
WP100270 4/8/2002 Page - 1

How-To: JNDI Names and EJB References with WebSphere for z/OS

The purpose of this “How-To” document is to illustrate how to write servlets and EJBs in
WebSphere Studio Application Developer (WSAD) for deployment on WebSphere Version 4.0.1
for z/OS and OS/390. These applications look up EJBs using the ”java:comp/env”
construct. This technique allows applications to be deployed without the components having any
knowledge of the actual JNDI (Java Naming and Directory Interface) names of the components
they reference.

To illustrate this, an application will be created and tested in WSAD, and then exported as a J2EE
.ear file. The .ear file will be imported into the Application Assembling Tool for WebSphere for
z/OS (AAT-z/OS) for final verification and code generation, and then installed into an existing
WebSphere for z/OS server using the WebSphere for z/OS Systems Management Administration
application (also known as the Systems Management End-User Interface, or “SM EUI”).

Notices to the Reader:

• This document assumes the reader has a working knowledge of the WebSphere for z/OS
runtime, WSAD, AAT, and Administration application (SM EUI) tools.

• For an overview of JNDI naming, see “WebSphere for z/OS JNDI Naming Concepts”
(WP100268) at http://www.ibm.com/support/techdocs .

• This document may be updated; you may retrieve the latest copy from the same techdocs
web site at http://www.ibm.com/support/techdocs/atsmastr.nsf/PubAllNum/WP100268

Part 1: Create the Simple Application.

This J2EE application consists of one servlet and two session beans. The details of the
components are:

JNDIServlet A servlet whose init() method looks up the Bean1Home and
whose doGet() method creates an instance of Bean1 and drives the
doIt() method on the Bean1 instance. The servlet doesn't return
any data to the browser.

Bean1 A stateless session bean whose doIt() method looks up the
Bean2Home, creates an instance of Bean2 and drives the doIt()
method on the Bean2 instance.

Bean2 A stateless session bean whose doIt() method prints a message and
returns. Bean2 is essentially a copy of Bean1.

The reason to have a servlet and two session beans is that the process of defining ejb-refs
in WSAD is slightly different for a servlet than for an EJB. Both will be shown.

The following steps were done in preparation for this exercise but will not be shown.

1. A new WSAD workspace was created.
2. A J2EE Application named JNDIExample was created in the workspace.
3. An EJB project named JNDIExampleEJBs was created and associated with the

J2EE Application that was created in the prior step. Two session beans were
created in this EJB project: com.ibm.wsc.Bean1 and com.ibm.wsc.Bean2. In each

WP100270 4/8/2002 Page - 2

case, a doIt() method was defined on the bean and promoted to the remote
interface as the only remote business method. The contents of the doIt() methods
will be discussed later.

4. A Web Application project named JNDIExampleWebApps was created and
associated with the J2EE application created previously. This web app project is
dependent upon the EJB project. The Web App was assigned a context root of:
JNDI. A single servlet was created in this project: com.ibm.wsc.JNDIServlet,
with a URI mapping of: LookUp. The contents of the init() and doGet() method
will be discussed later.

Once all these tasks are accomplished in WSAD the process of deploying the application
can be started. Select the Navigator tab of the J2EE perspective. Below are the contents
of the workspace.

It is important to understand from an application coding perspective, the proper technique
to "lookup" an EJB Home in a J2EE server. The code in the JNDIServlet to lookup the
Bean1Home and the code in Bean1 to lookup Bean2Home is provided below:

JNDIServlet

WP100270 4/8/2002 Page - 3

The servlet is structured so that the Bean1Home is looked up only once in the init()
method and the reference saved in a class variable. The doGet() method will create a
Bean1 instance and invoke the doIt() method on that bean. This was done to prevent
repeated lookups of the home in the doIt() method.

The init() method: The flow in this method is to:
� create an InitialContext object,
� obtain a reference to the Bean1Home by looking up

"java:comp/env/ejb/TheBean1Home"
� narrow the returned object to the correct type,
� save the reference for use by the doGet() method callers.

