March 26, 2002

The Name Game:
WebSphere z/OS JNDI
Naming Concepts

Kenneth J. Muckenhaupt
IBM Design Center for e-transaction processing
kenjm@us.ibm.com

The Name Game: WebSphere z/OS JNDI Naming Concepts
TOC

Table of Contents

Acknowledgments
Purpose of this Technical Paper
What Is A JNDI Namespace?
JNDI Naming Under WebSphere z/OS
Creating EJB Instances During Runtime

Anatomy Of A WebSphere z/OS LDAP Entry
How To Lookup An EJB
Locating Datasources Under WebSphere z/OS
Mapping EJB Resource Reference Names To J2EE Datasources
Debugging Common JNDI Naming Problems

Naming Registration Failure and NoClassDefFoundError
NameNotFoundException
No Such Object

Summary
References

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 2

Acknowledgments

The following people provided valuable technical and editorial input during the writing of this
technical paper:

Don Bagwell, IBM Washington Systems Center

Mike Cox, IBM Washington Systems Center

John Gates, IBM WebSphere Enablement Team - ZOS and OS/390

Andrew Mauer, IBM WebSphere z/OS Devel opment

Hong Min, IBM Design Center for e-transaction processing

Bart Tague, IBM Design Center for e-transaction processing

Holger Wunderlich, IBM International Technical Service Organization (ITSO)

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 3

Purpose of this Technical Paper

Java® Naming and Directory Interface™ (JINDI) naming concepts can be one of the most
confusing aspects of developing or porting Java 2 Enterprise Edition (J2EE) applications on the
WebSphere® z/0S™ platform. Thistechnical paper will dispel some of the mystery surrounding
J2EE IJNDI naming concepts by

¢ Providing an overview of JNDI namespace principles
« Describing how the namespace isimplemented in WebSphere z/OS
¢ Addressing some common naming problems

What Is A JNDI Namespace?

A INDI namespace can be thought of as a specialized environment which identifies and
describes the attributes of an application’ sEnterprise JavaBeans™ (EJBs). Within this
specialized environment are the names by which EBs are referenced by other code within an
application. Typically, this other “code” isservlets and other EBs that make up a 2EE
application.

According to the Enterprise JavaBeans Specification, v1.1, every EJB has an associated
environment that is declared in the EJB’s deployment descriptor . Recall that anEJB’s
deployment descriptor isaspecial “profile” that describes the attributes of an EJB. This
descriptiveinformation, also known as “meta data,” is used by application assembly and
deployment tools such asthe IBM® Application Assembly Tool (AAT) and Systems
Management Extended User Interface (SMEUI) for zZOSto install EBs into a container.
Furthermore, the container uses the deployment descriptor meta data to manage an EJB during
runtime. Since the environment description is outside of the EJB’s source code, an EJB can be
customized without ever changing the EJB’'s code. Therefore, the platform transparency of EBs
can be maintained while only the deployment information needs to be altered for each target
platform.

JNDI Naming Under WebSphere z/OS

So what does all this have to do with the INDI namespace? One of the attributesin anEJB's
deployment descriptor identifies the name of the EIBitself. The name of anEJBis used by
application code to find or look up an EJB in anamespace. When a deployment tool installs an
EJB into a WebSphere z/OS container, it gathers information about each EJB in an application,
and determines where in the INDI namespace the home for that bean should be stored. Then, as
part of the application installation process, references to the EJB homes are bound into the JNDI
namespace with the supplied name. Since WebSphere z/OS utilizes an LDAPdatabase as the
backing store for its INDI implementation, an LDAPentry is created for the home references.
Therefore, when an application such as a servlet or an access bean wants to create an instance

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 4

of an EJB, it simply looks up the name of the desired EJB in the namespace created by the
deployment process.

Asshown in Figure 1, INDI naming under WebSphere z/OS can be summarized with following
fundamentals:

1. All EBs have adeployment descriptor that, among other things, contains the name of the
EJB.

2. During EJB deployment into a server, the SMEUI determines the name under which the
home reference should be bound in the INDI namespace. This namespace isbacked in
LDAP.

3. A global environment or initial context is the required starting point for locating EJBs in a
JINDI namespace.

4. During bean development, if an EJB devel oper references an external EJB in their runtime
code, then they must make that evident by defining an <ejb-ref> tag with /ejb/home-name in
the EJB’ s deployment descriptor. Thisisthe string that gets passed to the lookup()
method to locate an external EJB under the java:comp JNDI context.

