
© Copyright International Business Machines Corporation 2012, 2013. All rights reserved. 
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

18 January 2013

IBM Worklight V5.0.5
Getting Started

Module 30 – Team Development using RTC



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.2

Trademarks

IBM, the IBM logo, ibm.com, Jazz, Rational, and Rational Team Concert are 
trademarks or registered trademarks of International Business Machines Corporation, 
registered in many jurisdictions worldwide. Worklight is a trademark or registered 
trademark of Worklight, an IBM Company. Other product and service names might be 
trademarks of IBM or other companies. A current list of IBM trademarks is available on 
the Web at “Copyright and trademark information” at 
www.ibm.com/legal/copytrade.shtml.
Java and all Java-based trademarks and logos are trademarks or registered 
trademarks of Oracle and/or its affiliates.
Other company products or service names may be trademarks or service marks of 
others.
This document may not be reproduced in whole or in part without the prior written
permission of IBM. 

See http://www.ibm.com/ibm/us/en/
About IBM®



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.3

Agenda

Building Worklight® projects with the Rational Team Concert™ build 
system 

– Building and deploying hybrid resources

– Building the native binary for iOS

– Building the native binary for Android



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.4

Building Worklight projects with the Rational Team Concert build
system (1 of 2)

You can deliver the code contained within your Worklight® projects to 
Rational Team Concert™.
You can use the Rational Team Concert (RTC) build system to build 
Worklight projects by using either of the following methods:
– Request personal builds based on the private contents of your personal 

workspaces.
– Schedule regular builds based on contents delivered in a stream.
The Consumer and Enterprise editions of IBM® Worklight contain Ant tasks. 
These Ant tasks build the web code within your Worklight projects and 
deploy the build results to the Worklight Server.
Mobile operating system native SDKs contain Ant-based command-line 
interfaces, such as the Android SDK and Xcode. You can use these 
command-line interfaces to build the native executables (such as .apk files 
for Android and .ipa files for iOS) to run on the device.
Tip: If you are using the Application Center that is available in the Enterprise 
Edition of IBM Worklight, you can use the provided Ant tasks to deploy the 
native executables to the application.



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.5

Building Worklight projects with the Rational Team Concert build
system (2 of 2)

The following build and deploy tasks are supported in the Rational Team Concert build 
system:
– Building and deploying hybrid resources: You can create a build definition to 

build hybrid web code that is contained within Worklight projects.
The build definition uses the Ant tasks from the worklight-ant.jar file to build 
and deploy your hybrid code.

– Building the native binary for iOS: You can create a build definition to build 
iPhone and iPad native executables, by using the command-line interfaces provided 
with Xcode.

– Deploying the native binary for iOS to the Application Center: For details on 
deploying the native binary for iOS to the Application Center, see Command-line 
tool for uploading an application in the IBM Worklight Information Center.

– Building the native binary for Android: You can create a build definition to build 
Android native executables, by using the command-line interfaces provided with the 
Android SDK.

– Deploying the native binary for Android to the Application Center: For details 
on deploying the native binary for Android to the Application Center, see Command-
line tool for uploading an application in the IBM Worklight Information Center.



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.6

Agenda

Building Worklight projects with the Rational Team Concert build
system 

– Building and deploying hybrid resources

– Building the native binary for iOS

– Building the native binary for Android



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.7

Building and deploying hybrid resources (1 of 8)

You can create a build definition to build hybrid web code that is 
contained within Worklight projects.

The build definition uses the Ant tasks from the worklight-
ant.jar file to build and deploy your hybrid code.

To prepare the environment on the workstation that runs the Jazz™
build engine for your hybrid builds, perform the steps given in the 
following slides.



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.8

Building and deploying hybrid resources (2 of 8)

1. Create a build folder, such as:
˜/Users/username/Documents/wl.build

2. Within the build folder, complete the following steps: 
a. Create a folder named load: Use this folder to store the source 

code that Rational Team Concert™ checks out.
b. Create a folder named output: Use this folder to store the build 

output.
c. Create a file named hybrid.build.xml with the content of the 

next slide.



