
Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.IBM Worklight V5.0.6

���

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

ii IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Contents

Chapter 1. Starting with IBM Worklight . 1
Introducing IBM Worklight 1
System requirements for using IBM Worklight . . . 4
What's new 4

What's new in IBM Worklight V5.0.6.2 4
What's new in IBM Worklight V5.0.6.1 5
What's new in IBM Worklight V5.0.6 5

Known limitations 12
Setting up IBM Worklight Studio 13

Installing IBM Worklight Studio 14
Troubleshooting IBM Worklight Studio
installation 17
Upgrading IBM Worklight Studio in Eclipse . . 18
Starting IBM Worklight Studio installed with IBM
Installation Manager 19
Starting IBM Worklight Studio installed with P2
Eclipse update 19
Installing mobile specific tools 19
Changing the port number of the internal
application server 21
Migrating to a newer version of IBM Worklight 22

Setting up IBM Worklight Server 29
Getting started tutorials and samples 29

Chapter 2. Developing IBM Worklight
applications 39
Starting with IBM Worklight projects, applications,
environments, and skins 39

Overview: IBM Worklight projects, applications,
environments, and skins 40
Creating IBM Worklight projects 42
Anatomy of an IBM Worklight Project 43
Creating the client side of an IBM Worklight
application 45
Anatomy of an IBM Worklight Application . . . 47

Development guidelines for mobile environments 61
Integrating with source control systems 61
Integrate Tealeaf CX with IBM Worklight . . . 63
Application skins 67
Web and native code in iPhone, iPad, and
Android 68
Creating an IBM Worklight BlackBerry 10
environment 72
Specifying the icon for an Android application . 73
Specifying the icon for an iPhone application . . 74
Extracting a public signing key 74
Connecting to Worklight Server 77
Adding custom code to an Android app. . . . 78

Development guidelines for desktop and web
environments 79

Specifying the application taskbar for Adobe AIR
applications 79
Configuring the authentication for web widgets 80
Writing login form files for web widgets . . . 80

Setting the size of the login screen for web
widgets. 80
Deploying applications on iGoogle 80
Deploying applications on Facebook 81
Signing Adobe AIR applications 82
Signing Windows 8 apps 82
Signing Windows 7 and Vista gadgets 83
Embedding widgets in predefined web pages . . 84

Development guidelines for using native API . . . 84
Application Descriptor of Native API
applications for iOS 86
Client property file for iOS 88
Copying files of Native API applications for iOS 88
Application Descriptor of Native API application
for Android 89
Client property file for Android 91
Copying files of Native API applications for
Android 92
Application Descriptor of Native API application
for Java Platform, Micro Edition (Java ME) . . . 92
Client property file for Java Platform, Micro
Edition (Java ME) 93
Copying files of Native API applications for Java
Platform, Micro Edition (Java ME) 94

Developing the server side of an IBM Worklight
application 95

Overview of IBM Worklight adapters 95
The adapter XML File 99
Creating an IBM Worklight adapter 111
Adapter invocation service 114
Implementing adapter procedures 115
Encoding a SOAP XML envelope 116
Calling Java code from a JavaScript adapter . . 117
Features of the IBM Worklight Studio 117
Procedure invocation 122
Invoking a back-end service 123
Deploying an adapter 126

Transporting Worklight applications to test and
production environments 127

Transporting an application from development
to another environment 127
Deploying a customization .war file to an
application server 129
Administering adapters and apps in the IBM
Worklight Console. 132
Ant tasks for building and deploying 134

Authentication configuration 137
Protected resources 137
Security Tests 137
Authentication realms 139
Authenticators and Login Modules 140
The authentication configuration file 140
Configuring IBM Worklight web application
authorization 141
Configuring Authenticators and Realms . . . 141
Basic authenticator 142

iii

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Form-based authenticator 143
Header authenticator 144
Persistent cookie authenticator 144
Adapter authenticator 144
LTPA authenticator 145
Attributes of login modules 146
Non-validating login module 147
Database login module 147
Single identity login module 148
Header login module 149
WASLTPAModule login module 149
LDAP login module 149
Scope of mobile device authentication 151
Mobile device provisioning 152
Configuring and implementing device
provisioning. 153
Device single sign-on (SSO) 154
Configuring device single sign-on 154

Data synchronization with JSONStore 155
Developing an app that uses data
synchronization 156
Encrypting collections 157
Troubleshooting information for synchronization 157

Client-side log capture 158
Server preparation for uploaded log data . . . 159
Client-side logging in client apps 160

Chapter 3. Integration with other IBM
Mobile Foundation products 163
Introducing the IBM Worklight platform 163
Integration with Cast Iron 164
Integration with reverse proxy. 165

Authentication at the gateway 166
Managing end points with IBM Endpoint Manager 167
Useful links 168

Chapter 4. Migrating from the
WebSphere Application Server
Feature Pack 169
Migration scenarios 169

Migrating an application that uses the client
programming model 169
Migrating an application that uses the server
programming model 170
Considerations for applications that use JAX-RS,
JSON-RPC, or proxying 171
Example: Migrating the Dojo showcase sample 171

Chapter 5. API reference 173
IBM Worklight client-side API 173

JavaScript client-side API 173
Objective-C client-side API for native iOS apps 271
Java client-side API for native Android apps 271
Java client-side API for Java ME apps 271

IBM Worklight server-side API 271
JavaScript server-side API 271
Java server-side API 301

Chapter 6. IBM Worklight Server
administration 311
Architecture and concepts 311

IBM Worklight development lifecycle 312
Typical topology of an IBM Worklight instance 313

Installation 314
Installation prerequisites. 314
Creating the DB2 databases. 315
Creating the MySQL databases 316
Creating the Oracle databases 316
Running IBM Installation Manager 318
Manually configuring the databases 321
Manually configuring the application server . . 342
Starting IBM Worklight Server with Liberty
Profile 347
Starting IBM Worklight Server with WebSphere
Application Server 348
Starting IBM Worklight Server with Apache
Tomcat 348
Verifying IBM Worklight Server startup . . . 348
Applying environment-specific customization 349
Deploying content: applications and adapters 350
Database and certificate security passwords . . 353
Apache Tomcat security options 353
WebSphere Application Server security options 354
WebSphere Application Server security option 1
procedure 356
WebSphere Application Server security option 2
procedure 357
Running IBM Worklight in WebSphere
Application Server with Java 2 security enabled . 358
Changing the IBM Worklight Server working
directory 359

Administering IBM Worklight applications . . . 359
Direct updates of app versions to mobile
devices 360
Direct updates of app versions to desktop apps 362
Locking an application 362
Remotely disabling application connectivity . . 363
Displaying a notification message on application
startup 366
Defining administrator messages from the IBM
Worklight Console in multiple languages . . . 366
Controlling authenticity testing for an app . . 370
Setting up existing applications with a new
server version 371
Federal standards support in Worklight . . . 372

Reports 374
Using raw data reports 375
Device usage reports 378
Predefined BIRT Reports 380
Installing BIRT on Apache Tomcat 382
Installing BIRT on WebSphere Application
Server Liberty Profile 384
Installing BIRT on WebSphere Application
Server Full Profile 386
Configuring BIRT Reports For Your Application
Server 387
BIRT in Eclipse 388
Notification reports database schema 390

High availability 391

iv IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Clustering 391
Configuring the load balancer 392
Adding a node to the cluster 392
Upgrading a production cluster 392
Firewalls 393
Disaster Recovery Site 394

Push Notification 395
The push notification console 396
Subscribe SMS servlet 398

Backup and recovery 399
Logging and monitoring mechanisms 400

Vitality queries 401
Routing logging to Windows event log 403
Enabling trace for adapters in an Eclipse-hosted
server 403

Optimizing and tuning of IBM Worklight Server 404
Troubleshooting Worklight Server 404

Troubleshooting to locate the server and
databases on Windows 404
Troubleshooting to find the cause of installation
failure 404
Failed to create the DB2 database. 405
Installation blocked by DB2 connection errors 405

IBM Worklight properties 406
Configuring the IBM Worklight Server location 406
IBM Worklight database setup. 408
Protecting IBM Worklight Console 408
Push notification settings 409
SSL certificate keystore setup 410
Miscellaneous Settings 411
Storing properties in encrypted format 411
Obsolete properties 412

SMS gateway configuration. 412
Internal IBM Worklight Database Tables 414
HTTP Interface of the production server 421

Chapter 7. Application Center 423
Introduction to the Application Center 423

Concept of the Application Center 423
General architecture 424
Preliminary information 426
Distribution structure. 427

Installation of the Application Center 428
Configuration of the Application Center after
installation 429

Definition of the endpoint of the application
resources 429
Configuring WebSphere Application Server full
profile 431
Configuring WebSphere Application Server
Liberty Profile 433
Configuring Apache Tomcat 435

Managing users with LDAP 436
Configuring ACL management with LDAP and
WebSphere Application Server V7 436
Configuration of LDAP authentication
(WebSphere Application Server V8.x) 438
Configuring LDAP authentication for users and
groups (WebSphere Application Server V8.x) . . 439
Enabling ACL management with LDAP
(WebSphere Application Server V8.x) 440

Configuring LDAP authentication (Liberty
profile) 441
Mapping users and groups to Application
Center roles (LDAP on Liberty profile) 442
Configuring the Application Center for ACL
management with LDAP (Liberty profile) . . . 443
Configuring ACL management with LDAP and
Apache Tomcat 445

Preparations for using the mobile client 449
The Application Center console 452

Starting the Application Center console. . . . 453
Application Management 454
Adding a mobile application 455
Application properties 456
Editing application properties 458
Downloading an application file 459
Viewing application feedback 460
User and group management 461
Access control 463
Managing access control. 463
Device Management 464
Signing out of the Application Center console 467

Command-line tool for uploading an application 467
Using the stand-alone tool to upload an
application 468
Ant task for uploading an application 468

Publishing Worklight applications to the
Application Center 470
The mobile client 473

Installing the client on an Android mobile
device 473
Installing the client on an iOS mobile device 477
Installing the client on a BlackBerry mobile
device 478
Views in the mobile client 479
The Settings view 480
The My Mobile and My Applications views . . 481
Removing an installed application 482
Rating an installed application 483
Updating an installed application (Android and
iOS) 483
Reverting an installed application (Android and
iOS) 485
Updating and reverting an installed application
(BlackBerry) 486
The Catalog or All Applications view 487
Installing an application on an Android device 488
Installing an application on an iOS device . . . 490
Installing an application on a BlackBerry device 492
The In Progress view (Android and iOS) . . . 493

Advanced information for BlackBerry users . . . 494
Application rating feature called from another
application (advanced feature). 496

Chapter 8. Deploying to the cloud by
using IBM PureApplication System . . 499
Installation of IBM Worklight support for
PureApplication System 499

Installing the IBM Mobile Application Platform
Pattern Type. 499

Contents v

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Installation of IBM Worklight PureApplication
System Extension for Worklight Studio 500

Working with the IBM Mobile Application
Platform Pattern Type 500

Composition and components 500
Creating an IBM Mobile Application Platform
Pattern 500
Integrating with Tivoli Directory Server . . . 502
Performing operations on running IBM
Worklight VAP instances 503
Upgrading IBM Mobile Application Platform
Pattern 504

Working with IBM Worklight PureApplication
System Extension for Worklight Studio 504

Setting up PureApplication System preferences
in IBM Worklight Studio 504
Deploying an IBM Worklight project to
PureApplication System 505
Fetching the Worklight Console URL for a
deployed IBM Worklight project 505

Integration with Tivoli Directory Server . . . 506
Building and deploying IBM Worklight virtual
applications by using the command line interface . 506

Building an IBM Worklight virtual application 506
Deploying an IBM Worklight virtual application 507

Deployment of the Application Center on IBM
PureApplication System 508

Deploying the Application Center on IBM
PureApplication System 509

Chapter 9. Troubleshooting and
known limitations 513

Chapter 10. Notices. 515

Chapter 11. Support and comments 519

Index 523

vi IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 1. Starting with IBM Worklight

With IBM® Worklight®, you can simplify and accelerate the development, testing,
and delivery of your mobile apps.

IBM Worklight offers an Eclipse-based visual development and a server
environment for you to create native, hybrid, and standard web mobile
applications, and maximizes code reuse across different mobile phone platforms.

Introducing IBM Worklight
IBM Worklight consists of different components: Worklight Studio, Worklight
Server, Worklight device runtime components, Worklight Console, Application
Center, and IBM Mobile Application Platform Pattern.

Editions of IBM Worklight
v IBM Worklight Developer Edition is an unsupported and non-warranted

program that consists of a single plug-in for the Eclipse integrated development
environment (IDE). It is available from the developerWorks® website. You must
install it with P2 Eclipse update. It provides every Worklight Studio function
available in the Consumer and Enterprise Editions, except for some
security-related features.

v IBM Worklight Consumer Edition and IBM Worklight Enterprise Edition are
identical binaries that differ in license only. These programs are supported
through an IBM International License Agreement. You can install Worklight
Studio for these editions with P2 Eclipse update or with IBM Installation
Manager. The IBM Worklight Consumer Edition and the IBM Worklight
Enterprise Edition also contain a separate Worklight Server component, which is
available with IBM Passport Advantage® as an Installation Manager package.

Worklight Studio

In a mobile development platform, cross-platform portability of the application
code is critical for mobile device application development. Various methods exist
to achieve this portability. With IBM Worklight, you can develop multiplatform
applications by using Worklight Studio, which is a mobile development studio, to
address the requirements of the organization.

You can use Worklight Studio for the following tasks:
v Develop rich HTML5, hybrid and native applications for all supporting modern

devices by using native code, a bidirectional WYSIWYG, and standard web
technologies and tools.

v Maximize code sharing by defining custom behavior and styling guidelines that
match the target environment.

v Access device APIs by using native code or standard web languages over a
uniform Apache Cordova bridge. Apache Cordova is preinstalled with
Worklight, therefore do not download your own Apache Cordova version.

v Use both native and standard web languages within the same application to
balance development efficiency and a rich user experience.

v Use third-party tools, libraries, and frameworks such as JQuery Mobile, Sencha
Touch, and Dojo Mobile.

1

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Implement runtime skins to build apps that automatically adjust to environment
guidelines such as form factor, screen density, HTML support, and UI input
method.

Worklight Server

The Worklight Server is a runtime container for the mobile applications you
develop in Worklight Studio. It is not an application server in the Java™ Platform,
Enterprise Edition (JEE) sense. It acts as a container for Worklight application
packages, and is in fact a collection of web applications (optionally packaged as an
EAR file) that run on top of traditional application servers.

Worklight Server is designed to integrate into the enterprise environment and use
its existing resources and infrastructure. This integration is based on adapters that
are server-side software components responsible for channeling back-end
enterprise systems and cloud-based services to the user device. You can use
adapters to retrieve and update data from information sources, and to allow users
to perform transactions and start other services and applications.

You can use Worklight Server for the following tasks:
v Empower hundreds of thousands of users with transactional capabilities and

enable their direct access to back-end systems and cloud-based services.
v Configure, test, and deploy descriptive XML files to connect to various back-end

systems by using standard Worklight Studio tools.
v Directly update deployed hybrid and web applications, without going through

the different app stores (subject to the terms of service of the vendor).
v Automatically convert hierarchical data to JSON format for optimal delivery and

consumption.
v Enhance users interaction with a uniform push notification architecture.
v Define complex mashups of multiple data sources to reduce overall traffic.
v Integrate with the existing security and authentication mechanisms of the

organization.

Worklight device runtime components

IBM Worklight provides client-side runtime code that embeds server functionality
within the target environment of deployed apps. These runtime client APIs are
libraries that are integrated into the locally stored app code. They complement the
Worklight Server by defining a predefined interface for apps to access native
device functions. Among these APIs, IBM Worklight uses the Apache Cordova
development framework. This framework delivers a uniform bridge between
standard web technologies (HTML5, CSS3, JavaScript) and the native functions that
different mobile platforms provide.

The Worklight device runtime components provide the following functions:
v Mobile data integration: connectivity and authentication APIs
v Security features: on-device encryption, offline authentication, and remote

disablement of apps
v Cross-platform support: runtime skins, UI abstractions, and HTML5 toolkits

compatibility
v Mobile client functionality: hybrid app framework, access to device APIs and

push notification registration
v Reports and analytics: built-in reports and event-based custom reporting

2 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Resource serving: direct update of app web resources and HTML5 caching

Worklight Console

The Worklight Console is used for the control and management of the mobile
organization, from managing deployed applications to collecting and analyzing
user statistics.

You can use the Worklight Console for the following tasks:
v Monitor all deployed applications, adapters, and push notification rules from a

centralized, web-based console.
v Assign device-specific identifiers (IDs) to ensure secure application provisioning.
v Remotely disable applications by using preconfigured rules of app version and

device type.
v Customize messages that are sent to users on application launch.
v Collect user statistics from all running applications.
v Generate built-in, pre-configured user adoption and usage reports.
v Configure data collection rules for application-specific events.
v Export raw reporting data to be analyzed by the BI systems of the organization.

Application Center

With the Application Center, you can share mobile applications that are under
development within your organization in a single repository of mobile
applications. Development team members can use the Application Center to share
applications with members of the team. This process facilitates collaboration
between all the people who are involved in the development of an application.

Your company can typically use the Application Center as follows:
1. The development team creates a version of an application.
2. The development team uploads the application to the Application Center,

enters its description, and asks the extended team to review and test it.
3. When the new version of the application is available, a tester runs the

Application Center installer application, which is the mobile client. Then, the
tester locates this new version of the application, installs it on their mobile
device, and tests it.

4. After the tests, the tester rates the application and submits feedback, which is
visible to the developer from the Application Center console.

The Application Center is aimed for private usage within a company, and you can
target some mobile applications to specific groups of users. You can use the
Application Center as an enterprise application store.

With the Application Center, you can manage native or hybrid applications that are
installed on mobile devices. The Application Center supports applications that are
built for the Google Android platform and the Apple iOS platform, but does not
target mobile web applications.

IBM Mobile Application Platform Pattern

With the IBM Mobile Application Platform Pattern, you can deploy the Worklight
Server on IBM PureApplication™ System. With this pattern, administrators and
businesses can respond quickly to changes in the business by taking advantage of

Chapter 1. Starting with IBM Worklight 3

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

on-premises Cloud technologies. This approach simplifies the deployment process,
and improves the operational efficiency to cope with increased mobile demand.
The demand accelerates iteration of solutions that exceed traditional demand
cycles. Deploying the IBM Mobile Application Platform Pattern on IBM
PureApplication System also gives access to best practices and built-in expertise,
such as built-in scaling policies.

System requirements for using IBM Worklight
Operating systems, Eclipse versions, and SDKs supported by IBM Worklight.

Read the IBM Worklight and IBM Mobile Foundation detailed system requirements web
page at http://www.ibm.com/support/docview.wss?uid=swg27024838 to identify
the system requirements for this release of IBM Worklight, including:
v The operating systems that support IBM Worklight, including mobile device

operating systems
v The editions of Eclipse that support Worklight Studio, which is an Eclipse-based

integrated development environment (IDE)
v The supported software development kits (SDKs)
v The supported web browsers
v The needed hardware configuration

What's new
This section details the new features and changes in IBM Worklight V5.0.6 and
subsequent fix packs.

What's new in IBM Worklight V5.0.6.2
IBM Worklight V5.0.6.2 fixes many problems that were identified in previous
versions.

Client-side log collection

Starting with IBM Worklight V5.0.6.2, you can now capture and receive uploaded
client-side logs. For more information, see “Client-side log capture” on page 158.

Support for Android 4.4

You can now use IBM Worklight to develop applications that run on Android 4.4.
For more information, see IBM Worklight Supports Android 4.4.

Application startup time improvement

Significant improvements have been made on the amount of time the user must
wait when IBM Worklight applications are started for the first time. The
performance improvement applies to both Android and iOS. In cases where the
web resources are not encrypted (that is, when encryptWebResources is set to the
default value of false), a change has been made resulting in a significant
improvement in the application startup time.
v Maximum improvement is achieved with testWebResourcesChecksum and

encryptWebResources set to their default value of false in the application
descriptor file.

v Setting the testWebResourcesChecksum value to true reduces the improvement
slightly.

4 IBM Worklight V5.0.6

http://www.ibm.com/support/docview.wss?uid=swg27024838
http://www-01.ibm.com/support/docview.wss?uid=swg27040512

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Setting the encryptWebResources value to true results in no improvement.

Changes to the WL.Client.init JavaScript client-side API method

The “WL.Client.init” on page 189 method supports the following new properties
and parameters:
v New showCloseOnDirectUpdateFailure property.
v New showCloseOnRemoteDisableDenial property.
v New message and downloadLink parameters for the onErrorRemoteDisableDenial

property.

Change in Remote Disable behavior

When you use the Worklight Console to disable an application's access to the
server, the default behavior is no longer to exit the application completely. For
more information, see “Remotely disabling application connectivity” on page 363.

Deprecation of WL.OptionsMenu with Android 3.0, API level 11

If your application targets Android 3.0 (API level 11) or higher, WL.OptionsMenu
might have no effect, depending on the device. For more information, see Creating
an Options Menu in the Android Developers API Guides and “Options Menu and
Application Bar API” on page 251.

Documentation improvements
v Clarification on how to use the WL.App.BackgroundHandler.hideView handler to

hide the application splash screen. See
“WL.App.BackgroundHandler.setOnAppEnteringBackground” on page 175.

List of fixes for IBM Worklight V5.0.6.2

For a complete list of issues that are fixed in IBM Worklight V5.0.6.2, see Fix Pack
5.0.6.2.

What's new in IBM Worklight V5.0.6.1
IBM Worklight V5.0.6.1 fixes many problems that were identified in previous
versions.

For more information about the fixed issues, see Fix Pack 5.0.6.1.

What's new in IBM Worklight V5.0.6
This section details the new features and changes in IBM Worklight V5.0.6
compared to the previous version of this product.

Simplified deployment and operational experience
IBM Worklight V5.0.6 defines the Worklight Virtual Application Pattern for IBM
PureApplication System. Use this pattern to simply the deployment and the
operational experience of IBM Worklight apps.

New Worklight Virtual Application Pattern for PureApplication System

IBM Worklight V5.0.6 defines the Worklight Virtual Application Pattern (VAP) for
PureApplication System that you can use to import, configure, deploy, and manage
IBM Worklight applications and adaptors directly.

Chapter 1. Starting with IBM Worklight 5

http://developer.android.com/guide/topics/ui/menus.html#options-menu
http://developer.android.com/guide/topics/ui/menus.html#options-menu
http://www-01.ibm.com/support/docview.wss?uid=swg27038650
http://www-01.ibm.com/support/docview.wss?uid=swg27038650
http://www-01.ibm.com/support/docview.wss?uid=swg27038650

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For more information, see Chapter 8, “Deploying to the cloud by using IBM
PureApplication System,” on page 499.

To get started with this new feature, see the new modules Introducing Worklight
Server and Application Center on IBM PureApplication System and Integrating Tivoli
Directory Server on IBM PureApplication System, under category 11, Integrating with
other products, in “Getting started tutorials and samples” on page 29.

Integration of Application Center into Virtual Application Pattern

In IBM Worklight V5.0.6, you can configure and connect the operational
components of the Application Center to deploy the enterprise application on
PureApplication System.

For more information, see “Deployment of the Application Center on IBM
PureApplication System” on page 508.

Enhancement of Worklight Studio for Virtual Application Pattern

In IBM Worklight V5.0.6, you can now deploy your apps to the Worklight Server
directly from Worklight Studio.

For more information, see “Working with IBM Worklight PureApplication System
Extension for Worklight Studio” on page 504.

Improved security and user experience
IBM Worklight V5.0.6 provides enhanced capabilities in terms of security and user
experience.

Important: Some of the changes that are listed in this topic have an impact on
how your IBM Worklight applications behave. In some cases, you might have to
manually modify your projects or applications that you created with previous
versions of IBM Worklight. For more information about this potential impact, and
any required manual migration, see “Migrating to a newer version of IBM
Worklight” on page 22.

Separate SSL certificate per HTTP adapter

In IBM Worklight V5.0.6, you can configure each HTTP adapter that is based on
SSL so that your application can communicate with different back-end services.

For more information, see “SSL certificate keystore setup” on page 409.

Note: With IBM Worklight V5.0.6, the Worklight Server now recognizes self-signed
certificates automatically. In previous versions of IBM Worklight, you first had to
import them to a Java Runtime Environment (JRE) keystore, by following
instructions such as the ones here. With IBM Worklight V5.0.6, you no longer have
to follow such instructions, and the corresponding topic is no longer part of the
IBM Worklight V5.0.6 Information Center.

Device Single Sign-On (SSO)

In IBM Worklight V5.0.6, the mobile user authentication mechanism now uses
Single Sign-On (SSO). With Device SSO, the mobile user authenticates only once
for all applications from the same vendor. After the user successfully authenticates

6 IBM Worklight V5.0.6

http://pic.dhe.ibm.com/infocenter/wrklight/v5r0m5/topic/com.ibm.worklight.help.doc/admin/t_ibm_worklight_server_and_self-signed_certificates.html

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

with an SSO login module, the user gains access to the protected resources that are
using the same SSO login module, without having to authenticate again for each of
them.

The user remains authenticated while requests to access the resources that are
protected by this SSO login module are issued. After an idle period, or after an
explicit logout from the SSO login module, the user is no longer authenticated, and
must log in to the SSO login module to reobtain access to these resources.

For more information, see “Device single sign-on (SSO)” on page 154.

Enhanced JSONStore capability

In IBM Worklight V5.0.6, JSONStore capability includes the following
enhancements:
v Support for multiple users and multiple passwords to provide secure (private)

data for each user in a shared app on a device environment
v Simplification of the JavaScript API programming model by using promises
v Better management of concurrency conditions when multiple collections are

being used
v Better exception handling
v Support for JSONStore in x86 Android environments

For more information about JSONStore, see “WL.JSONStore” on page 214.

To get started with this feature, see the modules JSONStore - The client-side
JSON-based database overview, JSONStore - API basics, JSONStore - Synchronizing client
and server databases, JSONStore - Encrypting sensitive data, and JSONStore -
Encrypting sensitive data with FIPS 140-2, under category 5, Advanced client side
development, in “Getting started tutorials and samples” on page 29.

Enhanced client-side notification subscription and management

In IBM Worklight V5.0.6, support for notification mechanisms is enhanced.
v Push notifications are now supported also in native applications for iOS and

Android (while they were supported only in hybrid applications for iOS and
Android in previous versions).

v Push notifications are now supported also on Windows Phone 8 devices.
– IBM Worklight V5.0.6 provides API support for Windows Phone 8 push

notifications.
– With this extended API, you can send push notifications to your Windows

Phone 8 users through integration of IBM Worklight with the Microsoft Push
Notification Service (MPNS).

– You can send Windows Phone 8 push notifications only through
unauthenticated web services. Some limitations therefore apply. For more
information about these limitations, see the Microsoft Windows Phone Dev
Center website at http://dev.windowsphone.com/en-us/develop, and search
for Sending push notifications for Windows Phone.

v You can now make HTTP requests to the subscribe SMS servlet to subscribe or
unsubscribe to SMS notifications (which are supported on devices that support
SMS functions).

v For more information about the IBM Worklight unified push notification
mechanism, see “Push Notification” on page 395.

Chapter 1. Starting with IBM Worklight 7

http://dev.windowsphone.com/en-us/develop

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v For more information about the push notification API from the client side, see
“Mobile push notification methods” on page 243.

v To get started with push notifications in native apps, see the modules Using
Worklight API for push notifications in native iOS applications and Using Worklight
API for push notifications in native Android applications, under category 7,
Developing native applications with Worklight, in “Getting started tutorials and
samples” on page 29.

v For more information about the push notification API from the server side, see
“JavaScript server-side API” on page 271.

v For more information about SMS notification configuration, see “Subscribe SMS
servlet” on page 398.

v To get started with SMS notifications, see the module SMS notifications, under
category 9, Advanced topics, in “Getting started tutorials and samples” on page
29.

Improvements to the Application Center

In IBM Worklight V5.0.6, the Application Center includes the following
improvements:
v Support for BlackBerry 6 and BlackBerry 7

You can now upload BlackBerry *.jad and *.cod files to the Application Center.
v New BlackBerry client application
v Ability to install the BlackBerry client application over the air
v Improved security and authentication in the Application Center console:

– Administrators can now log in to the Application Center console by using a
login page, which is similar to the login page of the IBM WebSphere®

Application Server console.
– Administrators can now log out of the Application Center console.

v Ability to dump *.ipa, *.apk and BlackBerry application files to the disk from
the Application Center console

v Ability to configure the Service Endpoint to enhance security:
– You can enhance the security by configuring a secured proxy in front of the

Application Center. Requests to the Application Center console and services
are run through this proxy first, and then directed to the Application Center.

– You can do this proxy configuration through the configuration of the Service
Endpoint.

In IBM Worklight V5.0.6, the Application Center console includes the following
changes:
v The Application Center console was divided into two separate applications:

– The Application Center console application is dedicated to user web interaction.
Its URL is: http://<hostname>:<portnumber>/appcenterconsole

– One Application Center services application is dedicated to responding to the
necessary console services. Its URL is: http://<hostname>:<portnumber>/
applicationcenter

v To connect to the back-end server, you must now enter the Application Center
services URL in the start (settings) screen of the Application Center mobile
client.

For more information about these improvements and changes, see Chapter 7,
“Application Center,” on page 423.

8 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Improvements to the Worklight Console

In IBM Worklight V5.0.6, the Worklight Console allows device notification
messages in multiple languages, not only in English.

For more information, see “Defining administrator messages from the IBM
Worklight Console in multiple languages” on page 366.

Changes in the Mobile Browser Simulator

In IBM Worklight V5.0.6, the Windows Phone 8 silhouette and device profiles for
the Mobile Browser Simulator are now available.

Enhanced IBM Worklight API
IBM Worklight V5.0.6 enhances and extends the API that you can use to develop
mobile applications, in particular provides new API to support push notifications
in native apps.

Important: Some of the changes that are listed in this topic have an impact on
how your IBM Worklight applications behave. In some cases, you might have to
manually modify your projects or applications that you created with previous
versions of IBM Worklight. For more information about this potential impact, and
any required manual migration, see “Migrating to a newer version of IBM
Worklight” on page 22.

Modified way to add custom code to an Android app

In IBM Worklight V5.0.6, adding custom code to your Android app in the onCreate
method is deprecated. You now add custom code to your Android app in the
onWLInitCompleted method instead.

For more about information about adding custom code to an Android app, see
“Adding custom code to an Android app” on page 78.

Updated version of external libraries

In IBM Worklight V5.0.6, the following libraries, which are used as part of the
product, have upgraded versions:
v Cordova library is upgraded to version 2.3.
v Dojo library is upgraded to version 1.8.3.
v jQuery library is upgraded to version 1.8.1.

If you are using other JavaScript libraries such as jQuery Mobile, you might have
to upgrade them as well.

To get started with using Cordova in IBM Worklight, see the module Apache
Cordova overview, under category 6, Adding native functionality to hybrid applications
with Apache Cordova, in “Getting started tutorials and samples” on page 29.

Updated JavaScript client-side API

IBM Worklight V5.0.6 updated its JavaScript client-side API. For more information,
see “JavaScript client-side API” on page 173.

Chapter 1. Starting with IBM Worklight 9

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

In particular, the WL.OptionsMenu.isEnabled and WL.OptionsMenu.isVisible
methods now take a callback function as a parameter. The callback function is
called by Cordova after the request is processed, and it receives the current
enabled or visible state.

Updated JavaScript server-side API

IBM Worklight V5.0.6 complements its JavaScript server-side API with further
elements that you can use to extend the Worklight Server.

In particular, this API now includes the WL.Server.createDefaultNotification
method that you can use to create a notification JSON block for the supplied
values, for all supported environments.

In IBM Worklight V5.0.5, using query parameters on the URL (for
example,http://some.server/action?someparam=somevalue) with the
WL.Server.invokeHttp method was impossible for HTTP methods other than GET.
In IBM Worklight V5.0.6, using query parameters is now possible for other HTTP
methods, with some restrictions. For more information about this
WL.Server.invokeHttp method, see “Method WL.Server.invokeHttp” on page 272.

For more information about the IBM Worklight JavaScript server-side API, see
“JavaScript server-side API” on page 271.

Updated Objective-C client-side API to support push notifications in
native apps on iOS

IBM Worklight V5.0.6 includes some changes to its Objective-C client-side API to
develop native apps on iOS.

In particular, this API now includes elements that you can use to manage push
notifications in native apps on iOS, such as the WLPush class and associated
interfaces to subscribe and unsubscribe to push notifications.

For more information, see “Objective-C client-side API for native iOS apps” on
page 271.

To get started with push notifications in native apps on iOS, see the module Using
Worklight API for push notifications in native iOS applications, under category 7,
Developing native applications with Worklight, in “Getting started tutorials and
samples” on page 29.

Updated Java client-side API to support push notifications in native
apps on Android

IBM Worklight V5.0.6 includes some changes to its Java client-side API to develop
native apps on Android.

In particular, this API now includes elements that you can use to manage push
notifications in native apps on Android, such as the class WLPush and associated
interfaces to subscribe and unsubscribe to push notifications.

For more information, see “Java client-side API for native Android apps” on page
271.

10 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To get started with push notifications in native apps on Android, see the module
Using Worklight API for push notifications in native Android applications, under
category 7, Developing native applications with Worklight, in “Getting started tutorials
and samples” on page 29.

Updated Java client-side API to develop Java Platform, Micro Edition
(Java ME) apps

IBM Worklight V5.0.6 includes some changes to its Java client-side API to develop
Java ME apps.

In particular, note the following changes:
v The two WL.createInstance methods, with or without a String argument, are

deprecated. These methods are now replaced with two WL.createInstance
methods, with or without a String argument, and with a supplementary and
mandatory MIDlet midlet argument.

v The WLClient.setHeartBeatInterval method is now defined. You use it to set the
period of the heartbeat signal that is sent to the Worklight Server to ensure that
the session with the server is kept alive when the app does not issue any call to
the server.

For more information, see “Java client-side API for Java ME apps” on page 271.

Updated Java server-side API

In IBM Worklight V5.0.6 Java server-side API, the WorkLightLoginModule is now
deprecated, and replaced with the WorkLightAuthLoginModule interface.

For more information, see “Java server-side API” on page 301 and “Interface
WorkLightAuthLoginModule” on page 305

Integration with complementary products
IBM Worklight V5.0.6 integrates with complementary offers, such as Tealeaf® CX
and SiteMinder.

Integrating Tealeaf CX with IBM Worklight

In IBM Worklight V5.0.6, you can integrate IBM Worklight with Tealeaf CX. Tealeaf
CX gives visibility, insight, and answers for companies that do business online.

For more information about this integratin , see “Integrate Tealeaf CX with IBM
Worklight” on page 63.

Integrating SiteMinder with IBM Worklight

In IBM Worklight V5.0.6, you can integrate IBM Worklight with SiteMinder.
SiteMinder is a system that enables user authentication.

For more information about how you can integrate SiteMinder with IBM Worklight
to create SiteMinder-based authentication, see the module Integrating with
SiteMinder, under category 11, Integrating with other products, in “Getting started
tutorials and samples” on page 29.

Miscellaneous modifications
Additional changes in IBM Worklight V5.0.6 include changes that are related to
federal requirements and changes in the available documentation.

Chapter 1. Starting with IBM Worklight 11

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Support of federal requirements

In IBM Worklight V5.0.6, the following federal requirements are now supported:
v IPv6.
v Federal Desktop Core Configuration (FDCC) and United States Government

Configuration Baseline (USGCB). For more information about FDCC, see “FDCC
and USGCB support” on page 372.

v Federal Information Processing Standards (FIPS) 140-2. IBM Worklight now
offers the option to use a FIPS 140-2 validated cryptographic module for the
protection (encryption) of data stored locally in the JSONStore feature. For more
information about FIPS 140-2, see “FIPS 140-2 support” on page 372. To get
started with protecting data in JSONStore with FIPS 140-2, see the module
JSONStore - Encrypting sensitive data with FIPS 140-2, under category 5, Advanced
client side development, in “Getting started tutorials and samples” on page 29.

Augmented getting started tutorials and samples

The list of tutorials and samples to get started with IBM Worklight is augmented
and enhanced.
v The categories are reorganized to help you find more rapidly the tutorial that

you require.
v All tutorial modules and samples are updated to match the modified or new

features of IBM Worklight V5.0.6.
v New tutorials and samples are available for you to learn how to get started with

the new features of IBM Worklight V5.0.6.

To identify the new or highly modified tutorials and samples, and to get more
information about how you can use to get started with IBM Worklight, see
“Getting started tutorials and samples” on page 29.

Miscellaneous changes in project files and behaviors

In IBM Worklight V5.0.6, several changes have an impact on different aspects of
your work, such as the content or the organization of IBM Worklight projects, and
how applications that are based on IBM Worklight API behave. In some cases, you
might have to manually update your projects or applications. For a comprehensive
description of these changes and their potential impact, see “Migrating to a newer
version of IBM Worklight” on page 22.

Known limitations
This topic describes general limitations to the current version of IBM Worklight.
Limitations to a specific feature are explained in the topic that describes the
feature.

In this documentation, you can find the description of IBM Worklight known
limitations in different locations:
v When the known limitation applies to a specific feature, you can find its

description in the topic that explains this specific feature. You can then
immediately identify how it affects the feature.

v When the known limitation is general, that is, applies to different and possibly
not directly related topics, you can find its description here.

12 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: You might find complementary information about product known
limitations or issues in the product Technotes.

Globalization

If you are developing apps for international users, be aware of the following
restrictions:
v Translated versions of the product are not supplied.
v The Worklight Studio and Worklight Console provide only partial support for

bidirectional languages.
v In Worklight Studio and Worklight Console, dates and numbers might not be

formatted according to the locale.
v Names of projects, apps, and adapters must be composed only of the following

characters:
– Uppercase and lowercase letters (A-Z and a-z)
– Digits (0-9)
– Underscore (_)

v There is no support for Unicode characters outside the Basic Multilingual Plane.

You might also experience restrictions or anomalies in various aspects of
globalization because of limitations in other products, such as the database
management system and software development kits in use.

Rich Page Editor

The Rich Page Editor fails to show your page when the code that initializes it
attempts to communicate with Worklight Server.

The Rich Page Editor simulates the mobile device environment without any
connection to a real server. If the code that initializes your page tries to
communicate with Worklight Server, a failure occurs. Because of this failure, the
page content remains hidden, and you cannot use the Design pane of the Rich
Page Editor.