Figure 1. INDI Namespace Fundamentals

J2EE Container

JNDI registration
Deployment

Descriptor

JNDI NameSpace

DepositSB

WithdrawSB

TransferSB
DepositSB

Withdr awSE

TransfersS8
Runtimecode | A e
InitialContext ctx = new InitialContenat(y, | % N [T
wish = cti lookup{“ebAithdrawSB"), —_

EJB creation

The Name Game: WebSphere z/OS JNDI Naming Concepts

Page 5

Creating EJB Instances During Runtime

To access an EB'’s registered deployment descriptor information, an application must first
create an instance of theinitial context. Oncetheinitial context is obtained, then the application
can look up the home or factory used to create an instance of the target EJB.

Asyou can seein Figure 1, the J2EE container’ s scope of control encompasses the deployment
descriptor, the INDI namespace, the application, and the instance of the target EBB. When an
EJBisfirst accessed, for example when the first method is driven on an EJB, the container loads
the EJB’s meta data and establishes itsjava.comp namespace.

Creating EJB Instances With The Java: Logical Reference

WebSphere z/0OS complies with the Enterprise JavaBeans Specification, v1.1 by providing a
JNDI naming implementation based on the Lightweight Directory Access Protocol (LDAP).
LDAPprovides adirectory structure for efficiently locating namesin anamespace. When you
deploy a 2EE application (serviets and EJBs) into a WebSphere z/OS container with the SMEUI,
the Systems Management and Naming components of the WebSphere z/OS runtime work
together to register the EJB home instances into the namespace. The registration process uses
the deployment descriptor located in the EAR file to generate an indirect object reference (IOR)
for the home interface which is stored in the LDAP database for each EJB.

Even though all EJB home references are stored in LDAP under WebSphere z/OS, EJB providers
can designate alogical meansfor creating EJB instances during runtime. Thejava: namefor a
homeisalogical name which an EJB provider specifies during runtime when they desireto
create instances of a certain type of bean. Therefore, the EJB deployer must map the logical
home to the physical home so that at runtime the lookup succeeds. Since EJB providers at
development time do not know where in the namespace the home reference is going to be found,
they can use the <gjb-ref> XML tag in the gb-jarxml file to declare that the EJB contains runtime
codethat is going to lookup and use a home. Therefore, the logical notation,
java:comp/env/ejb/home-name, is passed on the lookup method call. To ensure a successful
lookup, the deployer (the person responsible for creating the server with the SMEUI) must make
sure that the declared java:comp name returns the EJB’ s home reference wherever it islocated.
The WebSphere z/OS container is ultimately responsible for determining how to return the home
reference. Y ou should understand that the java: namespace is a container-use only namespace
that provides quick retrieval of important bean related objects during the container managed life
cycle of an EJB.

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 6

Anatomy Of A WebSphere z/OS LDAP Entry
The fully-qualified INDI namespace reference for the WithdrawSB EJB shown in Figure 1 could
be represented by the following LDAPentry:

ibm-wsnName=sb, ibm-wsnName=Withdraw, ibm-wsnName=BankA pp, ibm-wsnName=sample,
ibm-wsnName=pok, ibm-wsnName=IlegacyRoot, ibm-wsnName=PEL PLEXT,
ibm-wsnName=domainRoots, ibm-wsnTree=t1, o=wasnaming,c=us

