, or 120 minutes.

Clustered environments, such as Parallel Sysplex or Highly Available Clustered Multiprocessing
(HACMP) use a heartbeat function among the systems that participate in the cluster. The heartbeat is
used to indicate to other cluster members that the system is still running. If asystem’s heartbeat is
missing after a certain interval, the other members will assume that system is no longer operating, and
will invoke actions to ensure the work supported by the cluster continues to run with minimal or no
interruption.

A heartbeat program is best used when the component can do the following:

e Automatically start programs or defined functions after it is started.

* Invoke the heartbeat function as one of the first functions that is started after the platform starts it
processing.

* Record the heartbeat pulse to afile or other storage medium on the local platform, or send real time
output to a remote operating system platform.

Finding and Collecting Availability Measurement Data 54

© IBM 2002 Monitoring Methods

Appendix A lists examplesof “roll your own” heartbeat functions using REXX, ashell script, and a
Java servlet, that can be implemented on any platform that supports that programming language. Each of
these programs does the following:

1. When started, retrieves the last recorded pulse.

2. Cdlculates the outage length, or stores the outage start and stop times for processing by another
program to for outage cal culation.

3. Records a heartbeat in aloca file every minute.

In addition, certain platforms may have a heartbeat function built in. For example, Windows NT
(Service Pack 4 and later) and Windows 2000 have a program called uptime. This program enables a
heartbeat function that records status to the registry, and calculates the platform availability using that
heartbeat. Here is an example of output from the uptime command:

Total Reboots: 235
Mean Ti ne Between Reboots: 3.39 days
Total Bl uescreens: 1
Total Application Failures: 0O

Since 7/26/01:

System Avail ability: 85.3382%
Total Uptine: 124d 4h: 14m 35s
Total Downtime: 21d 8h:1m 43s
Total Reboots: 30
Mean Ti ne Between Reboots: 4.85 days
Total Bl uescreens: 0
Total Application Failures: O

Certain operating system platforms and application subsystems provide “indirect” heartbeat functions. If
thereisafunction that continuoudly, at |east once a minute, records information to data storage with a
time stamp, and is always running when the platform runs, it can be used to determine platform or
application subsystem. availability. Any gaps of information greater than 1 minute indicate that an
outage has occurred. Examples:

* OnZz/0OS and OS390, the SYSLOG and SMF are normally always being written to while the
operating system is running. By processing these records, and looking for intervals of greater than
one minute where no records were being recorded, operating system availability can be determined.

* Web Serversrecord incoming requestsin alog. If aWeb Server regularly receives multiple requests
per minute, any periods that show no requests for more than a minute are likely indicators of a Web
Server (or web server platform) outage. By processing the log and looking for these gaps in the
recorded activity, outage times and availability of the web server can be calculated.

Finding and Collecting Availability Measurement Data 55

© IBM 2002 Monitoring Methods

Using Heartbeatsfor availability monitoring and measur ement

When using a heartbeat function, there are several considerations to keep in mind:

* heartbeats indicate the ability for the platform to execute. They do not indicate if specific functions
needed by an application are running, or their responsiveness (Depending on how the function is
implemented it may be possible to modify it to provide this function).

* Actionsto calculate the availability must be taken.. A heartbeat recorded locally must be retrieved
and processed. A heartbeat sent remotely must be captured and stored to use in subsequent
calculations.

e If anindirect heartbeat is created, the mechanism that records the information used for the indirect
heartbeat must always be running.

Finding and Collecting Availability Measurement Data 56

© IBM 2002 Monitoring Methods

PING

A ping checks the status of a component from aremote location. It is asimple function that tries to get
any response from the monitored component. The response, regardless of the contents, indicates that
the monitored component is function.

A PING function is usually incorporated within a communications protocol. The most well known of
these isthe TCP/IP PING function. Almost every operating system platform and networking device
communicates using TCP/IP, so this function is well suited to use in availability monitoring. Other ping
functions exist in other protocols. For example, APING is a program found in Advanced Peer-to-Peer
Networking (APPN) environments. APING allows one APPN node to determine if another APPN

node is active.

An availability monitoring technique using PING follows these steps:

1. The monitoring function issues the PING to the monitored resource (it may set the numbers of pings
to send, the data size of the ping request, the amount of time to wait before a timeout occurs, etc.).
2. The monitoring function waits for the responses to return.
3. If responses are received before the timeout value, the monitoring function assumes that the
component is active. It may also set acriteria, such as.
a. The percentage of ping requests that must be returned for the component to be considered
available
b. The response time that the request(s) must be received in for the component to be considered
available.
If the criteria are met, the component is considered available; otherwise, it is not available.
4. If no responses are returned - they all time out - the component is considered unavailable.

The following example shows the PING command being issued from a Windows NT desktop, to
monitor a LINUX system. It will send 10 requests, with atime out threshold of 3 seconds (3000
milliseconds):

H: \>ping -n 10 -w 3000 hsl suse
Pi ngi ng hsl suse [9.82.131.240] with 32 bytes of data:

Reply from 9.82.131. 240: bytes=32 tine=20ms TTL=253
Reply from 9.82.131. 240: bytes=32 tine=10ms TTL=253
Reply from 9.82.131. 240: bytes=32 tine=10ms TTL=253
Reply from 9.82.131. 240: bytes=32 tine=11ms TTL=253
Reply from 9.82.131. 240: bytes=32 tine=10ms TTL=253
Reply from 9.82.131. 240: bytes=32 tine=10ms TTL=253
Reply from 9.82.131. 240: bytes=32 tine=10ms TTL=253
Reply from 9.82.131. 240: bytes=32 tine=10ms TTL=253
Reply from 9.82.131. 240: bytes=32 tine=20ms TTL=253
Reply from 9.82.131. 240: bytes=32 tine=10ms TTL=253

Finding and Collecting Availability Measurement Data 57

© IBM 2002 Monitoring Methods

All ping requests were responded to, with response times varying from 10 to 20 milliseconds. If a
resource is not available, the response would look as follows:

H \>ping -a -n 10 -w 3000 smns-tnB90
Pinging sms-tnm890 [9.82.131.251] with 32 bytes of data:

Request tined out.
Request tined out.
Request tined out.
Request tined out.
Request tined out.
Request tined out.
Request tined out.
Request tined out.
Request tined out.
Request tined out.

The ping requests were never returned, or the timeout threshold was reached before they could be
returned, so the component is considered unavailable.

Using PING for availability monitoring and measurement
When using a ping function, there are several considerations to keep in mind:

* |t canindicate that the component is active and able to communicate using the protocol that issued
the ping. It may not indicate that the specific application is active. The TCP/IP PING function will
show if aplatform is active and running TCP/IP, but will not show that a web server function on that
platform is active. Getting that level of information requires a customized ping function (either
roll-your-own or contained within a management product) that, for example, will also send a request
to the port used by the application, and determine if aresponse was received back from that port.

* A ping timeout can mean one of two things:

1. The component is unavailable
2. Another component in the path between the monitoring function and the path is unavailable.

The following diagram shows a monitoring function running on an application platform that monitors
a network component:

Finding and Collecting Availability Measurement Data 58

© IBM 2002 Monitoring Methods

Monitoring Monitored
Platform Server

Router
Network = Network
Segment U Segment

If the monitoring platform pings the monitored server and the ping timeouts, either the server is
down, or the router - the major component between the monitoring platform and the monitored
server - isdown. The availability monitoring must understand the networking topology to take
appropriate actions to ensure accurate measurements. In this example, if the monitoring detects the
server isdown, it should also check the router status, to determine where the actual unavailability is
occurring.

* Programs that use this monitoring technique must be able to capture the information returned by a
ping function, and analyze the contents. Thisis especially trueif the availability criteriaincludes
attributes such as percentage of successful pings, or the response time of the ping requests. A
program that is part of an automation function is the best way to implement this requirement.

Finding and Collecting Availability Measurement Data 59

© IBM 2002 Monitoring Methods

Remote Commands

A remote command extends the monitoring performed by a ping by issuing a specific command (or set
of commands) and looking for a particular set of responses to be returned. Thisissimilar to "PING" in
that acommand isissued from one platform and a response received, but is more powerful because the
command(s) can be requests for information (such as "show all programs that are executing”) or
requests that an action be taken (such as "stop function X”).

Remote commands provide the capability monitor both platform/device availability and specific resource
availability, for aresource related to that platform or device that can be monitored or controlled by
commands.

Remote command monitoring can be implemented in two ways:

1. Commands are sent directly from the monitoring function to the monitored component.

2. Commands are sent to an intermediate location, which is connected to the monitored component.
The command runs at this location, but can gather information form the connected monitored
component.

Remote commands require software on each platform to support command transmission, receipt and
execution, and response transmission. Commands used for availability monitoring purposes must be
non-interactive, line mode commands. That is, the command is issued, one or more command response
lines are returned, and the command ends. The command response (depending on how remote
execution isimplemented) can be captured in some fashion (within variables in a command procedure,
return code, written to afile, etc.) so that further processing actions can be taken based on the
command results.