The remainder of the code is for debugging and housekeeping. Here is the code segment.
public class JNDIServlet extends HttpServlet {

private com.ibm.wsc.Bean1Home myHome = null;
private javax.naming.InitialContext myCtx = null;

public void init() throws javax.servlet.ServletException {

try {
System.out.println("JNDISevlet.init() Creating initial Context and "+

" looking up home.");
myCtx = new InitialContext();
java.lang.Object objHome =

myCtx.lookup("java:comp/env/ejb/TheBean1Home");
myHome = ((com.ibm.wsc.Bean1Home)

(javax.rmi.PortableRemoteObject.narrow(
objHome, com.ibm.wsc.Bean1Home.class)));

} catch (NamingException ex) {
System.out.println(

"JNDISevlet.init() Error looking up JNDISessionHome,\n" +
ex.getExplanation());

ex.printStackTrace();
throw new ServletException(ex.toString());

} finally {
try {

if (myCtx != null) {
myCtx.close();
myCtx = null;

}
} catch (NamingException ex1) {

System.out.println("JNDISevlet.init() Failed to close myCtx");
}

}
}

The doGet() method: The flow in this method is to:
� create an instance of Bean1, and
� invoke the doIt() method on that bean instance.

The remainder of the code is for debugging and housekeeping. Here is the code segment.

public void doGet(
javax.servlet.http.HttpServletRequest request,

WP100270 4/8/2002 Page - 4

javax.servlet.http.HttpServletResponse response)
throws javax.servlet.ServletException, java.io.IOException {
try {

Bean1 myBean = myHome.create();
myBean.doIt();

} catch (Exception e) {
System.out.println("JNDISevlet.doGet() Accessing Bean1 error");
e.printStackTrace();
throw new ServletException(e.toString());

}
}

Bean1

This contains only one business method to be invoked by the servlet. Its only function is
to drive a method on Bean2.

The doIt() method: The flow in this method is to:
� create an InitialContext object,
� obtain a reference to the Bean2Home by looking up

"java:comp/env/ejb/TheBean2Home",
� narrow the returned object to the correct type,
� create an instance of Bean2,
� invoke the doIt() method is driven.

The flow looks remarkably like the code in the JNDIServlet, only it resides in a single
method. The remainder of the code is for debugging and housekeeping. Here is the code
segment.

public void doIt() throws javax.ejb.EJBException {
System.out.println("Bean1.doit() Entering");
InitialContext myCtx = null;
Bean2Home myHome = null;
try {

System.out.println(
"Bean1.doit() Creating initial Context and looking up Bean2home.");

myCtx = new InitialContext();
java.lang.Object objHome =

myCtx.lookup("java:comp/env/ejb/TheBean2Home");
myHome = (com.ibm.wsc.Bean2Home)

(javax.rmi.PortableRemoteObject.narrow(
objHome, com.ibm.wsc.Bean2Home.class)));

System.out.println(
"Bean1.doit() Creating instance of Bean2 and driving doit().");

Bean2 myBean2 = myHome.create();
myBean2.doIt();

} catch (NamingException ex) {
System.out.println(

"Bean1.doit() Error looking up Bean2Home,\n" +
ex.getExplanation());

ex.printStackTrace();
throw new EJBException(ex.toString());

} catch (CreateException ex) {
System.out.println("Bean1.doit() Error creating Bean2,\n" +

ex.toString());
ex.printStackTrace();
throw new EJBException(ex.toString());

} catch (RemoteException ex) {

WP100270 4/8/2002 Page - 5

System.out.println("Bean1.doit() Error accessing Bean2,\n" +
ex.toString());

ex.printStackTrace();
throw new EJBException(ex.toString());

} finally {
System.out.println("Bean1.doit() Exiting");
try {

if (myCtx != null) {
myCtx.close();
myCtx = null;

}
} catch (NamingException ex1) {

System.out.println("Bean1.doit()Failed to close myCtx");
}

}
}

Bean2

This bean's sole purpose is to be located by Bean1.

