
WebSphere Application Server V4.0 and V4.0.1 for zOS and OS/390WebSphere Application Server V4.0 and V4.0.1 for zOS and OS/390WebSphere Application Server V4.0 and V4.0.1 for zOS and OS/390WebSphere Application Server V4.0 and V4.0.1 for zOS and OS/390

Configuring Web ApplicationsConfiguring Web ApplicationsConfiguring Web ApplicationsConfiguring Web Applications

This document can be found on the web at:
www.ibm.com/support/techdocs

Search for document number WP100238 under the category
of "White Papers"

Date: Thursday, April 18, 2002

IBM Washington Systems CenterIBM Washington Systems CenterIBM Washington Systems CenterIBM Washington Systems Center

Donald C. Bagwell
301-240-3016

dbagwell@us.ibm.com

This document would not have been possible without the assistance of
others in the Washington Systems Center who offered guidance, supplied
subject material and reviewed the final draft. In particular much credit
must flow to Mike Cox, who unlocked the mystery of WAS 4.0 webapps so
the rest of us could follow. In addition, John Hutchinson, Carl Wohlers and
Tom Hackett provided valuable content updates and review. Finally, Mike
Kearney provided input on issues related to security.

Table of Contents

32Background: how the plugin determines if a request is to be sent to WAS 4.0 runtime
32Activity: validate that the plugin isn't trying to run the webapp locally .
31Activity: validate that your request was mapped to the plugin .
31Activity: validate that your request reached the webserver .
30Background: Basic Debugging .
29Activity: check plugin Application Dispatching Information .
28Activity: check server region SYSPRINT .
28Background: preliminary validation .
28Validation and Basic Debugging .
27Activity: restart the servers .
27Question: do I still need a webcontainer.conf with the new Transport Handler? .
26Background: the role of the WAS 4.0 webserver plugin code .
25Background: WAS 4.0 serving of static files and JSPs .
24Background: the "servlet mapping" value of an application .
24Activity: defining context roots in webcontainer.conf .
23Example: "PolicyIVP" application and its "context-root" setting .
23Background: use of localhost value for virtual host .
23Background: binding an application to multiple virtual hosts .
22Warning: avoid ambiguity in your contextroots= coding .
21Background: using wildcards in the contextroots= values .
19Background: binding applications to virtual hosts .
18Activity: defining a virtual host in the webcontainer.conf file .
17Background: defining virtual hosts in the webcontainer.conf file .
16Background: the concept of virtual hosts .
16Question: do I need to configure a webcontainer.conf if I use the Transport Handler?
15Activity: creating the webcontainer.conf file .
15Configuration .
15Overview .
15Webapps Running in WAS 4.0 Runtime and Driving EJB .
14Next Steps .
13Activity: validation and basic debugging of plugin .
13Background: configuring and running servlets in the WAS 4.0 plugin .
12Activity: configuring the WAS 4.0 plugin code .
11Overview .
11Initial Configuration of the Webserver Plugin Code .
9How it works in WAS 4.x when using the Transport Handler .
8How it works in WAS 4.0.x when using the plugin .
7How it worked in WAS 3.5 (and when you run servlet in WAS 4 plugin today) .
7A Big Picture of How it Works .
6Question: may I use the Transport Handler and the plugin in the same configuration?
6Question: when should I use the Transport Handler vs. the plugin? .
5Question: which plugin should be used? .
5Question: will the webserver support the WAS plugin and another product's plugin?
5Question: can both plugins be configured in the same webserver? .
4Background: WAS 4.0's web container .
4Background: WAS 4.0.1 Transport Handler .
3Background: WAS 4.0's webserver plugin .
2Background: WAS 3.5 Standard Edition plugin .
1Background: the basics of serving out a web applications .
1Overview of Web Applications .
1Change History .

Configuring Web Applications in WAS 4.0 / 4.0.1

67Migration Scenarios .
66Class file incorrect .
65Mismatch in servlet name in deployment descriptor .
63Servlet mapping string doesn't match .
63Errors related to request not resolving to web application class file .
62Plugin not connected to the WAS 4.0 runtime you think it is .
61Your application didn't bind to a virtual host .
59URL doesn't contain value that matches defined context root or virtual host .
58Plugin tries to run the code locally .
56Web container not configured in WAS 4.0 application server .
56WAS 4.0 application server not started .
55Errors related to plugin not passing request to web container .
54Service directive has error in the "exit" routine named on directive .
53Service directive has error in directory or filename of plugin code .
52Plugin not initialized .
52No Service directive coded that matches URL received .
51Errors related to request not reaching plugin .
50Browser error messages .
50Common Configuration Errors and the Symptoms Displayed .
49Activity: drive JSP directly, get GIF directly .
48Activity: drive SimpleJSPServlet code .
48Activity: start webserver and validate plugin's knowledge of new application
48Activity: update httpd.conf with Service directive .
48Activity: check SYSPRINT of server region and insure application bound to virtual host
48Activity: use SME EUI to deploy into WAS 4.0 web container .
47Activity: provide webcontainer.conf file .
47Activity: use AAT to construct an EAR file .
46Activity: JAR the directory into a WAR file .
45Activity: create web.xml file for WAR .
44Activity: download files from WAS 3.5 SE and place in the proper directories
44Activity: create WAR file directory structure on your workstation .
44Background: creating a WAR file by hand .
43Background: structure and settings for this example .
43Example: SimpleJSPServlet from WAS 3.5 Standard Edition .
41Example: Application Dispatching Information provided by plugin .
40Example: SYSPRINT of server region .
40Example: SYSOUT of webserver .
40Starting the servers .
40Example: webcontainer.conf configuration .
39Example: jvm.properties configuration .
39Example: was.conf configuration .
39Example: httpd.envvars configuration .
39Example: httpd.conf configuration .
39Configuration .
38Background: deployment descriptor for PolicyWebApp webapp .
37Background: deployment descriptor for PolicyIVP application .
37Overview of the application .
37Example: PolicyWebApp in the PolicyIVP Application .
36Activity: validate request results in execution of desired webapp class file .
36Activity: determine if you can serve any portion of your webapp .
34Background: key error indicators found on the browser screen .
34Background: the servlet-mapping string and execution of webapp class files .
33Activity: validate that request has been mapped to WAS 4.0 runtime .

Configuring Web Applications in WAS 4.0 / 4.0.1

93Background: the plugin's JVM properties file .
92Background: when same virtual host is defined in both environments .
91Background: WebSphereSampleApp.ear shipped with WAS .
91Advanced Webapp Topics .
90Question: what's the advantage of web containter authentication vs. Webserver? .
89Activity: RACF updates .
89Activity: httpd.envvars .
89Activity: set security constraint properties for your webapp .
89Background: example of definitions in web.xml file .
88Question: can I use this with the new Transport Handler? .
88Question: should I still code the Protect directive in the httpd.conf file? .
88Background: how the Web Container performs HTTP authentication .
87Quick summary of updates required .
87HTTP Authentication based on web.xml definitions rather than Protect statements
87Security Issues .
86Error: when the virtual host and context root are right but the servletmapping is wrong
85Error: when the virtual host is correct but the context root is wrong .
85Error: when the virtual host doesn't match .
84Background: error conditions and the Transport Handler .
83Question: what other Transport Handler parameters are available? .
83Question: can I bind same application to both plugin and Transport Handler virtual host?
81Background: binding your webapp to a properly defined virtual host .
81That leaves a reverse proxy in the DMZ .
80Question: can the WAS Plugin be configured on a distributed platform in the DMZ?
80Background: why WAS Plugin should not be in DMZ .
78Background: why Transport Handler should not be in DMZ .
78Question: how can I design a DMZ into my configuration? .
77Question: why would I want to configure both the plugin and the Transport Handler?
77Question: how do I configure both the plugin and the Transport Handler for a given server?
76Question: can I route requests from the plugin to the Transport Handler? .
76Question: can the new Transport Handler listen on port 80? .
76Question: how can I know the Transport Handler is ready to accept requests?
75Question: how do I get the new parameter into the current.env file? .
75Question: how many Transport Handlers can exist in a WAS environment? .
74Background: how the new Transport Handler works .
74Question: does the introduction of V4.01 negate the information in this document?
73Question: can the plugin and the new Transport Hander coexist? .
73Question: does the new feature have all the capabilities of the HTTP Server?
73Question: does this mean the plugin no longer exists? .
73The WAS 4.0.1 Transport Handler .
72Question: how does the Transport Handler figure into this migration? .
71Activity: migrating web applications from plugin to WAS 4.0 runtime .
71Activity: restart webserver and validate plugin initialization .
71Activity: making certain the httpd.envvars file is correctly configured .
69Activity: changing the plugin pointers in the httpd.conf file .
69Activity: preparing a WAS 3.5 was.conf for use with WAS 4.0 plugin .
69Question: can WAS 3.5 SE was.conf file be used with WAS 4.0 plugin? .
69Activity: changing plugin from WAS 3.5 to WAS 4.0 plugin .
68Activity: configuring the WAS 3.5 plugin code to allow communication with EJB
67Step 3: migrate web applications over to WAS 4.0 web container environment .
67Step 2: configure WAS 4.0 plugin and use existing was.conf configuration file .
67Step 1: update WAS 3.5 SE to communicate with WAS 4.0 runtime .
67Background: overview of the three steps of migration .

Configuring Web Applications in WAS 4.0 / 4.0.1

97Index .
95Activity: how to alter the polling interval used by the plugin to check for new applications
95Activity: how to alter the interval between which the plugin checks for new J2EE servers
94Activity: how to limit the number of J2EE servers with which the plugin will communicate
94Background: what the plugin wants to know from the SMS .
93Background: how the plugin communicates with the WAS 4.0 runtime .
93Activity: create custom JVM properties file for your WAS 4.0 plugin .

Configuring Web Applications in WAS 4.0 / 4.0.1

Change History

Cleaned up the topic of binding a given application to multiple virtual hosts.April 18, 2002

Added section on HTTP Authentication based on security constraints defined in the
webapp's deployment descriptor rather than Protect statements in the
httpd.conf file.

February 11, 2002
Original documentDecember 7, 2001

Overview of Web Applications
A web application is a servlet (or some number of servlets) working in conjunction with other web
files such as HTML pages, JPG/GIF image files and Java Server Page (JSP) files. A servlet is a
Java program, and the servlet requires a servlet execution environment in which to run. IBM
provides many different places in which you may run a servlet:

Web Container

WebApp

EJB Container

WebSphere V4.0 for zOS and OS/390

WAS "plugin"

WebApp

IBM OS/390 HTTP Server

zSeries Servers

WebSphere

WebApp

Windows, AIX, AS/400, Linux

IBM servlet execution environments

The message here is that anywhere IBM provides support for WebSphere Application Server, servlets
will run there. This chart doesn't show HP-UX and Solaris, but servlets can run there as well because
WebSphere Application Server is supported on those platforms.

Note:

Background: the basics of serving out a web applications

Regardless of the environment in which the webapp is running, three fundamental things must
be in place:

1. Some piece of programming code must act as the listening for HTTP requests coming in from the
network. The browsers out in the world will send their requests in using the HTTP protocol, and this
"HTTP Listener" must be active to catch the request.

For the zSeries platform, that HTTP listener is the IBM HTTP Server or the new "Transport Handler,"
which is an HTTP listener integrated into the WAS 4 runtime environment.

2. The HTTP listener's configuration must be set so that requests for servlets are recognized as such.
This allows the HTTP listener to pass the request over to the servlet execution environment.
Requests coming in from browsers may be for many different things: HTML pages, image files, or
requests for programs (such as servlets) to be run. This ability to determine the nature of the request
and properly act on it is critical.

For the IBM HTTP Server, the file in which this ability to determine the nature of the requests is the
httpd.conf file. The configuration statement in that file that directs requests for servlets over to the
servlet environment is the Service statement. The Transport Handler is designed to be a

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 1 -© 2001, IBM Corporation, Wash. Systems Center

streamlined pipe to the servlet environment and attempts to route all requests to the servlet execution
environment.

3. The servlet execution environment's configuration must be set to allow that environment to figure out
what is being requested by the sender of the request. The servlet environment may have dozens or
hundreds of servlets it knows about. Which one is being asked for? Further, web applications consist
of not just servlets, but static files such as HTML and image files. The servlet environment is capable
of simply sending them out as well. Is that what is being requested?

The configuration file settings for this function differs depending on whether the web application is
running in the "WAS plugin" of the HTTP Server, or in the "Web Container" of the WAS 4.0 runtime.
This subject will be explored in depth in this document.

Understanding these three basic functions of serving out web applications helps when trying to
understand all the configuration files and statements that will be discussed in this document.
These three functions are represented in the following picture:

Browser Network

HTTP Server

Listen for
Requests

Determine
Nature of
Request

Servlet Environment

httpd.conf

Figure out what the
request is asking for

zSeries

1 2 3

The configuration settings in
support of this function will be
covered in more depth throughout
this document

The new WAS 4.01 "Transport Handler"
function combines #1 and #2 into an
integrated function of the "Servlet

Environment." See the section on the
Transport Handler later in this document.

Three basic functions involved with serving out a web application

Background: WAS 3.5 Standard Edition plugin

Prior to the introduction of WebSphere V4.0 for zOS, servlets on the zSeries platform were run
in the WAS 3.5 Standard Edition product, which is a "plugin" to the HTTP Server. It is called a
"plugin" because the code runs inside the webserver's address space and makes use of a
programming interface provided by the webserver. Therefore, it is said to "plug in" to the
webserver:

HTTP Server

Webserver's Programming
Interface

WebSphere V3.5
Standard Edition

HTTP Server's
address space

WAS plugin runs
inside webserver's
address space

The WAS "plugin" to the HTTP Server

The WAS 3.5 Standard Edition environment still exists. It is possible for servlets running in this
environment can talk to EJBs running in the WAS 4.0 EJB environment:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 2 -© 2001, IBM Corporation, Wash. Systems Center

EJB

EJB Container

WebSphere V4.0 for zOS and OS/390

WAS 3.5 SE

WebApp

IBM OS/390 HTTP Server

zSeries Servers

Webapp in WAS 3.5 plugin talking to EJB in WAS 4.0 runtime

Background: WAS 4.0's webserver plugin

The WAS 4.0 product ships with a module that on the surface looks and feels just like the WAS
3.5 SE plugin. It too can run inside the webserver's address space, and servlets can run inside
of it:

EJB

EJB Container

WebSphere V4.0 for zOS and OS/390

WAS 4.0 Plugin

WebApp

IBM OS/390 HTTP Server

zSeries Servers

Webapp in new WAS 4.0 plugin talking to EJB in WAS 4.0 runtime

The servlet execution environment provided by the new WAS 4.0 plugin is pretty much equal to
that provided by WAS 3.5 SE. In fact, the WAS 3.5 SE code is wrapped up inside the new
WAS 4.0 plugin.

But the new WAS 4.0 plugin has a feature the older WAS 3.5 SE plugin doesn't have: the
ability to understand what webapps are deployed in the WAS 4.0 runtime's "web container" and
to route requests over to web container:

Web Container

WebApp

EJB Container

WebSphere V4.0 for zOS and OS/390

WAS 4.0 plugin

IBM OS/390 HTTP Server

zSeries Servers

EJB
Pass request
over to WAS
4.0 runtime

WAS 4.0 plugin acting as request router to webapp running in WAS 4.0 runtime

The WAS 4.0 plugin in this scenario acts as a traffic cop of sorts, routing the requests over to
the environment where the servlet will run. This scenario is the primary focus of this document.
The configuration steps necessary to do this is provided starting with "Webapps Running in
WAS 4.0 Runtime and Driving EJB" on page 15.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 3 -© 2001, IBM Corporation, Wash. Systems Center

Background: WAS 4.0.1 Transport Handler

The Transport Handler is an HTTP listener integrated into the WAS 4.0.1 runtime environment.
It became available with the release of WAS 4.0.1 in October of 2001:

Web Container

WebApp

EJB Container

WebSphere V4.0 for zOS and OS/390

zSeries Servers

EJB

Transport
Handler

There's no HTTP Server in
this picture. The "Transport

Handler" listens for HTTP
requests and routes them to

the web container. The
plugin still exists, but this is a

more streamlined and
simplified solution.

WAS 4.0.1 Transport Handler listens for HTTP and routes request to web container

The Transport Handler is a streamlined HTTP listener and is designed to quickly route requests
to the web container environment. The Transport Handler itself does not have the ability to
execute a servlet.

The Transport Handler is for the most part a replacement of the HTTP Server and Plugin.
Typically you would use one or the other (though you can use both at the same time if you
want). This topic is covered in more detai under "The WAS 4.0.1 Transport Handler" on page
73.

Background: WAS 4.0's web container

As described earlier, the new WAS 4.0 plugin code has the ability to route requests for webapp
execution over to the WAS 4.0 runtime. The picture showed something called a "web
container," and it was in that box that the webapp was represented.

A web container is a logical software structure within the coding of the WAS 4.0 product. The
WAS 4.0 runtime has another type of container as well: an "EJB Container." Their mission in
life is to provide a place in which the two types of applications -- webapps or EJBs -- will run.

This primary configuration file for the web container is called webcontainer.conf. That file
and its contents are covered in "Webapps Running in WAS 4.0 Runtime and Driving EJB" on
page 15.

For a webapp to run in the web container of the WAS 4.0 runtime, you must have the WAS 4.0
plugin configured in the HTTP Server.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 4 -© 2001, IBM Corporation, Wash. Systems Center

Question: can both plugins be configured in the same webserver?

No. The plugins will conflict with one another if they are configured within the same webserver.
If you have a need for both plugins to be active, you must provide separate webservers: one for
each plugin:

IBM HTTP Server

Plugin Plugin

3.5 4.0

This configuration is not
supported. The two WAS

plugins in the same
webserver will conflict.

IBM HTTP Server

Plugin

3.5

IBM HTTP Server

Plugin

4.0

This is acceptable. Each webserver has
only one WAS plugin configured.

WAS 3.5 and WAS 4.0 plugin cannot coexist in the same webserver

Question: will the webserver support the WAS plugin and another product's plugin?

Most likely. There's nothing about the webserver's API architecture that prohibits multiple
plugins from coexisting in the same address space. The restriction applies only to attempting to
have the WAS 3.5 and the WAS 4.0 plugin running concurrently.

Question: which plugin should be used?

This depends on what you wish to do. The following diagram summarizes the options:

Web Container EJB ContainerPlugin

HTTP Server WAS 4.0 Runtime

Webapp EJB

Web Container EJB ContainerPlugin

HTTP Server WAS 4.0 Runtime

Webapp EJB

You must use WAS 4.0 plugin
for this environment.

Either WAS 3.5 or WAS 4.0
plugin may be use. See below:

If you already have a WAS 3.5 SE environment and you
wish to preserve that environment during migration

If you're setting up a new environment, and migration
issues are not part of the consideration

WAS 3.5 Plugin

WAS 4.0 Plugin

If you already have a WAS 3.5 SE environment but you
wish to move your servlets over to WAS 4.0 plugin

WAS 4.0 Plugin

Summary of which plugin you should use

If you wish to deploy webapps into the WAS 4.0 web container, the decision becomes simple:
you must use the new WAS 4.0 plugin. If your desire is to run the webapp in the plugin
environment, the general rule of thumb is to use the new WAS 4.0 plugin unless you wish to
maintain your existing WAS 3.5 plugin for migration purposes.

You'll see in "Activity: preparing a WAS 3.5 was.conf for use with WAS 4.0 plugin" on page 69
that the new WAS 4.0 plugin will happily use a WAS 3.5 plugin configuration file, so migrating
to the new plugin is fairly easy.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 5 -© 2001, IBM Corporation, Wash. Systems Center

Question: when should I use the Transport Handler vs. the plugin?

The Transport Handler is designed to listen for HTTP requests and route them quickly to the
web container. The Transport Handler does not have an internal servlet execution
environment; its sole function is to grab requests off the network and pass them to the web
container. Therefore, the Transport Handler is designed to be used when all the webapps are
deployed into the web container environment. If you still wish to run servlets in the WAS 3.5
Standard Edition runtime, you'll have to have a plugin somewhere in the picture.

At the time of this writing the Transport Handler had some notable limitations (see "Question:
does the new feature have all the capabilities of the HTTP Server?" on page 73). Understand
the nature of those restrictions before committing to the new function.

Please refer to "The WAS 4.0.1 Transport Handler" on page 73 for more information on the
Transport Handler.

Question: may I use the Transport Handler and the plugin in the same configuration?

The two may be configured and operating in the same configuration. However, a given request
from a browser client will use one or the other of the listeners, but not both. So the answer is a
qualified "yes." This topic is covered in more detail in "Question: how do I configure both the
plugin and the Transport Handler for a given server?" on page 77.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 6 -© 2001, IBM Corporation, Wash. Systems Center

A Big Picture of How it Works
This section provides several high-level pictures of the flow, and shows how a URL from a browser
works its way to the execution of a servlet.

How it worked in WAS 3.5 (and when you run servlet in WAS 4 plugin today)

http://www.myhost.com/mywebapp/appl1

WAS 3.5
SE Plugin

HTTP Server httpd.conf
:
Service /mywebapp/* /<pointer to WAS plugin>
:

:
host.myhost.alias=www.myhost.com
:
deployedwebapp.abc.host=myhost
deployedwebapp.abc.rooturi=/mywebapp
deployedwebapp.abc.classpath=/classes
deployedwebapp.abc.documentroot=/apps
webapp.abc.servlet.xyz.servletmapping=/appl1
webapp.abc.servlet.xyz.code=HelloWorldServlet
:

was.conf

Virtual Host Service and
Rooturi Servletmapping

1

2

3

4

Run this code

The flow to servlet execution in WAS 3.5 SE environment

Assume a user sends a URL as shown in the chart above. The URL breaks down into three
sections, and those sections come into play by mapping to different configuration settings:

1. The Service statement in the httpd.conf file (the webserver's configuration file) is what
maps a request over to the plugin environment. If the URL matches the template on the
Service statement, the webserver will "throw the request over the wall" to the plugin.
Where it passes the request is defined on the Service statement after the /mywebapp/*
template. That's where the plugin's executable module is defined, as well as the "entry
point" to be invoked in that module. In the case of the Service statement,
:service_exit is the entry point.

If you fail to code a Service statement for a URL, the request will never get mapped to the
plugin, and the servlet will never be executed.

2. Once in the WAS 3.5 environment, the plugin will scale the was.conf file (the plugin's
configuration file) and go looking for a rooturi= value that matches the URL received.
WAS will match -- character for character -- with the received URL in an attempt to
determine which rooturi= definition in the was.conf applies to this request. Once WAS
gets a hit, it then "bundles up" all the other definitions related to this webapp using the
<webapp-name> portion of the defintion (in this example, abc).

3. WAS next inspects the host= definition from the block of definitions it "bundled" in the
previous step and relates the value found to a host.<name>.alias= statement from
earlier in the was.conf file. The value on the alias= statement is the virtual host, and for
this request to run the servlet, the host name on the URL must match the virtual host.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 7 -© 2001, IBM Corporation, Wash. Systems Center

Failure to match will mean WAS will discard the bundle of definitions and go looking for
another rooturi= to match.

4. Assuming you have a match on the rooturi= and the virtual host, WAS then looks for a
servletmapping= definition. It takes the value it finds there, concatenates it to the rooturi
value, and if it matches the URL it received, it knows the request is to run a servlet. The
only question remaining is what servlet, and that's answered with the code= definition. The
value defined there is the class file to be executed.

What is illustrated here is an example of "specific servletmapping," where the Java class file is
named in the was.conf rather than implied on the URL itself. In addition to servetmapping,
you may also define jspmapping and filemapping definitions. The point is there's more
complexity to this than shown here. But this gets the concept across.