Examples of remote command functions are described in the following paragraphs.

REXEC (TCP/IP)
The TCP/IP rexec function sends a command from one TCP/IP platform to another, with the response

being returned to the originating TCP/IP platform. The originating system must be running a REXEC
client program, and the destination platform must be running a REXEC server.

ROUTE (zOS and OS/390 Sysplex)
Within a sysplex the ROUTE command sends a command from one sysplex image to another. Any

command that can be entered on a z/OS or OS/390 console can be used. This includes both commands
related to the operating system and commands for applications running in zZ/OS or OS/390.

RMTCMD (Tivoli NetView for OS/390)

Finding and Collecting Availability Measurement Data 60

© IBM 2002 Monitoring Methods

The NetView RMTCM D command sends a command from one zZ/OS or OS/390 image to another;
the two images do not have to bein a sysplex but both must be running NetView, have a network
connection (SNA or, if running Tivoli NetView V1R4 or later, TCP/IP) between them, and have the
appropriate NetView definitions that enable NetView-to-NetView communication. Any NetView,
network, or operating system/subsystem command can be sent, and the response is returned to the
NetView operator or command procedure that issued the command.

SBMRMTCMD (iSeries and AS/400)

The iSeries and AS/400 Distributed Data Management (DDM) function provides a Submit Remote
Command (SMBRMTCMD) function to send commands to another i Series or AS/400 system.
APPC/APPN isthe protocol used to send the command(s) and return the command response(s).

Remote Command Service (Windows NT, Windows 2000)

The Windows NT Server and Windows 2000 Server resource Kits provide a set of programs called the
remote command service. This alows the sending of commands from one NT or 2000 system for
executing on another. The monitored system must be running the server portion of the remote command
service.

RUNCMD (Tivoli NetView for OS/390)

The RUNCMD function of Tivoli NetView on the §390 platform (z/OS, OS/390, VM, V SE)
provides away to send commands from NetView to network connected non-S/390 components and
receive responses. This supports monitoring the status of many different

types of components and platforms.

The following is a picture of the major RUNCMD components:

2}1% SNA Gat i
2 NETVIEW ateway m
COMM Q L Service Point
SERVER Network Operating System i
N

* NetView - for the RUNCMD processor
Finding and Collecting Availability Measurement Data 61

© IBM 2002 Monitoring Methods

* SNA gateway - for the SNA networking protocol between NetView and the Service Point

* Service Point - the main interface between NetView/SNA and the non-SNA platform. The
application:
* acceptsthe RUNCMD request from the SNA Network
* interfaces with the local platform to perform the appropriate actions to carry out the request
* returns the command response to the SNA network viathe SNA gateway

The SNA Gateway and Service Point Application functions can be separate products or contained in a
single product. Examples of products that support RUNCMD include:

e |IBM Communications Server

e AIX NetView Service Point

* NetView Remote Operations Manager/Agent for AS/400
* Netwarefor SAA

e Ciscoworks Blue Native Service Point

* Microsoft SNA Server

A NetView automation procedure can issue a RUNCMD request that contains a command uniqueto a
Cisco router. The Ciscoworks service point function executes the command on the router, and returns
the result to NetView. The automation procedure can examine the response to this command and
determine what further actions have to be taken.

Using Remote Commands for availability monitoring and measur ement
When using remote commands, there are several considerations to keep in mind:

* Remote commands go further than PINGs; they can verify that specific workloads are running, and
are able to respond to commands.

* Command security issues are critical. Sending the wrong type of commands to a component can
inadvertently increase unavailability for that component. If aremote command process is used, it
must meet the appropriate security standards that are in place.

* Any remote command function implemented should be part of automation, or should be able to be
invoked by automation, so that results can be efficiently captured, analyzed, and used in the
availability measurement process.

Finding and Collecting Availability Measurement Data 62

© IBM 2002 Monitoring Methods

User Simulation

The best way to determine the availability of an application from a business perspective isto determine if
it performing exactly as the user expects. Thisis done by implementing user simulation monitoring.
This technigue uses software functions to simulate user interactions with an application function.

* A program (or 'script’, asit is commonly called) interacts directly with the application. This can be
donein several ways.

* If the application provides an application programming interface (API), the program can directly
invoke application calls viathe API.

* If the application has a 3270 interface, the program can use functions such as the Enhanced High
Level Language Application Programming Interface (EHLLAPI) to issue key strokes to the
application and perform “screen scraping” to capture text from the application.

* If the application can be accessed using a browser, a Java program can invoke methods that can
access the application URL, invoke URL or HTTP requests, and capture the response.

* If the application has a graphical interface, products exist that can record a sequence of mouse
clicks and/or keystrokes against the application, and then play them back at regular intervals.

The simulation program performs functions such as:

* Signing on to the application

* Entering one or more application-specific commands

* Determining if information was returned within a specified interval
* Validating any information that is returned

User simulation can measure application availability and response time as an application user
would seeit. It will provide more detailed information that the other monitoring techniques, but is also
more difficult to implement, since it must be set up for each application function to be measured.

Using a programmed script is more difficult than the other monitoring techniques because of the amount
of maintenance that is required to maintain its accuracy. Any change in the application - such as screen
layout, web page design, or URL changes - will likely require that the script be updated. However, if
changes in the monitored application are synchronized with simulation program, user simulation will
continue to provide very accurate results and avail ability information from the perspective of the
application user.

The program or script runs on aworkstation that is best located at or as close to the physical

location of end users. While the simulation usually can be implemented using automation software
running on the same platform as the application it is monitoring, this method will not accurately identify
bottlenecks or problems in the path between the users and the application. Wherever it runs, it can

either capture the information and immediately forward the relevant information to a central location, or
store it on the workstation for later uploading to or retrieval into acommon repository.

Finding and Collecting Availability Measurement Data 63

© IBM 2002 Monitoring Methods

Using User Simulation for availability monitoring and measur ement

* If aprogramming language is used, it must support the available methods for accessing the
applications as described above. The most common languages used for this are C/C++, REXX,
and Java. All run on avariety of operating system platforms. C /C++ and REXX can directly use
EHLLAPI functions (provided by a communications program such as IBM Communications
Server). Java provides methods that can be used to programmatically access and use web based
applications, and both C/C++ and REXX support socket level programming that can be used to do
the same..

* There are products that support designing and implementing user simulation functions without the
need for programming. Many of these are categorized as “ Application Test” or “ Stress Test”
products. They should, at aminimum, be able to:

* Create or interface to an emulated user application session, or use APIsthat provide accessto
the application across a network.

* Support sending keystrokes and pointing device clicks to the emulated session, or APl callsto
the application.

» Scan for or capture data displayed in the emulated session (known as "screen scraping”), or
capture the application responses from the API calls.

* Timetheinterval between the last user keystroke/click or API input call and the application
response.

* Store arecording of the interactions so that they can be executed at regular intervals (by the
product itself, or by a program or script invoked by a platform automation function).

* When user simulation determines that either the application has not responded within the desired
interval, two situations may have occurred:

1. Theapplication is unavailable

2. Another component in the path between the monitoring function and the application is
unavailable.

User simulation by itself will not be able to narrow it down to a particular component. Its

measurements must be correlated with other availability measurements, described earlier in this

paper, to determine what component(s) are causing the problem. This identifies the component(s)

that are the cause of the applications unavailability.

* Theworkstations where the user simulation functions are running must be as highly available
themselves as possible. They should be dedicated for monitoring and measurement purposes. They
should be placed within the network topology to give the perspective of different groups of users. If
users reside in multiple geographic sites, each site should have at least one user smulation
workstation; monitoring in this fashion will identify availability exposures that are uniqueto a
particular site.

Finding and Collecting Availability Measurement Data 64

© IBM 2002 Monitoring Methods

Custom Monitoring Agents

Many management and monitoring products provide agents - code that runs on the monitored hardware
or interfaces to the monitored software - that can be used to provide the status of the monitored
component. These custom monitoring agents connect to the managing software,

which usually runs on a separate physical operating system platform.

The monitoring agents implement one or more of the monitoring techniques described earlier in this
section. They may be implemented using open protocols, or using proprietary methods
specific to the monitor or management software product.

The agent reports status to the management portion of the software. The availability status notification

can be done in two ways:

1. Direct: the agent has the ability to explicitly report to the manager when afunction in the monitored
component changes status. The agent generates a notification (message, alert, trap, or proprietary
datastream) to the managing software.

2. Indirect: The agent does not explicitly notify the manager of availability status. The manager expects
to hear from the agent at some regular interval (for example, the agent is providing performance
information about the monitored product). If the agent reports but has no data, or doesn't report at
all, the manager can use this as an indication that the component is no longer available until it starts
receiving data again. The managing software may record these status changesin afile, or create a
notification (message, aert, or trap) that other software can detect.

