IBM Worklight V5.0.5
Getting Started

Module 8.3 — iOS Development Using the
Apache Cordova Plug-in

18 January 2013

© Copyright International Business Machines Corporation 2011, 2013. All rights reserved.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation, registered in many jurisdictions
worldwide. Worklight is a trademark or registered trademark of Worklight, an IBM
Company. Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the Web at “

” at

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Other company products or service names may be trademarks or service marks of
others.

This document may not be reproduced in whole or in part without the prior written
permission of IBM.

About IBM®

See

© Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

Agenda

Apache Cordova plug-in overview

Implementing an Objective-C code plug-in

Adding a plug-in to DOM

Invoking a plug-in from JavaScript

© Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

Apache Cordova plug-in overview

Occasionally within a Worklight® application, developers need to use
a specific third-party native library or a device function that is not yet
available in Apache Cordova.

Apache Cordova allows developers to create custom native code
blocks and invoke them using JavaScript.

This technique is called an Apache Cordova plug-in.

This module demonstrates how to create a simple Apache Cordova
plug-in and how to use it in your code.

More samples can be found in the Apache Cordova documentation
at

4 © Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

Apache Cordova plug-in overview

= An iOS Apache Cordova plug-in consists of two parts:
— An Objective-C code which runs natively in iOS.
— A JavaScript wrapper .

= When both parts are implemented, you can call native code from JavaScript
in a simple and familiar way.

JavaScript
Wrapper

Native
code

| myFunc(params);

© Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

[[m]]
Il
nll

Agenda

Apache Cordova plug-in overview

Implementing an Objective-C code plug-in

Adding plug-in to DOM

Invoking plug-in from JavaScript

© Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

iy

Implementing an Objective-C Code plug-in

= Add your plug-in definition to the Plugins section of the Cordova.plist file.

= Use a custom name for the key and the class name of the plug-in for the value.

> DCIBSES ¥ Plugins Diction.._ {25 items)
> gther bources ache_cordova.SplashScreen String CDVSplashScreen
v
= esuur_ces MatificationEx String MotificationEx
B | | Settings.bundle =
= _ Badge String Badge
%| Default~iphone.png 0 d - |
& Default@2x~iphone.png org.apache.cordova.Accelerometer Slr!ng CDVAccelerometer
4! Icon.png org.apache_cordova.Camera String CDVCamera
+ Icon-small.png org.apache.cordova.MediaCapture String CDVCapture
S warklioht olist org.apache.cordova.Connection String CDVConnection
ordova.p org.apache.cordova.Contacts String CDVCaontacts
modaie T GhE-TATG pIis org.apache.cordova.DebugConsole String CDVDebugConsole
» || Resources-iPad org.apache.cordova.File O G String CDVFile
¥ || Frameworks org.apache.cordova.FileTransfer String CDVFileTransfer
» || Products org.apache.cordova.Geolocation string CDVLocation
org.apache.cordova.Notification String CDVNotification
org.apache.cordova.Media String CDVSound
org.apache.cordova.battery String CDVEBattery
SecurityPlugin String SecurityPlugin
NativePage String NativePage
MNetworkDetector String NetworkDetector
Push String Push
UlCaontrals String UlContrals
WLAPP String WLAPP
WLNatification String WLNotification
WebResourcesDownloader String WebResourcesDownloader
DreviTEATT Seri DreviTeATThPiTg T
[HelloWerldPlugin String HelloWarldPlugin]

7 © Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

Implementing an Objective-C Code plug-in

= Start by creating an Objective-C class for a plug-in. Call it HelloWorldPlugin

for a callbackId and required the custom methods.

= |Import the CDVPlugin.h and inherit the CDVPIlugin class. Add a property

Eimport <Foundation/Foundation. h=
#Fimport <=Cordova/COVPlugin. h=

L

B HellowWorldPlugin.h
E| HelloWerldPlugin.m

[e I Y

-

@interface[HeanHandPlugin

N&Strinmg *callbackIa;

: CDVPLlugin{ |

1

[—{uoid]sayHelln:{NSMutabLeArray*]arguments withDict:{NSMutableDictionary*]Dptinns;]
@property (monatomic, copy) NSString# callbackId;

@end

© Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

Implementing an Objective-C Code plug-in

= Implement the method:

#import "HelloWorldPLlugin.h"

@implementation HelloWorldPlugin

@synthesize callbackId;

—({void)sayHello: (NSMutableArray*)arguments withDict: (NSMutableDictionary#*)options{
self.callbackId = [arguments popl;

MEString #responseString = [MSString stringWithFormat:@"Hello World, %@", [arguments
objectAtIndex:8]];

CDVPLuginResult #pluginResult = [CDVPluginResult resultWithStatus:CDVCommandStatus_OK
messagefdsString: responsestring];

[self writelavascript: [pluginResult toSuccessCallbackString:self.callbackId]];

}

@end

9 © Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

Implementing an Objective-C Code plug-in

= Implement the method:

#import "HelloWorldPLlugin.h"
@implementation HelloWorldPlugin

@synthesize callbackId;

[—{void]sayHellu:{NSMutableArray*]arguments withDict: (NSMutableDictionary*)options{]

self.callbackId = [arguments popl;

M5String #responseString = [NSS5tring stringWithFormat:@"Hello World,
objectAtIndex:8]];

[arguments

COVPluginResult #pluginResult = [CDVPluginResult resultWithStatus:CDVCommandStatus_OK
messageAsString: responseString];

[self writelavascript: [pluginResult tof

' Function arguments are received

@end as a standard NSMutableArray

object.

