=

IBM Worklight ~

IBM Worklight V5.0.6

Java client-side API for Java Platform,

Micro Edition
15 March 2013

© Copyright International Business Machines Corporation 2012, 2013.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Copyright Notice

© Copyright IBM Corp. 2012, 2013.

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered
trademarks of International Business Machines Corporation,
registered in many jurisdictions worldwide. Worklight is a trademark
or registered trademark of Worklight, an IBM Company. Other
product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the Web
at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or
registered trademarks of Oracle and/or its affiliates.

Other company products or service names may be trademarks or
service marks of others.

This document may not be reproduced in whole or in part without the
prior written permission of IBM.

© Copyright IBM Corporation 2012, 2013.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

About IBM®

See http://www.ibm.com/ibm/us/en/.

© Copyright IBM Corporation 2012, 2013.

http://www.ibm.com/ibm/us/en/

JAVA CLIENT-SIDE API FOR JAVA PLATFORM, MICRO EDITION CONTENTS

Contents
L AP OVEIVIEW .ooiiiiiiiii ettt e e e e e e e et e e e e e et e e e e e aaaeeaenes 1
2 AP TEIEIENCE ..o 3
N R = 1 1] o] [T @ T [3
2.1.1 Example: connecting to the Worklight Server and calling a procedure.......... 3
2.2 ClasS WLCHENTuuii e e e e e 4
2.2.1 Method CreateINSLANCEccuueiiiiiiiie e 4
2.2.2 Method getINSIANCEuuiiiiiiii e 5
2.2.3 MethOd CONNECToeiiiiiiiii e 5
2.2.4 Method INVOKEPTOCEAUIEuviiiiiiiie it 6
2.2.5 MethOd IOQACHIVILYeeeiiiiiieiiiieee e e 6
2.2.6 Method setHeartBeatIntervalcc.oocuiiiiiiiiiii i 7
2.2.7 Method registerChallengeHandler ..o 7
2.2.8 Method addGlobalHeadercceiiiiiiiiiiii e 10
2.2.9 Method removeGlobalHeader............cooiiiiiiiiiie e 10
2.3 Class ChallengeHandIeruueiiiiiiiiiiiiee e 11
2.3.1 Method iSCUStOMRESPONSE.....c.ccieeiiieiiee e iectiee e e e e s s s e e e e e e nanrreeeeee s 11
2.3.2 Method handleChallengecoooiiiiiiiiii e 11
2.3.3 Method SUBMILFAIIUIEcooiiiiiii e 12
2.3.4 Method SUDMIESUCCESScoiiiiiiieiiiiiee ettt 12
2.3.5 Method SubMItLOGINFOIMeiiiiiiiiiiie e 12
2.3.6 Method submitAdapterAuthentication...........cccccvveeee i, 13
2.3.7 Method ONSUCCESS ...t 13
2.3.8 Method ONFAIIUIEccoiiiiiieiee e 14
2.4 Class WLProcedurelnvocationData.............ccoevveeiiiiiiiniiceeicciiiciin e eeeeeeeenns 16
2.4.1 Method SetParameters. ... 16
2.5 Class WLRequestOPLiONS..........ccoeeiiviiiieieeeeeeee e, 16
2.5.1 Method addParametercc.ueiiiiiiiiiiiiiiie e 17
2.5.2 Method addParameters ... 17
2.5.3 Method getParametero 17
2.5.4 Method getParametersoeiiiiiiiiiiieie e 18
2.5.5 Method getReSPONSELISIENETuviiiiiiiiie e 18
2.5.6 Method addHEAENeviiiiiiiie e 18
2.5.7 Method SEtHEAUEIS.uiiiiiiiiee e 19
2.5.8 Method getHEAdErSovviiiieeii e 19
2.5.9 Methods getinvocationContext, setinvocationContextccccvveeeeeeennn. 19
2.6 Interface WLRESPONSELISIENETcciiiiiiiiiiiiiieieee et 19
2.6.1 MethOd ONSUCCESS ...ccoiieiiieiiiiiie ittt 20
2.6.2 Method ONFAIIUIEooiieiiieiie e 20
2.7 ClasS WLRESPONSEcutiiieiiiiiiiiiiiiie e e ettt e e a e e e 20
2.7.1 Method getStatusS.........cccuviiiiiiee e e e 20
2.7.2 Method getinvocatioNCONTEXLuuiiiiiaiiiiiiiie e 21
2.7.3 Method getReSPONSETEXL....cciiiiiiiiiieiie e 21

IBM Worklight V5.0.6 [© Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION CONTENTS

2.7.4 Method getReSPONSEISONcccccuiiiiiiie e e 21

2.8 Class WLFaIIRESPONSEcccoiuiiiiiiiieieeeeeiiie e 21
2.8.1 Method getErrorCode ... 21

PR S T2 Y =Y d g T e 1= =t] 1 o SR 21

2.9 Class WLProcedurelnvocationResuUltcooevvvieeiiiiiiiiiiiiiiiiiiieeeeeeeeeee 22
2.9.1 Method getRESUIL........oocueiiieiieie e 22