Using Custom Monitoring Agentsfor availability monitoring and measur ement

Considerations for using custom monitoring agents depend upon the type of monitoring the agent
supports. The agent will implement at |east one of the heartbeat, ping, remote command, or user
simulation monitoring techniques; whichever are implemented will have the considerations as described
earlier in this section for that technique.

The greatest hindrance to using monitoring agentsis lack of skills on or knowledge about the agent - or
management software that uses the agent - in terms of its use within the availability management process.
The most important activity of a measurement project can be investigating the management software and
associated agents already deployed in the installation for availability functions. The following questions
are useful in determining if the management software and associated agents can be used to monitor and
measure availability:

* Istheagent fully enabled on the components it is monitoring?

* Doesthe agent provide status notification to management software?

* Do the status notifications indicate the availability state of the component?

* Can this status notification be captured by or forwarded to other software for consolidation?

* Can the status notification be reported in log, message, alert, or trap format?

* Can the agent interface to management software that can support many different types of agents?

Finding and Collecting Availability Measurement Data 65

© IBM 2002 Data Capture and Monitoring Products

Data Capture and Monitoring Products

Aninstallation can, as outlined in the preceding sections, implement their own routines for capturing
availability data, either from data sources or by writing monitoring techniques. However, there are many
products than can be used to produce, capture, and collect availability datafor I/T components. In most
cases these products use a subset of the system functions and

monitoring methods that have been described earlier in this document. Some products also provide
additional functionsthat can be used to capture availability information.

The variety of technologies used in modern applications makes it almost impossible to find asingle
product that can capture all required datafrom all sources on al components. With the number of
components, the number of protocols, and the different technologies, one product will not have all the
functions to interface to every type of component that has to be measured.

There will be products that can “aggregate” availability event information from other products. Instead
of trying to capture information for each component, these “aggregation” products will interface to many
products that management or monitor specific components, and can extract the desired availability
information from them. They can act as " consolidation points’; that is, other products can forward
component availability information to them, and they can consolidate

or aggregate the information into a single view or repository.

Products containing data capture functions will fall into five major categories:

1. Event Management. These products provide ability to capture "events' - an event being anything
to indicate the change in status of a particular resource- from multiple sources. The events can be
captured from the sources described earlier in this paper - logs, messages, alerts, and traps. The
event management product can also provide agents to capture events from additional sources. Since
availability status events are a subset of all events, these products can be an excellent source of
availability status information. Event management products can aso provide automation to extract
the desired information from the event and store the information in an appropriate repository for
further analysis and reporting.

2. Automation. These products can interface to the message flow of the platform they execute on,
and may be able to integrate with a network manager to capture aert, trap, or other network
information. Some products focus on remote console access/automation by using a workstation to
directly connect to the console port of a component, and running software on the workstation that
can capture information from the console and take a programmed action. The products may also
have data manipulation functions to extract the required availability information and format it to be
processed by areport generator program, or feed the data directly into a database.

3. Performance Monitoring. A component must be available before its performance can be
measured. Performance monitors report on the performance health of the component, aswell as
performance problems the component encounters that may be causing delays that are causing
unavailability to users, or which may be to a component unavailable state. The absence of

Finding and Collecting Availability Measurement Data 66

© IBM 2002 Data Capture and Monitoring Products

performance data from a component (or some aspect of the component) can be an indication that
the component (or some aspect of the component) is unavailable.

4. Application Monitoring and Management. These products focus on the management of specific
applications, or application response time. They provide agents that interface with the application
(or are even incorporated into the application code directly) to monitor and control its health. They
can provide application availability, performance, and response time information. In some cases the
products can forward this information to automation or enterprise management products.

5. Enterprise (Systems and Network) Management. The "management” aspect as related to
availability means "what is used to monitor the state of this resource, and what is used to control it
(changeits state)?" A management product that performs these functions can capture the changes
that have occurred, so that both current and historical availability datais accessible. These products
many contain some or all of Event Management, Automation, Performance Monitoring, and
Application Monitoring functions.

Most installations have at least one (and usually more than one) product that falls into one or more of

these categories, and which can be potentially used as part of this process. Further investigation of the

usefulness of product must include considerations such as:

* Theease of use of the availability-related functions.

* The capability to provide availability related information real time, and /or from alog or file.

* The ease of integrating the product within an automated process for monitoring, collecting, and
reporting availability information.

* The skills needed to implement the functions, and the commitment of the installation to build and
maintain skills on the product for the long term.

Example Products

The products mentioned in this section are listed to illustrate the type of capabilitiesthat exist. Thisis
not meant to be a complete list. They are included to provide guidance for those unsure of the type of
products that should be considered. For every product mentioned there may be several others that
provide similar capabilities.

Only the product functions relating to availability monitoring or data capturing are described. Covering
all the functions a product providesis beyond the scope of this document. All of the products have
general information documents that can be obtained from IBM or Tivali.

AS/400 Management Central

AS/400 Management Central is part of the OS/400 operating system (V4R3 and later) that extends the
iSeries and AS/400 Operations Navigator function to manage multiple iSeries and/or AS/400 systems
using TCP/IP. It provides these availability data capture and monitoring related functions:

* Allows remote commands to be issued to AS/400 systems to determine their status.

Finding and Collecting Availability Measurement Data 67

© IBM 2002 Data Capture and Monitoring Products

* Monitors system performance for iSeries and A S/400 systems, and allows thresholds to be set that,
when exceeded, can log the event, and do the same when the threshold returns to normal.

* Thresholds can invoke commands when they are exceeded or return to normal, such as sending an
alert or trap.

CICSPlex System Manager (CICSPlex SM)

CICSPlex SM is part of the CICS Transaction Server product. It provides a"single point of control™
for multiple CICS address spaces across multiple zZ/OS, 0S/390, V SE, and distributed platforms. It
contains a system availability monitoring function that detects when a CICS address space becomes
unavailable (due to stall, shutdown, address space/transaction dump, MAXTASKS, etc). Notification
when these conditions occur, or when an existing condition returns to normal, can be doneviaa
message or alert.

IBM Communications Server (AlX, Windows NT/2000, OS/2 Warp, Linux)

The IBM Communications Server product provides SNA gateway server functions that include
aNetView Service Point application. It can accept RUNCMD invocations from Tivoli NetView

for OS/390 for execution on the Communications Server platform (or attached clients), and return the
results of the commands to NetView. It can also issue aertsto NetView for certain server or client
workstation status changes.

|BM Director

IBM Director is aworkstation management product provided with IBM Netfinity xSeries Servers. It

provides the following availability data related functions:

* Logging or sending alerts on status changes such as system and application startup and shutdown.
Alertsthat are logged can be exported to atext file for processing.

* Receiving events from managed workstations running the Universalbility Management Services
(UMS) agent. These events can then be sent as traps to any SNMP manager.

* A heartbeat function to detect workstation availability status changes.

* Sending remote commands to managed workstations for execution.

* Setting threshold for avariety of status and performance monitors, which can be set to trigger
automated actions.

System Automation for OS/390 (SA for OS/390)
SA for OS/390 is an automation product that runs within the Tivoli NetView for OS/390 environment.

It provides automation and control of zZ/OS and OS/390 software and hardware components, primarily
address spaces, ESCON devices, and hardware. For the components it automates it will issue status

Finding and Collecting Availability Measurement Data 68

© IBM 2002 Data Capture and Monitoring Products

messages, which can be captured from the SY SLOG or from automation routines, so that the
appropriate availability information can be captured.

System Manager for AS/400 and Managed System Servicesfor AS/400

These products provide automation and performance monitoring for stand alone or SNA interconnected

AS/400s. The availability related data functions include:

* |Issuing messages or aerts based on performance exceptions from one or more connected AS/400
systems. These can be issued both when the exception(s) occur and when the exception condition
returns to normal.

* Sending remote commands to A S/400 systems.

* Providing customer monitoring through Managed System Services for AS/400 functions.

Teleprocessing Network Simulator (TPNS)

TPNS runs on z/OS or OS/390 and it used to develop scripts that perform user simulation against
application functions. These scripts can be used to verify if the application is available; the application
status can be recorded for future retrieval and processing.

Tivoli Application Performance Management (TAPM)

TAPM provides availability and performance measurement at the application transaction level. It can be

used to implement user simulation monitoring. The availability data related functions include:

* The Application Response Measurement (ARM) API to monitor application response time and
availability.

* Toolsto monitor availability and response time of client server and web based applications.

* An agent that captures the monitoring output, logs the results, and sends a notification to Tivoli
Enterprise Console and Tivoli Distributed Monitoring.