Note:

How it works in WAS 4.0.x when using the plugin

http://www.myhost.com/mywebapp/appl1

WAS 4
Plugin

HTTP Server

Virtual Host Service and
Context Root Servletmapping

httpd.conf
:
Service /mywebapp/* /<pointer to WAS plugin>
: 1

:
host.myhost.alias=www.myhost.com
:
host.myhost.contextroots=/mywebapp
:

webcontainer.conf

2
3

WAS 4

Web
Container

4

Run this code

web.xml
:
<servlet>
<servlet-name>abc</servlet-name>
<servlet-class>HelloWorldServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>abc</servlet-mapping>
<url-pattern>/appl1</url-pattern>
</servlet-mapping>
:

The flow to servlet execution in the WAS 4.0.x web container environment using the plugin

In this scenario the servlet is executed in the WAS 4.0.x web container rather than the plugin.
The plugin is still in the picture because it is acting as HTTP listener and will "route" the request
over to the WAS 4 runtime.

1. The Service statement in the httpd.conf file (the webserver's configuration file) is what
maps a request over to the plugin environment. If the URL matches the template on the
Service statement, the webserver will "throw the request over the wall" to the plugin.
Where it passes the request is defined on the Service statement after the /mywebapp/*
template. That's where the plugin's executable module is defined, as well as the "entry
point" to be invoked in that module. In the case of the Service statement,
:service_exit is the entry point.

The servlet will not be run in the plugin. The plugin is simply acting as an intermediate
router of the request.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 8 -© 2001, IBM Corporation, Wash. Systems Center

2. Once the request is mapped over to the WAS 4 web container, the web container will
search through all the virtual-host/context-root pairs it has knowledge of to see if the
request matches. This comes out of the webcontainer.conf file, which uses
contextroots= definition to "bind" applications to virtual hosts. The context root is nearly
identical in concept to the rooturi of WAS 3.5, as is the virtual host. If the URL received
matches a virtual-host/context-root pair, then the web container knows to proceed. If no
match is found, then WAS will reject the URL.

The concept of "binding" an application to a virtual host is covered later in this document,
starting at "Background: binding applications to virtual hosts" on page 19.

Note:

3. This step illustrates the connection between the contextroots= statement in
webcontainer.conf and the host.<name>.alias= statement, which defines the virtual
host.

4. WAS next goes looking for an application whose defined servletmapping value matches that
implied on the received URL. In this example the servletmapping string on the URL is
appl1, and it knows this because the servletmapping value is whatever comes after the
context root value on the URL. WAS looks through the web.xml files contained in each
web application's WAR file looking for a <url-pattern> tag that matches the
servletmapping string on the URL. When it finds one, it takes the <servlet-name> value
and goes to the point in the web.xml file where <servlet-class> is defined. That's the
class file that is executed.

How it works in WAS 4.x when using the Transport Handler

http://www.myhost.com/mywebapp/appl1

Virtual Host Context Root Servletmapping

:
host.myhost.alias=www.myhost.com
:
host.myhost.contextroots=/mywebapp
:

webcontainer.conf

1
2

WAS 4

Web
Container

Run this code

web.xml
:
<servlet>
<servlet-name>abc</servlet-name>
<servlet-class>HelloWorldServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>abc</servlet-mapping>
<url-pattern>/appl1</url-pattern>
</servlet-mapping>
:

Transport
Handler

3

The flow to servlet execution in the WAS 4.0.x web container environment using the Transport Handler

This scenario is nearly identical to the previous, except that the plugin is not part of the picture.
Rather, the new "Transport Handler" acts as the HTTP listener.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 9 -© 2001, IBM Corporation, Wash. Systems Center

1. The request goes directly to the web container through the Transport Handler, and the
same matching on the virtual-host/context-root pair is done, just like what was illustrated in
the previous scenario.

2. The connection between contextroots= and alias= is exactly the same as illustrated in
the previous scenario.

3. The <url-pattern> and <servlet-class> processing is exactly the same as illustrated
in the previous scenario.

The only difference between this scenario and the previous is there's no plugin involved, so no
Service statement is used to map the request to the plugin. The request flows directly to the
Transport Handler, which is listening for HTTP requests. Beyond that, everything else is the
same.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 10 -© 2001, IBM Corporation, Wash. Systems Center

Initial Configuration of the Webserver Plugin Code
Overview

As stated earlier, the WebSphere Application Server plugin code executes within the address
space of the HTTP Server. That is true whether the plugin is the WAS 3.5 SE plugin, or the
newer WAS 4.0 plugin.

The plugin's configuration file is called was.conf. The webserver knows to load the plugin and
use a particular copy of was.conf based on the second parameter found on the ServerInit
statement coded in the webserver's httpd.conf file

WAS Plugin Code

HTTP Server

httpd.conf

httpd.envvars

was.conf

ServerInit <pointer to plugin code> parameter1,parameter2
Service <URL template> <pointer to plugin code>
ServerTerm <pointer to plugin code>

Second parameter points
to configuration file that

will be used

You don't need any of
this if you use the new

WAS 4.01 Transport
Handler function.

Note

Relationship between HTTP Server's configuration files and plugin's configuration file

Here's what each plugin statement does:

This statement is used to bring the plugin down in an orderly fashion when the webserver
is stopped. This statement simply points to the plugin executable module and code exit
used to shut down the plugin gracefully.

You will have only one ServerTerm statement in your httpd.conf file.

ServerTerm

This statement is used to map URLs received by the webserver over to the plugin for
execution. If the URL received matches the "URL template" named on the Service
statement, the webserver will take the URL and pass it to the plugin executable module
and code exit specified on the statement. If you want a URL to execute a servlet, you
must have a Service statement that'll catch the URL and "throw it over the wall" into the
plugin.

You will have between one and many Service statements in your httpd.conf file,
depending on how many different URLs you wish to define that'll map over to the WAS
plugin environment.

Service

This statement is used to tell the webserver to initialize the plugin code when the
webserver is in the act of coming up. The ServerInit statement points to the plugin's
executable module and the code exit to invoke to intialize the plugin. This statement has
two parameters: the first names the HFS install root of the WAS product, and the second
parameter points to the configuration file to be used by the plugin.

You will have only one ServerInit statement in your httpd.conf file.

ServerInit

The exact syntax of each statement is provided in "Activity: configuring the WAS 4.0 plugin
code" on page 12.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 11 -© 2001, IBM Corporation, Wash. Systems Center

Activity: configuring the WAS 4.0 plugin code

Any given webserver may have either the WAS 4.0 plugin configured, or the WAS
3.5 plugin configured, but not both at the same time! See "Question: can both
plugins be configured in the same webserver?" on page 5.

Very Important Note:

Do the following:

! Copy the supplied sample was.conf file from the following directory:

/WAS 4.0 Install Root/WebServerPlugIn/properties

to the directory in which the httpd.conf file resides.

If you're wondering if you can use your existing WAS 3.5 SE was.conf with the new WAS 4.0
plugin, the answer is "yes." How this is done, and other migration related topics, is provided in
"Migration Scenarios" on page 67.

Note:

! Edit the file httpd.conf and locate the following string starting in column 1:
Service /servlet/* /usr/lpp/WebSphere/AppServer/lib/libadpter.so:AdapterService

Comment out this line. It is leftover from the days of WAS 1.2 and will cause confusion if
any URL comes in that maps to the /servlet/* mask on the Service statement.

! Immediately following the line you just commented out, add the following:

The directory "WebServerPlugIn" has a capital "I" for "In" at the very end. It is very easy to not
see that and type that with a lowercase. Making a tiny mistake like that does matter. Be very
careful with your typing.

Note:

ServerInit /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:init_exit

/usr/lpp/WebSphere,/etc/was.conf

Service /webapp/examples/* /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:service_exit

ServerTerm /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:term_exit

Example of WAS 4.0
install root

The entire
ServerInit on

one line

One blank space
separates statement

from parameters Second parameter
points to location of

was.conf file

(see note below)

Note: the first parameter on the ServerInit is
the install root of WebSphere. This example
is showing that as /usr/lpp/WebSphere

Statements added to httpd.conf to support WAS 4.0 plugin initialization

The Service statement provides the "basic function" #2 from "Background: the basics of serving
out a web applications" on page 1.

Note:

! Edit your httpd.envvars file and add the following:

JAVA_HOME=/usr/lpp/java2/J1.3

or wherever the Java 1.3 Developer Kit for Java is installed on your system.

! Stay in your httpd.envvars and add the following to the NLSPATH variable:

/usr/lpp/WebSphere/WebServerPlugIn/msg/%L/%N

or whatever your WAS 4.0 install root happens to be.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 12 -© 2001, IBM Corporation, Wash. Systems Center

! Add the following two variables to httpd.envvars:

RESOLVE_IPNAME=<fully qualified IP host name of server on which WAS 4.0 SMS exists>
RESOLVE_PORT=900 (or port on which WAS 4.0 SMS server is listening if not default)

If your HTTP Server (and therefore the plugin as well) is on the same system as your WAS 4.0
runtime, and you configured the SMS server to use the default port value of 900, you don't
need these two values. But coding them is relatively easy, and it avoids confusion. So go
ahead and code these even though strictly speaking they're not always necessary.

Note:

! Now go to "Activity: validation and basic debugging of plugin" on page 13 for how to validate
the plugin initializes properly.

Background: configuring and running servlets in the WAS 4.0 plugin

The WAS 4.0 plugin has imbedded within it the WAS 3.5 Standard Edition execution
environment. That means the WAS 4.0 plugin is capable of running web applications just like
WAS 3.5 Standard Edition was. The process of configuring the deployedwebapp and
webapp statements inside the was.conf file is exactly the same as with WAS 3.5 SE.

The subject of configuring web applications for execution in the plugin is covered in the IBM
document GC34-4835, "WebSphere Application Server Standard Edition, Planning, Installing
and Using."

If the servlet you are deploying will drive an EJB in the WAS 4.0 runtime, the servlet will locate
the EJB with the aid of the RESOLVE_IPNAME and RESOLVE_PORT settings in the
httpd.envvars file. The WAS 4.0 plugin is able to locate the WAS naming service "initial
context factory" because its been coded to know where that's located. The WAS 3.5 plugin, by
contrast, must be told where that resides.

Activity: validation and basic debugging of plugin

These instruction apply to both the WAS 3.5 plugin as well as the WAS 4.0 pluginNote:

! Start the webserver.

! Now browse the SYSOUT of the BBOWEB started task and find the following string:

:-)

Yes, that's a "smiley face", and that's an indication that the plugin initialized okay. The
plugin sometimes takes a few moments to initialize, and may not be up even though the
webserver is operational. Give it a few moments and try again if you don't see it initially.

If you still can't find the "smiley" face, search on the "frowny face" :-(. The webserver will
throw that message if something prevented the plugin from initializing. Common causes for
plugin initialization failure:

" JAVA_HOME variable in httpd.envvars not set correctly.

" Mistyped directory or file name on ServerInit statement in httpd.conf. Check for
case problems.

" Second parameter on ServerInit statement points to was.conf file and/or directory
that does not exist.

! Once you've verified the smiley face, issue the following URL from your browser:

http://<host>/webapp/examples/index.html

You should see a screen that looks something like this:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 13 -© 2001, IBM Corporation, Wash. Systems Center

Initial screen for "webapp/examples" that validates basic operation of plugin code

If you receive this, it is an indication that your URL was successfully mapped over to the
WAS 4.0 plugin using the Service statements in httpd.conf. You have successfully
invoked the plugin's function to serve out the static page you see above.

Next Steps

By achieving the smiley face you have taken the first step towards establishing your webapp
environment. But you have not invoked any webapps and no EJBs are yet in the picture.

Proceed to "Webapps Running in WAS 4.0 Runtime and Driving EJB" on page 15.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 14 -© 2001, IBM Corporation, Wash. Systems Center

Webapps Running in WAS 4.0 Runtime and Driving EJB
Overview

This is the scenario that is the focal point of this document. The web application is deployed
into the web container of the WAS 4.0 runtime. The WAS 4.0 plugin is configured into the
HTTP Server, and requests received by the webserver are routed over to the web container for
webapp execution:

Web Container

WebApp

EJB Container

WebSphere V4.0 for zOS and OS/390

WAS 4.0 plugin

IBM OS/390 HTTP Server

zSeries Servers

EJB
Pass request
over to WAS
4.0 runtime

WAS 4.0 plugin acting as request router to webapp running in WAS 4.0 runtime

To illustrate this, the "PolicyIVP" sample application shipped with the WAS 4.0 product will
serve as the EJB application. That sample application has an EJB environment (consisting of
one session bean and two entity beans) as well as a webapp.

With WAS 4.0.1 a new method getting the request passed over to the WAS 4 runtime was made
available: the "Transport Handler." It is an HTTP listner that is integrated into the WAS 4 runtime
environment. The Transport Handler eliminates the requirement for the plugin (though you may
still have the plugin in the picture concurrent with the Transport Handler if you wish). For more
information on the Transport Handler, see "The WAS 4.0.1 Transport Handler" on page 73.

Note:

Configuration

Activity: creating the webcontainer.conf file

The web container utilizes a file called webcontainer.conf to hold configuration
information for the container. The server instance knows what file to use for this purpose by
reading the contents of the jvm.properties file and looking for a pointer to the container
configuration file:

/WebSphere390/CB390/controlinfo/envfile/WSLPLEX/BBOASR2A1/

current.env

jvm.properties

webcontainer.conf

com.ibm.ws390.wc.config.filename=

/WebSphere390/CB390/controlinfo/envfile/WSLPLEX/BBOASR2A1/webcontainer.conf

Server instance private directory (example)

How the server instance knows what web container configuration file to use

Do the following:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 15 -© 2001, IBM Corporation, Wash. Systems Center

! Determine the private directory of your server instance. This is where the
current.env and jvm.properties files resides. This is also where you will copy
the sample webcontainer.conf file. Write down the location of that private directory:

! Copy the sample webcontainer.conf file from the following location to the private
directory of your server instance:

/Server Instance Private Directory/webcontainer.confTo:

/WAS 4.0 install root/bin/webcontainer.confFrom:

! Edit the jvm.properties file in your server instance's private directory and add the
following line (all on one line), which points to the new webcontainer.conf file in your
server instance's private directory:

com.ibm.ws390.wc.config.filename=/private directory/webcontainer.conf

! Make certain that webcontainer.conf file has permissions of at least 644 and is
owned by the same userid which owns the current.env file (should be CBSYMSR1,
or whatever the ID for your Systems Management Server -- SMS -- is).

Some have asked if changing the ownership of this file to something other than the
Systems Management Server ID is permitted. That'll work, but you have to be very careful.
If you ever use the SMS GUI tool to delete the server, the SMS ID will be the one that
performs the file deletions, and it must have authority to do so. You can find yourself in a
pretty messy state if the SMS can't delete files at the time of server deletion. Therefore, the
recommendation is to assign ownership of this file to the SMS ID.

Note:

There are many configuration statements in the webcontainer.conf file, but only two
that you must modify to make it work:

host.default_host.alias=

host.default_host.contextroots=

Both relate to the concept of "virtual hosts," which is discussed next.

Question: do I need to configure a webcontainer.conf if I use the Transport Handler?

Absolutely. The webcontainer.conf provides the configuration for the web container, which
exists regardless of the HTTP listener you employ out front. So it is required, as is the
definition of the virtual hosts and the binding of applications to the virtual hosts (all
described next).

Background: the concept of virtual hosts

The HTTP Server has for some time now had the ability to handle URLs with different host
names. This allows you to host multiple host domains on the same webserver. This
functional concept has been included in the WAS 4.0 runtime's web container environment
as well.

Imagine a scenario where you are asked to put up a web application environment for three
different divisions of a company, each with its own host name. You are told to do it all on
one server:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 16 -© 2001, IBM Corporation, Wash. Systems Center

http://fire.state.md.us

http://taxes.state.md.us

http://police.state.md.us

9.80.90.100 fire.state.md.us
9.80.90.100 taxes.state.md.us
9.80.90.100 police.state.md.us

DNS

WAS 4.0Based on DNS
entries, all

requests hit the
same server:
9.80.90.100

One webserver hosting three different host domains

Further, you are told to make certain that anyone coming in with host name
fire.state.md.us has access only to those applications for the Fire Department, and
the same for the Police Department and the Department of Taxation.

The web container support of WAS 4.0 for zOS and OS/390 is quite capable of handling
this. Doing so involves first defining virtual hosts in your webcontainer.conf file, and
then indicating which applications are associated (or "bound") to which virtual host.

Background: defining virtual hosts in the webcontainer.conf file

A virtual host is defined in the webcontainer.conf file by providing that host name on a
host.<name>.alias= statement:

host.fire.alias=fire.state.md.us
host.taxes.alias=taxes.state.md.us
host.police.alias=police.state.md.us

The actual host name ...

... and the associated
alias for that host name

webcontainer.conf

Configuring virtual host aliases in webcontainer.conf

After the virtual hosts have been defined, another definition in the webcontainer.conf
file will be used to "bind" applications to a given virtual host. With an application bound to a
virtual host, only URLs coming in with the IP host name connected to the virtual host will be
allowed to execute the application. More on that subject in "Background: binding
applications to virtual hosts" on page 19.

The first question that comes to mind for most people is, "What if I am hosting only one host
name on my server?" You will still need to code a host alias. You can take advantage of
the "default host alias definition that's in the sample webcontainer.conf file:

host.default_host.alias=<your server host name>[:port]

The port number is required only
if your webserver is listening on
something other than default 80

Default host-alias
statement has name of

default_host

webcontainer.conf

See note!

One virtual host alias defined using default host alias in sample webcontainer.conf

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 17 -© 2001, IBM Corporation, Wash. Systems Center

The webapp support of WAS 4.0 had a problem initially when the default port 80 was used.
PTF UQ57590 addresses that problem (APAR PQ50839). Your copy of WAS 4.0 may not
have that fix. So if you're in test mode and things don't work with the default HTTP listen port of
80, change the Port directive in your httpd.conf file to something like 8080 and then code
the 8080 in the webcontainer.conf file's virtual host alias statement and try again.

Note:

Activity: defining a virtual host in the webcontainer.conf file

You must have at least one host.<name>.alias= statement defined in your
webcontainer.conf

Note:

Do the following:

! Edit your copy of webcontainer.conf, locate the host.default_host.alias=
statement and provide the host name that will be used by browsers to reach your
webserver. Include a port designation if the webserver is listening on something other
than port 80.

A single virtual host using the sample default_host name. The webserver is
listening on port 8080, so the port designation :8080 is provided on the virtual host
definition.

host.default_host.alias=wsc4.washington.ibm.com:8080Example:

Using a <name> value of default_host and a single virtual host with IP host name of
wsc4.washington.ibm.com. Webserver is listening on default port 80, so no port
designation provided.

host.default host.alias=wsc4.washington.ibm.comExample:

! If you have more than one virtual host to define, you can do that in one of two ways:

1. Code multiple host.<name>.alias= properties in your webcontainer.conf file,
and provide a different virtual host value on each:

Three virtual hosts defined, each with a unique <name> value. The webserver is
listening on default port 80, so no port designation is provided.

host.taxes.alias=taxes.state.md.us
host.police.alias=police.state.md.us
host.fire.alias=fire.state.md.us

Example:

2. Code multiple virtual host values on the same host.<name>.alias= property:

Note the comma that separates the two virtual hosts.

host.taxes.alias=taxes.state.md.us,police.state.md.usExample:

What's the difference? Option #1 is used when you wish to keep your applications
separated by virtual host and no application is accessible by more than one virtual host.
Option #2 is used when you wish to allow an application to be accessible from multiple
virtual hosts:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 18 -© 2001, IBM Corporation, Wash. Systems Center

http://fire.state.md.us/alarms
Webapp:
/alarms

http://police.state.md.us/reports
Webapp:
/reports

Option 1: applications kept separate by virtual host value

Option 2: same application accessible from two different virtual hosts

http://fire.state.md.us/welcome

Webapp:
/welcome

http://police.state.md.us/welcome

Two ways of coding multiple virtual host aliases in the webcontainer.conf file

This topic makes more sense when you read and understand "Background: binding
applications to virtual hosts" on page 19.

You should code your virtual host values in the webcontainer.conf file in lowercase. It
appears the URL received from the browser is folded into lower-case and then compared
against the value found in webcontainer.conf. If your virtual host IP name is coded in
uppercase in webcontainer.conf, your request may not be honored..

Note:

The webapp support of WAS 4.0 had a problem initially when the default port 80 was used.
PTF UQ57590 addresses that problem (APAR PQ50839). Your copy of WAS 4.0 may not
have that fix. So if you're in test mode and things don't work with the default HTTP listen
port of 80, change the Port directive in your httpd.conf file to something like 8080 and
then code the 8080 in the webcontainer.conf file's virtual host alias statement and try
again.

Note:

Background: binding applications to virtual hosts

When a web application is deployed into a WAS 4.0 web container, one of the properties
set for the webapp is a "context root." This is a string of text that will be matched up against
the received URL to determine which web application is being requested. For those familiar
with the WAS 3.5 Standard Edition environment, a "context root" is analogous to the
"rooturi" value:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 19 -© 2001, IBM Corporation, Wash. Systems Center

http://fire.state.md.us/safety/home.jsp

Webapp
Context Root:
/income

Webapp
Context Root:
/crime

Webapp
Context Root:
/safety

Webapp
Context Root:
/events

Web Applications Deployed into WAS 4.0 Runtime Server

WAS knows URL is
intended for a webapp
based on match with
"context root"

Context roots are
defined at the time of
application assembly
(using AAT tool)

Context roots are used to associate received URL with an application

The picture above illustrates how a URL is associated with a webapp, but it does not show
how the application is bound to a virtual host. That is done by making a match between the
"context root" value set for the webapp and the values found on the following property in the
webcontainer.conf file:

host.<virtual_host_alias_name>.contextroots=

If the "context root" as set in the deployment descriptor of the application matches the value
found on the contextroots= statement in the webcontainer.conf file, then that
application is bound to the virtual host named on that statement:

host.fire.alias=fire.state.md.us
host.police.alias=police.state.md.us
host.taxes.alias=taxes.state.md.us
:
:

host.fire.contextroots=/safety
host.police.contextroots=/crime, /events
host.taxes.contextroots=/income

Webapp
Context Root:
/income

Webapp
Context Root:
/crime

Webapp
Context Root:
/safety

Webapp
Context Root:
/events

1

2
3

4

URLs with host name fire.state.md.us will be allowed to invoke
application /safety, but URLs with "police" or "taxes" will not.
/safety application is "bound" to virtual host fire.state.md.us

Context root match and the binding of application to virtual host

This picture shows a few things you should note:

" Multiple host.<name>.alias= properties are allowed in the webcontainer.conf
file

" Multiple host.<name>.contextroots= properties are allowed in the
webcontainer.conf

" Defining more than one string per host.<name>.contextroots= property is allowed.
This allows you to bind multiple applications to the same virtual host (see "police"
example above).

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 20 -© 2001, IBM Corporation, Wash. Systems Center

What's not being shown in that picture is something that'll simplify this whole "virtual host"
and "context root" issue quite a bit: a single slash on the host.<name>.contextroots=
property will allow all web applications to bind to that virtual host:

host.default_host.alias=www.yourhost.com
:

host.default_host.contextroots=/

Webapp
Context Root:
/income

Webapp
Context Root:
/crime

Webapp
Context Root:
/safety

Webapp
Context Root:
/events

The alias "default_host" is
what you'll find in the supplied
sample webcontainer.conf

All applications
will match this

single slash

All applications will be bound to this
virtual host. If you only have one

virtual host, this works perfectly well

The "catch-all" contextroots value allows all webapps to bind to it

Using the "catch-all" single slash is the best way to start. If your plans do not call for having
multiple IP hosts serviced by your one server, this works well.

Background: using wildcards in the contextroots= values

You have seen how an explicit coding of a contextroots= value will allow an application
to "bind," and you have seen how the "catch all" value of a single slash (/) will allow all
applications to bind. Now let's explore how you can incorporate the use of wildcards into
your contextroots= strings. Wildcards allow you to bind multiple applications with similar
names to a virtual host while avoiding the use of the "catch all" single slash.