2.9.2 Method ISSUCCESSTUL.......ueiiiiiiiiieii e 22

2.10 Class WLProcedurelnvocationFailRESPONSE...........cccvvviiiiiiieiiiiiiiiieeeeen 22
2.10.1 Method getProcedurelNVOCAtIONEITOrSccuuvieiiiiiie e 22

2.10.2 Method getRESUIL........cceeieeeei e 22

2.11 Class WLEIOICOUEceeiieeeeeeeeeee et 23
2.11.1 Method getDeSCIIPLIONciiiiiiiieiiiie ettt e 23

2.11.2 Method VaIUEOI........eiiiiiiii e 23

2.12 Class WLHEAETcooeeiieeiieeeeee e 23
2.12.1 Method getHeaderNaME.oii it 23

2.12.2 Method getHeaderValUeoociiiieiie e 24
APPENIX A - NOLICES ..o 25
Appendix B - Support and COMMENTS ..., 28

IBM Worklight VV5.0.6 ii © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION CONTENTS

Table

Table 1-1:

S

IBM Worklight Java client-side API for Java ME — packages, classes, interfaces,

F= T L0 I {1 ST 2

Table 2-1:
Table 2-2:
Table 2-3:
Table 2-4:
Table 2-5:
Table 2-6:
Table 2-7:
Table 2-8:
Table 2-9:

Table 2-10:
Table 2-11:
Table 2-12:
Table 2-13:
Table 2-14:
Table 2-15:
Table 2-16:
Table 2-17:
Table 2-18:
Table 2-19:
Table 2-20:
Table 2-21:
Table 2-22:
Table 2-23:
Table 2-24:
Table 2-25:

VAT I =T oL T 1S =Y 1 (=1 [0 o 5

Method CONNECE PAFAMETLETSeiiiiiiiie ettt 6
Method INnVOKeProcedure Parametersuveeieeieeaiiiieiie e 6
Method IOgACHIVILY PAraMELErSuuuiiiie e et e e e e e e e nneeeee s 7
Method setHeartBeatInterval parameters ... 7
Method registerChallengeHandler parameters............cccovveeeeeeiiiiiiiiiie e 8
Method addGlobalHeader parameters...........ooiuvveeiiiiiee i 10
Method removeGlobalHeader parameters........ccccoiicciiieeee e 11
Method iISCUSTOMRESPONSE PArAMELEIS......uuviiiieieeeiiiiiiee e e e e e s e e e e e snaaree s 11

Method handleChallenge parameterseeiviaiiiiiiiiiiie e 11
Method submitFailure PAramMetersccccvviiiiee e e e 12
Method SUDMItSUCCESS PAraMELEIScoiiiiiiiiiiiiie et 12
Method submitLoginFOrm Parametersccuueeeeeeeie i e 13
Method submitAdapterAuthentication parameters.........ccococveeiiiiieeiiiieee e 13
Method ONSUCCESS PArAMELEISueiiiiieiiiiiiiie e ettt e e e e 14
Method onFailure ParametersSuueveeeii i 14
Method setParameters ParametersS.ooiuiiiiiie e 16
Method addParameter Parameterscoccivvveeiee e i 17
Method addParameters ParamMeterscc.eeeiiiieiiiiiieee e 17
Method getParameter PArameterScvcciviieeee e e 18
Method addHeader PAramMeterscccoiiiciiiiiiiee e e 18
Method setHeaders Parameters.t 19
Methods getinvocationContext, setinvocationContext parameters 19
Method ONSUCCESS PArAMELEIScciiiiiiiiiiiiie ettt 20
Method onFailure Parameterseeieeciiiiiiiiieeee e 20

IBM Worklig

ht V5.0.6 iii © Copyright IBM Corporation 2012, 2013.

About this document

This document is intended for Java™ Platform, Micro Edition (Java
ME) developers who want to access IBM® Worklight® services from
Java ME applications. The document guides you through the
available classes and methods.

© Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION

API OVERVIEW

1 API overview

The IBM Worklight Java client-side API for Java Platform, Micro

Edition (Java ME), exposes four main capabilities:

e Calling back-end services to send and retrieve data, and perform
back-end transactions.

e Writing custom log lines for reporting and auditing purposes.

e Authenticating users before they access sensitive data or
perform privileged actions.

e Implementing custom Challenge Handlers that you use to create
a custom authentication process.

The IBM Worklight Java client-side API for Java ME is available as
part of the Worklight Studio.

