

IBM Worklight V5.0.5
Java client-side API for native Android
apps
18 January 2013

© Copyright International Business Machines Corporation 2006, 2013.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright Notice

© Copyright IBM Corp. 2006, 2013

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com are trademarks or registered trademarks
of International Business Machines Corporation, registered in many
jurisdictions worldwide. Worklight is a trademark or registered
trademark of Worklight, an IBM Company. Other product and service
names might be trademarks of IBM or other companies. A current list
of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or
registered trademarks of Oracle and/or its affiliates.

Other company products or service names may be trademarks or
service marks of others.

This document may not be reproduced in whole or in part without the
prior written permission of IBM.

© Copyright IBM Corporation 2006, 2013.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

About IBM®

See http://www.ibm.com/ibm/us/en/.

© Copyright IBM Corporation 2006, 2013.

http://www.ibm.com/ibm/us/en/

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS CONTENTS

Contents

1 API overview ...1

2 API reference ..4
2.1 Example Code ... 4

2.1.1 Example: connecting to the Worklight Server and calling a procedure 4
2.2 Class WLClient .. 6

2.2.1 Method createInstance ... 6
2.2.2 Method getInstance... 7
2.2.3 Deprecated method init ... 7
2.2.4 Method connect... 7
2.2.5 Method invokeProcedure .. 8
2.2.6 Method logActivity ... 8
2.2.7 Method checkForNotifications... 9
2.2.8 Method registerChallengeHandler .. 9
2.2.9 Method addGlobalHeader... 12
2.2.10 Method removeGlobalHeader... 13

2.3 Class ChallengeHandler .. 13
2.3.1 Method isCustomResponse.. 13
2.3.2 Method handleChallenge .. 14
2.3.3 Method submitFailure ... 14
2.3.4 Method submitSuccess... 14
2.3.5 Method submitLoginForm ... 15
2.3.6 Method submitAdapterAuthentication... 16
2.3.7 Method onSuccess.. 16
2.3.8 Method onFailure .. 17

2.4 Class WLProcedureInvocationData... 20
2.4.1 Method setParameters.. 20

2.5 Class WLRequestOptions.. 20
2.5.1 Methods getTimeout, setTimeout ... 20
2.5.2 Methods getInvocationContext, setInvocationContext............................ 21

2.6 Interface WLResponseListener.. 21
2.6.1 Method onSuccess.. 21
2.6.2 Method onFailure .. 22

2.7 Class WLResponse ... 22
2.7.1 Method getStatus .. 22
2.7.2 Method getInvocationContext ... 23
2.7.3 Method getResponseText... 23

2.8 Class WLFailResponse ... 23
2.8.1 Method getErrorCode ... 23
2.8.2 Method getErrorMsg ... 23

2.9 Class WLProcedureInvocationResult .. 24
2.9.1 Method isSuccessful ... 24

2.10 Class WLProcedureInvocationFailResponse... 24

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. i

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS CONTENTS

2.10.1 Method getProcedureInvocationErrors ... 24
2.10.2 Method getResult .. 24

2.11 Enum WLErrorCode .. 24
2.12 Class WLCookieExtractor .. 25

2.12.1 Static member cookies.. 25
3 Adding the IBM Worklight Settings activity to a Native Android
Application ...26

3.1 Changing the manifest.xml File ... 26
3.2 Changing your application code .. 26
3.3 Localizing the Preferences Screen .. 27

Appendix A - Notices...28

Appendix B - Support and comments..30

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. ii

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS CONTENTS

Tables
Table 1-1: IBM Worklight Java API for Android packages, classes, interfaces, and files3
Table 2-1: WLClient instantiation..7
Table 2-2: Method connect parameters ...7
Table 2-3: Method invokeProcedure parameters ...8
Table 2-4: Method logActivity parameters..8
Table 2-5: Method addGlobalHeader parameters..13
Table 2-6: Method removeGlobalHeader parameters..13
Table 2-7: Method removeGlobalHeader parameters..14
Table 2-8: Method handleChallenge parameters ...14
Table 2-9: Method submitFailure parameters ..14
Table 2-10: Method submitSuccess parameters..15
Table 2-11: Method submitLoginForm parameters ..15
Table 2-12: Method submitAdapterAuthentication parameters..16
Table 2-13: Method onSuccess parameters ..17
Table 2-14: Method onFailure parameters ...17
Table 2-15: Method setParameters parameters...20
Table 2-16: Methods getTimeout, setTimeout parameters ..21
Table 2-17: Methods getInvocationContext, setInvocationContext parameters21
Table 2-18: Method onSuccess parameters ..22
Table 2-19: Method onSuccess parameters ..22

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. iii

About this document

This document is intended for Android developers who want to
access IBM® Worklight® services from Android applications written
in Java™ and from hybrid Android applications. The document
guides you through the available classes and methods.