As an example, a failure occurs if your page calls an adapter procedure in the
wlCommonInit() function or the wlEnvInit() function.

In general, however, the initialization code is not strictly necessary to get a
reasonable visual rendering of your page. To avoid this limitation, temporarily
remove the "display: none" style from the body element in your page. Your page
then renders even if the initialization functions do not execute completely.

Setting up IBM Worklight Studio
To set up the development environment that you need to create mobile
applications with IBM Worklight, you install Worklight Studio and required SDKs,
change the port number of the internal server, and upgrade your development
environment.

About this task

This collection of topics is intended for developers who want to set up the
development environment that you need to create mobile applications with IBM
Worklight. It guides you through the steps of installing the software prerequisites

Chapter 1. Starting with IBM Worklight 13

http://www-01.ibm.com/support/search.wss?tc=SS4HGH&q=IMF50

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

and the Eclipse-based IBM Worklight Studio.

Procedure
1. Review the list of supported operating systems and software development kits

(SDK).
2. Install Worklight Studio.
3. Install the SDKs that you require.
4. Change the port number of the internal server.
5. Upgrade your development environment.

Installing IBM Worklight Studio
The installation method varies, depending on which version of IBM Worklight you
use, and whether you want to install it into an existing Eclipse instance.

Before you begin
v You must install Worklight Studio Developer Edition with P2 Eclipse update. It

provides every Worklight Studio function available in the Consumer and
Enterprise Editions, except for some security-related features.

v You must install Worklight Studio Consumer Edition and Worklight Studio
Enterprise Edition either with IBM Installation Manager or with P2 Eclipse
update.
To know more about the specificities of IBM Worklight Developer Edition, IBM
Worklight Consumer Edition, and IBM Worklight Enterprise Edition, see the
section Editions of IBM Worklight in “Introducing IBM Worklight” on page 1.

About this task

Notes:

1. If the root user installs the product but a non-root user runs the product, then
the non-root user must be able to access the directory where the Java Runtime
Environment (JRE) is located.

2. If you are using Apple Mac OS X, you must install Worklight Studio from the
Eclipse update site.

Procedure
v To install Worklight Studio Developer Edition, go to the IBM Mobile

development website at https://www.ibm.com/developerworks/mobile/
worklight.html.

v To install Worklight Studio Consumer Edition or Worklight Studio Enterprise
Edition:
1. From the DVD or an image downloaded from Passport Advantage® using

IBM Installation Manager, see “Installing IBM Worklight Studio from the
DVD or from an image downloaded from Passport Advantage.”

2. Into an existing Eclipse IDE from an update site or the installation disk, see
“Installing IBM Worklight Studio into an existing Eclipse IDE from an update
site or the installation disk” on page 15.

Installing IBM Worklight Studio from the DVD or from an image
downloaded from Passport Advantage
You can install Worklight Studio from a DVD or from an electronic image
downloaded from IBM Passport Advantage using IBM Installation Manager.

14 IBM Worklight V5.0.6

https://www.ibm.com/developerworks/mobile/worklight.html
https://www.ibm.com/developerworks/mobile/worklight.html

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Before you begin
v Ensure that your computer meets the system requirements for the software that

you are installing.
v If you downloaded the software from IBM Passport Advantage, ensure that you

extracted the contents of the compressed files. The extracted contents are in the
IWS/disk1 directory where you extracted the contents.

v If you want Installation Manager to search for the latest available version of the
software that you are installing, ensure that you are connected to the Internet.

v If you do not have IBM Installation Manager 1.6.1 or later, perform the
additional installation steps of inserting the IBM Rational® Enterprise
Deployment DVD and install the IBM Installation Manager from it.

About this task

This method is not applicable for Apple Mac OS X. If you are using Mac OS X, use
the Eclipse update site as described in “Installing IBM Worklight Studio into an
existing Eclipse IDE from an update site or the installation disk.”

Procedure
1. Insert the IBM Worklight or IBM Mobile Foundation DVD.
2. Start IBM Installation Manager.
3. On the File menu, click Preferences.
4. Click Add Repository.
5. Enter the fully qualified path to the following directory: dvd-root/IWS/disk1
6. In the Add Repository window, click OK.
7. In the Preferences window, click OK.
8. In the main IBM Installation Manager window, click Install.
9. Follow the steps presented to complete the installation.

Installing IBM Worklight Studio into an existing Eclipse IDE from
an update site or the installation disk
If you already have an Eclipse IDE installed, you can install Worklight Studio from
your Eclipse IDE workbench.

Before you begin
v Ensure that your computer meets the system requirements for the software that

you are installing.

Restriction: You cannot install into an existing Eclipse 3.6.2 instance that uses a
version 1.7 JRE; the installation does not complete.

v If you downloaded the software from IBM Passport Advantage, ensure that you
extracted the contents of the compressed files. The extracted installation files are
in the target directory/IWS/disk1 directory.

Procedure
1. Start your Eclipse IDE workbench.
2. Click Help > Install new software.
3. Optional: If your Eclipse workbench is Eclipse Classic, version 3.6.2:

a. Beside the Work with field, click Add.

Chapter 1. Starting with IBM Worklight 15

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

b. In the Add Repository window, enter the following web address in the
Location field and then click OK: http://download.eclipse.org/webtools/
repository/helios/.

4. Beside the Work with field, click Add.
5. In the Add Repository window, click Archive.
6. Browse to the update-site directory on the installation disk or download

installation files (for example, target directory/IWS/disk1/update_site).
7. Select the update site .zip file and then click Open.
8. Select the features of IBM Worklight Studio that you want to install, and then

click Next.
9. On the Install Details page, review the features that you install, and then click

Next.
10. On the Review Licenses page, review the license text. If you agree to the

terms, click I accept the terms of the license agreement and then click Finish.
The installation process starts.

11. When the installation process completes, restart the workbench.

What to do next

Before you run Worklight Studio, determine whether you need to run additional
post-installation tasks.

Important: After you finish installing IBM Worklight Developer Edition, when you
restart Eclipse, click Window > Open perspective > Other, and select Design in
the Open Perspective window. If you do not take this action, when you click File >
New, you do not see the Worklight entries. After taking the action, when you click
File > New, you do see the Worklight entries.

Running post-installation tasks:

Before you run IBM Worklight Studio, you may need to run additional
post-installation tasks. Which tasks you need to run depends on whether you are
installing into an existing Eclipse environment, and whether you have IBM
Rational Team Concert™ installed.

Updating eclipse.ini for IBM Worklight Studio:

If you install Worklight Studio in to an existing Eclipse installation, you must
manually update the eclipse.ini file to successfully run Worklight Studio.

Procedure

1. Stop the workbench.
2. Locate the eclipse.ini file in eclipse_installation_directory\eclipse\

eclipse.ini.
3. Make a copy of the eclipse.ini file, or back it up.
4. Open the eclipse.ini file in a text editor.
5. Search for a line that starts with -XX:MaxPermSize.
6. If this line does not exist, insert a line in the eclipse.ini file, and start it with

-XX:MaxPermSize=.
7. Edit the content of this (existing or new) line to make sure that it matches what

is indicated next for the JDK that you are using:
v For an Oracle 32-bit Java Runtime Environment (JRE): -XX:MaxPermSize=320m

16 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v For an Oracle 64-bit Java Runtime Environment (JRE): -XX:MaxPermSize=512m
8. If you are using a Java Development Kit 1.7 (JDK) with Eclipse 3.6.2, add the

following line to the end of the eclipse.ini file:
-Djava.util.Arrays.useLegacyMergeSort=true

9. Save and close the file.

Results

You can now start and work with the product.

What to do next

If your Eclipse workbench has IBM Rational Team Concert, version 4.0, Eclipse
Client already installed, the Worklight Studio plug-ins might not be properly
activated when you open an existing workbench. For example, the wizard New >
IBM Worklight Project might not be available. To work around this problem,
follow the instructions in “Running additional tasks for Rational Team Concert
V4.0.”

Running additional tasks for Rational Team Concert V4.0:

You might need to clean the Eclipse environment before you run Worklight Studio.

About this task

If your Eclipse workbench has IBM Rational Team Concert, version 4.0, Eclipse
Client already installed, the IBM Worklight Studio plug-ins might not be properly
activated when you open an existing workbench. For example, the wizard New >
IBM Worklight Project might not be available. To work around this problem,
follow these instructions.

Note: You need to perform these steps only the first time that you start the
product.

Procedure

1. Stop the workbench.
2. Locate the eclipse.ini file in eclipse_installation_directory\eclipse\

eclipse.ini.
3. Make a copy of the eclipse.ini file, or back it up.
4. Open the eclipse.ini file in a text editor.
5. Append the following text on a new line: -clean
6. Save and close the file.
7. Start the product and select a workspace. You should be able to successfully

open the workspace.
8. Remove the -clean line from the eclipse.ini file and save the file.

Troubleshooting IBM Worklight Studio installation
You can troubleshoot to find the cause of IBM Worklight Studio installation failure.

IBM Worklight Studio installation errors with Eclipse 3.6.2
If an error message is displayed when you install Worklight Studio on Eclipse
3.6.2, install all available Eclipse updates first, and then install Worklight Studio.

Chapter 1. Starting with IBM Worklight 17

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

Use this procedure if the following message is displayed shortly after you start to
install Worklight Studio on Eclipse 3.6.2:
Cannot complete the install because one or more required items could not be found.

Software being installed: IBM jQuery Mobile Tools 5.0.5001.v20121214_1542 (com.ibm.webtools.jquery.tools.feature.feature.group 5.0.5001.v20121214_1542
Missing requirement: IBM Web Editor Common 1.1.0.v20121012_0113 (com.ibm.etools.webtools.webedit.common 1.1.0.v20121012_0113) requires ’bundle org.ecl
Cannot satisfy dependency:

From: Rich Page Editor Base 1.0.200.v20121101_1546 (com.ibm.etools.rpe.feature.feature.group 1.0.200.v20121101_1546)
To: com.ibm.etools.rpe.html [1.0.200.v20121019_2352]

Cannot satisfy dependency:
From: Rich Page Editor - HTML 1.0.200.v20121019_2352 (com.ibm.etools.rpe.html 1.0.200.v20121019_2352)
To: bundle com.ibm.etools.webtools.webedit.common [1.0.0,2.0.0)

Cannot satisfy dependency:
From: IBM Worklight Studio 5.0.5001.v20121217_1857 (com.ibm.imp.tools.feature.feature.group 5.0.5001.v20121217_1857)
To: com.ibm.etools.rpe.feature.feature.group 1.0.200

Cannot satisfy dependency:
From: IBM jQuery Mobile Tools 5.0.5001.v20121214_1542 (com.ibm.webtools.jquery.tools.feature.feature.group 5.0.5001.v20121214_1542)
To: com.ibm.imp.tools.feature.feature.group 5.0.5001

This issue does not arise when installing on Eclipse 3.7.2 or Eclipse 4.2.1.

Procedure
1. In Eclipse, run Help > Check for Updates.
2. Install all available updates.
3. Install Worklight Studio.

Upgrading IBM Worklight Studio in Eclipse
If you have an earlier version of Worklight Studio, you can use Eclipse to upgrade
to the current version.

Procedure
1. Start your Eclipse IDE workbench.
2. If you previously installed Worklight Studio from a local archive, perform these

steps:
a. Download the latest Worklight version archive file.
b. In Eclipse, click Window > Preferences > Install/Update > Available

Software Sites

c. Click Add.
d. In the Add Repository window, click Archive.
e. Browse to the update-site directory on the installation disk or download

installation files target directory/IWS/disk1/update_site.
3. Click Help > Check for updates.
4. Follow the instructions that are provided by the Eclipse IDE Workbench to

update your installation of Worklight Studio.

Results

Worklight Studio is updated.

Note:
If the update appears to hang, it might be because you are using a bad mirror.
Add this line to your eclipse.ini file to resolve the problem.

-Declipse.p2.mirrors=false

18 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Starting IBM Worklight Studio installed with IBM Installation
Manager

If you installed IBM Worklight Consumer Edition or Enterprise Edition with IBM
Installation Manager, you can start Worklight Studio in one of two ways.

Procedure

Attention: When you install Worklight Studio with IBM Installation Manager, do
not start Worklight Studio by running the eclipse.exe file on Windows, or eclipse
on Linux (you only run these files when you install Worklight Studio with P2
Eclipse update. See “Starting IBM Worklight Studio installed with P2 Eclipse
update”). Though Worklight Studio appears to start normally, you might later
experience problems such as the Android emulator failing to start. Use one of the
following techniques:
v Click Start > All Programs > IBM Software Delivery Platform > IBM

Worklight Studio 5.0.6 > IBM Worklight Studio.
v Double-click the INSTALL_DIR/sdp/Worklight.cmd file (on Windows) or

Worklight.sh (on Linux), where INSTALL_DIR is your Worklight installation
directory.

Starting IBM Worklight Studio installed with P2 Eclipse update
If you use IBM Worklight Developer Edition, or if you installed IBM Worklight
Consumer or Enterprise Edition with P2 Eclipse update, start Worklight Studio by
running the Eclipse executable file.

Procedure
v On Linux systems, run the eclipse file.
v On Windows systems, run the eclipse.exe file.

Installing mobile specific tools
When you develop mobile applications, you must install and use specialized tools
(such as SDKs). These tools depend on the operating system that you develop the
applications for (such as iOS or Android).

This collection of topics details the required tools for each operating system.

Installing tools for Adobe AIR
To build and sign applications for Adobe AIR, you must install the Adobe AIR
SDK.

Procedure
1. Download the Adobe Air SDK from the Air SDK on Adobe website.
2. Unpack the archive into a folder of your choice.
3. Set an environment variable (either locally or on the central build server)

named AIR_HOME, pointing to the place where you opened the SDK. The
Worklight Builder uses this environment variable to run the build and sign tool
when building AIR applications.

Installing tools for iOS
To build and sign applications for iOS, you must install the latest Xcode IDE
(including the iOS simulator) on a Mac.

Chapter 1. Starting with IBM Worklight 19

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Register as an Apple developer on the Apple Registration Center website at

https://developer.apple.com/programs/register/.
2. Download Xcode from the Mac App Store at http://www.apple.com/osx/

apps/app-store.html.
3. Install Xcode on your Mac.

For more information about the iOS development environment, see the module
Setting Up Your iOS Development Environment, under category 1, Setting up your
development environment, in “Getting started tutorials and samples” on page 29.

Installing tools for Android
To build and sign applications for Android, you must install the Android SDK and
the Android Development Tools plug-in for Eclipse.

Procedure
1. Install the Android SDK available at http://developer.android.com/sdk/.
2. Install the Android Development Tools plug-in for Eclipse available at

https://dl-ssl.google.com/android/eclipse/.
3. Add SDK Platform and Virtual Devices to the SDK.

For more information about the Android development environment, see the
module Setting Up Your Android Development Environment, under category 1,
Setting up your development environment, in “Getting started tutorials and
samples” on page 29.

Installing tools for BlackBerry
To build and sign applications for BlackBerry OS 6, 7 or 10, you must install the
WebWorks tools.

Procedure
1. Download Ripple emulator available at https://developer.blackberry.com/

html5/download/ and install it.
2. Download WebWorks SDK from the same site, at https://

developer.blackberry.com/html5/download/, and install it to the folder of your
choice.

3. (Only for BlackBerry 10) Set an environment variable (either locally or on the
central build server) named WEBWORKS_HOME, pointing to the SDK root
folder. The Worklight® Builder uses this environment variable when it builds
BlackBerry 10 applications. On each build, the environment variable value is
transferred to native\project.properties.

Note: WEBWORKS_HOME must be set before you start Worklight Studio. This
variable is important for the normal operation of the client. If you use Ant
scripts to build and deploy the application to the device, and the
WEBWORKS_HOME value is set incorrectly, your file structure might become
corrupted, and produce a new directory with the incorrect WEBWORKS_HOME
value name.

4. Download and install a simulator.
For more information about the BlackBerry development environment, see the
module Setting Up Your BlackBerry 6 and 7 Development Environment and Setting
up your BlackBerry 10 development environment, under category 1, Setting up your
development environment, in “Getting started tutorials and samples” on page 29.

20 IBM Worklight V5.0.6

https://developer.apple.com/programs/register/
http://www.apple.com/osx/apps/app-store.html
http://www.apple.com/osx/apps/app-store.html
http://developer.android.com/sdk/
https://dl-ssl.google.com/android/eclipse/
https://developer.blackberry.com/html5/download/
https://developer.blackberry.com/html5/download/
https://developer.blackberry.com/html5/download/
https://developer.blackberry.com/html5/download/

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Installing tools for Windows Phone 7.5
To build and sign applications for Windows Phone 7.5, you must install Microsoft
Visual Studio Express 2010 or 2012 for Windows Phone, and Zune Software.

Procedure
1. Download and install Microsoft Visual Studio Express, available at

http://www.microsoft.com/visualstudio/eng/products/visual-studio-2010-
express for the 2010 edition, and at http://www.microsoft.com/visualstudio/
eng/products/visual-studio-express-for-windows-phone for the 2012 edition.

2. Download Zune software from http://www.zune.net/enUS/products/
software/download/default.htm and install it.
For more information about the Windows Phone 7.5 development environment,
see the module Setting Up Your Windows Phone 7.5 Development Environment,
under category 1, Setting up your development environment, in “Getting started
tutorials and samples” on page 29.

Installing tools for Windows Phone 8
To build and sign applications for Windows Phone 8, you must install Microsoft
Visual Studio Express 2012 for Windows Phone.

Procedure

Download Microsoft Visual Studio Express 2012 from http://www.microsoft.com/
visualstudio/eng/products/visual-studio-express-for-windows-phone and install it.
For more information about the Windows Phone 8 development environment, see
the module Setting Up Your Windows Phone 8 Development Environment, under
category 1, Setting up your development environment, in “Getting started tutorials and
samples” on page 29.

Installing tools for Windows 8
Windows Store apps run only on Windows 8, so to develop Windows Store apps,
you need Windows 8 and some developer tools.

Procedure
1. After you install Windows 8, go to http://msdn.microsoft.com/en-us/

windows/apps/br229516.aspx.
2. Click Download now under "Download the tools and SDK".
3. Download Microsoft Visual Studio Express® 2012 from http://

www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-
windows-phone and install it. Microsoft Visual Studio Express 2012 for
Windows 8 includes the Windows 8 SDK. It also gives you tools to code,
debug, package, and deploy a Windows Store app.

4. Start Visual Studio Express 2012. You will be prompted to obtain a developer
license. You need a developer license to install, develop, test, and evaluate
Windows Store apps.

5. For more information about obtaining a developer license, see
http://msdn.microsoft.com/en-us/library/windows/apps/hh974578.aspx.

Changing the port number of the internal application server
If the default port number is already in use, edit the eclipse.ini file to change to
a different port.

Chapter 1. Starting with IBM Worklight 21

http://www.microsoft.com/visualstudio/eng/products/visual-studio-2010-express
http://www.microsoft.com/visualstudio/eng/products/visual-studio-2010-express
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-windows-phone
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-windows-phone
http://www.zune.net/enUS/products/software/download/default.htm
http://www.zune.net/enUS/products/software/download/default.htm
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-windows-phone
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-windows-phone
http://msdn.microsoft.com/en-us/windows/apps/br229516.aspx
http://msdn.microsoft.com/en-us/windows/apps/br229516.aspx
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-windows-phone
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-windows-phone
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-windows-phone
http://msdn.microsoft.com/en-us/library/windows/apps/hh974578.aspx

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

When you start Eclipse with Worklight Studio, an embedded application server is
started automatically to host a Worklight Server instance for your adapters and
apps. This internal server uses port 8080 by default.

If port 8080 is occupied by another application that is running on your
development computer, you might need to configure the Worklight Studio internal
server to use a different port. To do so, follow these instructions:

Procedure
1. In the Eclipse home folder, open the eclipse.ini file.
2. After the -vmargs line, add: -Dworklight.port=8085 (or any other port number

of your choice).
3. Restart Eclipse.

What to do next

If you develop Facebook apps or mobile web apps, also set this port as the value
of the parameter publicWorkLightPort in the project-name/server/conf/
worklight.properties file of each of your Worklight projects. Doing this ensures
that the Worklight Console features Get URL for Facebook and Embed in Web
Page work correctly.

The development of Facebook apps is deprecated in Worklight version 5.0.5.
Support might be removed in any future version. Use standard desktop web apps.

Migrating to a newer version of IBM Worklight
When you open your IBM Worklight project with IBM Worklight Studio V5.0.6,
your project is automatically updated to this new version. However, some parts of
your application require manual updates that are related to new versions of some
software and to some changes in the IBM Worklight environment. Be aware of
some modifications, such as changes in file names and structure.

This topic focuses on the migration process from IBM Worklight V5.0.5 to V5.0.6.
To know about the migration process from IBM Worklight V5.0.0.3 to V5.0.5, see
“Migrating from Worklight V5.0.0.3 to V5.0.5” on page 26.

Worklight Server

For instructions on how to upgrade Worklight Server to V5.0.6 in your
development environment, see Installing Fix Packs for IBM Worklight V5.0.

Important:

If you are upgrading Worklight Server in a production environment, the process
can be longer and more complicated, especially if you have existing IBM Worklight
applications that run in a Worklight Server environment. For instructions on how
to upgrade your production Worklight Server, see “Upgrading IBM Worklight
Server in a production environment” on page 28.

Usage of existing applications

If you want to use existing applications with a new server version, see “Setting up
existing applications with a new server version” on page 371.

22 IBM Worklight V5.0.6

http://www-01.ibm.com/support/docview.wss?uid=swg27028172

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WL.App.close:

Note: The WL.App.close API quits the application and the iOS Human Interface
Guidelines now indicate that the code for an iOS app must not contain a call to
exit the app. Consider no longer using WL.App.close API in your apps. For more
information, see “WL.App.close” on page 177

Third-party libraries

Cordova: for Android, iOS, Windows Phone 8, BlackBerry 10 and Windows 8, IBM
Worklight V5.0.6 is now based on Cordova 2.3. Cordova 2.3 includes deprecated
and modified items compared to the earlier version. The upgrade process for the
Cordova 2.3 configuration is automated when the IBM Worklight project is built in
Studio or with the Ant tasks. To view the Cordova change log, go to
https://issues.apache.org/jira/browse/CB# and click Change Log. To know more
about the migration steps in Cordova, see http://cordova.apache.org/docs/en/
2.3.0/ and click Upgrading Guides.
v Deprecated item

Cordova 2.3 deprecates the device.name property for all platforms. This property
returned both the name of the user and of the device model (for example,
Jane's iPhone 5). Now it returns the name of the device (for example, iPhone).
For all platforms, the new property device.model returns the specific device
model name (for example, iPhone 5).
To know more about deprecation in Cordova, see http://wiki.apache.org/
cordova/DeprecationPolicy.

v Modified items

– The iOS configuration Cordova.plist file was changed to the config.xml file.
It now comes in the same format as the Android config.xml file.
The following Cordova.plist configuration elements are automatically
migrated into the config.xml file by the Worklight upgrade:
- The Cordova built-in plug-ins, now under the <!--Cordova--> section
- The IBM Worklight plug-ins, now under the <!--Worklight--> section
- The user/custom plug-ins, now under the <!--User--> section
- All the State of Cordova preferences
You must manually update the following Cordova.plist configuration
elements because they are not migrated automatically:
- Changes to the <access origin> element from the default setting
- Custom preferences

– For Windows Phone 7.5 applications, the namespace of the Cordova classes
changed from WP7CordovaClassLib to WPCordovaClassLib. If you wrote a
custom plug-in that relies on this namespace (for example, using
WP7CordovaClassLib), you must change this C# code to address the new
namespace (for example, using WPCordovaClassLib).

– The optional callback parameter is added to the WL.App.copyToClipboard
method as a new way of invocation.

Dojo: IBM Worklight Studio now ships with Dojo V1.8.3, which has a number of
iOS fixes. There is no automated upgrade process available, so you must make
these updates manually.

For more information about upgrading to Dojo V1.8.3, see “Dojo iOS fixes” on
page 25.

Chapter 1. Starting with IBM Worklight 23

https://issues.apache.org/jira/browse/CB#
http://cordova.apache.org/docs/en/2.3.0/
http://cordova.apache.org/docs/en/2.3.0/
http://wiki.apache.org/cordova/DeprecationPolicy
http://wiki.apache.org/cordova/DeprecationPolicy

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

If you created your current project with an earlier version of IBM Worklight
Studio, consider migrating the code to the new Dojo module loading technique in
addition to upgrading the Dojo toolkit. It ensures that the code performs more
reliably and that the page continues to work when it makes further changes in
RPE.

Specifically, the Dojo layers are no longer loaded from HTML elements, but instead
they are loaded by require() calls inside the wlCommonInit() method. The
individual modules are loaded from require() calls inside the dojoInit() method.

For more information about migrating your code to Dojo 1.8.3, see “Dojo 1.8.3 code
migration” on page 26.

Changes in projects

Native SDK:
v For iOS: manually upgrade your native iOS project to use IBM Worklight V5.0.6

iOS Native Runtime libraries (WorklightAPI folder), which supports push
notifications.

v For Android: manually upgrade your native Android project to use IBM
Worklight V5.0.6 Android Native Runtime libraries (worklight-android.jar),
which supports push notifications.
For more information, see “Development guidelines for using native API” on
page 84.

Custom code for Android app: the onCreate method to add custom code to your
Android app is deprecated. It is now replaced with the onWLInitCompleted method.
To know more about custom code for an Android app, see “Adding custom code
to an Android app” on page 78.

iOS apps: add the following code to your main iOS project m file,
${projectName}.m:
-(void) didFinishWLNativeInit:(NSNotification *)notification {
}

Java ME: manually upgrade your native Java ME project to use IBM Worklight
V5.0.6 Java ME Native Runtime libraries (worklight-javame.jar and
json4javame.jar), which support authentication and application management. To
see the messages from the admin console, the application must update its
WLClient.createInstance() API. See “Java client-side API for Java ME apps” on
page 271 and the module Using Worklight API in Native Java ME applications, under
category 7, Developing native applications with Worklight, in the “Getting started
tutorials and samples” on page 29.

Windows Phone 8 applicationBar folder: when you migrate a Windows Phone 8
project to IBM Worklight 5.0.6, the images/applicationBar folder under the root of
the IBM Worklight project becomes the nativeResources/applicationBar folder
and stays under the root of the Worklight project. See “WL.OptionsMenu.addItem”
on page 252.

Changes in features

Push notifications: the notificationOptions parameter has a new JSON structure
for push notifications. The old JSON block is now deprecated. When this
deprecated JSON block is used:

24 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v The Studio console displays a deprecation warning message.
v All the previously supported environments (iOS, Android, SMS) receive a

notification message. The Windows Phone 8 environment receives two
notifications: a tile message, which contains the badge and the alert, and a raw
message, which contains the payload.

Changes in API

JavaScript client-side API: the WL.OptionsMenu.isEnabled and
WL.OptionsMenu.isVisible methods now take a callback function as a parameter.
The callback is called by Cordova after the request is processed, and it receives the
current enabled or visible state.

Interface WorkLightLoginModule: the interface WorkLightLoginModule is now
deprecated and is replaced with the interface WorkLightAuthLoginModule, where
the new createIdentity method replaces the previous createIdenity method.

Changes in sessions configuration

Default sessions settings: the default value of serverSessionTimeout, after which
the IBM Worklight session is invalidated, changed from 30 to 10 minutes.

The default value of heartBeatIntervalInSecs sent by WLClient to Worklight
Server changed from 1200 (20 minutes) to 420 (7 minutes).

New SSL properties: the worklight.properties file contains new common SSL
properties: ssl.keystore. Now the properties of ws-security are deprecated and
they are linked by default to the common SSL properties.

Changes in Application Center

Application Center console: the URL of the Application Center console changed.
You can now start the Application Center console by entering this address in your
browser: http://localhost:9080/appcenterconsole/.

Dojo iOS fixes
IBM Worklight Studio V5.0.5 ships with Dojo V1.8.1 and Worklight Studio V5.0.6
ships with Dojo V1.8.3. These versions have a number of iOS fixes. There is no
automated upgrade process available, so you must make these updates manually.

About this task

Complete the following procedure to manually implement the iOS fixes shipped
with Dojo.

Procedure
1. Open your workspace using IBM Worklight Studio.
2. Right-click the project you want to migrate and click Properties.
3. Click Project Facets.
4. Uncheck Web 2.0-> Dojo Toolkit to uninstall the tooling for Dojo. It does not

uninstall Dojo.
5. Click OK to close the project Properties page.

Chapter 1. Starting with IBM Worklight 25

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

6. Find the folder {PROJECT_NAME} > dojo and delete all the children under
this folder. Do not delete the {PROJECT_NAME} > dojo folder. It must be
empty.

7. Right-click the project again and go to the Properties page again.
8. Click Project Facets.
9. Check Web 2.0-> Dojo Toolkit to install the tooling for Dojo. You have now

upgraded to a new Dojo version.
10. You might have to upgrade some application content to work with Dojo. Run

and test your application to make sure things work with this version.

Dojo 1.8.3 code migration
The Dojo layers are now loaded by require() calls inside the wlCommonInit()
method, so you must modify the existing code in the HTML file that loads the
layers and the modules.

About this task

Make the following changes to migrate your existing code.

Procedure
1. Remove the <script> elements from the HTML file that loads the layers and

replace them with a require() call in the wlCommonInit() method (see the code
snippet later in this section).

2. If you have the require() call in the HTML file that loads the individual
modules, move it into the dojoInit() method (see the code snippet later in this
section).

3. If you use the deviceTheme module (dojox/mobile/theme), remove it from the
require() call and instead use a <script> element to load it from inside the
HTML file. Make sure this element comes before the <script> element for
dojo.js.

Example

The following code snippet shows the new technique:
function wlCommonInit(){

require(["dojo/core-web-layer", "dojo/mobile-ui-layer"], dojoInit);
// Common initialization code goes here

}

function dojoInit() {
require(["dojo", "dojo/parser", "dojox/mobile", "dojox/mobile/ScrollableView"],

function(dojo, dijit) {
dojo.ready(function() {

});
});

}

Migrating from Worklight V5.0.0.3 to V5.0.5
When you open your IBM Worklight project with a newer version of
IBMWorklight Studio, your project is automatically updated to this new version.
However, there are some parts of your application that require manual updates.

Updates in IBM Worklight V5.0.5 include modifications related to new versions of
some software, and some changes to the IBM Worklight environments. If you are
using the IBM Worklight Application Center, there are also some configuration
changes. Some environments and files were deprecated.

26 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

IBM Worklight Core Development

In IBM Worklight V5.0.5, the Embedded environment is now called the Desktop
Web App environment. Everything is upgraded automatically, however, the
application URL contains the name of the environment, and therefore:
v For new environments, the URL is .../desktopbrowser/... and NOT

.../embedded/....
v For old environments, both URLs are supported.

Deprecated environments

With IBM Worklight V5.0.5, the following environments are now deprecated:
v Facebook
v iGoogle
v Windows 7 Gadgets
v Mac OS dashboard widgets

Changed default behavior for connection on startup

The connectOnStartup property in the initOptions.js file now defaults to false,
rather than true as in earlier versions. Applications that do not need to connect to
the server when they start might now start more quickly. However, if your
application must connect to the server when it starts, you must change the value of
connectOnStartup. For more information, see “Connecting to Worklight Server” on
page 77.

IBM Worklight Application Center

When migrating from version 5.0.0.3 to 5.0.5, the Derby database for the
Application Center is migrated to the new format as part of the installation.

When migrating from V5.0.0.3 to V5.0.5, you must adapt the security roles and
configuration, because the application center in V5.0.5 has a new J2EE security role
named appcenteruser, which consists of the group of users authorized to use the
mobile client. See “Configuration of the Application Center after installation” on
page 429 to learn how to set up these security roles.

Cordova

IBM Worklight 5.0.5 is based on Cordova 2.2.

Since Cordova 2.0, Cordova deprecates the cordova.xml and plugins.xml files.
Cordova replaces these two files with a single config.xml file, which combines the
two deprecated files. You can find the new config.xml file in the same
native/res/xml folder as the deprecated cordova.xml and plugins.xml files.

For example, if you develop a native application for the Android environment, you
can find the config.xml file in the android/native/res/xml folder of your
application folder.

The upgrade process for Cordova configuration is automated. However, if you
have applicative code that is calling Cordova API, consider checking for changes in
the new Cordova API and manually fix your code. IBM Worklight version 5.0.0.3
was bundled with Cordova 1.6.1. For information about Cordova changes, review

Chapter 1. Starting with IBM Worklight 27

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

the release notes in the Apache Cordova Change Log site: The Apache Software
Foundation.

jQuery

A new release of IBM Worklight’s internal tool jQuery version 1.8.1 means that you
must manually upgrade your JavaScript UI libraries, for example jQuery Mobile.

Dojo

IBM Worklight Studio V5.0.5 ships with Dojo V1.8.1, which has a number of iOS
fixes. There is no automated upgrade process available, so you must make these
updates manually.

For more information about upgrading to Dojo V1.8.1, see “Dojo iOS fixes” on
page 25.

If you have existing IBM Worklight Dojo projects created with a previous version,
it is highly recommended that you migrate the code to the new architecture. This
ensures that the code performs more reliably and that the page continues to work
when making further changes in RPE, as the new tools insert require() calls into a
method called dojoInit()

The layers are no longer loaded from HTML elements, but instead they are loaded
by require() calls inside the wlCommonInit() method. The individual modules are
not loaded from require() calls inside the HTML page, but from require() calls
inside the dojoInit() method.

Upgrading IBM Worklight Server in a production environment
Upgrading to IBM Worklight Server V5.0.6.x in a production environment is a
more exacting process than in your development environment because you must
back up your data and prepare for the upgrade carefully to minimize production
downtime.

When you upgrade from Worklight Server V5.0.5.x to V5.0.6.x in a production
environment, the process can be more complicated than upgrading to a new
version in your development environment. The procedure is also longer if you
have existing Worklight applications that run in a production Worklight Server
environment. For step-by-step instructions on how to upgrade your production
Worklight Server to V5.0.6, see Instructions for Upgrade from Worklight Server
5.0.5.x to 5.0.6.1 in a Production Environment.

The document at this link provides essential information about migrating your
existing IBM Worklight projects and applications to the new version, backing up
any existing databases or Application Server data, and performing other
preparation tasks that must be completed before you install the new version of
Worklight Server. These preparation steps are followed by post-installation,
verification, and configuration tasks that must be completed before you restart the
new Worklight Server and finish migrating your updated Worklight applications.

The upgrade procedure can take some time, several hours in fact, and so these
activities must be scheduled to create the least disruption and downtime to
production servers and the applications that run on them.

28 IBM Worklight V5.0.6

https://issues.apache.org/jira/browse/CB#selectedTab=com.atlassian.jira.plugin.system.project%3Achangelog-panel
https://issues.apache.org/jira/browse/CB#selectedTab=com.atlassian.jira.plugin.system.project%3Achangelog-panel
http://www-01.ibm.com/support/docview.wss?uid=swg27038300
http://www-01.ibm.com/support/docview.wss?uid=swg27038300

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Setting up IBM Worklight Server
To deploy your mobile applications to the test or production environments, you
must install and configure IBM Worklight Server.

For information about Worklight Server, and instructions on how to install and
configure it, see Chapter 6, “IBM Worklight Server administration,” on page 311.

Getting started tutorials and samples
Getting started tutorials and samples help you learn about IBM Worklight and
evaluate what the product can do for you.

You can get started with IBM Worklight by following the “Tutorials.”

You can further learn how to develop mobile applications with IBM Worklight by
studying the following samples:
v “Worklight Starter application samples” on page 36
v “JavaScript framework-based application samples” on page 37

You can find links to download compressed files that contain the materials for the
tutorials and samples in “Additional resources” on page 37.

Important: These materials have been created for use with only the IBM Worklight
Developer Edition and the Worklight Server inside Eclipse. If your configuration
differs, you might have to adapt the exercise instructions, the code samples, or
both.

Terms and conditions: The following resources are subject to these “Terms and
conditions” on page 37, and may include applicable third-party licenses. Please
review the third-party licenses before using any of the resources. The third-party
licenses applicable to each sample are available in the notices.txt file that is
included with each code sample.

Tutorials

Use the tutorials to learn the most important features of IBM Worklight.

Each tutorial is composed of one module and generally one companion sample:
v The module is a PDF presentation file that provides step-by-step guidance on

how to get started with an important feature of IBM Worklight.
v The sample, if any, is a compressed (.zip) file that provides pieces of code or

script files that accompany and support the module. If a module has some
exercises, you also have a companion sample that provides the solutions to these
exercises.

The modules and companion samples of the tutorials are organized in the
following categories:
1. Setting up your development environment: With this category, you learn how

to set up your development environment to work with IBM Worklight.
2. Hello Worklight: With this category, you learn how to create your first IBM

Worklight app and preview it in different mobile operating systems.
3. Worklight client-side development basics: With this category, you learn how to

use basic IBM Worklight APIs to develop your apps, how to build a

Chapter 1. Starting with IBM Worklight 29

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

multi-page application, how to work with the user interface framework, how
to debug and optimize your app, and some general information that you must
know to work in each specific environment.

4. Worklight server-side development: With this category, you learn how to
develop the server code (adapters) that your mobile application requires to
integrate with enterprise back-end applications and cloud services.

5. Advanced client-side development: With this category, you learn how to
implement different features in your mobile application, such as controls,
skins, offline access, translation, encryption of sensitive data. You also learn
how to develop your client application by using native APIs

6. Adding native functionality to hybrid applications with Apache Cordova:
With this category, you learn how to use Apache Cordova with IBM
Worklight, and how to use native pages in hybrid applications.

7. Developing native applications with Worklight: With this category, you learn
how to develop native applications with IBM Worklight.

8. Authentication and security: With this category, you learn how to protect your
applications and adapter procedures against unauthorized access by using
authentication, login modules, and device provisioning.

9. Advanced topics: With this category, you learn advanced topics that you can
use with IBM Worklight, such as how to develop by using shells or how to
handle notifications.

10. Moving to production: With this category, you learn how to move the apps
that you create from your development environment to the production
environment.

11. Integrating with other products: With this category, you learn how IBM
Worklight integrates with some other IBM products, such as IBM
PureApplication System or Tivoli® Directory Server.

Note: Compared to the previous version of IBM Worklight, some modules are new
or highly revised. To help you identify these new or revised modules, their names
are introduced with either NEW or Highly revised in the following table.