The wildcard character is the asterisk (*). However, there's a twist to this that you must
understand: you must precede the wildcard character with a forward "slash" (/) so the web
container can know a wildcard comes next. This is best illustrated with an example:

host.my_virt_host.alias=www.yourhost.com
:
host.my_virt_host.contextroots=/ap/*

Webapp
Context Root:
/appl101

Webapp
Context Root:
/apXYZ

Webapp
Context Root:
/apples

Webapp
Context Root:
/appl903

You may name the virtual host
anything you like. (Don't use

periods in the name, however!)

The four applications
shown will bind to this

wildcard string

The IP host name to which the
applications will be bound. This host

name must be on URL to execute appl.

Using wildcards in the contextroots= string

In this example, the contextroots= value of /ap/* serves as a wildcard template that
will "catch" any application <context-root> string that starts with the letters "ap".

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 21 -© 2001, IBM Corporation, Wash. Systems Center

(I can not explain why the preceding slash is required; it just is.)

Whenever the issue of wildcards is discussed, someone invariably asks the following two
questions:

No. Other programs that use wildcards permit the question mark
(?) to serve as a wildcard for a single character. This is not
permitted on the contextroots= statement.

Is there a single-character
placeholder wildcard?

No. Don't code a contextroots= string with multiple wildcards.
The wildcard function isn't that sophisticated.

May I use multiple wildcards?

AnswerQuestion

The next natural thing to ask is this: what's the order of precedence for the three types of
contextroots= value coding (explicit vs. wildcard vs. catch-all)? What happens if a
<context-root> value for an application maps to more than one contextroots=
value? The answer is this:

host.my_host_1.contextroots=/PolicyIVP

host.my_host_2.contextroots=/Policy/*

host.default_host.contextroots=/

<context-root>
/PolicyIVP

</context-root>

PolicyIVP Application

webcontainer.conf

The context root
matches with all three
of these. Which will it

bind to?

Exact explicit match first
The example shown above

Best fit on wildcard string
/Policy/* will take precedence over /P/*, for example

Catch-all of a single slash
If nothing else matched, this will always match

Order of Precedence

The order of precedence for matching an application to a context root value

Warning: avoid ambiguity in your contextroots= coding

When a WebSphere application server starts up, it looks at all the applications deployed
within it and reads in all the context root settings. It then starts the process of comparing
the application's context root against the values on the host.<name>.contextroots=
properties in the webcontainer.conf file.

What happens if a web application's context root setting maps to two different
contextroot= definitions? For example, imagine you have the following in your
webcontainer.conf file:

host.default_host.alias=www.yourhost.com
host.my_host.alias=www.myhost.com
:
host.default_host.contextroots=/PolicyIVP
host.my_host.contextroots=/PolicyIVP

And your application has a <context-root> value of /PolicyIVP. To which of the two
virtual hosts would your application bind? Both?

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 22 -© 2001, IBM Corporation, Wash. Systems Center

The answer is this: it'll bind to only one, but when coded like this, not both. If your
objective is to bind /PolicyIVP to two different virtual hosts, that's done by using a single
contextroots= definition, and coding two different virtual host values on the associated
alias= definition. See "Background: binding an application to multiple virtual hosts" on
page 23.

Follow this simple rule: do not code the same value on two different contextroots=
definitions. That introduces ambiguity into your webcontainer.conf file. If you want to
bind an application to multiple virtual hosts, do that by coding multiple virtual hosts on a
single alias= definition, as described next.

Background: binding an application to multiple virtual hosts

This is done by defining multiple hosts on a single alias= definition:

host.taxes.alias=taxes.state.md.us,www.taxes.are.us

The different host values are separated by a comma. With this done, an application that
matches a contextroots= value will bind to both hosts defined on the statement.

Background: use of localhost value for virtual host

The value you code for the virtual host is typically something related to the host IP name of
your system (for example, wsc1.washington.ibm.com:8080). There is another value
that you could code: localhost. This is a form of "universal" virtual host; one that in
theory allows any host name on the URL to use the application. The documentation
advises against using this value.

Do not use the value localhost for any virtual host values in the
webcontainer.conf file!

Rule:

There are two reasons for this:

The documentation advises against it, and

If an application binds to the virtual host defined with localhost, there is no way you
can get a request to flow from the plugin over to the web container. The plugin will flow
the requests over to the web container only if there's an exact character-for-character
match on the virtual host and context-root values. If there's a way to get this to work, I
haven't found it. It is better to simply avoid the ambiguity and confusion and provide a
hard-coded virtual host value.

Example: "PolicyIVP" application and its "context-root" setting

The WAS 4.0 product comes with a sample application that can be used to verify the
environment. This application is commonly known as the "PolicyIVP" application, and it is
supplied as a fully-assembled "EAR" file in the following location:

/usr/lpp/WebSphere/samples/PolicyIVP/ejb/PolicyIVP.ear

If you were to download that EAR file to your workstation and use a product like WinZIP® to
open the file, you'd see, among other things, a file called application.xml. That is the
"deployment descriptor" for the assembled application, and was created by the assembly
tool (AAT). View the contents of application.xml and you'll find the following:

<web>
<web-uri>PolicyWebApp.war</web-uri>
<context-root>/PolicyIVP</context-root>
</web>

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 23 -© 2001, IBM Corporation, Wash. Systems Center

When the WAS 4.0 server starts it'll read in the deployment descriptors of all the
applications deployed into the server, and it'll see that <context-root> value for
PolicyIVP application.

That sets the "context root" for the application. All that's left is to provide a
host.<name>.contextroots=property in the webcontainer.conf file to allow this
application to bind to a virtual host. The easiest, as just described, would be:

host.default_host.contextroots=/

But you could also use:

host.default_host.contextroots=/PolicyIVP

However, an explicit coding like this would allow only the PolicyIVP application to be bound
to the "default_host" virtual host alias. If that's the only application in the server, then it is
acceptable. However, if another application came along -- let's assume with a context root
of /Sample1 -- you would need to add that context root to the property:

host.default_host.contextroots=/PolicyIVP, /Sample1

Multiple values are allowed on the statement. With only one virtual host defined, however, it
makes things quite a bit easier to code just the single slash and allow all applications to
map to it.

Activity: defining context roots in webcontainer.conf

Back in "Activity: defining a virtual host in the webcontainer.conf file" on page 18 you
defined the virtual host in the webcontainer.conf file. Now do the following:

! Edit the webcontainer.conf file. Locate the property
host.default_host.contextroots=near the bottom of the file.

! Add a single slash to the statement:

host.default_host.contextroots=/

The name "default_host" in this example is what's provided in the sample
webcontainer.conf file. You may continue to use that value, or provide one of your
own. The key is having the value you choose be equal on both the contextroots=
property and the alias= statement to which you wish the webapp to bind. Case matters,
so type carefully.

Note:

! Save the file

! Stop and restart your application server.

Background: the "servlet mapping" value of an application

With an application successfully bound to a virtual host with the "context root" setting in both
the application.xml file and the webcontainer.conf file, the final piece of the puzzle
is the setting that connects the URL to a specific servlet to execute. A given "context root"
such as /PolicyIVP only gets you to the proper web container; something called the
servlet mapping is what relates the URL to the specific servlet.

The servlet mapping value is something set at the time the web application is developed. It
is not something you configure into your webcontainer.conf file or any other
configuration file related to the WAS 4.0 server or the plugin. The servlet mapping string for
a servlet is contained in the deployment descriptor for the webapp, which is a file called
web.xml and is part of the WAR file:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 24 -© 2001, IBM Corporation, Wash. Systems Center

/(base or root)

HTML, GIF/JPG and JSP files

/META-INF

MANIFEST.MF

/theme

Master.css

/WEB-INF

web.xml

/classes

/lib

WAR
File

:
<servlet-mapping>
<servlet-name>Was40Ivp</servlet-name>
<url-pattern>/PolicyServlet</url-pattern>

</servlet-mapping>
:

This is the basic directory structure of a
WAR file, which is a ZIP-format file used
to hold webapps.

The web.xml file is the "deployment
descriptor" for the webapp.

The <url-pattern> tag defines the
servlet mapping string for the servlet.

Servlet mapping string inside webapp's deployment descriptor

In this example the string /PolicyServlet is the servlet mapping string. What that
means is that the URL to invoke this application is the following:

http://www.your_host.com/PolicyIVP/PolicyServlet

The "context root" value
The "servlet mapping" value

URL to invoke PolicyIVP's servlet

The context root (/PolicyIVP) gets you to the proper web container; the servlet mapping
(/PolicyServlet) gets you to the proper class file for the servlet code to run. If you go
back to "Background: the basics of serving out a web applications" on page 1, this provides
the "basic function" tagged with #3 in the diagram.

The servlet mapping is part of the webapp development and not something you code into
the webcontainer.conf file or specify at the time of application assembly with the AAT
tool.

Background: WAS 4.0 serving of static files and JSPs

A web application may consist of files other than servlets, such as JPG/GIF image files,
HTML files and JSP pages. WAS will happily serve those files out as long as it can figure
out that the URL request is for that kind of file. Here's how WAS figures that out:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 25 -© 2001, IBM Corporation, Wash. Systems Center

Match on "servlet
mapping"?

Attempt to
invoke servlet

URL ends with
"jsp"?

Attempt to
invoke JSP

Assume request
is for static file

Yes

Yes

No

No

Process by which WAS determines if request is for servlet vs. JSP vs. file

Notice what happens: if the URL does not match on a "servlet mapping" known to the web
container, WAS will work down through its logic and default to considering the request to be
for a static file. Requsts for static files are served by a built in function of WAS known as
the "SimpleFileServlet."

This is important because you may very well encounter a problem were the servlet mapping
string in the web.xml file isn't what you enter on the URL. When that happens, you see
problem as described in "Servlet mapping string doesn't match" on page 63.

Background: the role of the WAS 4.0 webserver plugin code

The WAS 4.0 plugin code is a requirement to running a webapp in the web container
environment of the WAS 4.0 runtime. This is because the WAS 4.0 runtime does not at the
present time have an HTTP listener, so the webserver has to serve that role. The WAS 4.0
plugin provides an environment to which the webserver can pass a request for webapp
execution. The WAS 4.0 plugin then routes the request over to the WAS 4.0 runtime web
container for application execution:

Webapp EJBRouting
Function

HTTP
Listener

HTTP Server WAS 4.0 Runtime

WAS 4.0 plugin Web Container EJB Container

WAS 4.0 plugin routing request over to the WAS 4.0 runtime web container

But what tells the WAS 4.0 plugin whether to run the webapp locally or route the request
over to the WAS 4.0 runtime? It depends on the definitions in the local was.conf file used
by the plugin. If the plugin finds a deployedwebapp.<name>.rooturi=statement
whose value matches the received URL, it'll try running the webapp locally. If it can't find a
definition for the requested application in the was.conf file, it'll route the request over to
the WAS 4.0 runtime. The following flowchart illustrates the logic of this:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 26 -© 2001, IBM Corporation, Wash. Systems Center

URL map to
Service

statement?

Other webserver
processing, such
as Pass directive

Run servlet in the
plugin

Pass request
over to WAS 4.0
web container

Yes

No

Yes

No

httpd.conf

Hit on rooturi=
value in

was.conf?
was.conf

Logic employed to determine where to run the web application requested

Truth is the WAS 4.0 plugin is a bit smarter than this. It maintains communication with the
WAS 4.0 runtime to know what applications are bound to what virtual hosts. If the requested
application isn't defined in the was.conf and isn't bound to a virtual host over in the web
container environment, the plugin will issue out an error message on behalf of the WAS 4.0
runtime. It won't route requests over to the WAS 4.0 runtime it knows isn't defined over there.
See "Activity: check plugin Application Dispatching Information" on page 29 to read how to
determine what applications the plugin knows about. See also "Advanced Webapp Topics" on
page 91 for information on changing the behavior of this "communication" conducted by the
plugin.

Note:

Question: do I still need a webcontainer.conf with the new Transport Handler?

As mentioned earlier, yes. Everything that's been discussed in the last several pages
regarding webcontainer.conf files, virtual hosts, etc., still applies regardless of the
HTTP listener employed -- plugin or Transport Handler.

Activity: restart the servers

Do the following to refresh your environment:

! Stop the application server instance. This is necessary to pick up the changes to the
jvm.properties file and its pointer to the new webcontainer.conf file.

! Stop the webserver. This is not strictly required if you have restarted it after making the
changes to the httpd.conf and httpd.envvars detailed in "Initial Configuration of
the Webserver Plugin Code" on page 11, but it doesn't hurt to do it again here "just to
be sure."

! Restart the webserver and restart the application server instance.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 27 -© 2001, IBM Corporation, Wash. Systems Center

Validation and Basic Debugging
The most basic form of validation is to point your browser at the webserver and issue the URL used
to invoke the application. But there are a few things you can do before that to insure success, and
there's a methodology used afterwards when things don't work.

Background: preliminary validation

The following two "activities" help you determine if things are in proper working order prior to
issuing a URL against the system. There's no point in testing it if a fundamental piece of the
puzzle is broken.

Activity: check server region SYSPRINT

The SYSPRINT of the application server region (not the control region) has two pieces of
key information that'll tell you if things are working okay:

" An indication of what webcontainer.conf file is in use

If the server can't locate the webcontainer.conf you pointed to in the
jvm.properties file, it'll take the default webcontainer.conf file located in the
/usr/lpp/WebSphere/bin directory. If that happens, your virtual host won't be
defined and things won't work. The server can fail to find your webcontainer.conf
file with something as small as a typo in the long directory pointing to the private
directory of the server.

Why you
should
care:

" An indication of what applications are bound to what virtual hosts

If for whatever reason the application you deployed didn't get bound to a virtual host,
your request to run the application will fail. Failure to bind to a virtual host can occur if
the string you provide on the host.<name>.contextroots= property doesn't match
the <context-root> setting in the deployment descriptor for the application. If you
code the single slash, this problem isn't likely to occur. But an explicit coding of the
contextroots= property might lead to a mismatch.

Why you
should
care:

Checking the SYSPRINT should be done whether you've configured the plugin or the new
Transport Handler. The issue of binding applications to virtual hosts is entirely separate from
the issue of which HTTP listener is in the mix.

Note:

Do the following:

! Check the SYSPRINT of the server region. Near the top you'll find the following
statement:

Web Container:Configuration File Name: <directory and file name of config file>

The key is to make certain the directory and file name is what you specified in the
jvm.properties file. A minor typo will result in the server not finding your file. That'll
result in the server taking the default in the /usr/lpp/WebSphere/bindirectory.

! If the "Web Container Configuration File Name" doesn't point to your
webcontainer.conf, then go back and check your jvm.properties file and make
certain your pointer is exactly correct.

! Now look further down in SYSPRINT and locate the following string:

VirtualHost Web Application Context Root Bindings:

/

You'll find a separate block of information for each "context root binding" in the
webcontainer.conf file. If you coded just the single forward slash, then you'll see only
one such block of information. More "context root bindings" will result in more blocks of
information presented in the SYSPRINT.

Note:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 28 -© 2001, IBM Corporation, Wash. Systems Center

! Now scroll down just a bit within the block of information for the "context root binding"
(the single slash in this example) and look for the following:

VirtualHost Bound Web Applications:
Web Application Context Root: /PolicyIVP

This indicates which applications matched the "context root binding" value. In this
example, the application with a context root of /PolicyIVP has matched the single
slash.

So far, so good. But now you must make sure the application is bound to the virtual
host you intended.

! Scroll down a bit further and look for the following:

VirtualHost Alias List:
wsc4.washington.ibm.com:8080

This indicates the virtual host, as defined on the host.<name>alias= property in the
webcontainer.conf file, to which the application has been bound. Make certain this
is the virtual host you intended.

Activity: check plugin Application Dispatching Information

The WAS 4.0 plugin provides a program that will tell you what applications it sees bound to
virtual hosts over in the WAS 4.0 runtime. This is a very handy way to verify that your
plugin sees things the way you intended them to be.

The "Application Dispatching Information" is a function of the WAS 4.0 plugin code, and not
related to the new Transport Handler.

Note:

Do the following:

! With the webserver and application server up and running, point your browser to:

http://<your host>/webapp/examples/index.html

That'll bring up a screen that looks like this:

The "webapp examples" primary screen

See "Background: WebSphereSampleApp.ear shipped with WAS" on page 91 forNote 2:

Receiving the screen shown above is a good way to validate that the plugin is working,
but it does not in itself mean the web container configuration information is correct.

Note 1:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 29 -© 2001, IBM Corporation, Wash. Systems Center

information on another application that comes with WAS that uses the same URL and
produces a very similar string, but is run from the web container.

! Click on the "Show server configuration" link and when the next screen comes up, scroll
down and find the heading "Application Dispatching Information." Click on that link.
That'll bring up a screen that looks like this:

The virtual
host value

The context
root value

The JDNI name of
the webapp's home

interface

"Application Dispatching Information" screen

The appearance of your virtual host and your context root indicates the plugin has
knowledge of your deployed application over in the WAS 4.0 runtime environment. If
you see only the two "localhost" values, things aren't working right.

The linkage between the plugin and the WAS 4.0 runtime is not instantaneous. If you just
started your server region it may take a few moments (15 to 45 seconds sometimes) for
the information about what webapps are in the web container to work its way over to the
plugin. If you don't see your webapp immediately, give it a minute or so and hit the
"refresh" on the screen.

Note:

Background: Basic Debugging

When something goes wrong (and something always goes wrong), there's a way you can
methodically walk through the system and determine what's failing (or at least determine what's
not failing). The following picture illustrates this methodology:

This section was written to offer basic debugging of a configuration where the plugin is the HTTP
listener. If you're using the new Transport Handler, the debugging becomes much easier because
the Transport Handler is coupled to the web container much more tightly. So if you're using the
Transport Handler, go to the section "The WAS 4.0.1 Transport Handler" on page 73 for
information on that environment.

Note:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 30 -© 2001, IBM Corporation, Wash. Systems Center

WAS 4.0 Plugin

HTTP Server

Application Server

WAS 4.0 Runtime

Web Container EJB Container

Webapp1 2 4

53

1. Did your request reach the webserver?

2. Did your request get mapped to the WAS 4.0 plugin?

3. Did the plugin try to execute your request locally, or route it to WAS 4.0?

4. Did your request get routed over to the web container?

5. Are you able to drive any portion of your webapp?

Basic debugging methodology

Activity: validate that your request reached the webserver

Typing a URL at the browser and hitting "enter" doesn't guarantee the request will hit the
server you think it will. There best way to validate your request is getting to your server is to
start the "vv" trace and see if your request is recognized by the webserver.

For example, a URL of:

http://<your_host>[:port]/webapp/examples/index.html

will show up in the "vv" trace as:

Client sez.. GET /webapp/examples/index.html HTTP/1.0

That validates that your request hit your webserver and is being acted upon.

Activity: validate that your request was mapped to the plugin

A request received by your webserver doesn't guarantee that request will be mapped to the
WAS 4.0 plugin. That requires a properly coded Service statement. Here again, the "vv"
trace validates the request being mapped over to the plugin.

Of course, a properly coded Service statement is of little use if the plugin itself isn't initialized.
You can make certain the plugin is up and going by reviewing the information found at "Activity:
validation and basic debugging of plugin" on page 13.

Note:

Again, a URL of:

http://<your_host>[:port]/webapp/examples/index.html

with a Service statement of:

Service /webapp/examples/* /usr/lpp/WebSphere/WebServerPlugIn/...

will show the following in the "vv" trace when the request is mapped to the plugin:
Service..... /webapp/examples/* matched "/webapp/examples/index.html" ->
:

Pattern..... match SUCCEEDED.
:

APIClassExec Calling function "service_exit"

That validates that your request was mapped over to the plugin. If you see your request
mapping to a Pass statement, then the plugin is not coming into play.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 31 -© 2001, IBM Corporation, Wash. Systems Center

Activity: validate that the plugin isn't trying to run the webapp locally

The WAS 4.0 plugin will attempt to run a request locally whenever it gets a match on a
"rooturi" statement in the was.conf statement. This relationship is illustrated in the figure
"Logic employed to determine where to run the web application requested" on page 27.
(The truth is it checks the "rooturi" as well as the virtual host. How all that works is beyond
the scope of this document since the objective here is to run webapps over in the WAS 4.0
web container, not the plugin.)

The best way to check is to review your was.conf and make sure no deployedwebapp
rooturi statement is defined that will map to your inbound request. If it maps, the plugin
will try to run the request locally. Remember: it is the absence of definitions in the
was.conf that means it'll try to map the request over to the WAS 4.0 runtime.

The other way to validate this is by seeing if the request is mapped to the WAS 4.0 runtime.
That is explained next.

Background: how the plugin determines if a request is to be sent to WAS 4.0 runtime

A request received by the plugin will get mapped over to the WAS 4.0 runtime only when
the plugin matches the received URL to a known webapp over in the web container. This
matching is done in the WAS 4.0 plugin's code and uses something called the "String
Matcher Table." This "string matcher table" is kept in memory, and is constructed using
information the plugin sees in the local was.conf file as well as information it receives from
the web container about webapps deployed there.

Here's an example of the table, taken from the "ncf" log of the plugin when
appserver.loglevel=WARNINGat a minimum is set in the was.conf file.
String Matcher Table:
====================================
/wg31.washington.ibm.com:8080/SimpleJSP/* --> (remote web container JNDI home)
/localhost/webapp/examples/* --> LocalHostDispatch
/wg31.washington.ibm.com:8080/PolicyIVP/* --> (remote web container JNDI home)
/localhost/ConfigViewer/* --> LocalHostDispatch

This string matcher table will contain the same information you'll find in the "Application
Dispatching Information" panel (see "Activity: check plugin Application Dispatching
Information" on page 29):

URL pattern to be
matched Where dispatched

Application Dispatching Information is the same as what's in "ncf" trace "string matcher table"

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 32 -© 2001, IBM Corporation, Wash. Systems Center

This is important because you don't need to crawl through the "ncf" trace to validate what
webapps the plugin knows about: you can use the "appliction dispatching" information as
well. You do have to look in the ncf trace to see for certain that a request was properly
mapped. That is discussed next.

For the sake of simplicity the process is often described as, "the plugin will look for a local
definition in was.conf, and if not there then send it over to the web container." The truth is the
plugin won't send the request unless it matches a known list of webapps in the web container.
This list is the "string matcher table." With that understanding, you may now proceed to
validating that your request is getting mapped to the WAS 4.0 runtime's web container.

Key:

Activity: validate that request has been mapped to WAS 4.0 runtime

There are two ways you can validate that a request was mapped to the WAS 4.0 runtime:

Perform a visual comparison of URL against information in "Application Dispatching
Information" (that proves nothing, but it'll weed out obvious errors of typing and such)

Enable tracing of the plugin and interrogate the trace file for evidence of the request
getting mapped.

It is the latter that will be covered here. Do the following:

! Edit the was.conf file and set the following properties:

appserver.tracelevel=com.ibm.*=all=enabled
appserver.loglevel=WARNING
appserver.logdirectory=(directory to which logging will occur)

Setting the appserver.tracelevel to all=enabled like this produces a tremendous
amount of output. You would never have this running on a production system as it would
drain away too much system resource. If you set this property on your test system,
remember that is set and turn it off (comment out the line and restart the webserver) after
you have done your debugging. Otherwise, you will likely quickly fill the HFS in which the
logging is done.

Note:

! Stop and restart the webserver.

! Verify that the plugin initialized (see "Activity: validation and basic debugging of plugin"
on page 13).

! Clear your browser cache

! Issue the URL that produces the failure indication

! Browse the "ncf" log, which should be quite large with tracing enabled

! Issue a "find" command on the URI you issued. For example, if your entire URL was:

wg31.washington.ibm.com:8080/SimpleJSP/simple.jsp

then do a find on only the /SimpleJSP/simple.jspportion of it.