ibm-wsnentrytype: |ORL eaf
ibm-wsnname: WithdrawSB

corbai or: OR:0000000000000040524d493a64602e64616€7360652663722e6c6561646170706c2€70726
62652€73622e50726f62655342486f60653a30303030303030303030303030303030000000000249424d0
000002040001000000000038d7f 2f04040404040d7c5d3d7d3c5e7€30100000000000008c4c1cod4d6ds
f0f100000011d7f 2f0c24bc5e3d 74bc9c2d44bc3d6d40000000000000175000000b4d6d9¢2d200000002
cAd5e2d2e2d9e500070216a75e0489860000081400000140c0a3008c02000000000000000000004009d4
€97884924h848195a292854h839940938581848197979340b979996828540a2824hd 79996828562c2c896
94857af0f Of Of Of OfOFOf Of OF Of OFOf Of OF OF0O00000003084924h84819552928540h839949385818481979793
497999682854ba2824hc501e2d9859496a385626381a3859385a252079996828562¢2¢8969485000000
(00000000K90000000000000001000000000000000000000000000000000000009dH7057h6ed 739986700
0008600000001 7c0a8008ch 705 7b6dd2360808000008600000001 7c0a8008ch 705 7b6dd89h062a00000
8600000001 7c0a8008cc2d5c9c40000000100000001000000010000000db 7057b6cd73998a7000008600
000001 7c0a8008ch7057h6dd236808000008600000001 7c0a3008ch 7057h6dd89h062a000008600000
0017c0a8008c6d60889694850686c8969485a2000000001.30009000000030000000000000008000000004
9424d0049424d04000000070005000102000000000000010000001c000000001002041700000001100204
1710020417000000011002041700000000000002000001010000000011503230422e45545026494240264
34f40d000015b300000175000000b4d6d9c2d200000002c4d5e2d2e2d9e500b 70216a756048980000081
400000140c0a8008c020000000000000000000040d9d4c97a84924b848195a292854h83994b938581848
19797934097999682854ha2824bd 799968285e2c2c89694857af Of Of Of Of Of Of Of O Of OF O Of Of OfF Of 0OO00000
03d84924h8481958292854h83994h938581848197979340b97999682854ha2824hc5d1e2d9859496a385e
2a381a3859385a2a2d799968285e2¢2¢8969485000000000000000b9000000000000000100000000000000
(0000000000000000000000009db 7057h6ed 7399847000008600000001 7c0a8008ch7057h6dd236b30800
0008600000001 7c0a3008ch7057b6dd89h062a000008600000001 7c0a8008cc2d5¢9c400000001000000
(01000000010000000db7057h6cd73998a7000008600000001 7c0a8008ch 705 7b6dd2368080000086000
00001 7c0a8008ch7057b6dd890062a000008600000001 7c0a8008c6d6d889694850686c8969485a20000
(00000000000000000500000000000000080000000049424010049424d04000000070005000102000000494
240d0100000010d7f2f0c24bc5e3d74bc9c2d44bc3d60449424d0000000000000000010000001c0000000
0100204170000000110020417100204170000000110020417

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 7

To understand alittle more detail about how JNDI naming isimplemented under WebSphere
Z/OS, let us breakdown the preceding LDAPentry into its constituent parts.

The following directory path, which is entered into the SMEUI by the deployer, maps the
WithdrawSB EB:

/PEL PLEXT/legacyRoot/pok/sampl e/Bank A pp/Withdraw/sb/WithdrawSB

This path can be represented graphically by the following diagram:

PELPLEXT
legacyRoot
pok
sample
BankApp
Withdraw
sb
WithdrawSB

PELPLEXT: This entry represents the SYSPLEX on which the WebSphere z/OS application
server isrunning.

L egacyRoot: This entry represents the root anchor for the remaining segments of the LDAP
entry.

pok/sample/BankA pp/Withdraw/sb/WithdrawSB: Thisisthe fully-qualified directory path
which maps to the WithdrawSB EJB home. This segment typically mapsto a package namein
VisualAge® for Java or a source path in the WebSphere Studio Application Development
(WSAD) tool.

Thefinal significant segment of the LDAPentry for an EJB istheIOR. AnlORisa
CORBA-defined construct that uniquely identifies an object in a namespace. When your code
performs alookup on theinitial context, the WebSphere z/OS Naming service returns areference
to thetarget EJB’shome. Once thisreference to the EJB’s homeis returned, application code
must convert it to areference to an EJB home interface through a process called narrowing.
With the reference to the EJB home, the application can create an instance of the EJB by driving
the create () or find by Primary Key () methods on the EJB home.

How To Lookup An EJB

The following code sample shows the typical technique for establishing aninitial context,
performing a INDI look up on the context, narrowing the home reference, and creating an
instance of a WithdrawSB EJB:

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 8

/I Get theinitial context
InitialContext ctx= new Initial Context();

/I Look up the WithdrawSB EJB in the INDI namespace
Object obj = ctx.lookup("java:comp/env/BankApp/WithdrawSB");

/I Narrow the obj reference to an EJB home reference
wsbRef = (pok.sample.BankApp.Withdraw.sb.WithdrawSB)
portableRemoteObject.narrow(obj,
pok.sample.BankA pp.Withdraw.sb.WithdrawSB.class);

/I Create an instance of the WithdrawSB EJB

wsh = wsbRef .create();
O

Wsh = wsbRef.findByPrimaryK ey(<key>);

Note: Application development tools such as IBM’sVisualAge for Java and the WebSphere
Studio Application Development tool provide wizards for generating access beans that contain
code for performing the initial context look up and instantiation of EJBs. By using these wizards,
you do not have to code the INDI look up operations yourself. Instead, all you havetodois
create an instance of the access bean and all the INDI naming resolution is done in the access
bean.