Table 1. Getting Started modules and samples

Module Sample (if any) Description

1. Setting up your development environment

Setting up your Worklight
development environment

This module explains how to set up
your environment.

Setting up your iOS
development environment

This module complements the module
"Setting up your Worklight
development environment" with further
steps that are required for iOS
application development.

Setting up your Android
development environment

This module complements the module
"Setting up your Worklight
development environment" with further
steps that are required for Android
application development.

Setting up your BlackBerry 6
and 7 development
environment

This module complements the module
"Setting up your Worklight
development environment" with further
steps that are required for BlackBerry 6
and BlackBerry 7 application
development.

30 IBM Worklight V5.0.6

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/01_01_Setting_up_your_Worklight_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/01_01_Setting_up_your_Worklight_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/01_02_Setting_up_your_iOS_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/01_02_Setting_up_your_iOS_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/01_03_Setting_up_your_Android_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/01_03_Setting_up_your_Android_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/01_04_Setting_up_your_BlackBerry_6_and_7_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/01_04_Setting_up_your_BlackBerry_6_and_7_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/01_04_Setting_up_your_BlackBerry_6_and_7_development_environment.pdf

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 1. Getting Started modules and samples (continued)

Module Sample (if any) Description

Setting up your BlackBerry 10
development environment

This module complements the module
"Setting up your Worklight
development environment" with further
steps that are required for BlackBerry 10
application development.

Setting up your Windows
Phone 7.5 development
environment

This module complements the module
"Setting up your Worklight
development environment" with further
steps that are required for Windows
Phone 7.5 application development.

Setting up your Windows
Phone 8 development
environment

This module complements the module
"Setting up your Worklight
development environment" with further
steps that are required for Windows
Phone 8 application development.

2. Hello Worklight

Creating your first Worklight
application

Exercise and
code sample

This module explains how to set up
your first mobile application.

Previewing your application on
iOS

This module explains how to preview
your application in the iOS
environment.

Previewing your application on
Android

This module explains how to preview
your application in the Android
environment.

Previewing your application on
BlackBerry 6 and 7

This module explains how to preview
your application in the BlackBerry 6 and
BlackBerry 7 environments.

Previewing your application on
BlackBerry 10

This module explains how to preview
your application in the BlackBerry 10
environment.

Previewing your application on
Windows Phone 7.5

This module explains how to preview
your application in the Windows Phone
7.5 environment.

Previewing your application on
Windows Phone 8

This module explains how to preview
your application in the Windows Phone
8 environment.

3. Worklight client-side development basics

Learning Worklight client side
API

Exercise and
code sample

This module explains the basics of the
IBM Worklight Client API.

Building a multi page
application

Exercise and
code sample

This module explains how to build a
multi-page application with IBM
Worklight.

Working with UI frameworks This module explains how to work with
the user interface (UI) frameworks of
IBM Worklight.

Debugging your applications This module explains how to debug the
client applications.

Optimizing your application
for various environments

This module explains how to optimize
the application code for specific
environments.

Chapter 1. Starting with IBM Worklight 31

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/01_05_Setting_up_your_BlackBerry_10_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/01_05_Setting_up_your_BlackBerry_10_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/01_06_Setting_up_your_Windows_Phone_7.5_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/01_06_Setting_up_your_Windows_Phone_7.5_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/01_06_Setting_up_your_Windows_Phone_7.5_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/01_07_Setting_up_your_Windows_Phone_8_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/01_07_Setting_up_your_Windows_Phone_8_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/01_07_Setting_up_your_Windows_Phone_8_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/02_01_Creating_your_first_Worklight_application.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/02_01_Creating_your_first_Worklight_application.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/HelloWorklightProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/HelloWorklightProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/02_02_Previewing_your_application_on_iOS.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/02_02_Previewing_your_application_on_iOS.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/02_03_Previewing_your_application_on_Android.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/02_03_Previewing_your_application_on_Android.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/02_04_Previewing_your_application_on_BlackBerry_6_and_7.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/02_04_Previewing_your_application_on_BlackBerry_6_and_7.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/02_05_Previewing_your_application_on_BlackBerry_10.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/02_05_Previewing_your_application_on_BlackBerry_10.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/02_06_Previewing_your_application_on_Windows_Phone_7.5.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/02_06_Previewing_your_application_on_Windows_Phone_7.5.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/02_07_Previewing_your_application_on_Windows_Phone_8.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/02_07_Previewing_your_application_on_Windows_Phone_8.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_01_Learning_Worklight_client_side_API.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_01_Learning_Worklight_client_side_API.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/BasicAPIDevelopment.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/BasicAPIDevelopment.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_02_Building_a_multi_page_application.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_02_Building_a_multi_page_application.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/MultiPageApplication.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/MultiPageApplication.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_03_Working_with_UI_frameworks.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_04_Debugging_your_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_05_Optimizing_your_application_for_various_environments.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_05_Optimizing_your_application_for_various_environments.pdf

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 1. Getting Started modules and samples (continued)

Module Sample (if any) Description

General information when
developing for iOS

This module gives some general
information that you must know to
develop apps for the iOS environment.

General information when
developing for Android

This module gives some general
information that you must know to
develop apps for the Android
environment.

General information when
developing for BlackBerry 6
and 7

This module gives some general
information that you must know to
develop apps for the BlackBerry 6 and
BlackBerry 7 environments.

General information when
developing for BlackBerry 10

This module gives some general
information that you must know to
develop apps for the BlackBerry 10
environment.

General information when
developing for Windows
Phone 7.5

This module gives some general
information that you must know to
develop apps for the Windows Phone
7.5 environment.

General information when
developing for Windows
Phone 8

This module gives some general
information that you must know to
develop apps for the Windows Phone 8
environment.

General information when
developing Mobile Web
applications

This module gives some general
information that you must know to
develop mobile web applications.

General information when
developing desktop
applications

This module gives some general
information that you must know to
develop desktop applications.

4. Worklight server-side development

Adapter framework overview This module explains what adapters are
in IBM Worklight, and how to work
with them.

HTTP adapter -
Communicating with HTTP
back-end systems

Exercise and
code sample

This module explains how to work with
adapters to communicate with HTTP
back-end systems.

SQL adapter - Communicating
with SQL database

Exercise and
code sample

This module explains how to work with
adapters to communicate with SQL
databases.

Cast Iron® adapter -
Communicating with Cast Iron

This module explains how to work with
adapters to communicate with Cast
Iron.

JMS adapter - Communicating
with JMS

This module explains how to work with
adapters to communicate by using Java
Message Service (JMS).

Invoking adapter procedures
from client applications

Exercise and
code sample

This module explains how to call the
adapter procedures from the client
application.

Advanced adapter usage and
mashup

Exercise and
code sample

This module explains advanced details
on how to use adapters.

32 IBM Worklight V5.0.6

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_06_General_information_when_developing_for_iOS.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_06_General_information_when_developing_for_iOS.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_07_General_information_when_developing_for_Android.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_07_General_information_when_developing_for_Android.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_08_General_information_when_developing_for_BlackBerry_6_and_7.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_08_General_information_when_developing_for_BlackBerry_6_and_7.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_08_General_information_when_developing_for_BlackBerry_6_and_7.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_09_General_information_when_developing_for_BlackBerry_10.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_09_General_information_when_developing_for_BlackBerry_10.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_10_General_information_when_developing_for_Windows_Phone_7.5.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_10_General_information_when_developing_for_Windows_Phone_7.5.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_10_General_information_when_developing_for_Windows_Phone_7.5.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_11_General_information_when_developing_for_Windows_Phone_8.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_11_General_information_when_developing_for_Windows_Phone_8.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_11_General_information_when_developing_for_Windows_Phone_8.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_12_General_information_when_developing_Mobile_Web_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_12_General_information_when_developing_Mobile_Web_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_12_General_information_when_developing_Mobile_Web_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_13_General_information_when_developing_desktop_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_13_General_information_when_developing_desktop_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/03_13_General_information_when_developing_desktop_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/04_01_Adapter_framework_overview.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/04_02_HTTP_adapter_-_Communicating_with_HTTP_back-end_systems.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/04_02_HTTP_adapter_-_Communicating_with_HTTP_back-end_systems.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/04_02_HTTP_adapter_-_Communicating_with_HTTP_back-end_systems.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/HTTPAdapter.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/HTTPAdapter.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/04_03_SQL_adapter_-_Communicating_with_SQL_database.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/04_03_SQL_adapter_-_Communicating_with_SQL_database.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/SQLAdapter.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/SQLAdapter.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/04_04_Cast_Iron_adapter_-_Communicating_with_Cast_Iron.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/04_04_Cast_Iron_adapter_-_Communicating_with_Cast_Iron.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/04_05_JMS_adapter_-_Communicating_with_JMS.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/04_05_JMS_adapter_-_Communicating_with_JMS.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/04_06_Invoking_adapter_procedures_from_client_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/04_06_Invoking_adapter_procedures_from_client_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/EngadgetReader.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/EngadgetReader.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/04_07_Advanced_adapter_usage_and_mashup.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/04_07_Advanced_adapter_usage_and_mashup.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/CityWeather.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/CityWeather.zip

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 1. Getting Started modules and samples (continued)

Module Sample (if any) Description

Using Java in adapters Exercise and
code sample

This module explains how to use Java
in adapters.

5. Advanced client side development

Highly revised: Overview of
client technologies

This module explains the technologies
that support IBM Worklight clients.

Common UI controls Exercise and
code sample

This module explains the common
user-interface controls in IBM
Worklight.

Supporting multiple
form-factors using Worklight
skins

Exercise and
code sample

This module explains how you can
support multiple form factors by
working with skins in IBM Worklight.

Working offline Exercise and
code sample

This module explains how to detect
application connectivity failures and
corresponding actions.

Enabling translation Exercise and
code sample

This module explains how to enable
translation of the client applications.

Using Direct Update to quickly
update your application

This module explains how to
automatically update your applications
with new versions of their web
resources.

Storing sensitive data in
Encrypted Cache

Exercise and
code sample

This module explains how to work with
the encrypted cache of the mobile
device.

JSONStore - The client-side
JSON-based database overview

This module introduces the JSONStore,
and how you can work with JSON
documents.

JSONStore - API basics Exercise and
code sample

This module explains the basic tasks
that you can perform on a local JSON
collection.

JSONStore - Synchronizing
client and server databases

Exercise and
code sample

This module explains how you can
synchronize a local JSON collection with
a server-side database.

JSONStore - Encrypting
sensitive data

Exercise and
code sample

This module explains how you can
encrypt the sensitive data of your local
JSON collection.

NEW: JSONStore - Encrypting
sensitive data with FIPS 140-2

Exercise and
code sample

This module explains how you can
encrypt the sensitive data of your local
JSON collection by using FIPS 140-2.

6. Adding native functionality to hybrid applications with Apache Cordova

Highly revised: Apache Cordova
overview

This module explains what Apache
Cordova is, and how to use it with IBM
Worklight.

iOS - Using native pages in
hybrid applications

Exercise and
code sample

This module explains how to use native
pages in hybrid applications that are
developed for the iOS environment.

Highly revised: iOS - Adding
native functionality to hybrid
application with Apache
Cordova plugin

Exercise and
code sample

This module explains how to use
Apache Cordova plugs-in to add native
functionality to hybrid applications that
are developed for the iOS environment.

Chapter 1. Starting with IBM Worklight 33

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/04_08_Using_Java_in_adapters.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/InvokingJavaCodeFromAdapter.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/InvokingJavaCodeFromAdapter.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_01_Overview_of_client_technologies.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_01_Overview_of_client_technologies.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_02_Common_UI_Controls.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/CommonControls.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/CommonControls.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_03_Supporting_multiple_form_factors_using_Worklight_skins.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_03_Supporting_multiple_form_factors_using_Worklight_skins.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_03_Supporting_multiple_form_factors_using_Worklight_skins.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/Skins.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/Skins.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_04_Working_offline.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/OfflineMode.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/OfflineMode.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_05_Enabling_translation.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/EnablingTranslationProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/EnablingTranslationProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_06_Using_Direct_Update_to_quickly_update_your_application.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_06_Using_Direct_Update_to_quickly_update_your_application.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_07_Storing_sensitive_data_in_Encrypted_Cache.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_07_Storing_sensitive_data_in_Encrypted_Cache.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/EncryptedCache.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/EncryptedCache.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_08_JSONStore_-_The_client_side_JSON_based_database_overview.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_08_JSONStore_-_The_client_side_JSON_based_database_overview.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_09_JSONStore_-_API_basics.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/Using_JSONStore.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/Using_JSONStore.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_10_JSONStore_-_Synchronizing_client_and_server_databases.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_10_JSONStore_-_Synchronizing_client_and_server_databases.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/JSONStore_with_Sync.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/JSONStore_with_Sync.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_11_JSONStore_-_Encrypting_sensitive_data.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_11_JSONStore_-_Encrypting_sensitive_data.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/JSONStore_with_Security.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/JSONStore_with_Security.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_12_JSONStore_-_Encrypting_sensitive_data_with_FIPS.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/05_12_JSONStore_-_Encrypting_sensitive_data_with_FIPS.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/JSONStoreWithFIPSProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/JSONStoreWithFIPSProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/06_01_Apache_Cordova_overview.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/06_01_Apache_Cordova_overview.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/06_02_iOS_-_Using_native_pages_in_hybrid_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/06_02_iOS_-_Using_native_pages_in_hybrid_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/iOS_CombiningNativeAndWebPages.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/iOS_CombiningNativeAndWebPages.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/06_03_iOS_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/06_03_iOS_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/06_03_iOS_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/06_03_iOS_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/iOS_ApacheCordovaPlugin.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/iOS_ApacheCordovaPlugin.zip

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 1. Getting Started modules and samples (continued)

Module Sample (if any) Description

Android - Using native pages
in hybrid applications

Exercise and
code sample

This module explains how to use native
pages in hybrid applications that are
developed for the Android environment.

Highly revised: Android -
Adding native functionality to
hybrid application with
Apache Cordova plugin

Exercise and
code sample

This module explains how to use
Apache Cordova plug-ins to add native
functionality to hybrid applications that
are developed for the Android
environment.

NEW: Windows Phone 8 -
Adding native functionality to
hybrid application with
Apache Cordova plugin

Exercise and
code sample

This module explains how to use
Apache Cordova plug-ins to add native
functionality to hybrid applications that
are developed for the Windows Phone 8
environment.

7. Developing native applications with Worklight

Using Worklight API in native
iOS applications

Exercise and
code sample
(app) and
Exercise and
code sample
(native API)

This module explains how to create a
Worklight native API, and to use its
components in a native iOS application.

Using Worklight API in native
Android applications

Exercise and
code sample
(app) and
Exercise and
code sample
(native API)

This module explains how to create a
Worklight native API, and to use its
components in a native Android
application.

Using Worklight API in native
Java ME applications

Exercise and
code sample
(app) and
Exercise and
code sample
(native API)

This module explains how to use Java
API to develop Java Platform, Micro
Edition (Java ME) applications.

NEW: Using Worklight API for
push notifications in native iOS
applications

Exercise and
code sample
(app) and
Exercise and
code sample
(native API)

This module explains how to use
Worklight API to manage push
notification a native iOS application.

NEW: Using Worklight API for
push notifications in native
Android applications

Exercise and
code sample
(app) and
Exercise and
code sample
(native API)

This module explains how to use
Worklight API to manage push
notification a native Android
application.

8. Authentication and security

Authentication concepts This module explains how to protects
your applications and adapter
procedures against unauthorized access
by using authentication.

Form-based authentication Exercise and
code sample

This module explains how to work with
the form-based authentication.

34 IBM Worklight V5.0.6

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/06_04_Android_-_Using_native_pages_in_hybrid_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/06_04_Android_-_Using_native_pages_in_hybrid_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/Android_CombiningNativeAndWebPages.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/Android_CombiningNativeAndWebPages.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/06_05_Android_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/06_05_Android_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/06_05_Android_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/06_05_Android_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/Android_ApacheCordovaPlugin.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/Android_ApacheCordovaPlugin.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/06_07_WindowsPhone8_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/06_07_WindowsPhone8_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/06_07_WindowsPhone8_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/06_07_WindowsPhone8_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/WindowsPhone8CordovaPluginProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/WindowsPhone8CordovaPluginProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/07_01_Using_Worklight_API_in_native_iOS_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/07_01_Using_Worklight_API_in_native_iOS_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/iOSNativeApp.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/iOSNativeApp.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/iOSNativeApp.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/NativeAPIForIOS.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/NativeAPIForIOS.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/NativeAPIForIOS.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/07_02_Using_Worklight_API_in_native_Android_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/07_02_Using_Worklight_API_in_native_Android_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/AndroidNativeApp.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/AndroidNativeApp.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/AndroidNativeApp.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/NativeAPIForAndroid.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/NativeAPIForAndroid.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/NativeAPIForAndroid.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/07_03_Using_Worklight_API_in_native_Java_ME_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/07_03_Using_Worklight_API_in_native_Java_ME_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/JavaMENativeApp.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/JavaMENativeApp.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/JavaMENativeApp.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/NativeAPIForJavaMe.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/NativeAPIForJavaMe.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/NativeAPIForJavaMe.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/07_04_Using_Worklight_API_for_push_notifications_in_native_iOS_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/07_04_Using_Worklight_API_for_push_notifications_in_native_iOS_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/07_04_Using_Worklight_API_for_push_notifications_in_native_iOS_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/iOSNativeAppWithPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/iOSNativeAppWithPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/iOSNativeAppWithPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/NativeAPIForIOSPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/NativeAPIForIOSPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/NativeAPIForIOSPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/07_05_Using_Worklight_API_for_push_notifications_in_native_Android_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/07_05_Using_Worklight_API_for_push_notifications_in_native_Android_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/07_05_Using_Worklight_API_for_push_notifications_in_native_Android_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/AndroidNativeAppWithPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/AndroidNativeAppWithPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/AndroidNativeAppWithPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/NativeAPIForAndroidPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/NativeAPIForAndroidPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/NativeAPIForAndroidPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/08_01_Authentication_concepts.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/08_02_Form_based_authentication.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/FormBasedAuthentication.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/FormBasedAuthentication.zip

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 1. Getting Started modules and samples (continued)

Module Sample (if any) Description

Adapter-based authentication Exercise and
code sample
(single step) and
Exercise and
code sample
(double step)

This module explains how to work with
the adapter-based authentication.

Custom Authenticator and
Login Module

Exercise and
code sample

This module explains how to work with
custom login modules and
authenticators when the default ones do
not suffice.

NEW: Using LDAP Login
Module to authenticate users
with LDAP server

Exercise and
code sample

This module explains how to work with
the LDAP login module to authenticate
users with LDAP servers.

WebSphere LTPA-based
authentication

This module explains how to work with
the WebSphere LTPA-based
authentication.

NEW: Device provisioning
concepts

This module explains the basics of
device provisioning.

Custom device provisioning Exercise and
code sample

This module explains how to create a
custom provisioning that uses a
certificate from an external service to
authenticate a device. This module also
explains how to implement a custom
authenticator that connects to that
service.

9. Advanced topics

Shell development concepts Exercise and
code sample

This module explains the concepts that
support the shell development and the
inner applications.

Android shell development This module explains how to develop
Android applications by using shells.

iOS shell development This module explains how to develop
iOS applications by using shells.

Push notifications Exercise and
code sample

This module explains how to allow
mobile device to receive messages that
are pushed from a server.

NEW: SMS notifications Exercise and
code sample

This module explains how to configure
mobile devices to receive notifications
through SMS messages that are pushed
from a server.

Integrating server-generated
pages in hybrid applications

Exercise and
code sample

This module explains how to remotely
load dynamic content, where the code
(HTML, CSS, and JavaScript) is hosted
externally.

10. Moving to production

Moving from development
environment to stand-alone
QA and production servers

This module explains how to move the
components from the development
environment into the test or production
environment.

Chapter 1. Starting with IBM Worklight 35

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/08_03_Adapter_based_authentication.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/SingleStepAdapterBasedAuthentication.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/SingleStepAdapterBasedAuthentication.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/SingleStepAdapterBasedAuthentication.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/DoubleStepAdapterBasedAuthentication.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/DoubleStepAdapterBasedAuthentication.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/DoubleStepAdapterBasedAuthentication.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/08_04_Custom_Authenticator_and_Login_Module.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/08_04_Custom_Authenticator_and_Login_Module.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/CustomLoginModule.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/CustomLoginModule.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/08_05_Using_LDAP_Login_Module_to_authenticate_user_with_LDAP_server.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/08_05_Using_LDAP_Login_Module_to_authenticate_user_with_LDAP_server.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/08_05_Using_LDAP_Login_Module_to_authenticate_user_with_LDAP_server.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/LDAPLoginModule.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/LDAPLoginModule.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/08_06_WebSphere_LTPA_based_authentication.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/08_06_WebSphere_LTPA_based_authentication.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/08_07_Device_provisioning_concepts.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/08_07_Device_provisioning_concepts.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/08_08_Custom_device_provisioning.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/CustomDeviceProvisioning.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/CustomDeviceProvisioning.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/09_01_Shell_development_concepts.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/ShellDevelopment.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/ShellDevelopment.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/09_02_Android_shell_development.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/09_03_iOS_shell_development.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/09_04_Push_notifications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/PushNotifications.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/PushNotifications.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/09_05_SMS_notifications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/SMSNotifications.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/SMSNotifications.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/09_06_Integrating_server_generated_pages_in_Worklight_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/09_06_Integrating_server_generated_pages_in_Worklight_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/WebViewOverlay.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/WebViewOverlay.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/10_01_Moving_from_development_environment_to_stand-alone_QA_and_production_servers.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/10_01_Moving_from_development_environment_to_stand-alone_QA_and_production_servers.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/10_01_Moving_from_development_environment_to_stand-alone_QA_and_production_servers.pdf

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 1. Getting Started modules and samples (continued)

Module Sample (if any) Description

Reports and analytics This module explains the BIRT reports
that help collect the analytics data that
are pertaining to applications and to
devices that are accessing the Worklight
Server.

11. Integrating with other products

Using Rational Team Concert
to build your applications

Exercise and
code sample

This module explains how to develop as
a team by using Rational Team Concert.

NEW: Introducing Worklight
Server and Application Center
on IBM PureApplication
System

This module introduces how you can
integrate IBM Worklight Server and
Application Center with IBM
PureApplication System.

NEW: Integrating IBM Tivoli
Directory Server on IBM
PureApplication System

This module introduces how you can
integrate IBM Tivoli Directory Server
with IBM PureApplication System.

Using Worklight application as
a container for
server-generated pages

Exercise and
code sample

This module explains how to remotely
load dynamic content, where the code
(HTML, CSS, and JavaScript) is hosted
externally.

Container for advanced pages Exercise and
code sample
and Exercise
and code
sample (WAR)

This module complements the module
"Using Worklight application as a
container for server-generated pages"
with advanced information about how
you can remotely load dynamic content.

NEW: Integrating with
SiteMinder

Exercise and
code sample

This module explains how you can
integrate IBM Worklight with
SiteMinder.

Worklight Starter application samples

Study the Worklight Starter application samples to learn how to use IBM Worklight
to create mobile applications. These samples have no associated modules.

Table 2. Worklight Starter applications

Sample Description

Worklight Starter
application

This file contains the sample code of the IBM Worklight Starter
application.

Worklight Starter
application with
jQuery Mobile

This file contains the sample code of the IBM Worklight Starter
application with jQuery Mobile.

Worklight Starter
application with
Sencha

This file contains the sample code of the IBM Worklight Starter
application with Sencha Touch.

Worklight Starter
application with Dojo
Mobile

This file contains the sample code of the IBM Worklight Starter
application with Dojo Mobile.

36 IBM Worklight V5.0.6

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/10_02_Reports_and_analytics.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/11_01_Using_Rational_Team_Concert_to_build_your_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/11_01_Using_Rational_Team_Concert_to_build_your_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/TeamDevelopmentUsingRtc.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/TeamDevelopmentUsingRtc.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/11_02_Introducing_Worklight_Server_and_Application_Center_on_IBM_PureApplication_System.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/11_02_Introducing_Worklight_Server_and_Application_Center_on_IBM_PureApplication_System.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/11_02_Introducing_Worklight_Server_and_Application_Center_on_IBM_PureApplication_System.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/11_02_Introducing_Worklight_Server_and_Application_Center_on_IBM_PureApplication_System.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/11_03_Integrating_Tivoli_Directory_Server_on_IBM_PureApplication_System.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/11_03_Integrating_Tivoli_Directory_Server_on_IBM_PureApplication_System.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/11_03_Integrating_Tivoli_Directory_Server_on_IBM_PureApplication_System.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/11_04_Using_Worklight_application_as_a_container_for_server_generated_pages.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/11_04_Using_Worklight_application_as_a_container_for_server_generated_pages.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/11_04_Using_Worklight_application_as_a_container_for_server_generated_pages.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/ContainerForServerPages.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/ContainerForServerPages.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/11_05_Container_for_advanced_pages.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/ContainerForAdvancedPages.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/ContainerForAdvancedPages.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/ContainerForAdvancedPagesWar.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/ContainerForAdvancedPagesWar.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/ContainerForAdvancedPagesWar.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/11_06_Integrating_with_SiteMinder.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/11_06_Integrating_with_SiteMinder.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/IntegratingWithSiteMinderProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/IntegratingWithSiteMinderProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/WorklightStarter.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/WorklightStarter.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/WorklightStarter_jQueryMobile.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/WorklightStarter_jQueryMobile.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/WorklightStarter_jQueryMobile.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/WorklightStarter_Sencha.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/WorklightStarter_Sencha.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/WorklightStarter_Sencha.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/WorklightStarter_DojoMobile.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/WorklightStarter_DojoMobile.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/WorklightStarter_DojoMobile.zip

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

JavaScript framework-based application samples

IBM Worklight provides several support materials for developing with JavaScript
frameworks, such as Dojo, Dojo Mobile, and jQuery Mobile. You can study the
following samples to learn how to use IBM Worklight to develop applications that
are based on such frameworks. These samples have associated modules that
describe them.

Table 3. JavaScript framework-based applications

Module Sample Description

Running the
Dojo-based sample

Exercise and
code sample

This module and its companion sample show how
to develop an application that is based on Dojo
through a basic sample application.

Running Dojo-based
Mysurance
end-to-end sample

Exercise and
code sample

This module and its companion sample show how
to develop an application that is based on Dojo
through the end-to-end "MySurance" sample
application.

Running Dojo
Mobile-based Apache
Cordova sample

Exercise and
code sample

This module and its companion sample show how
to develop an application that is based on Dojo
Mobile through an Apache Cordova sample
application.

NEW: Running
jQuery Mobile-based
Flight Ticket sample

Exercise and
code sample

This module and its companion sample constitute
an end-to-end application in the flight booking
domain that is based on jQuery Mobile.

Additional resources

The following compressed files contain all the materials for the tutorials and
samples:
v All IBM Worklight tutorial modules
v All IBM Worklight tutorial companion samples and application samples

Terms and conditions

Use of the IBM Worklight V5.0.6 Getting Started modules, exercises, and code
samples available on this page is subject to you agreeing to the terms and
conditions set forth here:

This information contains sample code provided in source code form. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample code is written. Notwithstanding anything to the
contrary, IBM PROVIDES THE SAMPLE SOURCE CODE ON AN "AS IS" BASIS
AND IBM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR
PURPOSE, TITLE, AND ANY WARRANTY OR CONDITION OF
NON-INFRINGEMENT. IBM SHALL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY OR ECONOMIC
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR OPERATION OF
THE SAMPLE SOURCE CODE. IBM SHALL NOT BE LIABLE FOR LOSS OF, OR
DAMAGE TO, DATA, OR FOR LOST PROFITS, BUSINESS REVENUE,
GOODWILL, OR ANTICIPATED SAVINGS. IBM HAS NO OBLIGATION TO

Chapter 1. Starting with IBM Worklight 37

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/12_01_Running_Dojo_based_sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/12_01_Running_Dojo_based_sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/DojoShowcase.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/DojoShowcase.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/12_02_Running_Dojo_based_Mysurance_end_to_end_sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/12_02_Running_Dojo_based_Mysurance_end_to_end_sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/12_02_Running_Dojo_based_Mysurance_end_to_end_sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/Mysurance.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/Mysurance.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/12_03_Running_Dojo_Mobile_based_Apache_Cordova_sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/12_03_Running_Dojo_Mobile_based_Apache_Cordova_sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/12_03_Running_Dojo_Mobile_based_Apache_Cordova_sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/CordovaShowcase.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/CordovaShowcase.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/12_04_Running_jQuery_Mobile_based_Flight_Ticket_Sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/12_04_Running_jQuery_Mobile_based_Flight_Ticket_Sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/12_04_Running_jQuery_Mobile_based_Flight_Ticket_Sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/FlightTicketSampleProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/FlightTicketSampleProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/wl_gs_all_modules.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/wl_gs_all_samples.zip

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS OR
MODIFICATIONS TO THE SAMPLE SOURCE CODE.

Please review the third party licenses before using any of the resources. The third
party licenses applicable to each sample are available in the notices.txt file
included with each sample.

38 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 2. Developing IBM Worklight applications

To develop an IBM Worklight application you must have a Worklight project,
adapt for a mobile, desktop, or web environment, and authenticate.

About this task

This information is designed to help users develop and optimize applications for
various channels by using the IBM Worklight Platform. It is intended for web
developers who know Ajax and are familiar with application development.

It also covers server-side development topics, such as integration and push
notifications.

The Worklight Platform provides a framework that enables the development,
optimization, integration, and management of secure applications that run on
high-end smartphones and other consumer environments. This framework
provides the following features:
v Guidelines and design patterns that promote compatibility across multiple

consumer environments.
v Automatic packaging and provisioning of application resources to multiple

consumer environments.
v A flexible UI optimization and globalization scheme.
v Tools that provide uniform access to back-end enterprise data, processes, and

transactions.
v Uniform persistence.
v A uniform personalization model.
v A flexible authentication model and automatic application protection from web

attacks.

Worklight does not introduce a proprietary programming language or model that
users have to learn. You can develop apps using HTML5, CSS3, and JavaScript.
You can optionally write native code (Java or Objective-C) if you need to do so and
Worklight provides an SDK that includes libraries that you can access from native
code.

Starting with IBM Worklight projects, applications, environments, and
skins

With Worklight Studio, you can develop mobile applications within projects, build
your applications for different environments, and create skins for specific devices.

This collection of topics introduces how you can start your mobile application
development with IBM Worklight Studio.
v It introduces the concepts of projects, applications, environments, and skins.
v It gives the required steps for you to create a project and applications.
v It describes the content of a project and of applications.

39

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Overview: IBM Worklight projects, applications, environments,
and skins

With Worklight Studio, you can develop mobile applications within projects, build
your applications for different environments, and create skins for specific devices.

IBM Worklight applications

With IBM Worklight, you can develop mobile applications by using any of four
different approaches:
v Web Applications: they are written entirely in HTML5, CSS, and JavaScript code.

Web applications are executed by the mobile browser and are cross-platform by
default.

v Hybrid Applications (Web): the source code of the application consists of web
code that is executed within a native container (which is provided by IBM
Worklight) and consists of native libraries.

v Hybrid Applications (Mixed): the developer augments the web code with native
language to create unique features and access native APIs that are not available
in JavaScript.

v Native Applications: this type of application is platform-specific and requires
expertise and knowledge of the platform.

By using one or all of these approaches to implement mobile applications, you can:

40 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Create mobile applications that are designed specifically for the needs of their
organization.

v Use multiple distribution channels such as public and private enterprise
application stores.

v Manage the growing portfolio of deployed apps and integration adapters in a
secure and centralized manner.

IBM Worklight environments

You can build your mobile applications for different environments, such as:
v Mobile environments, which include iPhone, iPad, Android phones and tablets,

BlackBerry 6 and 7, BlackBerry 10, Windows Phone 7.5 and Window Phone 8.
v Desktop environments, which include Adobe AIR and Windows 8.
v Web environments, which include Mobile web app and Desktop Browser web

page.

There is a difference between the Mobile web app environment and the Desktop
Browser web page environment.
v Mobile web apps are only used in a mobile device browser. Choose the Mobile

web app environment when you want your users to surf to your application by
using their mobile device.

v Desktop browser web pages are used only in a desktop web browser. With the
Desktop Browser web page environment, you can develop an application that
you then embed inside your website, but this application is not meant for use in
a mobile device.

Note: You cannot combine the Mobile web app environment and the Desktop
browser web page environment in the same application.
If your web application is not based on Worklight, you must first port it to
Worklight. If your web application is based on Worklight, you can add the Desktop
Browser web page environment to your existing project.

IBM Worklight projects

To develop your mobile applications with IBM Worklight, you must first create a
project in IBM Worklight Studio.

A project in Worklight Studio is a place for you to develop one or several mobile
applications, which you can build for different environments.

In your project, when you create an application, you have a main application
folder, in which you can find several subfolders:
v A common folder, for you to store the code that is shared between all

environments, such as HTML, CSS, or JavaScript code.
v One folder for each environment that is supported by the application, and where

you store the code that is specific to this environment, such as Java code for
Android or Objective-C code for iOS.

v An adapter folder, for you to store the code of the adapters that your
application requires to collect data from back-end systems.

Within your project, you can create the graphical user interface of your mobile
application by using the Rich Page Editor. The Rich Page Editor is a WYSIWYG
editor in Worklight Studio.

Chapter 2. Developing IBM Worklight applications 41

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: If you use non-Latin characters in your application, you must make sure
that your Eclipse editor uses UTF-8 encoding. To set the Eclipse text file encoding
to UTF-8:
1. In Worklight Studio, go to Window > Preferences > General > Workspace.
2. In Text file encoding, select Other, and select UTF-8 from the list.

When the application is finished, you can test it with the Mobile Browser
Simulator in Worklight Studio. However, you cannot test native code with
Worklight Studio. To test native code, you must test it with a real device or with
the development kit of the appropriate environment. To test your application:
1. Build and deploy your application: Worklight Studio creates the project with

your native code that you can then view and update.
2. Test it with the Mobile Browser Simulator, which emulates the target device, or

with a real device.

IBM Worklight skins

Different types of devices exist for a same environment. If you want to write a
piece of code that is specific to a certain device, you must create a skin. Skins are
subvariants of an environment and they provide support for multiple form factors
in a single executable file for devices of the same OS family. Skins are packaged
together in one app. At run time, only the skin that corresponds to the target
device is applied.

Creating IBM Worklight projects
You use Worklight Studio to create an IBM Worklight project.

About this task

With Worklight Studio, you create an IBM Worklight project as a place where you
develop your apps. When you create an IBM Worklight project, you create a first
app in it. This first app can be of the following types:
v Hybrid application: A Hybrid application can target multiple environments. You

can write it primarily in HTML5, CSS, and JavaScript. It can access device
capabilities by using the IBM Worklight JavaScript API. You can also extend it
with native code.

v Inner application: An Inner application contains the HTML, CSS, and JavaScript
parts that run within a Shell component. Before you can deploy this application,
you must package it within a shell component to create a full hybrid application.

v Shell component: A Shell component provides custom native capabilities and
security features that an Inner application can use.

v Native application: A Native application targets a specific environment, and can
use the IBM Worklight API for integration, security, and application
management.

After you created an IBM Worklight project, you can later add further apps to it.

Procedure

To create an IBM Worklight project and a first app in it:
1. Select File > New > Worklight Project.
2. In the Project Name field, enter a name for your new project.

42 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. From the list of project templates, select the template that applies to the first
application in your Worklight project:

Option Description

Hybrid Application To create a Worklight project with an initial
hybrid application.

Inner Application To create a Worklight project with an initial
inner application and point to a built shell
component

Shell Component To create a Worklight project with an initial
shell component application

Native Application To create a Worklight project with an initial
Native application

4. Optional: Select any of the following options to add the corresponding support
to the application:

Option Description

Add jQuery Mobile To add jQuery Mobile support to the
application. You must identify the directory
where the required files for jQuery Mobile
are located.

Add Sencha Touch To add Sencha Touch support to the
application. You must identify the directory
where the required files for Sencha Touch
are located.

Add Dojo Toolkit To add the Dojo facet and Dojo support to
the application. When you build a mobile
web application, Dojo is included to create
the native application, such as an iPhone or
Android application.
Note: If you intend to add a Windows
Phone 8 environment, note that Dojo Mobile
is not yet supported on Windows Phone 8.

Anatomy of an IBM Worklight Project
The file structure of an IBM Worklight project helps you organize the code that is
required for your apps.

When you develop mobile apps with the IBM Worklight platform, all development
assets including source code, libraries, and resources are placed in an IBM
Worklight project folder.

A Worklight project has the following structure:

<project-name> Root project folder

adapters Source code for all
adapters belonging to
the project

apps Source code for all
applications
belonging to the
project

Chapter 2. Developing IBM Worklight applications 43

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

bin Artifacts resulting
from building
adapters, apps, and
server-side
configuration and
libraries

components Source code for all
shell components
belonging to the
project

dojo Source code of the
Dojo JavaScript
framework, if
installed as part of
the IBM Worklight
Studio

server

conf IBM Worklight Server
configuration files,
such as
worklight.properties
and
authenticationConfig.xml

java Java code that must
be compiled and
packaged into jar
files deployable to
the IBM Worklight
Server

lib Pre-compiled
libraries that must be
deployed to the IBM
Worklight Server

Initialization options

The initOptions.js file is included in the project template. It is used to initialize
the Worklight JavaScript framework. It contains a number of tailoring options,
which you can use to change the behaviour of the JavaScript framework. These
options are commented out in the supplied file. To use them, uncomment and
modify the appropriate lines.

The initOptions.js file calls WL.Client.init, passing an options object that
includes any values you have overridden.

Content of the dojo folder

If you have installed the Dojo JavaScript framework, the dojo folder contains
several layers of JavaScript files that provide the Dojo widgets that you can use in
your apps.

When you create your app, your pages by default link only to the JavaScript files
that are required to use the dojo.mobile widgets. To use widgets that are not
defined in dojo.mobile, such as the widgets defined in dojox, you must explicitly
add the required links to the proper JavaScript layers in your app pages.

44 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

If you do not add these links, you cannot have any runtime visualization of the
result when using the Mobile Browser Simulator and the Mobile Browser
Simulator might even not properly display other contents.