! When you find the first occurrence of the string, scroll down just a bit. You should see
the "string matcher table" as well as the "Basic Rules" and "Exact Rules" tables. If the
plugin sees a match on the URI vs. the "string matcher table," you should see the
following immediately afterwards in the trace:
WS390Redirect < localDispatch
WS390Redirect D Matched JNDI Name : "/WSLPLEX/APSRV3/SimpleJSP/...
InProcNativeS D ConnectionStub.getRequestURI: instance = 2
WS390Redirect D Remotely Dispatching Request URI "/SimpleJSP/simple.jsp"

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 33 -© 2001, IBM Corporation, Wash. Systems Center

What this means is that the request (/SimpleJSP/simple.jsp in this example)
matched an entry in the string matcher table, the plugin was able to determine the JNDI
name from the table, and that the plugin is dispatching the request remotely.

After this there is a great deal of trace activity showing the plugin flowing requests to invoke
the home interface of the remote web container. All that will augment the validation
provided by the "Remotely Dispatching Request URI" message. Your request has been
sent to the web container.

Background: the servlet-mapping string and execution of webapp class files

The activity just discussed simply validates that your request got to the web container. But
that does not guarantee that it'll execute a web application. That's because the specific
webapp to be executed is implied with the servletmapping string, which is part of the URL to
be sure, but not something the plugin worries about. So a request you send could have the
correct context-root, which will allow the plugin to map the request to the runtime, but have
an incorrect servletmapping, which will result in an error.

The servletmapping string is defined in the deployment descriptor for the webapp (the
web.xml file in the WAR file), and has an XML tag of <url-pattern>:

Servletmapping
string

:
<web-app>
<display-name>SimpleJSP</display-name>
<servlet>
<servlet-name>SimpleJSPServlet</servlet-name>
<servlet-class>SimpleJSPServlet</servlet-class>

</servlet>
<servlet-mapping>
<servlet-name>SimpleJSPServlet</servlet-name>
<url-pattern>/call_jsp</url-pattern>

</servlet-mapping>
</web-app>

Run
SimpleJSPServlet.class

file

Servletmapping string in the webapp deployment descriptor

If you're interested in where this "SimpleJSP" example is coming from, see "Example:
SimpleJSPServlet from WAS 3.5 Standard Edition" on page 43.

Note:

The interesting thing is this: if the web container doesn't see a match with a defined
<url-pattern> servletmapping string, it'll then determine if the request is for a JSP. It
does this by checking the end of the URI for a string of .jsp. If the URI doesn't end in
.jsp, the web container will assume the request is for a simple file and go looking for a file
to serve out.

If you accidentally mistype the servletmapping value on the URL, but the context-root value is
proper, the request will flow over to the web container. But the web container won't find any
webapps with a servletmapping equal to your garbled URL value, so it'll eventually consider it a
request for a simple file. The error you get on the browser screen will tell you which file type the
web container was trying to service. Those are described next.

Key:

Background: key error indicators found on the browser screen

If your URL has the proper context root value and the request makes it over to the web
containter, there are plenty of opportunities for errors. The first step is to look at the error
message on the browser to narrow the possibilities. Consider the following examples:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 34 -© 2001, IBM Corporation, Wash. Systems Center

URL with mistyped servletmapping.
/SimpleJSP is the correct context-root,
but call_jspx is incorrect: it should be

just call_jsp (no "x")

"SimpleFileServlet" is a built-in basic
function of the webcontainer, and is used
to serve files. This error is telling you the

SimpleFileServlet is what was invoked.
That means your request wasn't

interpreted as a webapp. It was seen as a
request for a simple file. And that file

(call_jspx) wasn't found

Example A: URL with mistyped servletmapping string

In Example A, the person issuing the URL fat-fingered the servletmapping value and
provided an extraneous "x" at the end. The plugin properly interpreted the correctly typed
context-root value of SimpleJSP and dutifully passed the request over to the web container.
But the web container looked through its set of known servletmapping values and didn't find
a call_jspx servletmapping string, so it assumed the request was for a simple file.
Having failed to find call_jspx in the root of the WAR file in the HFS, it gave up and
issued the "File not found" error message.

Now consider an example where a JSP is requested directly, but the person issuing the
URL mistypes the JSP name. They get the .jsp extension right, but fail to properly type
the first part of the name correctly:

URL with mistyped JSP file name.
/SimpleJSP is the correct context-root,

but simplex.jsp is incorrect (should be
just simple.jsp with no "x")

"JSP 1.1 Processor" is a built-in basic
function of the webcontainer, and is used
to execute JSP pages. This error is telling
you the JSP processor was invoked. But
the file requested (simplex.jsp) wasn't

found

Example B: URL with mistyped JSP file name

So the bottom line is this: if what you're trying to do is invoke a servlet and you see either
the SimpleFileServlet error message or JSP 1.1 Processor error message, you know you've
probably got something wrong with your servletmapping string.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 35 -© 2001, IBM Corporation, Wash. Systems Center

Activity: determine if you can serve any portion of your webapp

Webapps consist of not just servlet class files, but static files like HTML and JPG/GIF files,
and JSP pages. You should be able to request and be served those files directly. To
insure your path to the webapp in the web container is open, you could request for example
an image file with the following URL:

http://<your host>/SimpleJSP/banner.gif

The GIF file banner.gif is part of the "SimpleJSP" example illustrated in "Example:
SimpleJSPServlet from WAS 3.5 Standard Edition" on page 43.

Note:

If you can get the GIF, and you're certain that GIF is not being served by the HTTP Server
directly (validate this in "vv" trace), then you know the following things have worked:
Service in httpd.conf; "string matcher table" function in WAS 4.0 plugin; receipt of
request by web container in WAS 4.0; recognition of request as simple file; and the locating
and serving of the file itself.

Activity: validate request results in execution of desired webapp class file

So how can you validate that your webapp was in fact run in the web container? By routing
the TRACEALL=1 output to SYSPRINT and looking at the results. Do the following:

! Edit the current.env file of your application server instance and insure the the
TRACEALL property is set to at least 1.

! Set TRACEBUFFLOC=SYSPRINT

! Stop and restart your application server

! Clear your browser cache

! Issue the URL that you wish to test

! Review the contents of the application server instance's SYSPRINT. What you will find
is something that looks like this (example shown is for SimpleJSPServlet as
illustrated in "Example: SimpleJSPServlet from WAS 3.5 Standard Edition" on page 43).

Trace: 2001/09/12 18:09:47.991 01 t=8E15C0 c=1.27 key=P8 (13007002)
FunctionName: com.ibm.servlet.engine.webapp.ServletInstance
SourceId: com.ibm.servlet.engine.webapp.ServletInstance
Category: AUDIT
ExtendedMessage: Loading.servlet:."SimpleJSPServlet"

Trace: 2001/09/12 18:09:48.066 01 t=8E15C0 c=1.27 key=P8 (13007002)
FunctionName: com.ibm.servlet.engine.srt.WebGroup
SourceId: com.ibm.servlet.engine.srt.WebGroup
Category: AUDIT
ExtendedMessage: [Servlet.LOG]:."SimpleJSPServlet: init"

Trace: 2001/09/12 18:09:48.090 01 t=8E15C0 c=1.27 key=P8 (13007002)
FunctionName: com.ibm.servlet.engine.webapp.ServletInstance
SourceId: com.ibm.servlet.engine.webapp.ServletInstance
Category: AUDIT
ExtendedMessage: Servlet.available.for.service:."SimpleJSPServlet"

Contents of SYSPRINT showing loading and making ready of a servlet in the webcontainer

With this indication appearing in the application server instance's SYSPRINT, you know the
request has been received by the web container, recognized and the servlet class file is
being loaded.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 36 -© 2001, IBM Corporation, Wash. Systems Center

Example: PolicyWebApp in the PolicyIVP Application
This section applies to both the plugin environment as well as the new Transport Handler environment,
except for any references to configuring the web server or the plugin. But all the application stuff and
the web container configuration information applies to both environments.

Note:

Overview of the application

The WAS 4.0 product ships with a sample verification program called "PolicyIVP." Most people,
when first testing their WAS 4.0 environment, use the "fat client" to drive the application. The
fat client is a Java program run from the OMVS enviornment that exercises both the CMP and
BMP bean found in the PolicyIVP application:

Stateless
Session Bean

CMP Entity
Bean

BMP Entity
Bean

Application Server DB2

BBO.POLICYDO

TableJD
B

C

OMVS

Java Client
Code

(not an EJB)

Utility ClassesUtility Classes

Client-side
Bindings

Diagram of PolicyIVP sample application when driven by "fat client"

There is no webserver or web container involved when the PolicyIVP application is driven by the
fat client. However, the PolicyIVP application also comes with a servlet client, and when you
configure the web container and plugin to run the servlet, the picture of PolicyIVP then
becomes:

Stateless
Session Bean

CMP Entity
Bean

BMP Entity
Bean

EJB Container DB2

BBO.POLICYDO

TableJD
B

C

Utility Classes

Web ContainerHTTP Server

WebApp

Plugin

Route
Request

WAS 4.0 Runtime

PolicyIVP when driven by the PolicyWebApp servlet client

The behavior of the beans is the same; the client code used to drive that behavior is different.

Background: deployment descriptor for PolicyIVP application

The PolicyIVP.ear file has within it a "deployment descriptor" (an XML file) that provides
information about the beans and the webapp contained within the EAR file. This XML file is
generated by the AAT tool at the time of application assembly. Of particular interest to this
topic is the <context-root> tag in the XML file. The value named there is what WAS
uses when it tries to bind the application to the virtual host:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 37 -© 2001, IBM Corporation, Wash. Systems Center

<application>
<display-name>PolicyIVP</display-name>
<module>

<ejb>policysession_deployed.jar</ejb>
</module>
<module>

<ejb>policycmp_deployed.jar</ejb>
</module>
<module>

<ejb>policybmp_deployed.jar</ejb>
</module>
<module>

<web>
<web-uri>PolicyWebApp.war</web-uri>

<context-root>/PolicyIVP</context-root>
</web>

</module>
<module>

<ejb>PolicyWebApp_WebApp.jar</ejb>
</module>

</application>

XML generated
by the AAT tool

The EJB JAR
files referenced

The context root
for the webapp

The "appliciation.xml" deployment descriptor in PolicyIVP.ear file

The PolicyIVP.ear file is a ZIP-format file, and a tool like WinZIP can be used to look
inside of -- and extract files from -- the EAR file. If you wish to see the application.xml
file's content for yourself, use WinZIP and pull the file out.

Background: deployment descriptor for PolicyWebApp webapp

The PolicyIVP.ear file has within it a file called PolicyWebApp.war, which is another
ZIP-format file that holds the webapp. The WAR file has within it a deployment descriptor
that describes the webapp. Of interest is the servlet mapping value, which when appended
to the context root value, provides the web container knowledge of which specific webapp to
run. The WAR file can be accessed using WinZIP as well, and if you looked inside the
PolicyWebApp.war file, you'd see something like the following:

/(base or root)

HTML, GIF/JPG and JSP files

/META-INF

MANIFEST.MF

/theme

Master.css

/WEB-INF

web.xml

/classes

/lib

WAR
File

:
<servlet-mapping>
<servlet-name>Was40Ivp</servlet-name>
<url-pattern>/PolicyServlet</url-pattern>

</servlet-mapping>
:

This is the basic directory structure of a
WAR file, which is a ZIP-format file used
to hold webapps.

The web.xml file is the "deployment
descriptor" for the webapp.

The <url-pattern> tag defines the
servlet mapping string for the servlet.

The layout of the PolicyWebApp.war file and the servlet mapping inside the deployment descriptor.

So now you have the two key strings used to locate and run the webapp:
<context-root> in the application.xml file sets the context root value.
<url-pattern> in the web.xml file sets the servlet mapping value.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 38 -© 2001, IBM Corporation, Wash. Systems Center

Configuration

This example will show the WAS 4.0 plugin being used. The application is deployed into the
BBOASR2 application server. The webapp will be deployed into the WAS 4.0 web container. The
port on which the HTTP Server is listening is 8080.

Note:

Example: httpd.conf configuration

The updates to httpd.conf required to support the PolicyIVP application are:

ServerInit /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:init_exit

/usr/lpp/WebSphere,/etc/was.conf

Service /webapp/examples/* /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:service_exit
Service /PolicyIVP/* /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:service_exit

ServerTerm /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:term_exit

Statements added to httpd.conf to support WAS 4.0 plugin and PolicyIVP application

The Service statement with /PolicyIVP/* provides the webserver the ability to
recognize any URL received with /PolicyIVP as its starting string and pass it over to the
plugin environment.

Example: httpd.envvars configuration

This will show only the additions to httpd.envvars and not the whole file.Note:

:
NLSPATH= ... /usr/lpp/WebSphere/WebServerPlugIn/msg/%L/%N
JAVA_HOME=/usr/lpp/java2/J1.3
RESOLVE_IPNAME=wsc.washington.ibm.com
RESOLVE_PORT=900
:

Example: was.conf configuration

Beyond copying the supplied sample was.conf to the directory pointed to on the
ServerInit statement in the httpd.conf file (/etc for this example), no updates to
was.conf are necessary. In fact, if you added any references to PolicyIVP to the
was.conf file, the plugin might think the webapp is to be run locally. Remember: the
absence of a webapp "rooturi" specification in the was.conf allows the WAS 4.0 plugin to
consider routing the request over to the web container environment.

Example: jvm.properties configuration

The jvm.properties file must have a pointer to the webcontainer.conf file to be
used. For this example, that looks like this:

jvm.properties
com.ibm.ws390.wc.config.filename=

/WebSphere390/CB390/controlinfo/envfile/WSLPLEX/BBOASR2A/webcontainer.conf

Pointer to webcontainer.conf from inside the jvm.properties file

This example is illustrating putting the webcontainer.conf file in the same directory as
the jvm.properties file and the current.env file for the server instance.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 39 -© 2001, IBM Corporation, Wash. Systems Center

Example: webcontainer.conf configuration

Two statements are updated in the webcontainer.conf file:

:
host.default_host.alias=wsc.washington.ibm.com:8080
:
host.default_host.contextroots=/
:

As specified earlier, the HTTP Server is listening on port 8080. Therefore any URLs passed
over to the web container will container not just the host name
(wsc.washington.ibm.com) but the port as well (8080).

The single slash allows any application -- including the PolicyIVP application with a context
root setting of /PolicyIVP -- to bind to the virtual host.

Starting the servers

It doesn't really matter what order you start the server region and the webserver. The two will
act in concert with one another, and when the second one comes up the two will shake hands
and shart exchanging information about deployed webapps.

Example: SYSOUT of webserver

The SYSOUT of the webserver's started task will show the following information:
:

WAS Startup Parameter -- Install Root = /usr/lpp/WebSphere
WAS Startup Parameter -- Configuration file = /etc/was.conf
:

IBM WebSphere Application Server native plugin initialization went OK :-)

It is the "smiley face" that indicates that the plugin has successfully initilized. If you can't
locate the smiley face, look for the "sad face" to indicate initialization has failed. If you can't
find either, it may be that the plugin is still in the process of initializing. It may take 15
seconds or more to initialize the plugin.

Example: SYSPRINT of server region

The following picture illustrates what the SYSPRINT will look like and what things to look for
as indicators of success or failure.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 40 -© 2001, IBM Corporation, Wash. Systems Center

Web Container:Configuration File Name:
/WebSphere390/CB390/controlinfo/envfile/WSCPLEX/BBOASR2A/webcontainer.conf
:
:

VirtualHost Web Application Context Root Bindings:

/
:
:

VirtualHost Alias List:

wsc.washington.ibm.com:8080
:
:

VirtualHost Bound Web Applications¨:

Web Application Context Root: /PolicyIVP

JNDI name of Web Application EJB: /WSCPLEX/BBOASR2/PolicyIVP/...
:
:

This is telling you what webcontainer.conf file it
will be using. This should be the one you copied

and configured, not the default one.

The "context root" as set in
the webcontainer.conf

The "virtual host" from webcontainer.conf.
This should not read "localhost". If it does,

it's probably picking up the default
webcontainer.conf

The "context root" values indicates
the applications that have been

successfully bound to this virtual
host

A
b

lo
ck

lik
e

th
is

fo
r

ea
ch

vi
rt

u
al

h
o

st

What to look for in the server region's SYSPRINT to validate web container configuration

Example: Application Dispatching Information provided by plugin

The "webapp/examples" sample application provided with the plugin provides a very good
way of verifying that the plugin understands the deployed webapps over in the WAS 4.0
web container environment. The URL used to reach the front page of this application is:

http://wsc.washington.ibm.com:8080/webapp/examples/index.html

The default was.conf file contains all the definitions required to run the "webapp/examples"
application. However, when you're setting up your httpd.conf file, you must provide a
Service statement with a URL template of /webapp/examples/* to make this work.

Note:

On the HTML page that is returned, the "Show Server Configuration" link will invoke a
servlet that runs in the plugin (not the WAS 4.0 runtime) that queries the plugin's
configuration. The "Application Dispatching Information" link will bring up the following
page, which indicates what web applications the plugin knows about:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 41 -© 2001, IBM Corporation, Wash. Systems Center

wsc.washington.ibm.com:8080/PolicyIVP

Applications the plugin knows about

The picture above shows the virtual host wsc.washington.ibm.com:8080bound to the
/PolicyIVP context root. The right side of the table shows where the application will be
dispatched:

" LocalHostDispath: application run locally in the plugin

" A JNDI name (like what's shown): indicates the application will be routed over to the
WAS 4.0 runtime.

The presence of the PolicyIVP information in this panel indicates the plugin and the web
container have successfully communicated with one another, and that your configuration is
likely correct. All that's left is to test it.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 42 -© 2001, IBM Corporation, Wash. Systems Center

Example: SimpleJSPServlet from WAS 3.5 Standard Edition
This section applies to both the plugin environment as well as the new Transport Handler environment,
except for any references to configuring the web server or the plugin. But all the application stuff and
the web container configuration information applies to both environments.

Note:

The WAS 3.5 Standard Edition for OS/390 product had as part of its default packaging a simple
JSP application. It's structure looked like this:

Servlet JavaBean
JSP

Generated
HTML

1
2

3

4

Logical structure of SimpleJSPServlet and simple.jsp from WAS 3.5 SE

The numbered blocks refer to the following:

1. The servlet (SimpleJSPServlet.class) when called by you at your browser, will turn
and invoke the JSP (simple.jsp)

2. The JSP will then turn and call the JavaBean (SimpleJSPBean.class). That bean does
nothing more than return a string of characters back to the JSP

3. The string of characters is returned to the JSP

4. The JSP generates the HTML and ships it back to the browser

This application provided a very simple way of validating the WAS 3.5 SE environment using a
servlet and JSP that had no external datasource requirement. It serves as a good example here
for the same reason, and because it introduces JSPs which the PolicyIVP application doesn't have.
So what this example will show is how to take the files from the WAS 3.5 SE environment and turn
them into a webapp you can deploy into your WAS 4.0 environment.

Background: structure and settings for this example

Use the following chart to map the URL to the various settings so this will work:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 43 -© 2001, IBM Corporation, Wash. Systems Center

http://<host>/SimpleJSP/call_jsp

Service Statement Mapping
The string /SimpleJSP will be used on the
Service statement in the webserver's
httpd.conf file to map the URL to the
plugin for processing

Context Root Value
The string /SimpleJSP will be used for the
"Context Root" value as set in AAT when
generating the EAR file. This is what will bind
to the contextroots= statement in
webcontainer.conf and allow your
request to be routed to the proper web
container.

Servletmapping String
The string /call_jsp will be used in the
web.xml deployment descriptor to allow your
request to be resolved to a particular servlet class
file (in this case, SimpleJSPServlet.class)

URL components and mapping to Service, Context Root and Servet Mapping settings

Background: creating a WAR file by hand

Normally you would create a WAR file using a tool like WebSphere Studio. But doing it by hand
is relatively easy, so that's what you'll do here. First you have to create a directory structure on
your PC that mimics the structure of the WAR. Then you'll populate the directories with the
various files from the WAS 3.5 HFS on the 390 server. Finally, you'll create a WAR file using
the Java "jar" command on the PC.

Activity: create WAR file directory structure on your workstation

! Create the following directory structure on your PC

C:\

\SimpleJSP

\WEB-INF

\classes

\lib

Make certain this directory
is upper case, and uses a
hyphen, or dash, rather

than an underscore.

Directory structure on PC that mimics the standard WAR file structure

Activity: download files from WAS 3.5 SE and place in the proper directories

! Download the following files from the WAS 3.5 SE installation directory to your newly
created WAR-like directory on your PC:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 44 -© 2001, IBM Corporation, Wash. Systems Center

C:\

\SimpleJSP

\WEB-INF

\classes

\lib

simple.jsp
banner.gif

SimpleJSPServlet.class
SimpleJSPBean.class

/usr/lpp/WebSphere/AppServer/hosts/default_host/examples

/web
simple.jsp
banner.gif

/servlets
SimpleJSPServlet.class
SimpleJSPBean.class

HFS

Binary FTP!

Binary FTP!

Download SimpleJSP files from host HFS to your PC

Activity: create web.xml file for WAR

The web.xml file is the "deployment descriptor" for the web application. Normally this file is
created by the tool you use to create the WAR, but for this simple application the file is easy
enough to just use Notepad and enter it by hand.

! Create a file called web.xml and place it in the directory structure as shown. Enter the
data as shown into the file:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 45 -© 2001, IBM Corporation, Wash. Systems Center

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app>
<display-name>SimpleJSP</display-name>
<servlet>
<servlet-name>SimpleJSPServlet</servlet-name>
<servlet-class>SimpleJSPServlet</servlet-class>

</servlet>
<servlet-mapping>
<servlet-name>SimpleJSPServlet</servlet-name>
<url-pattern>/call_jsp</url-pattern>

</servlet-mapping>
</web-app>

This is the "servlet mapping" string

The web.xml
file is in the
\WEB-INF
directory

C:\

\SimpleJSP

\WEB-INF

\classes

\lib

simple.jsp
banner.gif

SimpleJSPServlet.class
SimpleJSPBean.class

web.xml

Use Notepad and enter
into the web.xml the
contents shown above

The web application's deployment descriptor file called web.xml

Activity: JAR the directory into a WAR file

All your files are in place. You are now ready to "jar up" the directory into a WAR file.

This assumes you have the Java 1.3 developer kit installed on your workstation, and the /bin
directory of your SDK 1.3 installation is available on the PATH variable. The jar.exe command
file resides in the Java /bin directory.

Note:

! Open up a command prompt on your workstation.

! Change directories so that you're in the C:\SimpleJSP directory

! Issue the following command:

jar -cf SimpleJSP.war *

! Now use WinZIP to verify the contents of the new WAR file. It should look like this:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 46 -© 2001, IBM Corporation, Wash. Systems Center

Using WinZIP to inspect the contents of your WAR file

Activity: use AAT to construct an EAR file

Now bring your new WAR file into AAT and create an EAR file. The EAR file you'll create will
have no EJBs. It'll consist of one web application and that's it.

! Start AAT and add an application and call your new application SimpleJSP.

! Expand the tabs to expose the "EJB Jars" and "WebApps" folder. Select the "WebApps"
folder, right-click and select "Import."

! Point to your new C:\SimpleJSP\SimpleJSP.war file and click on "OK"

! When the WAR file has been imported, select the "SimpleJSP" object, right-click and select
"Modify". Then set the "Context Root" value to /SimpleJSP ("context root" is comparable
to "rooturi" from the WAS 3.5 SE product):

SimpleJSP
object

selected

General tab
selected

Context root set to
/SimpleJSP (note the

leading slash)

Setting the context root of a webapp

! Save the modification, click on the the "SimpleJSP" application (not the webapp) and then
right-click and select "Validate." When done, right-click and select "Deploy." Finally,
right-click and select "Export" and put the file out as C:\SimpleJSP\SimpleJSP.ear.

Activity: provide webcontainer.conf file

This activity was discussed under "Activity: creating the webcontainer.conf file" on page 15. Go
to that spot, perform the activities listed, then return to this spot.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 47 -© 2001, IBM Corporation, Wash. Systems Center

Activity: use SME EUI to deploy into WAS 4.0 web container

With the EAR file generated, all you need do is start the SMS EUI and install this J2EE
application into a server. This document assumes you have a server in which a web container
has been configured.