Tivoli Business Systems Manager (TBSM)

TBSM monitors and controls components in the zZ/OS, OS/390, and distributed environments. It can
interface directly to availability data sources (such as zZ/OS and OS/390 SMF logs and console
messages), and integrate with products that perform event management and performance monitoring
(such as Tivoli NetView, Tivoli Enterprise Console, and Omegamon Monitors) to obtain availability
related information. TBSM can also issue commands against any monitored component.

TBSM can interface with a large number of data sources and management products, and can aggregate
the events and show components from a hierarchical (physical connectivity) view, and a business
system (application connectivity) view. The events and views are stored in a database. Because it can

Finding and Collecting Availability Measurement Data 69

© IBM 2002 Data Capture and Monitoring Products

build business views and store the related event information in arepository, it can provide real time
views and long term reports on both component and application availability.

Tivoli Distributed Monitoring

Tivoli Distributed Monitoring provides monitoring and automated notification for resources

on various application platforms. The availability datarelated functions include:

* Agentsthat reside on the monitored platformsto check system, resource, and application-specific
performance or thresholds.

* Logging events, or sending eventsto Tivoli Enterprise Console, when the availability status of a
monitored system, resource, or application changes is threatened or changes.

* Taking apredefined action , such as running a command, based on a defined threshold.

* Support for monitoring agents that are developed by the installation.

Tivoli Enterprise Console (TEC)

TEC is an event management and automation product for capturing and correlating system and network
events. The availability data capture related functions include:
* Capturing and correlating status events from a variety of sources, such as:
* Distributed System and Network management products (Tivoli NetView, HP OpenView BMC
Command Post, etc.).
* Tivoli Distributed Monitoring

* Logfiles
* Tivoli Manager for... Products
e SNMPtraps

* Tivoli NetView for OS/390

* Correlating events from these sources to better determine which outage events are causes and
which are symptoms of other outages.

* Invoking programs against the captured availability information, to transform the data into a common
format for report processing.

* An automation engine to carry out automated actions based on a notification or a set of notifications
received.

* Integration with Tivoli NetView for ZZOS and OS/390. TEC can send eventsto NetView, and
NetView can send messages and alertsto TEC.

Tivoli NetView (Al X ,NT/2000 platfor ms)
Tivoli NetView, running on AlIX, NT, or 2000 platforms, provides network management of TCP/IP

resources. It monitors IP resources, |P network topology, and isa SNMP Manager. Its availability data
capture functions include:

Finding and Collecting Availability Measurement Data 70

© IBM 2002 Data Capture and Monitoring Products

* Providing event automation for traps received from TCP/IP SNMP components in the network.

The product can invoke programs or command procedures based on the content of atrap.

* Invoking programs or procedures to process captured information into a desired format and store
resultsin alog or file for later processing..
* Providing two-way communication with Tivoli NetView for OS/390:

* SendsTivoli NetView on OS/390 TCP/IP topology status information.

* Interfaces with the AIX NetView Service Point product to accept RUNCMD UNIX or
TCP/IP command invocation from Tivoli NetView on OS/390, execute them, and return the
result.

* Providing an application platform and APIs to support applications and provide management

(including monitoring/capture of availability information) for non-SNM P managed components for

both UNIX and non-UNIX environments.

The NetView Mid-Level Manager component of Tivoli NetView provides detailed performance
exception and event forwarding/consolidation for SNMP components and Al X, SUN, HP, and NCR
UNIX environments:

* Noatifications can invoke command/automated responses.

* Notifications can be forward as traps to Tivoli NetView.

Tivoli NetView for ZZOS and OS/390

Tivoli NetView for zZ/OS and OS/390 provides Enterprise Management, Automation, and Event
Management and Correlation for the z/OS and OS/390 platforms, including network connecting SNA,
APPN, and TCP/IP components.

Note: The NetView products for VM and VSE have been stabilized to the NetView for MVS
V2R3 level of functions. For the iSeries and AS400 platforms, a lot of the NetView function
is built into the OS400 operating system; these functions can be used to managed
interconnected i Series and AS/400s systems, and devices that are attached to them (local or
remote).

The availability related data functions of Tivoli NetView for zZ/OS and OS/390 include:

e Automation for system messages and SNA alerts; availability status indicators from these sources
can be captured and analyzed by automation procedures.

* SNMP management functions to receive SNMP traps and, optionally, convert them to SNA alerts.

* Converting SNA aertsto SNMP traps.

* The RMTCMD function to execute remote commands on another network connected NetView
z/OS or OS/390 platform.

* The RUNCMD function to execute commands on a non-SNA platform, via a Service Point
application.

e Automation procedures that can process information into a desired format and store it:

Finding and Collecting Availability Measurement Data 71

© IBM 2002 Data Capture and Monitoring Products

* Inafilefor later processing.

* Directly into a problem management/help desk product, as Tivoli Information Management, via
the NetView Bridge function.

* Inits Resource Object Data Manager (RODM), which can contain object representation of
components that other products can access and use for various purposes, including availability
status.

* InaDB2 database for later processing.

* APIssuch asthe NetView Program-to-Program interface (PPI) to allow further integration with
other applications.

* Integration with Tivoli Enterprise Console (TEC). TEC can send eventsto NetView, and NetView
can send messages and aertsto TEC.

Tivoli NetView Performance Monitor (NPM)

NPM provides performance monitoring of SNA and TN3270 TCP/IP sessionsinto a z/OS or OS/390

host. The availability data capture functionsit provides includes:

* Setting performance or availability thresholds against the resources it monitors. When these
thresholds are exceeded (or when exceeded thresholds return to normal), NPM can create an event
and log it in its repository, or generate an console message or SNA alert that can be captured and
analyzed by an automation product.

* Recording information on SNA session start/stop times (including LU 6.2 sessions).

* Interfacing with NetView and LAN Network Manager to analyze token ring segment and utilization
statistics, and generating alerts when performance exceptions are detected.

Tivoli NetView Performance Monitor for IP (NPM/IP)

NPM/IP provides performance monitoring of TCP/IP sessions (TELNET, FTP, HTTP, etc.) into the
z/OS or OS/390 TCP/IP stack, and of remote TCP/IP components from z/OS or OS/390. It can set
performance or availability thresholds against the monitored monitors. When these

thresholds are exceeded, NPM/IP can create an event and log it in itsrepository, or generate a
console message that can be captured and analyzed by an automation product.

Tivoli Web Component Manager (TWCM)

TWCM provides availability and performance monitoring of Web Server components, primarily the
HTTP Server and associated Application Server, such as WebSphere Application Server. The
availability data capture functions include:

* Monitoring the HTTP Server and Application Server functions and generating events when their

availability changes.

Finding and Collecting Availability Measurement Data 72

© IBM 2002 Data Capture and Monitoring Products

* Monitoring HTTP Server and Application Server performance attributes against defined thresholds.,
and generating events when those thresholds are violated, or when violated thresholds return to
normal.

* Forwarding eventsto the Tivoli Enterprise Console.

Tivoli Web Services Manager (TWSM)

TWSM provides avail ability and performance monitoring of Web Server applications. The monitoring is
done outside of the web server, so any web server platform can be monitored. The availability data
capture functions include:

* Monitoring web server pages to detect broken links and missing pages, which can indicate
availability problems.

* Monitoring web server end user response time against defined thresholds.

* Providing user simulation functions to issue web application transactions and capture the transaction
availability and response time information, and compare it against defined thresholds.

* Generating eventsto Tivoli Enterprise Console when thresholds are exceeded, and when they return
to normal.

Product Mappings

The following table lists the products described in the previous section and, for each product,

identifies the specific data source or monitoring technique the product supports or interfaces with. This
type of table is useful to build when evaluating products being considered for this task; it can easily show
the scope a product can be used within the process of finding and collecting availability measurement
data.

Finding and Collecting Availability Measurement Data 73

© IBM 2002 Data Capture and Monitoring Products

Product Logs Messages Alerts (sends or Traps Heartbeat PING Remote RUNCMDS (sends or User Custom
(sends or receives) (sends or commands | responds to) simulation | monitoring
detects) receives) agents
AS/400 Yes Both Yes
Management
Central
CICSPlex SM Sends Sends Yes Yes Yes

IBM Comm Sends Responds
Server
Microsoft SNA Sends Responds
Server
Netware for SAA Sends Sends Responds

IBM Director Yes Sends Yes Yes Yes

Omegaview Sends Yes
System Yes Both Yes Yes
Manager for
AS/400

TPNS Yes

Tivoli Yes Yes Yes Yes
Application
Performance
Mgmt

Tivoli Business Yes Detects receives Yes
Systems (via TEC)
Manager
Tivoli Distributed | Yes Sends Yes Yes
Monitoring
Tivoli Enterprise Yes Both Receives Event Adapters
Console
Tivoli NetView Yes Sends Both Yes Yes Yes Responds (via AIX Yes
Service Point)
Tivoli NetView Yes Both Both Yes Yes Yes Sends

for 0S/390
Tivoli NetView Yes Sends Sends
Performance
Monitor
Tivoli NetView Yes Sends Yes
Performance
Monitor for IP
Tivoli Web Yes Sends (to Sends (via TEC) Yes Yes Yes
Component TEC)
Manager
Tivoli Web Yes sends (via TEC) sends (via Yes Yes Yes Yes
Services TEC)
Manager

Finding and Collecting Availability Measurement Data 74

© IBM 2002 Reporting

Reporting

Once the availability data has been captured, two steps have to be done:
1. Thedatamust be formatted into a common record layout, regardless of where it was captured.
2. Reporting logic must be applied against this data to create the desired reports.