For example, to work with the dojox.charting.widget.Chart widget, your page
must link to the charting-layer.js layer that defines the
dojox.charting.widget.Chart. Your page must also link to the
graphics-layer.js layer that thecharting-layer.js layer requires. You must
therefore:
1. Add the following links to your page:

<script type="text/javascript" src="dojo/charting-layer.js"></script>
<script type="text/javascript" src="dojo/graphics-layer.js"></script>

2. Edit the build-dojo.xml file in your project to ensure that the JavaScript files
are part of your mobile resources:
a. Search for the target section that copies the mobile resources: it starts

with this tag: <target name="-copy-mobile-resources" if="mobile.mgt">.
b. In this section, add the following lines next to mobile layers:

<include name="dojo/charting-layer.js.compressed.js">
<include name="dojo/graphics-layer.js.compressed.js">

Creating the client side of an IBM Worklight application
You use Worklight Studio to create the client side of an IBM Worklight application.

In Worklight Studio, you have two methods to create the client side of an IBM
Worklight application:
v Use an existing Worklight project, and create your application in it, as described

in “Creating an application in an IBM Worklight project” on page 46.
v Create a Worklight project, and your application in it as its first application, as

described in “Creating IBM Worklight projects” on page 42

After you create your Worklight application, you can develop its code by using
different APIs:
v JavaScript client-side API for hybrid apps
v Objective-C client-side API for native iOS apps
v Java client-side API for native Android apps
v Java client-side API for Java Platform, Micro Edition (Java ME) apps

You can also use your own custom libraries or third-party libraries when you
create mobile applications in Worklight Studio.

You can find guidelines on how to develop your applications in the following
topics:
v “Development guidelines for mobile environments” on page 61
v “Development guidelines for desktop and web environments” on page 79
v “Development guidelines for using native API” on page 84

JavaScript client-side API for hybrid apps

With the JavaScript client-side API, you can develop hybrid applications that target
all environments. You can use the capabilities of the IBM Worklight runtime client
API for mobile applications, desktop, and web to develop your applications.

Chapter 2. Developing IBM Worklight applications 45

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For more information, see “JavaScript client-side API” on page 173.

Objective-C client-side API for native iOS apps

IBM Worklight provides the IBM Worklight Objective-C client-side API that you
can use to develop native iOS applications. This API provides three main
capabilities:
v Calling back-end services for retrieving data and performing back-end

transactions.
v Writing custom log lines for reporting and auditing purposes.
v Writing custom challenge handlers to enable user authentication.

For more information, see “Objective-C client-side API for native iOS apps” on
page 271.

Java client-side API for native Android apps

IBM Worklight provides the IBM Worklight Java client-side API that you can use to
develop native Android applications. This API provides four main capabilities:
v Calling back-end services for retrieving data and performing back-end

transactions.
v Writing custom log lines for reporting and auditing purposes.
v Authenticating users before they access sensitive data or perform privileged

actions.
v Implementing custom Challenge Handlers to allow for a customized

authentication process.

For more information, see “Java client-side API for native Android apps” on page
271.

Java client-side API for Java ME apps

IBM Worklight provides the IBM Worklight Java client-side API that you can use to
develop native Java ME applications. This API provides two main capabilities:
v Calling back-end services for retrieving data and performing back-end

transactions.
v Writing custom log lines for reporting and auditing purposes.

For more information, see “Java client-side API for Java ME apps” on page 271.

Creating an application in an IBM Worklight project
With Worklight Studio, you can create different types of applications within an
existing IBM Worklight project.

About this task

With Worklight Studio, you can create and develop an IBM Worklight application
in an existing IBM Worklight project.

Procedure
1. From the Worklight menu, select the type of application you want to create:

v Worklight Hybrid Application

v Worklight Inner Application

v Worklight Native API

46 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Worklight Shell Component

A dialog opens that depends on the type of application that you selected.
Depending on the selected type of application, set the properties of your
application, as described next.
2. Hybrid Application:

a. In the field Project name, select your existing project.
b. In the field Application name, set the name of your application.
c. Select the check-boxes that correspond to the layers that you need (jQuery

Mobile, Sensa Touch, Dojo Mobile). Note: If you intend to add a Windows
Phone 8 environment, note that Dojo Mobile is not yet supported on
Windows Phone 8.

3. Inner Application:
a. In the field Project name, select your existing project.
b. In the field Application name, set the name of your application.
c. In the field Shell archive name, set the path of your Shell archive file. The

path can be either absolute or relative in case Shell archive exists within
your project.

4. Native API:
a. In the field Project name, select your existing project.
b. In the field Application name, set the name of your application.
c. In the field Environment, select the environment that you need: Android,

iOS, or Java ME.
5. Shell Component:

a. In the field Project name, select your existing project.
b. In the field Component name, set the name of your component.
c. Select the check-boxes that correspond to the layers that you need (jQuery

Mobile, Sensa Touch, Dojo Mobile). Note: If you intend to add a Windows
Phone 8 environment, note that Dojo Mobile is not yet supported on
Windows Phone 8.

6. Click Finish to save your choices. An application of the type of application that
you selected is now visible in your Worklight project.

Anatomy of an IBM Worklight Application
This collection of topics describes the files within a Worklight Application

By using the IBM Worklight Platform, you can write applications by using web
technologies or native technologies, or combine both types of technology in a
single app. All client-side application resources, both web and native, must be
located under a common file folder with a predefined structure. The IBM
Worklight Studio builds these resources into various targets, depending on the
environments supported by the application.

The application folder
The application folder contains all application resources.

The folder has the following structure:

<app-name> Main application
folder

Chapter 2. Developing IBM Worklight applications 47

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

common Application resources
common to all
environments

css Style sheets to define
the application view

images Thumbnail image
and default icon

js JavaScript files

<app-name>.html An HTML5 file that
contains the
application skeleton

android Web and native
resources specific to
Android

blackberry10 Web and native
resources specific to
BlackBerry 10

blackberry Web and native
resources specific to
BlackBerry 6 and 7

ipad Web and native
resources specific to
iPad

iphone Web and native
resources specific to
iPhone

windowsphone8 Web and native
resources specific to
Windows Phone 8

windowsphone Web and native
resources specific to
Windows Phone 7.5

air Resources specific to
Air

dashboard Resources specific to
OS X dashboard

desktopbrowser Resources specific to
desk top browsers

facebook Resources specific to
Facebook. The use of
Facebook is
deprecated in
Worklight version
5.0.5. Support might
be removed in any
future version.

igoogle Resources specific to
iGoogle. The use of
iGoogle is deprecated
in Worklight version
5.0.5. Support might
be removed in any
future version.

48 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

mobilewebapp Web resources
specific to mobile
web applications

vista Resources specific to
Windows 7 and Vista

windows8 Resources specific to
Windows 8

legal License documents
for the application or
third-party software
used in the
application

application-descriptor.xml

Application resources
You must provide various types of resources if you are to create applications that
can run in multiple environments.

You must provide the following resources to create applications that can run in
multiple environments. IBM Worklight automatically generates any missing
resources that are not supplied. However, for production quality, you must provide
all resources that are required by the environments in which the application runs.

Application descriptor

The application descriptor is a mandatory XML file that contains application
metadata, and is stored in the root directory of the app. The file is automatically
generated by Worklight Studio when you create an application, and can then be
manually edited to add custom properties.

Main file

The main file is an HTML5 file that contains the application skeleton. This file
loads all the web resources (scripts and style sheets) necessary to define the
general components of the application, and to hook to required document events.
This file is in the \common folder of the app directory and optionally in the
optimization and skin folders.

The main file contains a <body> tag. This tag must have an id attribute that is set
to content. If you change this value, the application environment does not
initialize correctly.

Style sheets

The app code can include CSS files to define the application view. Style sheets are
placed under the \common folder (normally under \common\css) and optionally in
the optimization and skin folders.

Scripts

The app code can include JavaScript files that implement interactive user interface
components, business logic and back-end query integration, and a message
dictionary for globalization purposes. Scripts are placed under the \common folder
(normally under \common\js) and optionally in the optimization and skin folders.

Chapter 2. Developing IBM Worklight applications 49

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Thumbnail image

The thumbnail image provides a graphical identification for the application. It
must be a square image, preferably of size 128 by 128 pixels. It is used to identify
the app in the IBM Worklight catalog.

Worklight Studio creates a default thumbnail image when the app is created. You
can override this default image (using the same file name) with a replacement
image that matches your application. The file is in the \common\images folder of the
app.

Splash image

The splash image applies for mobile environments and Windows 8 apps. The
splash image (or splash screen) is displayed while the application is being
initialized. It must be in the exact dimensions of the app.

Worklight Studio creates a default splash image when you create an application
environment. These default images are stored in the following locations:
v For Apple iOS platforms, the default splash images are stored:

– For iPhone, under iphone\native\Resources

– For iPad, under ipad\native\Resources

The file names of the default splash images are as follows, and vary according to
iOS version and target device:
– For iPhone Non-Retina display (iOS6.1 and earlier): Default~iphone.png 320

by 480 pixels
– For iPhone Retina display (iOS6.1 and earlier): Default@2x~iphone.png 640 by

960 pixels
– For iPhone 4-inch Retina display (iOS6.1 and earlier):

Default568h@2x~iphone.png 640 by 1136 pixels
– For iPhone Retina display (iOS7): Default@2x~iphone.png 640 by 960 pixels
– For iPhone 4-inch Retina display (iOS7): Default568h@2x~iphone.png 640 by

1136 pixels
– For iPad (iOS6.1 and earlier): Default-Portrait~ipad.png 768 by 1004 pixels
– For iPad Retina display (iOS6.1 and earlier): Default-Portrait@2x~ipad.png

1536 by 2008 pixels
– For iPad (iOS6.1 and earlier): Default-Landscape~ipad.png 1024 by 748 pixels
– For iPad Retina display (iOS6.1 and earlier): Default-Landscape@2x~ipad.png

2048 by 1496 pixels
– For iPad (iOS7): Default-Portrait~ipad.png 768 by 1004 pixels
– For iPad Retina display (iOS7): Default-Portrait@2x~ipad.png 1536 by 2008

pixels
– For iPad (iOS7): Default-Landscape~ipad.png 1024 by 748 pixels
– For iPad Retina display (iOS7): Default-Landscape@2x~ipad.png 2048 by 1496

pixels
v For Android platforms, the file name of the default splash image is

splash.9.png; it is stored:
– For all resolutions, under android\native\res\drawable

v For BlackBerry 10, under blackberry10\native. The file must be in .png format
and there are four different splash screen sizes:
– splash 1024 pixels width by 600 pixels height: splash-1024x600.png

50 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

– splash 1280 pixels width by 768 pixels height: splash-1280x768.png
– splash 600 pixels width by 1024 pixels height: splash-600x1024.png
– splash 768 pixels width by 1280 pixels height: splash-768x1280.png

v For BlackBerry 6 and 7, the file name of the splash image is splash.png, stored
under blackberry\native.

v For Windows Phone 8, the file name of the splash image is
SplashScreenImage.jpg, stored under windowsphone8\native. This file must be in
.jpg format, with a width of 768 pixels and height of 1280 pixels.

v For Windows 8, the file name of the splash image is splashscreen.png, stored
under windows8\native\images. This file must be in .png format, with a width of
620 pixels and height of 300 pixels.

Adding a custom splash image

You can override the default images that are created by Worklight Studio with a
splash image that matches your application.

The procedures for doing this differ, depending on the target platform. But in all
cases, your custom splash image must match the size of the default splash image
you are replacing, and must use the same file name.
v For Apple iOS platforms:

– There are two ways of creating a custom splash image:
1. Replace the default image in ipad\native\Resources (or

iphone\native\Resources), OR

2. Add the new (replacement) image to ipad\nativeResources\Resources (or
iphone\nativeResources\Resources).

3. Run Build All and Deploy for the project.
The second method (step 2) is preferable because it does not delete any files
from the native directory, which is often not backed up in a source code
control system. When you add your image to the nativeResources directory,
it is copied to the native directory during the build. The replacement splash
image must not be placed in any folder other than Resources.

v For Android:
– There are two ways of creating a custom splash image:

1. Replace the default image in android\native\res\drawable, OR

2. Add the new (replacement) image to android\nativeResources\res\
drawable.

3. Run Build All and Deploy for the project.
The second method (step 2) is preferable because it does not delete any files
from the native directory, which is often not backed up in a source code
control system. When you add your image to the nativeResources directory,
it is copied to the native directory during the build. The replacement splash
image must not be placed in any folder inside the res folder other than
drawable.

v For BlackBerry 10:
– There are two ways of creating a custom splash image:

1. Replace the default image in blackberry10\native (or
iphone\native\Resources), OR

2. Add the new (replacement) image to blackberry10\nativeResources\www.
3. Run Build All and Deploy for the project.

Chapter 2. Developing IBM Worklight applications 51

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The second method (step 2) is preferable because it does not delete any files
from the native directory, which is often not backed up in a source code
control system. When you add your image to the nativeResources directory,
it is copied to the native directory during the build.

v For BlackBerry 6 and 7:
1. Replace the default image in blackberry\native. If the original splash image

is not backed up in a source code control system, it is advisable to rename or
back up the original image first.

2. Run Build All and Deploy for the project.
v For Windows Phone 8:

– There are two ways of creating a custom splash image:
1. Replace the default image in windowsphone8\native, OR

2. Add the new (replacement) image to windowsphone8\nativeResouces.
3. Run Build All and Deploy for the project.
The second method (step 2) is preferable because it does not delete any files
from the native directory, which is often not backed up in a source code
control system. When you add your image to the nativeResources directory,
it is copied to the native directory during the build.

v For Windows 8:
1. Replace the default image in windows8\native\images. If the original splash

image is not backed up in a source code control system, it is advisable to
rename or back up the original image first.

2. Run Build All and Deploy for the project.

Application icons

Worklight Studio creates default application icons when you create the app. You
can override them with images that match your application. For Android, iPad,
and iPhone, put your replacement icons (using the same file names, except as
noted with an asterisk * below) in the location indicated by the Location of
overriding icon column in the following table.

The following table summarizes the sizes and location of each application icon.

Table 4. Application icons

Environment File name Description
Location of
default icon

Location of
overriding icon

Adobe AIR icon16x16.png
icon32x32.png
icon48x48.png
icon128x128.png

Application
icons of various
sizes that are
attached to the
AIR version of
the application.

The dimensions
of each icon are
specified in its
name.

air\images

52 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 4. Application icons (continued)

Environment File name Description
Location of
default icon

Location of
overriding icon

Android icon.png An icon that is
displayed on the
device
springboard. You
can provide a
different icon for
each device
density that you
want to support.

android\native\
res\drawable

�\android\
nativeResources\res\drawable
or
android\
nativeResources\res\drawable-ldpi
-hdpi -or other
options

BlackBerry 10 icon.png An icon that is
displayed on the
device.

Its dimensions
are 114 by 114
pixels.

Application
icons: for best
practices on
creating icons
see
https://
developer.blackberry.com/devzone/design/application_icons.htmlnative/www/icon.

blackberry10\
native\www

blackberry10\
nativeResources\www

BlackBerry 6 and
7

icon.png An icon that is
displayed on the
device.

Its dimensions
are 80 by 80
pixels.

blackberry\
native

iPad icon-xxxx.png

* Filename
varies by size
and target
device. Exact file
name may
change as long
as it is listed in
the plist file.

An icon that is
displayed on the
device
springboard.
Size depends on
iOS version and
target device.

iOS6.1 and
earlier:

v Non-Retina
display: 72 by
72 pixels

v Retina
display: 144
by 144 pixels

iOS7:

v Non-Retina
display: 76 by
76 pixels

v Retina
display: 152
by 152 pixels

ipad\native\
resources

\ipad\
nativeResources\Resources

Chapter 2. Developing IBM Worklight applications 53

https://developer.blackberry.com/devzone/design/application_icons.htmlnative/www/icon
https://developer.blackberry.com/devzone/design/application_icons.htmlnative/www/icon

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 4. Application icons (continued)

Environment File name Description
Location of
default icon

Location of
overriding icon

iPhone icon-xxxx.png

* Filename
varies by size
and target
device. Exact file
name may
change as long
as it is listed in
the plist file.

An icon that is
displayed on the
device
springboard.
Size depends on
iOS version and
target device.

iOS6.1 and
earlier:

v Non-retina
display: 57 by
57 pixels

v Retina
display: 114
by 114 pixels

iOS7:

v 120 by 120
pixels

iphone\native\
resources

\iphone\
nativeResources\Resources

Windows Phone
8

Background.png

ApplicationIcon.png

Both icons are
used to identify
the application.

Background.png
is displayed on
the device home
screen, and must
be 300 by 300
pixels.

ApplicationIcon.png
is displayed in
the list of
applications, and
must be 100 by
100 pixels.

windowsphone8\
native

54 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 4. Application icons (continued)

Environment File name Description
Location of
default icon

Location of
overriding icon

Windows 8 storelogo.png

logo.png

smalllogo.png

All icons are
used to identify
the application.

storelogo.png is
the image the
Windows Store
uses when it
displays the app
listing in search
results and with
the app
description in
the listing page.
The image must
be 50 by 50
pixels.

logo.png
represents the
square tile image
of the app in the
Start screen. The
image must be
150 by 150
pixels.

smalllogo.png is
displayed with
the app display
name in search
results on the
Start screen.
smalllogo.png is
also used in the
list of searchable
apps and when
the Start page is
zoomed out. The
image must be
30 by 30 pixels.

windows8\
native\images

The application descriptor
The application descriptor is a metadata file that is used to define various aspects
of the application. It is located in the application root directory.

General structure

The application descriptor is a metadata file that is used to define various aspects
of the application. It is located in the application root directory and has the name
application-descriptor.xml.

The following example shows the format of the file:

Chapter 2. Developing IBM Worklight applications 55

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<?xml version="1.0" encoding="UTF-8"?>
<application id="fcb" platformVersion="5.0">
xmlns="http://www.example.com/application-descriptor" xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation="http://www.example.com/application-descriptor
../../../../../gadgets/application-descriptor/src/main/resources/schema/application-descriptor.xsd">

The <application> element is the root element of the descriptor. It has two
mandatory attributes:

id Contains the ID of the application. The ID must be identical to the
application folder name. It must be an alphanumeric string that starts with
a letter. It can also contain underscore ("_") characters. It must not be a
reserved word in JavaScript.

platformVersion
Contains the version of the IBM Worklight Platform on which the app was
developed.

<displayName>First Country Bank</displayName>
<description>Conveniently and securely manage your checking, savings, and credit card accounts using FCB’s banking widget.</description>

The <displayName> and <description> elements contain the name and description
of the application. They are displayed in the IBM Worklight Console and are
copied to the descriptor files of various web and desktop environments.
<author>
<name>ACME</name>
<email> info@acme.com </email>
<homepage> acme.com </homepage>
<copyright> (C) ACME 2011 </copyright>
</author>

You can use the <author> element and its subelements to provide information
about the application author. This data is copied to the descriptor files of the web
and desktop environments that require it.
<height>410</height>
<width>264</width>

The <height> element is used to determine the height of the application on iGoogle
and desktop environments.

The use of iGoogle is deprecated in IBM Worklight version 5.0.5. Support might be
removed in any future version.

The <width> element is used to set the width of the application on desktop
environments.
<mainFile>fcb.html</mainFile>
<thumbnailImage>common/images/thumbnail.png</thumbnailImage>

The <mainFile> element contains the name of the main HTML file of the
application.

The <thumbnailImage> element contains the path to and the name of the thumbnail
image for the application. The path is relative to the main application folder.
<worklightServerRootURL> https://www.acme.com/mobile-services </worklightServerRootURL>

The <worklightServerRootURL> is used to define the URL for accessing the IBM
Worklight Server for mobile and desktop apps. It can be any URL of the form:
protocol://domain[:port][/path].

56 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: The <worklightServerRootURL> replaces the former <worklightRootURL>
element. <worklightRootURL> is deprecated and might not be supported in any
future release.
<smsGateway id=”kannelgw”/>

The <smsGateway> element defines the SMS gateway to be used for SMS Push
Notifications. It has one mandatory attribute:

id Contains the ID of the SMS gateway. The ID must match one of the
gateway IDs defined in the SMSConfig.xml file.

<iphone version="1.0" />
<android version="1.0" />
<blackberry10 version="1.0" />
<blackberry version="1.0" />
<windowsPhone8 version="1.0">

<uuid>87e096eb-6882-4cef-9f66-e68769de3926</uuid>
</windowsPhone8>
<windowsPhone version="1.0">

<uuid>62a2a2cf-0092-448e-8e7b-130687ca2938</uuid>
</windowsPhone>
<windows8 version="1.0">

<certificate PFXFilePath="Path to certificate file" password="certificate password"/>
<uuid>556a98a3-63fb-4602-827c-0b6bd9d00490</uuid>

</windows8>
<ipad version="1.0" />
<mobileWebApp version="1.0" />
<vista version="1.0" />
<dashboard version="1.0" />
<air version="1.0" />

Each environment on which the application can run must be declared with a
dedicated XML element. Each such element has one mandatory attribute, version.
The value of this version is a string of the form x.y, where x and y are digits (0-9).
v For mobile apps, the version is exposed to users who download the app from

the app store or market.
v For desktop apps, the version determines whether the IBM Worklight Server

automatically downloads a new version of the app to the user's desktop
v For web apps, the value of the version has no functional meaning and is

available for documentation purposes only.
<iphone version="1.0" bundleId="com.mycompany.myapp"> (or <ipad>)
<pushSender password="${push.apns.senderPassword}"/>
<worklightSettings include="true"/>
<security> ... </security>
</iphone>

In the <iphone> and <ipad> elements, you must provide the bundle ID of the
application in the bundleId attribute. Each time the IBM Worklight builder builds
your application, it copies the value of this attribute to the appropriate native
configuration file in the Xcode project of the application. Do not modify this value
directly in the native configuration file as it is overridden by the builder with the
value you indicate in this attribute.

For iOS apps that use the Apple Push Notification Service (APNS), use the
<pushSender> element to define the password to the SSL certificate that encrypts
the communication link with APNS. The password attribute can refer to a property
in the worklight.properties file and can thus be encrypted.

The app user can use the IBM Worklight settings screen to change the address of
the IBM Worklight Server with which the app communicates. To enable it for the

Chapter 2. Developing IBM Worklight applications 57

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

app, specify the <worklightSettings> element. When enabled, the settings screen is
accessible by using the settings app on the iOS device.

See “The <security> element” on page 60 for details of this element.
<android version="1.0" sharedUserId="com.mycompany">
<pushSender key="AIzaSyDcSz7OvxQwr7XKg_0UdOaNJz0pYXuaS_c" senderId="54385266031"/>
<worklightSettings include="true"/>
<security> ... </security>
</android>

The sharedUserId attribute is optional; it is required only when device
provisioning is activated on the application by specifying the <authentication>
element. sharedUserId allows multiple applications with the same value for this
attribute to access the same keystore item on the device. The applications can thus
use the same secure device ID assigned to the device by the IBM Worklight app.

Note: : Android apps that have the same sharedUserId but are signed with a
different certificate cannot be installed on the same device.

For Android apps that use Google Cloud Messaging (GCM), use the <pushSender>
element to define the connectivity details to GCM. The key is the GCM API key,
and the senderId is the GCM Project Number. For more information about GCM
API key and GCM Project Number, see http://developer.android.com/google/
gcm/gs.html#gcm-service.

The app user can use the IBM Worklight settings screen to change the address of
the IBM Worklight Server with which the app communicates. To include it in the
app, specify the <worklightSettings> element. When the screen is included in the
app, a menu item is automatically appended to the options menu of the app. Users
can tap this menu item to reach the screen.

See “The <security> element” on page 60 for details of this element.
<windowsPhone8 version="1.0">
<uuid>87e096eb-6882-4cef-9f66-e68769de3926</uuid>
<pushSender/>
<allowedDomainsForRemoteImages>
<domain>http://icons.aniboom.com</domain>
<domain>http://media-cache-ec2.pinterest.com</domain>
</allowedDomainsForRemoteImages>
</windowsPhone8>

The <windowsPhone8> element has three subelements:
v The <uuid> subelement is used to uniquely identify a Windows Phone 8

application on the device. It is automatically generated by the IBM Worklight
Studio when you create the Windows Phone 8 environment for the application.

v For Windows Phone 8 apps that use the Microsoft Push Notification Service
(MPNS), use the <pushSender> subelement to indicate that the app is a
"pushable" application, that is, it subscribes to event sources and receives push
notifications.

v The <allowedDomainsForRemoteImages> subelement is used to enable the
application tile to access remote resources. Use subelement <domain> within
<allowedDomainsForRemoteImages> to define the list of allowed remote domains
from which to access remote images. Each domain in the list is limited to 256
characters.

58 IBM Worklight V5.0.6

http://developer.android.com/google/gcm/gs.html#gcm-service
http://developer.android.com/google/gcm/gs.html#gcm-service

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: The <allowedDomainsForRemoteImages> subelement cannot be added to the
application descriptor by using the Design editor. You must use the Source
editor instead.

<windowsPhone version="1.0">
<uuid>62a2a2cf-0092-448e-8e7b-130687ca2938</uuid>
</windowsPhone>

The <uuid> element is used to uniquely identify a Windows Phone 7.5 application
on the device. It is automatically generated by the IBM Worklight Studio when you
create the Windows Phone 7.5 environment for the application.
<windows8 version="1.0">
<certificate PFXFilePath="Path to certificate file" password="certificate password"/>
<uuid>556a98a3-63fb-4602-827c-0b6bd9d00490</uuid>
</windows8>

The <windows8> element contains the following subelements:

<certificate>
Use the <certificate> subelement to sign the Windows 8 application
before you publish it. See “Signing Windows 8 apps” on page 82 for more
details.

<uuid> Use the <uuid> subelement to uniquely identify a Windows 8 application.
It is automatically generated by the IBM Worklight Studio when you create
the Windows 8 environment for the application.

<mobileDeviceSSO join="true" />

When this element is specified, device SSO is enabled for the application. Thus,
when a session requires authentication in a realm and there is already an active
session from the same device authenticated in that realm, the authentication details
from the existing session are copied to the new session. The user experience
implications are that the user does not have to reauthenticate when starting the
new session.
<air version="1.0" showOnTaskbar="always">
<certificate password="password" PFXFilePath="path-to-pfx"/>
</air>

The optional <air> element has the following structure:
v The showOnTaskbar attribute determines behavior of the AIR application on the

taskbar. See “Specifying the application taskbar for Adobe AIR applications” on
page 79 for more details.

v Use the <certificate> element to sign the AIR application before you publish it.
See “Signing Adobe AIR applications” on page 82 for more details.

<facebook version="1.0" loginDisplayType="type" />
<igoogle version="1.0" loginDisplayType="type" />

The use of the <facebook> and <igoogle> elements is deprecated in IBM Worklight
version 5.0.5. Support might be removed in any future version.

The <facebook> and <igoogle> elements receive a loginDisplayType attribute,
which can be used to specify how the app login screen is displayed. type can be
one of the following values:

popup To log in to a separate browser window.

embedded
To embed the login form within the application frame.

Chapter 2. Developing IBM Worklight applications 59

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<loginPopupHeight> Height in pixels </loginPopupHeight>
<loginPopupWidth> Width in pixels </loginPopupWidth>

When login is configured as popup, you must provide the dimensions of the login
window.
<vista version="1.0" />
<dashboard version="1.0" />

The use of the <vista> and <dashboard> elements is deprecated in IBM Worklight
version 5.0.5. Support might be removed in any future version.
</application>

The closing tag.

The <security> element

The <security> element occurs under the <iphone>, <ipad>, and <android>
elements. It is used to configure security mechanisms for protecting your iOS and
Android apps against various malware and repackaging attacks. The element has
the following structure:
<security>
<encryptWebResources enabled="false"/>
<testWebResourcesChecksum enabled="false" ignoreFileExtensions="png, jpg, jpeg, gif, mp4, mp3"/>
<publicSigningKey> value </publicSigningKey>
</security>

The element <encryptWebResources> controls whether the web resources associated
with the application are packaged and encrypted within the application binary file
(a file with the extension .apk or .app). If its enabled attribute is set to true, the
IBM Worklight builder encrypts the resources. They are then decrypted by the
application when it first runs on the device.

The element <testWebResourcesChecksum> controls whether the application verifies
the integrity of its web resources each time it starts running on the mobile device.
If its enabled attribute is set to true, the application calculates the checksum of its
web resources and compares it with a value stored when it was first run.
Checksum calculation can take a few seconds, depending on the size of the web
resources. To make it faster, you can provide a list of file extensions to be ignored
in this calculation.

The element <publicSigningKey> is valid only in the Android environment, under
<android>/<security>. This element contains the public key of the developer
certificate that is used to sign the Android app. For instructions on how to extract
this value, see “Extracting a public signing key” on page 74

Deprecated elements

The following elements have been deprecated since version 4.1.3:
<provisioning>
<viralDistribution>
<adapters>
<mobile>

The following elements have been deprecated since version 5.0:
<worklightRootURL>

The following elements have been deprecated since version 5.0.0.3:

60 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<usage>

The following elements have been deprecated since version 5.0.5:
<dashboard>
<facebook>
<igoogle>
<vista>

Login form and authenticator
Your application might need a login form. A default is provided, which you can
change as necessary.

Applications that require user authentication might have to display a login form as
part of the authentication process. In web widgets, the login form is not part of the
widget resources. It can be triggered by the authentication infrastructure used by
the organization or by the IBM Worklight Server. For more information about
authentication, see the module Authentication Concepts, and the following modules
under category 8, Authentication and security, in “Getting started tutorials and
samples” on page 29.

Development guidelines for mobile environments
This collection of topics describes a standard IBM Worklight project hierarchy, with
Android, iOS, and Blackberry environments.

Integrating with source control systems
Some source code files should be held in a version control system: others should
not.

There are two types of files and folders in a standard IBM Worklight project
hierarchy:
v Your own source code files and some source code files that are provided in the

IBM Worklight device runtime libraries.
You should commit these files to a version control system.

v Files that are generated from your web source code and some JavaScript files
that are provided with the IBM Worklight platform (such as wlclient.js).
These files and folders are added to the file system every build.
You should not commit them to a version control system.
In the next figure, these files and folders are marked with a star (*) after their
names.

Chapter 2. Developing IBM Worklight applications 61

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Project Name
| .classpath
| .project
| tree.txt
|
+---.settings
+---adapters
+---apps
| \--- \Application Name
| | application-descriptor.xml
| |
| +---android
| | +---css
| | +---images
| | +---js
| | +---native
| | | | .classpath
| | | | .project
| | | | .wldata
| | | | AndroidManifest.xml
| | | | project.properties
| | | |
| | | +---.externalToolBuilders
| | | +---.settings
| | | +---assets
| | | | | icudt46l.zip
| | | | | wlclient.properties
| | | | |
| | | | +---www (*)
| | | +---bin (*)
| | | +---gen (*)
| | | +---res
| | | +---src
| | +---nativeResources
| |
| +---blackberry
| | +---css
| | +---images
| | +---js
| | \---native
| | | config.xml
| | | icon.png
| | | splash.png
| | | .wldata
| | |
| | +---ext
| | | WLExtension.jar
| | |
| | +---www (*)
| |
| +---blackberry10
| | +---css
| | +---images
| | +---js
| | +---native
| | | | build.xml
| | | | buildId.txt
| | | | project.properties
| | | | qnx.xml
| | | |
| | | +---build (*)
| | | +---www (*)
| | |
| +---common
| | |
| | +---css
| | +---images
| | +---js
| +---jqueryMobile
| |
| +---ipad
| | +---css
| | +---images

62 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To ensure that your source code is always synchronized with your source control
system, add the (*) files and folders to the ignore list in your source control
system. For Subversion, for example, perform the following steps:
v Step 1: Using the Tortoise extension for Subversion, right-click each file or folder

that is to be ignored and add it to the ignore list.
v Step 2: Go up one level in the file system and commit the change to the SVN

repository. The changes take effect from now on for every developer who
updates the code.

For more information about the folders that are shown in the figure, see “Anatomy
of an IBM Worklight Application” on page 47.

Integrate Tealeaf CX with IBM Worklight
Existing Tealeaf CX Mobile customers can integrate Tealeaf CX Mobile iOS and
Android SDK into an IBM Worklight mobile application. The IBM Worklight app is
enabled with insightful analytics data collection from the client side to be analyzed
by using Tealeaf CX on the server-side.

Tealeaf CX gives visibility, insight, and answers for companies that do business
online. It provides digital customer experience management, and customer
behavior analysis solutions. Companies are enabled to better understand
the purpose of a customer’s online and mobile interactions, and be able to
enhance the customer experience.

Here are the key benefits of using Tealeaf CX:
v Being able to discover previously unknown site experience problems so you can

improve success rates and increase online revenue.
v Being able to quantify the magnitude of any identified site issue (numbers of

affected customers, and impact to revenue) to prioritize corrective actions.
v Quickly understand and diagnose site problems by visually analyzing customer

and site behavior.
v Dramatically reduce the time that is required to reproduce and resolve site

issues.

For more information, see http://www.tealeaf.com/

Configuring Tealeaf by using the Android environment
Configuring an IBM Worklight Hybrid App to collect and send data to Tealeaf CX
by using the Android environment.

Procedure
1. Extract the Tealeaf Android SDK file (UICAndroid.zip) obtained from your

Tealeaf installation or your Tealeaf CX administrator, to a temporary location.
The compressed file contains:
v common/js/Tealeaf.js Enables Tealeaf logging at the JavaScript layer
v Android includes android/native/assets/TLFConfigurableItems.properties

and android/native/libs/uicandroid.jar

2. In IBM Worklight Studio 5.0.6
a. Create a Hybrid application, then an Android environment
b. Add common/js/Tealeaf.js to the app common/js folder
c. In the common folder, there is an AppName.HTML file, which is named after

your app name, for example common/tlfapp.html. Update the HTML file to

Chapter 2. Developing IBM Worklight applications 63

http://www.tealeaf.com/

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

include js/Tealeaf.js. Add a script tag in the main HTML file to load
Tealeaf.js <script src="js/Tealeaf.js"></script>

3. Copy the uicandroid.jar to the android/native/libs folder of your IBM
Worklight application.

4. Copy TLFConfigurableItems.properties to the android/native/assets folder of
your IBM Worklight application.

5. Right-click your IBM Worklight application folder (tlf506app) and run as Build
all and Deploy to generate the Android native project.

6. In the Android native project, create a Java class in the src folder. You can
create it in the same Java package as the other Java classes, and call it
TLWLApplication.java. It has the following code:

You must also add a reference to your TLWLApplication class in the
application tag of the AndroidManifest.xml file. Add the following attribute:
android:name=".TLWLApplication">.

7. Double-click the AndroidManifest.xml file in the Android native project to open
the Android manifest editor. Click the AndroidManifest.xml tab in the editor to
view the XML source. Add the android:name=".TLWLApplication"> attribute to
the application tag in the AndroidManifest.xml file.

8. To see Tealeaf logging in the Android ADB console, start your Android
application as you normally would, and observe ADB console in Eclipse, or by
running adb logcat from your Android SDK platform-tools directory.

Configuring Tealeaf by using the iOS environment
Configuring an IBM Worklight Hybrid App to collect and send data to Tealeaf CX
by using the iOS environment.

64 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Extract the Tealeaf iOS SDK file iOSMobile.zip obtained from your Tealeaf

installation or from your Tealeaf CX administrator, to a temporary location.
The compressed file contains:
v js/Tealeaf.js Enables Tealeaf logging at the JavaScript layer
v iOS include files TLFApplication.h, TLFCustomEvent.h,

TLFPublicDefinitions.h

v iOS Tealeaf library TLFLib.a

v iOS Tealeaf configuration files TLFResource.bundle

2. In IBM Worklight Studio 5.0.6
a. Create a Hybrid application, then an iOS environment (use iPhone or iPad)
b. Add js/Tealeaf.js (provided in the compressed file) to the apps

common/js folder
c. In the common folder, there is an AppName.HTML file, which is named after

your app name, for example common/tlfapp.html. Update the HTML file to
include js/Tealeaf.js. Add a script tag in the main HTML file to load
Tealeaf.js <script src="js/Tealeaf.js" type= "text/JavaScript"></
script>

3. Right-click your IBM Worklight application folder and Run As > Build all
and Deploy.

4. Open the iPhone environment in Xcode
5. Add the CoreTelephony framework to the Build Phases under Link Binary

With Libraries (all the other required frameworks are added by IBM Worklight
when the project is created).

6. Add the Tealeaf group and the subgroups Include, Resources, and Library to
your project.

7. Add the files from the temporary folder directly into the appropriate group.
You can do that by selecting the group, for example, Include, then right-click
> Add Files to <project name>. To add the files to the Include group highlight
them, select the Copy items into destination group's folder check box. Select
the Add to targets check box, which specifies the name, for example
tlf506Tlf506applphone. Verify that the targets of your application are selected
in the Add to targets section. After you add the files to each group, here is an
example of how your project looks.

Figure 2. Example

Chapter 2. Developing IBM Worklight applications 65

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

8. In your application's main.m file, you must instruct UIApplicationMain to use
the Tealeaf subclass of UIApplication. Go to the Other Sources folder, open
your main.m file and add the Include files
#import "TLFPublicDefinitions.h"
#import "TLFApplication.h"
#import "TLFCustomEvent.h"

Then you add code to initialize the Tealeaf runtime by passing a reference to
the TLFApplication class into UIApplicationMain:
NSString appClass = NSStringFromClass([TLFApplication class]);

// int retVal = UIApplicationMain (argc, argv, nil, @"MyAppDelegate");
int retVal = UIApplicationMain (argc, argv, appClass @"MyAppDelegate");

9. The URL of the Tealeaf Server to which the data is sent, is configured in
Tealeaf>Resources>TLFResources.bundle in the file
TLFConfigurableItems.plist in the property PostMessageURL. There are other
configurable options in this file as well. For more information, see the Tealeaf
documentation on these configuration options.

66 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

10. Optional. If you want to see the Tealeaf logs in the Xcode console, edit the
Scheme and set the TLF_DEBUG environment variable to 1. With TLF_DEBUG
set to 1, the Tealeaf data is logged to the Xcode console in addition to being
sent to the Tealeaf server.

Application skins
An application skin is a set of web resources that govern the appearance and
behavior of the application. Skins are used to adjust the application to different
devices of the same family. You can package multiple skins in your application and
decide at run time, on application startup, which skin to apply to the application.

Note: Only the following environments support application skins: Android,
iPhone, iPad, BlackBerry 6, 7 and 10.

When you define a skin in the IBM Worklight Studio, the studio generates a folder
for the skin resources and adds a <skin> element in the application descriptor. The
<skin> element includes the name of the skin and a list of resource folders. When
the studio builds the application, it applies the optimization rules on the resource
folders in the order they occur within the <skin> element.