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.9

Content of the file hybrid.build.xml:
<project name="build" basedir="../" >

<description> build worklight project </description>
<property name="root.dir" value="/Users/username/Documents/wl.build"/>
<property name="project.path“ value="${root.dir}/load/RTCcomponent/projectname"/>
<property name="output.path" value="${root.dir}/output"/>
<taskdef resource="com/worklight/ant/defaults.properties">
</taskdef>
<target name="build_wl_apps">

<echo> build_wl_apps ${project.path}</echo>
<delete dir="${output.path}/projectname"/>
<record name="${output.path}/build.log" loglevel="verbose" append="false"/>
<app-builder nativeProjectPrefix="projectname" applicationFolder="${project.path}/apps/appname" 

outputFolder="${output.path}/projectname"> </app-builder>
</target>
<target name="build_wl_adapter">

<echo> build_wl_adapter ${project.path}</echo>
<record name="${output.path}/build.log" loglevel="verbose" append="true"/>
<adapter-builder folder="${project.path}/adapters/adaptername" 

destinationFolder="${output.path}/projectname">
</adapter-builder>

</target>
<target name="deploy_test_wl_apps">

<echo> deploy_test_wl_apps ${output.path}
</echo>
<adapter-deployer deployable="${output.path}/projectname/adaptername.adapter" 

worklightServerHost="http://..."/>
<app-deployer deployable="${output.path}/projectname/appname.wlapp" 

worklightServerHost="http://..."/>
</target>

</project>

1 2

Building and deploying hybrid resources (3 of 8)

3

4

The text in italic depends 
on your project:

1. RTCcomponent

2. projectname

3. appname

4. adaptername



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.10

Building and deploying hybrid resources (4 of 8)

d. Create an empty log file, named build.log: Log messages from 
the Ant tasks are appended to this file.

e. Add the worklight-ant.jar file: This file contains the 
following Ant tasks that are used in the hybrid.build.xml file:

• app-builder 

• adapter-builder 

• app-deployer 

• adapter-deployer

The resulting directory structure looks like the following example:
wl.build

load
output

hybrid.build.xml
build.log
worklight-ant.jar



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.11

Building and deploying hybrid resources (5 of 8)

3. Update the following parts of the hybrid.build.xml file to correspond with your 
Worklight project:

If you use the Dojo Toolkit in the application, add the following attribute to the app-builder
element:

– skinBuildExtensions="build-dojo.xml"

– This attribute is required to run the Ant tasks necessary to copy the required Dojo resources to 
the application output folder.

To share the build script among multiple build definitions, use variables instead of hard-coded
values for these settings.

– For example, use a variable, ${projectname}, and pass in the value by defining the property in 
the Rational Team Concert build definition.

Specify the name of the adapter. adaptername
Specify the name of the application. appname
Specify the name of the project.projectname

The Rational Team Concert source code component. If you 
do not create a folder for this component in the build 
definition, you can remove this segment from the build path.

RTCcomponent
DescriptionOption

1

2

3

4



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.12

Building and deploying hybrid resources (6 of 8)

4. Create the build definition in Rational Team Concert:
Tip: You must use the Eclipse Rational Team Concert client to complete this step. 
a. Open the Rational Team Concert Eclipse client and connect to the project area. 
b. In the Team Artifacts view, ensure that there is a connection to the target Rational 

Team Concert server. 
c. Connect to the project area that contains the Worklight projects. 
d. Within this project area, right-click Builds and click New Build Definition. 
e. Ensure that the target project area is selected and click Next. 
f. Select the Ant-Jazz Build Engine template and click Next. 
g. Select the Jazz Source Control check box for Pre-Build. 
h. Ensure that all check boxes for Post-Build actions are cleared. 
i. Click Finish. 
– The editor for the new build definition opens. 



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.13

Building and deploying hybrid resources (7 of 8)

5. Update the following values in the new build definition:

Specify –lib <path to the worklight-ant.jar
file>

Specify -verbose. 

Ant argument 
Specify build_wl_apps. Build targets

Specify the path to the hybrid.build.xml file. Build File 

Specify the id of the build engine that is set up to run 
the hybrid build. 

Supporting Build Engines 
DescriptionOption



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.14

Building and deploying hybrid resources (8 of 8)

6. Save the updated build definition.

7. Test the build:

a. Ensure that the build engines on the workstations configured for
hybrid builds are started, running, and waiting to receive build
requests.