© Copyright IBM Corporation 2006, 2013.

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API OVERVIEW

1 API overview
The IBM Worklight Java client-side API for native Android apps
exposes four main capabilities:

• Calling back-end services for retrieving data and performing
back-end transactions.

• Writing custom log lines for reporting and auditing purposes.

• Authenticating users before they access sensitive data or
perform privileged actions.

• Implementing custom Challenge Handlers to allow for a
customized authentication process.

The IBM Worklight Java client-side API for native Android apps is
available as part of the Worklight Studio.

Type Name Description Implemented
by

Properties
file

wlclient.proper
ties

Properties file that contains the
necessary data for using the
IBM Worklight API.

IBM

Package com.worklight.w
lclient.api

All API classes are defined in
this package. You must import
this package in the Android code
to leverage the capabilities of
IBM Worklight.

IBM

Class WLClient Singleton class that exposes
methods for communicating with
the Worklight Server, in
particular invokeProcedure
for calling a back-end service.

IBM

Class ChallengeHandle
r

Abstract base class for the
custom Challenge Handlers.
You must extend it to implement
custom authentication.

IBM

Class WLProcedureInvo
cationData

Class that holds all data
necessary for calling a
procedure.

IBM

Class WLRequestOption
s

Class that you can use to
change the request timeout and
invocation context.

IBM

Interface WLResponseListe
ner

Interface that defines methods
that a listener for the WLClient
invokeProcedure method
implements to receive
notifications about the success
or failure of the method call.

Application
developer

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 1

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API OVERVIEW

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 2

Type Name Description Implemented
by

Class WLResponse Class that contains the result of
a procedure invocation.

IBM

Class WLFailResponse Class that extends WLResponse
and that contains error codes
and messages in addition to the
status in WLResponse. This
class contains the original
response DataObject from the
server as well.

IBM

Class WLProcedureInvo
cationResult

Class that extends WLResponse
and that contains the result of
calling a back-end service,
including statuses and data
items that the adapter function
retrieves from the server.

IBM

Class WLProcedureInvo
cationFailRespo
nse

Class that extends
WLFailResponse, and that you
can use to retrieve the
invocation error messages.

IBM

Enum WLErrorCode An enumeration of error
messages that are arriving from
the Worklight Server.

IBM

Class WLCookieExtract
or

Class that provides access to
external cookies that WLClient
can use when it is issuing
requests to the Worklight Server.
This class is used to share
session cookies between a web
view and a natively implemented
page.

IBM

Class WLPreference Class that implements a
preferences activity for viewing
and modifying connectivity
properties to the Worklight
Server.

IBM

Class WLDeviceAuthMan
ager

Class that provides utility
functions that help in the
implementation of custom
provisioning process of a secure
device ID.

IBM

Package com.worklight.w
lclient.ui

Package that holds an activity
that is used by the platform to
display UI.

IBM

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API OVERVIEW

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 3

Type Name Description Implemented
by

Class UIActivity Android Activity class that is
used by the IBM Worklight
platform to display UI (dialogs
and such) in an Android
environment. This class is not
exposed to developers, but they
must add it to their
AndroidManifest.xml file.

IBM

Package com.worklight.w
lclient.api.cha
llengehandler

Package that defines Challenge
Handler classes to be used in
the authentication process.

IBM

Class BaseChallengeHa
ndler

Abstract base class for all the
Challenge Handlers.

IBM

Class WLChallengeHand
ler

Abstract base class for the IBM
Worklight Challenge Handlers.
You must extend it to implement
your own version of an IBM
Worklight Challenge Handler, for
example
RemoteDisableChallengeHa
ndler.

IBM

Table 1-1: IBM Worklight Java API for Android packages, classes, interfaces, and files

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

2 API reference

2.1 Example Code

The following examples show code for using the IBM Worklight Java
client-side API for native Android apps.