Creating a Common Record Layout of the Captured Data
A common layout was described earlier in this paper:

1. A component identifier that uniquely identifies this component.

2. The component status that is being reported. This can be anything that, for measurement purposes,
can be mapped to a"UP" or "DOWN" state for the component.

3. Thedate and time that the reported status occurred.

4. The status change identifier.

Each availability status event captured should have this information (or, the information can be provided
by the mechanism that captured the event - an automation product, for example). Programming logic is
then applied to extract the appropriate information and place it in the above layout.

Here are two examples of the process:

Example 1. The component is a z/OS or OS/390 sysplex image. It is considered available within the
sysplex when the following message appears in the SY SLOG:

01219 01:22:16.97 | XC4181 SYSTEM SYSA |'S NOW ACTI VE | N SYSPLEX PRODPLEX

The information to be extracted is:

* The component name (SY SA)

* The component status (since the IXC418I meansit is available, the status will be “UP”)

* Thedate and time the reported status occurred (01219 is cycle date 219 in 2001, which is August
7th).

* The status change identifier (The message ID, 1XC418l)

An automation product that captures the message when it isissued, or a program that scans the
SY SLOG for this message, then extracts the information so that the common layout is:

20010812 0122 SYSA UP | XC418I

The programming logic has reordered the fields to the sequence date-time-component ID - availability
status - status change identifier. It has also reformatted the date and time values to formats that are
easier for report processing.

Finding and Collecting Availability Measurement Data 75

© IBM 2002 Reporting

Example 2: The component isaHTTP Server running on a Linux platform with a host name of
HASL13. It ismonitored by sending a remote command to it (ps-€f | grep httpd). If the HTTP server
process is up, the following response is expected (as one line)

r oot 640 1 0 2001 ? 00: 00: 03 /opt/ I BMHTTPSer ver/ bi n/ htt pd
-f /opt/1BVMHATTPServer/ conf/ httpd. conf

The information needed for the common layout is not directly contained in the response. Much of it will

have to be derived:

* The component name (to uniquely identify this process, the name hasl 13.httpd.80 is assigned).

* The component status (since the command response indicates the httpd processit is running, the
status will be “UP”).

* The date and time the reported status occurred (the date and time the remote command request
was issued will be used).

* The status change identifier (the host name of the platform where the monitoring is running is
HASLO02, so the identifier name assigned will be hasl02.rmcd).

The function performing the remote command monitoring would derive the additional information
needed, and either create the common format, or write the information to afile, where it can later be
processed into the common format. In either case, the end result appears as.

20010812 0122 hasl 13. htt pd. 80 UP hasl 02. pi ng

The goal of using acommon layout is the make all availability status information, regardless of the
source, have the same format and fields. This allows efficient report processing of the data.

Once in acommon record layout, the data can be stored in arepository of choice. This can be a
sequential file, arelational database, or areporting program repository.

Applying Reporting Logic Against the Formatted Data

A number of options exist for creating reports from the data. They range from custom programs, to
spreadsheets, to SQL queries, to reporting products. Which is used depends upon the skillsin an
installation and long term usage of the report. In the short term a program or spreadsheet may be able to
produce reports quickly, but as reporting needs changed and more flexibility is needed

(such as correlating availability data with other data), a reporting product, or report function within a
product, may be a better option.

Reporting products provide functions to combine and manipul ate the data to produce meaningful
reports. Some specialized systems management products contain a a reporting function that may be
flexible enough to use for this purpose. One of advantage of using areporting product is that multiple
types of data from multiple processes can be kept in asingle repository. This allows,

Finding and Collecting Availability Measurement Data 76

© IBM 2002 Reporting

in addition to component and application availability reporting, any trends with other
management data (such as problem, performance, or change) can be investigated.

Other products may produce availability reports for specific environments. For example, a product may
only provide availability reports for SNA network components.

Availability reporting software can run on any operating system platform. When the information to be
processed is not created on the same platform, procedures must be established to move the information
to the platform with the reporting software, or allow remote data access from the platform where the
reports are being created. Additional products may be required to do this.

Depending on the types of reports desired, the reporting function may have to do further data
transformations beyond the common format described above. For example, suppose the availability
data for a component has been formatted into this common format:

20010306 1700 COMPONENT_ID 1 DOWN * SOURCE_A
20010306 1800 COMPONENT_ID 1 UP * SOURCE_A
20010309 1530 COVMPONENT_ID 1 DOWN * SOURCE_A
20010309 1610 COMPONENT_ID 1 UP * SOURCE_A

Thisformat is sufficient to provide areport for the component over a particular time range.

Suppose a report is needed to show the amount of available or unavailable minutes for the component
on adaily basis. Transforming the data into the following format will enable that type of report to be
produced:

20010306 COVPONENT_ID_1 UP 0000 1659 1020
20010306 COVPONENT_ID_1 DOWN 1700 1759 60
20010306 COVPONENT_ID_ 1 UP 1800 2359 360
20010307 COVPONENT_ID_1 UP 0000 2359 1440
20010308 COVPONENT_ID_1 UP 0000 2359 1440
20010309 COVPONENT_ID_1 UP 0000 1529 930
20010309 COVPONENT_I D_1 DOWN 1530 1609 40
20010309 COVPONENT_ID_ 1 UP 1610 2359 470

The transformation has created a record for each component available and unavailable period for each
day, and the length of that status period. Using this format an availability report for a particular day, or
range of days can be created.

Data Accessibility

It iseasy to look at measuring and reporting on availability as an isolated task. However, availability is
influenced by, and influences, other processes such as problem management, change management,

performance management, configuration management, etc. The data available from those processes can
shed more light on why the current availability iswhereit isand, if necessary, where efforts to improve

Finding and Collecting Availability Measurement Data 77

© IBM 2002 Reporting

availability can be focused. Therefore, availability measurement data should not be isolated from data
created by other systems management processes. The data captured by the methods discussed in this
document will be primarily component names and outage start/stop times. Information such as outage
status (who isworking on it or who has been notified) and outage root cause have to be obtained from
other processes.. This moves the availability measurement process beyond simply reporting availability

to analyzing trends and identifying actionsto take to avoid or minimize outages (which iswhy availability
ismanaged in the first place).

Placing this data alongside of problem, change, and performance data in the same logical repository
allows information from these processes to be correlated show cross-impacts such as:

* outage categories and root causes

* performance trends and the resulting availability impact

* change activity and the resulting availability impact

Thiswill better identify activities to address both short and long term availability improvement actions. It
ismore difficult to do when the measuring and reporting of availability isimplemented as a separate,
isolated process.

Reporting Products - Examples

Selecting a product for reporting availability measurements is influenced by the following:

* Theexisting use of the product for reporting systems management information.

* The programmability of the product to analyze and manipulate data.

* Theease of producing reports from different sources of data at the desired frequency. Some basic
reports include:
* Component and application availability for atime interval
* Availability interrupts within atime interval
* Component availability impact on application availability for atime interval

* Theusefulness of "canned" availability reports provided by the product.

* The ability to create both individual component reports and end-to-end availability reports
(availahility that is derived from the status of multiple components).

* Theflexibility of datainterchange with other systems management processes, to get a view of what
actions are impacting availability, and the impact of availability on business functions.

Spreadsheets and relational database products are also options for creating reports. These require
programming skills in the spreadsheet macro language or SQL to create the reports. In addition,
external programs may have to be written to perform any needed data transformations before importing
the datainto a spreadsheet or relational database.

The following products are examples of what can be used to get started with reporting availability. This

isnot an exhaustive list. It is presented as a guide to illustrate the type of products and offerings that are
available and that should be investigated. It also does not cover the full range and breath of individual

Finding and Collecting Availability Measurement Data 78

© IBM 2002 Reporting

product functions, but highlights how the product can be used to provide availability measurement
reports.

Tivoli Decision Support for OS/390

Tivoli Decision Support for OS/390 (previous names were Performance Reporter for MV S

and Enterprise Performance Data Manager) is a data analysis and reporting product. It

collects data from availability sources (SMF, logs, output from other products, files, etc.) and storesitin
aDB2 repository, where data elements can be related together to generate various historical and trend
reports (performance, problems, accounting, etc). Many types of canned reports, including component
availability reports (using data from systems, networks,

or user-created sources) are provided. It also provides programming function to create
installation-specific reports.