In the following example, two skins are packaged with the Android application:
the default skin and another skin called android.tablet. Resources for the
android.tablet skin are in the android.tablet folder.

Figure 3. Debug

Chapter 2. Developing IBM Worklight applications 67

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<android>
<skins>
<skin name="default">
<folder name="common" />
<folder name="android" />
</skin>
<skin name="android.tablet">
<folder name="common" />
<folder name="android" />
<folder name="android.tablet" />
</skin>
</skins>
</android>

You can also create custom skin hierarchies, by creating resource folders under the
application folder and manually defining the skin hierarchy in the application
descriptor. For example, you can define a phone folder to include resources that are
related to rendering the app on a phone, and a tablet folder to include resources
for rendering the app on a tablet. Then you can create four skins by using these
resources in the following way:
v android.phone: common > android > phone
v android.tablet: common > android > tablet
v ios.phone: common > iphone > phone
v ios.tablet: common > iphone > tablet

Applying skins at run time

To set which skin to apply at run time, implement the function getSkinName() in
the file skinLoader.js. This file is located under the /common/js folder for the app.

Deleting a skin

To delete a skin, remove the element that defines the skin from the app descriptor.

Web and native code in iPhone, iPad, and Android
Using the IBM Worklight platform, you can include in your applications pages that
are developed in the native operating system language.

The natively developed pages can be invoked from your web-based pages and can
then return control to the web view. You can pass data from the web page to the
native page, and return data in the opposite direction. You can also animate the
transition between the pages in both directions.

Switching the display from the web view to a native page
You can include in your applications pages developed in the native operating
system language and can switch between them and the web view.

About this task

In iPhone, iPad, and Android applications, natively developed pages can be
invoked from your web-based pages and can then return control to the web view.
You can pass data from the web page to the native page, and return data in the
opposite direction. You can also animate the transition between the pages in both
directions.

68 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

To switch the display from the web view to a native page, use the
WL.NativePage.show method.

Receiving data from the web view in an Objective-C page
To receive data from the calling web view, follow these instructions.

Before you begin

The native page must be implemented as an Objective-C class that inherits from
UIViewController. This UIViewController class must be able to initialize through
the init method alone. The initWithNibName:bundle: method is never called on
this class instance.

Procedure

Write a UIViewController class that implements the method setDataFromWebView:.
-(void) setDataFromWebView:(NSDictionary *)data{

NSString = (NSString *) [data valueForKey:@"key"];
}

Related information:

http://developer.apple.com/library/ios/#documentation/UIKit/Reference/
UIViewController_Class/Reference/Reference.html%23//apple_ref/occ/cl/
UIViewController

Returning control to the web view from an Objective-C page
To switch back to the web view, follow these instructions.

Before you begin

The native page must be implemented as an Objective-C class that inherits from
UIViewController. This UIViewController class must be able to initialize through
the init method alone. The initWithNibName:bundle: method is never called on
this class instance.

Procedure

In the native page, call the [NativePage showWebView:] method and pass it an
NSDictionary object (the object can be empty). This NSDictionary can be structured
with any hierarchy. The IBM Worklight runtime framework encodes it in JSON
format, and then sends it as the first argument to the JavaScript callback function.
// The NSDictionary object will be sent as a JSON object to the JavaScript layer in the webview
[NativePage showWebView:[NSDictionary dictionaryWithObject:@"value" forKey:@"key"]]

Related information:

http://developer.apple.com/library/ios/#documentation/UIKit/Reference/
UIViewController_Class/Reference/Reference.html%23//apple_ref/occ/cl/
UIViewController

Animating the transition from an Objective-C page to a web view
To implement a transition animation when switching the display from the native
page to the web view, follow these instructions.

Chapter 2. Developing IBM Worklight applications 69

http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIViewController_Class/Reference/Reference.html%23//apple_ref/occ/cl/UIViewController
http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIViewController_Class/Reference/Reference.html%23//apple_ref/occ/cl/UIViewController
http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIViewController_Class/Reference/Reference.html%23//apple_ref/occ/cl/UIViewController
http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIViewController_Class/Reference/Reference.html%23//apple_ref/occ/cl/UIViewController
http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIViewController_Class/Reference/Reference.html%23//apple_ref/occ/cl/UIViewController
http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIViewController_Class/Reference/Reference.html%23//apple_ref/occ/cl/UIViewController

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

Within your animation code, call the [NativePage showWebView] method.
-(IBAction)returnClicked:(id)sender{
NSString *phone = [phoneNumber text];
NSDictionary *returnedData = [NSDictionary dictionaryWithObject:phone forKey:@"phoneNumber"];

// Animate transition with a flip effect
CDVAppDelegate *cordovaAppDelegate = (CDVAppDelegate *)[[UIApplication sharedApplication] delegate];

[UIView beginAnimations:nil context:NULL];
[UIView setAnimationDuration:0.5];
[UIView setAnimationTransition:UIViewAnimationTransitionFlipFromRight
forView:[cordovaAppDelegate window] cache:YES];

[UIView commitAnimations];

// Return to WebView
[NativePage showWebView:returnedData];
}

Animating the transition from a web view to an Objective-C page
To implement a transition animation when switching the display from the web
view to the native page, follow these instructions.

Procedure

Implement the methods: onBeforeShow and onAfterShow. These methods are
called before the display switches from the web view to the native page, and after
the transition.
-(void)onBeforeShow{
CDVAppDelegate *cordovaAppDelegate = (CDVAppDelegate *)[[UIApplication sharedApplication] delegate];
[UIView beginAnimations:nil context:NULL];
[UIView setAnimationDuration:0.5];
[UIView setAnimationTransition:UIViewAnimationTransitionFlipFromRight forView:[cordovaAppDelegate window] cache:YES];
}
-(void)onAfterShow{
[UIView commitAnimations];
}

Receiving data from the web view in a Java page
To receive data from the calling web view, follow these instructions.

Before you begin

The page must be implemented as an Activity object or extend an Activity. As
with any other activity, you must declare this activity in the AndroidManifest.xml
file.

Procedure

To receive data from the calling web view, use the Intent object defined on the
native Activity. The IBM Worklight client framework makes the data available to
the Activity in a Bundle.

Example

Sending data from web view to the native Activity:
WL.NativePage.show(’com.example.android.tictactoe.library.GameActivity’, this.callback, {"gameLevel":1,"playerName":"john",isKeyboardEnable:false});

70 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Receiving the data in the native Activity:
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

//Read int value, default = 0
Integer gameLevel = getIntent().getIntExtra("gameLevel", 0);

//Read String value
String playerName = getIntent().getStringExtra("playerName");

//Read boolean value, default = false
Boolean isKeyboardEnable = getIntent().getBooleanExtra("isKeyboardEnable", false);
}

Related information:

http://developer.android.com/reference/android/content/Intent.html

http://developer.android.com/reference/android/app/Activity.html

http://developer.android.com/reference/android/os/Bundle.html

Returning control to the web view from a Java page
To switch back to the web view, follow these instructions

Before you begin

The page must be implemented as an Activity object or extend an Activity. As
with any other activity, you must declare this activity in the AndroidManifest.xml
file.

Procedure

In the native page, call the finish() function of the Activity. You can pass data
back to the web view by creating an Intent object.

Example

Passing data and control to the web view:
Intent gameInfo = new Intent ();
gameInfo.putExtra("winnerScore", winnerScore);
gameInfo.putExtra("winnerName", winnerName);
setResult(RESULT_OK, gameInfo);
finish();

Receiving the data in the web view:
this.callback = function(data){$(’resultDiv’).update(’The winner is: ’ + data.winnerName + " with score: " + data.winnerScore);};

Related information:

http://developer.android.com/reference/android/app/Activity.html

Animating the transitions from and to a Java page
To animate the transitions between a web view and a native page, follow these
instructions.

Chapter 2. Developing IBM Worklight applications 71

http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/os/Bundle.html
http://developer.android.com/reference/android/app/Activity.html

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

To add transition animation, use the Activity function
OverridePendingTransition(int, int).

Example
// Transition animation from the web view to the native page
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
overridePendingTransition(android.R.anim.fade_in, android.R.anim.fade_out);
}

// Transition animation from the native page to the web view
@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
//your code goes here....
finish();
overridePendingTransition(android.R.anim.fade_in, android.R.anim.fade_out);
}

Related information:

http://developer.android.com/reference/android/app/
Activity.html#overridePendingTransition(int, int)

Creating an IBM Worklight BlackBerry 10 environment
Follow these instructions to create an IBM Worklight BlackBerry 10 environment.

About this task

The BlackBerry 10 environment uses the latest version of Cordova, version 2.3.
However, not all of the Cordova application programming interface (API) is
supported yet, for example the Cordova contacts object. Some code can work
across platforms if written in Cordova, but some must be written by using the
WebWorks API. Use either Ripple or Cordova Ant scripts, and to ensure that your
program runs correctly, follow these steps.

Procedure
1. Follow all instructions to install WebWorks SDK, described at HTML5

WebWorks.
2. If you are using Ant scripts, manually modify the project.properties file.

Provide values for the following variables in project.properties. This is not
relevant if you are using Ripple.
BB10 Code Signing Password
qnx.sigtool.password=

For simulator:
QNX Simulator IP
#
If you leave this field blank, then
you cannot deploy to simulator
#
qnx.sim.ip=

QNX Simulator Password
#
If you leave this field blank, then
you cannot deploy to simulator

72 IBM Worklight V5.0.6

http://developer.android.com/reference/android/app/Activity.html#overridePendingTransition(int, int)
http://developer.android.com/reference/android/app/Activity.html#overridePendingTransition(int, int)
https://developer.blackberry.com/html5/documentation/
https://developer.blackberry.com/html5/documentation/

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

#
qnx.sim.password=

for device:

We give the initial device ip of 169.254.0.1 which is usually the one, when connected via USB to the computer, you can change if setup on device
QNX Device IP
#
If you leave this field blank, then
you cannot deploy to device
#
qnx.device.ip=169.254.0.1

You also must change
QNX Device Password
#
If you leave this field blank, then
you cannot deploy to device
#
qnx.device.password=

QNX Device PIN
#
Fill this value in to use debug tokens when debuging on the device
qnx.device.pin=

3. Do �not� delete or change the following elements in config.xml:
<!-- start_worklight_host_server do not change this line-->

<access subdomains="true" uri="http://9.148.225.82" />
<!-- end_worklight_host_server do not change this line-->

The correct server TCP/IP address is automatically put in the <access> element
on each Worklight build. If this element is deleted or changed, the TCP/IP
address cannot be automatically updated.

4.

a. BlackBerry 10 supports Ripple. If you intend to use Ripple, specify {project
name}/apps/{app name}/blackberry10/native/www as the root folder in
Ripple.

b. BlackBerry 10 is based on QNX. To run the app on the phone using
Cordova Ant scripts, you use the ant qnx command. Look in native/qnx.xml
for a list of available commands. For example, ant qnx debug-device builds,
deploys, and runs the app on the device.

Specifying the icon for an Android application
Put the icon in your application's /android/nativeResources/res folder. It is
copied from there at build time.

About this task

You want to use a particular icon for your application in the Android environment.

Procedure
1. Place the icon that you want to use in the project/apps/application/android/

nativeResources/res folder.
2. Build and deploy your application.

Results

The icon is copied to the project/apps/application/android/native/res folder.

Chapter 2. Developing IBM Worklight applications 73

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Though you can place the icon directly into the project/apps/application/
android/native/res folder, you risk losing the icon if that folder is deleted for any
reason.

Specifying the icon for an iPhone application
Put the icon in your application's /iphone/nativeResources/Resources folder. It is
copied from there at build time.

About this task

You want to use a particular icon for your application in the iPhone environment.

Procedure
1. Place the icon that you want to use in the project/apps/application/iphone/

nativeResources/Resources folder.
2. Build and deploy your application.

Results

The icon is copied to the project/apps/application/iphone/native/Resources
folder.

Though you can place the icon directly into the project/apps/application/iphone/
native/Resources folder, you risk losing the icon if that folder is deleted for any
reason.

Extracting a public signing key
Copy the public signing key from the keystore to the application descriptor.

Procedure
1. In the Eclipse project explorer, in the android folder for the application, click

the Extract public signing key menu item.

74 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

A wizard window opens.

Figure 4. Extracting the public signing key

Chapter 2. Developing IBM Worklight applications 75

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. In this window, enter the path to your keystore. The keystore is usually in one
of the following directories, according to operating system:

Option Description

Windows 7 and Windows Vista C:\Users\user_name\.android\

Windows XP C:\Documents and Settings\user_name\
.android\

OS X and Linux ~/.android/

3. Enter the password to your keystore and click Load Keystore.
4. When the keystore is loaded, select an alias from the Key alias menu and click

Next. For more information about the Android keystore, see
http://developer.android.com/guide/publishing/app-signing.html.

5. In the window, click Finish to copy the public signing key directly into the
application descriptor.

Figure 5. Adding the Android public signing key

76 IBM Worklight V5.0.6

http://developer.android.com/guide/publishing/app-signing.html

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Results

The public key is copied to the application descriptor. See the following figure:

Connecting to Worklight Server
By default, an application starts in offline mode. You can make it start in online
mode, or can connect to Worklight Server later. You are responsible for maintaining
the offline or online state within your application, and ensuring that your
application can recover from failed attempts to connect to the server. For example,
before the application logs in a new user or accesses the server under a new user,
the application must ensure that a successful logout was received by the server.

Figure 6. Android public signing key

Figure 7. Android public signing key as shown in the application descriptor

Chapter 2. Developing IBM Worklight applications 77

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

By default, an application is started in offline mode. It is likely that you will want
your application to connect to the Worklight Server, either when it starts or at
some appropriate point in its processing. Methods for connecting are detailed in
the following steps.

Procedure
v To make your application begin communicating with Worklight Server as soon

as it starts, change the connectOnStartup property in the initOptions.js file to
true. The Worklight framework automatically attempts to connect to Worklight
Server as part of application startup. This approach might increase the time it
takes for the application to start.

v To make your application communicate with the server at a later stage, call the
method WL.Client.connect. Call this method only once, before any other
WL.Client methods that communicate with the server. Remember to implement
onSuccess and onFailure callback functions, for example:
WL.Client.connect({

onSuccess: onConnectSuccess,
onFailure: onConnectFailure

});

Related reference:
“WL.Client.connect” on page 182
This method establishes a connection to the Worklight Server.

Adding custom code to an Android app
Adding custom code to your Android app in the onCreate method is deprecated.
To add custom code to your Android app, use the onWLInitCompleted method.

Since IBM Worklight V5.0.6, add custom code to the onWLInitCompleted method.
The onWLInitCompleted method is invoked when the IBM Worklight initialization
process is complete and the client is ready.

In IBM Worklight V5.0.5 and earlier, custom code was added to the onCreate
method. However, since IBM Worklight V5.0.6, adding custom code to the
onCreate method is deprecated. Support might be removed in any future version.

If you migrate an existing Android app to IBM Worklight V5.0.6, any custom code
in the onCreate method is automatically moved to the onWLInitCompleted method
during the migration process. A comment is also added to indicate that the code
was moved.

The following code snippet is an example of a new application:

78 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The following code snippet is an example of a migrated application:

Development guidelines for desktop and web environments
This collection of topics gives instructions for implementing various functions in
desktop and web applications.

Specifying the application taskbar for Adobe AIR applications
How to display or suppress a taskbar button for a widget.

About this task

Unlike Windows desktop gadgets and Apple Dashboard widgets, Adobe AIR
applications can be displayed on the system taskbar. Widgets that are opened for a
short time (for example, to perform a specific task) and are then closed should
normally have a taskbar button. Conversely, widgets that remain constantly open
on the desktop should not have a taskbar button, to save the space required by the
button. Instead, such widgets have a tray icon that allows access to the widget.

If the taskbar button is not displayed, IBM Worklight adds a tray icon for the
widget. You can use the tray icon to minimize the application, restore it, and close
it.

Procedure
v To control whether your desktop widget is displayed on the taskbar, specify the

<air> element in the application descriptor. If the <air> element is not specified,
the taskbar button is displayed.

public class b extends WLDroidGap {

@Override
public void onCreate(Bundle savedInstanceState){
super.onCreate(savedInstanceState);
}

/**
* onWLInitCompleted is called when the Worklight runtime framework initialization is complete.
*/

@Override
public void onWLInitCompleted(Bundle savedInstanceState){
super.loadUrl(getWebMainFilePath());
// Add custom initialization code after this line
}
}

Figure 8. Custom code in a new application

@Override
public void onWLInitCompleted(Bundle savedInstanceState) {

//Additional initialization code from onCreate() was moved here
super.loadUrl(getWebMainFilePath());

}

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
//Additional initialization code was moved to onWLInitCompleted().

}

Figure 9. Custom code in a migrated application

Chapter 2. Developing IBM Worklight applications 79

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v To display a taskbar button for the widget, specify: <air
showInTaskbar="always" />.

v To avoid displaying a taskbar button for the widget, specify: <air
showInTaskbar="never" />

Configuring the authentication for web widgets
Add a realm to the authenticationConfig.xml file.

About this task

The authenticationConfig.xml file, in the Worklight Project Name/server/conf
folder, is used to configure how widgets and web applications authenticate users.

For more information about configuring realms, see “Authentication configuration”
on page 137.

Procedure

In the authenticationConfig.xml file, add a realm that uses the login forms, as
follows:
<realm name="realm-name" loginModule="login-module-name">
<className>com.worklight.core.auth.ext.FormBasedAuthenticator</className>
<parameter name="login-page" value="/apps/services/login-file-name" />
</realm>

Writing login form files for web widgets
Write two files, in HTML or JSP, with the ability to carry out a security check.

Procedure
1. Create two files, one displaying the login form and another one displaying the

form after a login error occurred. The files can be HTML or JSP. Both login
page and login error page must be able to submit a form with the action
j_security_check and have j_username and j_password parameters. This
technique is shown in the following code example:
<form method="post" action="j_security_check">
<input type="text" name="j_username"/>
<input type="password" name="j_password"/>
</form>

2. Save both files in the Worklight_Project_Name/server/webapps/gadgets-
serving folder.

Setting the size of the login screen for web widgets
If your login page is displayed in a separate browser window, configure its height
and width.

Procedure

If your login page is displayed in a separate browser window, configure its height
and width in the application descriptor, by using the <loginPopupHeight> and
<loginPopupWidth> elements.

Deploying applications on iGoogle
To deploy an iGoogle widget on iGoogle, follow these instructions.

80 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

The use of iGoogle widgets is deprecated in Worklight version 5.0.5. Support might
be removed in any future version. Use standard desktop web applications.

Procedure
1. In the Catalog screen of the IBM Worklight Console, locate the application, and

then click Download Descriptor. The iGoogle descriptor file is downloaded to
your computer.

2. Upload the descriptor file to a publicly visible place in your website.
3. Use the iGoogle services to create Add-To links to your descriptor.

Deploying applications on Facebook
Deprecated. To create a Facebook version of an application, follow these
instructions.

Before you begin

If your Worklight Studio internal application server does not run on the default
port, 8080, make sure that you set this port as the value of the configuration
publicWorkLightPort in the Worklight_Project_Name/server/conf/
worklight.properties file. Otherwise, the action Get URL for Facebook does not
provide you with the correct URL.

About this task

The creation of Facebook versions of applications is deprecated in Worklight
version 5.0.5. Support might be removed in any future version. Use standard
desktop web applications.

IBM Worklight applications run in Facebook as Facebook applications. Unlike
personalized home page widgets or desktop widgets, Facebook applications must
be declared manually in Facebook, in order to be displayed on the Facebook
canvas.

Procedure

To create a Facebook version of an application:
1. In the Catalog screen of the IBM Worklight Console, locate the application, and

then click Get App URL. A window is displayed, containing the Canvas
Callback URL, as shown in the following screen image.

Chapter 2. Developing IBM Worklight applications 81

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. In Facebook, create a Facebook application. In the Canvas URL field, enter the
URL you obtained from the IBM Worklight Catalog.

3. Set the HTTPS-based URL for the app, as exposed to the Facebook servers,
based on the configuration of your web environment.

4. Restart the IBM Worklight Server.

Signing Adobe AIR applications
Worklight provides a default certificate for development and test purposes. For
production, obtain a certificate from a certificate authority and install it.

About this task

Adobe AIR applications must be digitally signed in order for users to install them.
IBM Worklight provides a default certificate for signing AIR applications that can
be used for development and test purposes.

To sign an AIR application for production distribution, using your own certificate,
follow these instructions:

Procedure
1. Obtain a PKCS12 certificate from a certificate authority, and export it as a PFX

file.
2. Place this certificate on your hard disk.
3. Set the <certificate> element under the <air> element in the application

descriptor. The structure of the <certificate> element is:
<certificate password="password" PFXFilePath="path-to-pfx"/>

where password is the password for the PFX certificate, and path-to-pfx can
either be relative to the root of the application, or an absolute path.

Signing Windows 8 apps
Worklight provides a default certificate for development and test purposes. For
production, obtain a certificate from a certificate authority and install it.

Figure 10. Canvas Callback URL

82 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

Windows 8 apps should be digitally signed before users install them. IBM
Worklight provides a default certificate for signing Windows 8 apps that can be
used for development and test purposes.

To sign a Windows 8 app for production distribution, using your own certificate,
follow these instructions:

Note: : You can sign Windows 8 apps only on Windows systems.

Procedure
1. See http://msdn.microsoft.com/en-us/library/windows/apps/br230260.aspx

for details on obtaining a PKCS12 certificate.
2. Export the PKCS12 certificate as a PFX file.
3. Place this certificate on your hard disk.
4. Set the <certificate> subelement under the <windows8> element in the

application descriptor. The structure of the <certificate> subelement
is:<certificate PFXFilePath="Path to certificate file"
password="certificate password"/>, where Path to certificate file can either be
relative to the root of the application, or an absolute path, and password is the
password for the PFX certificate.

Signing Windows 7 and Vista gadgets
Worklight provides a default certificate for development and test purposes. For
production, obtain a certificate from a certificate authority and install it.

About this task

The use of Windows 7 and Vista gadgets is deprecated in Worklight version 5.0.5.
Support might be removed in any future version.

Windows 7 and Vista gadgets should be digitally signed before users install them.
IBM Worklight provides a default certificate for signing Windows gadgets that can
be used for development and test purposes.

To sign a Windows gadget for production distribution, using your own certificate,
follow these instructions:

Note: You can sign Windows 7 and Vista gadgets only on Windows systems.

Procedure
1. Install the following software (in this order):

a. Microsoft .NET Framework 4.
You can obtain the .NET Framework at http://www.microsoft.com/
download/en/details.aspx?id=17851.

b. The .NET Development Tools Component from the Microsoft Windows SDK
v7.1.
You can obtain this component at http://www.microsoft.com/download/
en/details.aspx?id=8279

2. Obtain a PKCS12 certificate from a certificate authority, and export it as a PFX
file.

3. Place this certificate on your hard disk.

Chapter 2. Developing IBM Worklight applications 83

http://msdn.microsoft.com/en-us/library/windows/apps/br230260.aspx
http://www.microsoft.com/download/en/details.aspx?id=17851
http://www.microsoft.com/download/en/details.aspx?id=17851
http://www.microsoft.com/download/en/details.aspx?id=8279
http://www.microsoft.com/download/en/details.aspx?id=8279

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

4. Set the <certificate> element under the <vista> element in the application
descriptor. The structure of the <certificate> element is:<certificate
password="password" PFXFilePath="path-to-pfx"/>, where password is the
password for the PFX certificate, and path-to-pfx can either be relative to the
root of the application, or an absolute path.

Embedding widgets in predefined web pages
Follow these instructions to incorporate widgets into web pages.

Before you begin

If your Worklight Studio internal application server does not run on the default
port 8080, make sure that you also set this port as the value of the configuration
publicWorkLightPort in the Worklight_Project_Name/server/conf/
worklight.propertiesfile. Otherwise, the action Embed in Web Page does not
provide you with the correct URL.

About this task

IBM Worklight widgets can be embedded in predefined web pages, such as
corporate websites or intranet portals.

Procedure

To embed a widget in a predefined web page:
1. In the IBM Worklight Catalog in the IBM Worklight Administration Console,

locate the widget, and then click Embed in web page. A window is displayed,
which contains the URL of the application to which you point in your website
to embed the widget. The following figure shows the window:

2. Paste the URL in an HTML snippet in the web page where you want to embed
the widget.
<iframe src="URL_to_embed" width="widget_width" height="widget_height" style="border:none;"> </iframe>

Development guidelines for using native API
This collection of topics gives instructions for developing native mobile
applications by using the IBM Worklight native API.

Figure 11. Embedding a widget in a predefined web page

84 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Similar to other types of mobile applications with IBM Worklight, you start the
development of your native app in Worklight Studio by creating a Worklight
application. To develop a native app, you must create an Worklight application of
type Native API. Your native application requires the content of such a Native API
application. This content depends on the selected mobile environment, and your
native application requires it to use the corresponding IBM Worklight native API:
v The IBM Worklight Objective-C client-side API, if your Native API application is

for the iOS environment
v The IBM Worklight Java client-side API, if your Native API application is for the

Android environment
v The IBM Worklight Java client-side API, if your Native API application is for the

Java Platform, Micro Edition (Java ME)

To create a Native API application, you have several options:
v If you already have a Worklight project, you can create and add your Native API

application in it:
1. Click New > Worklight Native API.
2. Select the existing project.
3. Set the application name.
4. Specify the environment that you need: Android, iOS, or Java ME.
5. Click Finish.

You created a Native API application in your Worklight project in Worklight
Studio.

v If you do not have a Worklight project, you can create a Worklight project of
type Native API, and request to create a Native API application as its first
application in it:
1. Click New > Worklight Project, and then select the Native API template.
2. Set the application name.
3. Specify the environment that you need: Android, iOS, or Java ME.
4. Click Finish.

You created a Worklight project in Worklight Studio, with a first Native API
application in it.

In both cases, you created the required Native API application in Worklight Studio.
This application contains:
v The application descriptor file: This file is the application-descriptor.xml file

that is in the application root directory.
v The IBM Worklight native library and the client property file: The name and the

format of this content depend on the environment.
– for iOS:

- The WorklightAPI folder defines the IBM Worklight native library.
- The worklight.plist file is the client property file.

– for Android:
- The worklight-android.jar file defines the IBM Worklight native library.
- The wlclient.properties file is the client property file.

– for Java ME:
- The worklight-javame.jar file and the json4javame.jar file together define

the IBM Worklight native library.
- The wlclient.properties file is the client property file.

Chapter 2. Developing IBM Worklight applications 85

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

As a difference from a hybrid app, which you can develop entirely within
Worklight Studio, you also generally need another project to develop your native
app. For example:
v A project in the Xcode IDE, to develop a native application with Objective-C for

iOS environment
v A project in the Eclipse IDE, to develop a native application with Java, for

Android environment or for Java ME

After the Native API application is created, you must:
1. Define the various aspects of your application by setting the appropriate values

in the application descriptor file.
2. Update the client property file, as needed.
3. Copy the client property file and the native library into the appropriate location

of your native project. You must also create references from your native app
project to this content to use the IBM Worklight native API.

v For iOS:
1. To update the application descriptor file, see “Application Descriptor of

Native API applications for iOS.”
2. To update the client property file, see “Client property file for iOS” on page

88.
3. To copy the client property file and the native library into the appropriate

location of your native project, and create appropriate references, see
“Copying files of Native API applications for iOS” on page 88.

v For Android:
1. To update the application descriptor file, see “Application Descriptor of

Native API application for Android” on page 89.
2. To update the client property file, see “Client property file for Android” on

page 91.
3. To copy the client property file and the native library into the appropriate

location of your native project, and create appropriate references, see
“Copying files of Native API applications for Android” on page 92.

v For Java ME:
1. To update the application descriptor file, see “Application Descriptor of

Native API application for Java Platform, Micro Edition (Java ME)” on page
92.

2. To update the client property file, see “Client property file for Java Platform,
Micro Edition (Java ME)” on page 93.

3. To copy the client property file and the native library into the appropriate
location of your native project, and create appropriate references, see
“Copying files of Native API applications for Java Platform, Micro Edition
(Java ME)” on page 94.

You build and deploy Native API applications by following the same procedure as
for hybrid applications, by creating the .wlapp file and uploading it to the
Worklight Console. For more information about deployment, see “Deploying
content: applications and adapters” on page 350.

Application Descriptor of Native API applications for iOS
The application descriptor is a metadata file that is used to define various aspects
of the Native API application for iOS.

86 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The application descriptor is a metadata file that is used to define various aspects
of the application. It is in the application root directory, and its name is
application-descriptor.xml.

The following example shows the format of the application descriptor file of
Native API applications for iOS:
<?xml version="1.0" encoding="UTF-8"?>
<nativeIOSApp

id="ios"
platformVersion="5.0.5"
version="1.0"
securityTest="security test name"
bundleId="com.ios"
xmlns="http://www.worklight.com/native-ios-descriptor">
<displayName>application display name</displayName>
<description>application description</description>
<pushSender password="${push.apns.senderpassword}"/>

</nativeiOSApp>

The content of the application descriptor file is as follows.
<?xml version="1.0" encoding="UTF-8"?>
<nativeIOSApp

id="ios"
platformVersion="5.0.5"
version="1.0"
securityTest="security test name"
bundleId="com.ios"
xmlns="http://www.worklight.com/native-ios-descriptor">

The <nativeIOSApp> element is the root element of the descriptor. It has three
mandatory attributes and two optional attributes:

id This attribute specifies the ID of the application. The ID must be identical
to the application folder name. It must be an alphanumeric string that
starts with a letter. It can contain underscore ("_") characters. It must not be
a reserved word in JavaScript.

platformVersion
Contains the version of the IBM Worklight Platform on which the app was
developed.

version
This attribute specifies the version of the application. This version is a
string of the form x.y, where x and y are numbers. It is visible to users
who download the app from the app store or market.

securityTest
This attribute specifies a security configuration that is defined in the
authenticationConfig.xml file. When a client attempts to access a
protected resource, IBM Worklight checks whether the client is already
authenticated according to the security test. If the client is not yet
authenticated, IBM Worklight starts the process to obtain the client
credentials and to verify them.

This attribute is optional.

bundleId
This attribute specifies the bundle ID of the application.

This attribute is optional.
<displayName>application display name</displayName>

Chapter 2. Developing IBM Worklight applications 87

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<displayName>
This element contains the application name. This name is visible in the
IBM Worklight Console and is copied to the descriptor files of various web
and desktop environments.

<description>application description</description>

<description>
This element contains the application description. This description is
visible in the IBM Worklight Console and is copied to the descriptor files
of various web and desktop environments.

<pushSender password="${push.apns.senderpassword}"/>

<pushSender>
This element defines the password to the SSL certificate that encrypts the
communication link with the Apple Push Notification Service (APNS).

</nativeiOSApp>

</nativeIOSApp>
This tag closes the content of the application descriptor file.

Client property file for iOS
This file defines the properties that your native app for iOS requires to use the IBM
Worklight native API for iOS.

The worklight.plist client property file contains the necessary information for
initializing WLClient.

You must define the properties of this client property file before using it in your
native app for iOS.

The following table lists the properties of the worklight.plist file, their
descriptions, and possible examples for their values.

Table 5. Properties of the worklight.plist file

Property Description

protocol The communication protocol with the Worklight Server: http
or https.

host The host name of the Worklight Server.

port The port of the IBM Worklight Server. If this value is left
blank, the default port is used. If the protocol property value
is https, you must leave this value blank.

context The server URL context.

application id The application ID, as defined in the application-
descriptor.xml file.

application version The application version, as defined in the application-
descriptor.xml file.

environment This property defines the IBM Worklight environment. The
value of this property must be iosnative. You must not
modify the value of this property value.

Copying files of Native API applications for iOS
To copy the files in the Native API application for iOS into the project that defines
the native app for iOS

88 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

To use the IBM Worklight Native API for iOS in your native app, you must copy
the library and the client property file of your Native API application into your
native app for iOS project.

Procedure

In Worklight Studio:
1. Select the WorklightAPI folder and the worklight.plist file of your Native API

application, and copy them in a location that you can access from your native
iOS project

In your project for the native app for iOS (for example, in Xcode IDE):
2. Add the WorklightAPI folder and the worklight.plist file of your Native API

application to your project.
a. In the Choose options for adding these fileswindow, select the Copy items

into destination group’s folder (if needed) check box and the Create
groups for any added folders option.

3. In the Build Phases tab, link the following frameworks and libraries to your
project:
v CFNetwork

v SystemConfiguration

v MobileCoreServices

v CoreData

v Security

v zlib

4. Select the project name and the target for your application.
5. Click the Build Phases tab.
6. In the Build Phases tab:

a. Open the list in the Link Binary with Libraries section, and make sure that
libWorklightStaticLibProjectNative.a is visible in the list.

b. Open the list in the Copy Bundle Resources section, and make sure that the
files from your resources folder are added to that section.

7. Click the Build Settings tab.
8. In the Build Settings tab:

a. Add the following entry: $(SRCROOT)/WorklightSDK/include for
HEADER_SEARCH_PATH

b. In the Other Linker Flags field, enter the following value: –ObjC

Application Descriptor of Native API application for Android
The application descriptor is a metadata file that is used to define various aspects
of the Native API application for Android.

The application descriptor is a metadata file that is used to define various aspects
of the application. It is in the application root directory, and its name is
application-descriptor.xml.

The following example shows the format of the application descriptor file of
Native API applications for Android:

Chapter 2. Developing IBM Worklight applications 89

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<?xml version="1.0" encoding="UTF-8"?>
<nativeAndroidApp

id="android"
platformVersion="5.0.5"
securityTest="security test name"
version="1.0"
xmlns="http://www.worklight.com/native-android-descriptor">
<displayName>application display name</displayName>
<description>application description</description>
<pushSender key="gcm api key" senderId="gcm project number"/>
<publicSigningKey>application public signing key</publicSigningKey>

</nativeAndroidApp>

The content of the application descriptor file is as follows.
<?xml version="1.0" encoding="UTF-8"?>
<nativeAndroidApp

id="android"
platformVersion="5.0.5"
securityTest="security test name"
version="1.0"
xmlns="http://www.worklight.com/native-android-descriptor">

The <nativeAndroidApp> element is the root element of the descriptor. It has three
mandatory attributes and one optional attribute:

id This attribute specifies the ID of the application. The ID must be identical
to the application folder name. It must be an alphanumeric string that
starts with a letter. It can contain underscore ("_") characters. It must not be
a reserved word in JavaScript.

platformVersion
Contains the version of the IBM Worklight Platform on which the app was
developed.

version
This attribute specifies the version of the application. This version is a
string of the form x.y, where x and y are numbers. It is visible to users
who download the app from the app store or market.

securityTest
This attribute specifies a security configuration that is defined in the
authenticationConfig.xml file. When a client attempts to access a
protected resource, IBM Worklight checks whether the client is already
authenticated according to the security test. If the client is not yet
authenticated, IBM Worklight starts the process to obtain the client
credentials and to verify them.

This attribute is optional.
<displayName>application display name</displayName>

<displayName>
This element contains the application name. This name is visible in the
IBM Worklight Console and is copied to the descriptor files of various web
and desktop environments.

<description>application description</description>

<description>
This element contains the application description. This description is
visible in the IBM Worklight Console and is copied to the descriptor files
of various web and desktop environments.

<pushSender key="gcm api key" senderId="gcm project number"/>

90 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<pushSender>
This element contains the connectivity details to Google GCM (Android
push notification service). The key is the GCM API key, and the senderId is
the GCM Project Number.

<publicSigningKey>application public signing key</publicSigningKey>

<publicSigningKey>
This element contains the public key of the developer certificate that is
used to sign the Android app. For instructions on how to extract this
value, see “Extracting a public signing key” on page 74.

</nativeAndroidApp>

</nativeAndroidApp>
This tag closes the content of the application descriptor file.

Client property file for Android
This file defines the properties that your native app for Android requires to use the
IBM Worklight native API for Android.

The wlclient.properties client property file contains the necessary data to use the
IBM Worklight API for Android.

You must define the properties of this client property file before you use it in your
native app for Android.

The following table lists the properties of the wlclient.properties file, their
descriptions, and possible examples for their values.

Table 6. Properties and values of the wlclient.properties file

Property Description Example values

wlServerProtocol The communication protocol with the
Worklight Server.

http or https

wlServerHost The host name of the Worklight Server. localhost

wlServerPort The port of the IBM Worklight Server. If
you leave this value blank, the default port
is used. If the wlServerProtocol property
value is https, you must leave this value
blank.

8080

wlServerContext The server context, which is automatically
generated.

/

wlAppId The application id, as defined in the
application-descriptor.xml file.

myApp

wlAppVersion The application version, as defined in the
application-descriptor.xml file.

1.0

wlEnvironment This property defines the IBM Worklight
environment. You must not modify the
value of this property value.

Androidnative

GCMSenderID This property defines the GCM Sender ID
that you must use for push notifications.
By default, this property is commented.

Chapter 2. Developing IBM Worklight applications 91

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Copying files of Native API applications for Android
To copy the files in the Native API application for Android into the project that
defines the native app for Android

About this task

To use the IBM Worklight Native API for Android in your native app, you must
copy the library and the client property file of your Native API application into
your native app for Android project.

Procedure

In your project for the native app for Android:
1. Copy the worklight-android.jar file from the Native API application, and

paste it into the libs folder of your native app for Android.
2. Copy the wlclient.properties client property file from the Native API

application into the assets folder of your native app for Android.
3. If the push notification support is required:

a. Copy the gcm.jar file from the Native API application.
b. Paste the gcm.jar into the libs folder of your native app for Android.
c. Copy the push.png file from the Native API application.
d. In the res folder of your native app for Android, identify the folders with a

name that starts with drawable (such as res/drawable or
res/drawable-ldpi), and then paste the push.png file into each of these
folders.

4. Add the following lines to the AndroidManifest.xml file of your native app for
Android:
a. <activity android:name="com.worklight.wlclient.ui.UIActivity"/> With

this line, a designated IBM Worklight UI activity can run in the user
application.

b. <uses-permission android:name="android.permission.INTERNET"/> This
line adds Internet access permissions to the user application.

Application Descriptor of Native API application for Java
Platform, Micro Edition (Java ME)

The application descriptor is a metadata file that is used to define various aspects
of the Native API application for Java ME.

The application descriptor is a metadata file that is used to define various aspects
of the application. It is in the application root directory, and its name is
application-descriptor.xml.