2.1.1 Example: connecting to the Worklight Server and calling a
procedure

Initializing the IBM Worklight Client

// run this code in your Android activity

WLClient client = WLClient.createInstance(this);

client.connect(new MyConnectResponseListener ());

Implementation of a Response Listener for connect

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 4

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

public class MyConnectResponseListener implements

WLResponseListener{

 @Override

 public void onSuccess(WLResponse response) {

 WLProcedureInvocationData invocationData = new

 WLProcedureInvocationData("myAdapterName",

"myProcedureName");

 invocationData.setParameters(new Object[]{"stringParam",

true, 1.0, 1});

 String myContextObject = new String("This is my context

object");

 WLRequestOptions options = new WLRequestOptions();

 options.setTimeout(10000);

 options.setInvocationContext(myContextObject);

 WLClient.getInstance().invokeProcedure(invocationData, new

MyInvokeListener (), options);

 }

 @Override

 public void onFailure(WLFailResponse response) {

 WLUtils.error("Connection failed:" + response.getErrorMsg()

 }

}

Implementation of a Response Listener for Procedure
Invocation

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 5

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

public class MyInvokeListener implements WLResponseListener {

 @Override

 public void onSuccess(WLResponse response) {

 WLUtils.debug("Response successful!");

 WLProcedureInvocationResult invocationResponse =

((WLProcedureInvocationResult) response);

 JSONArray items;

 try {

 items = (JSONArray)

invocationResponse.getResult().get("items");

 // do something with the items

 for (int i = 0; i < items.length(); i++) {

 JSONObject jsonObject = items.getJSONObject(i);

 (…)

 }

 } catch (JSONException e) {

 }

 }

 @Override

 public void onFailure(WLFailResponse response) {

 WLUtils.error("Response failed: " + response.getErrorMsg());

 }

}

2.2 Class WLClient

This class exposes methods for communicating with the Worklight
Server. This class is a singleton. It has a single instance which is
created only once and accessed statically.

2.2.1 Method createInstance

Syntax
public static WLClient createInstance(Context
context)

Description

This method creates the singleton instance of WLClient.

Parameters

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 6

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

Type Name Description

Context context This parameter is the Android context, for
example the Android Activity that created the
WLClient.

Table 2-1: WLClient instantiation

Note: This method is the first WLClient method that you use. It
must be called before subsequent calls to getInstance. You must
invoke this method at the beginning of the main activity of the
application.

2.2.2 Method getInstance

Syntax
public static WLClient getInstance()

Description

This method gets the singleton instance of WLClient.

2.2.3 Deprecated method init

Note: This method is deprecated. Use connect instead.

2.2.4 Method connect

Syntax
public void connect(WLResponseListener
responseListener)

Description

This method sends an initialization request to the Worklight Server,
establishing a connection with the server and validating the
application version.

Important: This method must be called before any other WLClient
methods that communicate with the Worklight Server, for example
InvokeProcedure.

Parameters

Type Name Description

WLResponseListener responseListener When a successful response is
returned from the server, the
WLResponseListener onSuccess
method is called. If an error occurs,
the onFailure method is called.

Table 2-2: Method connect parameters

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 7

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

2.2.5 Method invokeProcedure

Syntax
public void invokeProcedure (

WLProcedureInvocationData invocationData,

WLResponseListener responseListener,

WLRequestOptions requestOptions)

public void invokeProcedure(

WLProcedureInvocationData invocationData,

WLResponseListener responseListener)

Description

This method sends an asynchronous call to an adapter procedure.
The response is returned to the callback functions of the provided
responseListener.

If the invocation succeeds, onSuccess is called. If it fails,
onFailure is called.

Parameters

Type Name Description

WLProcedure
InvocationData

invocationData The invocation data for the procedure
call.

WLResponseListener responseListener The listener object whose callback
methods oneSuccess and
onFailure are called.

WLRequestOptions requestOptions Optional. Invocation options.

Table 2-3: Method invokeProcedure parameters

2.2.6 Method logActivity

Syntax
public void logActivity (String activityType)

Description

This method reports a user activity for auditing or reporting purposes.
The activity is stored in the application statistics tables (the
GADGET_STAT_N tables).

Parameters

Type Name Description

String activityType A string that identifies the activity.

Table 2-4: Method logActivity parameters

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 8

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

2.2.7 Method checkForNotifications

Syntax
public void checkForNotifications()

Description

This method is used to check for notifications on the server, such as
new block/notify rules, notifications and so on. Calling this method
from the onResume Android Activity lifecycle event results in
the application checking for new notifications when the activity is
brought to the foreground.