Locating Datasources Under WebSphere z/OS

WebSphere z/OS does not store datasource entries in LDAP, rather to ensure faster accessto
database resources, these entries are stored exclusively in aJNDI cache. Therefore, datasource
lookup strings for J2EE applications on WebSphere z/OS must begin with the java:comp/env
string. For example, lookup string for the datasource that might support the banking application
referred to earlier could be “java:comp/env/jdbc/BankA ppDataSource.”

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 9

Mapping EJB Resource Reference Names To J2EE Datasources

During application assembly, you specify datasource reference names or lookup names for EJBs
on the Resources tab of the AAT. Inthe example we are using, the Reference name for the
banking application would be jdbc/Bank AppDataSour ce.

When you deploy this application into a WebSphere z/OS server, you must define a J2EE
resource and J2EE resource instance that represent a datasource that your EJBs access. Then,
when you import the EAR file for your application into the SMEUI, you map the INDI hame of
the datasource that each EJB accesses to the J2EE resource specified on the SMEUI. Thisis
done through the Reference and Resource Resol ution panel displayed by the SMEUI during the
deployment process. When the SMEUI creates the container for the server, the datasource
name, in this case jdbc/BankAppDataSource, isregistered in the INDI namespace under the
java:comp/env context.

Finally, to perform alookup on thisdatasource during runtime, provide the following codein
your servlets or access beans:

/I Get theinitial context
InitialContext ctx= new Initial Context ();

/I Look up the datasource in the INDI namespace

DataSource ds = ctx.lookup("java:comp/env/BankAppDataSource™);

Instead of hard coding the datasource lookup string in the code itself, you can specify the string
asavariablein apropertiesfile that you can read during servlet initialization or access bean
construction. Thisallows you to change the datasource name if necessary without regenerating
thejar file that contains the access code. Several Java classes such the Properties and Resource
Bundle classes provide methods for managing and accessing propertiesfiles.

Figure 2 shows the interaction between alookup in application code on a JDBC resource and
how that lookup resolvesto areference to the actual database mapped by that reference.

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 10

WebSphere z/0S
J2EE Container

JNDI NameSpace
(cache)

BankAppDataSource

Application code
Initial Context ctx = new InitialContext();
ds = cbx lockup{'java.complenvidbc/BankAppDataSource"), ~——]

JDBC Datasource

Figure 2. Datasource lookup in the INDI namespace.

Debugging Common JNDI Naming Problems

When you deploy a J2EE to a WebSphere z/OS container for the first time, especially if you
migrate an application from distributed WebSphere, you may encounter some problems related
registering or accessing J2EE objectsin the INDI namespace. This section addresses some of
the most common problems and what you can do to resolve them.

Naming Registration Failure and NoClassDefFoundError

A Naming registration failure manifestsitself as amessage displayed on the OS/390° or Z/OS
console. Thefirst timeaserver region is started after you deploy an application through the
SMEUI, the names of all EBBs and servlets are registered in the INDI namespace. If an exception
isthrown during the Naming registration phase, this message is posted to the console.

To debug this problem:

Under SDSF, locate the active server region job.

Expand the job into its constituent partswith the‘? line command.

Select the SYSPRINT file and locate the bottom of the trace.

Search backward using the word ‘ exception’ as a search argument.

Once you locate an exception trace entry, search for a Java stack trace that might identify
the source of the naming registration problem. Typically, this problem occurs when the

g~ N PRE

The Name Game: WebSphere z/OS JNDI Naming Concepts

Page 11

Naming server cannot locate a class referenced by an object such asan EJB in the runtime
environment. During JNDI registration, the container requiresthat all classes referenced by
objects be available. The topmost entry in the Java exception stack trace identifies the class
that the container cannot locate. Usually, a NoClassDef FoundError exception is posted in
the stack trace.

6. When you have identified the missing class, locate the .jar file that contains that classin the
HFS directory and add the path to that .jar file to the CLASSPATH record in the current.env
file

NameNotFoundException
The exception:

“Name <name> not found in context "java:comp/env": NameNotFoundException” frequently
occurs when a server application fails to locate areference (<name>) in the INDI namespace.
The code that populates the java: namespace relies on exception triggered recursion during the
loading process. Thefirst time EBs are referenced, much of the java:comp namespace structure
does not exist for the EJB being activated. The container detects this fact through
NameNotFoundExceptions. For these cases, the container’s code that popul ates the namespace
correctly builds the missing portions before trying to bind in the java: information.