The following example shows the format of the application descriptor file of
Native API applications for Java ME:
<?xml version="1.0" encoding="UTF-8"?>
<nativeJavaMEApp

id="JavaME"
platformVersion="5.0.5"
version="1.0"
securityTest="security test name"

92 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

xmlns="http://www.worklight.com/native-javame-descriptor">
<displayName>application display name</displayName>
<description>application description</description>

</nativeJavaMEApp>

The content of the application descriptor file is as follows.
<?xml version="1.0" encoding="UTF-8"?>
<nativeJavaMEApp MEApp

id="JavaME"
platformVersion="5.0.5"
version="1.0"
securityTest="security test name"
xmlns="http://www.worklight.com/native-javame-descriptor">

The <nativeJavaMEApp> element is the root element of the descriptor. It has three
mandatory attributes and one optional attribute:

id This attribute specifies the ID of the application. The ID must be identical
to the application folder name. It must be an alphanumeric string that
starts with a letter. It can contain underscore ("_") characters. It must not be
a reserved word in JavaScript.

platformVersion
Contains the version of the IBM Worklight Platform on which the app was
developed.

version
This attribute specifies the version of the application. This version is a
string of the form x.y, where x and y are numbers. It is visible to users
who download the app from the app store or market.

securityTest
This attribute specifies a security configuration that is defined in the
authenticationConfig.xml file. When a client attempts to access a
protected resource, IBM Worklight checks whether the client is already
authenticated according to the security test. If the client is not yet
authenticated, IBM Worklight starts the process to obtain the client
credentials and to verify them.

This attribute is optional.
<displayName>application display name</displayName>

<displayName>
This element contains the application name. This name is visible in the
IBM Worklight Console and is copied to the descriptor files of various web
and desktop environments.

<description>application description</description>

<description>
This element contains the application description. This description is
visible in the IBM Worklight Console and is copied to the descriptor files
of various web and desktop environments.

</nativeJavaMEApp>

</nativeJavaMEApp>
This tag closes the content of the application descriptor file.

Client property file for Java Platform, Micro Edition (Java ME)
This file defines the properties that your native app for Java Platform, Micro
Edition (Java ME) requires to use the IBM Worklight native API for Java ME.

Chapter 2. Developing IBM Worklight applications 93

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The wlclient.properties client property file contains the necessary data to use the
IBM Worklight API for Java ME.

You must define the properties of this client property file before using it in your
native app for Java ME.

The following table lists the properties of the wlclient.properties file, their
descriptions, and possible examples for their values.

Table 7. Properties and values of the wlclient.properties file

Property Description Example values

wlServerProtocol The communication protocol with the
Worklight Server.

http or https

wlServerHost The host name of the Worklight Server. localhost

wlServerPort The port of the IBM Worklight Server. 8080

wlServerContext The server context, which is automatically
generated.

/

wlAppId The application ID, as defined in the
application-descriptor.xml file.

myApp

wlAppVersion The application version, as defined in the
application-descriptor.xml file.

1.0

wlEnvironment This property defines the IBM Worklight
environment. You must not modify the
value of this property value.

JavaMEnative

Copying files of Native API applications for Java Platform,
Micro Edition (Java ME)

To copy the files in the Native API application for Java ME into the project that
defines the app for Java ME.

About this task

To use the IBM Worklight Native API for Java ME in your native app, you must
copy the library and the client property file of your Native API application into
your native app for Java ME project.

Procedure
1. Create a lib folder in your native Java ME application.

Note: You can name this folder differently. If you select a folder name other
than lib, ensure that you use this folder name instead of lib in the following
steps.

2. Make sure that the build path of your native Java ME application includes this
lib folder.

3. Copy the worklight-javame.jar file of your Native API application into this
lib folder of your native Java ME application.

4. Copy the json4javame.jar file of your Native API application into this lib
folder of your native Java ME application.

5. Copy the wlclient.properties file of your Native API application into the res
folder of your native Java ME application.

94 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Developing the server side of an IBM Worklight application
This collection of topics relates to various aspects of developing the server-side
components of a Worklight application.

Overview of IBM Worklight adapters
Adapters run on the server and connect to mobile apps.

Adapters are the server-side code of applications that are deployed on and
serviced by the IBM Worklight Mobile Application Platform. Adapters connect to
enterprise applications (otherwise referred to as back-end systems), deliver data to
and from mobile applications, and perform any necessary server-side logic on this
data.

Benefits of IBM Worklight adapters

Adapters provide various benefits, as follows:
v Fast Development: Adapters are developed in JavaScript and XSL. Developers

employ flexible and powerful server-side JavaScript to produce succinct and
readable code for integrating with back-end applications and processing data.
Developers can also use XSL to transform hierarchical back-end data to JSON.

v Read-only and Transactional Capabilities: IBM Worklight adapters support
read-only and transactional access modes to back-end systems.

v Security: IBM Worklight adapters use flexible authentication facilities to create
connections with back-end systems. Adapters offer control over the identity of
the user with whom the connection is made. The user can be a system user, or a
user on whose behalf the transaction is made.

v Transparency: Data retrieved from back-end applications is exposed in a
uniform manner, so that application developers can access data uniformly,
regardless of its source, format, and protocol.

The adapter framework

The adapter framework mediates between the mobile apps and the back-end
services. A typical flow is depicted in the following diagram. The app, the
back-end application, and the JavaScript code and XSLT components in the
Worklight Server are supplied by the adapter or app developer. The procedure and
auto-conversions are part of the IBM Worklight Platform.

Chapter 2. Developing IBM Worklight applications 95

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

1. An adapter exposes a set of services, called procedures. Mobile apps invoke
procedures by issuing Ajax requests.

2. The procedure retrieves information from the back-end application.
3. The back-end application then returns data in some format.

v If this format is JSON, the IBM Worklight Server keeps the data intact.
v If this format is not JSON, the IBM Worklight Server automatically converts

it to JSON. Alternatively, the developer can provide an XSL transformation to
convert the data to JSON. In such a case, the IBM Worklight Server first
converts the data to XML (if it is not in XML already) that serves as input for
the XSL transformation.

4. The JavaScript implementation of the procedure receives the JSON data,
performs any additional processing, and returns it to the calling app.

HTTP POST requests are used for client-server communications between the
Worklight application and the Worklight server. Parameters must be supplied in a
plain text or numeric format. To transfer images (or any other type of file data),
they must be converted to base64 first.

Anatomy of adapters

IBM Worklight adapters are developed by using XML, JavaScript, and XSL. Each
adapter must have the following elements:
v Exactly one XML file, describing the connectivity to the back-end system to

which the adapter connects, and listing the procedures that are exposed by the
adapter to other adapters and to applications.

v Exactly one JavaScript file, containing the implementation of the procedures
declared in the XML file.

v Zero or more XSL files, each containing a transformation from the raw XML data
retrieved by the adapter to JSON returned by adapter procedures.

The files are packaged in a compressed file with a .adapter suffix (such as
myadapter.adapter).

Figure 12. The adapter framework

96 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The root element of the XML configuration files is <adapter>. The main
subelements of the <adapter> element are as follows:
v <connectivity>: Defines the connection properties and load constraints of the

back-end system. When the back-end requires user authentication, this element
defines how the credentials are obtained from the user.

v <procedure>: Declares a procedure that is exposed by the adapter.

The structure of the <adapter> element is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<wl:adapter>
<description>
<connectivity>
<connectionPolicy>
<loadConstraints>
</connectivity>

<procedure /> <!-- One or more such elements -->
</wl:adapter>

The HTTP adapter

The IBM Worklight HTTP adapter can be used to invoke RESTful services and
SOAP-based services. It can also be used to perform HTML scraping.

You can use the HTTP adapter to send GET, POST, PUT, and DELETE HTTP requests
and retrieve data from the response body. Data in the response can arrive in XML,
HTML, or JSON formats.

You can use SSL in an HTTP adapter with simple and mutual authentication to
connect to back-end services. Configure the IBM Worklight Server to use SSL in an
HTTP adapter by implementing the following steps:
v Set the URL protocol of the HTTP adapter to https.
v Store SSL certificates in a keystore that is defined in the worklight.properties

file. The keystore setup process is described in “SSL certificate keystore setup”
on page 409.

v If you use SSL with mutual authentication, the following extra steps must also
be implemented:
– Generate your own private key for the HTTP adapter or use one provided by

a trusted authority.
– If you generated your own private key, export the public certificate of the

generated private key and import it into the back-end truststore.
– Save the private key of the keystore that is defined in the

worklight.properties file.
– Define an alias and password for the private key in the <connectionPolicy>

element of the HTTP adapter XML file, adaptername.xml. The
<sslCertificateAlias> and <sslCertificatePassword> subelements are
described in “The <connectionPolicy> element of the HTTP adapter” on page
103.

Note however that SSL represents transport level security, which is independent of
basic authentication. It is possible to do basic authentication either over HTTP or
HTTPS.

Chapter 2. Developing IBM Worklight applications 97

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The SQL adapter

You can use the IBM Worklight SQL adapter to execute parameterized SQL queries
and stored procedures that retrieve or update data in the database.

The Cast Iron adapter

The IBM Worklight Cast Iron adapter initiates orchestrations in Cast Iron to
retrieve and return data to mobile clients.

Cast Iron accesses various enterprise data sources, such as databases, web services,
and JMS, and provides validation, aggregation, and formatting capabilities.

The Cast Iron adapter supports two patterns of connectivity:

Outbound pattern.
The invocation of Cast Iron orchestrations from Worklight.

Inbound pattern.
Cast Iron sends notifications to devices through Worklight.

The Cast Iron adapter supports the invocation of a Cast Iron orchestration over
HTTP only. Cast Iron Template Integration Projects (TIPs) are provided in Cast Iron
as examples of this technique, and for you to use as a basis for your own
orchestrations. For more information, see the Cast Iron documentation.

Cast Iron uses the standard IBM Worklight notification adapter and event sources
to publish notification messages to be delivered to devices by using one of the
many notification providers.

For information about defining event sources, see “Method
WL.Server.createEventSource” on page 286.

Cast Iron Template Integration Projects (TIPs) are provided in Cast Iron as
examples of this technique, and for you to use as a basis for your own notification
scenarios. For more information, see the Cast Iron documentation.

To protect the notification adapter, use basic authentication.

The JMS adapter

The IBM Worklight JMS adapter can be used to send and receive messages from a
JMS-enabled messaging provider. It can be used to send and receive the headers
and body of the messages.

Troubleshooting a Cast Iron adapter – connectivity issues

Symptom: The IBM Worklight adapter cannot communicate with the Cast Iron
server.

Causes:
v Cast Iron provides two network interfaces, one for administration and one for

data. Ensure that you are using the correct host name or IP address of the Cast
Iron data interface. You can find this information under the Network menu item
in the Cast Iron administrative interface. This information is stored in the
adapter-name.xml file for your adapter.

98 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v The invocation fails with a message Failed to parse the payload from backend.
This failure is typically caused by a mismatch between the data returned by the
Cast Iron orchestration and the returnedContentType parameter in the
adapter-name.js implementation. For example, the Cast Iron orchestration
returns JSON but the adapter is configured to expect XML.

The adapter XML File
The adapter XML file is used to configure connectivity to the back-end system and
to declare the procedures exposed by the adapters to applications and to other
adapters.

The root element of the document is <adapter>.
v For elements whose content is the same for all types of back-end application,

this section contains complete details of the tag content.
v For elements whose content is different for different types of back-end

applications, this section contains a general description of the content of the
elements. Full details of the content can be found in the topic that describes the
specific adapter.

<adapter> element of the adapter XML file
The <adapter> element is the root element and has various attributes and
subelements.

The <adapter> element is the root element of the adapter configuration file. It has
the following structure:
<wl:adapter
name="adapter-name"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wl="http://www.worklight.com/integration"
xmlns:http="http://www.worklight.com/integration/http"
xmlns:sql="http://www.worklight.com/integration/sql"
xsi:schemaLocation="
http://www.worklight.com/integration integration.xsd
http://www.worklight.com/integration/http http.xsd
http://www.worklight.com/integration/sql sql.xsd
>

IBM Worklight provides two schemas that are used by all adapters, and in
addition, provides a specific schema for each type of adapter. Each schema must be
associated with a different namespace. Namespaces are declared using the xmlns
attribute, and are linked to their schemas by using the xsi:schemaLocation
attribute.

The mandatory schemas are http://www.w3.org/2001/XMLSchema-instance, which
is associated with the xsi namespace, and http://www.worklight.com/integration,
which is associated with the wl namespace.

Because each adapter connects to a single back-end application and uses a single
integration technology, each adapter only requires one back-end-related namespace.
For example, for an HTTP adapter you must declare the xmlns:http namespace
and associate it with the http.xsd schema.

The <adapter> element has the following attributes:

Chapter 2. Developing IBM Worklight applications 99

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 8. <adapter> element attributes

Attribute Description

name Mandatory. The name of the adapter. This
name must be unique within the Worklight
Server. It can contain alphanumeric
characters and underscores, and must start
with a letter.
Note: After an adapter has been defined
and deployed, its name cannot be modified.

xmlns:namespace Mandatory. Defines schema namespaces.

This attribute must appear three times, as
follows:

xmlns:xsi – Defines the namespace
associated with the http://www.w3.org/
2001/XMLSchema-instance schema.

xmlns:wl – Defines the namespace
associated with the http://
www.worklight.com/integration schema.

xmlns:namespace – Defines the
namespace associated with the schema
related to the back-end application, for
example, xmlns:sap or xmlns:sql.

xsi:schemaLocation Optional. Identifies the schema locations, in
the following format:

xsi:schemaLocation="http://www.worklight.com/integration location-of-integration-schema-file URI-of-specific-

If the attribute is missing, auto-complete for
XML elements and attributes defined in the
schema will not be available in the IBM
Worklight Studio.

at run time, this attribute has no effect.

The <adapter> element has the following subelements:

Table 9. <adapter> element subelements

Subelement Description

<displayName> Note: This element is deprecated.

Optional. The name of the adapter to be
displayed in the IBM Worklight Console.

If the <displayName> element is not
specified, the value of the name attribute is
used instead in the IBM Worklight Console.

<description> Optional. Additional information about the
adapter, which is displayed in the IBM
Worklight Console.

<connectivity> Mandatory. Defines the connection
properties and load constraints of the
back-end system.

For more information, see “<connectivity>
element of the adapter XML file” on page
101.

100 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 9. <adapter> element subelements (continued)

Subelement Description

<procedure> Mandatory. Defines a process for accessing a
service exposed by a back-end application.
Occurs once for each procedure exposed by
the adapter.

For more information, see “<procedure>
element of the adapter XML file” on page
102.

<connectivity> element of the adapter XML file
The <connectivity> element defines the mechanism by which the adapter connects
to the back-end application.

It has the following subelements:

Table 10. <connectivity> element subelements

Subelement Description

<connectionPolicy> Mandatory. Defines back-end-specific
connection properties.

<loadConstraints> Mandatory. Defines the number of
concurrent connections which the IBM
Worklight Server can open to the back end.

<connectionPolicy> element of the adapter XML file
The <connectionPolicy> element defines connection properties.

The structure of the <connectionPolicy> element depends on the integration
technology of the back-end application. For more information, see the related links.
Related reference:
“The <connectionPolicy> element of the HTTP adapter” on page 103
The structure of the <ConnectionPolicy> element.
“The <connectionPolicy> element of the SQL adapter” on page 107
The connection policy of an SQL adapter is configured in two places: the
worklight.properties file and the adapter XML configuration file.
“The <connectionPolicy> element of the JMS adapter” on page 109
The structure of the <connectionPolicy> element.

<loadConstraints> element of the adapter XML file
The <loadConstraints> element defines the maximum load that is exerted on a
back-end application by setting the maximum number of concurrent requests that
can be performed on the system.

IBM Worklight queues incoming service requests from IBM Worklight applications.
While the number of concurrent requests is below the maximum, IBM Worklight
forwards the requests to the back-end application according to their order in the
queue. If the number of concurrent requests is above the maximum, IBM Worklight
waits until an already handled request is finished, before it services the next one in
the queue. If a request waits in the queue for longer than the timeout configured in
the procedure, IBM Worklight removes it from the queue, and returns a Request
Timed Out exception to the caller.

Chapter 2. Developing IBM Worklight applications 101

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The <loadConstraints> element has the following attributes:

Attribute Description

maxConcurrentConnectionsPerNodeMandatory. The maximum number of concurrent requests that can be
performed per server node of the back-end application.

Consider a case where the back-end application must serve about 100 transactions
per second, and where each transaction takes an average response time of 2
seconds. The back-end application defines four server nodes to manage these
requests. Each node must thus be able to manage an average of 50 transactions per
second (100 x 2 / 4). To properly communicate with this back-end application, you
must then set the value of the maxConcurrentConnectionsPerNode attribute to at
least 50.
<loadConstraints maxConcurrentConnectionsPerNode="50" />

Note: If you increase the value of this attribute, the back-end application needs
more memory. Do not set this value too high to avoid memory issues. Instead,
estimate the average and peak number of transactions per second, and evaluate
their average durations. Then, calculate the number of required concurrent
connections as indicated in this example, and add a 5-10 margin to define the
value of this attribute. Then, monitor your server, and adjust this value as
required, to ensure that you back-end application can process all incoming
requests.

For more information about how to size your back-end application, see:
v Scalability and Hardware Sizing (PDF)
v Hardware Calculator (XLS)

<procedure> element of the adapter XML file
The <procedure> element defines a process for accessing a service exposed by a
back-end application.

The service can retrieve data from the back end or perform a transaction at the
back end.

The <procedure> element has the following structure:
<procedure
name="unique-name"
connectAs="value"
requestTimeoutInSeconds="value"
audit="value"
securityTest="value"
/>

The <procedure> element has the following attributes:

Table 11. <procedure> element attributes

Attribute Description

name Mandatory. The name of the procedure. This
name must be unique within the adapter. It
can contain alphanumeric characters and
underscores, and must start with a letter.

102 IBM Worklight V5.0.6

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/Scalability_and_Hardware_Sizing.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/Hardware_Calculator.xls

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 11. <procedure> element attributes (continued)

Attribute Description

connectAs Optional. Defines how to create a connection
to the back end for invoking the retrieve
procedure. Valid values are as follows:

server: Default. The connection to the
back end is created according to the
connection policy defined for the adapter.
For information about configuring
connection policies, see the related links.

endUser: The connection to the back end
is created with the user’s identity. Only
valid if a user realm has been identified
in the security tests for this procedure.

requestTimeoutInSeconds Optional. The timeout in seconds for waiting
until receiving a response from the back
end, including the time for opening the
connection. The default is 30 seconds.

audit Optional. Defines whether calls to the
procedure are logged in the audit log. The
log file is Worklight Project
Name/server/log/audit/audit.log.

Valid values are as follows:

true: Calls to the procedure are logged in
the audit log.

false: Default. Calls to the procedure are
not logged in the audit log.

securityTest Optional. The name of the security test that
you want to use to protect the adapter
procedure, as defined in the
authenticationConfig.xml file.

The root element of the HTTP adapter XML file
The structure of the root element.

The root element of the HTTP adapter has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<wl:adapter>
name="adapter-name"
authenticationRealm="realm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wl="http://www.worklight.com/integration"
xmlns:http="http://www.worklight.com/integration/http"
xsi:schemaLocation=
"http://www.worklight.com/integration integration.xsd
http://www.worklight.com/integration/http http.xsd">
...
</wl:adapter>

The <connectionPolicy> element of the HTTP adapter
The structure of the <ConnectionPolicy> element.

The <ConnectionPolicy> element has the following structure:
<connectionPolicy xsi:type="http:HTTPConnectionPolicyType"
cookiePolicy="cookie-policy" maxRedirects="int">
<protocol>protocol</protocol>

Chapter 2. Developing IBM Worklight applications 103

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<domain>host-name</domain>
<port>host-port</port>
<sslCertificateAlias>ssl-certificate-alias</sslCertificateAlias>
<sslCertificatePassword>ssl-certificate-password</sslCertificatePassword>
<authentication> ... </authentication>
<proxy> ... </proxy>
</connectionPolicy>

The <ConnectionPolicy> element has the following attributes:

Table 12. <ConnectionPolicy> element attributes

Attribute Description

xsi:type Mandatory. The value of this attribute must
be set to http:HTTPConnectionPolicyType.

cookiePolicy Optional. This attribute sets how the HTTP
adapter handles cookies that arrive from the
back-end application. Valid values are as
follows:

v RFC_2109 (The default)

v RFC_2965

v NETSCAPE

v IGNORE_COOKIES

maxRedirects Optional. The maximum number of redirects
that the HTTP adapter can follow. This
attribute is useful when the back-end
application sends circular redirects as a
result of some error, such as authentication
failures. The default value is 20.

The <ConnectionPolicy> element has the following subelements:

Table 13. <ConnectionPolicy> element subelements

Subelement Description

protocol Optional. The URL protocol to use. Possible
values are http (default) and https.

domain Mandatory. The host address.

port Optional. The port address. The default
value is 80.

sslCertificateAlias The alias of the adapter private SSL key,
which is used by the HTTP adapter key
manager to access the correct SSL certificate
in the keystore.

Optional for regular HTTP authentication
and simple SSL authentication. Mandatory
for mutual SSL authentication.

The keystore setup process is described in
“SSL certificate keystore setup” on page 409

104 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 13. <ConnectionPolicy> element subelements (continued)

Subelement Description

sslCertificatePassword The password of the adapter private SSL
key, which is used by the HTTP adapter key
manager to access the correct SSL certificate
in the keystore.

Optional for regular HTTP authentication
and simple SSL authentication. Mandatory
for mutual SSL authentication.

The keystore setup process is described in
“SSL certificate keystore setup” on page 409

authentication Optional. Authentication configuration of the
HTTP adapter. See “The <authentication>
element of the HTTP adapter.”

proxy Optional. Used when the back-end
application must be accessed through a
proxy. See “The <proxy> element of the
HTTP adapter” on page 106.

The <authentication> element of the HTTP adapter
The HTTP adapter can use one of four protocols, and can also contain a server
identity.

You can configure the HTTP adapter to use one of four authentication protocols by
defining the <authentication> element. You can define this element only within
the <connectionPolicy> element. Depending on the authentication protocol that the
HTTP adapter uses, among the following ones, define the <authentication>
element as follows:
v Basic Authentication

<authentication>
<basic/>

</authentication>

v Digest Authentication
<authentication>

<digest/>
</authentication>

v NTLM Authentication
<authentication>

<ntlm hostname="value"/>
</authentication>

The hostname attribute is optional, and denotes the name of the computer on
which the IBM Worklight Server runs. Its default value is ${local.hostname}.

v SPNEGO/Kerberos Authentication
<authentication>

<spnego stripPortOffServiceName="true"/>
</authentication>

The attribute stripPortOffServiceName is optional, and specifies whether the
Kerberos client uses the service name without the port number. The default
value is false.
When you use this option, you must also place the krb5.conf file under
Worklight Project Name/server/conf. The file must contain Kerberos

Chapter 2. Developing IBM Worklight applications 105

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

configuration such as the location of the Kerberos server, and domain names. Its
structure is described in the Kerberos V5 System Administrator's Guide in the
mit.edu website.

Specifying the Server Identity

If the adapter exposes procedures with the attribute connectAs="server", the
connection policy can contain a <serverIdentity> element. This feature applies to
all authentication schemes, for example:
<authentication>

<basic/>
<serverIdentity>

<username> ${user} </username>
<password> ${password} </password>

</serverIdentity>
</authentication>

The <proxy> element of the HTTP adapter
Use a <proxy> element if you access an application through a proxy.

If the back-end application must be accessed through a proxy, add a <proxy>
element inside the <connectionPolicy> element. If the proxy requires
authentication, add a nested <authentication> element inside <proxy>. This
element has the same structure as the one used to describe the authentication
protocol of the adapter, described in “The <authentication> element of the HTTP
adapter” on page 105.

The following example shows a proxy that requires basic authentication and uses a
server identity:
<connectionPolicy xsi:type="http:HTTPConnectionPolicyType">
<protocol>http</protocol>
<domain>www.bbc.co.uk</domain>
<proxy>
<protocol>http</protocol>
<domain>wl-proxy</domain>
<port>8167</port>
<authentication>
<basic/>
<serverIdentity>
<username>${proxy.user}</username>
<password>${proxy.password}</password>
</serverIdentity>
</authentication>
</proxy>
</connectionPolicy>

The root element of the SQL adapter XML file
The structure of the root element.

The root element of the SQL adapter has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<wl:adapter>
name="adapter-name"
authenticationRealm="realm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wl="http://www.worklight.com/integration"
xmlns:http="http://www.worklight.com/integration/sql"
xsi:schemaLocation=

106 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

"http://www.worklight.com/integration integration.xsd
http://www.worklight.com/integration/sql sql.xsd">
...
</wl:adapter>

The <connectionPolicy> element of the SQL adapter
The connection policy of an SQL adapter is configured in two places: the
worklight.properties file and the adapter XML configuration file.

Configuring the policy in the worklight.properties File

In the worklight.properties file, configure the properties described in the
following table. In all properties, n can be 1 - 10, such as custom-db.1.relative-
jndi-name.

Table 14. Properties in the worklight.properties file

Property Description

custom-db.n.relative-jndi-name The relative JNDI name of your database.
This is the part of the JNDI name that is
prefixed by java:comp/env/. For example, if
the full JNDI name is java:/comp/env/
mydatabase, the relative JNDI name is
mydatabase.

custom-db-n.driver A JDBC driver to your database. The JDBC
driver of MySQL, for example, is
com.mysql.jdbc.Driver. The driver must be
placed in the Worklight Project
Name/server/lib folder.

custom-db.n.url The JDBC connection string to your
database. For example: jdbc:mysql://
localhost:3306/mydatabase.

custom-db.n.username The user name used to connect to the
database.

custom-db.n.password The user password used to connect to the
database.

Configuring the adapter XML file

In the adapter XML configuration file, configure the <ConnectionPolicy> element.
The <ConnectionPolicy> element has the following structure:
<connectionPolicy xsi:type="sql:SQLConnectionPolicy">
<dataSourceJNDIName> java:comp/env/relative-jndi-name
</dataSourceJNDIName>
</connectionPolicy>

The <ConnectionPolicy> element has the following attribute:

Table 15. <ConnectionPolicy> element attribute

Attribute Description

xsi:type Mandatory. The value of this attribute must
be set to sql:SQLConnectionPolicy.

The <ConnectionPolicy> element has the following subelement:

Chapter 2. Developing IBM Worklight applications 107

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 16. <ConnectionPolicy> element subelement

Subelement Description

dataSourceJNDIName Mandatory. The JNDI name (the data source
name), as defined in the
worklight.properties file.

In the reference example, the <ConnectionPolicy> element is defined as follows:
<connectionPolicy xsi:type="sql:SQLConnectionPolicy">
<dataSourceJNDIName>java:/comp/env/bankDS</dataSourceJNDIName>
</connectionPolicy>

The root element of the Cast Iron adapter XML file
Structure of the root element

The root element of the SQL adapter has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<wl:adapter>
name="adapter-name"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wl="http://www.worklight.com/integration"
xmlns:http="http://www.worklight.com/integration/http"
xmlns:http="http://www.worklight.com/integration/ci"

</wl:adapter>

The <connectionPolicy> element of the Cast Iron adapter
Structure of the <connectionPolicy> element

The <ConnectionPolicy> element has the following structure:
<connectionPolicy xsi:type="http:HTTPConnectionPolicyType"
<protocol> protocol </protocol>
<domain> host-name </domain>
<port> host-port </port>
</connectionPolicy>

The <ConnectionPolicy> element has the following attributes:

Table 17. <ConnectionPolicy> element attributes

Attribute Description

xsi:type Mandatory. The value of this attribute must
be set to http:HTTPConnectionPolicyType.

The <ConnectionPolicy> element has the following subelements:

Table 18. <ConnectionPolicy> element subelements

Subelement Description

protocol Optional. The URL protocol to use. Possible
values are http (default) and https.

domain Mandatory. The host address.

port Optional. The port address. The default
value is 80.

108 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The root element of the JMS adapter XML file
The structure of the root element of the JMS adapter.

The root element of the JMS adapter has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<wl:adapter>
name="adapter-name"
authenticationRealm="realm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wl="http://www.worklight.com/integration"
xmlns:jms="http://www.worklight.com/integration/jms"
xsi:schemaLocation=
"http://www.worklight.com/integration integration.xsd
http://www.worklight.com/integration/jms jms.xsd">
...
</wl:adapter>

The <connectionPolicy> element of the JMS adapter
The structure of the <connectionPolicy> element.

The <connectionPolicy> element has the following structure:
<connectionPolicy xsi:type="jms:JMSConnectionPolicyType">

<!-- optional jndi repository connection details –->
<namingConnection
url="jndi repository url"
initialContextFactory="JMS provider initial context factory class name"
user="optional jndi repository connection user name"
password="optional jndi repository connection password">
<!-- end of optional jndi repository connection details –->

<jmsConnection
connectionFactory="jndi connection factory name"
user="messaging service connection user name"
password="messaging service connection password">
</connectionPolicy>

The <connectionPolicy> element has the following attributes:

Table 19. <connectionPolicy> element attributes

Attribute Description

xsi:type Mandatory. The value of this attribute must
be set to jms:JMSConnectionPolicyType.

The <connectionPolicy> element has the following subelements:

Table 20. <connectionPolicy> element subelements

Subelement Description

namingConnection Optional. Describes how to connect to an
external JNDI repository. Only used if the
JNDI objects are not stored in the JEE server
that the adapter is deployed in. See “The
<namingConnection> element of the JMS
adapter” on page 110.

Chapter 2. Developing IBM Worklight applications 109

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 20. <connectionPolicy> element subelements (continued)

Subelement Description

jmsConnection Mandatory. Describes the connection factory
and optional security details used to connect
to the messaging system. See “The
<jmsConnection> element of the JMS
adapter.”

The <namingConnection> element of the JMS adapter
Use the <namingConnection> element to identify how the IBM Worklight server
connects to an external repository.

The JMS Adapter uses administered objects that must be predefined in a JNDI
repository. The repository can either be defined in the JEE server context or an
external JNDI repository. If you use an external repository, specify the
<namingConnection> element to identify how the Worklight server connects to the
repository.

The <namingConnection> element has the following attributes:

Attribute Description

url Mandatory. The url of the external JNDI
repository. For example: iiop://localhost. The
url syntax is dependent on the JNDI
provider.

initialContextFactory Mandatory. The initialContextFactory class
name of the JNDI provider. For example:
com.ibm.Websphere.naming.WsnInitialContextFactory.
The driver, and any associated files, must be
placed in the /server/lib directory. If you
develop in the Eclipse environment, the
driver and associated files must be placed in
the /lib directory.
Note: If you develop for WebSphere
Application Server with WebSphere MQ, do
not add the WebSphere MQ Java archive
(JAR) files to the /lib directory. If the
WebSphere MQ JAR files are added,
classloading problems will occur because the
files already exist in the WebSphere
Application Server environment.

user Optional. User name of a user with
authority to connect to the JNDI repository.
If user is not specified, the default user
name is guest.

password Optional. Password for the user specified in
the user attribute. If user is not specified,
the default password is guest.

The <jmsConnection> element of the JMS adapter
Use the <jmsConnection> element to identify how the IBM Worklight server
connects to a messaging system.

The <jmsConnection> element has the following attributes:

110 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Attribute Description

connectionFactory Mandatory. The name of the connection
factory used when connecting to the
messaging system. This is the name of the
administered object in the JNDI repository.
Note: If you are deploying in WebSphere
Application Server, the connection factory
must be a global JNDI object. The object
must be addressed without the
java:comp/env context. For example:
jms/MyConnFactory and not
java:comp/env/jms/MyConnFactory. However,
if you are deploying in Tomcat, the
connection factory must be addressed
including the java:/comp/env context. For
example: java:comp/env/jms/MyConnFactory.

user Optional. User name of a user with
authority to connect to the messaging
system.

password Optional. Password for the user specified in
the user attribute.

Creating an IBM Worklight adapter
Follow these instructions to create an IBM Worklight Project and configure a new
IBM Worklight adapter.

About this task

On initial creation of a new adapter, the IBM Worklight Studio automatically
generates the default skeleton for the adapter with all the required properties,
based on the type (HTTP, SQL, or JMS). You need only to modify the default
skeleton to configure an adapter.

Procedure
1. Optional: Perform this step only if you have not already created a Worklight

project. If you set up IBM Worklight shortcuts, right-click the Project Explorer
perspective panel in Eclipse and click New > Worklight Project. Otherwise,
click New > Other, then select Worklight > Worklight Project from the list of
wizards and click Next.

Chapter 2. Developing IBM Worklight applications 111

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. In the New IBM Worklight Project window, specify a name for the project and
click Finish.

3. If you set up IBM Worklight shortcuts, right-click the IBM Worklight Project to
which you want to add the adapter, and select New > Adapter. Otherwise,
select New > Other, then select Worklight > Adapter from the list of wizards
and click Next.

Figure 13. Creating an IBM Worklight project from the wizard.

112 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The New Adapter window is displayed.
4. Select the required adapter type from the Adapter type list and enter a name

for the adapter in the Adapter name field. Click Finish.

Figure 14. Configuring a new IBM Worklight adapter.

Chapter 2. Developing IBM Worklight applications 113

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Adapter invocation service
Adapter procedures can be invoked by issuing an HTTP request to the IBM
Worklight invocation service: http(s)://<server>:<port>/<Context>/invoke.

The following parameters are required:

Table 21. Parameters for adapter invocation

Property Description

adapter The name of the adapter

procedure The name of the procedure

parameters An array of parameter values

Figure 15. Selecting an adapter type.

114 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The request can be either GET or POST.

Note: The invocation service uses the same authentication framework as
described in the “Authentication configuration” on page 137 section.

The default security test for adapter procedures contains Anti-XSRF protection, but
this configuration can be overridden by either:
v Implementing your own authentication realm (see “Authenticators and Login

Modules” on page 140 for more details).
v Disabling the authentication requirement for a specific procedure. You can do so

by adding the securityTest="wl_unprotected" property to the <procedure>
element in the adapter XML file.

Note: Disabling authentication requirement on a procedure means that this
procedure becomes completely unprotected and anyone who knows the adapter
and the procedure name can access it. Therefore, consider protecting sensitive
adapter procedures.

Implementing adapter procedures
Implement a procedure in the adapter XML file, using an appropriate signature
and any return value.

Before you begin

You have declared a procedure in the adapter XML file, using a <procedure> tag.

Procedure

Implement the procedure in the adapter JavaScript file. The signature of the
JavaScript function that implements the procedure has the following format:
function funcName (param1, param2, ...),

Where:
v funcName is the name of function which the procedure implements. This name

must be the same as the value specified in the name attribute of the<procedure>
element in the adapter XML file.

v param1 and param2 are the function parameters. The parameters can be scalars
(strings, integers, and so on) or objects.

In your JavaScript code, you can use the Worklight server-side JavaScript API to
access back-end applications, invoke other procedures, access user properties, and
write log and debug lines.
You can return any value from your function, scalar or object.

The Rhino container
IBM Worklight uses Rhino as the engine for running the JavaScript script used to
implement adapter procedures.

Rhino is an open source JavaScript container developed by Mozilla. In addition to
being part of Java 6, Rhino has two other advantages:
v It compiles the JavaScript code into byte code, which runs faster than interpreted

code.
v It provides access to Java code directly from JavaScript. For example:

Chapter 2. Developing IBM Worklight applications 115

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

var date = new java.util.Date();
var millisec = date.getTime()

Encoding a SOAP XML envelope
Follow these instructions to encode a SOAP XML envelope within a request body

About this task

When you need to invoke a SOAP-based service in an HTTP adapter, encode the
SOAP XML envelope within the request body.

Procedure

Encode XML within JavaScript by using E4X E4X is officially part of JavaScript 1.6.
This technology can be used to encode any XML document, not necessarily SOAP
envelopes. For more information about E4X, see the related link.

Example
var request =
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<requestMessageObject xmlns="http://acme.com/ws/">
<messageHeader>
<version>1.0</version>
<originatingDevice>{originatingDevice}</originatingDevice>
<originatingIP>
{WL.Server.configuration["local.IPAddress"]}
</originatingIP>
<requestTimestamp>
{new Date().toLocaleString()}
</requestTimestamp>
</messageHeader>
<messageData>
<context>
<userkey>{userKey}</userkey>
<sessionid>{sessionid}</sessionid>
</context>
</messageData>
</requestMessageObject>
</S:Body>
</S:Envelope>;

You can use the WL.Server.signSoapMessage() method only inside a procedure
declared within an HTTP adapter. It signs a fragment of the specified envelope
with ID wsId, using the key in the specified keystoreAlias, inserting the digital
signature into the input document.

To use WL.Server.signSoapMessage() API when running IBM Worklight on IBM
WebSphere Application Server you might need to add a JVM argument that
instructs WebSphere to use a specific SOAPMessageFactory implementation instead
of a default one. To do this, you must go to Application servers {server_name} >
Process definition > Java Virtual Machine and provide the following argument
under Generic JVM arguments, typing in the code phrase exactly as it is presented
here:

Djavax.xml.soap.MessageFactory=com.sun.xml.internal.messaging.saaj.soap.ver1_1.SOAPMessageFactory1_1Impl

You must then restart the JVM.

116 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Important: This workaround is only for IBM WebSphere.
Related information:

http://www.w3schools.com/xml/xml_e4x.asp

Calling Java code from a JavaScript adapter
Follow these instructions to instantiate Java objects and call their methods from
JavaScript code in your adapter.

Before you begin

Attention: The name of any Java package to which you refer from within an
adapter must start with the domains com, org, or net.

Procedure
1. Instantiate a Java object by using the new keyword and apply the method on

the newly instantiated object.
2. Optional: Assign a JavaScript variable to be used as a reference to the newly

instantiated object.
3. Include the Java classes that are called from the JavaScript adapter in your IBM

Worklight project under Worklight Project Folder/server/java. The IBM
Worklight Studio automatically builds them and deploys them to the IBM
Worklight Server, also placing the result of the build under Worklight Project
Folder/bin

Example
var x = new MyJavaClass();
var y = x.myMethod(1, "a");

Features of the IBM Worklight Studio
The Worklight Studio provides the facilities to automatically complete attribute
values, validate adapters on three levels, and to fix errors in adapter configuration.

Auto-complete

The auto-complete feature offers a list of possible values for attribute values. In the
example below, the JavaScript Editor displays a list of values for the possible field
types of a record field. In this way, the auto-complete feature helps correct
configuration of an adapter.