2.2.8 Method registerChallengeHandler

Syntax
public void
registerChallengeHandler(BaseChallengeHandler
challengeHandler)

Description

You can use this method to register a Challenge Handler in the client.
You must use this method when you implement custom challenge
handlers, or when you customize the Remote Disable / Notify
Challenge Handler.

Important: you must call this method at the beginning of your
application after you initialize WLClient.

Example 1: registering a customized Remote Disable /
Notify Challenge Handler

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 9

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

To customize the Remote Disable / Notify Challenge Handler, you
must register an instance of type WLChallengeHandler in the
client. When you create the Challenge Handler, you must give it the
specific realm name wl_remoteDisableRealm.

// define class

public class MyRemoteDisableCH extends WLChallengeHandler {

 .

 .

 .

}

// create new CH with appropriate realm

MyRemoteDisableCH ch = new

MyRemoteDisableCH("wl_remoteDisableRealm");

// register CH

WLClient.getInstance().registerChallengeHandler(ch);

Example 2: customizing the Remote Disable / Notify
Challenge Handler

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 10

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

To customize the Remote Disable / Notify Challenge Handler, you
must extend WLChallengeHandler and implement the following
methods.
public void handleSuccess(JSONObject success)

public void handleFailure(JSONObject error)

public void handleChallenge(JSONObject challenge)

public class MyRemoteDisableCH extends WLChallengeHandler {

 public MyRemoteDisableCH(String realm) {

 super(realm);

 }

 @Override

 /**

 * this method is called after the challenge is answered

successfully

 */

 public void handleSuccess(JSONObject success) {

 }

 @Override

 /**

 * this method is used to disable the application

 */

 public void handleFailure(JSONObject error) {

 try {

 // get error message

 String message = error.getString("message");

 // get download link

 String downloadLink = error.getString("downloadLink");

 // create and show the disable dialog

 } catch (JSONException e) {

 // handle exception

 }

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 11

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

 }

 @Override

 /**

 * this method is used to notify the application

 */

 public void handleChallenge(JSONObject challenge) {

 try {

 // get message data from challenge

 String message = challenge.getString("message");

 String messageId = challenge.getString("messageId");

 // do something with the message

 // answer the challenge

 submitChallengeAnswer(messageId);

 } catch (JSONException e) {

 // handle exception

 }

 }

}

Note: When the application is disabled, the default behavior
(implemented in the method handleFailure of
RemoteDisableChallengeHandler) is to show a dialog with the
appropriate message. It can also show a link to download the new
application version. After the dialog is closed, the application
continues to work offline. You must implement a similar behavior in
the handleFailure code of the customized Remote Disable
Challenge Handler.

2.2.9 Method addGlobalHeader

Syntax
public void addGlobalHeader(String headerName,
String value)

Description

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 12

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

This method is used to add a global header, which is sent on each
request.

Parameters

Type Name Description

String headerName The name of the header.

String value The value of the header.

Table 2-5: Method addGlobalHeader parameters

2.2.10 Method removeGlobalHeader

Syntax
public void removeGlobalHeader(String headerName)

Description

This method is used to remove a global header. Then, the header is
no longer sent on each request.

Parameters

Type Name Description

String headerName The name of the header.

Table 2-6: Method removeGlobalHeader parameters

2.3 Class ChallengeHandler

This abstract base class is used to create custom Challenge
Handlers. You must extend this class to implement your own
Challenge Handler logics. This class is mainly used to create custom
user authentication.

2.3.1 Method isCustomResponse

Syntax
public abstract boolean isCustomResponse(WLResponse
response)

Description

This method must be overridden by the extending class of
ChallengeHandler. In most cases, you call this method to test
whether there is a custom challenge to be handled in the response. If
the method returns true, the IBM Worklight framework calls the
handleChallenge method.

Parameters

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 13

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

Type Name Description

WLResponse response The response to be tested.

Table 2-7: Method removeGlobalHeader parameters

2.3.2 Method handleChallenge

Syntax
public abstract void handleChallenge(WLResponse
challenge)

Description

You must implement this method to handle the challenge logics, for
example to show the login screen. The method is called by the IBM
Worklight framework whenever the method isCustomResponse
returns true.

Parameters

Type Name Description

WLResponse challenge The response to be handled.

Table 2-8: Method handleChallenge parameters

2.3.3 Method submitFailure

Syntax
protected void submitFailure(WLResponse wlResponse)

Description

You must call this method when the challenge is answered with an
error. The method is inherited from BaseChallengeHandler.

Parameters

Type Name Description

WLResponse wlResponse The received WLResponse.