Tivoli Decision Support
Tivoli Decision Support interfaces to many of the Tivoli management products to produce various
reports on the resources those products manage. Information from these products can be integrated

with data from external sources to produce various reports, including availability related reports. Guides
are provided for creating availability reports from Tivoli Enterprise Console event data.

Tivoli NetView for OS/390 Automated Operations Network (AON) component

AON can produce availability reports on the network componentsit is monitoring and automating.

Tivoli Service Desk for OS/390 (INFOMAN)
Tivoli Service Desk for OS/390 (INFOMAN) supports Problem, Change and Configuration

Management processes. Based on the type and content of problem information being collected,
availability reports can be developed using the Tivoli Service Desk for OS/390 reporting functions.

Finding and Collecting Availability Measurement Data 79

© IBM 2002 Putting It All Together

Putting It All Together

The preceding sections have identified many data sources and monitoring techniques for obtaining
component availability data. However, aframe of reference is still needed to understand how to apply
thisto realistic environments. Thereisno single "right" answer for

how to go about doing this, but the guidelines and examplesin this chapter will provide information that
can be built upon to address specific environments.

The more components that are monitored, the better a true picture of availability, particularly
end-to-end availability, can be determined. It is helpful to understand the types of components should
be monitored, and where they are "logically” located, so that an appropriate data collection or
monitoring technique can be used. The white paper “M easuring End-to-End Availability: How To
Get Started”, coversthe overall method in greater detail. The foundation to establish includes the
following:

* Usethe premise that users use applications to manipulate data. Applications can only do what is
requested of the users, and the users cannot get to the requested data without the application.

* Paths must exist between the users and the application components, and the application and data
components. These paths themselves are made up of components, which must be monitored to
ensure that the paths are working as desired.

* Takethe application view of the environment - that is, do not look at measuring all of the
components, because that will seem overwhelming.. Look first at the critical applications, and then
at the key components those critical applications require.

Data Source and Monitoring Technique Selection Guidelines

The following diagram depicts a simple generic model that can be applied to any application
environment. The model categories help identify the components that provide application availability to
end users and data availability to applications (The details of this model, and the overall stepsto for
measuring end-to-end availability - for which finding and collecting datais one step - will not be
covered here. Thisinformation is contained in the "M easuring End-To-End Availability: How To
Get Started" white paper). Each component will map to one or one of the seven categories that are
depicted here:

Finding and Collecting Availability Measurement Data 80

© IBM 2002 Putting It All Together

Application

Application

Subsystem
User Application Data
Platform Platform Platform

User-Application Application-Data
Path Path

For each category, certain data sources and monitoring techniques will be more applicable to others.
The following table depicts thison a scale of 1 to 4:

Model Area Logs Msgs Alerts Traps | Heartbeat | PING Remote | RUN- User Custom
Cmds CMD Sim. Monitoring

End User 3 3 1 1 2 1 2 2 1 1

Platform

User to 2 2 1 1 4 2 3 3 4 3

Application

Path

Application 1 1 3 3 1 1 2 2 2 4

Platform

Application 1 1 3 3 3 2 1 1 2 2

Subsystem

Application 4 3 2 2 3 3 1 1 1 1

Application to 2 1 1 2 4 2 3 3 4 3

Data Path

Data Platform 2 1 1 2 4 3 2 2 4 3

The table recommends the appropriateness of a data source or monitoring technique (columns) for
components mapped to the model categories (rows), relative to other techniques. The numbers should
be interpreted as follows:

1: Thisisavery likely source of availability data, and should be investigated.

2: Thisisasomewhat likely source of availability data.

3: Thisisaunlikely source of data; it is possible, but may require alot of effort.

4: Thisisavery unlikely source of availability data; it should only betried if nothing in ahigher
ranked source of data for the component can be found.

Finding and Collecting Availability Measurement Data 81

© IBM 2002 Putting It All Together

Thetable is aguide, showing the relative merit or ease of using a particular source or monitoring
technique for components within a particular model category. With enough effort almost any source
could be used for any component. The table numbers can change based on the context of the
environment they are applied to - in other words, your mileage may vary.

An installation can access the data sources or use the monitoring techniques via the functions provided in
the appropriate operating system or network protocol. Or, they can investigate

monitoring and management products, since these are likely to contain the monitoring methods and
provide access to the data sources.

Application Example

The following diagram depicts the end-to-end components that support an application flow commonly
seen today - e-business, or the integration of web and classic I/T technologies to build or enhance
business applications:

Load Web Content Webl_ .
Balancerl verl Application

Firewall2

Load A eb antent DB2
Balancer2 erver Database
Server

=

The users access the application through the internet.

Router1 and Router2 connect to the internet.

3. Firewalll acts as a secure barrier between the internet and the demilitarized zone (DMZ), where the

web content servers are.

Load Balancerl and L oad Balancer2 spread the user requests among the Web content servers.

5. Web Content Serverl and Server2 receive the user requests and provide static HT TP content.
Dynamic content is obtained by connecting to Web Application Servers running in z/OS parallel
sysplex.

6. Firewall2 acts as a secure barrier between the DMZ and the Trusted intranet.

7. The Web Application Server runs in multiple address spaces in the parallel sysplex. Aslong as one

image in the sysplex is running, the Application server can receive requests from the Web Content

Servers, and retrieve information from the DB2 database.

N

»

Finding and Collecting Availability Measurement Data 82

© IBM 2002 Putting It All Together

8. The DB2 database subsystem runs in data sharing mode in the sysplex. Aslong as oneimage in the
sysplex is running, the DB2 database can receive requests from the Web Application Server, and
provide the appropriate data.

9. The communications protocol used across the application is TCP/IP.

The application components span multiple operating systems and the network. The management

productsin usein this environment are:

e Tivoli NetView for OS/390, running Systems Automation for OS/390, for automation and event
management of the parallel sysplex.

* Tivoli NetView, to monitor the network |P resources.

* Tivoli Enterprise Console (TEC), with Tivoli Distributed Monitoring (DM), to monitor the
distributed operating system platform resources.

Using these products, and customized monitoring techniques, the following table describes how
availability information for each of the major components is collected:

Component Model Category Source or Details
Technique
Routerl, Router2 User-Application SNMP traps NetView will monitor the
Path routers and forward status
trapsto TEC.
Firewall1 Platform User-Application PINGs NetView will monitor the
Path firewall platform and
forward status traps to
TEC.
Firewall1 Application User-Application | Tivoli DM process | Tivoli DM will monitor t
Path monitoring firewall application
(process), and forward
status changesto TEC.
Load Balancerl, Load User-Application PINGs NetView will monitor the
Balancer2 Platforms Path load balancer platforms
and forward status traps
to TEC.
Load Balancerl, User-Application Tivoli DM process | Tivoli DM will monitor th
Load Balancer2 Path monitoring load balancer application
Applications (process), and forward
status changes to TEC.

Finding and Collecting Availability Measurement Data 83

© IBM 2002 Putting It All Together
Component Model Category Source or Details
Technique

Web Content Serverl, Application Platforn| Heartbeat A Heartbeat program

Web Content Server2 running on the platform

platforms will record startup and
shutdown timesin afile.
Thefile will be uploaded
daily into the data
repository.

HTTP Serverson Web | Application Tivoli DM process | Tivoli DM will monitor th

Content Servers Subsystem monitoring HTTP Server process,
and forward status
changesto TEC.

Servlet on Web Content | Application User Simulation Tivoli NetView on

Servers 0S/390 will issue a

command to the servlet at
1 minute intervals; the
command response (or
lack of one) will indicate
the Servlet is available or
unavailable). The results
will be placed into the
data repository.

Firewall2 Platform

Application-Data
Path

PINGs

NetView will monitor the
firewall platform and
forward status traps to
TEC.

Firewall2 Application

Application-Data
Path

Tivoli DM process
monitoring

Tivoli DM will monitor t
firewall application

(process), and forward
status changes to TEC.

Finding and Collecting Availability Measurement Data

© IBM 2002 Putting It All Together

Component Model Category Source or Details
Technique
Parallel Sysplex Application Platforni Logs (SY SLOG) The SYSLOG will be
processed daily to collect
the messages that show

when the sysplex was
available (at least 1
system active) or
unavailable (no systems
active). The process will
calculate the availability
times and store the
information in the data

repository.
Web Application Server | Application Messages System Automation for
Address Spaces Subsystem 0S/390 is automating the
startup and shutdown of

the Web Application
Server. SA for 0S/390
status messages will be
saved and the availability
information extracted and
placed into the data

repository.
Servlets on Web Application Remote Command | Tivoli NetView on
Application Server 0S/390 will issue a

command to the servlet at
1 minute intervals; the
command response (or
lack of one) will indicate
the Servlet is available or
unavailable). The results
will be placed into the

data repository.
DB2 subsystem (Address| Data Platform Messages System Automation for
Spaces) 0S/390 is automating the
startup and shutdown of

the DB2 subsystem; its
status messages will be
saved and the availability
information extracted and
placed into the data
repository.