Chapter 2. Developing IBM Worklight applications 117

http://www.w3schools.com/xml/xml_e4x.asp

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Adapter validation

IBM Worklight Studio provides adapter validation on three levels:

Schema validation
The XML Editor validates the XML file as well-formed and conforming to
the rules defined in the validating schema.

Logical validation of the XML
IBM Worklight Studio provides logical validation of the XML, based on
IBM Worklight adapter constraints. For example, if a procedure is a
JavaScript procedure, then field mapping is not permitted.

XML/JavaScript validation
IBM Worklight Studio provides validation between XML and JavaScript. It
verifies that each declared JavaScript procedure has a corresponding
procedure in the adapter JavaScript file with the appropriate signature
(that is, input parameters and return values).

Figure 16. Adapter configuration through the auto-complete feature.

118 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Quick fix

The IBM Worklight Studio provides Quick Fix options for adapter configuration
errors.

Whenever an error is detected, the error console displays the offending code. To
activate the Quick Fix window, right-click the error in the console and select Quick
Fix. Alternatively, press Ctrl+1.

Chapter 2. Developing IBM Worklight applications 119

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Figure 17. Quick Fix options for adapter configuration problems.

120 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Specifically, the IBM Worklight Studio provides a Quick Fix option for missing
JavaScript functions. The Quick Fix creates the missing function in the
corresponding JavaScript file (also creating the file if one does not exist).

Figure 18. Quick Fix option for missing JavaScript functions.

Chapter 2. Developing IBM Worklight applications 121

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure invocation
You can test a procedure by running it within the Worklight Studio.

Note: This feature is available only when you are running IBM Worklight Studio.
It is not available when you run an adapter on a stand-alone server based on
WebSphere Application Server or Tomcat.

In IBM Worklight Studio, you can select a procedure, enter a set of parameters,
and invoke the procedure on the IBM Worklight Server. Only procedure
invocations are supported, with results displayed in a browser window. For each
invoked procedure, the IBM Worklight Studio remembers the most recent
parameter values, so you can reinvoke the procedure without re-entering
parameter values.

In the dialog box, provide a comma-separated list of procedure parameters.

Figure 19. Invoking IBM Worklight procedures.

122 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Invoking a back-end service
You can invoke a back-end service and receive the data retrieved by the service, in
the Worklight studio.

About this task

Note: This feature is only available when running within the IBM Worklight
Studio. It is not available when running an adapter on a stand-alone server based
on WebSphere Application Server or Tomcat.

In IBM Worklight Studio, you can invoke a back-end service and immediately
receive the data retrieved by the service in XML and JSON formats. You can also
define and test a custom XSL transformation that converts the resulting XML into
JSON.

Figure 20. Launching the procedure.

Chapter 2. Developing IBM Worklight applications 123

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

To run a back-end service:
1. Right-click an adapter file, and select Run As > Invoke Worklight Back-end

Service.

2. In the dialog box, provide the invocation service parameters. You can copy
them from your code and paste them directly into the dialog box.

Figure 21. Invoking an IBM Worklight back-end service

124 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

A browser window opens, displaying the retrieved data in XML and JSON
format, and the XSL transformation (if defined) that was used to convert the
XML to JSON.

3. Optional: Change the XSL transformation by editing it in the edit box, then
click Apply XSL to regenerate the JSON format.

Figure 22. Invocation parameters.

Chapter 2. Developing IBM Worklight applications 125

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Deploying an adapter
In IBM Worklight Studio, you can automatically deploy a new or modified adapter
to the IBM Worklight Server.

Procedure

Right-click the adapter folder and select Run As > Deploy adapter on Worklight
Server.

Figure 23. Browser window, showing retrieved data in XML and JSON format.

126 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Transporting Worklight applications to test and production
environments

When you have developed an application, transport it to a separate test and
production project.

About this task

When you finish a development cycle of your application, you usually transport it
to a testing environment, and then to a production environment.

Consider maintaining a separate IBM Worklight project for each such environment.
Set up each project to contain only the configuration and custom server-side code
related to that environment, and not the adapters and applications. In this way,
you can maintain project customizations in a source control system. It also
decouples the source code of adapters and applications from the environment they
are running in. This decoupling makes their source code simpler and minimizes
the need to change them when moving across environments.

The tools that you can use to transport apps and adapters across development,
QA, and production environments are described in the following topics.

Transporting an application from development to another
environment

To transport an application from the development environment to another
environment, first update the application descriptor to match the new
environment, then deploy one or more .wlapp and adapter files.

Before you begin

You have built one or more applications in the IBM Worklight Studio and a set of
.wlapp files is created in the bin folder of your IBM Worklight Project. You now
want to deploy the applications to a test or production environment.
v If you build an entire app, a file called app-name.wlapp is created, containing the

code and resources of all environments that are supported by your app. For
example: myApp.wlapp.

Figure 24. Deploying a Worklight adapter.

Chapter 2. Developing IBM Worklight applications 127

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v If you build an app only for specific environments, a file called
app-name-env-version.wlapp is created per environment. For example:
myApp-android-1.0.wlapp.

About this task

First, you prepare the application or applications for deployment and then you
deploy them. You can deploy many apps within the same project. The following
instructions lead you through this process.

Procedure
1. For each application in the project, change the settings in the

application-descriptor.xml file to match your production environment.
The following settings might need changing, depending on the functions of the
app.
v Context root
v Settings screen
v IBM Worklight Server root URL. Set worklightServerRootURL to the URL of

the remote server that the application will be using.
v Push notification certificates
v Device provisioning
v Application authenticity
v User authentication
v The Android shared user ID

For more information, see “The application descriptor” on page 55
2. Change the settings in the worklight.properties file to match your production

environment.
Specify the database by setting wl.db.type to MYSQL, DB2, DERBY or ORACLE
depending on your database. Set wl.db.jndi.name to the JNDI name for the
database as follows:
v On WebSphere Application Server, Full Profile or Liberty Profile:

wl.db.jndi.name=jdbc/WorklightDS

v On Apache Tomcat:
wl.db.jndi.name=java:comp/env/jdbc/WorklightDS

Specify the settings for the report database by setting wl.reports.db.type to
MYSQL, DB2, DERBY or ORACLE depending on your database. Set
wl.reports.db.jndi.name to the JNDI name for the database as follows:
v On WebSphere Application Server, Full Profile or Liberty Profile:

wl.reports.db.jndi.name=jdbc/WorklightReportsDS

v On Apache Tomcat:
wl.db.jndi.name=java:comp/env/jdbc/WorklightReportsDS

Specify the properties that describe public Worklight Server access by setting
publicWorkLightProtocol, publicWorkLightPort, and publicWorkLightContext.
You might want to look at the worklight.properties file that was created
during installation. You can locate the worklight.war file in the
installation_directory/WorklightServer directory. Extract the .war file, and
the worklight.properties file is located under the WEB-INF/classes/conf/
directory in the .war file.
For more information, see “IBM Worklight properties” on page 406

128 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. Build each application in either of two ways:
v Right-click the application and clink Run As > Build All and Deploy.
v Use the Ant script tool that is described in “Building an application” on page

135

This creates a projectName.war file in the \bin folder. This file contains the
project configuration that was done in steps 1 and 2 and any classes built from
Java code in the server/java folder.

4. Rename the .war file to context_root.war, where context_root is as set in the
application-descriptor.xml file.

5. Deploy the .war file to the remote server, as described in “Deploying a
customization .war file to an application server”

6. Open the IBM Worklight Console of the target environment. The address is of
the format http://your-remote-server:server-port/context_root/console

7. From the IBM Worklight Console, deploy the relevant .wlapp files from the bin
folder of your IBM Worklight project.
v For more information about how to deploy an app by using IBM Worklight

Console, see “Deploying apps” on page 133.
v You can also deploy the app to the target environment by using an Ant task

that is provided by IBM Worklight. For more information about how to
deploy an app by using the provided Ant task, see “Deploying an
application” on page 135.

8. Obtain the adapters from the development environment.
a. Navigate to the bin folder in your project.
b. Copy the .adapter file or files.

9. From the IBM Worklight Console, deploy the .adapter files from the bin folder
of your project.
v For more information about how to deploy an adapter by using IBM

Worklight Console, see “Deploying adapters” on page 134.
v You can also deploy the adapter to the target environment by using an Ant

task that is provided with IBM Worklight. For more information about how
to deploy an adapter by using the provided Ant task, see “Deploying an
adapter” on page 136.

Deploying a customization .war file to an application server
After you build a project, you must deploy it to an application server. The method
depends on the server platform.

About this task

When you build your Worklight project, the customization .war file is created in
the bin directory of the project. You must deploy it to the application server that
you chose when you installed Worklight Server. The following topics contain
instructions to deploy the .war file on different application server platforms. You
can deploy only one .war file to a single application server instance. The .war file
contains the console that you upload applications to. The .war file you choose to
deploy is not specific to the application from which the .war file was generated.
You can upload all the IBM Worklight apps that are generated from the same
Worklight Studio version to the same .war file. The instructions assume that the
.war file is named projectName.war. This is the default name of the .war file, but
you might have renamed it to a different name as described in previous topics.

Chapter 2. Developing IBM Worklight applications 129

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
v To deploy the customization .war file to Apache Tomcat, see “Deploying a

customization .war file to Apache Tomcat.”
v To deploy the customization .war file to WebSphere Application Server Liberty

Profile, see “Deploying a customization .war file to WebSphere Application
Server Liberty Profile.”

v To deploy the customization .war file to WebSphere Application Server Full
Profile, see “Deploying a customization .war file to WebSphere Application
Server Full Profile” on page 131.

Deploying a customization .war file to Apache Tomcat
Copy the .war file to the webapps directory and start Tomcat.

Before you begin

You have built a project, and the customization .war file is in the bin directory of
the project.

Procedure
1. Copy the Worklight Customization .war file to Tomcat by issuing one of the

following commands in the bin directory:
v On UNIX and Linux systems: cp projectName.war TOMCAT_HOME/webapps

v On Windows systems: copy projectName.war TOMCAT_HOME/webapps

where TOMCAT_HOME is the directory where Tomcat is installed.
2. Start Tomcat.

Results

You can now access IBM Worklight Console at http://server:port/projectName/
console, where server is the host name of your server and port is the port number
(default 9080).

Deploying a customization .war file to WebSphere Application
Server Liberty Profile
Copy the .war file to the apps directory, declare the app, and restart the server.

Before you begin

You have built a project, and the customization .war file is in the bin directory of
the project.

Procedure
1. Copy the Worklight Customization .war file to the server by issuing one of the

following commands in the bin directory:
v On UNIX and Linux systems: cp projectName.war install_dir/server/wlp/

usr/servers/worklightServer/apps, where install_dir is the directory in
which WebSphere Application Server Liberty Profile is installed.

v On Windows 7 systems: copy projectName.war C:\ProgramData\IBM\
Worklight\WAS85liberty-server\wlp\usr\servers\worklightServer\apps

v On Windows XP systems: copy projectName.war C:\Documents and
Settings\All Users\Application Data\IBM\Worklight\WAS85liberty-server\
wlp\usr\servers\worklightServer\apps

2. Declare the application in the server.xml file:

130 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

a. Open the server.xml file.
On UNIX and Linux systems, the file is in the install_dir/server/wlp/
usr/servers/worklightServer directory.
On Windows 7 systems, the file is in the C:\ProgramData\IBM\Worklight\
WAS85liberty-server\wlp\usr\servers\worklightServer directory.
On Windows XP systems, the file is in the C:\Documents and
Settings\All Users\Application Data\IBM\Worklight\WAS85liberty-
server\wlp\usr\servers\worklightServer directory.

b. Add the following information to the file:
<application id="projectName" name="projectName" location="projectName.war" type="war">

<classloader delegation="parentLast">
<commonLibrary>

<fileset dir="${shared.resource.dir}/lib" includes="worklight-jee-library.jar">
</commonLibrary>

</classloader>
</application>

3. Restart the server

Results

You can now access IBM Worklight Console at http://server:port/projectName/
console, where server is the host name of your server and port is the port number
(default 9080).

Deploying a customization .war file to WebSphere Application
Server Full Profile
Install the .war file into WebSphere Application Server, configure the class loader
policies, and start the application.

Before you begin

You have built a project, and the customization .war file is in the bin directory of
the project. You have created a stand-alone profile with an application server
named Worklight and the server is using the default ports.

Procedure
1. Log on to the WebSphere Application Server administration console for your

IBM Worklight server. The address is of the form http://server.com:9060/ibm/
console, where server is the name of the server.

2. Install the IBM Worklight customization .war file:
a. Click Applications > New > New Enterprise Application or Applications

> New Application > New Enterprise Application, depending on your
version of WebSphere Application Server.

b. Navigate to your Worklight project bin directory to locate the
projectName.war file

c. Select projectName.war and click Next.
d. On the "How do you want to install the application?" page, select Detailed

and click Next.
e. On the "Application Security Warnings" page, click Continue.
f. Click Continue repeatedly until you reach Step 4 of the wizard, Map Shared

Libraries.
g. Select the Select check box for projectName_war and click Reference shared

libraries.

Chapter 2. Developing IBM Worklight applications 131

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

h. From the Available list, select Worklight Platform Library and click the >
button.

i. Click OK.
j. Click Next until you reach the "Map context roots for web modules" page.
k. In the Context Root field, type /projectName.
l. Click Next.
m. Click Finish.

3. Optional: As an alternative to step 2, you can map the shared libraries as
follows:
a. Click Applications > Application Types > WebSphere enterprise

applications > projectName_war.
b. In the References section, click Shared library references.
c. Select the Select check box for projectName_war and click Reference shared

libraries.
d. From the Available list, select Worklight Platform Library and click the >

button.
e. Click OK twice to return to the projectName_war configuration page.
f. Click the Save link

4. Configure the class loader policies and then start the application:
a. Click the Manage Applications link, or click Applications > WebSphere

Enterprise Applications.
b. From the list of applications, click projectName_war.
c. In the "Detail Properties" section, click the Class loading and update

detection link.
d. In the "Class loader order" pane, click Classes loaded with local class

loader first (parent last).
e. Click OK.
f. In the Modules section, click Manage Modules.
g. From the list of modules, select the Worklight module.
h. In the "Class loader order" pane, click Classes loaded with local class

loader first (parent last).
i. Click OK twice.
j. Click Save

k. Select the Select check box for projectName_war and click Start.

Results

You can now access IBM Worklight Console at http://server:port/projectName/
console, where server is the host name of your server and port is the port number
(default 9080).

Administering adapters and apps in the IBM Worklight
Console

Open the console before performing administrative tasks.

About this task

Before performing any of the other tasks in this collection of topics, open the IBM
Worklight Console:

132 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Open a browser and enter the following URL: http://Worklight

Server:8080/console 8080 is the default port. You might be using a different
value.

2. If your IBM Worklight Server is configured to require login, and you are not
currently logged in, log in when prompted to do so.

Results

The IBM Worklight Catalog page opens, and you can start performing adapter
administration tasks.

Deploying apps
Deploy an app by submitting it.

Procedure

To deploy an app:
1. Click Browse, then navigate to your .wlapp file and select it.
2. Click Submit.

Results

A message is displayed, indicating whether the deployment action succeeded or
failed.

Deleting apps
Delete an app by clicking Delete.

Procedure

To delete an app:

Click Delete to the right of the app name.

Exporting adapter configuration files
Export the configuration files for the adapter by copying them from the source
folder.

Procedure

To export a deployed adapter:

Obtain the adapter from the development environment.
1. Navigate to the /bin folder in your project
2. Copy the .adapter file or files.

Chapter 2. Developing IBM Worklight applications 133

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Deploying adapters
Deploy an adapter from the console.

Procedure

To deploy an adapter:
1. Click Browse, then navigate to your .adapter file and select it.
2. Click Submit.

A message is displayed indicating whether the deployment action succeeded or
failed. If it succeeded, the details of the deployed adapter are added to the
catalog.

3. Click Show details to view the connectivity details for the adapter and the list
of procedures it exposes.

Modifying adapters
To modify an adapter, replace it with a new one.

Procedure

To modify an adapter:

Deploy the modified adapter file, as described in “Deploying adapters.”

Results

The new adapter replaces the original one.

Deleting adapters
Delete an adapter by clicking Delete.

Procedure

To delete an adapter:

Click Delete to the right of the adapter name.

Ant tasks for building and deploying
A set of Ant tasks is supplied with the Enterprise and Consumer editions.

IBM Worklight provides a set of Ant tasks that help you build and deploy adapters
and apps to your IBM Worklight Server, and project customizations to your
application server. A typical use of these Ant tasks is to integrate them with a
central build service that is invoked manually or periodically on a central build
server.

The Ant tasks are available with the IBM Worklight Enterprise Edition and the IBM
Worklight Consumer Edition. They are not available with the IBM Worklight
Developer Edition.

134 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Building an application

The Ant task for building an application has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<project base="." default="target-name">
<target name="target-name">
<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>
<pathelement location="path_to_worklight-ant-platform.version.jar" />
</classpath>
</taskdef>
<app-builder
applicationFolder="adapter-source-files-folder"
environments="list-of-environments"
nativeProjectPrefix="project-name"
outputFolder="output-folder"/>
</target>
</project>

The <app-builder> element has the following attributes:
v The applicationFolder attribute specifies the root folder for the application,

which contains the application-descriptor.xml file and other source files for
the application.

v The environments attribute is a comma-separated list of environments to build.
This attribute is optional. The default action is to build all environments.

v The nativeProjectPrefix attribute is mandatory when you build iOS
applications

v The ouptputFolder attribute specifies the folder to which the resulting .wlapp
file is written.

By default, running the Ant task to build an application does not handle the Dojo
Toolkit, because Ant is not run with build-dojo.xml. You must explicitly configure
the task to do so, by using the following app-builder setting in the Ant build file:
skinBuildExtensions=build-dojo.xml

If you use this setting, the Dojo Toolkit files are deployed with your application.

Deploying an application

The Ant task for deploying an application has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<project base="." default="target-name">
<target name="target-name">
<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>
<pathelement location="path_to_worklight-ant-platform.version.jar" />
</classpath>
</taskdef>
<app-deployer worklightServerHost="http://server-address:port" deployable="app.wlapp" />
</target>
</project>

The <app-deployer> element has the following attributes:
v The worklightServerHost attribute specifies the full URL of your Worklight

server.
v The deployable attribute contains the .wlapp file to deploy.

Chapter 2. Developing IBM Worklight applications 135

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

If you must deploy more than one .wlapp file, add an <app-deployer> element for
each file.

Building an adapter

The Ant task for building an adapter has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<project base="." default="target-name">
<target name="target-name">
<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>
<pathelement location="path_to_worklight-ant-platform.version.jar" />
</classpath>
</taskdef>
<adapter-builder folder="adapter-source-files-folder" destinationfolder="destination-folder" />
</target>
</project>

The <adapter-builder> element has the following attributes:
v The folder attribute specifies the folder that contains the source files of the

adapter (its .xml and .js files).
v The destinationfolder attribute specifies the folder to which the resulting

.adapter file is written.

If you must build more than one adapter file, add an <adapter-builder> element
for each adapter.

Deploying an adapter

The Ant task for deploying an adapter has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<project base="." default="target-name">
<target name="target-name">
<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>
<pathelement location="path_to_worklight-ant-platform.version>.jar" />
</classpath>
</taskdef>
<adapter-deployer worklightserverhost="http://server-address:port" deployable="myAdapter.adapter" />
</target>
</project>

The <adapter-deployer> element has the following attributes:
v The worklightserverhost attribute specifies the full URL of your Worklight

server.
v The deployable attribute specifies the .adapter file to deploy.

If you must deploy more than one .adapter file, add an <adapter-deployer>
element for each file.

Deploying a project

The Ant task for deploying a project (building the server customization archive
file) has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<project name="myProject" default="all">
<target name="taskdefs">
<taskdef resource="com/worklight/ant/defaults.properties">

136 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<classpath>
<pathelement location="home_directory/git/worklight/worklight-build-tools/target/classes" />
<pathelement location="home_directory/git/worklightworklight-build-tools/target/worklight-build-tools-executable.jar" />
</classpath>
</taskdef>
</target>
<target name="all" depends="taskdefs">
<war-builder
projectfolder="."
destinationfolder="bin/war"
warfile="bin/cust.war"
classesFolder="classes-folder"/>
</target>
</project>

The <war-builder> element has the following attributes:
v The projectfolder attribute specifies the path to your project.
v The destinationfolder attribute specifies a folder for holding temporary files.
v The warfile attribute specifies the destination and file name of the generated

.war file
v The classesFolder attribute specifies a folder with compiled Java classes to add

to the .war file. .jar files in the projectfolder\server\lib directory are added
automatically

Authentication configuration
This collection of topics contains tasks and supporting information for configuring
authentication in applications.

Protected resources
You can protect certain Worklight application resources.

Certain IBM Worklight application resources can be protected, and require client
authentication before they can be accessed. The types of resources that can be
protected are: adapter procedures, applications, and static IBM Worklight web
applications, such as the IBM Worklight Console. Note, however, that the
Application Center is not subject to the authentication model described here.

Security Tests
A security test defines a security configuration for a protected resource. Predefined
tests are supplied for standard web and mobile security requirements. You can
write your own custom security tests and define the sequence in which they are
implemented.

A security test specifies one or more authentication realms and an authentication
realm can be used by any number of security tests. A protectable resource can be
protected by any number of realms.

A protected resource is protected by a security test. When a client attempts to
access a protected resource, IBM Worklight checks whether the client is already
authenticated according to all realms of the security test. If the client is not yet
authenticated, IBM Worklight triggers the process of authentication for all
unauthenticated realms.

Before you define security tests, define the authentication realms that the tests use.

Chapter 2. Developing IBM Worklight applications 137

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Define a security test for each environment in the application-descriptor.xml file,
by using the property securityTest="test_name". If no security test is defined for
a specific environment, only a minimal set of default platform tests is run.

You can define three types of security test:

webSecurityTest
A test that is predefined to contain realms that are related to web security.

Use a webSecurityTest to protect web applications.

A webSecurityTest must contain one testUser element with a realm
definition for user authentication. The identity that is obtained from this
realm is considered to be a user identity.

By default, a webSecurityTest includes protection against cross-site request
forgery (XSRF) attacks.

mobileSecurityTest
A test that is predefined to contain realms that are related to mobile
security.

Use a mobileSecurityTest to protect mobile applications.

A mobileSecurityTest must contain one testUser element with a realm
definition for user authentication. The identity that is obtained from this
realm is considered to be a user identity.

A mobileSecurityTest must contain one testDevice element with a realm
definition for device authentication. The identity that is obtained from this
realm is considered to be a device identity.

By default, a mobileSecurityTest includes protection against XSRF attacks
and the ability to remotely disable the mobile application from the
Worklight Console.

customSecurityTest
A custom security test. No predefined realms are added.

Use a customSecurityTest to define your own security requirements and
the sequence and grouping in which they occur.

You can define any number of tests within a customSecurityTest. Each test
specifies one realm. To define a realm as a user identity realm, add the
property isInternalUserId="true" to the test. The isInternalUserID
attribute means that this realm is used for user identification for reporting
and push subscriptions. There must be exactly one such realm for every
security configuration that is applied to a mobile or web resource.

For a device auto provisioning realm, the isInternalDeviceID attribute
means that this realm is used for device identification for reporting, push
subscriptions, and device SSO features. There must be exactly one such
realm for every security configuration that is applied to a mobile resource.

Important: When you use device auto provisioning in customSecurityTests,
an authenticity realm must also be present within the tests, otherwise
provisioning cannot succeed.

To specify the order in which a client must authenticate in the different
realms, add the property step="n" to each test, where n indicates the
sequence. If a sequence is not specified, then all tests are done in a single
step.

138 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: Application authenticity and Device provisioning are not supported in Java
Platform, Micro Edition (Java ME).

Sample security tests

The following figure shows what a webSecurityTest and a mobileSecurityTest
contain. The security tests on the right are detailed equivalent of the security tests
on the left.

The webSecurityTest contains:
v The following realms, enabled by default: wl_anonymousUserRealm and

wl_antiXSRFRealm.
v The user realm that you must specify.

The mobileSecurityTest contains:
v The following realms, enabled by default: wl_anonymousUserRealm,

wl_antiXSRFRealm, wl_remoteDisableRealm and wl_deviceNoProvisioningRealm.
v The user and device realms that you must specify.

A customSecurityTest has no realms that are enabled by default. You must define
all realms that you want your customSecurityTest to contain.

Usually, you add your own realm to your configuration to authenticate users. The
following figure shows a configuration where the realm named MyUserAuthRealm
is the realm that the developer added.

Authentication realms
Resources are protected by authentication realms. Authentication processes can be
interactive or non-interactive.

An authentication realm defines the process to be used to authenticate users, and
consists of the following steps:

Figure 25. Examples of webSecurityTest, mobileSecurityTest, and their equivalent as a customSecurityTest

Figure 26. Examples with your own realm name as a realm definition for testUser

Chapter 2. Developing IBM Worklight applications 139

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

1. Specification of how to collect user credentials, for example, by using a form,
using basic HTTP authentication or using SSO.

2. Specification of how to verify the user credentials, for example, checking that
the password matches the user name, or using an LDAP server or some other
authentication server.

3. Specification of how to build the user identity, that is, how to build objects that
contain all the necessary user properties.

The same realm can be used In different security tests. In this case, clients must
undergo the authentication process that is defined for the realm only once

Authentication processes can be interactive or non-interactive, as demonstrated in
the following authentication process examples:
v An example of interactive authentication is a login form that is displayed when

a user attempts to access a protected resource. The authentication process
includes verifying the user credentials.

v An example of non-interactive authentication is a user cookie that the
authentication process looks for when a user attempts to access a protected
resource. If there is a cookie, this cookie is used to authenticate the user. If there
is no cookie, a cookie is created, and this cookie is used to authenticate the user
in the future.

Authenticators and Login Modules
An authenticator collects client credentials. A login module validates them.

An authenticator is a server component which is used to collect credentials from
the client. The authenticator passes the credentials to a login module, which
validates them and builds a client identity object.

An authenticator can, for example, collect any type of information accessible from
an HTTP request object, such as cookies or any data in headers or the body of the
request.

A login module can validate the credentials that are passed to it in various ways.
For example:
v Using a web service
v Looking up the client ID in a database
v Using an LTPA token

A number of predefined authenticators and login modules are supplied. If these do
not meet your needs, you can write your own in Java.

The authentication configuration file
All types of authentication component are configured in the authentication
configuration file.

Authentication components, security tests, realms, login modules, and
authenticators are all configured in the authentication configuration file,
authenticationConfig.xml, which is in the /server/conf directory of the Worklight
project. A web security test or mobile security test must contain a <testUser>
element that specifies realm name. The definition of a realm includes the class
name of an authenticator, and a reference to a login module. Authenticators are the

140 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

entities which authenticate clients. Authenticators collect client information, and
then use login modules to verify this information.

Table 22. Predefined realms: properties of the <test realm> element.

Authenticator class name Login module reference Description

wl_anonymousUserRealm wl_anonymousUserLoginModule Implement persistent cookie
authentication

wl_remoteDisableRealm wl_remoteDisableLoginModule Implement remote disable

wl_antiXSRFRealm wl_antiXSRFLoginModule Implement anti-XSRF header
check.

wl_noDeviceProvisioningRealmwl_noDeviceProvisioningLoginModuleImplement device
authentication without
provisioning

wl_autoDeviceProvisioningRealmwl_autoDeviceProvisioningLoginModuleImplement device
authentication with
auto-provisioning

IBM Worklight static resources (other than Application Center) such as the
Worklight Console are also configured in the authentication configuration file, in
the <resource> element.

The configuration file has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<tns:loginConfiguration xmlns:tns="http://www.worklight.com/auth/config" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<staticResources>
<resource> ... </resource>
<resource> ... </resource>
</staticResources>
<realms>
<realm> ... </realm>
<realm> ... </realm>
</realms>
<loginModules>
<loginModule> ... </loginModule>
<loginModule> ... </loginModule>
</loginModules>
</tns:loginConfiguration>

Configuring IBM Worklight web application authorization
Configure authentication to the Worklight Administration Console, usage reports,
and Application Center.

The Worklight web applications that require authentication are the IBM Worklight
Administration Console, the IBM Worklight usage reports, and the IBM Worklight
Application Center console. The Worklight Administration Console and Worklight
usage reports are configured by using <resource> elements in the
authenticationConfig.xml file.

The IBM Worklight Application Center console is not subject to the authentication
model described here. For information about setting up authentication for the
Application Center console, see “Configuration of the Application Center after
installation” on page 429.

Configuring Authenticators and Realms
Authenticators are defined within the realm that uses them.

Chapter 2. Developing IBM Worklight applications 141

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Realms are defined in <realm> elements in the authenticationConfig.xml file. The
<realms> element contains a separate <realm> subelement for each realm.

Modify realms by using the authentication configuration editor.

The <realm> element has the following attributes:

Table 23. The <realm> element attributes

Attribute Description

name Mandatory. The unique name by which the
realm is referenced by the protected
resources.
Note: If a realm uses a Facebook
authenticator, its name must start with
"facebook.". The use of Facebook realms is
deprecated in Worklight version 5.0.5.
Support might be removed in any future
version.

loginModule Mandatory. The name of the login module
used by the realm.

The <realm> element has the following subelements:

Table 24. The <realm> element subelements

Element Description

<className> Mandatory. The class name of the
authenticator.

For details of the supported authenticators,
see the following topics.

<parameter> Optional. Represents the name-value pairs
which are passed to the authenticator upon
instantiation.

This element may appear multiple times.

<onLoginUrl> Optional. Defines the path to which the
client is forwarded upon successful login.

If this element is not specified, then
depending on the authenticator type, either
the current request processing is continued,
or a saved request is restored.

Basic authenticator
Description and syntax of the basic authenticator.

Description

The basic authenticator implements basic HTTP authentication.

Note: You can use the basic authenticator only for web applications, not for mobile
applications.

142 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Class Name
com.worklight.core.auth.ext.BasicAuthenticator

Parameters

The basic authenticator has the following parameters:

Parameter Description

<basic-realm-name> Mandatory. A string that is sent to the client
as a realm name, and presented by the
browser in the login dialog.

<realm name="realmForMyApp" loginModule="DatabaseLoginModule">
<className> com.worklight.core.auth.ext.BasicAuthenticator </className>
<parameter name="basic-realm-name" value="My App" />

</realm>

Form-based authenticator
Description and syntax of the form-based authenticator.

Description

The form-based authenticator presents a login form to the user. The login form
must contain fields named j_username and j_password, and the submit action must
be j_security_check. If the login fails, the user is redirected to an error page.

Class Name
com.worklight.core.auth.ext.FormBasedAuthenticator

Parameters

The form-based authenticator has the following parameters:

Parameter Description

login-page Mandatory. Path to the login page, relative
to the web application context under the
conf directory. A sample login.html file is
provided under this directory when creating
a Worklight project in the Worklight Studio.

The authenticator passes to the login page
error messages. To display the error
message, use the placeholder
${errorMessage} within your login page, as
depicted in the example.

auth-redirect If the login form is not stored locally in the
web application, provide a URL to the login
page in this parameter. The Worklight Server
uses redirect to pass the login to the external
domain.

This parameter cannot be used together with
the login-page parameter.

Chapter 2. Developing IBM Worklight applications 143

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<realm name="AppAuthRealm" loginModule="DatabaseLoginModule">
<className> com.worklight.core.auth.ext.FormBasedAuthenticator </className>
<parameter name="login-page" value="login.html" />
</realm>

Header authenticator
Description and syntax of the header authenticator.

Description

The header authenticator is not interactive. The header authenticator must be used
with the Header login module.

Class Name
com.worklight.core.auth.ext.HeaderAuthenticator

Parameters

None.
<realm name="RealmHeader" loginModule="HeaderLoginModule">
<className> com.worklight.core.auth.ext.HeaderAuthenticator </className>
</realm>

Persistent cookie authenticator
Description and syntax of the persistent cookie authenticator.

Description

The persistent cookie authenticator looks for a specific cookie in any request that is
sent to it. If the request does not contain the cookie, the authenticator creates a
cookie, and sends it in the response. This authenticator is not interactive, that is, it
does not ask the user for credentials, and is mainly used in environment realms.

Class Name
com.worklight.core.auth.ext.PersistentCookieAuthenticator

Parameters

The persistent cookie authenticator class has the following parameter:

Parameter Description

<cookie-name> Optional. The name of the persistent cookie.
If this parameter is not specified, the default
name, WL_PERSISTENT_COOKIE, is used.

<realm name="PersistentCookie" loginModule="dummy">
<className> com.worklight.core.auth.ext.PersistentCookieAuthenticator </className>
</realm>

Adapter authenticator
Description and syntax of the adapter authenticator

144 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Description

Use the adapter authenticator to develop custom authentication logic in JavaScript
within an adapter. You generally use this technique to define multi-step login
processes that you cannot implement simply by configuring another type of
authenticator, such as a basic authenticator.

You can use an adapter authenticator to protect adapter procedures only.

Important: The adapter authenticator code performs all the validations and the
creation of the user identity. You must use it with a “Non-validating login module”
on page 147.

Class Name
com.worklight.integration.auth.AdapterAuthenticator

Parameters

The adapter authenticator class has the following parameters:

Parameter Description

<login-function> Mandatory. The name of the JavaScript
function, in the format <adapter-
name.function-name>, which is invoked
when the login is triggered (depending on
the configuration, either when the client app
explicitly invoked WL.Client.login or if it
tried accessing a protected procedure). This
function receives as an input parameter the
request headers so that it can access the user
agent and other information passed on the
request. This function should not be exposed
as a procedure by the adapter.

<logout-function> Optional. The name of the JavaScript
function, in the format <adapter-
name.function-name>, which is invoked
when the session is terminated (either when
the client app invoked WL.Client.logout or
when the Server decided to terminate the
session). This function receives no
parameters. It should not be exposed as a
procedure by the adapter.

Example
<realm name="ACMERealm" loginModule="ACMELoginModule">
<className> com.worklight.integration.auth.AdapterAuthenticator </className>
<parameter name="login-function" value="ACMEAuthAdapter.triggerLogin" />
<parameter name="logout-function" value="ACMEAuthAdapter.logout" />
</realm>

LTPA authenticator
Description and syntax for the LTPA authenticator.

Chapter 2. Developing IBM Worklight applications 145

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Description

Use the Lightweight Third-Party Authentication authenticator to integrate with the
WebSphere Application Server LTPA mechanisms.

Note: This authenticator is supported only on WebSphere Application Server. To
avoid unnecessary errors on other application servers, the authenticator is
commented out in the default authenticationConfig.xml file that is created with
an empty Worklight project. To use it, remove the comments first.

This authenticator can be used with the WASLTPAModule login module.

Class Name
com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator

Parameters

The adapter authenticator class has the following parameters:

Parameter Description

login-page Mandatory. The login page URL relative to
the web application context.

error-page Mandatory. The error page URL relative to
the web application context.

cookie-domain Optional. A String such as example.com,
which specifies the domain in which the
LTPA SSO cookie applies. If this parameter
is not set, no domain attribute is set on the
cookie. The single sign-on is then restricted
to the application server host name and does
not work with other hosts in the same
domain.

httponly-cookie Optional. A String with a value of either
true or false, which specifies whether the
cookie has the HttpOnly attribute set. This
attribute helps to prevent cross-site scripting
attacks.

cookie-name Optional. A String that specifies the name of
the LTPA SSO cookie. If this parameter is
not set, the default cookie name is
LtpaToken.

Example
<realm name="WASLTPARealm" loginModule="WASLTPAModule">
<className>com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator</className>
<parameter name="login-page" value="/login.html"/>
<parameter name="error-page" value="/loginError.html"/>
<parameter name="cookie-domain" value="example.com"/>
<parameter name="httponly-cookie" value="true"/>
<parameter name="cookie-name" value="LtpaToken2"/>
</realm>

Attributes of login modules
Login modules are defined in <loginModule> elements in the
authenticationConfig.xml file.

146 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The <loginModules> element contains a separate <loginModule> subelement for
each login module.

The <loginModule> element has the following attributes:

Attribute Description

name Mandatory. The unique name by which
realms reference the login module.

audit Optional. Defines whether login attempts
that use the login module are logged in the
audit log. The log file is Worklight Project
Name/server/log/audit/audit.log.

Valid values are:

true
Login and logout attempts are logged in
the audit log.

false
Default. Login and logout attempts are
not logged in the audit log.

The <loginModule> element has the following subelements:

Element Description

<className> Mandatory. The class name of the login
module.

For details of the supported login modules,
see the following topics.

<parameter> Optional. An initialization property of the
login module. The supported properties and
their semantics depend on the login module
class.

This element can occur multiple times.

Non-validating login module
The non-validating login module accepts any user name and password passed by
the authenticator.

Class Name
com.worklight.core.auth.ext.NonValidatingLoginModule

Parameters

None
<loginModule name="dummy" canBeResourceLogin="false" isIdentityAssociationKey="true">
<className> com.worklight.core.auth.ext.NonValidatingLoginModule </className>
</loginModule>

Database login module
The database login module verifies the user name and password by executing an
SQL query.

Chapter 2. Developing IBM Worklight applications 147

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Class Name
com.worklight.core.auth.ext.RDBMSLoginModule

Parameters

The database login module has the following parameters:

Parameter Description

dsJndiName Mandatory. The JNDI name of the data
source that defines the database.

principalsQuery Mandatory. The SQL query text. The query
has the following structure:

SELECT UserID, Password, DisplayName FROM UsersTable WHERE UserID=?

where:

UserID, Password, and DisplayName are the
names of the columns that contain user
login names, passwords, and display names

UserTable is the database table that contains
this data.

<loginModule name="MyDatabase" canBeResourceLogin="true" isIdentityAssociationKey="true">
<className> com.worklight.core.auth.ext.RDBMSLoginModule </className>
<parameter name="dsJndiName" value="java:/MyDS"/>
<parameter name="principalsQuery">
SELECT userid, password, concat(firstName, ’ ’, lastName) as display_name FROM users WHERE userid=?
</parameter>
</loginModule>

Single identity login module
The single identity login module is used to grant access to the Worklight Console
to a single user, the identity of which is defined in the worklight.properties file.

Class Name
com.worklight.core.auth.ext.SingleIdentityLoginModule

Parameters

None

Configuration

.The worklight.properties file must contain the following properties:

Key Description

console.username Name of the user who can access the
Console

console.password Password of the user who can access the
Console. The password can be encrypted as
indicated in “Storing properties in encrypted
format” on page 411.