Table 2-9: Method submitFailure parameters

2.3.4 Method submitSuccess

Syntax
protected void submitSuccess(WLResponse response)

Description

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 14

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

You must call this method when the challenge is answered
successfully, for example after the user submits the login form
successfully. Then, this method sends the original request.

Parameters

Type Name Description

WLResponse response The received WLResponse.

Table 2-10: Method submitSuccess parameters

2.3.5 Method submitLoginForm

Syntax
protected void submitLoginForm(String requestURL,
Map<String, String> requestParameters, Map<String,
String> requestHeaders,int
requestTimeoutInMilliseconds, String requestMethod)

Description

This method is used to send collected credentials to a specific URL.
You can also specify request parameters, headers, and timeout.

The success/failure delegate for this method is the instance itself (the
instance of ChallengeHandler), so you must override the
onSuccess / onFailure methods.

Parameters

Type Name Description

String requestURL Absolute URL if the user sends an
absolute URL that starts with
http:// or https://

Otherwise, URL relative to the
Worklight Server.

Map<String, String> requestParameters The request parameters.

Map<String, String> requestHeaders The request headers.

int requestTimeoutInMi
lliseconds

To supply custom timeout, use a
number over 0.

If the number is under 0, the IBM
Worklight framework uses the default
timeout, which is 10,000 milliseconds.

String requestMethod The HTTP method to be used.

Acceptable values are GET, POST.

The default value is POST.

Table 2-11: Method submitLoginForm parameters

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 15

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

2.3.6 Method submitAdapterAuthentication

Syntax
public void
submitAdapterAuthentication(WLProcedureInvocationDa
ta invocationData, WLRequestOptions requestOptions)

Description

This method is used to invoke a procedure from the Challenge
Handler.

Parameters

Type Name Description

WLProcedureInvocatio
nData

invocationData The invocation data, for example the
name of the procedure or the name of
the method.

WLRequestOptions requestOptions Holds the following options.

timeout – int:

Time in milliseconds for this
invokeProcedure to wait before it
fails with
WLErrorCodeRequestTimeout.
The default timeout is 10,000
milliseconds. To disable the timeout,
set this parameter to 0.

invocationContext – Object:

An object that is returned with
WLResponse to the delegate
methods. You can use this object to
distinguish different
invokeProcedure calls.

Table 2-12: Method submitAdapterAuthentication parameters

2.3.7 Method onSuccess

Syntax
public void onSuccess(WLResponse response)

Description

This method is the success handler for submitLoginForm or
submitAdapterAuthentication.

Parameters

Type Name Description

WLResponse response The received response.

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 16

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

Table 2-13: Method onSuccess parameters

2.3.8 Method onFailure

Syntax
public void onFailure(WLFailResponse response)

Description

This method is the failure handler for submitLoginForm or
submitAdapterAuthentication.

Parameters

Type Name Description

WLFailResponse response The received response.

Table 2-14: Method onFailure parameters

Example: implementing a form-based Challenge Handler

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 17

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

/*

* Register the custom handler in the Main Activity

*/

public class FormBasedAuthentication extends Activity {

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 WLClient client = WLClient.createInstance(this);

 client.registerChallengeHandler (new

SampleAppRealmChallengeHandler ("SampleAppRealm"));

 }

};

/*

* Implementation of Custom Challenge Handler

*/

class SampleAppRealmChallengeHandler extends ChallengeHandler {

 public SampleAppRealmChallengeHandler(String realm) {

 super(realm);

 }

/*

* Called when the framework needs to identify custom response.

* In this example is identified by “j_security_check” string

located in response text.

*/

@Override

 public boolean isCustomResponse(WLResponse response) {

 if (response == null || response.getResponseText() == null ||

 response.getResponseText().indexOf("j_security_check") == -

1) {

 return false;

 }

 return true;

 }

/*

* Called to handle custom challenge

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 18

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

/*

 @Override

 public void handleChallenge(WLResponse response) {

// … //

// Show login form and ask for user name and password

// When the user name and password are provided by user, pass them

back to the server using

// submitLoginForm API.

// … //

 Map<String, String> params = new HashMap<String, String>();

 params.put("j_username", "test");

 params.put("j_password", "pwd");

 super.submitLoginForm("j_security_check", params, null, 0,

"post");

 }

/*

* onSuccess is always called when the server returns a response. A

developer is responsible to parse the response

* and display a login form (handle challenge) or submit success

answer.