For more information about setting up Jazz build engines, see the 
Rational Team Concert Information Center. 

b. In the Eclipse Rational Team Concert client, right-click the new 
build definition and click Request Build.

You can monitor the status of the build in the Builds view. 



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.15

Agenda

Building Worklight projects with the Rational Team Concert build
system 

– Building and deploying hybrid resources

– Building the native binary for iOS

– Building the native binary for Android



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.16

Building the native binary for iOS (1 of 10)

Before you build the native artifacts, perform a hybrid build (as 
described in the previous slides). Doing so ensures that the artifacts 
required by the iOS native build are properly generated and updated. 

You can create a build definition to build iPhone and iPad native
executables, by using the command-line interfaces provided with X 
Code.

Before you begin, ensure that the appropriate version of Xcode is 
installed on your Mac workstation.

To prepare the environment on the Mac workstation that runs the 
Jazz™ build engine for your iOS builds, perform the steps given in 
the following slides.



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.17

Building the native binary for iOS (2 of 10)

1. Use one of the following methods to set up the Mac workstation with 
developer certificates and provisioning profiles:

A. Provisioning portal

B. Manual setup



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.18

Building the native binary for iOS (3 of 10)

A. Provisioning portal: Use this method if you can dedicate the Mac 
to a particular developer account.

a. Log on to the iOS Developer Program Member Center. 

b. In the iOS Provisioning Portal, click Launch Assistant within the 
Development Provisioning Assistant section. 

c. Follow the Development Provisioning Assistant to set up the 
workstation. 



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.19

Building the native binary for iOS (4 of 10)

B. Manual setup: Use this method if you cannot configure the Mac as the primary
development workstation for a development account. 

a. Open Xcode and select Window > Organizer > Library > Provisioning Profiles. 
b. Beside the Automatic Device Provisioning option, click Refresh. 
c. When prompted to log on to the Provisioning Portal, use the iOS Enterprise 

Developer Program account to log on. 
d. Verify that the provisioning profiles are successfully imported.
e. Various warnings are displayed for the provisioning profiles to indicate that the 

profiles cannot be validated with matching private keys. Complete the following 
steps to resolve this issue:

i. On the Mac workstation that is set up using the Provisioning Portal, open Keychain 
Access. 

ii. Locate the certificate that is installed from the iOS program, such as login or System. 
iii. Expand the certification to view the private key that is associated with the certificate. 
iv. Right-click the private key and select Export to a .p12 file. 
v. Transfer the file to the build workstation and import it into the Keychain. 
vi. Verify that the provisioning profiles are now recognized.



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.20

Building the native binary for iOS (5 of 10)

2. Create a build folder, such as
˜/Users/username/Documents/wl.build

3. Within the build folder, complete the following steps: 
a. Create a folder named load: Use this folder to store the source 

code that Rational Team Concert™ checks out.
b. Create a folder named output: Use this folder to store the build 

output.
c. Create a file named ios.build.xml.

(continued on next slide)



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.21

Building the native binary for iOS (6 of 10)

d. Copy the following content into the ios.build.xml file:
<project name="build for iOS environments">

<property name="rootDir" value="/Users/username/Documents/wl.build"/>
<target name="build" > <property name="loadDir" value="${rootDir}/load" />

<property name="destdir" value="${loadDir}/build" />
<property name="wlappdir" value="${loadDir}/${wlProject}/apps/${wlApp}" />
<property name="xcodebuildCMD" value="/usr/bin/xcodebuild" />
<property name="iosPackageCMD" value="xcrun" />
<property name="xcodebuildCMDlog" value="${destdir}/xcodebuildCMD.log" />
<property name="iosPackageCMDlog" value="${destdir}/iosPackageCMD.log" />
<property name="local.ipaPath" value="${destdir}/distro" />
<property name="configuration" value="Ad Hoc" /> <mkdir dir="${local.ipaPath}" />
<!-- Build the iPhone native app -->
<exec

dir="${wlappdir}/${mobilePlatform}/native"
executable="${xcodebuildCMD}"
failonerror="false"
output="${xcodebuildCMDlog}"
resultproperty="xcodebuildCMDResult" >

<arg line=" -configuration '${configuration}' -sdk iphoneos5.1" />
</exec>

<!-- Package into IPA -->
<exec

dir="${wlappdir}/${mobilePlatform}/native"
executable="${iosPackageCMD}"
failonerror="false"
output="${iosPackageCMDlog}"
resultproperty="iosPackageCMDResult" >