The doIt() method:

Below is the doIt() method on Bean2 EJB, which merely prints a message.

public void doIt() throws javax.ejb.EJBException {
System.out.println("Bean2.doit() Entering and Exiting");

}

The key point from examining the above code snippets is that the application code does
not contain the actual JNDI name of the object being looked up. However, there is a
structure to the string used to lookup the bean. It will consists of a prefix of
"java:comp/env/" and a suffix of the application developers choosing. In this example,
we choose names that are meaningful to the developer.

In fact, there is nothing "magic" about the suffix: "ejb/TheBean1Home" or
"ejb/TheBean2Home" which is appended to the "java:comp/env/" prefix. The EJB
specification strongly recommends that the string begin with "ejb/"; but it could be
something as complicated as "ejb/WSC/JNDI/Example/BeanOneHome" or as simple as
"JoesBakedBean1". It is just a string that the developer and assembler must remember to
declare as an EJB reference when creating the deployment descriptors for the EJB .jar file
and the servlet .war file.

The "java:comp/env" prefix is indeed "magic". This prefix is the key to having the J2EE
runtime intercede in the lookup of the desired object's home and provide the actual JNDI
name rather than just pass the string across to the JNDI naming service. The actual JNDI
name can be assigned at deployment time and thus the application doesn't have a need to
know the actual name. This makes EJBs much more portable between deployment
environments.

WP100270 4/8/2002 Page - 6

From a J2EE application construction perspective, it is necessary to declare the ejb-ref in
the Web Application (in order for the JNDIServlet to find Bean1Home), and in the EJB
module (for Bean1 to find Bean2Home). Turn to the J2EE view tab of the J2EE
perspective. In the top left hand pane, select JNDIExampleEJBs � Open with � EJB
Editor and then select the References tab to see the following:

Now, add an EJB Reference to Bean1 for Bean2. Select Bean1 and click on the "Add"
button to get the following popup that you must input information (we have filled this in):

WP100270 4/8/2002 Page - 7

The Name value is "ejb/TheBean2Home". This is the suffix to the "java:comp/env/" part
of the string, which is used to lookup the Bean2Home in the doIt() method in Bean1.
(i.e. java.lang.Object objHome = myCtx.lookup("java:comp/env/ejb/TheBean2Home");).
The bean Type, the Home, and Remote interface class names are also specified to aid the
container at a later time. Since Bean2 is contained within this J2EE application, a Link
value for Bean2 is specified. Later, this will cause the deployment tool to automatically
associate the ejb-ref value to the correct JNDI name. Press the save button and you will
see the ejb-ref you have created:

Select the "Source" tab, to see the actual ejb-jar.xml file contents the WSAD tooling just
created:

WP100270 4/8/2002 Page - 8

Now save your work (CTRL-S) and close the EJB editor. Select JNDIExampleEJBs �
Open with � EJB extension editor and turn to the Bindings tab. If you explode the 'plus'
boxes, you should see:

WP100270 4/8/2002 Page - 9

The task is to assign JNDI names for the EJB homes and to associate the ejb-refs
previously specified with the correct JNDI names. This assignment is done to allow
testing in the WSAD environment. The JNDI name assignments in WSAD have nothing
to do with installation of the J2EE application in the WebSphere for z/OS environment
and the JNDI name assignment in that environment. The JNDI names that you assign in
WSAD could be carried over into the WebSphere for z/OS environment, but probably
shouldn't for reasons discussed later.

Perform the following steps to assign the JNDI names of the EJBs

1. Select Bean2 and assign a JNDI name for Bean2. In the JNDI name box enter:
ejb/Bean2Home (erase the compound name that is there, WSAD seems to have
trouble with compound names at least at my service level).

2. Select Bean1 and assign a JNDI for Bean1. In the JNDI name box enter:
ejb/Bean1Home.

Perform the following step to associate the ejb-ref to the correct JNDI name.