Type Name Description Implemented
By
Properties wlclient.prope Properties file that contains the IBM
file rties necessary data to use the Worklight
SDK.
Package com.worklight. All API classes are defined in this IBM
wlclient.api package. You must import this
package in the Java ME code to
leverage the capabilities of IBM
Worklight.
Class WLClient Singleton class that exposes IBM
methods for communicating with
the Worklight Server, in particular
invokeProcedure for calling a
back-end service.
Class WLProcedure Class that contains all data IBM
InvocationData | necessary for calling a procedure.
Class WLRequestOptio Class that you use to add request IBM
ns parameters, headers, and
invocation context.
Interface WLResponseList Interface that defines methods that Application
ener a listener for the WLClient developer
invokeProcedure method
implements to receive notifications
about the success or failure of the
method call.
Class WLResponse Class that contains the result of a IBM
procedure invocation.
IBM Worklight V5.0.6 1 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION

API OVERVIEW

Type Name Description Implemented
By
Class WLFailResponse | Class that extends WLResponse. IBM
This class contains error codes and
messages in addition to the status
in WLResponse. This class also
contains the original response
DataObject from the server.

Class WLProcedurelnv Class that extends WLResponse. IBM
ocationResult This class contains the result of

calling a back-end service, which
includes status and data items that
the adapter function retrieves from
the server.

Class WLProcedurelnv | Class that extends IBM
ocationFailRes | WLFailResponse and that you
ponse can use to retrieve the invocation

error messages.

Class WLErrorCode Class that contains an error code IBM
and its message that arrive from
the Worklight Server.

Class WLHeader Class that contains the name of the | IBM

header and its value that you send
with the request.

Package com.worklight. Package that defines Challenge IBM
wlclient.api.c | Handler classes that you must use
hallengehandle | in the authentication process.

-

Class BaseChal lengeH Abstract base class for all the IBM
andler Challenge Handlers.

Class WLChallengeHan | Abstract base class for the IBM IBM
dler Worklight Challenge Handlers. You

must extend this class to implement
your own version of an IBM
Worklight Challenge Handler, for
example
RemoteDisableChal lengeHand
ler.
Class Chal lengeHandl Abstract base class for the custom IBM

er

Challenge Handlers. You must
extend this class to implement
custom authentication.

Table 1-1: IBM Worklight Java client-side API for Java ME — packages, classes, interfaces,

and files

IBM Worklight V5.0.6

2 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

2 API reference

2.1 Example Code

The following code samples show how to use the IBM Worklight Java
client-side API for Java ME.

2.1.1 Example: connecting to the Worklight Server and calling a
procedure

Initializing the IBM Worklight Client

WLClient client = WLClient.createlnstance(this);

client.connect(new MyConnectResponselListener());

Implementation of a Response Listener for connect

public class MyConnectResponseListener implements WLResponseListener{

public void onFailure(WLFailResponse response) {

System.out._printIn(*'Response fail: " + response.getErrorMsg());

}

public void onSuccess(WLResponse response) {
WLProcedurelnvocationData invocationData = new

WLProcedurelnvocationData("'myAdapterName', "myProcedureName™);
invocationData.setParameters(new Object[]{"stringParam'});
String myContextObject = new String("'This is my context object');

WLRequestOptions options = new WLRequestOptions();
options.setlnvocationContext(myContextObject);

WLClient.getlnstance() . invokeProcedure(invocationData, new
MylInvokeListener(), options);

}
}

IBM Worklight V5.0.6 3 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

Implementation of a Response Listener for Procedure
Invocation

public class MylnvokeListener implements WLResponseListener {

public void onFailure(WLFailResponse response) {

System.out._printIn(*'Response failed: " + response.getErrorMsg());

}

public void onSuccess(WLResponse response) {
WLProcedurelnvocationResult invocationResponse =

((WLProcedurelnvocationResult) response);

JSONArray items;
try {
items = (JSONArray) invocationResponse.getResult().get('items™);

// do something with the items
for (int i = 0; i < items.lengthQ); i++) {
JSONObject jsonObject = items.getJSONObject(i);

}
} catch (JSONException e) {

2.2 Class WLClient

This singleton class exposes methods that you use to communicate
with the Worklight Server.

2.2.1 Method createlnstance

Syntax
public static WLClient createInstance (MIDlet
midlet)
IBM Worklight V5.0.6 4

© Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

public static WLClient createlInstance (String
connectionString,MIDlet midlet)

Deprecated
public static WLClient createInstance()

public static WLClient createInstance (String con-
nectionString)

Description

These methods create the singleton instance of WL.Client.

Note: This method is the first WL.C1ient method that you use. It
must be called before subsequent calls to get Instance () . You
must invoke this method at the beginning of the application.

If the client device is BlackBerry, connection parameters such as
deviceside=true, interface =wifi, or any name-value pairs
that you can use to identify connection type can be passed as string
arguments. For other devices, you can set the string argument to
null.

Parameters
Type Name Description
String connectionSt Specifies the connection string to be used to
ring connect to the server from a BlackBerry device.
For other devices, it can be set to null.
MIDlet midlet This parameter is the midlet instance, for

example the midlet that creates the WLClient.

Table 2-1: WLClient instantiation

2.2.2 Method getinstance

Syntax
public static WLClient getInstance()

Description

This method gets the singleton instance of WLClient.

2.2.3 Method connect

Syntax

public void connect (WLResponseListener
responselistener)

Description

This method sends an initialization request to the Worklight Server,
establishes a connection with the server, and validates the
application version.