<arg value="-sdk" />
<arg value="iphoneos" />
<arg value="PackageApplication" />
<arg value="${wlappdir}/${mobilePlatform}/native/build/Release-iphoneos/${wlApp}.app" />
<arg value="-o" />
<arg value="${local.ipaPath}/${wlApp}.ipa" />
<arg value="--sign" />
<arg value="${certificate}" />
<arg value="--embed" />
<arg value="${provisioning.profile}" />
<arg value="-verbose" />

</exec>
</target>

</project>

1 2

The text in italic depends on 
your project:

1. ${wlProject}

2. ${wlApp} 

3. ${mobilePlatform} 

4. ${configuration} 

5. ${certificate}

6. ${provisioning.profile} 

4

3

6

The resulting directory structure looks 
like the following example:
wl.build

load
output
ios.build.xml

5



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.22

Building the native binary for iOS (7 of 10)

4. Update the following parts of the ios.build.xml file to correspond with 
the target project:

Specify the name of the certificate that is configured in step 3 or 4. This 
name generally starts with “iPhone Developer:” or “iPhone Distribution:”.

${certificate}

Specify the path to the .mobileprovision file which corresponds to the 
${configuration} configuration setting. 

${provisioning.profile} 

Specify the configuration setting.

– Default is Ad Hoc so that the resulting ipa can be installed over the 
air for QA purposes.

– Can be overridden in the build definition with Debug or Release, 
depending on project need.

– See the iOS development guide for details. 

${configuration} 

Specify iphone or ipad.${mobilePlatform} 

Specify the name of the application. ${wlApp} 

Specify the name of the project.${wlProject} 

DescriptionOption
1

2

4

3

5

6



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.23

Building the native binary for iOS (8 of 10)

5. Create the build definition in Rational Team Concert:
Tip: You must use the Eclipse Rational Team Concert client to complete this step. 
a. Open the Rational Team Concert Eclipse client and connect to the project area.
b. In the Team Artifacts view, ensure that there is a connection to the target Rational 

Team Concert server. 
c. Connect to the project area that contains the Worklight projects. 
d. Within this project area, right-click Builds and click New Build Definition. 
e. Ensure that the target project area is selected and click Next. 
f. Select the Command Line-Jazz Build Engine template and click Next. 
g. Select the Jazz Source Control check box for Pre-Build. 
h. Ensure that all check boxes for Post-Build actions are cleared. 
i. Click Finish. 
– The editor for the new build definition opens. 



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.24

Building the native binary for iOS (9 of 10)

6. Update the following values in the new build definition:

Specify build.Build Target

Specify the path to the ios.build.xml file. Build File 

Specify the id of the build engine that is set up to run 
the iOS build. 

Supporting Build Engines 
DescriptionOption



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.25

Building the native binary for iOS (10 of 10)

7. Save the updated build definition.

8. Test the build:

a. Ensure that the build engines on the workstations configured for
iOS native builds are started, running, and waiting to receive build 
requests.

For more information about setting up Jazz build engines, see the 
Rational Team Concert Information Center. 

b. In the Eclipse Rational Team Concert client, right-click the new 
build definition and click Request Build.

You can monitor the status of the build in the Builds view. 



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.26

Agenda

Building Worklight projects with the Rational Team Concert build
system 

– Building and deploying hybrid resources

– Building the native binary for iOS

– Building the native binary for Android



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.27

Building the native binary for Android (1 of 8)

Before you build the native artifacts, perform a hybrid build (as described in 
the previous slides). Doing so ensures that the artifacts required by the 
Android native build are properly generated and updated. 

You can create a build definition to build Android native executables, by 
using the command-line interfaces provided with the Android SDK.

Before you begin, ensure that the following software is installed on your 
build workstation:

– Oracle Java™ Development Kit (JDK)
– Android SDK (available from http://developer.android.com/sdk)
– Ant (available from Apache.org)
– Important: Ensure that you add the bin directory to the PATH system 

variable.

To prepare the environment on the workstation that runs the Jazz™ build 
engine for your Android builds, perform the steps given in the following 
slides.