WP100270 4/8/2002 Page - 10

1. Select the ejbRef/TheBean2Home object beneath Bean1 and in the JNDI name
box enter the actual JNDI name for Bean2 (which you just set to ejb/Bean2Home
in step 1).

At this point, you should see the following:

Save (CRTL-S) your work and close the ejb extension editor.

Now, an ejb-ref must be defined for the web application and assigned to the Bean1 EJB
JNDI name for testing.

In the top left hand pane, select JNDIExamplesWebApps � Open with �web.xml
Editor, turn to the References tab and you should see:

WP100270 4/8/2002 Page - 11

To add an EJB reference, make certain the "EJB References" option is selected, then
click on the "Add" button. You now have the opportunity to create the ejb-ref needed by
the servlet and associate the EJB reference to the real JNDI name for Bean2Home in this
one panel by filling in the small boxes. The information you must type in is:

EJB Reference = ejb/TheBean1Home
Type = Session
Home = com.ibm.wsc.Bean1Home
Remote = com.ibm.wsc.Bean1
JNDI Name = ejb/Bean1Home

This information is basically the same as the information you previously provided when
declaring the ejb-ref on Bean1 for Bean2. There isn't a nice pop-up window.

Save this information (CTRL-S) and turn to the source tab to see the contents of the
web.xml file just created by the WSAD tooling:

WP100270 4/8/2002 Page - 12

Note: WSAD does not allow you to specify the <ejb-link>Bean2</ejb-link> descriptor in
the panel where ejb-ref descriptor information was supplied. For the application being
constructed, it is desirable to have the servlet use the Bean1Home residing in the same
ear file. While WSAD doesn't make this easy, you can set the ejb-link descriptor by hand
editing the .xml file. Setting the ejb-link will actually be done as a part of the AAT for
z/OS activity.

The web.xml file does not contain the JNDI name to ejb-ref association information
needed by WSAD to test the application. The same is true for the ejb-jar.xml file as well.
This information is maintained by WSAD in other .xmi files.

At this point, the application must have the EJB runtime supporting classes generated in
order to be deployed in the WSAD test environment. In the Navigator tab of the J2EE
perspective, select the JDNIExampleEJBs � Generate � Deploy and RMIC code. At
the pop-up, press "Select all" and "Finish". Time will pass. When this processing
completes, run "Validation" on each of the three projects.

To test the application in the WSAD test environment, in the upper left-hand pane, select
JNDIExample � Run on Server. A server instance should start. Once the server starts,

WP100270 4/8/2002 Page - 13

your application is ready to test. Press the button to open a web browser and enter the
URL: http://localhost:8080/JNDI/LookUp and press "Go" twice.

No results information will appear on the browser if everything is successful; however if
you look at the console window you should see:

At this point, we are reasonably certain the application is properly constructed and does
indeed work. We have demonstrated how to associate a java:comp/env/ejb/<value> to a
JNDI name in the WSAD test environment. More importantly, the application is ready to
be exported from WSAD and deployed into another J2EE server; WebSphere for z/OS
V4.0.1.

WSAD development and testing are complete. To export the JNDIExample J2EE
application as an .ear file do the following. Select JNDIExample � Export ear. You will
be presented with the following popup where you specify the project to be exported and
the name and location of the .ear file. For this example, the .ear file is named
JNDIExample.ear and is placed in the d:\zzz\WSC-JNDI-Example directory of the
workstation.

WP100270 4/8/2002 Page - 14

Press "Finish" to get an .ear file. When this processing is complete, close the WSAD
tool.

Part 2: Assemble the Simple Application.

Now that we have an .ear file, it is necessary to process it through the AAT for z/OS tooling. The
AAT for z/OS actually does some code generation for Web Applications. The tooling also
validates deployment settings as specified by the EJB specification. WSAD does not enforce
some of the J2EE specification rules. For example, the transaction attributes on the session beans
were not set and the Context Root for the Web Application should be prefixed with a slash "/".
Additionally, we want to restrict the servlet to access Bean1, which resides in this .ear file. To do
this we will add an ejb-link (The intent of this action is to reduce the options for the person
installing the .ear file into a J2EE server).