IBM Worklight V5.0.6

5 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

Important: You must call this method before any other WLClient
methods that communicate with the Worklight Server. If the Worklight
server runs in secured mode (over https), then ensure that the
security certificate that the server uses is imported to the device else
the connection will fail.

Parameters

Type Name Description

responseListener | When a successful response is
returned from the server, the
WLResponselListener onSuccess
method is called. If an error occurs, the
onFai lure method is called.

Table 2-2: Method connect parameters

2.2.4 Method invokeProcedure

Syntax

public void invokeProcedure (
WLProcedureInvocationData invocationData,
WLResponselListener responselistener,
WLRequestOptions requestOptions)

Description

This method sends an asynchronous call to an adapter procedure.
The response is returned to the callback functions of the provided
responselListener.

If the invocation succeeds, onSuccess is called. If it fails,
onFailure is called.

Parameters
Type Name Description
invocationData The invocation data for the procedure
call.

responseListener | The listener object whose callback
methods onSuccess and onFai lure
are called.

requestOptions Optional. Invocation options.

Table 2-3: Method invokeProcedure parameters

2.2.5 Method logActivity

Syntax

public void logActivity (String activityType)

IBM Worklight V5.0.6 6 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

Description

This method reports a user activity for auditing or reporting purposes.
The activity is stored in the raw table of the Worklight Server.

Important: Ensure that reports.exportRawData is set to true in
the worklight .properties file, else the activity is not stored in
the database.

Parameters
Type Name Description
activityType A string that identifies the activity.

Table 2-4: Method logActivity parameters

2.2.6 Method setHeartBeatlnterval

Syntax

public void setHeartBeatInterval (int newInterval)

Description

This method sets the interval, in seconds, at which the heartbeat
signal is sent to the Worklight Server. You use the heartbeat signal to
ensure that the session with the server is kept alive when the app
does not issue any call to the server, such as invokeProcedure.
By default, the interval is set to 7 minutes.

Parameters

Type Name Description

newlnterval An integer value that defines the
interval in seconds between the
heartbeat messages that WLClient
automatically sends to the Worklight
Server.

To disable the heartbeat, set a value
that is less than, or equal to zero.

Table 2-5: Method setHeartBeatInterval parameters

2.2.7 Method registerChallengeHandler

Syntax

public void registerChallengeHandler
(BaseChallengeHandler challengeHandler)
Description

You can use this method to register a Challenge Handler in the client.
You must use this method when you implement custom Challenge

IBM Worklight V5.0.6 7 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

Handlers, or when you customize the Remote Disable / Notify
Challenge Handler.

Important: You must call this method at the beginning of your
application after you initialize WL.Client.

Parameters

Type Name Description

BaseChal lengeHandl challengeHandler | Custom challenge handler instance.
er

Table 2-6: Method registerChallengeHandler parameters

Example 1: registering a customized Remote Disable /
Notify Challenge Handler

To customize the Remote Disable / Notify Challenge Handler, you
must register an instance of type WL.ChallengeHandler in the
client. When you create the Challenge Handler, you must name it
with the specific realm name wl_remoteDisableRealm.

// define class
public class MyRemoteDisableCH extends WLChallengeHandler {

}

// create new CH with appropriate realm
MyRemoteDisableCH ch = new
MyRemoteDisableCH('wl_remoteDisableRealm™);
// register CH
WLClient.getlnstance().registerChallengeHandler(ch);

Example 2: customizing the Remote Disable / Notify
Challenge Handler

To customize the Remote Disable / Notify Challenge Handler, you
must extend the class WLChallengeHandler and implement the
following methods.

public void handleSuccess (JSONObject success)
public void handleFailure (JSONObject error)
public void handleChallenge (JSONObject challenge)

public class MyRemoteDisableCH extends WLChallengeHandler {

IBM Worklight V5.0.6 8 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

public MyRemoteDisableCH(String realm) {
super(realm);
}
@Override
J**
* this method is called after the challenge is answered
* successfully
*/
public void handleSuccess(JSONObject success) {

}
@Override
J**
* this method is used to disable the application
*/
public void handleFailure(JSONObject error) {
try {
// get error message
String message = error.getString(''message');
// get download link
String downloadLink = error.getString('downloadLink');
// create and show the disable dialog
} catch (JSONException e) {
// handle exception
}
}
@Override
J**
* this method is used to notify the application
*/
public void handleChallenge(JSONObject challenge) {
try {

// get message data from challenge
String message = challenge.getString(‘'message™);
String messageld = challenge.getString('messageld™);
// do something with the message
// answer the challenge
submitChal lengeAnswer (messageld);

} catch (JSONException e) {

IBM Worklight V5.0.6 9 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

// handle exception

Note: When the application is disabled, the behavior by default is to
open a dialog that displays the appropriate message. You must
implement this behavior by default in the method handleFailure of
RemoteDisableChallengeHandler. The dialog can also display
a link to download the new version of the application. After the user
closes the dialog, the application closes. You must implement a
similar behavior in the handleFailure code of the custom Remote
Disable Challenge Handler.