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.28

Building the native binary for Android (2 of 8)

1. Create a build folder, such as
˜/Users/username/Documents/wl.build

2. Within the build folder, complete the following steps: 
a. Create a folder named load: Use this folder to store the source 

code that Rational Team Concert™ checks out.
b. Create a folder named output: Use this folder to store the build 

output.
c. Create a file named android.build.xml.

(continued on next slide)



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.29

Building the native binary for Android (3 of 8)

d. Copy the following content into the android.build.xml file:
<?xml version="1.0" encoding="UTF-8"?>

<project name="build for Android environment">
<property name="rootDir" value="/Users/username/Documents/wl.build"/>
<!-- Worklight Build for Android -->
<target name="build">

<property name="wlappdir" value = "${rootDir}/load/${wlProject}/apps/${wlApp}"/>
<property name="androidCMD" value="${androidSDKPath}/tools/android.bat"/>
<property name="destdir" value="${rootDir}/build" />
<property name="androidCMDlog" value="${destdir}/androidCMD.log" />

<!-- Generate the native build.xml -->
<exec dir="${wlappdir}/android/native" executable="${androidCMD} 

" failonerror="true" resultproperty="androidCMDResult" output="${androidCMDlog}">
<arg line=" update project -p ${wlappdir}/android/native --target android-15" />

</exec>

<!-- Build the app -->
<subant target="debug" buildpath="${wlappdir}/android/native" >
</subant>

</target>
</project>

The resulting directory structure looks like the following example:
wl.build

load
output
android.build.xml

3

1

The text in italic depends 
on your project:

1. ${wlProject} 

2. ${wlApp} 

3. ${androidSDKPath}

2



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.30

Building the native binary for Android (4 of 8)

3. Update the following parts of the android.build.xml file to correspond 
with the target project:

Specify the name of the application. ${wlApp} 
Specify the path of the Android SDK.${androidSDKPath} 

Specify the name of the project.${wlProject} 
DescriptionOption

1

2

3



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.31

Building the native binary for Android (5 of 8)

4. Configure the environment to sign the Android executable (.apk) 
files:

a. Refer to the procedures available at: 
http://developer.android.com/guide/publishing/app-signing.html. 

b. Use the keytool command to generate a valid key pair. 



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.32

Building the native binary for Android (6 of 8)

5. Create the build definition in Rational Team Concert:
Tip: You must use the Eclipse Rational Team Concert client to complete this step. 
a. Open the Rational Team Concert Eclipse client and connect to the project area.
b. In the Team Artifacts view, ensure that there is a connection to the target Rational 

Team Concert server. 
c. Connect to the project area that contains the Worklight projects. 
d. Within this project area, right-click Builds and click New Build Definition. 
e. Ensure that the target project area is selected and click Next. 
f. Select the Ant-Jazz Build Engine template and click Next. 
g. Select the Jazz Source Control check box for Pre-Build. 
h. Ensure that all check boxes for Post-Build actions are cleared. 
i. Click Finish. 
– The editor for the new build definition opens. 



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.33

Building the native binary for Android (7 of 8)

6. Update the following values in the new build definition:

Specify -verbose. Ant argument 

Specify build. Build targets
Specify the path to Apache Ant.Ant home 

Specify the path to the android.build.xml file. Build File 

Specify the id of the build engine that is set up to run 
the Android build. 

Supporting Build Engines 
DescriptionOption



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.34

Building the native binary for Android (8 of 8)

7. Save the updated build definition. 

8. Test the build:

a. Ensure that the build engines on the workstations configured for
Android native builds are started, running, and waiting to receive 
build requests.

For more information about setting up Jazz build engines, see the 
Rational Team Concert Information Center. 
Before the build engine is started, ensure that the environment variable 
JAVA_HOME exists and identifies the Oracle JDK installation location.

b. In the Eclipse Rational Team Concert client, right-click the new 
build definition and click Request Build.

You can monitor the status of the build in the Builds view. 