Some of these tasks could have been done in WSAD, but weren't. For tutorial purposes, we will
go through the process of taking the .ear file which was exported from WSAD without errors, and
"fault our way" through the creation of a .ear file to be deployed in WAS for z/OS, correcting
errors/ omissions along the way. If these deployment descriptors had been set correctly in
WSAD, no changes to the ear file would be required.

Note: The need for the AAT for z/OS to "re-process" the .ear file is a "point in time" solution that
should be unnecessary in a future release of WebSphere for z/OS.

Start the AAT for z/OS tool and you should see the following:

WP100270 4/8/2002 Page - 15

To import the J2EE application packaged in the JNDIExample.ear file, select
Applications � Import and enter the location and name of the .ear file, which was just
exported from WSAD, in the popup window:

Press "OK" to have the file imported into the AAT workspace. Once the application is
imported, expand the JNDIExample application to see the following:

WP100270 4/8/2002 Page - 16

First, set the ejb-link on the ejb-reference for the web application. We want to restrict the
deployer to using the Bean1 which is in this .ear file as opposed to a Bean1 residing in
some other server. (This is the assignment that WSAD didn't allow when setting the ebj-
ref on the web application). Select the JNDIExampleWebApps and go to the EJB tab.
You will see:

WP100270 4/8/2002 Page - 17

Click on the Modify Icon to allow changes to the application. Select the EJB reference of
interest (i.e., ejb/TheBean1Home), press the "Modify.." button, and in the Link Selection
list, choose Bean1 as in the following:

Now, press "OK" and then press the Save Icon. At this point the AAT tool will remind
you that the Context Root needs to be prefixed with a slash "/".

WP100270 4/8/2002 Page - 18

Press the OK button and select the General tab. In the Context root box set the value:
"/JNDI" instead of just "JNDI", then press the Save Icon.

The application is ready to be deployed. On the task bar select Options � Enable
EJBDeploy, making certain the box is checked. Now, select JNDIExample � Deploy.
You will see the following popup:

It seems that the transaction attributes were not set on either of the EJBs. Press "Cancel".
Then select Bean1 and click on the Modify Icon. Turn to the transaction tab and press
the "Modify all" button to get the following popup. In the window set the transaction
attribute to NotSupported:

Press the "OK" Button and the Save Icon. Then, repeat the process for Bean2.

Once again, select JNDIExample application � Deploy. This time the AAT will not find
any errors and will deploy the application:

WP100270 4/8/2002 Page - 19

Once the status bar indicates the application has been deployed, export the .ear file.
Select JNDI Example application � Export. You will get the following popup:

Name this exported .ear file: JNDIExample_zOS.ear, thus not altering the original .ear
file exported from WSAD. Press the "OK" button and close the AAT for z/OS tool when
the export process is complete.

Part 3: Install the Simple Application.

The final task is to install the JNDIExample_zOS.ear file into a WebSphere for z/OS
server. Fortunately, a server (WSPMR1) is available in which to install the .ear file.
Start the Administration application (SM EUI) specifying the correct host, and the
userid/ password for the administrator. You should see the following:

WP100270 4/8/2002 Page - 20

Now, create a new conversation and select the WSPMR1 server as the target for the
installation of the JNDIExample application. You should see something like the
following:

WP100270 4/8/2002 Page - 21

At the popup, enter the location and name of the .ear file to be installed (the .ear just
exported from AAT for z/OS):

Press "OK" and you will be presented with the following window:

There is no reason to choose a JNDI name for the components. Let the runtime do this
task, thus insuring the JNDI names assigned to these objects are unique in the name
space. The servlet and the EJBs have no need to know the actual JNDI names of the
components. Only the container needs to know the actual names. So, press the "Set
Default JNDI Path & Names for all Beans" button. This will cause the beans in the
folders to be checked with a "green check mark" as in the following:

WP100270 4/8/2002 Page - 22

Notice the default JNDI name that was chosen for the Bean1Home. This is the
convention used in WebSphere for z/OS to define a name that is unique to this sysplex,
server, application, module, and component. It is comprised of the following parts:

The Sysplex Name - WSCPLEX
The Server Name - WSPMR1
The Application Name - JNDIExample
The Module Name - JNDIExampleEJBs
The Component Name - Bean1
The Home Interface Name - com.ibm.wsc.Bean1Home

Turn to the reference tab for Bean1 and you will see the following:

WP100270 4/8/2002 Page - 23

Since the ejb-link was specified, the Administration tool associated the ejb-ref value
(i.e., ejb/TheBean2Home) with the correct JNDI name for the referenced object (i.e.,
/WSCPLEX/WSPMR1/JNDIExample/JNDIExampleEJBs/Bean2/
com.ibm.wsc.Bean2Home) without prompting the administrator for input.

Had ejb-link not been specified, then the administrator would have had to choose the
correct JNDI name. The administrator could choose a "Bean2" which is installed in this
server or a different server.

Once all the JNDI names, EJB references and resource references are resolved, the
application can be installed in the WebSphere for z/OS server. At this point, press the
"OK" button to allow the FTP of the file: JNDIExample_zOS_resolved.ear, containing
the resolved J2EE application, to the WebSphere for z/OS server. You will see the
following popup:

WP100270 4/8/2002 Page - 24

Note: The original input .ear file, used as input for the deployment process, is not
modified unless you press the "Save" button and specify the original .ear file name. A
"copy" of the ear file is created on the workstation for transmission to the WebSphere for
z/OS server.

When this process is complete, you will see message BBOU0470I in the status bar of the
administration tool indicating the process is complete. For this conversation, perform the
Commit, Complete � All tasks, and Activate sequence of events to cause the application
to be installed in the WSPMR1 server. If the server is active, it will be terminated and
restarted allowing the naming registration to occur. At this point, the application is ready
to use. If the server was not already started, start the server manually to cause the naming
registration to occur.

Once the server has been started, open the web browser of your choice and enter the URL
for the servlet that has just been installed. In this environment, the URL is:
http://wsc1.washington.ibm.com:8887/JNDI/LookUp (The context root and servlet
mapping value are specified in the application. The host and port number are unique to
this installation.)

When you press enter, the browser will return an error indicating no response was
available. This is expected, as our Simple application does not return any output to the
browser. Now look at the SYSPRINT dataset for the server address space for your server
(i.e., WSPMR1S) and you will see:

JNDISevlet.init() Creating initial Context and looking up home.
Bean1.doit() Entering
Bean1.doit() Creating initial Context and looking up Bean2home.
Bean1.doit() Creating instance of Bean2 and driving doit().
Bean2.doit() Entering and Exiting
Bean1.doit() Exiting

Not surprisingly, the application works the exact same way in WebSphere for z/OS as it
did in the WSAD test environment. Moreover, the EJBs have radically different JNDI
names, AND the application has been deployed in two servers without the application
developer needing to change any code to lookup the EJB homes. This same .ear file
could be installed in another server on this WebSphere for z/OS node without change and
both would work equally well and independent of each other.

WP100270 4/8/2002 Page - 25

An interesting activity would be to remove the ejb-link from the web application's
deployment descriptor and install the modified .ear file into a second WebSphere for
z/OS server (i.e., WSIVP2). The deployer would then be faced with the choice of
specifying a JNDI name for Bean1Home for server WSPMR1 or WSIVP2.

Summary:

The process of building, testing and deploying a J2EE 1.2 application which takes
advantage of the container environment naming context (ENC) and the java:comp/env
construct to locate EJB homes is quite doable. The WSAD development and test
environment supports the use of this technique. Using "java:comp/env/" removes the
need to hardcode the name of the EJB Homes in the application, or to provide .properties
files which can be interrogated by the application to locate other EJBs. The applications
become much more portable among application servers using this technique.

End of Document