! Create a conversation

! Select your EAR file for installation into the server

! Set the default JNDI value for the web application

! Validate, Commit and Activate the conversation.

Activity: check SYSPRINT of server region and insure application bound to virtual host

Please go to "Activity: check server region SYSPRINT" on page 28 for a discussion of checking
the SYSPRINT to see if your application was bound properly. If your application server wasn't
started when you deployed the web application, start the server control region and watch for it
to register your new application. Then check SYSPRINT of the server region.

Activity: update httpd.conf with Service directive

Provided you have already performed "Activity: configuring the WAS 4.0 plugin code" on page
12, all you need do is add another Service statement with the URL pattern of /SimpleJSP/*.

! Edit your httpd.conf file and locate your Service directives.

! Duplicate one of the Service directives and then change the URL pattern to
/SimpleJSP/*

! Save httpd.conf

Activity: start webserver and validate plugin's knowledge of new application

Please go to "Activity: check plugin Application Dispatching Information" on page 29 for
information about this basic validation procedure.

Activity: drive SimpleJSPServlet code

! Use the following URL:

http://<your host>[:port]/SimpleJSP/call_jsp

You should get a screen that looks like this:

"3.5" because GIF
came from WAS 3.5 SE

environment

On initial invocation this may take a
few seconds as the JSP is dynamically
compiled. Be patient.

Results of SimpleJSP servlet execution

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 48 -© 2001, IBM Corporation, Wash. Systems Center

Activity: drive JSP directly, get GIF directly

You need not go through the servlet to drive the JSP, or get the GIF for that matter. Do the
following:

! Issue the following URL to get the JSP directly:

http://<your host>[:port]/SimpleJSP/simple.jsp

! Issue the following URL to get the GIF directly:

http://<your host>[:port]/SimpleJSP/banner.gif

This illustrates how the WAS 4.0 web container can act as a JSP server for direct invocation,
and it can serve as a simple file server.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 49 -© 2001, IBM Corporation, Wash. Systems Center

Common Configuration Errors and the Symptoms Displayed
The purpose of this section is to show you some error symptoms and discuss what common
configuration errors cause them. The first error symptom you'll see will be on the screen of your
browser. Unfortunately, that error symptom is almost never enough to know exactly what's wrong.
So further digging into the various traces is necessary.

The browser error symptoms shown in this document are based on what Netscape displays. Internet
Explorer may sometimes display different things, particularly if you have the "Show Friendly Error
Messsages" option turned on.

Note 1:

This section was originally written to offer common configuration errors with the plugin environment,
but there is some overlap with the new Transport Handler environment as well. See "Background:
error conditions and the Transport Handler" on page 84 for debugging that environment.

Note 2:

Browser error messages

66"Class file incorrect" .

65"Mismatch in servlet name in deployment descriptor" .

63"Servlet mapping string doesn't match" .

Recursive Error Detected - File Not Found

62"Plugin not connected to the WAS 4.0 runtime you think it is" .

61"Your application didn't bind to a virtual host" .

59"URL doesn't contain value that matches defined context root or virtual host"

56"Web container not configured in WAS 4.0 application server" .

56"WAS 4.0 application server not started" .

Virtual Host or Web Application Not Found

58"Plugin tries to run the code locally" .

Error 500 - Failed to load target Servlet

54"Service directive has error in the "exit" routine named on directive"

53"Service directive has error in directory or filename of plugin code"

52"Plugin not initialized" .

Error 500 - Service handler performed no function

52"No Service directive coded that matches URL received" .

Error 404 - File was not found

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 50 -© 2001, IBM Corporation, Wash. Systems Center

Errors related to request not reaching plugin

A request received by the HTTP Server is passed to the WAS 4.0 plugin with the Service
directive in the httpd.conf file. There are quite a few reasons why that request might not make
it "over the wall" into the plugin:

HTTP Server

WAS 4.0 Plugin

:
Service /PolicyIVP/* /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:service_exit
:

httpd.conf

http://<host>/SimpleJSP/call_jsp

:

Service /PolicyIVP/*
:

1
2

3 4

Some reasons why request may not reach the plugin

1. No Service directive coded that matches URL received

For a request to make it to the plugin, a Service statement needs to be coded with a URL pattern
that "catches" the request. It is very easy to overlook adding a new Service statement when adding
a new webapp. And if no Service statement catches, the request falls through and catches on some
Pass statement later. The plugin is never invoked.

2. Plugin not initialized

You could have a perfectly coded Service statement, but if the plugin itself isn't initialized, then the
Service statement has nowhere to send the request. The plugin may fail to initialize for several
reasons. You should always check to insure the plugin has initialized before testing any new webapp.

3. Service directive has error in directory or filename of plugin code

The Service directive has a rather lengthy portion where there directory and filename of the plugin
code is specified. If you mistype any portion of that, the webserver will try to invoke the plugin, but will
fail because no such directory or file exists. This error will not be caught at webserver startup; it only
becomes evident when a request is mapped to that Service.

4. Service directive in the "exit" routine named on directive

The plugin has three different "exit routines" and the one invoked on the Service statement is the
service_exit. That is, unless you mistype that value. Then problems occur.

Each of these is discussed next, with the error symptom associated with the error.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 51 -© 2001, IBM Corporation, Wash. Systems Center

No Service directive coded that matches URL received

The request fails to map to a coded Service statement in the httpd.conf file. The
webserver continues to evaluate the request against other directives, and eventually the
request maps to a Pass statement (probably the Pass /* statement), or fails to map at all.

Browser error symptom

Log or trace symptom

This problem will show itself in the webserver's "vv" trace. There will be no matches on
Service directives, and you will probably see it match against the Pass /* directive, but
the file implied won't be found.

How to correct

Make certain the URL being sent from the browser will map against one of your defined
Service statements. If necessary, code another Service statement and restart the
webserver.

Plugin not initialized

A Service statement matched, but the plugin to which the request is intended is not
initialized. The request has nowhere to go.

A plugin not initializing can be due to errors in the was.conf file, an improperly coded
ServerInit statement, or a missing JAVA_HOME variable in the httpd.envvars file.
You check for initializing by searching for the "smiley face" in the SYSOUT of the
webserver's started task (see "Activity: validation and basic debugging of plugin" on page
13).

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 52 -© 2001, IBM Corporation, Wash. Systems Center

Browser error symptom

The key here is the phrase "Service handler performed no action." That means the Service
handler was invoked, but did nothing. So a Service statement was matched.

Log or trace symptom

This problem will show itself in the webserver's "vv" trace, but it is very obscure. There will
be a match on a Service directive and then you'll see the webserver trying to match on
other Service directives. But no indication of why the first match wasn't honored is given.
Ultimately you see the ERROR 500 message in the trace.

How to correct

The check the SYSOUT of the webserver's started task and look for the smiley face [:-)]
or the sad face [:-(]. You will likely see the sad face or neither. Some initialization
failures will be cited in the "vv" trace (for example, a was.conf file not found will be flagged
there). Other causes for plugin initialization failures can be found in the plugin's "native" log.

Service directive has error in directory or filename of plugin code

In this scenario the plugin is initialized, and a Service directive is coded to match the URL.
But the directory or filename of the WAS 4.0 plugin code has some error in it that causes
the webserver to fail to find the plugin. If it can't find the plugin, it can't invoke the plugin
with your request.

Browser error symptom

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 53 -© 2001, IBM Corporation, Wash. Systems Center

This is the same error browser symptom displayed as when the plugin isn't initialized.

Log or trace symptom

Unfortunately, the "vv" trace for this problem displays the same information as was
displayed when the plugin wasn't initialized. You see a match on the Service statement,
then without explanation the webserver starts trying to match the other Service
statements. It finally "bails out" with a 500 error.

How to correct

First, verify that the plugin initilized. If it has, then visually inspect the Service statement
for typos. Some common problems:

Lowercase "s" in "Websphere" rather than correctly typed "WebSphere"

Lowercase "i" in "WebServerPlugin" rather than correctly typed "WebServerPlugIn"

Fix and restart the webserver.

Service directive has error in the "exit" routine named on directive

The Service directive has an exit routine of service_exit, which points to the portion of
the plugin code to be invoked when a request is received. If you made a mistake in coding
that, the plugin will fail to initialize. (A common mistake is replicating the ServerInit
statement to make a Service statement, and forgetting to change the exit routine from
init_exit to service_exit).

The external symptom is similar to other things that cause the plugin to initialize, but the
indication in the "vv" trace is different.

Browser error symptom

Log or trace symptom

In the "vv" trace you will find a string that flags the problem::

Failed to load function <exit routine>:
EDC5214I Requested function not found in this DLL

You will find no smiley face and no sad face. This will be the only indication of this problem.

How to correct

Carefully inspect the exit routines specified after the colon on the Service statement.
Each one should have :service_exit. Any variations on this will cause a failure.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 54 -© 2001, IBM Corporation, Wash. Systems Center

Errors related to plugin not passing request to web container

Once the request has been passed to the plugin, the plugin then has to get it over to the WAS
4.0 runtime. There are several things that can keep that from happening:

HTTP Server

Plugin

WAS 4.0 Runtime

1

3 4

6

2

5

Some reasons why request may not be sent to runtime environment

1. WAS 4.0 application server not started

Your webapp might be perfectly configured and deployed into the application server, but if that server
isn't started then the plugin won't have much success routing the request.

2. WAS 4.0 web container not configured

The process of configuring the web container is a manual one, and it's easy to forget to do that if you
are in test mode and creating many different application servers. With no web container configured,
the deployed webapp will be recognized (sort of) but it won't be bound to any virtual host. Therefore,
your attempts to access it will result in failure.

3. Plugin tried to run the webapp locally

If in the past you ran the webapp in the plugin, but are in the process of migrating your webapp to the
WAS 4.0 web container, you might forget to remove the definitions from the local was.conf file. That
means the plugin will try to run the webapp locally, probably with no success.

4. URL doesn't map to any defined context root or virtual host

Your URL might match a Service statement and get passed to the plugin properly, but if the URL as
received doesn't match any "context roots" found in the "string matcher table" (see "Background: how
the plugin determines if a request is to be sent to WAS 4.0 runtime" on page 32 for an explanation of
what that table is), then the request won't have any place to go.

5. Application doesn't bind to a virtual host

If the context root setting for your web application isn't able to bind to a virtual host defined in the web
container, your application will be unrecognized. If you're using a contextroots= statement of a
single slash (/), your webapp will always bind. But if you're using a contextroots= value of
something more specific, it might not bind.

6. Plugin isn't connected to WAS 4.0 system you think it is

The plugin connects to the Systems Management Server (SMS) based on the RESOLVE_IPNAME and
RESOLVE_PORT environment variables in the httpd.envvars file for the webserver in which the
plugin runs. If you have multiple WAS 4.0 runtime environments, it's possible that your plugin isn't
connected to the runtime you think it is. If that's the case, your webapp might not be recognized by
the plugin.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 55 -© 2001, IBM Corporation, Wash. Systems Center

WAS 4.0 application server not started

The WAS 4.0 plugin works in conjunction with the WAS 4.0 application server. If that server
isn't started, then the plugin has nowhere to redirect the request.

Browser symptom

Log or trace symptom

You'll see the following error on the console:

+BBOU0516E LOCATE REQUEST FAILED FOR SERVER - (server name).

The plugin found its way to the SMS server (via the RESOLVE_IPNAME and RESOLVE_PORT
variables in httpd.envvars) and was given the names of the application servers that
have deployed webapps. Then when the plugin went to communicate with the application
server, it was unable to locate the server. If the server has not been started, then the locate
will of course fail.

Any requests for applications deployed in the not-yet-started application server will fail with
the "Virtual Host or Web Application Not Found" message.

If you then look in the plugin's "ncf" log you'll see an indication of the error:

ServletHost W Web.Group.Not.Found:."/SimpleJSP/simple.jsp"
ServletReques X Web Group Not Found
The web group /SimpleJSP/simple.jsp has not been defined

How to correct

Start the application server, provide enough time for the plugin to communicate with the
server, and issue the URL again.

Web container not configured in WAS 4.0 application server

It is possible to deploy a web application into a WAS 4.0 application server even though the
web container has not been configured. WAS will place the webapp code and files into the
HFS and will even recognize that a webapp has been deployed. WAS will then make use of
the default webcontainer.conf file, but that default copy has no virtual host defined.
Failing to bind to a virtual host means the plugin will see the webapp as a "localhost"
dispatch," but will fail to load it because the executable code isn't available to the plugin.

Configuring the web container is covered in "Activity: creating the webcontainer.conf file"
starting on page 15.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 56 -© 2001, IBM Corporation, Wash. Systems Center

Browser symptom

Log or trace symptom

A peek in the "ncf" log will reveal the following:

ServletHost W Web.Group.Not.Found:."/SimpleJSP/simple.jsp"
ServletReques X Web Group Not Found
The web group /SimpleJSP/simple.jsp has not been defined

Further, the "application dispatching" panel will show:

JNDI name of remote webapp home
interface is provided, which means
plugin recognizes the webapp as
deployed in the WAS 4.0 environment ...

... but the "virtual host" is showing up
as "localhost." This combination tells
you the deployed webapp didn't bind to
a virtual host.

Symptom when web container not configured

The final proof of this can be found in the SYSPRINT of the server region for the application
server:

Web Container:Configuration File Name:
/usr/lpp/WebSphere/bin/webcontainer.conf

:
VirtualHost Web Application Context Root Bindings

/
:

VirtualHost Alias List
localhost

The key information here is the use of the default webcontainer.conf file (located at
/usr/lpp/WebSphere/bin) and the localhost alias. A properly configured web

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 57 -© 2001, IBM Corporation, Wash. Systems Center

container will have your custom copy of webcontainer.conf, and the virtual host will be
your IP host name for the server.

How to correct

This problem can be caused by several things:

You simply forgot to configure the web container

If this is the problem, then follow the instructions found at "Activity: creating the
webcontainer.conf file" on page 15.

You made a mistake in the pointer to the webcontainer.conf

This pointer is found in the jvm.properties file, and a mistake in the typing of any
portion of this pointer will cause the server to use the default webcontainer.conf file
(which contains no virtual host definitions). Check the SYSPRINT of the server region
and see if the default configuration file is in use. Then check the pointer out of
jvm.properties and make sure everything -- case, spelling -- everything is correct.

Plugin tries to run the code locally

The general rule of thumb is this: if the plugin sees a match on "rooturi" in the local
was.conf file, it'll try to run the webapp locally (in the plugin). Otherwise, the request will
be passed over to the web container if the webapp is defined over there. It is good practice
to follow this rule of thumb and make certain no was.conf definitions for your webapp
exists if you intent is to run the webapp in the WAS 4.0 web container.

However, it's very easy to imagine a scenario where in the act of migrating a webapp from
the plugin environment to the web container environment you accidentally forget to remove
the definitions from was.conf. Somewhat surprisingly, this may or may not result in an
error. It all depends on whether you have an explicitely coded virtual host in your local
was.conf.

The concept of virtual hosts in the WAS 4.0 web container is discussed in "Background: binding
applications to virtual hosts" on page 19. The version of WAS found in the plugin also has the
concept of a "virtual host" but the coding is different. All web applications defined in the local
was.conf file must have a deployedwebapp.<name>.host= statement. The value found
on that statement points to a host.<name>.alias= statement also found in the was.conf
file. What follows the alias= on that statement is the virtual host. By default the value is the
keyword localhost, but you may also have an explicitely coded IP name. If the virtual host is
an explicitely coded IP name, and that IP name is identical to a virtual host IP name coded in
the WAS 4.0 webcontainer.conf file, then the plugin will ignore the web container in favor of
the local definition.

Note:

The best way to view this is to look at the following example of the "Application Dispatching"
information from the supplied "configuration viewer":

LocalHostDispatchlocalhost/SimpleJSP
WSLPLEX/APSRV3C ...wg31.washington.ibm.com:8080/SimpleJSP

JNDI NameURL Prefix Pattern

This is showing the URL pattern /SimpleJSP being defined in the web container and the
plugin's local was.conf. The difference is this: the web container's version is bound to
virtual host wg31.washington.ibm.com:8080, while the local plugin is using the default
localhost virtual host.

In this example, the request will flow to the web container only if the URL's host value
matches the virtual host of wg31.washington.ibm.com:8080. Any other host value will
be run local to the plugin.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 58 -© 2001, IBM Corporation, Wash. Systems Center

If, however, you have coded a virtual host of wg31.washington.com:8080 in your
was.conf and your webcontainer.conf, and the webapp /SimpleJSP is bound to that
virtual host in both locations, the plugin will only recognize the local copy. It'll see the
conflict and reject the web container's definition.

The following discussion will show the error when the plugin tries to run it locally and fails.

Browser symptom

Log or trace symptom

Look in the "ncf" trace of the plugin. With appserver.loglevel=WARNINGset, you'll see
the following:
"zzzzzzzz"
"Failed to load servlet"
javax.servlet.ServletException: Servlet [zzzzzzzz]:

Could not find required servlet class - SimpleJSPServlet.class

In this example the problem illustrated is the servlet class file not being found. This would be
the case when a servlet is moved from the plugin environment to the WAS 4.0 web container
environment. Lots of other problems could occur: servlet class file invalid, permission bits too
restrictive, etc. The point is the plugin is trying to run the servlet, when it should be routing the
request over to the WAS 4.0 environment.

Note:

How to correct

Edit the was.conf file and remove (or comment out) the definitions for the web application
that you wish to run in the WAS 4.0 environment.

URL doesn't contain value that matches defined context root or virtual host

This problem has two forms:

URL doesn't match any Service statement and therefore doesn't get "over the wall" to
the plugin. This problem will manifest itself in the way described in "No Service directive
coded that matches URL received" on page 52.

URL gets "over the wall" but the doesn't match any context root settings in the web
container. This problem is very similar to that described under "WAS 4.0 application
server not started" on page 56. The difference here is that the application server is up
and running.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 59 -© 2001, IBM Corporation, Wash. Systems Center

Browser symptom

Log or trace symptom

This problem is caused by the URL received not matching an entry in the "string matcher
table" maintained by the plugin. The contents of the "ncf" trace will be the same as
illustrated for "WAS 4.0 application server not started" on page 56.

The webapps deployed into the WAS 4.0 server will show on the "application dispatching"
panel (see "Activity: check plugin Application Dispatching Information" on page 29):

The virtual
host value

The context
root value

The JDNI name of
the webapp's home

interface

"Application Dispatching Information" screen

If you see the application you're trying to invoke on this screen, that means the WAS 4.0
application server is up and the plugin has successfully communicated with the server.
What that leaves is an error in your URL: either the virtual host is incorrect, or the "context
root" string doesn't match.

How to correct

Provided the "application dispatching" screen shows your application and verifies that the
plugin is talking to the WAS 4.0 web container, visually inspect your URL and make certain
the following two things:

The IP host name on the URL is identical (including port information, if any) to the virtual
host shown on the "application dispatching" screen. Without an exact match here the
plugin will not associate your URL with the application.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 60 -© 2001, IBM Corporation, Wash. Systems Center

The string that follows the first slash matches the characters on your URL exactly,
including matching the case of the characters. This is the "context root" value, and
WAS uses that string to match your URL request with a deployed webapp.

Anything not matching between URL and the information shown on the "application
dispatching" screen will prevent the request from being honored and will result in the "Web
group not defined" message.

Your application didn't bind to a virtual host

This is different from the preceeding problem. In that one your URL was incorrect. In this
one the application you deployed into the web container contains a "context root" that didn't
bind to any virtual host defined in the webcontainer.conf file. If it doesn't bind to any
virtual host, then the plugin has no knowledge of the application at all.

If your webcontainer.conf file is making use of the single-slash "catch all"
contextroots= setting, then this problem will not occur (that's because the single slash
will allow any and all web applications to bind to the virtual host). But this problem may pop
up if you are coding more explicit contextroots= values. For example, consider the setting:

host.default_host.contextroots=/PolicyIVP

and a web application <context-root> setting of /SimpleJSP. There's no match
possible there. The web application will not bind to the virtual host.

Browser symptom

Log or trace symptom

The key indicator of this problem is the content of the "application dispatching" panel, which
will fail to show your application:

Your application doesn't appear in the
"application dispatching" information at
all (not even under "localhost"). Means
webapp wasn't able to bind to any defined
virtual host in webcontainer.conf

Application dispatching when web application doesn't bind to any virtual host

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 61 -© 2001, IBM Corporation, Wash. Systems Center

Furthermore, if you look in the SYSPRINT of the application server region, you'll see
something like this:

VirtualHost Web Application Context Root Bindings:
/SimpleJSP

VirtualHost Bound Web Applications: <none>
VirtualHost Alias List:

wg31.washington.ibm.com:8080

In this example the test webapp used to force this condition was the only webapp in my web
container, so the value <none> is appearing in under "Bound Web Applications." If you had
other webapps that did bind properly, they would appear, but the webapp you're debugging
would not. Look for the webapp you're debugging. If it's not showing up as bound, then this
particular problem is occurring.

How to correct

Modify your webcontainer.conf file and update the contextroots= statement so your web
application will bind. That statement will allow multiple string, separated by commas:

host.default_host.contextroots=/SimpleJSP, /PolicyIVP, /XYZ

Your solution may be something as simple as adding another string to the statement.
Changing the webcontainer.conf file requires a restart of the application server.

Plugin not connected to the WAS 4.0 runtime you think it is

The plugin will attempt to communicate with whatever WAS 4.0 Systems Management
Server (SMS) it finds based on the RESOLVE_IPNAME and RESOLVE_PORT variables in
httpd.envvars. If you fail to code those environment variables, the plugin will by default
go to port 900 on the TCP/IP stack on which the plugin itself is operating. If you have
multiple WAS 4.0 systems running, it's possible to make a mistake and point your plugin to
the wrong WAS 4.0 server. If that happens, the web application you think should be
deployed in the web container might not be accessible by the plugin.

This problem will show itself in ways nearly identical to "WAS 4.0 application server not
started" and "URL doesn't contain value that matches defined context root or virtual host"
(pages 56 and 59).

Browser symptom

Log or trace symptom

The problem here is the URL won't match what's found in the "string matcher table."
Therefore, the message you'll see in the "ncf" trace is:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 62 -© 2001, IBM Corporation, Wash. Systems Center

ServletHost W Web.Group.Not.Found:."/SimpleJSP/simple.jsp"
ServletReques X Web Group Not Found
The web group /SimpleJSP/simple.jsp has not been defined

You'll not see anything in the logs that indicates the plugin is pointed to the wrong IP name
and port. You must simply review the configuration of httpd.envvars and make sure you
have it coded to the proper values. Checking the "application dispatching" information helps
isolate this problem.

How to correct

Visually inspect the RESOLVE_IPNAME and RESOLVE_PORT values in httpd.envvars
and correct if necessary.

Errors related to request not resolving to web application class file

The URL request may map to a Service request and be thrown "over the wall" into the plugin;
it may map to a virtual host and context root in the "string matcher table" and be routed over to
the web container, and then still fail.

The ability of a URL request to make its way over to the web container is based on your coding
of the webcontainer.conf file and the value of the <context-root>XML tag found in
application.xml of the deployed EAR file. But there's more to the webapp puzzle than that.
There is the web.xml file inside the webapp's WAR file, and that's where all manner of
problems can be introduced:

<servlet>

<servlet-name>Was40Ivp</servlet-name>

<servlet-class>com.ibm.ws390.samples.ivp.servletclient.Was40Ivp</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>Was40Ivp</servlet-name>

<url-pattern>/PolicyServlet</url-pattern>

</servlet-mapping>

</web-app>

1

2

2

3

The webapp creation tool would
normally be responsible for making
sure this was all correct. But that

doesn't mean problems can't occur!

Where problems can be introduced into the web applications deployment descriptor

1. The <url-pattern> tag contains the "servlet mapping" string. If the value on the URL
doesn't match any <url-pattern> string defined in any webapp deployed in the
container, then the request will fail.