*/

 @Override

 public void onSuccess(WLResponse response) {

 if (isCustomResponse(response)) {

 handleChallenge(response);

 } else {

 submitSuccess(response);

 }

 }

/*

* onFailure is called in case of socket/timeout exceptions

WLErrorCode is set to

* REQUEST_TIMEOUT/UNRESPONSIVE_HOTS codes. In case of general

exception error code is

* UNEXPECTED_ERROR.

*/

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 19

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

 @Override

 public void onFailure(WLFailResponse response) {

 submitFailure(response);

 }

}

2.4 Class WLProcedureInvocationData

This class holds all data necessary for calling a procedure, including:

• The name of the adapter and procedure to call.

• The parameters that are required by the procedure.

2.4.1 Method setParameters

Syntax
public void setParameters(Object [] parameters)

Description

This method sets the request parameters.

Parameters

Type Name Description

Object [] parameters An array of objects of primitive types
(String, Integer, Float,
Boolean, Double). The order of the
objects in the array is the order in
which they are sent to the adapter.

Table 2-15: Method setParameters parameters

Example

invocationData.setParameters(new Object[]{"stringParam", true, 1.0,

1});

2.5 Class WLRequestOptions

This class changes the timeout and invocation context.

2.5.1 Methods getTimeout, setTimeout

Syntax

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 20

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

public int getTimeout()

public void setTimeout(int timeout)

Description

getTimeout: this method gets the currently used request timeout
(default is 10 sec).

setTimeout: this method sets a new timeout.

Parameters

Type Name Description

int timeout Timeout in milliseconds for waiting for the
procedure invocation. If the timeout expires, the
WLResponseListener onFailure method is
called.

The value 0 indicates no timeout.

Table 2-16: Methods getTimeout, setTimeout parameters

2.5.2 Methods getInvocationContext, setInvocationContext

Syntax
public Object getInvocationContext()

public void setInvocationContext(Object
invocationContext)

Parameters

Type Name Description

Object invocationContext An object that is returned with WLResponse to the
listener methods onSuccess and onFailure.
You can use this object to identify and distinguish
different invokeProcedure calls. This object is
returned as is to the listener methods.

Table 2-17: Methods getInvocationContext, setInvocationContext parameters

2.6 Interface WLResponseListener

This interface defines methods that the listener for the
WLClient.invokeProcedure method implements to receive
notifications about the success or failure of the method call.

2.6.1 Method onSuccess

Syntax

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 21

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

public void onSuccess (WLResponse response)

Description

This method is called following successful calls to the WLCLient
connect or invokeProcedure methods.

Parameters

Type Name Description

WLResponse response The response that is returned from the server,
along with any invocation context object and
status.

Table 2-18: Method onSuccess parameters

2.6.2 Method onFailure

Syntax
public void onFailure (WLFailResponse response)

Description

This method is called if any failure occurred during the execution of
the WLCLient connect or invokeProcedure methods.

Parameters

Type Name Description

WLFailResponse response A response that contains the error code and error
message. Optionally, it can also contain the results
from the server and any invocation context object
and status.

Table 2-19: Method onSuccess parameters

2.7 Class WLResponse

This class contains the result of a procedure invocation. IBM
Worklight passes this class as an argument to the listener methods of
the WLClient invokeProcedure method.

2.7.1 Method getStatus

Syntax
public int getStatus()

Description

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 22

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

This method retrieves the HTTP status from the response.

2.7.2 Method getInvocationContext

Syntax
public Object getInvocationContext()

Description

This method retrieves the invocation context object that is passed
when calling invokeProcedure.

2.7.3 Method getResponseText

Syntax
public Object getResponseText()

Description

This method retrieves the original response text from the server.

2.8 Class WLFailResponse

This class extends WLResponse and contains error codes and
messages in addition to the status in WLResponse. It contains the
original response DataObject from the server as well.

2.8.1 Method getErrorCode

Syntax
public WLErrorCode getErrorCode ()

Description

The possible errors are described in the WLErrorCode section.

2.8.2 Method getErrorMsg

Syntax
public String getErrorMsg()

Description

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 23

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

This error message is for the developer and not necessarily suitable
for the user.

2.9 Class WLProcedureInvocationResult

This class extends WLResponse. It holds statuses and data that are
retrieved by an adapter procedure.

2.9.1 Method isSuccessful

Syntax
public boolean isSuccessful()

Description

This method returns true if the procedure invocation was technically
successful. Application errors are returned as part of the retrieved
data, and not in this flag.