However, this exception can aso occur for failed datasource lookups during runtime, the typical

messageis:
Namejdbc not found in context "java:comp/env": NameNotFoundException

In this case, the datasource name specified in the code on the lookup method call, in a properties
file, or environment variable does not contain the java:comp/env prefix. To correct this problem,
ensure that the datasource name includes this prefix. For example, if your datasource nameis
jdbc/BankAppDataSource, it must be defined asjava:comp/env/ jdbc/Bank AppDataSour ce.

No Such Object

Another exception thrown frequently by the javax.naming classis
javax.naming.NameNotFoundException: LDAP: Error code 32 - No Such Object
Remaining name ‘ibm-wsnName=< nhame> ,ibm-wsnName=jdbc’

Thiserror occurs when you do not pass the “java:comp/env” prefix on the lookup() method
when you lookup a datasource name. To remedy this problem, add the “java:comp/env” prefix
to the parameter string passed to the lookup() method. To ensure platform neutrality, specify
the datasource ook up string in a properties or environment file. Thisway, you can have one
version of the datasource name on distributed and another on z/OS. The z/OS version must
contain the java:comp/env prefix.

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 12

Class violates loader constraints

Whilethis condition is not directly related to JINDI naming, it frequently occurs after you correct
a NameNotFoundException or NoClassDef FoundError. In this case, the container has
successfully located the reference in the INDI namespace but it is unable to load the class
associated with the reference. The following exception isthrown and is displayed at the top of
the java exception stack in the server region’sSY SPRINT log:

javalang.LinkageError: Class <classpath/classname> violates classloader constraints.

To solvethis problem, try changing the classloader mode in the server region’ sjvm.properties
file. WebSphere z/OS usesclassl oader mode 1 (compatibility mode). To change the mode,

1. Edit the server region’ sjvm.properties file which can be found in HFS directory
WebSphere390/CB390/controlinfo/envfile/<sysplex-name>/<server-name>/.
2. Addthefollowing lineto thefile:
com.ibm .ws390.server.classloadermode=n wherenisvalueO, 1, 2, or 3.
Note: For detailed information about WebSphere z/OS classl oader modes, see the
documentation for APAR PQ53684.

Summary
Thistechnical paper focused on INDI naming concepts that programmers, application

assemblers, server application deployers should keep in mind when designing and deploying
J2EE applications into WebSphere z/OS servers. These conceptsinclude:

« EJB names are specified in the deployment descriptors and these names areregisteredin a
JNDI namespace during J2EE application deployment.

« Datasource names can be hard coded, specified in propertiesfiles, or defined with
environmental variables. For WebSphere z/OS, datasour ce names must be prefixed with the
string “ java: comp/env” .

¢ Client code, such as servlets and access beans, must obtain a referenceto a server’sinitial
context and then drive a lookup for an EJB or datasource on theinitial context.

» To debug common JNDI naming problems on WebSphere zZ/OS, analyze the Java exception
stack traces that are posted in the server region’s SYSPRINT log.

The Name Game: WebSphere z/OS JNDI Naming Concepts
Page 13

References
Enterprise JavaBeans Specification, v1.1
Sun Microsystems, Inc.

WebSphere Application Server V4.0 and V4.0.1 for Z/OS and OS/390
Configuring Web Applications

Donad C. Bagwell

IBM Washington Systems Center

Enterprise JavaBeans for z/OS and OS/390 WebSphere Application Server
IBM Redbook SG24-6283

The Name Game: WebSphere z/OS JNDI Naming Concepts

Page 14

Copyright IBM Corporation 2002

IBM Corporation

Marketing Communications, Server Group
Route 100

Somers, NY 10589

US.A.

Produced in the United States of America
03/02
All Rights Reserved

IBM, IBM logo, e-business logo, OS/390, VisualAge, WebSphere, and z/OS are trademarks or registered
trademarks of International Business Machines Corporation of the United States, other countries or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States,
other countries or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Intel is a trademark of Intel Corporation in the United States, other countries or both.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Information concerning non-IBM products was obtained from the suppliers of their products or their published
announcements. Questions on the capabilities of the non-IBM products should be addressed with the suppliers.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our
warranty terms apply.

IBM may not offer the products, services or features discussed in this document in other countries, and the
information may be subject to change without notice. Consult your local IBM business contact for information on
the product or services available in your area.

All statements regarding IBM'’s future direction and intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard
IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary
depending upon considerations such as the amount of multiprogramming in the user’s job stream, the

1/0 configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given
that an individual user will achieve throughput improvements equivalent to the performance ratios

stated here.