2. The <servlet-name> string is what ties together the <servlet-mapping> stanza of the
XML file with the <servlet> stanza. If the values don't match one-for-one, then the
request will fail. (Surprisingly, neither the AAT tool nor the SMS GUI checks for this error).

3. The <servlet-class> tag points to the actual class file that is to be invoked. It's quite
possible the class file named is incorrect, or the class file itself is corrupt or otherwise
invalid.

Servlet mapping string doesn't match

This will be a quite common problem. Between the time you create the web application and
set its <url-pattern> and the time you issue your first URL against that servlet, you'll
forget the format of the servlet mapping string. You'll take a guess, and the guess will be

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 63 -© 2001, IBM Corporation, Wash. Systems Center

wrong. The URL will get passed to the plugin based on a match to a Service statement,
and it'll get routed to the web container based on the <context-root>match. But without
a <url-pattern>match, WAS won't know what specific servlet to invoke.

What happens next is described in "Background: WAS 4.0 serving of static files and JSPs"
on page 25. The request will eventually filter down to being considered a request for a
static file, and the name on the URL won't be the name of a file WAS sees in the HFS. So
it'll issue the following error:

Browser symptom

"Recursive" error the result of the lack
of a defined error page for a "404 - File

Not Found" condition. See below.

Message is telling you the
SimpleFileServlet could not find the file
implied by your servlet mapping string

Default error page when servletmapping not found and WAS looks for static file without success

This error is somewhat ugly in that the page is really telling you two things: the static file
wasn't found (resulting in a 404 error), and the error page for the 404 condition wasn't found
either. Error pages for web applications are defined in the web.xml file, and up to this
point the sample web.xml files in this document have not included that XML coding. Here's
what that XML stanza would look like to specify a custom "404" error page (this example will
use the web.xml file as provided in "Activity: create web.xml file for WAR" on page 45):

<webapp>
:
<servlet>
<servlet-name>SimpleJSPServlet</servlet-name>
<servlet-class>SimpleJSPServlet</servlet-class>

</servlet>
<servlet-mapping>
<servlet-name>SimpleJSPServlet</servlet-name>
<url-pattern>/call_jsp</url-pattern>

</servlet-mapping>
<error-page>
<error-code>404</error-code>
<location>/404.html</location>
</error-page>
</web-app>

The server will look for this page in the root of the HFS directory structure that represents
the deployed WAR file. If the <location> string was /subdir/404.html, it would look
in the subdirectory /subdir. If you don't have an error page defined, or WAS can't find the
error page you specify, you get the "recursive error" symptom.

Log or trace symptom

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 64 -© 2001, IBM Corporation, Wash. Systems Center

The symptom of this problem will occur in the WAS 4.0 application server region's
SYSPRINT. The HTTP Server's "vv" trace will show the request being passed to the plugin
based on a match to a Service statement. The plugin's "ncf" trace will show normal
operation because the URL will match to a virtual host and context root string. The browser
symptom shows enough detail of the problem so that looking in the SYSPRINT is not
required.

How to correct

Correct the format of your URL, or change the <url-pattern> value in the web.xml file,
refresh your WAR file, regenerate your EAR file and redeploy the application.

Mismatch in servlet name in deployment descriptor

This problem is fairly obscure, and would occur only if you're hand-building the web.xml file
in the WAR file. A webapp construction tool would likely not create this problem.
Nevertheless, this symptom would occur any time the <url-pattern> value is defined
and found by WAS, but no associated servlet can be found in the web.xml file.

Browser symptom

"Recursive" error the result of the lack
of a defined error page for a "404 - File

Not Found" condition. See below.

Message is telling you the
SimpleFileServlet could not find the file
implied by your servlet mapping string

Default error page when servletmapping found, but no associated servlet defined

It turns out WAS will treat this problem just like when it can't get a hit on a "servletmapping"
string: it falls back and assumes the request is for a static file. It'll then go looking for the
file, and if it fails it'll throw the default "recursive error" page.

Log or trace symptom

The symptom of this problem will occur in the WAS 4.0 application server region's
SYSPRINT. The HTTP Server's "vv" trace will show the request being passed to the plugin
based on a match to a Service statement. The plugin's "ncf" trace will show normal
operation because the URL will match to a virtual host and context root string. The browser
symptom shows enough detail of the problem so that looking in the SYSPRINT is not
required.

How to correct

Reconstruct the WAR file with a corrected web.xml file. Make certain the
<servlet-name> string is present in both the <servlet-mapping> stanza as well as the
<servlet> stanza.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 65 -© 2001, IBM Corporation, Wash. Systems Center

Class file incorrect

In this case the servlet mapping string is correct, but the class file referenced in the
<servlet-class> tag of the web.xml file isn't correct, and therefore the class file can't
be found. The WAS web container will try to locate the class file, but will fail.

Browser symptom

Unfortunately, the symptom for this problem is very cryptic. What you will see on the
browser screen is the following:

Log or trace symptom

This problem lies entirely within the WAS 4.0 runtime, so the webserver's "vv" trace and the
plugin's "ncf" trace are of no use. The output provided to the server region's SYSPRINT is
by default minimal. If your trace settings in current.env are the default, you will not see
any evidence of this problem in the SYSPRINT.

However, if in your current.env file you have the following coded:

:
TRACEALL=1
TRACEBUFFLOC=SYSPRINT
TRACEPARM=00
:

then you'll get some information out to your SYSPRINT that'll indicate the problem. Here's
what you'll see:

:

"Failed to load servlet": javax.servlet.ServletException:
Servlet [SimpleJSPServlet]:

:
Could not find required servlet class - SimpleJSPServletx.class

:
Unexpected internal engine error while sending error to client:

"/SimpleJSP/call_jsp"
:

Why the resulting message to your browser "contained no data" is still a mystery.

How to correct

Very carefully inspect your web.xml file and make sure the pointer to the class file in the
<servlet-class> tag is correct. Watch for misspellings of the file name, or possibly an
error in any of the qualifiers of a longer package name. If you spot an error, correct it,
re-assembly the WAR/EAR file and redeploy the application.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 66 -© 2001, IBM Corporation, Wash. Systems Center

Migration Scenarios
This section covers what to do when migrating your web application environment from the WAS 3.5
SE environment to the new WAS 4.0 environment. The news here is good, because the new WAS
4.0 plugin is capable of running servlets locally or routing the request over to the WAS 4.0 runtime.
The migration path looks like this:

HTTP Server

WAS 3.5 SE

Servlet

WAS 4.0 Runtime

EJB Container

RMI / IIOP
EJB

S S S

WAS 3.5 SE was.conf configuration file

HTTP Server

WAS 4.0 plugin

Servlet

WAS 4.0 Runtime

EJB Container

RMI / IIOP
EJB

S S S

Migrated WAS 3.5 was.conf file (updated to be WAS 4.0 was.conf)

HTTP Server

WAS 4.0 plugin

WAS 4.0 Runtime

EJB Container

EJB
S

WAS 4.0 plugin was.conf file

WAS 3.5 Updated
Use existing WAS 3.5 SE and
modify it to allow RMI/IIOP
connection from servlets to
EJB. Existing servlets
continue unchanged.

WAS 4.0 Plugin
Configure WAS 4.0 plugin and
use WAS 3.5 was.conf (small
changes required). Existing
servlets continue unchanged.

Migrate Apps to WAS 4.0
As you migrate webapps over
to WAS 4.0 runtime, simply
comment-out those
definitions from was.conf

Bring existing
was.conf over
and use with

WAS 4.0 plugin

Remove defs for
migrated

applications

"Step #1"

"Step #2"

"Step #3" Web Container

Servlet

Migration path from WAS 3.5 SE environment to WAS 4.0 runtime

Background: overview of the three steps of migration

The migration path is a fairly straight-forward thing:

Step 1: update WAS 3.5 SE to communicate with WAS 4.0 runtime

Assuming you have a WAS 3.5 SE environment presently operating on your system, you
probably have servlets configured and operating in the WAS 3.5 plugin. The objective of
this step is to update your WAS 3.5 SE environment so servlets designed to communicate
with EJBs can do so.

Step 2: configure WAS 4.0 plugin and use existing was.conf configuration file

In this step you change your plugin environment from WAS 3.5 SE to the new WAS 4.0
plugin. Because the new plugin is capable of running servlets, your existing servlet base
can easily be moved to the new WAS 4.0 plugin by simply using your existing was.conf
configuration file with the new WAS 4.0 plugin.

Step 3: migrate web applications over to WAS 4.0 web container environment

Once you have the WAS 4.0 plugin configured, you may migrate your webapps over to the
WAS 4.0 web container environment at your leisure. This involves packaging the webapps

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 67 -© 2001, IBM Corporation, Wash. Systems Center

into WAR files and deploying them into the web container, and then removing from
was.conf the deployedwebapp and webapp definitions for that web application.

Activity: configuring the WAS 3.5 plugin code to allow communication with EJB

This section assumes you already have a WAS 3.5 SE environment working on your system,
and that your objective is to update that environment so that servlets written to communicate
with EJBs can do so. This section does not provide the full instructions on how to configure the
WAS 3.5 SE plugin.

The WAS 3.5 plugin configuration is very similar to that of the WAS 4.0 plugin. But some of the
directories are different, so don't assume the WAS 4.0 plugin directions apply to the WAS 3.5
plugin environment.

Any given webserver may have either the WAS 4.0 plugin configured, or the WAS
3.5 plugin configured, but not both at the same time! See "Question: can both
plugins be configured in the same webserver?" on page 5.

Very Important Note:

Do the following:

This document assumes you'll do the appropriate backing up of any files that you're changing.Note:

! Edit the was.conf file and add the following to the appserver.classpathproperty:

/usr/lpp/WebSphere/lib/ws390crt.jar

This provides the client (the servlet) access to the necessary client-side Java components to
access the WAS 4.0 EJB runtime. Without this, the client would try, but fail, to make the
connection.

Why?

! Add a new property to the was.conf file (all on one line):

appserver.java.extraparm=-Djava.naming.factory.initial=
com.ibm.ws.naming.ldap.WsnLdapInitialContextFactory

The client (the servlet) needs to be know where the "initial context factory" code resides so that
it can look up the home interface of the target EJB and create the object. Without this, the
client would never be able to locate the bean's home interface.

Why?

! Edit the httpd.envvars file and add the following two variables:

RESOLVE_IPNAME=<fully qualified IP host name of server on which WAS 4.0 SMS exists>
RESOLVE_PORT=900 (or port on which WAS 4.0 SMS server is listening if not default)

The client (the servlet) needs to know the location of the Systems Management Server so that
it can connect to the WAS 4.0 runtime and request the services of the runtime. Absent this
update, the client wouldn't have a clue where to go to satisfy its desire to run the EJB.

Why?

With these changes made, stop and restart the webserver to pick up the changes. Your WAS
3.5 plugin environment is now ready to accept servlets written to access EJBs.

"Step #1" from the picture at the beginning of this section has been satisfied.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 68 -© 2001, IBM Corporation, Wash. Systems Center

Activity: changing plugin from WAS 3.5 to WAS 4.0 plugin

Assuming that you have a WAS 3.5 SE plugin running in your webserver, you are now ready to
change the environment to use the new WAS 4.0 plugin. This involves the following things:

WAS Plugin Code

HTTP Server

httpd.conf

httpd.envvars

was.conf

ServerInit
Service
ServerTerm

Change the directory and
filename pointers on all

occurrences of these three
statements in the
httpd.conf file.

Insure this file has
RESOLVE_IPNAME and

RESOLVE_PORT variables

Make certain this file has
been updated to work with

the 4.0 plugin

Modifications needed to WAS 3.5 plugin environment to make it run the WAS 4.0 plugin

Question: can WAS 3.5 SE was.conf file be used with WAS 4.0 plugin?

Yes. The format of the was.conf is largely identical between the two. There are a few
parameter changes you need to make when migrating a WAS 3.5 SE copy of the
was.conf for use with the WAS 4.0 plugin. This is good news for those who have invested
considerable time configuring webapps for the WAS 3.5 plugin and now wish to migrate to
the WAS 4.0 plugin environment. What is required to use the WAS 3.5 was.conf with the
WAS 4.0 plugin is explained next.

Activity: preparing a WAS 3.5 was.conf for use with WAS 4.0 plugin

If you wish to use an existing copy of a WAS 3.5 SE was.conf with your new WAS 4.0
plugin, do the following:

This document assumes you'll do the appropriate backing up of any files that you're changing.Note:

! Edit the copy of was.conf you wish to use with the WAS 4.0 plugin. Locate the
appserver.version property and change its value from 3.50 to 4.00.

! Remove all deployedwebapp and webapp statements for applications you intend to
run in the web container environment of the WAS 4.0 runtime. (For the WAS 4.0 plugin
to correctly route requests over to the web container for execution, it must see that no
local webapp definitions exist in the was.conf.)

! If you wish (but it is not critical), you may remove the ws390crt.jar file from the
appserver.classpath statement and remove the appserver.java.extraparm
statement from the was.conf file. These are the updates outlined in "Activity: configuring
the WAS 3.5 plugin code to allow communication with EJB" on page 68.

Activity: changing the plugin pointers in the httpd.conf file

Assuming you have a working WAS 3.5 plugin environment, the steps necessary to point to
the new WAS 4.0 plugin involve changing three things in the httpd.conf file:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 69 -© 2001, IBM Corporation, Wash. Systems Center

ServerInit /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:init_exit

/usr/lpp/WebSphere,/etc/was.conf

Service /webapp/examples/* /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:service_exit

ServerTerm /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:term_exit

1 2 3

4 5

The Service and ServerTerm statements have
updates identical to the ServerInit, minus items
4 and 5 (which are specific to the ServerInit)

Changes necessary to point to new WAS 4.0 plugin

Each numbered block in the picture is described next (the "to do" activities follow):

1. This is the directory in which the WAS product is installed. By default this is
/usr/lpp/WebSphere for both WAS 3.5 and WAS 4.0. Clearly if you have both versions
installed on the same system, both can't be installed at the same mount point. Therefore you
have to be careful when you code the WAS 4.0 plugin's updates because you'll need to point to
where WAS 4.0 is installed.

2. This is the directory under the install root (numbered block #1) which contains the plugin code.
For WAS 3.5, this value was /AppServer/bin. For WAS 4.0 it is /WebServerPlugIn/bin.

3. This is the file name of the plugin code. For WAS 3.5 it was was350plugin.so, for WAS 4.0 it
is was400plugin.so.

4. This is the first parameter on the ServerInit statement, and is separated from the rest of the
statement by a blank space (and all coded on one line). This points to the install root of the WAS
code. This value should be identical to the value you coded for numbered block #1. Make sure
you're pointing to the right directory for WAS 4.0 and not back to the directory where WAS 3.5
was installed.

5. This is the second parameter on the ServerInit. It points to the directory and file name for the
plugin configuration file. It is separated from the first parameter by a comma. This should point to
the was.conf you updated as described in "Activity: preparing a WAS 3.5 was.conf for use with
WAS 4.0 plugin" on page 69.

Do the following:

This document assumes you'll do the appropriate backing up of any files that you're changing.Note:

! Edit the httpd.conf for your webserver and locate the ServerInit statement.
There should be only one, and it if you're presently running WAS 3.5 SE it'll point to
WAS 3.5.

! Inspect the install root directory specified on the ServerInit (numbered block #1 in
the picture) and make change it to point to where WAS 4.0 is installed on your system.

! Inspect the directory and filename of the plugin code itself on the ServerInit
statement (numbered blocks #2 and #3 in the picture). Change this to:

/WebServerPlugIn/bin/was400plugin.so:init_exit

Note the upper-case "I" in "PlugIn" of the directory /WebServerPlugIn. That's
something easy to overlook, and if overlooked it will cause the plugin to not be found.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 70 -© 2001, IBM Corporation, Wash. Systems Center

! Inspect the first parameter on the ServerInit (numbered block #4) and change it to
the install root of WAS 4.0. This should match the value you coded for numbered block
#1.

! Inspect the second parameter on the ServerInit and make certain it points to the
directory and file of the was.conf you wish to use.

! Now go through every Service statement in your httpd.conf and make certain that
the directory and plugin module points to the install root (block #1), the plugin directory
(block #2) and plugin module name (block #3).

! Finally, locate the ServerTerm statement and change the directory and plugin module
name to equal that of what you provided the ServerInit and Service statements.

It is important to note that function name on the module (what follows the colon after the
module name of was400plugin.so) is different for the ServerInit vs. Service vs.
ServerTerm. The function name for ServerInit is :init_exit, for Service
:service_exit and ServerTerm :term_exit.

Note:

Activity: making certain the httpd.envvars file is correctly configured

The steps here are the following:

! Edit your httpd.envvars file and make certain the JAVA_HOME variable is present
and set to the following:

JAVA_HOME=/usr/lpp/java2/J1.3

or wherever the Java 1.3 Developer Kit for Java is installed on your system. You'll
probably already have this if you had WAS 3.5 SE running. Both WAS 3.5 SE and the
WAS 4.0 plugin require the IBM Developer Kit for Java Platform 1.3.

! Stay in your httpd.envvars and add the following to the NLSPATH variable:

/usr/lpp/WebSphere/WebServerPlugIn/msg/%L/%N

or whatever your WAS 4.0 install root happens to be.

! Add the following two variables to httpd.envvars:

RESOLVE_IPNAME=<fully qualified IP host name of WAS 4.0 SMS server system>
RESOLVE_PORT=900 (or port on which WAS 4.0 SMS server is listening if not default)

If your HTTP Server (and therefore the plugin as well) is on the same system as your WAS
4.0 runtime, and you configured the SMS server to use the default port value of 900, you
don't need these two values. But coding them is relatively easy, and it avoids confusion.
So go ahead and code these even though strictly speaking they're not always necessary.

Note:

Activity: restart webserver and validate plugin initialization

At this point you're ready to see if all your changes were correctly entered, at least as far as
allowing the plugin to initialize properly. Go to "Activity: validation and basic debugging of
plugin" on page 13 for instruction on validating the initialization of the plugin.

Activity: migrating web applications from plugin to WAS 4.0 runtime

There are two steps involved with this:

1. Packaging your webapp into an WAR file format and deploying that application into the
WAS 4.0 runtime environment.

2. Removing from the was.conf file any application definitions for the application.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 71 -© 2001, IBM Corporation, Wash. Systems Center

This document is not intended to cover the packaging and deployment activities. However, the
information provided in "Webapps Running in WAS 4.0 Runtime and Driving EJB" on page 15
and "Example: PolicyWebApp in the PolicyIVP Application" on page 37 covers some of the
background on this process.

The reason why the application definitions (deployedwebapp and webapp) in was.conf are
removed is because the WAS 4.0 plugin will seek to run the application locally (within the plugin
rather than over in the web container) if it gets a "hit" on a deployedwebapp "rooturi" definition
in the was.conf.

In reality, the match is done on the [virtual host | rooturi] pair. If the URL received matches both
the rooturi value and the defined virtual host, the plugin will try to run the request locally. On the
other hand, if it sees a match for virtual host and context-root (essentially the same thing as rooturi)
over in the web container, it'll route the request over there. Using the keyword localhost as a
virtual host in the was.conf will not take precedence if an exact match on virtual host and
context-root is found in the web container. See "Background: when same virtual host is defined in
both environments" on page 92 for more on this subject of having the same virtual host values
coded in both environments.

Note:

Therefore, to make the request flow over to the WAS 4.0 runtime after the application has been
deployed there, you must remove the application definitions from was.conf. If you want to
deploy the application in both environments, but run the application in the plugin for a while,
make sure the virtual host and rooturi values coded in was.conf match the received URL. The
request will then be run in the plugin. Then, when you're ready, remove the rooturi definition
from was.conf and the request will then flow to the web container.

Question: how does the Transport Handler figure into this migration?

The new Transport Handler function provides an integrated HTTP listener, and greatly reduces
the complexity of the configuration. However, it does not provide a servlet execution
environment. Therefore, it can't be brought into the mix until at least some of the webapps
have been moved to the WAS 4 web container environment. Once some webapps are
deployed into the web container, the new Transport Handler can be employed to be the HTTP
listener for those migrated webapps.

It is possible to have both the plugin and the Transport Handler as part of the configuration (see
"Question: how do I configure both the plugin and the Transport Handler for a given server?" on
page 77). Therefore, the migration picture will likely be similar to what was shown at the
beginning of this section, with the Transport Handler introduced sometime after "Step 2" and
run concurrently with the plugin for some period of time.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 72 -© 2001, IBM Corporation, Wash. Systems Center

The WAS 4.0.1 Transport Handler
When V4.01 of WAS for OS/390 was delivered in October of 2001, one of the new features is an
integrated "Transport Handler". That's a fancy way of saying "integrated HTTP listener." This
means that you no longer must have an HTTP Server with the WAS 4.0.1 plugin configured. Your
environment can now be as simple as this:

Web Container

WebApp

EJB Container

WebSphere V4.01 for zOS and OS/390

EJB
Transport
Handler

HTTP
Server

No longer required

HTTP

The V4.01 integrated HTTP listener -- aka, the "Transport Handler"

Before getting into how to enable this new feature, let's first take care of a few obvious questions.

Question: does this mean the plugin no longer exists?

The plugin still exists. The plugin operates just as it did with V4.0, and all the information in this
document pertaining to the plugin still applies.

Question: does the new feature have all the capabilities of the HTTP Server?

No (although the intent is to over time aggressively provide additional feature into the Transport
Handler and make it the strategic HTTP handler for J2EE servers). The new Transport Handler
is designed to listen for and accept HTTP requests off the network and get them over to the
web container. To that end, things like the ability to run CGI programs and code Pass
directives are not part of the design.

Two key restrictions do exist, according to "Assembling J2EE Applications" (SA22-7836-02):

The Transport Handler does not support the authentication policy as specified in the
deployment descriptor of the webapp. There is a way in which you can specify a surrogate
ID that will be used for all requests.

SSL can't be used as the transport between browser and Transport Handler.

Question: can the plugin and the new Transport Hander coexist?

Yes, with one caveat: both will bind to a TCP port; therefore, they must be configured to listen
on different ports. The plugin (actually, the HTTP Server itself) will bind to whatever port you
have coded on the Port directive in the httpd.conf file. The new Transport Handler will bind
to whatever port you provide on the new configuration parameter BBOC_HTTP_PORT=n
specified in the current.env file for the server. Those two values cannot be the same
number.

There is a mechanism in TCP/IP to allow two or more processes to share a TCP port. That subject
is beyond the scope of this document. For now, the general rule of thumb is this: avoid having your
BBOC_HTTP_PORT=n value conflict with another process and its port value.

Note:

Please see "Question: how do I configure both the plugin and the Transport Handler for a given
server?" on page 77 for more detail on how both can exist within a given configuration.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 73 -© 2001, IBM Corporation, Wash. Systems Center

Question: does the introduction of V4.01 negate the information in this document?

No. The stuff contained here is still applicable.

Background: how the new Transport Handler works

The new Transport Handler is an integrated function of any application server you define to
your system:

Application Server
Control Region

Server Region

Transport Handler

TCP/IP

Web Container

/WebSphere390/CB390/controlinfo/envfile/WSLPLEX/APSRV3S1/

current.env

:
BBOC_HTTP_PORT=8081
:

HFS

webcontainer.conf

:
host.default_host.alias=wsc1.washington.ibm.com:8081
:

Port 8081

http://wsc1.washington.ibm.com:8081/PolicyIVP/cebit.html

1

2

3

4

5

High-level of how the new Transport Handler operates

Let's walk through some of these things:

1. A new parameter (actually, several new parameters, but I'll only focus on one for the
moment) is added to the current.env file found in the private directory of your J2EE
application server. This parameter has the form:

BBOC_HTTP_PORT=n

where "n" is the port number on which you wish the new Transport Handler to listen.