2.10 Class WLProcedureInvocationFailResponse

This class extends WLFailResponse. It holds statuses and data
that are retrieved by an adapter procedure.

2.10.1 Method getProcedureInvocationErrors

Syntax
public List<String> getProcedureInvocationErrors()

Description

This method returns a list of applicative error messages that are
collected while the method is calling the procedure.

2.10.2 Method getResult

Syntax
public JSONObject getResult() throws JSONException

Description

This method returns a JSONObject that represents the JSON
response from the server.

2.11 Enum WLErrorCode

Description

The Worklight Server can return the following error messages:

UNEXPECTED_ERROR

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 24

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS API REFERENCE

REQUEST_TIMEOUT

REQUEST_SERVICE_NOT_FOUND

UNRESPONSIVE_HOST

PROCEDURE_ERROR

APP_VERSION_ACCESS_DENIAL

APP_VERSION_ACCESS_NOTIFY

2.12 Class WLCookieExtractor

This class provides access to external cookies that can be used by
WLClient when it issues requests to the Worklight Server. This
class is used to share session cookies between a web view and a
natively implemented page.

2.12.1 Static member cookies

Syntax
public static String cookies

Description

The static member cookies are the cookies that are shared by the
WLCookieExtractor. They can be accessed statically.

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 25

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS ADDING THE IBM WORKLIGHT SETTINGS
ACTIVITY TO A NATIVE ANDROID APPLICATION

3 Adding the IBM Worklight Settings activity to a
Native Android Application

You can add a standard IBM Worklight Preferences screen to your
application. This screen enables users to view and modify the URL of
the Worklight Server with which the application communicates.
Adding the screen is beneficial for demonstrations and testing
scenarios with multiple environments and multiple servers.

Follow these steps to add the standard IBM Worklight Settings
activity to your application:

3.1 Changing the manifest.xml File

• Declare the activity in your manifest.xml file:

<!-- Preferences Activity -->

<activity android:name="com.worklight.common.WLPreferences"

android:label="Worklight Settings">

</activity>

3.2 Changing your application code

• Add code to open WLPreferences and to receive results from
WLPreferences. The Intent object that is returned from
WLPreferences has two properties:

– isServerURLChanged – indicates whether the Worklight
Server URL in the Preferences activity changed

– serverURL – the value of the Worklight Server URL in the
Preferences activity

The following sample code uses the WLPreferences activity:

//code inside parent activity

//Use any code to identify the activity that back from the stack

private static final int WL_PREFERENCES_CODE = 10;

// open the activity

Intent myIntent = new Intent(getApplicationContext(),

WLPreferences.class);

this.startActivityForResult(myIntent, WL_PREFERENCES_CODE);

//wait for result

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 26

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS ADDING THE IBM WORKLIGHT SETTINGS
ACTIVITY TO A NATIVE ANDROID APPLICATION

@Override

protected void onActivityResult(int requestCode, int resultCode,

Intent data) {

if (requestCode == WL_PREFERENCE_CODE) {

if (resultCode == RESULT_OK) {

if (data.getBooleanExtra("isServerURLChanged", false)) {

// Check here if server changed and init the connection

to server or reload if necessary

Log.i("Test Settings","server URL changed to: " +

data.getStringExtra("serverURL"));

}

}

}

}

3.3 Localizing the Preferences Screen

You can localize the strings on the Preferences screen by defining
the following strings in your strings.xml file:

<?xml version="1.0" encoding="utf-8"?>

<resources>

...

 <string name="summaryWLServerUrl">Change the Server URL:

http[s]://[domain or IP address][:port]</string>

 <string name="titleWLServerUrl">Server URL</string>

 <string name="networkSettingsTitleWLServerUrl">Network

Settings</string>

 <string name="OKTitleWLServerUrl">Ok</string>

 <string name="titleInvalidWLServerUrl">Invalid URL</string>

 <string name="errorInvalidWLServerUrl">is not a valid URL. Valid

format is http[s]://[domain or IP address][:port]</string>

...

</resources>

To learn more about Android localization, see the Android developer
website.

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 27

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS NOTICES

Appendix A - Notices
This information was developed for products and services offered in
the U.S.A.

IBM may not offer the products, services, or features discussed in
this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent
product, program, or service that does not infringe any IBM
intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS)
information, contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom
or any other country where such provisions are inconsistent
with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not
allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided
for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites
are not part of the materials for this IBM product and use of those
Web sites is at your own risk.