2.2.8 Method addGlobalHeader

Syntax

public void addGlobalHeader (String
headerName, String value)

Description

You use this method to add a global header, which is sent on each

request.
Parameters
Type Name Description
headerName The name of the header.
value The value of the header.

Table 2-7: Method addGlobalHeader parameters

2.2.9 Method removeGlobalHeader

Syntax

public void removeGlobalHeader (String headerName)

Description

You use this method to remove a global header. Then, the header is
no longer sent on each request.

Parameters
Type Name Description
headerName The name of the header.
value The value of the header.

IBM Worklight V5.0.6 10 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

Table 2-8: Method removeGlobalHeader parameters

2.3 Class ChallengeHandler

You use this abstract base class to create custom Challenge
Handlers. You must extend this class to implement your own
Challenge Handler logic. You use this class mainly to create custom
user authentication.

2.3.1 Method isCustomResponse

Syntax

public abstract boolean isCustomResponse (WLResponse
response)

Description

This method must be overridden by extending the
ChallengeHandler class. In most cases, you call this method to
test whether there is a custom challenge to be handled in the
response. If the method returns true, the IBM Worklight framework
calls the handleChallenge method.

Parameters
Type Name Description
response The response to be tested.

Table 2-9: Method isCustomResponse parameters

2.3.2 Method handleChallenge

Syntax

public abstract void handleChallenge (WLResponse
response)

Description

You must implement this method to handle the challenge logic, for
example to display the login screen. The IBM Worklight framework
calls the method handleChallenge whenever the method
isCustomResponse returns true

Parameters
Type Name Description
challenge The response to be handled.

Table 2-10: Method handleChallenge parameters

IBM Worklight V5.0.6 11 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

2.3.3 Method submitFailure

Syntax

protected void submitFailure (WLResponse wlResponse)

Description

You must call this method when the challenge is answered with an
error. The method is inherited from BaseChallengeHandler.

Parameters
Type Name Description
wlResponse The received WLResponse.

Table 2-11: Method submitFailure parameters

2.3.4 Method submitSuccess

Syntax

protected void submitSuccess (WLResponse response)

Description

You must call this method when the challenge is answered
successfully, for example after the user successfully submits the
login form. Then, this method sends the original request.

Parameters
Type Name Description
response The received WLResponse.

Table 2-12: Method submitSuccess parameters

2.3.5 Method submitLoginForm

Syntax

protected void submitLoginForm(String requestURL,
Hashtable requestParameters, Hashtable
requestHeaders, String requestMethod)

Description

You use this method to send collected credentials to a specific URL.
You can also specify request parameters, headers, and timeout.

The success/failure delegate for this method is the instance itself (the
instance of ChallengeHandler), SO you must override the
onSuccess / onFailure methods.

IBM Worklight V5.0.6

12 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

Parameters
Type Name Description
requestURL Absolute URL if the user sends an

absolute URL that starts with
http:// or https://

Otherwise, URL relative to the
Worklight Server.

requestParameters | The request parameters.

requestHeaders The request headers.

requestMethod The HTTP method that you must use.
Acceptable values are GET, POST.

Table 2-13: Method submitLoginForm parameters

2.3.6 Method submitAdapterAuthentication

Syntax

public void
submitAdapterAuthentication (WLProcedureInvocationDa
ta invocationData, WLRequestOptions requestOptions)

Description

You use this method to invoke a procedure from the Challenge

Handler.
Parameters
Type Name Description
invocationData The invocation data, for example the
name of the procedure or the name of
the method.
requestoptions It contains the following options.

invocationContext — Object:

An object that is returned with
WLResponse to the delegate methods.
You can use this object to distinguish
different invokeProcedure calls.

Table 2-14: Method submitAdapterAuthentication parameters

2.3.7 Method onSuccess

Syntax

public void onSuccess (WLResponse response)

IBM Worklight V5.0.6 13 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

Description

This method is the success handler for submitLoginForm or
submitAdapterAuthentication.

Parameters
Type Name Description
response The received response.

Table 2-15: Method onSuccess parameters

2.3.8 Method onFailure

Syntax

public void onFailure (WLResponse response)

Description

This method is the failure handler for submitLoginForm or
submitAdapterAuthentication.

Parameters
Type Name Description
response The received response.

Table 2-16: Method onFailure parameters
Example: implementing a form-based Challenge Handler

/*
* Register the custom handler in the midlet
*/
public class FormBasedAuthentication extends MIDlet {
public FormBasedAuthentication () {
WLClient client = WLClient.createlnstance(this);
client.registerChallengeHandler (new
SampleAppRealmChal lengeHandler (*"'SampleAppRealm™));
}
}
/*
* Implementation of Custom Challenge Handler
*/
class SampleAppRealmChallengeHandler extends ChallengeHandler {
public SampleAppRealmChal lengeHandler(String realm) {