Finding and Collecting Availability Measurement Data 85

© IBM 2002 Putting It All Together

Component Model Category Source or Details
Technique
DB2 Database DataPlatform Remote Command | Tivoli NetView on

0OS/390 will issue a
command to DB2
regquesting the status of
the database at 1 minute
intervals; the command
response (or lack of one)
will indicate if the
database is available or
unavailable. The results
will be placed into the
data repository.

Functions to create the formatted data layout to run reports can be implemented in two ways:
1. Beforetheinformation is sent to the repository. In this example, these functions would reside
* AttheTEC, for the availability status eventsit receives.
* At Tivoli NetView for OS/390, for the messages and remote commands it issues.
* Ontheparallel sysplex, when the SY SLOG is processed.
* Onthe Web Content Servers, where the Heartbeats run.
2. Where the datarepository is. The repository would receive the data as forward to it, and functions
would then create the common layout, taking into consideration where the data was sent from.

Once the data was in a common format, the reporting function of choice could be used to create
availability reports.

Finding and Collecting Availability Measurement Data 86

© IBM 2002 Putting It All Together

Summary

There are many existing sources of data, produced by systems, networks, and monitoring techniques,

that can be used to determine the availability of individual components. Putting individual component
availability measurements together will provide the ability to accurately measure end-to-end availability -
the availability experienced by application users.

It is not impossible to collect this data, but careful planning data collection is needed. The use of
automation will provide great benefits when collecting information from a wide range of sources, and will
eliminate much of the manual drudgery and potential errors associated with collecting the data.

No single product will do everything; some products will help aggregate data source collection or
monitoring from many sources. Again, careful planning is needed to identify the applications, the key
components, the tools or technigques to measure them, the products to use. and the process to gather,
relate, and report the measurements. Customization of products and datawill be required.

This process does not normally require investment in additional products . From the authors
experience, most installations aready have al or nearly all the products they need to start collecting the
data. However, the product functions needed may not be enabled, are not accessible by the

organization that would have to use them, or have not been taught to the organization. These issues must
be addressed before collection can begin. At times, due to these issues, the installation has elected to
invest in additional software primarily for the purpose of collecting availability data.

The measurements based on the collected data may show lower availability than what was reported

before. This happens because:

* Previous manual measurements were not capturing all of the outage incidents accurately.

* With additional components being measured, true overall availability will be less that individual
component availability.

For example, suppose an application requires three key components. Each component reports
availability of 98%. In the simplest scenario (components are compl etely independent of each other, and
no backup/redundant components exist), availability of the application would be 94.1%. If the
application availability measurement was previously based on a single component, the new measurement
will be lower... but more accurate. In addition, the focusis on improving availability. Accurate
measurements will accurately identify where improvement actions are needed. They will be better suited
for the availability management process, to assist in identifying and addressing causes of unavailability.

Finally, thisis only one - and not the only - action to take to move closer to improving availability.
Finding and collecting availability datais a subset with Availability Management. Identifying sources
of component data, collecting the data, and reporting the measurements does not, by itself, improve
availability (as stated above, it may show availability to be worse than it was thought to be). However, it
will provide valuable information for guiding and focusing on

Finding and Collecting Availability Measurement Data 87

© IBM 2002 Putting It All Together

where availability improvements are needed, as well asreveal the effectiveness of actions taken to
improve availability.

Finding and Collecting Availability Measurement Data 88

© IBM 2002 Appendix

Appendix
The following examples are contained in this section:

* 7/OS and OS/390 system and subsystem messages
* 7/VM Messages

e Communications Server Messages

* 0S/400 Messages

¢ AIX Messages

* Sample REXX heartbeat program

e Sample UNIX shell script heartbeat program

* Sample Java Servlet heartbeat program

The messages are not meant to be an exhaustive list, but to illustrate the type of availability information

that isavailable. Always check the messages documentation for the
version of the operating system or product being used, for the most accurate and detailed information.

Finding and Collecting Availability Measurement Data 89

© IBM 2002

z/OS and OS/390 Messages

Appendix

Message ID Component State Description
IEA371I Platform Available | The system has started to IPL. The time stamp @
the preceding messages are a good indication of
when the system became unavailable.
|EE389I Operating Available | The operating system is ready to being executin
System workloads.
IXCA418I Sysplex image | Available | Animage joins the sysplex.
IXC101l Sysplex image | Unavailable | Animage is being removed from the sysplex.
IXC105I Sysplex image | Unavailable | lan image has been removed from the sysplex.
|EFA03I Address space | Available | Anaddress spaceis started
|EFA404I Address space | Unavailable | An address space has ended.
|EFA50I Address space | Unavailable | An address space has abended.
DFHSI1517 CICSaddress | Available | A CICS address space is ready to process
space commands.
DFHKEL1799 | CICSaddress | Unavailable | A CICS address space has been shut down
Space
DFS994| IMS control Available | AnIMS control region isready to being
reigon address processing requests.
Space
DFS629I IMS control Unavailable | An IMS control region abends.
reigon address
space
DSNROOQ7I DB2 subsystem| Available | A DB2 subsystem isready to process applicatio
requests
DSN3104l DB2 subsystem| Unavailable | A DB2 subsystem has been shut down.
IMW3536I HTTP Server | Available | The HTTP Server isready to process requests.
address space
IMW3541I HTTP Server | Unavailable | The HTTP Server has been shut down.
address space
|EE302I Device Available | Thedeviceisonline and can be used.
|EE303I Device Unavailable | The device s offline and cannot be used.

Finding and Collecting Availability Measurement Data

90

© IBM 2002

z/VM Messages

Appendix

Message Component Status Description

AAA LOGON AS Virtual Machine | Available Virtual machine AAA isactive; BBB i

BBB its CP console.

AAA LOGOFFAS | Virtual Machine | Unavailable | Virtual machine AAA isno longer

BBB active; AAA wasits CP console.

AAA Varied Device Available Device AAA isonline.

ONLINE

AAA VARIED Device Unavailable | Device AAA isoffline.

OFFLINE

AAA ATTACHED | Red or virtua Available Device AAA has been attached to

TOBBB BY CCC device virtual machine BBB (CCC isthe user,
if done by someone other than the
operator).

AAA DETACHED | Red or virtua Unavailable | Device AAA has been detached from

BBB BY CCC device virtual machine BBB (CCC isthe user,
if done by someone other than the
operator).

HCPA450W Virtual machine | Unavailable | The virtual machine hasloaded a
disabled wait state PSW and has
stopped processing.

HCPO61W Operating Unavailable | The system has been shut down.

System

Finding and Collecting Availability Measurement Data

91

© IBM 2002

z/OS and OS/390 Communications Server Messages

Appendix

gateways)

Message ID | Component Status Description

ISTO93l SNA node Available The network resource is
available

IST105I SNA node Unavailable | The network nodeis no longer
active.

ISTO20I VTAM address space Available VTAM isready for processing.

IST133I VTAM address space Unavailable | VTAM isterminating.

EZB6473| TCP/IP address space Available TCP/IPisready for processing.

IST590I SNA switched PU node Availableor | Depending on the contents of th

(including LAN attached SNA | Unavailable | message text, thisindicates whe

the connection to the PU was
established or terminated.

Finding and Collecting Availability Measurement Data

92

© IBM 2002

0S/400 Messages

Appendix

Message ID | Component Status Description

CPF0934 Operating system Available Operating system IPL has
completed; work cannow
be processed.

CPF1124 Job Available A job has started
processing.

CPF1164 Job Unavailable A job has completed
processing.

CPF0927 Subsystem Unavailable A subsystem has ended
and is no longer available
to support jobs.

CPF5908 Controller, workstation | Available A session has been

(SNA PU) established with the
controller or workstation.

CPI5935 Controller, workstation | Unavailable A controller (SNA PU)

(SNA PU) has failed; the system will
try to re-establish contact
to the controller.

CPF5909 Communications Link Available Communicationsis active
and sessions can be
established using the link.

CPI593D Communications Link Unavailable Communicationsis active
and sessions can be
established using the link.

CPF6784 Device Available Deviceisavailable for
use.

CPF6783 Device Unavailable Deviceisnot available for

use.

Finding and Collecting Availability Measurement Data

93

© IBM 2002

AIX Error Log messages

Appendix

COMMUNICATIONS
LOST

Message Component Status Description

OF27AAE5 SOFTWARE | Process Unavailable | An active process has ended

PROGRAM due to an error.

ABNORMALLY

TERMINATED

22E93753 LINK ERROR | Communications | Unavailable | An error has been received on

link acommunications link; the lin

2BFA76F6 System Application Unavailable | The system has been shut

shutdown by user Platform down.