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 28

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS NOTICES

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between
independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been
exchanged, should contact:

IBM Corporation
Dept F6, Bldg 1
294 Route 100
Somers NY 10589-3216
USA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the IBM
Customer Agreement, IBM International Program License Agreement
or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming techniques on various
operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the
purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These
examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs. © Copyright IBM Corp. _enter the
year or years_. All rights reserved.

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 29

JAVA CLIENT-SIDE API FOR NATIVE ANDROID APPS SUPPORT AND COMMENTS

IBM Worklight V5.0.5 © Copyright IBM Corporation 2006, 2013. 30

Appendix B - Support and comments
For the entire IBM Worklight documentation set, training material and
online forums where you can post questions, see the IBM website at:

http://www.ibm.com/mobile-docs

Support

Software Subscription and Support (also referred to as Software
Maintenance) is included with licenses purchased through Passport
Advantage and Passport Advantage Express. For additional
information about the International Passport Advantage Agreement
and the IBM International Passport Advantage Express Agreement,
visit the Passport Advantage website at:

http://www.ibm.com/software/passportadvantage

If you have a Software Subscription and Support in effect, IBM
provides you assistance for your routine, short duration installation
and usage (how-to) questions, and code-related questions. For
additional details, consult your IBM Software Support Handbook at:

http://www.ibm.com/support/handbook

Comments

We appreciate your comments about this publication. Please
comment on specific errors or omissions, accuracy, organization,
subject matter, or completeness of this document. The comments
you send should pertain to only the information in this manual or
product and the way in which the information is presented.

For technical questions and information about products and prices,
please contact your IBM branch office, your IBM business partner, or
your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive
right to use or distribute your comments in any way it believes
appropriate without incurring any obligation to you. IBM or any other
organizations will only use the personal information that you supply to
contact you about the issues that you state.

Thank you for your support.

Submit your comments in the IBM Worklight forums at:

https://www.ibm.com/developerworks/mobile/mobileforum.html

If you would like a response from IBM, please provide the following
information:

• Name

• Address

• Company or Organization

• Phone No.

• Email address

http://www.ibm.com/mobile-docs
http://www.ibm.com/software/passportadvantage
http://www.ibm.com/support/handbook
https://www.ibm.com/developerworks/mobile/mobileforum.html

Copyright © 2006, 2013 IBM

All rights reserved.

	1 API overview
	2 API reference
	2.1 Example Code
	2.1.1 Example: connecting to the Worklight Server and calling a procedure

	2.2 Class WLClient
	2.2.1 Method createInstance
	2.2.2 Method getInstance
	2.2.3 Deprecated method init
	2.2.4 Method connect
	2.2.5 Method invokeProcedure
	2.2.6 Method logActivity
	2.2.7 Method checkForNotifications
	2.2.8 Method registerChallengeHandler
	2.2.9 Method addGlobalHeader
	2.2.10 Method removeGlobalHeader

	2.3 Class ChallengeHandler
	2.3.1 Method isCustomResponse
	2.3.2 Method handleChallenge
	2.3.3 Method submitFailure
	2.3.4 Method submitSuccess
	2.3.5 Method submitLoginForm
	2.3.6 Method submitAdapterAuthentication
	2.3.7 Method onSuccess
	2.3.8 Method onFailure

	2.4 Class WLProcedureInvocationData
	2.4.1 Method setParameters

	2.5 Class WLRequestOptions
	2.5.1 Methods getTimeout, setTimeout
	2.5.2 Methods getInvocationContext, setInvocationContext

	2.6 Interface WLResponseListener
	2.6.1 Method onSuccess
	2.6.2 Method onFailure

	2.7 Class WLResponse
	2.7.1 Method getStatus
	2.7.2 Method getInvocationContext
	2.7.3 Method getResponseText

	2.8 Class WLFailResponse
	2.8.1 Method getErrorCode
	2.8.2 Method getErrorMsg

	2.9 Class WLProcedureInvocationResult
	2.9.1 Method isSuccessful

	2.10 Class WLProcedureInvocationFailResponse
	2.10.1 Method getProcedureInvocationErrors
	2.10.2 Method getResult

	2.11 Enum WLErrorCode
	2.12 Class WLCookieExtractor
	2.12.1 Static member cookies

	3 Adding the IBM Worklight Settings activity to a Native Android Application
	3.1 Changing the manifest.xml File
	3.2 Changing your application code
	3.3 Localizing the Preferences Screen