IBM Worklight V5.0.6 14 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

super(realm);
}
/*
* Called when the framework needs to identify custom response.
* In this example is identified by “jJ_security_check” string
* located iIn response text.
*/

public boolean isCustomResponse(WLResponse response) {

if (response == null || response.getResponseText() == null |]
response.getResponseText() . indexOf("'j_security_check™) == -1) {
return false;

by

return true;
}
/*

* Called to handle custom challenge

*/

public void handleChal lenge(WLResponse response) {

/7 .. 1/

// Show login form and ask for user name and password
// When the user name and password are provided by user, pass them
back to the server using
// submitLoginForm API.
/7 .. //
Map<String, String> params = new HashMap<String, String>(Q);
params.put(j_username', 'test');
params.put(*'j_password”, "pwd'™);
super.submitLoginForm(*'j_security_check", params, null, "post™);
by
/*
onSuccess is always called when the server returns a response. A
developer is responsible to parse the response
and display a login form (handle challenge) or submit success
answer .
*/
public void onSuccess(WLResponse response) {
if (isCustomResponse(response)) {
handleChal lenge(response);
} else {

IBM Worklight V5.0.6 15 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

submitSuccess(response);

}
}
/*
* onFailure is called in case of any error/exceptions
* WLErrorCode is set to appropriate error codes
*/
public void onFailure(WLFailResponse response) {
submitFailure(response);

}
}

2.4 Class WLProcedurelnvocationData

This class contains all necessary data to call a procedure, including:
o The names of the adapter and procedure to call.

e The parameters that the procedure requires.
2.4.1 Method setParameters

Syntax

public void setParameters (Object [] parameters)

Description

This method sets the request parameters.

Parameters

Type Name Description

parameters An array of objects of primitive types
(String, Integer, Float, Boolean
Double). The order of the objects in
the array is the order in which they are
sent to the adapter.

Table 2-17: Method setParameters parameters

Example

invocationData.setParameters(new Object[]{' 'stringParam’, true, 1.0,

1D;

2.5 Class WLRequestOptions

IBM Worklight V5.0.6 16 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

This class contains the request parameters, headers, and invocation
context.

2.5.1 Method addParameter

Syntax

public void addParameter (String name, String value)

Description

This method adds a request parameter with the given name and

value.
Parameters
Type Name Description
name The name of the parameter.
value The value of the parameter.

Table 2-18: Method addParameter parameters

2.5.2 Method addParameters

Syntax

public void addParameters (Hashtable parameters)

Description

This method adds a table of request parameters.

Parameters
Type Name Description
parameters The request parameters table.

Table 2-19: Method addParameters parameters

2.5.3 Method getParameter

Syntax

public String getParameter (String name)

Description

This method returns the value of the parameter that is set.

IBM Worklight V5.0.6 17 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

Parameters

Type Name Description

name The name of the parameter.

Table 2-20: Method getParameter parameters

2.5.4 Method getParameters

Syntax
public Hashtable getParameters ()

Description

This method returns the parameters table.
2.5.5 Method getResponseListener

Syntax

public WLResponselistener getResponselListener ()

Description

This method returns the response listener for this request.
2.5.6 Method addHeader

Syntax
public void addHeader (WLHeader header)

public void addHeader (String name, String value)

Description

You can use these methods to add a header or a header with the
given name and value.

Parameters
Type Name Description
header The header to be added.
name The name of the header.
value The value of the header.

Table 2-21: Method addHeader parameters

IBM Worklight V5.0.6 18 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

2.5.7 Method setHeaders

Syntax

public void setHeaders (Vector extraHeaders)

Description

This method sets the request with the headers of type WLHeader
from the given vector.

Parameters
Type Name Description
extraHeaders The headers to be set.

Table 2-22: Method setHeaders parameters

2.5.8 Method getHeaders

Syntax
public Vector getHeaders ()

Description

This method returns the headers that are set for this request.
2.5.9 Methods getinvocationContext, setinvocationContext

Syntax
public Object getInvocationContext ()

public void setInvocationContext (Object
invocationContext)

Parameters
Type Name Description
invocationContext An object that is returned with WLResponse to the

listener methods onSuccess and onFailure. You
can use this object to identify and distinguish
different invokeProcedure calls. This object is
returned as is to the listener methods.

Table 2-23: Methods getinvocationContext, setinvocationContext parameters

2.6 Interface WLResponseListener

This interface defines methods that the listener for the
WLClient.invokeProcedure method implements to receive
notifications about the success or failure of the method call.

IBM Worklight V5.0.6 19 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

2.6.1 Method onSuccess

Syntax

public void onSuccess (WLResponse response)

Description

This method is called after successful calls to the WLCLient
connect Or invokeProcedure methods.

Parameters
Type Name Description
response The response that is returned from the server,
along with any invocation context object and status.

Table 2-24: Method onSuccess parameters

2.6.2 Method onFailure

Syntax

public void onFailure (WLFailResponse response)

Description

This method is called if any failure occurred during the execution of
the WLCLient connect Or invokeProcedure methods.

Parameters
Type Name Description
response A response that contains the error code and error

message. Optionally, it can also contain the results
from the server and any invocation context object
and status.

Table 2-25: Method onFailure parameters

2.7 Class WLResponse
This class contains the result of a procedure invocation. IBM

Worklight passes this class as an argument to the listener methods of
the WLClient invokeProcedure method.