10 © Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

Implementing an Objective-C Code plug-in

= Implement the method:

#import "HelloWorldPLlugin.h"

@implementation HelloWorldPlugin

@synthesize callbackId;

—{void)sayHelle: (NSMutableArray*)arguments withDict: (NSMutableDictionary*)options{
self.callbackId = [arguments popl;

M5String #responseString = [NSS5tring stringWithFormat:@"Hello World, %a",
objectAtIndex:8]];

[arguments

COVPluginResult #pluginResult = [CDVPluginResult resultWithStatus:CD Status_OK
messageAsString: responseString];

[self writelavascript: [pluginResult tof

}

@end

The first argument contains a

reference to the success and
failure callbacks.

Following arguments are custom.

© Copyright International Business Machines Corporation 2011, 2013. All rights reserved

Implementing an Objective-C Code plug-in

= Implement the method:

#import “HelloWorldPlugin.h" The pluginResult object is created

@implementation HelloWorldPlugin and pOpUIated with a response

message (can be string, dictionary,
array and so on.)

@synthesize callbackId;

—{void)sayHello: (NSMutableArray+)argume

self.callbackId = [arguments popl;

M5String *responseString = [MNS5tring stringWithFormat:@"Hello World, % rguments
objectAtIndex:8]];

COVPluginResult #pluginResult = [CDVPluginResult resultWithStatus:CDVCemmandStatus_0
messageAsString: responseString];

}

@end

ﬂ
[self writelavascript: [pluginResult toSuccessCallbackString:self.callbackId]];

© Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

Implementing an Objective-C Code plug-in

= Implement the method:

The writeJavascript method is
used to return a response back to
JavaScript. The pluginResult

#import "HelloWorldPLlugin.h"

@implementation HelloWorldPlugin

@synthesize callbackId;

object has the
toSuccessCallbackString and the
—{void)sayHello: (NSMutableArray+)arguments wi

toFailureCallbackString methods.
self.callbackId = [arguments popl;

M5String *responseString = [MNS5tring stringWithFormat:@"Hello World, %
objectAtIndex:8]];

", [arguments

COVPluginResult #pluginResult = [CDVPluginResult resultWithStatus:
messageAsString: responseString];

mmandStatus_0K
}

@end

[[self writelavascript: [pluginResult toSuccessCallbackString:self.callbackId]];]

© Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

Agenda

= Apache Cordova plug-in overview

= Implementing an Objective-C code plug-in
» Adding a plug-in to DOM

= |Invoking a plug-in from JavaScript

© Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

Adding a plug-in to DOM

= The second step of the plug-in implementation is to declare it in the DOM
and create a wrapper for it:

Tf:mcticm HelloWorldPlugin() {
}

THElloWarldPlugin .prototype.=s

function {(onSayHelloSucces=s, onSayHelloFailure, name) {
cordova.exec (onSayHelloSuc nSayHellaFailure, "HelloWorldPlugin®™, "sayHello™, [name]):;
b

cordova.addConstructor {(function() {

if (!window.plugins) window.plugins = {
window.plugins.helloWorldPlugin = new

First, create an empty function that
1)

will serve as a wrapper for the plug-in.

© Copyright International Business Machines Corporation 2011, 2013. All rights reserved

Adding a plug-in to DOM

= The second step of the plug-in implementation is to declare it in the DOM
and create a wrapper for it:

[ffhnction HelloWorldPlugin() {
}

C

HelloWorldPlugin.preototype.sayHello = function {(onSayHelloSucces=s, onSayHelloFailure,
cordova.exec (onSayHelloSuccess, onSayHelloFailure,

cordova.addConstructor (func
if (!window.plugins) windo

window.plugins.helloWorldPlu
1)

"HelloWorldPlugin®,

name) {
"sayHello™, [name]):

Create a sayHello function using
the HelloWorldplugin prototype and
hardcode the plug-in class name

and action. It invokes the plug-in
using cordova.exec() API.

© Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

Adding a plug-in to DOM

= The second step of the plug-in implementation is to declare it in the DOM
and create a wrapper for it:

Tf:mcticm HelloWorldPlugin() {
}

HelloWorldPlugin.preototype.sayHello = function (onSayHelloSuccesszs, onSayHelloFailure, name) {
T cordova.exec (onSayHelloSuccess, onSayHelloFailure, r "=ayHellao"™, [name]):;

}:
cordova.addConstructor (ticon() {

if (!window.plugins) dow.plugins = {

window.plugins.hell 1ldPlugin = new H WorldPlugin() -
1)

Success callback Plug-in Java Parameters
class name array
Failure callback Action name

17 © Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

Invoking the plug-in using JavaScript

= The second step of the plug-in implementation is to declare it in the DOM
and create a wrapper for it:

Tf:mcticm HelloWorldPlugin() {
}

The final step is to add the helloWorldPlugin
property to the DOM window.plugins object.
THElloWarldPlugin .prototype. sayHellq

From now on, you can invoke the plug-in
using
s, \vindow.plugins.helloWorldplugin.sayHello().
}:
cordova.addConstructor {(function() {
T if {'window.plugins) window.plugins = {}:
Hy:

window.plugins.helloWorldPlugin = new HelloWorldPlugin() ;

© Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

Agenda

Apache Cordova plug-in overview

Implementing an Objective-C code of a plug-in

Adding a plug-in to DOM

Invoking a plug-in from JavaScript

© Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

20

Invoking a plug-in from JavaScript

= Now you are ready to invoke and use the plug-in from JavaScript:

function greetMe(){

window,plugins,helloWorldPlugin,sayHElloksayHE1105uccessJ sayHelloFailureJ|$("#NameInput"),val());
}

function sayHelleSuccess(data){
glert("OK: " + JSON.stringify(data));
1

function sayHelloFailure(data){
alert("FAIL: " + JSON.stringify(data));
1

Success and failure callbacks

© Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

21

Invoking a plug-in from JavaScript

= The sample for this training module can be found in the Getting Started page
of the IBM Worklight documentation website at

i0SApacheCordovaPlugin.ht
ml

OK: "Hello World, John Smith"

*

A

© Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

Check yourself questions

22

In order to recognize a plug-in in a JavaScript application it should be added to:

Cordova.plist file.

Worklight.plist file.

Plugins.plist file.

Plug-in will be automatically recognized by JavaScript without adding it to any of above files.

When should Cordova plug-ins be used?

When a developer wants to implement his application in the native code because he is not familiar
with JavaScript.

When a developer wants his application to look more like a native application.

When a developer wants to gain access to OS APIs which are not accessible within the web
container.

When a developer needs to retrieve data from a remote server.

What are the components of a Cordova plug-in?

Native class implementing the required functionality. It can be called directly from application's
JavaScript.

Native class implementing the required functionality and a JavaScript wrapper for it. The wrapper's
functions can be called from JavaScript.

Native class implementing the required functionality, JavaScript wrapper for it and declaration in
application-descriptor.xml file.

JavaScript wrapper only. Native classes are already provided by Worklight.

© Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

Check yourself questions

In order to recognize a plug-in in a JavaScript application it should be added to:
- | Cordova.plist file.

23

Worklight.plist file.
Plugins.plist file.
Plug-in will be automatically recognized by JavaScript without adding it to any of above files.

When should a Cordova plug-in be used?

When a developer wants to implement his application in the native code because he is not familiar
with JavaScript.

When a developer wants his application to look more like a native application.

When a developer wants to gain access to OS APIs which are not accessible within the wep
container.

When a developer needs to retrieve data from a remote server.

What are the components of a Cordova plug-in?

Native class implementing the required functionality. It can be called directly from application's
JavaScript.

Native class implementing the required functionality and a JavaScript wrapper for it. The wrapper's
functions can be called from JavaScript.

Native class implementing the required functionality, JavaScript wrapper for it and declaration in
application-descriptor.xml file.

JavaScript wrapper only. Native classes are already provided by Worklight.

© Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

Notices

. Permission for the use of these publications is granted subject to these terms
and conditions.

. This information was developed for products and services offered in the U.S.A.

= IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any
IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-1BM product,
program, or service.

. IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

— IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA.

. For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law
IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

. The followmg paragraph does not apply to the United Klngdom or any
other country where such provisions are inconsistent with lo
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement
may not apply to you.

. This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may ‘make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

24

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216
SA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement or any equivalent
agreement between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for
the operating platform for which the sample programs are written. These
examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these
programs.

Each copy or any portion of these sample programs or any derivative work,

must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_.
All rights reserved.

© Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

Support and comments

For the entire IBM Worklight documentation set, training material and online forums where you can post questions, see the IBM website at:

Support

Software Subscription and Support (also referred to as Software Maintenance) is included with licenses purchased through Passport
Advantage and Passport Advantage Express. For additional information about the International Passport Advantage Agreement and the
IBM International Passport Advantage Express Agreement, visit the Passport Advantage website at:

If you have a Software Subscription and Support in effect, IBM provides you assistance for your routine, short duration installation and
usage (how-to) questions, and code-related questions. For additional details, consult your IBM Software Support Handbook at:

Comments

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy, organization, subject
matter, or completeness of this document. The comments you send should pertain to only the information in this manual or product and
the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM business partner,
or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes
appropriate without incurring any obligation to you. IBM or any other organizations will only use the personal information that you supply
to contact you about the issues that you state.

Thank you for your support.

Submit your comments in the IBM Worklight forums at:

If you would like a response from IBM, please provide the following information:
Name
Address
Company or Organization
Phone No.
Email address

25 © Copyright International Business Machines Corporation 2011, 2013. All rights reserved.

Thank You

18 January 2013 © Copyright International Business Machines Corporation 2011, 2013. All rights reserved.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