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.35

Agenda

Building Worklight projects with the Rational Team Concert build
system 

– Building and deploying hybrid resources

– Building the native binary for iOS

– Building the native binary for Android



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.36

Notices

Permission for the use of these publications is granted subject to these terms 
and conditions.
This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this 
document in other countries. Consult your local IBM representative for 
information on the products and services currently available in your area. Any 
reference to an IBM product, program, or service is not intended to state or 
imply that only that IBM product, program, or service may be used. Any 
functionally equivalent product, program, or service that does not infringe any 
IBM intellectual property right may be used instead. However, it is the user's 
responsibility to evaluate and verify the operation of any non-IBM product, 
program, or service.
IBM may have patents or pending patent applications covering subject matter 
described in this document. The furnishing of this document does not grant you 
any license to these patents. You can send license inquiries, in writing, to: 
– IBM Director of Licensing

IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A. 

For license inquiries regarding double-byte character set (DBCS) information, 
contact the IBM Intellectual Property Department in your country or send 
inquiries, in writing, to:
– Intellectual Property Licensing

Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any 
other country where such provisions are inconsistent with local law: 
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS 
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER 
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS 
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement 
may not apply to you.
This information could include technical inaccuracies or typographical errors. 
Changes are periodically made to the information herein; these changes will be 
incorporated in new editions of the publication. IBM may make improvements 
and/or changes in the product(s) and/or the program(s) described in this 
publication at any time without notice. 

Any references in this information to non-IBM Web sites are provided for 
convenience only and do not in any manner serve as an endorsement of those 
Web sites. The materials at those Web sites are not part of the materials for this 
IBM product and use of those Web sites is at your own risk.
IBM may use or distribute any of the information you supply in any way it 
believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for the purpose 
of enabling: (i) the exchange of information between independently created 
programs and other programs (including this one) and (ii) the mutual use of the 
information which has been exchanged, should contact:
– IBM Corporation

Dept F6, Bldg 1
294 Route 100
Somers NY 10589-3216
USA

Such information may be available, subject to appropriate terms and conditions, 
including in some cases, payment of a fee.
The licensed program described in this document and all licensed material 
available for it are provided by IBM under terms of the IBM Customer 
Agreement, IBM International Program License Agreement or any equivalent 
agreement between us.
Information concerning non-IBM products was obtained from the suppliers of 
those products, their published announcements or other publicly available 
sources. IBM has not tested those products and cannot confirm the accuracy of 
performance, compatibility or any other claims related to non-IBM products. 
Questions on the capabilities of non-IBM products should be addressed to the 
suppliers of those products.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, 
which illustrate programming techniques on various operating platforms. You 
may copy, modify, and distribute these sample programs in any form without 
payment to IBM, for the purposes of developing, using, marketing or distributing 
application programs conforming to the application programming interface for 
the operating platform for which the sample programs are written. These 
examples have not been thoroughly tested under all conditions. IBM, therefore, 
cannot guarantee or imply reliability, serviceability, or function of these 
programs.
Each copy or any portion of these sample programs or any derivative work, 
must include a copyright notice as follows:
© (your company name) (year). Portions of this code are derived from IBM 

Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. 
All rights reserved.



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved.37

Support and comments

For the entire IBM Worklight documentation set, training material and online forums where you can post questions, see the IBM website at:
– http://www.ibm.com/mobile-docs
Support
– Software Subscription and Support (also referred to as Software Maintenance) is included with licenses purchased through Passport 

Advantage and Passport Advantage Express. For additional information about the International Passport Advantage Agreement and the 
IBM International Passport Advantage Express Agreement, visit the Passport Advantage website at:
• http://www.ibm.com/software/passportadvantage

– If you have a Software Subscription and Support in effect, IBM provides you assistance for your routine, short duration installation and 
usage (how-to) questions, and code-related questions. For additional details, consult your IBM Software Support Handbook at:
• http://www.ibm.com/support/handbook

Comments
– We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy, organization, subject 

matter, or completeness of this document. The comments you send should pertain to only the information in this manual or product and 
the way in which the information is presented.

– For technical questions and information about products and prices, please contact your IBM branch office, your IBM business partner, 
or your authorized remarketer.

– When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes 
appropriate without incurring any obligation to you. IBM or any other organizations will only use the personal information that you supply 
to contact you about the issues that you state.

– Thank you for your support.
– Submit your comments in the IBM Worklight forums at:

• https://www.ibm.com/developerworks/mobile/mobileforum.html
– If you would like a response from IBM, please provide the following information:

• Name 
• Address
• Company or Organization
• Phone No.
• Email address



© Copyright International Business Machines Corporation 2012, 2013. All rights reserved. 
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

18 January 2013

Thank You