2.7.1 Method getStatus

Syntax
public int getStatus/()

Description

This method retrieves the HTTP status from the response.

IBM Worklight V5.0.6 20 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

2.7.2 Method getinvocationContext

Syntax
public Object getInvocationContext ()

Description

This method retrieves the invocation context object that is passed
when the invokeProcedure method is called.

2.7.3 Method getResponseText

Syntax
public Object getResponseText ()

Description

This method retrieves the original response text from the server.

2.7.4 Method getResponseJSON

Syntax
public JSONObject getResponseJSON ()

Description

This method retrieves the response text from the server in JISON
format.

2.8 Class WLFailResponse

This class extends WLResponse and contains the status in
WLResponse, error codes, and messages. This class also contains
the original response DataObject from the server.

2.8.1 Method getErrorCode

Syntax
public WLErrorCode getErrorCode ()

Description

The WLErrorCode section contains a description of the possible
error codes.

2.8.2 Method getErrorMsg

Syntax
public String getErrorMsg ()

IBM Worklight V5.0.6

21 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

Description

This method returns an error message that is for the developer, and
not necessarily suitable for the user.

2.9 Class WLProcedurelnvocationResult

This class extends WLResponse. This class contains statuses and
data that the adapter procedure retrieves.

2.9.1 Method getResult

Syntax
public JSONObject getResult ()

Description

This method returns a JSONObject that represents the JSON
response from the server.

2.9.2 Method isSuccessful

Syntax

public boolean isSuccessful ()

Description

This method returns true if the procedure invocation was technically
successful. Application errors are returned as part of the retrieved
data, and not in this flag.

2.10 Class WLProcedurelnvocationFailResponse

This class extends WLFailResponse. This class contains statuses
and data that the adapter procedure retrieves.

2.10.1 Method getProcedurelnvocationErrors

Syntax

public List<String> getProcedurelnvocationErrors ()

Description

This method returns a list of applicative error messages that are
collected while the procedure is called.

2.10.2 Method getResult

Syntax
public JSONObject getResult () throws JSONException

IBM Worklight V5.0.6 22 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

Description

This method returns a JSONObject that represents the JSON
response from the server.

2.11Class WLErrorCode

This class contains error codes and their description, which the
server returns.

2.11.1 Method getDescription

Syntax
public String getDescription()

Description

This method returns the description of this error code instance.
2.11.2 Method valueOf

Syntax

public static WLErrorCode valueOf (String errorCode)

Description

This method returns the error code instance of the errorCode that
is given.

Error Codes

UNEXPECTED_ERROR - Unexpected errorCode occurred. Try again.
REQUEST_TIMEOUT — The request timed out.

UNRESPONSIVE_HOST - The service is currently unavailable.
PROCEDURE_ERROR - Procedure invocation errorCode.
PROCEDURE_PROTECTED_ERROR — The procedure is protected.
APP_VERSION_ACCESS DENIAL - Application version denied.
APP_VERSION_ACCESS NOTIFY - Notify application version changed.

2.12 Class WLHeader

This class creates a header that is sent with the request
2.12.1 Method getHeaderName

Syntax
public String getHeaderName ()

IBM Worklight V5.0.6 23 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE APl FOR JAVA PLATFORM, MICRO EDITION API| REFERENCE

Description

This method returns the name of this header.
2.12.2 Method getHeaderValue

Syntax
public String getHeaderValue ()

Description

This method returns the value of this header.

IBM Worklight V5.0.6 24 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE API FOR JAVA PLATFORM, MICRO EDITION NOTICES

Appendix A - Notices

This information was developed for products and services offered in
the U.S.A.

IBM may not offer the products, services, or features discussed in
this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent
product, program, or service that does not infringe any IBM
intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS)
information, contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law
IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom
or any other country where such provisions are inconsistent
with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not
allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided
for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites
are not part of the materials for this IBM product and use of those
Web sites is at your own risk.

IBM Worklight V5.0.6

25 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE API FOR JAVA PLATFORM, MICRO EDITION NOTICES

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between
independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been
exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216
USA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the IBM
Customer Agreement, IBM International Program License Agreement
or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming techniques on various
operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the
purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These
examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs. © Copyright IBM Corp. _enter the
year or years_. All rights reserved.

Privacy Policy Considerations

IBM Software products, including software as a service solutions,
(“Software Offerings”) may use cookies or other technologies to
collect product usage information, to help improve the end user
experience, to tailor interactions with the end user or for other
purposes. In many cases no personally identifiable information is
collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If
this Software Offering uses cookies to collect personally identifiable
information, specific information about this offering’s use of cookies is
set forth below.

Depending upon the configurations deployed, this Software Offering
may use session cookies that collect session information (generated

IBM Worklight V5.0.6

26 © Copyright IBM Corporation 2012, 2013.