2. The server is started and the new Transport Handler function binds to and starts listening
on the specified port.

3. In the webcontainer.conf file for your application server's web container you have
defined some number of virtual hosts, and you have applications that bind to those virtual
hosts. This process is exactly the same as was the case with the plugin. In fact, all the
information in this document relating to the issue of virtual hosts and binding applications
still applies.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 74 -© 2001, IBM Corporation, Wash. Systems Center

4. Someone at a browser somewhere issues a URL. If the network is operating as you hope,
that URL will find its way to your TCP stack, and will get picked up by the port on which the
Transport Handler is listening. This is business-as-usual network processing.

5. The Transport Handler takes the request off the port and compares it against virtual host
and context-root pairs it knows about from the webcontainer.conf. If there's a match (and
there is in this example), the request flows to the container to be serviced by the application.
If no match occurs (for example, the virtual host is wrong, or the context-root string doesn't
map to any bound application), the request is rejected.

If you've read the other sections in this document and you think it can't be this simple ... yes, it
is this simple. Like anything, it can be made more complex with the use of the more advanced
parameters. But to achieve basic functionality, that's all that's required.

Question: how many Transport Handlers can exist in a WAS environment?

As many as you have J2EE application server instances configured. The Transport Handler is
implemented as a function of the server control region. It is intended to be the HTTP listening
device for that server instance. So if you had ten J2EE application server instances configured,
each with the Transport Handler configured, you would have ten Transport Handlers in the mix.

Since each Transport Handler will try to bind to the port specified by the parameter
BBOC_HTTP_PORT, you could have conflict if you specify the same value for each instance's
Transport Handler. If each instance is on a different LPAR, or a different TCP/IP stack, or if
you've configured TCP/IP port sharing, you're okay. Otherwise, the server will fail to start if the
port is already taken. Some care must be exercised to make sure you don't code a port value
that will conflict with one already in use.

This is no different from any other TCP application in that the port you define here must not already
be bound by another application. If some other process has already taken possession of the port
before you start your server, your server will fail to start when TCP rejects your server's request to
bind to the port. As mentioned earlier, there is a way in TCP/IP to permit the sharing of a port. This
document won't go into that subject.

Note:

Question: how do I get the new parameter into the current.env file?

There are two ways:

Hand-edit the current.env file and include the new parameter. The downside to this is
that the update will be lost the next time a conversation is activated in the SMS GUI tool.
This is fine for initial ad hoc testing, but not a permanent solution.

Use the SMS tool and update the "Environment Variable List" for either the Server or the
Server Instance. The upside to this method is that the change will persist, even if
subsequent conversations are activated.

Clearly the SMS tool is the proper way to do this for the long term.

The SMS tool will allow you to set environment variables at either the SYSPLEX level, the
Server level or the Server Instance level. This brings up an interesting question: at which level
should the variable be set?

Setting it at the SYSPLEX level makes no sense for that would mean every server would try to
grab the same port. Setting different ports per Server Instance would technically work, but
would imply coding different URLs based on the instance to which you wish to connect. The
principle behind Server Instances is that to a client one instance is indistinguishable from
another. Having different port numbers defeats this principle. Therefore, the general
recommendation is to set it at the Server level. That means each instance will have the same
port number. To avoid conflict on common port between instances, each started instance of a

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 75 -© 2001, IBM Corporation, Wash. Systems Center

server would have to be on different TCP/IP stacks, or in different LPARs (or through some
fancy TCP/IP port sharing).

Question: how can I know the Transport Handler is ready to accept requests?

The most basic way is to issue a TSO NETSTAT command and check to make sure the Server
control region is bound to and listening on the specified port:

WSIVP2A1 000027F8 0.0.0.0..8880 0.0.0.0..0 Listen

The control region listens on several different ports and not just the Transport Handler port. So
locate the control region name and look through all the ports it's holding.

Note:

Question: can the new Transport Handler listen on port 80?

Yes. The parameter BBOC_HTTP_PORT can be set to 80. That implies there's no webserver
listening on the default port 80 somewhere on that TCP stack. Recall that if the port to which
the Transport Handler will bind is already held by another process, the start of the server will
fail. The Transport Handler may use port 80 so long as nobody else has it first (or you've
instituted port sharing, which is a topic beyond the scope of this document).

Question: can I route requests from the plugin to the Transport Handler?

This question is illustrated with the following picture:

IBM HTTP Server WAS 4.01 for zOS or OS/390

Transport
Handler

Web
Container

J2EE Server Instance

WAS 4.0
Plugin X

Can't do this. Flow out the back of
plugin is IIOP, and the Transport

Handler can only accept HTTP

URL request can't flow from plugin to transport handler

The answer is "no." This question typically comes up for one of two reasons:

What's really behind the question is a desire to design a DMZ and put an HTTP listener in
the DMZ, or

There's some confusion about how both the plugin and the new Transport Handler can be
part of a single configuration.

These two issues are discussed in greater detail elsewhere in this document, as pointed to in
the following table:

"Question: how can I design a DMZ into my
configuration?" on page 78Desire to configure DMZ

"Question: how do I configure both the plugin and the
Transport Handler for a given server?" on page 77

Unsure of how plugin and Transport Handler can
be part of same configuration

Please refer to:Issue:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 76 -© 2001, IBM Corporation, Wash. Systems Center

Question: how do I configure both the plugin and the Transport Handler for a given server?

As stated earlier, the plugin and the new Transport Handler may coexist in the same
configuration. The picture of what this would look like is the following:

HTTP Server

WAS 4.0
Plugin

Transport
Handler

Web
Container

WAS 4.01 runtime

J2EE Server

TCP/IP

Port:
8080

Port:
9191

HTTP

HTTP

RMI/IIOP

RMI/IIOP

HTTP

How both the plugin and the Transport Handler can coexist

What this picture is illustrating is the plugin providing one path for a browser to reach webapps,
and the Transport Handler providing a second. Notice how the two processes (plugin and
Transport Handler) are on different ports. This picture illustrates a key point: there's really no
coordination or connection between the plugin and the Transport Handler. They're two different
things providing essentially the same basic function.

Question: why would I want to configure both the plugin and the Transport Handler?

If you presently have the plugin configured and serving webapps out of the WAS 4.0 web
container environment, you may wish to maintain that environment while phasing in the
Transport Handler. At the present time the Transport Handler has some notable restrictions
(see "Question: does the new feature have all the capabilities of the HTTP Server?" on page
73), so using it and not the plugin may not be in your best interest at the present time. The plan
is to enhance the function of the Transport Handler to make it the strategic HTTP listening
device.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 77 -© 2001, IBM Corporation, Wash. Systems Center

Question: how can I design a DMZ into my configuration?

The short answer is this: with a "reverse proxy server" in the DMZ and either the WAS 4 plugin
or the new Transport Handler in the secure network:

FW FW

HTTP

Web
Container

J2EE Server

Plugin

Web
Container

J2EE Server

Trans.
Hand.

- and/or -
HTTP Server
configured as

"Reverse Proxy"

Internet DMZ Secure Network

S/390 HTTP
server or any
other platform

High-level view of DMZ configuration with WAS 4 webapps

This document won't get into how to configure an HTTP server as a reverse proxy. The reason
why the reverse proxy is in the picture is due to some architectural constraints imposed by the
plugin and the Transport Handler. Those two issues are covered next.

Background: why Transport Handler should not be in DMZ

The new Transport Handler function of WAS 4.0.1 is implemented in the control region of
the J2EE application server. The web container and the EJB container reside in the server
regions(s) of the server:

Web
Container

EJB
Container

Server Region1
Server Region n

Transport
Handler

Control Region

An "Instance" of the
application server

Where the Transport Handler resides relative to the containers

The Transport Handler serves as the HTTP listener for the web applications deployed in the
web container of that server instance. The Transport Handler of one server isn't designed
to route the requests to other server instances:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 78 -© 2001, IBM Corporation, Wash. Systems Center

Web
Container

EJB
Container

Server Region1
Server Region n

Control Region

Server XYZ, Instance 2

Web
Container

EJB
Container

Server Region1
Server Region n

Control Region

Server ABC, Instance 1

Web
Container

EJB
Container

Server Region1
Server Region n

Transport
Handler

Control Region

Server XYZ, Instance 1

Yes

No!

No!

Transport
Handler

Transport
Handler

Transport Handler services only webapps in its instance server regions

Further, for any given instance of an application server, the control region and the server
regions must reside in the same MVS image. You can't split the control region and server
regions. Therefore, you can't move the Transport Handler into the DMZ without also
moving the server regions into the DMZ:

FW FW

Internet DMZ
Secure

Network

Web
Container

EJB
Container

Server Region1
Server Region n

Transport
Handler

Control Region

Server XYZ, Instance 1

Can't split control region from associated server regions;
therefore, can't move Transport Handler to DMZ without

moving containers (and applications) there as well

Can't move Transport Handler into DMZ without dragging applications into DMZ as well

Therefore, trying to move the Transport Handler to the DMZ doesn't make much sense
because your applications are moved into the DMZ as well. But what about the plugin?
Can you move that to the DMZ? That's discussed next.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 79 -© 2001, IBM Corporation, Wash. Systems Center

Background: why WAS Plugin should not be in DMZ

There are two reasons why you don't want to move the WAS 4 Plugin out into the DMZ:

The flow from the Plugin to the web container is RMI/IIOP, and configuring the firewall to
carefully flow IIOP between the DMZ and the secure network is a more challenging task
than configuring it for HTTP.

The Plugin has a requirement that it run in an MVS image that also includes a running
copy of the WAS daemon region. That implies stretching the SYSPLEX into the DMZ to
accomodate that requirement:

FW FW

Internet DMZ Secure Network

HTTP

Plugin

WAS

Daemon
Web

Container

EJB
Container

Server Region1
Server Region n

Control Region

Server XYZ, Instance 1

SYSPLEX Coupling Facility

Plugin must
have co-resident

Daemon in its
MVS image

Therefore, your
SYSPLEX gets
stretched into

the DMZ

Moving Plugin to DMZ stretches SYSPLEX into DMZ as well

This is not a good thing. Therefore, trying to move the WAS 4 Plugin into the DMZ isn't
recommended.

Question: can the WAS Plugin be configured on a distributed platform in the DMZ?

The next logical question is this: may I configure WAS on one of the distributed platforms
out in the DMZ and use its HTTP listening capability to route requests to the webapps?

FW FW

Internet DMZ Secure Network

Web
Container

EJB
Container

Server Region1
Server Region n

Control Region

WAS on S/390

Win2000
AIX
etc

WAS

Plugin

Not Currently

Supported

Unsupported configuration of distributed platform WAS in DMZ acting as "plugin"

And the answer, as indicated in the picture, is no. This configuration is not currently
supported.

Change the picture slightly to have a standalone S/390 in the DMZ and the answer is still "no."
The plugin must co-reside with a running copy of the WAS/390 Daemon, and that daemon
must be part of the SYSPLEX containing the web container to which you wish to communicate.

Note:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 80 -© 2001, IBM Corporation, Wash. Systems Center

That leaves a reverse proxy in the DMZ

And so we're back to the original "short answer" to the question. By placing an HTTP
server in the DMZ -- on any platform and operating system, by the way; the reverse proxy
function is fairly standard and not a WAS 4 function -- you achieve the desired results:

FW FW

HTTP

Web
Container

J2EE Server

Plugin

Web
Container

J2EE Server

Trans.
Hand.

- and/or -
HTTP Server

configured as
"Reverse Proxy"

Internet DMZ Secure Network

This firewall
configured to

allow only those
protocols you

desire

This firewall configured to
allow only flows coming
from IP address of proxy

server (that's good)

X

Won't work: can't
bypass proxy
(that's good)

HTTP flows
from proxy
server only

(that's good)

Background: binding your webapp to a properly defined virtual host

The issue of binding applications to virtual hosts is largely separate from the issue of which
HTTP listener you use. You still need to define virtual hosts in your webcontainer.conf file,
and you still need to code the contextroots= statement in that file so web applications can
bind to the virtual host. But if you have both the plugin and the Transport Handler configured,
things may at first look confusing, particularly as viewed from the "Application Dispatching
Information" panel put out by the plugin.

Consider the following picture, which illustrates an environment with both the plugin and the
Transport Handler configured:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 81 -© 2001, IBM Corporation, Wash. Systems Center

HTTP Server

WAS 4.0
Plugin

Transport
Handler

Web
Container

WAS 4.01 runtime

J2EE Server

TCP/IP

Port:
8080

Port:
9191

HTTP

HTTP

RMI/IIOP

RMI/IIOP

webcontainer.conf

host.plugin.alias=www.myhost.com:8080
host.trans_hand.alias=www.myhost.com:9191
:

host.plugin.contextroots=/appl2222
host.trans_hand.contextroots=/appl9999

Example where both plugin and Transport Handler configured

Unless you configure TCP/IP port sharing, the plugin and the Transport Handler will listen on
different ports. And for all ports other than the default 80, the port number must be specified
along with the IP host name on the "alias" statement in the webcontainer.conf file (see the
illustration above).

With different port numbers, the two different listeners are accessed with two different virtual
hosts. You would also need to take care to make sure the contextroots= statements allow
the various applications to bind to the virtual host you intend.

It is possible to bind an application to two (or more) virtual hosts. This is illustrated at "Question:
can I bind same application to both plugin and Transport Handler virtual host?" on page 83.

Note:

The plugin's "Application Dispatching Information" process will happily show you all the
applications that are bound to virtual hosts in the web container -- for both the plugin's own
virtual host as well as the virtual host of the Transport Handler:

URL Prefix Pattern JNDI Name

www.myhost.com:8080/appl2222 /MYPLEX/MYSERVER/appl2222/appl2222_webapp...

www.myhost.com:9191/appl9999 /MYPLEX/MYSERVER/appl9999/appl9999_webapp...

localhost:80/ConfigViewer LocalHostDispatch

localhost:80/webapp/examples LocalHostDispatch

This is bound to the plugin

This is bound to the Transport Handler

Application Dispatching showing applications bound to both plugin and Transport Handler

Is this a problem? No, not at all. But it could become one if you get your applications and
virtual hosts mixed up in your mind and you end up coding the wrong URLs to access the
applications:

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 82 -© 2001, IBM Corporation, Wash. Systems Center

URL Prefix Pattern JNDI Name

www.myhost.com:8080/appl2222 /MYPLEX/MYSERVER/appl2222/appl2222_webapp...

www.myhost.com:9191/appl9999 /MYPLEX/MYSERVER/appl9999/appl9999_webapp...

localhost:80/ConfigViewer LocalHostDispatch

localhost:80/webapp/examples LocalHostDispatch

http://www.myhost.com:8080/appl9999/servletmapping

This will fail because the port supplied on the URL doesn't match the port
on the virtual host for the application. This is an easy error to make,
particularly if you've become accustomed to the port for your webserver
plugin and you configure the Transport Handler for the first time.

URL that will fail because the host doesn't match the virtual host for the application

The message here is to be careful and make certain your URLs match the virtual hosts to which
the application is bound.

Question: can I bind same application to both plugin and Transport Handler virtual host?

Yes. This is accomplished by coding two different host values on the alias= statement, and
having your contextroot= statement point to that alias statement:

HTTP Server

WAS 4.0
Plugin

Transport
Handler

Web
Container

WAS 4.01 runtime

J2EE Server

TCP/IP

Port:
8080

Port:
9191

HTTP

HTTP

RMI/IIOP

RMI/IIOP

webcontainer.conf

host.both.alias=www.myhost.com:8080,www.myhost.com:9191
:

host.both.contextroots=/appl2222

How to bind an application to both the plugin and Transport Handler

In this example, the application /appl2222 is bound to both www.myhost.com:8080and
www.myhost.com:9191. That means you can access the application through either the
plugin or the Transport Handler.

Question: what other Transport Handler parameters are available?

"Appendix A, Environment and JVM properties files" of the manual "Assembling J2EE
Applications" (SA22-7836-02) covers in detail the eight current.env parameters related to
the new Transport Handler, including BBOC_HTTP_PORT=n

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 83 -© 2001, IBM Corporation, Wash. Systems Center

Background: error conditions and the Transport Handler

Back in "Common Configuration Errors and the Symptoms Displayed" starting on page 50 the
topic of error handling was covered when the plugin was the HTTP listener. For the most part
the error symptoms are the same when the listening agent is the Transport Handler. Why
would this be the case? Because the HTTP "catcher" (be that the plugin or the Transport
Handler) has a rather limited role in all of this:

HTTP Listener Application Execution

Webapp
/PolicyIVP

Webapp
/appl9999

1

List of Applications:
/PolicyIVP
/appl9999 2

Once the request is in the web
container environment, the error

symptoms are the same
regardless of whether the

front-end listener was the plugin
or the Transport Handler

(Plugin or Transport
Handler)

(WAS web
container)

Did request reach
the listener?

Did the listener
know enough to

pass the request?

HTTP "catcher" and the limited potential for error conditions

The first condition is caused by errors such as mis-typing the URL, or having the wrong port
number, or having a router down in the network, or some other error that would prevent the
HTTP request from reaching the desired listening port. The symptom you'll see here is typically
some kind of browser pop-up window indicating the request didn't connect to anything out there
on the web. These problems are beyond the scope of this document.

Once the request is into the listener, the world of the Transport Handler is much simpler than
the plugin. All the issues relating to the ServerInit, Service and ServerTerm directives in
httpd.conf go away; all the issues about whether the plugin is connecting to the SMS server
go away; and all the issues about whether the application request will run "locally" or "remotely"
go away. You're left with a very simple environment: does the URL match any known
application deployed in the web container?

It appears the Transport Handler uses a two-level check to see if the received request matches
a known virtual host, and then whether the context root matches. If your virtual host doesn't
match you get one error message, but if your virtual host is correct but the context root wrong
you get a different error message.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 84 -© 2001, IBM Corporation, Wash. Systems Center

Error: when the virtual host doesn't match

If your URL gets to the Transport Handler but the virtual host you have coded (the IP host
plus the optional port specification) doesn't match what the Transport Handler knows about,
it'll fail with the following:

Transport Handler's message when virtual host doesn't match

This error will occur most often as a result of you mis-typing the virtual host value in the
webcontainer.conf. The URL coming from the browser will resolve to the proper IP
address based on the DNS entries, and it'll get to the Transport Handler. The Transport
Handler will then try to match it against the known virtual hosts defined in the
webcontainer.conf file for the server instance. If you made a mistake in the virtual host
string in the webcontainer.conf, no match would occur and this error would result.

There's a slightly less probable reason for this error: your DNS allows more than one host
specified on URLs to resolve to the IP address of your server. Let's say your DNS allows
www.myhost.com and www.yourhost.com to resolve to 9.85.101.200. Let's say that
your webcontainer.conf has only www.myhost.com specified as a virtual host alias.
You send a URL with www.yourhost.com, the DNS resolves it to your server, and the
request makes it to your Transport Handler. The virtual hosts the Transport Handler will
pass back to the web container is limited to what's in the webcontainer.conf file, or
www.myhost.com in this example. Presto: you're rejected with the "Could not locate
Application" message.

Error: when the virtual host is correct but the context root is wrong

Assume that your virtual host correctly matches what's in webcontainer.conf. The next
thing the Transport Handler will check is the context root setting. If that doesn't match any
of the values for bound applications, you'll get this error:

Transport Handler's message when context root value doesn't match

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 85 -© 2001, IBM Corporation, Wash. Systems Center

The problem will arise for two reasons:

The URL's context root portion isn't typed correctly

The actual context root of the bound application is different from what you think it is

These are really the same thing, both pointing back to a mis-match between the context
root on the URL and the list of context roots for the virtual host.

Error: when the virtual host and context root are right but the servletmapping is wrong

If your virtual host and context root are correct, the request will get "thrown over the wall"
into the web container. At that point, the error messages you'll see will come from the web
container. The type of HTTP listener you're using doesn't make a difference. Those errors
are detailed starting at "Errors related to request not resolving to web application class file"
on page 63.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 86 -© 2001, IBM Corporation, Wash. Systems Center

Security Issues

The topic of security is a broad one and outside the scope of this document. However, as new topics
arise that relate to the overall topic of configurating web applications, those topics will be included here
until they are incorporated into other documents directly related to security. At that time the information
will be removed from here and a pointer provided to the other document.

Note:

HTTP Authentication based on web.xml definitions rather than Protect statements

Authentication involves challenging the user at the browser to supply a userid and password.
That user is allowed to proceed only if the information they supply is properly validated. Basic
authentication has long been a feature of the IBM HTTP Server. That authentication may now
be performed based on security definitions in the web applications deployment descriptor
(web.xml file inside the WAR file) rather than with Protect statements in the httpd.conf
file. However, at the time of this writing the IBM HTTP Server is still required to be part of the
picture.

Quick summary of updates required

The following chart summarizes the updates required to enable HTTP authentication out of
the web container. These are in addition to normal updates required as discussed in other
parts of the document.

Grant HTTP Server's ID READ access to CB.CBIND.server_name
profile

#Grant READ access for each authorized userid to the EJBROLE
profile defined in the web.xml file of the web application's
WAR file.

RACF

web.xml file updated with:
URL resource to be protected specified in
<security-constraint> stanza with <url-pattern> tag

Define the <auth-constraint> role to be applied to this protected
resource (on <role-name> tag)

Define <security-role> with the RACF EJBROLE <role-name>
to which authenticated users must have access

See "Background: example of definitions in web.xml file" on page 89 for
an example of these definitions.

WAR file contents

Nonewebcontainer.conf

Nonewas.conf

JAVA PROPAGATE=NOhttpd.envvars

None (no PROTECT statements for the resource are needed)httpd.conf

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 87 -© 2001, IBM Corporation, Wash. Systems Center

Background: how the Web Container performs HTTP authentication

This works as a coordinated effort between the definitions in the web.xml file and the
HTTP Server:

Web Container

Webapp

web.xml

Authentication
information coded

in the web.xml
deployment
descriptor

J2EE Server

WAS 4
Plugin

HTTP Server

IIOP

URL

Userid:
Password:

1

2

3

High-level view of HTTP authentication from web container

1. The web container reads the deployment descriptor of each deployed webapp and
passes to the Plugin information related to HTTP authentication.

2. The user sends in a URL that matches the <url-pattern> defined in the web.xml
file. The <url-pattern> tag defines the template, or mask, used to match against an
inbound URL to determine if protection is required.

3. If a match on the <url-pattern> value is made, the plugin asks the HTTP server to
pop the logon window requesting the user's userid and password.

The webserver pops the login panel, but not based on a Protect statement in its
httpd.conf file. This is based on information passed it by the web container regarding
the security constraints defined in the web.xml file for deployed webapps in the container.

Note:

If the userid and password is valid and the userid has at least READ access to the EJBROLE
profile defined in the web.xml file, the user is allowed to access the resource implied on the
URL.

Question: should I still code the Protect directive in the httpd.conf file?

You should not code authentication in both the webapp's deployment descriptor (web.xml
file) and the httpd.conf file. Pick one or the other, but don't use both for the same URL
resource.

The servlet specification 2.2 defines the location of security constraints and authentication
rules to be the webapp's deployment descriptor. If you wish to develop and deploy web
applications that adhere to that specification, you should code your security constaints in the
deployment descriptor and not code httpd.conf Protect statements.

Question: can I use this with the new Transport Handler?

At the time of the writing of this version of this document, no. But plans are in place to
incorporate into the Transport Handler this function in the near term.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 88 -© 2001, IBM Corporation, Wash. Systems Center

Background: example of definitions in web.xml file

The following example illustrates the contents of the web.xml deployment descriptor that
relate to HTTP authentication:

The web.xml file is typically generated by the tooling program used to create the webapp (for
example, WSAD). You wouldn't normally hand-edit the web.xml file to set these properties.