9359F226 Physical volume | Disk volume Available A volume that was previously

IS now active inactive is now active and can
be used.

A668F553 DISK Disk file Unavailable | A problem was encountered

OPERATION ERROR during a disk read/write/seek
operation.

DB3E3DFD CSMA/CSD Ethernet LAN Unavailable | The platformisunableto

LAN segment communicate across an

Ethernet LAN segment.

Finding and Collecting Availability Measurement Data

94

© IBM 2002 Appendix

Sample REXX Heartbeat Program

This program is an example of how heartbeat monitoring can be implemented for any platform that
supports REXX.

/* EXEC TO CREATE SYSTEM HEARTBEAT TO TRACK REAL TI ME STATUS

SYNTAX: HBEAT SYSID TM NS TTYPE TSLOG AVADSN

* SYSID = SYSTEM I D (EXAMPLE: FOR MVS WE USE SMF | D)
* TM NS = FREQUENCY OF WRI TI NG TI MESTAMPS
* TTYPE = "I PL" - | F STARTED AFTER SYSTEM | PL

"AUTO' - | F STARTED BY AUTOVATI ON

BLANK - PROBABLY STARTED MANUALLY
* TSLOG = Nanme of "last timestamp" file

(ON z/0s or Os/390, DD Nanme of "last timestanp" file)
* AVADSN = Drive and directory to keep log files

(On z/0S or OS/390, DD Nane of availability log file)

USAGE: TH S PROGRAM ONCE STARTED, ALWAYS RUNS OR UNTIL A PLATFORM
QUTAGE. THE PLATFORM SHOULD AUTONVATI CALLY START THI S PROGRAM
*/
ARG SYSID TM NS TTYPE TSLOG AVADSN

if right(AVADSN, 1) <> '\' then AVADSN=AVADSN||'\"
AVADSN = AVADSN| | "av"||left(date(' S'),6)[]".]0g"

say "starting TIMESTMP on" sysid
DO FOREVER

[*** STEP 1: create current date/tine stanp: sysid yymdd hhmm ***/

TEMPSTAMP = TI ME

NEWDATE=DATE(' S')

NEWT| ME=LEFT(SPACE(TRANSLATE(TI ME()," ',"':'),0),4)
CTS = SYSID newdate newti ne

[*** STEP 2: read old tinestanp and update tinestanp |og
with new tinestanp ***/

OLDTS=Li nei n(TSLOG)
Y=I'i neout (TSLOG, CTS, 1)
Z=l i neout (TSLOG)

[*** STEP 3: |f ttype = |PL or AUTO, update availability |og
with new tinestanp ***/

if (ttype = "IPL") | (ttype= "AUTO') then do
avarec. 1=l eft (word(ol dts, 1), 40) "DOM' word(ol dts,2) word(oldts, 3),
"* HEARTBEAT_PROGRAM'
avarec. 2=l eft (sysi d, 40) left(ttype, 4) newdate newtime "* HEARTBEAT_PROGRAM'

X=Il i neout (AVADSN, avar ec. 1)
Y=l i neout (AVADSN, avar ec. 2)
Z=l i neout (AVADSN)

ttype = ttype||" FLAGOFF"
end

Finding and Collecting Availability Measurement Data 95

© IBM 2002 Appendix

[*** STEP 5: wait for TM NS mnutes before continuing | oop ***/

[*** NOTE: For W ndows NT/2000, segnent wait time to allow for
shut down interrupt xRk

sl eeptime = tm ns*60
sl eep_segnent = sleeptinme / 5 /* Alow shutdown check every five seconds */
do j =1 to sleep_segnent

call SysSleep 5

end

END
EXITO

Finding and Collecting Availability Measurement Data 96

© IBM 2002 Appendix

Sample Shell Script Heartbeat Program

This shell script is an example of how heartbeat monitoring can be implemented for any UNIX based
platform, including LINUX.

#!/ bi n/ ksh
#
HEARTBEAT avail ability nonitoring programfromthe UN X environnent
#
Syntax: hearbeat systemnane interval start_type tinestanp_file avail _file
#
echo script nanme: $0
if [[$# -ne 5 1]
t hen

echo SYNTAX: hearbeart system name beat_interval start_type tinmestanp_file
availability_file

exit 1
f
scri pt nanme=$0
sysname=$1
i nterval =$2
start _type=$3
tstanp_fil e=$4
ava_fil e=$5
echo
tenpl="date’
| ogger Starting HEARTBEART on $sysnane at $tenpl
#
#
#
while true
do

curdat e="date +%r%mdel’

newti me="date +%1%M

newt s=$curdate" "$newtine" "$sysnane

#echo time: $newtine

##

If tinestanp file exists, read it and wite out new tinestanp
##t

test -r $tstanp_file & read oldts < $tstanp_file

echo $newts > $tstanp_file

#echo ol d tine stanp: $ol dts

##t

|f type = IPL or AUTO update availability log with both old (down)
and new (UP) Ti nestanp

H#H#

if [$start_type = "IPL"]

t hen
set -- $oldts
outt ypel="DOMW"
out type2="UP"
printf "% 10s %5s % 9s % 6s\n" $sysname $outtypel $1 $2 >> $ava_file
printf "% 10s %5s % 9s % 6s\n" $sysname $start_type $curdate $newtine >> $ava_file
start_type=$start_type" FLAGOFF"

f

Hit

Now pause for beat_interval (convert to seconds)

H#H#

Finding and Collecting Availability Measurement Data 97

© IBM 2002 Appendix

| et beat_interval _secs="$interval * 60"
sl eep $beat _i nterval _secs

tenpl="date’

done

Finding and Collecting Availability Measurement Data 98

© IBM 2002 Appendix

Example Java Servlet “UpTime” Heartbeat Program

Thisis an example of how heartbeat monitoring can be implemented for any Web Server that supports a
Java servlets viaa servlet engine . The servlet engine (which can be part of abigger application server
product, such as IBM WebSphere Application Server) is normally started and shut down when the
associated HTTP Server is started and shut down. This servlet code would be loaded at servlet engine
startup. It will log the time that it started. HTTP requests to the server that invoke the servlet return the
length of time the server has been running since it was last started. When the servlet engine shuts down,
it will log the time of the shutdown.

/*UPTI ME SERVLET - Does the follow ng:

- \Wen | oaded, wites a nessage to the System Log
- \Wen invoked, returns the anpbunt of tine since |oaded (if |oaded at
WAS startup, this is the anount of time WAS has been active
- \Wen destroyed, wites a nessage to the System Log. If only destroyed
when WAS stops, indicated that WAS is down
*/

import java.io.*;

import java.util.*;

import java.text.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class UpTime extends HttpServl et
{

| ong StartupTi ne;

Date startdate;

Dat eFor mat df ;

public void init(ServletConfig config) throws Servl et Exception
{

/* Get and save the current date and tine */
super.init(config);
df = new Si npl eDat eFormat ("yyyy. MM dd HH: mmi') ;
StartupTi me=SystemcurrentTimeM | 1is();
startdate = new Date(StartupTine);

/* Wite a nmessage indicating the servlet engine start */

try
{
Systemout.println("Servlet engine active at " + df.format(startdate));
}
cat ch(Exception e)
{
Systemout.println("UpTine init error: " + e.getMessage());
}
}

public void doGet(HttpServl et Request req, HttpServl et Response res) throws
Servl et Excepti on, | OException
{

Finding and Collecting Availability Measurement Data 99

© IBM 2002

/* Respond to each request with the tine stanp of the servlet engine

initialization
and the length of time it has been running */

long Ctinme, Dtinme, htine, ntine, stine;

Ctime = SystemcurrentTineM I lis();

Dtime = Ctinme - StartupTine;

htime = Dtime / 3600000;

ntime = (Dtime - (htine * 3600000)) / 60000;

stime = (Dtime - ((htime * 3600000) + (nmtime *60000))) / 1000;

res. set Content Type("text/htm");
PrintWiter out = res.getWiter();
out . println("<HTM.><BODY><P>");

out.println("Servlet engine started at: " + df.format(startdate));

out.println("<P>");
out.println("Servlet engine uptime(nms): " + Dtinme);
out.println("<P>");

out.println("Servlet engine uptime(h:ms): " + htime +":"+ ntime + ":"

out. println("</BODY></ HTM.>");
}

public void doPost (HttpServl et Request req, HttpServl et Response res) throws

Ser vl et Exception, | OException

{
doCet (req,res);

}

public void destroy()
{

+stine);

/* This is only destroyed when the Servlet engine is stopped. Log the tine

of the stoppage. */

Date stopdate = new Date(SystemcurrentTimeM I 1lis());

try
{
Systemout.println("Servlet engine stopping at " + df.format(stopdate));
}
cat ch(Exception e)
{
Systemout.println("UpTi me destroy error: " + e.getMessage());
}
}

Finding and Collecting Availability Measurement Data

Appendix

100