JAVA CLIENT-SIDE API FOR JAVA PLATFORM, MICRO EDITION NOTICES

by the application server). These cookies contain no personally
identifiable information and are required for session management.
Additionally, persistent cookies may be randomly generated to
recognize and manage anonymous users. These cookies also
contain no personally identifiable information and are required.

If the configurations deployed for this Software Offering provide you
as customer the ability to collect personally identifiable information
from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data
collection, including any requirements for notice and consent. For
more information about the use of various technologies, including
cookies, for these purposes, see IBM’s Privacy Policy at
http://www.ibm.com/privacy and IBM’s Online Privacy Statement at
http://www.ibm.com/privacy/details/en/us sections entitled “Cookies,
Web Beacons and Other Technologies” and “Software Products and
Software-as-a-Service”.

IBM Worklight V5.0.6

27 © Copyright IBM Corporation 2012, 2013.

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details/en/us

JAVA CLIENT-SIDE API FOR JAVA PLATFORM, MICRO EDITION SUPPORT AND COMMENTS

Appendix B - Support and comments

Support

Comments

For the entire IBM Worklight documentation set, training material and
online forums where you can post questions, see the IBM website at:

http://www.ibm.com/mobile-docs

Software Subscription and Support (also referred to as Software
Maintenance) is included with licenses purchased through Passport
Advantage and Passport Advantage Express. For additional
information about the International Passport Advantage Agreement
and the IBM International Passport Advantage Express Agreement,
visit the Passport Advantage website at:

http://www.ibm.com/software/passportadvantage

If you have a Software Subscription and Support in effect, IBM
provides you assistance for your routine, short duration installation
and usage (how-to) questions, and code-related questions. For
additional details, consult your IBM Software Support Handbook at:

http://www.ibm.com/support/handbook

We appreciate your comments about this publication. Please
comment on specific errors or omissions, accuracy, organization,
subject matter, or completeness of this document. The comments
you send should pertain to only the information in this manual or
product and the way in which the information is presented.

For technical questions and information about products and prices,
please contact your IBM branch office, your IBM business partner, or
your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive
right to use or distribute your comments in any way it believes
appropriate without incurring any obligation to you. IBM or any other
organizations will only use the personal information that you supply to
contact you about the issues that you state.

Thank you for your support.
Submit your comments in the IBM Worklight forums at:

https://www.ibm.com/developerworks/mobile/mobileforum.html

If you would like a response from IBM, please provide the following
information:

e Name

e Address

e Company or Organization
e Phone No.

e Email address

IBM Worklight V5.0.6

28 © Copyright IBM Corporation 2012, 2013.

http://www.ibm.com/mobile-docs
http://www.ibm.com/software/passportadvantage
http://www.ibm.com/support/handbook
https://www.ibm.com/developerworks/mobile/mobileforum.html

Copyright © 2012, 2013 IBM

All rights reserved.

	1 API overview
	2 API reference
	2.1 Example Code
	2.1.1 Example: connecting to the Worklight Server and calling a procedure

	2.2 Class WLClient
	2.2.1 Method createInstance
	2.2.2 Method getInstance
	2.2.3 Method connect
	2.2.4 Method invokeProcedure
	2.2.5 Method logActivity
	2.2.6 Method setHeartBeatInterval
	2.2.7 Method registerChallengeHandler
	2.2.8 Method addGlobalHeader
	2.2.9 Method removeGlobalHeader

	2.3 Class ChallengeHandler
	2.3.1 Method isCustomResponse
	2.3.2 Method handleChallenge
	2.3.3 Method submitFailure
	2.3.4 Method submitSuccess
	2.3.5 Method submitLoginForm
	2.3.6 Method submitAdapterAuthentication
	2.3.7 Method onSuccess
	2.3.8 Method onFailure

	2.4 Class WLProcedureInvocationData
	2.4.1 Method setParameters

	2.5 Class WLRequestOptions
	2.5.1 Method addParameter
	2.5.2 Method addParameters
	2.5.3 Method getParameter
	2.5.4 Method getParameters
	2.5.5 Method getResponseListener
	2.5.6 Method addHeader
	2.5.7 Method setHeaders
	2.5.8 Method getHeaders
	2.5.9 Methods getInvocationContext, setInvocationContext

	2.6 Interface WLResponseListener
	2.6.1 Method onSuccess
	2.6.2 Method onFailure

	2.7 Class WLResponse
	2.7.1 Method getStatus
	2.7.2 Method getInvocationContext
	2.7.3 Method getResponseText
	2.7.4 Method getResponseJSON

	2.8 Class WLFailResponse
	2.8.1 Method getErrorCode
	2.8.2 Method getErrorMsg

	2.9 Class WLProcedureInvocationResult
	2.9.1 Method getResult
	2.9.2 Method isSuccessful

	2.10 Class WLProcedureInvocationFailResponse
	2.10.1 Method getProcedureInvocationErrors
	2.10.2 Method getResult

	2.11 Class WLErrorCode
	2.11.1 Method getDescription
	2.11.2 Method valueOf

	2.12 Class WLHeader
	2.12.1 Method getHeaderName
	2.12.2 Method getHeaderValue