Note:

<security-constraint>
<web-resource-collection>
<web-resource-name>Sample Web Resource Collection</web-resource-name>
<url-pattern>/secret/*</url-pattern>
<http-method>GET</http-method>
<http-method>PUT</http-method>

</web-resource-collection>
<auth-constraint>
<description>Sample Security Constraints:+:</description>
<role-name>Manager</role-name>

</auth-constraint>
<user-data-constraint>
<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>
</security-constraint>
<login-config>

<auth-method>BASIC</auth-method>
<realm-name>Sample_Security_Realm</realm-name>

</login-config>
<security-role>

<description>RACF EJBROLE Manager</description>
<role-name>Manager</role-name>

</security-role>

Example of web.xml deployment descriptor and authentication properties

The <url-pattern> tag defines the URL string that, if matched, signifies a URL that is to
be protected. In this example any URL with /secret/* is to be protected. The
<role-name> tag defines the EJBROLE profile that applies to this protection mechanism, in
this example Manager. Anyone who wishes to access the URL /secret/* resource must
have READ access to the Manager profile.

Activity: set security constraint properties for your webapp

This will be done in the tooling you use to create your webapp, and each tool has a different
way of setting these values. The bottom line is the WAR file you wish to deploy into the
J2EE server must have the web.xml file updated with the security constraint values.

Activity: httpd.envvars

! Code JAVA_PROPAGATE=NO in the httpd.envvars file. Failure to do that will result in
the authentication failing with an obscure message in the "ncf" log:

login for userid <userid>with password failed -- rc = 9D000498

! Restart the HTTP Server to pick up this new environment variable.

Activity: RACF updates

! Grant the HTTP Server's ID (the ID under which the server process runs) READ access
to the CB.CBIND.server_name profile, where server_name is the name of the J2EE
server in which the web container resides.

! Grant READ access to the EJBROLE profile named in the web.xml file to every userid
you wish to have authority over the URL resource. For example, if the EJBROLE name

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 89 -© 2001, IBM Corporation, Wash. Systems Center

is Manager, and you wish the userids SMITH and JOHNSON to have access to the
resource, then grant both userids READ access to the EJBROLE profile Manager.

Question: what's the advantage of web containter authentication vs. Webserver?

The two provide essentially the same level of authentication. However, specifying
authentication within the security constraint of a web application's deployment descriptor is
one of the things defined in the servlet specification 2.2. For a web application developer
who wants to abide by the J2EE specification, coding security constraints within the
webapp's deployment descriptor is the correct method.

As stated earlier, to accomplish this you need the WAS 4 plugin running inside the HTTP
Server. The plugin has been developed to communicate with the web containers and to
understand the security constraints defined in the webapps deployed there. At the present
time the Transport Handler is not capable of performing this function, though that should be
corrected in the near term.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 90 -© 2001, IBM Corporation, Wash. Systems Center

Advanced Webapp Topics
This section contains information that is more advanced than basic configuration and validation. It
is by no means a comprehensive reference for all such information: the WAS 4.0 manuals serve
that purpose. This section will contain things we at the Washington Systems Center came across
in our testing and development and thought might be useful to include in a document such as this.

This section is frequently updated with new information. Check the date in the footer of each page and
compare against other copies of this document to see if you have an older version.

Note:

Background: WebSphereSampleApp.ear shipped with WAS

This sample application provides a function very similar to what is provided in the
/webapp/examples application in the plugin. (See "Activity: check plugin Application
Dispatching Information" on page 29.) The difference is one runs out of the plugin and the
other runs out of the web container in the WAS 4 runtime.

The reason for bringing this up in this document is this: the <context-root> value for the
webapp inside WebSphereSampleApp.ear is /webapp/examples, which is the same as the
supplied servlet for the plugin. That means if you deploy WebSphereSampleApp.ear into
your WAS 4.0 web container, the issuance of the URL: /webapp/examples/index.html
may result in the request being serviced by the plugin, or it may result in the request being
serviced by the web container. How can you tell which is which? By what's on the page:

From Plugin:

From Web Container:

"Webapp Examples" from plugin vs. web container

The key differences are the inclusion of the "Sample Error Servlet" included with
WebSphereSampleApp.ear, and what results when you click on "Show server configuration."

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 91 -© 2001, IBM Corporation, Wash. Systems Center

If you have a rooturi=/webapp/examples in the plugin and a bound application with
<context-root>/webapp/examples</context-root>in the web container, which one
takes precedence? It depends on which environment -- plugin or web container -- has the
exact match on virtual host to the URL received. That's discussed next.

Background: when same virtual host is defined in both environments

For those familiar with Websphere 3.5 Standard Edition, you'll know that the concept of "virtual
hosts" was present there as well. Virtual hosts for applications are defined in the was.conf
file, and provide pretty much the same function they do in the webcontainer.conf file.

The reason this is being brought up is because how the virtual hosts are defined in both places
may have a bearing on where an application is run. This is particularly true if you have
deployed the WebSphereSampleApp.ear file into the WAS web container, because its
"context root" is the same as the plugin's default IVP application. Consider the following
picture, which illustrates this:

http://wsc1.washington.ibm.com:8080/webapp/examples/index.html

HTTP Server

WAS 4.0
Plugin

Web
Container

WAS 4.0

webcontainer.conf

host.default_host.alias=wsc1.washington.ibm.com:8080
:
host.default_host.contextroots=/webapp/examples
:

was.conf

host.default_host.alias=wsc1.washington.ibm.com:8080
:

deployedwebapp.examples.host=default_host
deployedwebapp.examples.rooturi=/webapp/examples
:

Virtual host definition in both the plugin vs. the web container

In this example the same virtual host is defined in both the webcontainer.conf file and the
was.conf file, and an application that'll respond to /webapp/examples is deployed in both
environments. In this case, the request will invoke a webapp in the plugin environment.

Whenever there is a match on the [virtual host | context-root] pair in both the plugin and the web
container, the plugin takes precedence. If the match is made only in the web container, the
request will flow to the web container. If the match is made only in the plugin, then naturally the
request stays with the plugin. If it matches both, then the plugin takes it.

Rule:

Back in "Background: use of localhost value for virtual host" on page 23 it was stated rather
emphatically that the value localhost should not be used for the virtual host in the
webcontainer.conf file. The value localhost is also available for use in the was.conf

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 92 -© 2001, IBM Corporation, Wash. Systems Center

file, and while its use in the was.conf is also discouraged, it's easier to use in the plugin than it
is in the web container. An exact match on an explicit virtual host will always take precedence
over the value localhost. Therefore, an application deployed in the webcontainer with an
explicit virtual host coded will take precedence over the same application deployed locally in the
plugin when localhost is the virtual host.

Background: the plugin's JVM properties file

The new WAS 4.0 plugin runs inside the HTTP Server's address space, but interestingly has
within the plugin itself a copy of the JVM (Java Virtual Machine). That makes sense: the plugin
is capable of running servlets (just like WAS 3.5 SE did), so it would need a JVM to do that.
That copy of the JVM uses, like all JVMs everywhere, a "properties" file. The JVM properties
file provides the JVM information about how it is to behave.

For most people and their plugin environment, the default JVM properties file is what is used.
That's because most instructions (including those provided earlier in this document) don't
indicate to do what's necessary to bring into play a custom copy of the JVM properties file (the
default is fine for most implementations). But to do some of the "advanced" things you need to
modify the plugin's JVM properties, and to do that you need to point your WAS 4.0 plugin to its
own custom copy of the file:

HTTP Server
was.conf

WAS 4.0
Plugin

jvm.properties

appserver.jvmpropertiesfile=<dir and filename>

The pointer to a custom JVM properties file

The default copy of the properties file (the one that is used if you don't specify any directory or
filename on the appserver.jvmpropertiesstatement) is the following:
/usr/lpp/WebSphere/WebServerPlugIn/properties/default_global.properties

It is this file you would copy to a custom directory and point to out of your was.conf. Then you
could update your copy of the file with some of these advanced functions.

Activity: create custom JVM properties file for your WAS 4.0 plugin

! Copy default_global.properties from the from the /WebServerPlugIn/properties
directory to the directory in which your plugin's was.conf file resides. Make sure the file
has permissions of at least 644.

! Rename the copied file to something other than default_global.properties. It is no
longer a "default" properties, so something like jvm.propertieswould be better.

! Edit was.conf and update the appserver.jvmproperties=statement and provide the
directory and filename of your copied and renamed file.

Your plugin now has its own copy of the JVM properties file. The change won't take effect until
you restart the webserver.

Background: how the plugin communicates with the WAS 4.0 runtime

For the plugin to do its job, it needs to know the hostname and port number for the Systems
Management Server (SMS) to which you wish the plugin to connect. You tell it this in the

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 93 -© 2001, IBM Corporation, Wash. Systems Center

httpd.envvars file, where the RESOLVE_IPNAME and RESOLVE_PORT variables provide that
information:

HTTP Server

WAS 4.0 Plugin

httpd.envvars

RESOLVE_IPNAME=wsc4.washington.ibm.com
RESOLVE_PORT=900

WAS 4.0 Runtime

SMS

Port 900 of wsc4.washington.ibm.com host

Pointers to the SMS of the runtime serviced by the plugin

The following restrictions apply to where the plugin may reside relative to the rest of the WAS
4.0 runtime:

The plugin must reside in the same Sysplex as the WAS 4.0 SMS to which the plugin will
communicate

The plugin must reside on a box or LPAR with a running instance of the WAS 4.0 daemon
(BBODMN).

This brings up some interesting questions about constructing a network topology that includes a
"demilitarized zone" (DMZ). You could extend your Sysplex out and include the system with the
plugin out in the DMZ, but that's generally not recommended. The recommendation is to put an
HTTP Server out in the DMZ and configure it as a "reverse proxy," and have it communicate
with the WAS 4.0 plugin running in the secure network. This topic was explored back in
"Question: how can I design a DMZ into my configuration?" on page 78.

Background: what the plugin wants to know from the SMS

There are two basic pieces of information for which the plugin is interested:

HTTP Server

WAS 4.0 Plugin

WAS 4.0 Runtime

SMS

Appl.
Server

Appl.
Server

Appl Appl

Appl

Appl

1. What servers are in runtime environment?

2. What applications are deployed in each?

... and periodically check to
see if this information has

changed

Two basic things the plugin wants to know

How to modify the default behavior of the plugin for these things is provided next.

Activity: how to limit the number of J2EE servers with which the plugin will communicate

The default behavior of the plugin is seek knowledge of all application servers in the runtime
environment. But you can limit the plugin to maintain knowledge of a specified list of servers.
This would be applicable in an environment where, for example, you had twenty application
servers, one of which had web applications deployed and nineteen of which did not. Why

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 94 -© 2001, IBM Corporation, Wash. Systems Center

spend energy checking those nineteen servers you know don't contain web applications? With
this setting you could limit the search to just the server you wish:

! Edit the plugin's jvm.properties file (not the 4.0 runtime's application server JVM
properties, but the new plugin's JVM properties. See "Activity: create custom JVM
properties file for your WAS 4.0 plugin" on page 93 for a discussion of setting up a custom
JVM properties for your plugin).

! Set the following property:

com.ibm.ws390.wc.includeWebContainers=<list of servers delimited by a coma>

This provides a way to limit down to the server level, but not all the way down to the server
instance level. So if you had a server -- let's say APSRV3 -- and that server had five instances
defined (let's say APSRV3S1, APSRV3S2 ... APSRV3S5), then the property:

com.ibm.ws390.wc.includWebContainers=APSRV3

would limit the plugin's scope to the web containers in the five instances defined for the server
APSRV3.

You may code more than one server on this property. Simply separate each server with a
comma and a space:

com.ibm.ws390.wc.includWebContainers=APSRV3, APSRV4, APSRV5

Note:

! Stop and restart the webserver to pick up this change.

Activity: how to alter the interval between which the plugin checks for new J2EE servers

By default the plugin will poll the SMS every 10 minutes to see if additional servers have been
defined. You may wish to set a longer time, particularly if your environment is relatively stable
regarding the number of servers configured.

Do the following:

! Edit the plugin's jvm.properties file.

! Set the following property:

com.ibm.ws390.wc.serverCheckInterval=<interval in minutes>

! Stop and restart the webserver to pick up this change.

Activity: how to alter the polling interval used by the plugin to check for new applications

By default the plugin will query each application server every two minutes to see if any new
applications have been deployed. You may wish to set this value higher, particularly if your rate
of new application introduction is low, or you have a large number of servers and wish to
minimize the amount of polling.

Do the following:

! Edit the plugin's jvm.properties file.

! Set the following property:

com.ibm.ws390.wc.webappupdateinterval=<interval in minutes>

This value should be set to something less than the serverCheckInterval.Note:

! Stop and restart the webserver to pick up this change.

Configuring Web Applications in WAS 4.0 / 4.0.1

WP100238, Thursday, April 18, 2002- 95 -© 2001, IBM Corporation, Wash. Systems Center

(This page intentionally left blank)

Index

/
/webapp/examples

deployed in both plugin and container, 91, 92

4
404

coding custom error page, 64
error issued from Transport Handler, 85

5
500

error in exit routine, 54
error when bad Service directive, 53
error when plugin not initialized, 52
when servlet not configured, 58

8
80

port for Transport Handler, 76
8080

fix for problem, 18
use of instead of port 80, 18

A
AAT

using to construct EAR, 47
application dispatching

PolicyIVP example, 41
relation to string matcher table, 32
shows both plugin and Transport Handler apps, 82
used to debug mismatched URL, 60
verification information, 29

applications
binding to virtual host, 19
problem when not bound to virtual host, 61

authentication
HTTP, from web container, 87

B
BBOU0516E

error locating server, 56
binding

an application to multiple virtual hosts, 23
applications to virtual hosts, 19
to multiple virtual hosts, 22

browser
error message table, 50
key indicators of problems, 34

C
class file

not found error, 66
coexistence

of plugin and Transport Handler, 77
why plugin and Transport Handler, 77

compatibility
of WAS plugin and other plugin code, 5

container
overview, 4

context root
analagous to rooturi, 19
and binding application to multiple virtual hosts, 23, 83
error when no match with Transport Handler, 85
indication of applications bound, 28
order of precedence, 22
relation to servlet mapping, 24
single slash catch all, 21
statement in webcontainer.conf, 20
used in PolicyIVP example, 37
using wildcards, 21
where defined for application, 23
with different virtual hosts, 22
XML tag, 23

control region
can not separate from server regions, 79

current.env
getting Transport Handler port into, 75
TRACEALL setting, 36
TRACEBUFFLOC setting, 36

D
debugging

basic background, 30
deployment descriptor

context root definition, 23
for web application, 24

DMZ
can not use plugin from distributed platform, 80
configuring plugin behind, 94
designing into configuration, 78
why plugin not in, 80
why Transport Handler not in DMZ, 78

document contains no data
error when class file not found, 66

E
EAR file

creating for SimpleJSPServlet, 47
used by PolicyIVP program, 37
using AAT to construct, 47

EJBROLE
update for HTTP authentication, 89

error pages
coding custom for webapps, 64

F
Failed to Load Servlet

error trying to run in plugin, 58
file not found

error condition, 52
error resulting from bad web.xml coding, 65

flowchart
of servlet vs JSP vs static file, 25
of webapp execution logic, 26

H
HTTP

Configuring Web Applications in WAS 4.0

Thursday, April 18, 2002- 97 -© 2001, IBM Corporation, Wash. Systems Center

configuration file, 1
listener, 1
new Transport Handler, 73

HTTP Authentication
from web container, 87

HTTP listener
also known as Transport Handler, 73

http.conf
PolicyIVP example, 39

httpd.envvars
4.0 plugin message catalog, 12
JAVA_HOME variable, 12
NLSPATH, 12
RESOLVE_IPNAME update, 13
RESOLVE_PORT update, 13

I
integrated HTTP

also known as Transport Handler, 73
IVP

supplied with WAS plugin, 13

J
J2EE servers

limiting number plugin communicates with, 94
JAR command

used to create WAR file, 46
JAVA_HOME

cause for plugin failure, 13
variable coded in httpd.envvars, 12

JSP
serving from WAS, 25

jvm.properties
for plugin code, 93
pointer to webcontainer.conf, 15

L
libadapter.so, 12
localhost

value for virtual host, 23

M
migration

moving plugin from WAS 3.5 to WAS 4.0, 69
overview, 67
running 3.5 and 4.0 plugin together, 5
to Transport Handler, 72
webapps from plugin to WAS 4.0 runtime, 71

N
NETSTAT

using to verify Transport Handler port, 76
NLSPATH

update for WAS 4.0 plugin, 12

P
plugin

altering application polling interval, 95
altering J2EE server polling interval, 95
and a DMZ, 94
background of WAS 4.0 plugin, 3

binding application to it and Transport Handler, 83
both 3.5 and 4.0 in same HTTP Server, 5, 12
can not route to Transport Handler, 76
changing from 3.5 to 4.0 in httpd.conf, 69
changing from WAS 3.5 to WAS 4.0, 69
coexistence with Transport Handler, 73
comparison of 3.5 plugin to 4.0 plugin, 3
compatibility with other plugin code, 5, 12
configuring concurrent with Transport Handler, 77
distributed platform, 80
error when not initialized, 52
error when servlet not configured, 58
how HTTP server knows to initialize, 11
IVP, 13
limiting number of J2EE servers, 94
overview, 2
passing request over to WAS 4.0 container, 3
restriction as to where it can run, 94
routing requests to WAS runtime, 26
servlets in WAS 4 plugin, 13
still exists in V4.01, 73
when to use vs. Transport Handler, 6
which to use, 5
why not in DMZ, 80

PolicyIVP
and jvm.properties file, 39
and was.conf, 39
application dispatching example, 41
context root definition for, 23
example of httpd.conf coding, 39
example of httpd.envvars coding, 39
example of servlet mapping, 24
example of WAR file, 24
overview of, 37
server region SYSPRINT, 40
webcontainer.conf example, 40

port
80 and Transport Handler, 76
avoiding conflict, 75
SMS level at which to set Transport Handler port, 75
specifying for Transport Handler, 74
used by HTTP Server and Transport Handler, 73
verifying Transport Handler listen, 76

precedence
order of matching on context root, 22
when app in both plugin and container, 92

proxy
configuring a DMZ, 94

PTF
to fix port 80 problem, 18

R
recursive error

problem when servlet mapping not matched, 63
when servlet not found, 65

RESOLVE_IPNAME
pointer to SMS server location, 13
problem when not pointed properly, 62
update in httpd.envvars, 13

Configuring Web Applications in WAS 4.0

Thursday, April 18, 2002- 98 -© 2001, IBM Corporation, Wash. Systems Center

updating WAS 3.5 httpd.envvars, 68
RESOLVE_PORT

pointer to SMS server port, 13
problem when not pointed properly, 62
update in httpd.envvars, 13
updating WAS 3.5 httpd.envvars, 68

reverse proxy
illustration of, 81
plugin and Transport Handler behind, 78
using with DMZ configuration, 94

RMI/IIOP
flow from plugin to web container, 80

rooturi
analagous to context root, 19

route
can not route from plugin to Transport Handler, 76

S
Security

HTTP Authentication, 87
server regions

can not separate from control regions, 79
ServerInit

statement in httpd.conf, 11
ServerInit statement

coding only one for plugin, 11
what it does, 11

ServerTerm statement
coding only one for plugin, 11
what it does, 11

Service handler
performed no action problem, 52, 53, 54

Service statement
coding more than 1, 11
error when miscoded, 53
error when not found, 52
used for SimpleJSPServlet, 48
used in PolicyIVP example, 39
validating it gets invoked, 31
what it does, 11

servlet mapping
background on how it works, 24
definition in web.xml, 24
error when not matched by URL, 63
problems that can arise, 34
relation to context root, 24
used in PolicyIVP example, 38

servlets
running in WAS 4 plugin, 13

SimpleJSPServlet
creating war file with JAR command, 46
how it works, 43
Service directive, 48
using AAT to construct EAR, 47
web.xml file, 45
webcontainer.conf file, 47

smiley face, 13
SMS EUI

used to deploy SimpleJSPServlet, 48

SMS server
ownership of the webcontainer.conf file, 16
pointing plugin to, 13
using GUI to set Transport Handler port, 75

SSL
not supported in Transport Handler, 73

static files
serving from WAS, 25
SimpleFileServlet program, 26

string matcher table
found in ncf log, 32
relation to application dispatching, 32

SYSPLEX
extending into DMZ, 80

SYSPRINT
checking with Transport Handler, 28
PolicyIVP example, 40
setting TRACEBUFFLOC to, 36
what applications are bound, 28
what webcontainer.conf is used, 28

T
TCP

ports, 73
TRACEBUFFLOC

setting to SYSPRINT, 36
tracelevel

setting in was.conf, 33
transport handler

as part of migration, 72
binding application to it and plugin, 83
binding webapps, 81
can not accept flow from plugin, 76
can not route to other server webcontainers, 78
checking SYSPRINT for bound applications, 28
coexistence with plugin, 73
configuring concurrent with plugin, 77
configuring multiple, 75
error when context root doesn't match, 85
error when virtual host doesn't match, 85
feature overview, 73
other parameters, 83
overview, 73
port parameter, 74
relationship with webcontainer.conf, 16
SMS level at which to set port variable, 75
verifying port on which it listens, 76
when to use vs. plugin, 6
why not in DMZ, 78

U
UQ57590

fixes port 80 problem, 18

V
V4.01

Transport Handler overview, 73
validation

correct class file invoked, 36
of webapp not run locally, 32

Configuring Web Applications in WAS 4.0

Thursday, April 18, 2002- 99 -© 2001, IBM Corporation, Wash. Systems Center

that some portion of app works, 36
that URL gets to webserver, 31
that URL maps to plugin, 31
URL mapped to WAS runtime, 33

verification
of WAS plugin, 13
that plugin knows of applications, 30
WAS plugin IVP program, 13

Virtual Host Not Found
error when application not bound, 61
error when plugin not connected to WAS server, 62
error when URL does not match virtual host, 59
when URL does not match context root, 59
when WAS appserver not started, 56
when webcontainer not configured, 56

virtual hosts
alias in webcontainer.conf, 16
alias list in SYSPRINT, 29
and context roots, 16
binding an application to multiple, 23
binding applications to, 19
binding to multiple, 22, 83
coding in lower case, 19
concept, 16
defining in webcontainer.conf, 17
defining more than one, 18
defining only one, 17, 21
error when no match with Transport Handler, 85
error when URL does not match, 59
indication of applications bound, 28
problem symptom when app not bound, 61
same defined in plugin and container, 92
using localhost value, 23

W
WAR file

creating one by hand, 44
example of for PolicyIVP, 24
using WinZIP to view, 46

WAS
from distributed platform and plugin usage, 80
plugin configuration file, 11
plugin for WAS 4.0, 3
which plugin to use, 5
why called plugin, 2

WAS 3.5
changing to WAS 4.0 plugin, 69
updating to work with WAS 4.0, 68

was.conf
3.5 file used with 4.0 plugin, 69
configuration file for plugin, 11
enabling tracing, 33
pointer to plugin jvm.properties file, 93
using 3.5 version with 4.0 plugin, 12

web application
binding to virtual host, 19
custom error pages, 64
fundamental aspects, 1
migrating from plugin to WAS 4.0 runtime, 71

overview, 1
plugin vs. runtime execution, 26

web container
error when not configured, 56
indication of file in use, 28
overview, 4
serviced by its transport handler, 78
using localhost value for virtual host, 23

web.xml
coding custom error pages, 64
creating for SimpleJSPServlet, 45
problems when coded improperly, 63
problems when hand-coding, 65

webapp/examples
IVP program, 13

webcontainer.conf
and PolicyIVP example, 40
creating, 15
default supplied with WAS, 16
error when not configured, 56
for SimpleJSPServlet example, 47
pointer from jvm.properties, 15
still needed with Transport Handler, 16
why SMS ID should own file, 16

WebSphereSampleApp.ear
sample application supplied with WAS, 91

wildcards
in context root strings, 21
order of precedence for matching, 22

WinZIP
use to view WAR file, 46

ws390crt.jar
updating WAS 3.5 to work with WAS 4.0, 68

X
XML

tag for context root, 23

Configuring Web Applications in WAS 4.0

Thursday, April 18, 2002- 100 -© 2001, IBM Corporation, Wash. Systems Center

(This page intentionally left blank)

End of Document