<loginModule name="Console" canBeResourceLogin="false" isIdentityAssociationKey="false">
<className> com.worklight.core.auth.ext.SingleIdentityLoginModule </className>
</loginModule>

148 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Header login module
The Header login module is always used with the Header authenticator. It
validates the request by looking for specific headers.

Class Name
com.worklight.core.auth.ext.HeaderLoginModule

Parameters

The Header login module has the following parameters:

Parameter Description

user-name-header Mandatory. The name of the header that
contains the user name. If the request does
not contain this header, the authentication
fails.

display-name-header Optional. The name of the header that
contains the display name. If this parameter
is not specified, the user name is used as the
display name.

<loginModule name="HeaderLoginModule" audit="true">
<className>com.worklight.core.auth.ext.HeaderLoginModule</className>
<parameter name="user-name-header" value="userid"/>
<parameter name="display-name-header" value="username"/>

</loginModule>

WASLTPAModule login module
The WASLTPAModule login module enables integration with WebSphere
Application Server LTPA mechanisms.

Note: This login module is only supported on WebSphere Application Server. To
avoid unnecessary errors when Worklight is run on other application servers, the
login module is commented out in the default authenticationConfig.xml file that
is created with an empty Worklight project. To use it, remove the comments first.

Class Name

com.worklight.core.auth.ext.WebSphereLoginModule

Parameters

None.
<loginModule name="WASLTPAModule" canBeResourceLogin="true" isIdentityAssociationKey="false">
<className>com.worklight.core.auth.ext.WebSphereLoginModule</className>
</loginModule>

LDAP login module
You can use the LDAP login module to authenticate users against LDAP servers,
for example Active Directory, or OpenLDAP.

LDAP login module implements a UserNamePasswordLoginModule interface, so you
must use it with an authenticator that implements a
UsernamePasswordAuthenticator interface.

Chapter 2. Developing IBM Worklight applications 149

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Class Name
com.worklight.core.auth.ext.LdapLoginModule

Parameters

You must set the following parameters for the LDAP login module:

Parameter Description Sample values

ldapProviderUrl Mandatory. The IP address or the URL of the LDAP server. ldap://10.0.1.2

ldaps://10.0.1.3

ldapTimeoutMs Mandatory. The connection timeout to the LDAP server in milliseconds. 2000

ldapSecurityAuthentication Mandatory. The LDAP security authentication type. The value is usually simple. Consult your LDAP administrator to
obtain the relevant authentication type.

none

simple

strong

validationType Mandatory. The type of validation. The value can be exists, searchPattern, or custom. See the following table for
more details.

exists

searchPattern

custom

ldapSecurityPrincipalPattern Mandatory. Depending on the LDAP server type, this parameter might require security credentials that you must
supply in several formats. Some LDAP servers require only the user name, for example john, and others require the
user name and the domain, for example john@server.com. You use this property to define the pattern to create your
user name based credentials. You can use the {username} placeholder.

{username}

{username}@myserver.com

CN={username},DC=myserver,DC=co

ldapSearchFilterPattern Optional. This parameter is required only if the value of the validationType parameter is searchPattern. You use this
parameter to define a search filter pattern that is run when a successful LDAP binding is established. The user
validation is successful if the search returns one or more entries. You can use the {username} placeholder. The syntax
might change depending on the LDAP server type.

(sAMAccountName={username})

(&(objectClass=user)(sAMAccount
OU=MyCompany,DC=myserver,DC=com

ldapSearchBase Optional. This parameter is required only if the validationType parameter is searchPattern. Use this parameter to
define the base of the LDAP search.

dc=myserver,dc=com

Sample LDAP login module definition:
<loginModule name="LDAPLoginModule">
<className>com.worklight.core.auth.ext.LdapLoginModule</className>
<parameter name="ldapProviderUrl" value="ldap://10.0.1.2"/>
<parameter name="ldapTimeoutMs" value="2000"/>
<parameter name="ldapSecurityAuthentication" value="simple"/>
<parameter name="validationType" value="searchPattern"/>
<parameter name="ldapSecurityPrincipalPattern" value="{username}@myserver.com"/>
<parameter name="ldapSearchFilterPattern" value="(&(objectClass=user)(sAMAccountName={username})(memberof=CN=Sales,OU=Groups,OU=MyCompany,DC=myserver,D
<parameter name="ldapSearchBase" value="dc=myserver,dc=com"/>
</loginModule>

Values of the validationType parameter

Value Description

exists The login module tries to establish the LDAP binding with
the supplied credentials. The credentials validation is
successful if the binding is successfully established.

150 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Value Description

searchPattern The login module tries to do the exists validation. When
the validation succeeds, the login module issues a search
query to the LDAP server context, according to the
ldapSearchFilterPattern and ldapSearchBase parameters.
The credentials validation is successful if the search query
returns one or more entries.

custom With this value, you can implement custom validation
logic. The login module tries to do the exists validation.
When the validation succeeds, the login module calls a
public boolean doCustomValidation(LdapContext ldapCtx,
String username) method. To override this method, you
must create a custom Java class in your Worklight project
and extend from
com.worklight.core.auth.ext.UserNamePasswordLoginModule.
See the following example.

Sample custom validation implementation:
package mycode;
import javax.naming.ldap.LdapContext;
import com.worklight.core.auth.ext;

public class MyCustomLdapLoginModule extends LdapLoginModule {

@Override
public boolean doCustomValidation(LdapContext ldapCtx, String username, String password) {

boolean success = true;

// Do some custom validations here using ldapCtx, validationProperties and username
// Return true in case of validation success and false otherwise

return success;
}

}

Note:

After you implement your custom extension of LdapLoginModule, use it as a
className value of LoginModule in your AuthenticationConfig.xml file.

You can also override other public methods of LdapLoginModule. See “Deprecated
interface WorkLightLoginModule” on page 307 for more details.

Scope of mobile device authentication
You can require mobile devices to authenticate themselves. Device identity is used
in several places within the Worklight platform.

In addition to requiring users to authenticate before they access certain resources,
you can also require mobile devices to authenticate before apps installed on them
can access the Worklight Server.

Device and application authentication is a process that allows making claims of
type "this is application A installed on device D".

Chapter 2. Developing IBM Worklight applications 151

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Device and application authentication is relevant only for applications that are
installed on mobile devices.

Mobile device provisioning
Provisioning is the process of obtaining a security certificate. There are three modes
of the provisioning process.

When a Worklight application first runs on a mobile device, it creates a pair of
PKI-based keys. It then uses the keys to sign the public characteristics of the device
and application, and sends them to the Worklight Server for authentication
purposes.

A key pair alone is not sufficient to sign these public characteristics because any
app can create a key pair. In order for a key pair to be trusted, it must be signed
by an external trusted authority to create a certificate. The process of obtaining
such a certificate is called provisioning.

After a certificate is obtained, the app can store the key pair in the device keystore,
access to which is protected by the operating system.

The provisioning process has three modes:

No provisioning
In this mode, the provisioning process does not happen. This mode is
suitable only during the development cycle, to temporarily disable the
provisioning for the application. Technically, the client application does not
trigger the provisioning process, and the server does not verify the client
certificate.

Auto-provisioning
In this mode, the Worklight Server automatically issues a certificate for the
device and application data that are provided by the client application. Use
this option only when the Worklight application authenticity features are
enabled.

Custom provisioning
In this mode, the Worklight Server is augmented with custom logic that
controls the device and application provisioning process. This logic can
involve integration with an external system, such as a mobile device
manager (MDM). The external system can issue the client certificate based
on an activation code that is obtained from the app, or can instruct the
Worklight Server to do so.

Note: Auto-provisioning and custom provisioning are supported only on iOS and
Android devices.

Device auto-provisioning

Device auto-provisioning has three aspects:
v Provisioning granularity: the scope of the provisioned entity.
v Pre required login: the realms that a client needs to be authenticated with before

it can get permission to perform provisioning.
v CA Certificate: the parent certificate which issues device certificates for the

provisioning process.

The default behavior is as follows:

152 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Provisioning granularity: a single application.
v Pre required login: a login is required to the authentication realm, if any, defined

for the current security test.
v CA Certificate: a Worklight CA Certificate, which is embedded into the platform.

Whether it is obtained by an auto-provisioning or custom provisioning process, the
certificate is stored by the client app on the device, and used for signing the
payload sent to the Worklight Server. The Worklight Server validates the client
certificate, regardless of how it is obtained.

The server sends a request for ID, which the client responds to with a
certificate-signed payload. If the client does not have the certificate, then a request
is sent to the Worklight server automatically to get a certificate, and after that is
done, the client automatically sends the signed payload.

After the server sends the ok response, the original request is sent automatically.

Granularity of provisioning

The key pair that is used to sign the device and app properties can represent a
single application, a group of applications, or an entire device. For example:

Single application
A company’s provisioning process requires separate activation for each
application that is installed on the device. In this case, the application is
the provisionable entity, and each application must generate its own key
pair.

Group of applications
A company develops different groups of applications to employees in
different geographical regions. If the activation is required per region, the
key pair would represent the group of applications that belong to that
region. All applications from the same group use the same key pair for
their signatures.

Entire device
In this case, the key pair represents the whole device. All the applications
from the same vendor that are installed on that device use the same key
pair.

Configuring and implementing device provisioning
You can change the default behavior with regard to CA certificates. You can also
implement custom provisioning.

Procedure
v To use a CA certificate other than the default Worklight CA certificate, configure

the following properties in the worklight.properties file:

wl.ca.keystore.path
The path to the keystore, relative to the server folder in the Worklight
Project, for example: conf/default.keystore.

wl.ca.keystore.type
The type of the keystore file. Valid values are jks or pkcs12.

wl.ca.keystore.password
The password to the keystore file, for example: worklight.

Chapter 2. Developing IBM Worklight applications 153

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

wl.ca.key.alias
The alias of the entry where the private key and certificate are stored, in
the keystore, for example: keypair1.

wl.ca.key.alias.password
The password to the alias in the keystore for example: worklight.

v If you want to change the provisioning mechanism to use different granularity
(application, device or group) or a different list of pre-required realms, you can
create your own customized authenticator, login module and challenge handler.
For more information about custom authentication, see the module Custom
Authenticator and Login Module under category 8, Authenticator and security, in
“Getting started tutorials and samples” on page 29.

Device single sign-on (SSO)
Single sign-on (SSO) enables users to access multiple resources (that is, applications
and adapter procedures) by authenticating only once.

When a user successfully logs in through an SSO login module, the user gains
access to all resources that are using the same SSO login module, without having
to authenticate again for each of them. The authenticated state remains alive as
long as requests to resources protected by the login module are being issued
within the timeout period, which is identical to the session timeout period.

Device authentication

The SSO feature requires the use of device authentication. This means that for a
protected resource that needs to be protected with SSO, there must also be a device
authentication realm in the securityTest protecting the resource in the
authenticationConfig.xml file. Device authentication should take place before the
SSO-enabled user authentication.

Supported devices

SSO is supported on Android and iOS devices.

Performance

When you use the single sign-on feature, the load on the database might increase,
and you might have to adjust the database configuration.

Configuring device single sign-on
Assign a common identifier in the application descriptor file for each application
that is to be accessed by single sign-on, and enable single sign-on from a
mobileSecurityTest element or from a customSecurityTest element.

Procedure
v For each application (or for each adapter accessed by those applications), assign

the same value to the following attributes in the application descriptor file:
– For Android, assign the same sharedUserId value for each application. The

following example assigns the value "my.sso":
<android version="1.0" sharedUserId="my.sso">
...
</android>

154 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

– For iOS, assign the same AppID prefix for each application. The AppID prefix
is defined when you create new AppID on the Apple Developer Provisioning
Portal.

For information about the application descriptor file, see “The application
descriptor” on page 55.

v When configuring mobileSecurityTest elements, enable single sign-on from the
securityTest element by setting the value of the sso attribute to true. Note that
you can enable SSO for user realms only. For example:
<mobileSecurityTest name="mst">

<testDeviceId provisioningType="none"/>
<testUser realm="myUserRealm" sso="true"/>

</mobileSecurityTest>

v When configuring customSecurityTest elements, enable single sign-on by
configuring an ssoDeviceLoginModule property on the user login module in the
authentication configuration file. For example:
<loginModule name="MySSO" ssoDeviceLoginModule="WLDeviceNoProvisioningLoginModule">

<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>
</loginModule>

In this example, "MySSO" is the name of the user login module for which single
sign-on is being enabled so that its login can be shared.
"WLDeviceNoProvisioningLoginModule" is the name of the login module that
handles device authentication; in this case, with no provisioning. To use
auto-provisioning as the device login module, set the ssoDeviceLoginModule
property to the value "WLDeviceAutoProvisioningLoginModule". With custom
provisioning, you define the name when you create the custom provisioning
login module.

v When configuring customSecurityTest elements, you must configure the user
realm at least one step later than the device realm. This is necessary to ensure
that the SSO feature operates correctly. The following example illustrates a
correct customSecurityTest configuration:
<customSecurityTest name="adapter">

<test realm="wl_deviceNoProvisioningRealm" isInternalDeviceID="true" step="1"/>
<test realm="MySSO" isInternalUserID="true" step="2"/>

</customSecurityTest>

v A cleanup task cleans the database of orphaned and expired single-sign-on login
contexts. To configure the cleanup task interval, uncomment the
sso.cleanup.taskFrequencyInSeconds setting in the worklight properties file and
assign the required task interval value expressed in seconds. For information
about the worklight properties file, see “IBM Worklight properties” on page 406.

Data synchronization with JSONStore
You can write an application that maintains a local copy of its data and, on
request, pushes the local updates to a back-end service.

The local copy is a JSON data store. IBM Worklight supplies an API for working
with a JSON Store through the methods of the JavaScript class WL.JSONStore.

Using the JSONStore API, you can store data locally and push changes from the
client to a server. You can search the local data store and update and delete data
within it. You can secure the local data store by using password-based encryption.

Most of the operations that are provided in the API for using data synchronization,
operate on the local copy of the data that is stored on the device. add, replace,

Chapter 2. Developing IBM Worklight applications 155

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

remove and all other operations are specific to the local copy of the data that is
stored by the JSON data store. The JSON data store tracks modifications to data
made locally. The exceptions are push, pushSelected, and load, which act on the
local and remote data.

You can push the local modifications to a Worklight server adapter. Push the data
to the adapter by using the push and pushSelected methods. The push call
attempts to push all the local modifications to the adapter. The pushSelected
operates only on the set of documents you specify.

Multiple stores are supported per application, and each of those stores can hold
many collections. Refer to WL.JSONStore.initCollection API for details on how to
initialize different stores and collections.

To relate a collection to an adapter, you must specify the adapter option as part of
the collection creation options. You do not have to associate a collection with an
adapter. If an adapter is not specified for the collection, calls to push and
pushSelected return an error.

For more information, see WL.JSONStore .

Developing an app that uses data synchronization
Create an app and adapter, then use a wizard to create the JavaScript for handling
a local data store, and incorporate it in your app.

About this task

You can use the advanced data management and synchronization feature to store
data securely on a mobile device. It provides full access to the local copy of the
data while tracking modifications made locally to be synchronized with a
Worklight adapter when appropriate.

A typical use of this feature is as follows:
v A mobile worker whose job includes customer visits downloads a large set of

information to a mobile device when network conditions are adequate (for
example, in the office, using the corporate WiFi network)

v The downloaded data is securely stored on the device.
v The worker uses the local copy of the data in an application on the mobile

device, with the device either online or offline.
v The Worklight SDK tracks any changes that are made to the local copy of the

data.
v At an appropriate time, perhaps back in the office at the end of the week and

again connected to the corporate WiFi network, the worker synchronizes the
updates that were made locally on the device with a Worklight adapter that
pushes the updates into a back-end system.

Procedure
1. In Worklight Studio, create an application.

a. In the Project Explorer tab, right-click the project name.
b. Click New > Worklight Hybrid Application. The Hybrid Application

window opens.
c. Complete the fields in this window appropriately and click Finish. A

standard application structure is created.

156 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. In Worklight Studio, create and deploy an adapter.
a. In the Project Explorer tab, right-click the project name.
b. Click New > Worklight Adapter. The New Worklight Adapter window

opens.
c. Select the appropriate adapter type, enter an adapter name, and select the

JSON Data available offline check box.
d. Optional: To change the suggested procedure names, type over them.
e. Click Finish. A standard adapter structure is created.
f. Deploy the adapter.

3. Retrieve a JSON object with the adapter:
a. Right-click the adapter name.
b. Click Run As > Invoke Worklight Procedure. The Edit Configuration

Window is displayed
c. Select the procedure that is used for retrieving JSON data and click Run.

The JSON object that is returned by the procedure is displayed.
4. Create a local JSON store:

a. In Worklight Studio, click File > New > Worklight JSON Store and select
the project and app names. The Create JSON Collection wizard starts.

b. Follow the instructions in the wizard to invoke the adapter, name the
collection, and specify the searchable fields.

c. Optional: To encrypt collections for an application, select the Encrypt
collections check box in the wizard.

The wizard creates a JavaScript file named collection_nameCollection.js in
the application's common/js directory, where collection_name is the name you
specified in the wizard.

5. Review the collection_nameCollection.js file and include its content
manually in your application's .js file.

Encrypting collections
You can choose to encrypt collections for an app, but you cannot switch between
encrypted and plain-text formats, or mix formats within an app.

About this task

You can specify that all collections created for an app are encrypted in the JSON
data store. It is not possible to have some collections encrypted and others not
encrypted in the same app. When a single collection is encrypted, the underlying
storage mechanism encrypts all further collections. After a collection is created in
either clear text or encrypted, you cannot convert it from one format to the other.
A collection that is created in clear text would have to be destroyed and re-created
with the usePassword option and reloaded with data and vice versa.

Procedure

To specify that the collections are to be encrypted use the usePassword method
when you create a collection. For more information, see usePassword.

Troubleshooting information for synchronization
There are various ways in which a synchronization can fail. A status code is
returned.

Chapter 2. Developing IBM Worklight applications 157

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The push and pushSelected methods operate similarly, except that push takes no
parameters (it synchronizes all the documents that were modified locally) and
pushSelected takes the ID of a specific document or documents. Either function
fails if the wrong parameters are passed to it.

They can also fail if something goes wrong while native code is running to get the
documents or verify that they are unsynchronized.

After the documents are retrieved, a Worklight adapter is called, using the
appropriate option (add, replace, or remove). The adapter then tries to contact the
back-end server. This attempt can fail if the adapter or procedure name does not
exist (perhaps because it is misspelled) or if the Worklight Server or back-end
server cannot be reached.

If the server is successfully contacted, you can check the status code from the
synchronization procedure and determine whether to mark that document as
synchronized. This step uses native code and can fail.

All the failure paths are handled and return status codes to help you to mitigate
failure conditions. Status codes are listed at “List of error codes” on page 218.

Client-side log capture
Applications in the field occasionally experience problems that require a
developer's attention to fix. It is often difficult to reproduce problems in the field
because developers who worked on the code for the problem application often do
not have the environment or exact device with which to test. In these situations, it
is helpful to be able to retrieve debug logs from the client devices as the problems
occur in the environment in which they happen.

To make debug logs effective, developers should produce meaningful log messages
with an appropriate level. For example:
[WARN] Procedure sayHello timed out due to a network connection failure.

Questions to consider

Consider the following questions, and make the appropriate API calls to the native
client logger API to achieve your goals:
v When should you turn on log capture in your client applications?

– Leave log capture on?
– Turn log capture on selectively for applications or operating systems that are

known to be problematic?
– Turn log capture on the second Tuesday of every month?

v When should you call send() to upload any captured client logs?
– On a specific time interval?
– In application lifecycle events (like pause and resume events)?
– Batched with other application network activity (to be friendly to the device

radio or letting it sleep and preserve battery)?
v What level and above do you want to capture?

– DEBUG is verbose, while INFO is nearly quiet.
– The JavaScript level is controlled independently from the native level, but the

native level can be set by using the WL.Logger.setNativeOptions JavaScript
API call.

158 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v How large should you let the capture buffer grow before you stop capturing?
v Where can you strategically place log API calls to see the required data to solve

problems in the field?
v How can you process the uploaded logs at the server?

– Forward them to an analytics product?
– Print them into the server-side log file?

What is provided on the client side?

Android
com.worklight.common.Logger

Note: Native Android code that calls the android.util.Log.* API is not
captured in the client-side logs. Developers must use
com.worklight.common.Logger to capture client-side logs. For more
information about the com.worklight.common.Logger API, see “Java
client-side API for native Android apps” on page 271.

iOS
OCLogger

Note: Native iOS code that calls nslog directly is not captured in the
client-side logs. Developers must use OCLogger to capture client-side logs.
For more information about the OCLogger API, see “Objective-C client-side
API for native iOS apps” on page 271.

JavaScript
WL.Logger

Note: JavaScript code that calls console.log directly is not captured in the
client-side logs. Developers must use WL.Logger to capture client-side logs.
For more information about the WL.Logger API, see “The WL.Logger
object” on page 241.

Server preparation for uploaded log data
You must prepare your server for uploaded log data.

By default, the client logger, when it is instructed to send logs, sends the logs to an
adapter that the customer must implement. The adapter must be an HTTP adapter
that is named WLClientLogReceiver, and have at least one procedure. The
procedure must be named log. The log procedure is passed two parameters:
deviceInfo (a JSON object) and logMessages (a JSON array). For more information
about implementing adapter procedures, see “Implementing adapter procedures”
on page 115.

The following example shows an implementation of the log procedure in the
WLClientLogReceiver-impl.js file:
function log(deviceInfo, logMessages) {

/* The adapter can choose to process the parameters,
for example to forward them to a backend server for
safekeeping and further analysis.

The deviceInfo object may look like this:
{

"appName": "wlapp",
"appVersion": "1.0",
"deviceId": "66eed0c9-ecf7-355f-914a-3cedac70ebcc",
"model": "Galaxy Nexus - 4.2.2 - API 17 - 720x1280",
"systemName": "Android",
"systemVersion": "4.2.2",
"os.arch": "i686", // Android only

Chapter 2. Developing IBM Worklight applications 159

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

"os.version": "3.4.0-qemu+" // Android only
}
The logMessages parameter is a JSON array
that contains JSON object elements, and might look like this:

[{
"timestamp" : "17-02-2013 13:54:23:745", // "dd-MM-yyyy hh:mm:ss:S"
"level" : "ERROR", // ERROR || WARN || INFO || LOG || DEBUG
"package" : "your_tag", // typically a class name, app name, or JavaScript object name
"msg" : "the message", // a helpful log message
"threadid" : 42, // (Android only) id of the current thread
"metadata" : { "$src" : "js" } // additional metadata placed on the log call

}]

*/

return true;

}

The procedure element in the WLClientLogReceiver.xml file for log:
<procedure name="log" securityTest="wl_unprotected" audit="true" />

The security test must be wl_unprotected because apps in the field might be
uploading data before the application successfully authenticated. This scenario
might occur in the case of crashes during the first time that the app starts.

The audit="true" flag means that uploaded parameters are recorded in the server
log. It is a convenient way to get uploaded client logs without having to
implement anything in the adapter. You can call WL.Server.log manually in the
adapter log procedure implementation.

Client-side logging in client apps
You can take advantage of the client-side logging feature in your client apps.

Log capture

Log capture is enabled by default, but can be turned on or off with native or
JavaScript API calls.

Logger native options can be controlled statically by the initOptions.js file in a
IBM Worklight generated app. Customers can inspect these values to ensure that
they are set as wanted. The processing of initOptions changes the Logger native
options. You can affect the log capture configuration programmatically by using
the WL.Logger API or statically by specifying the options in the initOptions.js file,
but not both at the same time.

Client logs are always captured, but not sent, for first-time start of every IBM
Worklight application. To change this behavior, you can specifically place an API
call to disable the capture in Android or IOS native code.

Android
The API call to affect the capture setting is:
Logger.setCapture(true);

iOS The API call to affect the capture setting is:
[OCLogger setCapture: YES]

JavaScript
The API call to affect the capture setting is:
WL.Logger.setNativeOptions({’capture’: true});

160 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Uncaught exception capture

An uncaught exception that is permitted to pass all the way out of an application
at run time appears to the user as an application crash.

Uncaught exceptions on Android and iOS are recorded when log capture is turned
on. This data is recorded to the same persistent buffer as all other normal log calls.
As well all other persistently captured log data, it is only sent to the server on
demand. You can place an API call early in your application lifecycle to send the
data to the server before the same exception occurs during the next user attempt to
start the application.

Android
// placed as the first line in the main Activity’s onCreate method
Logger.sendIfUnCaughtExceptionDetected(this);

iOS
// placed as first line in
// - (BOOL)application:(UIApplication *)application
// didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
[OCLogger sendIfUnCaughtExceptionDetected];

The sendIfUnCaughtExceptionDetected method is an optimization, and behaves the
same as the send method. The difference is that the
sendIfUnCaughtExceptionDetected method does what the name implies; sends only
if the persistent log capture buffer contains an uncaught exception entry.

Sending captured logs to the server

You must create and deploy an adapter with a specific name and procedure as part
of your application to receive uploaded logs at the IBM Worklight Server. For more
information about these requirements, see “Server preparation for uploaded log
data” on page 159. Captured logs are not automatically sent to the server.

Android
You can add code to the main Activity’s onCreate method (and any other
lifecycle methods):
// send log to server if anything was captured
Logger.send();

For more information about the Logger.send API, see “Java client-side API
for native Android apps” on page 271.

iOS You can add code to the application lifecycle events in the Application
Delegate to call:
OCLogger.send();

For more information about the OCLogger.send API, see “Objective-C
client-side API for native iOS apps” on page 271.

JavaScript
You can call:
// must wait until the Cordova deviceReady event fires,
// or in wlCommonInit, which is the equivalent
WL.Logger.send();

For more information about the WL.Logger.send API, see
“WL.Logger.send” on page 243.

Chapter 2. Developing IBM Worklight applications 161

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Polling an adapter or other endpoint to affect logger
configuration

You can write client-side code to poll a customer-written adapter. The adapter can
reply with an appropriate response, the client must parse the response, and call the
appropriate WL.Logger, OCLogger, or Logger API to affect the wanted configuration
change.

For example, an adapter implementation might have the following procedure:
config() {

return {capture: true};
}

The client code invokes the procedure by using the standard IBM Worklight
invokeProcedure function as follows:
WL.Client.invokeProcedure({
adapter: ’WLClientLogReceiver’,
procedure: ’config’,
parameters: []

}, {
onSuccess: function() {
WL.Logger.setNativeOptions({capture: res.invocationResult.capture}).then(WL.Logger.send);

}
});

You can conditionally return options from the adapter config procedure that is
based on some client metadata. To do so, send the metadata through the
parameters of the invokeProcedure call as follows:
environment : WL.Client.getAppProperty(WL.AppProp.ENVIRONMENT)
appName : WL.Client.getAppProperty(WL.AppProp.APP_DISPLAY_NAME)
appVersion : WL.Client.getAppProperty(WL.AppProp.APP_VERSION)

Process the incoming data in the adapter config procedure as follows:
config(metadata) {

// turn capture on for Android clients only
if (metadata.environmen == "android") {

return {capture: true};
}
return {capture: false};

}

162 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 3. Integration with other IBM Mobile Foundation
products

To integrate IBM Worklight with other IBM Mobile Foundation products you
implement adapters and authentication features.

This topic is intended for developers and administrators who want to understand
the various integration options available as part of the larger IBM Worklight V5.0
offering, specifically concerning IBM Endpoint Manager for Mobile Devices, IBM
WebSphere Cast Iron, IBM WebSphere DataPower®, and IBM Security Access
Manager (ISAM).

Introducing the IBM Worklight platform
Understanding the integration options available as part of the larger IBM
Worklight® V5.0 offering. Intended primarily for developers and administrators.

The IBM Worklight platform provides extensible connectivity options to external
resources by using the adapter technology available in IBM Worklight. The IBM
Worklight platform also provides a flexible authentication framework to support
existing security requirements through the authenticator or login modules.

Figure 27 on page 164 gives a high-level view of the topology context for an app
on a device that connects to IBM Worklight. It also shows how IBM Worklight uses
the adapter model to connect to existing back ends and other Internet or intranet
sources. IBM Mobile Foundation Enterprise Edition is the specific offering which
provides this capability, and consists of IBM Worklight bundled with IBM
Endpoint Manager for Mobile Devices and IBM WebSphere Cast Iron. In addition,
there are other IBM products that provide integration options for enterprise
connectivity and enterprise security, such as IBM WebSphere DataPower and IBM
Security Access Manager (ISAM).

Item Description

A App

D Device

N Network

I/i Internet or intranet

WL IBM Worklight

EBE Existing back ends

I Other Internet sources

163

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Figure 28 shows where these products fit within the typical IBM Worklight
topology diagram shown in Figure 27.

Integration with Cast Iron
An overview of the use of IBM WebSphere Cast Iron to enable enterprise
connectivity within an IBM Worklight environment.

There are four adapters supported as part of the IBM Worklight platform:
v SQL
v HTTP
v Cast Iron
v JMS

The Cast Iron adapter provides first-class integration with all of the cloud-based,
hardware appliance, or software-based hypervisor editions of IBM WebSphere Cast
Iron.

IBM WebSphere Cast Iron enables companies to integrate applications, regardless
of whether the applications are located on-premise or in public or private clouds.

Figure 27. Overall Topology

Figure 28. Integration Points

164 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WebSphere Cast Iron provides an approach to integrating applications that does
not require any programming knowledge. You can build integration flows in
WebSphere Cast Iron Studio, which is a graphical development environment that is
installed on a personal computer. With Cast Iron Studio, you can create an
integration project that contains one or more orchestrations. Each orchestration is
built with a number of activities that define the flow of data. You can define the
details of an activity from the configuration panes within Cast Iron Studio.

Figure 29 shows how the topology in Figure 1 in Introducing the IBM Worklight
platform changes to reflect the use of Cast Iron, with the IBM Worklight Cast Iron
adapter represented by the thicker line between IBM Worklight and Cast Iron.

For more information about Cast Iron adapters, see the module Cast Iron adapter -
Communicating with Cast Iron, under category 4, Worklight server-side development, in
“Getting started tutorials and samples” on page 29.

Integration with reverse proxy
An overview of the use of a reverse proxy to enable enterprise connectivity within
an IBM Worklight environment.

Reverse proxies typically front IBM Worklight run times as part of the deployment
shown in Figure 30, and follow the gateway pattern.

The gateway icon (GW) represents a reverse proxy such as WebSphere DataPower,
or ISAM. In addition to protecting IBM Worklight resources from the Internet, the
reverse proxy provides termination of SSL connections and authentication. The
reverse proxy, in effect, can also act as a policy enforcement point (PEP).

Figure 29. Integration with Cast Iron

Figure 30. Integration with reverse proxy

Chapter 3. Integration with other IBM Mobile Foundation products 165

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

When using a gateway, app (A) on device (D) uses the public URI advertised by
the gateway instead of the internal IBM Worklight URI. The public URI can be
exposed as a setting as part of the app or can be built in during promotion of the
app to production before publishing the app to public or private app stores.

Authentication at the gateway
Use of a reverse proxy to provide authentication to IBM Worklight.

If authentication is terminated at the gateway, IBM Worklight can be informed of
the authenticated user by a shared context, such as a custom HTTP header or a
cookie. By using the extensible authentication framework, IBM Worklight can be
configured to use the user identity from one of these mechanisms and establish a
successful login. A typical authentication flow is shown in Figure 31.

This configuration was tested with DataPower and ISAM for header-based
authentication and LTPA-based authentication.

Header-based authentication
Use of header-based authentication to log in to IBM Worklight through a reverse
proxy.
v On successful authentication, the gateway forwards a custom HTTP header with

the user name or ID to IBM Worklight.
v IBM Worklight is configured to use HeaderAuthenticator and HeaderLoginModule

on either Tomcat or WebSphere Application Server

Figure 31. Authentication flow

166 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

LTPA-based authentication
Use of LTPA-based authentication to log in to IBM Worklight through a reverse
proxy.
v On successful authentication, the gateway forwards an LTPA token (in the form

of an HTTP cookie) to IBM Worklight
v IBM Worklight on WebSphere Application Server is configured to use

WebSphereFormBasedAuthenticator and WebSphereLoginModule.

Managing end points with IBM Endpoint Manager
An overview of the use of IBM Endpoint Manager to manage devices within an
IBM Worklight environment.

IBM Worklight provides app management capabilities as part of the platform. IBM
Endpoint Manager provides specific device management capabilities. The app can
also use certain device functions which leads to an overlap in some of the
management aspects between IBM Worklight and IBM Endpoint Manager, as
shown in Figure 32.

For devices that must be managed as enterprise assets and devices that must be
controlled across applications, IBM Endpoint Manager provides the following
mobile device management capabilities:
v Safeguard of enterprise data
v Flexible management
v Maintained compliance
v Unified infrastructure

Safeguard of Enterprise Data

Figure 32. IBM Worklight and IBM Endpoint Manager management capabilities

Chapter 3. Integration with other IBM Mobile Foundation products 167

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Selectively wipes enterprise data when devices are lost or stolen.
v Configures and enforces passcode policies, encryption, VPN, and more.

Flexible Management

v Secures and manages employee-owned and corporate-owned mobile
devices by using a combination of email-based and agent-based
management, while preserving the native device experience.

Maintained Compliance

v Automatically identifies non-compliant devices.
v Denies email access or issues user notifications until corrective actions

are implemented.

Unified Infrastructure

v Uses a single infrastructure to manage and secure all of your enterprise
devices; that is, smartphones, media tablets, desktops, notebooks, and
servers.

Useful links
Other resources on integration with IBM WebSphere Cast Iron, IBM Endpoint
Manager, IBM WebSphere DataPower, and IBM Security Access Manager are
available from the product websites and IBM Redbooks® website.

For more information, use the following links:

IBM WebSphere Cast Iron

http://www.redbooks.ibm.com/redpapers/pdfs/redp4840.pdf

http://www.redbooks.ibm.com/abstracts/sg248004.html?Open

IBM Endpoint Manager

http://www-01.ibm.com/software/tivoli/solutions/endpoint/mdm/

IBM WebSphere DataPower

http://www.redbooks.ibm.com/abstracts/redp4790.html?Open

http://www.redbooks.ibm.com/abstracts/sg247620.html?Open

IBM Security Access Manager

http://www.redbooks.ibm.com/abstracts/redp4621.html?Open

168 IBM Worklight V5.0.6

http://www.redbooks.ibm.com/redpapers/pdfs/redp4840.pdf
http://www.redbooks.ibm.com/abstracts/sg248004.html?Open
http://www-01.ibm.com/software/tivoli/solutions/endpoint/mdm/
http://www.redbooks.ibm.com/abstracts/redp4790.html?Open
http://www.redbooks.ibm.com/abstracts/sg247620.html?Open
http://www.redbooks.ibm.com/abstracts/redp4621.html?Open

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 4. Migrating from the WebSphere Application Server
Feature Pack

To migrate from the WebSphere Application Server Feature Pack, select an
appropriate scenario and follow its procedures.

About this task

This topic is intended for developers who want to migrate applications developed
with the Feature Pack for Web 2.0 and Mobile to IBM Worklight.

You can migrate applications that use the client programming model, the server
programming model, JAX-RS, JSON-RPC, or proxies.

Procedure
1. Select the scenario that your application uses.
2. Follow the steps.
3. Refer to the Dojo Showcase example for support.

Migration scenarios
This information is intended for developers who want to migrate applications
developed with the WebSphere Application Server Feature Pack for Web 2.0 and
Mobile to IBM Worklight.

A mobile web application created with the Feature Pack for Web 2.0 and Mobile uses
open standards such as HTML, CSS, and JavaScript. It might connect to SOA-based
services by using JAX-RS and JSON-RPC.

You can use IBM Worklight to package these mobile web applications as native
apps and make them available in an application store. In its simplest form, this
migration consists of repackaging the apps within IBM Worklight. You can also use
device APIs (through Apache Cordova) and IBM Worklight client APIs.

Migrating an application that uses the client programming
model

Migrate a mobile app by using the IBM Worklight client programming model,
where the mobile web application is repackaged as a mobile hybrid application.

About this task

IBM Worklight assumes that the application is packaged with HTML, JavaScript, or
CSS and that it can be updated in static form to the native shell, by using direct
update features. To migrate the app, complete the steps in the Procedure section.

These steps describe a minimal migration. After migration, you can package the
app and deploy it to an app store.

169

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To maximize the reuse of services and user interface code, you can refactor the
code to use Environment and Skin support. Keep the basic code in the common
directory and create overrides for each environment. Use dojo/has feature
detection for skin-specific behaviors.

Finally, you can extend your mobile app to use advanced features of IBM
Worklight. For example, you can use Cordova to control device features such as
cameras, and you can use IBM Worklight client APIs to control security.

Procedure
1. Create an IBM Worklight application, selecting the appropriate target

environments. A common directory and a directory for each environment are
generated.

2. Optional. Because devices vary in the features or functions they have, you can
use IBM Worklight application skins to provide a finer distinction than
environments. The IBM Worklight application skin is a user interface variant of
an application that can be applied during run time based on runtime device
properties. These properties include operating system version, screen
resolution, and form factor. For example, within the Android environment
folder, you might create a subfolder for Android 4.0 to take advantage of
features only available in Android 4.0.

3. Migrate the project structure to the IBM Worklight Environment Model:
a. Copy common web resources to the common directory.
b. Continue to use "has" feature detection (dojo/has).
c. Continue to use the deviceTheme feature (dojox/mobile/theme) for default

Dojo mobile themes.

Migrating an application that uses the server programming
model

Migrate a mobile app by using the IBM Worklight server programming model,
which shows how to extend apps to use IBM Worklight server-side facilities.

About this task

The server programming model is an alternative model to the client programming
model. Applications use the server programming model if they use server-side
generated web content, such as JSPs and JSF for rendering HTML. Compared to
natively packaged apps, remote loading of resources reduces network performance.
Complete the following steps to migrate the app:

Procedure
1. Create a project structure according to the IBM Worklight Environment Model.

This step is required for creating a native shell for each mobile platform. The
shell is a simple Cordova instance that loads a remote resource from the
application server.

2. Continue to use the deviceTheme feature (dojox/mobile/theme) for default Dojo
mobile themes.

3. Use "has" feature detection (dojo/has) for device operating-system-specific
behaviors.

4. Determine dependencies for your mobile application:
a. Create a custom Dojo layer for core Dojo and Dojox mobile libraries.
b. Create a custom Dojo layer for common application Dojo libraries.

170 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

c. Create a custom Dojo layer for any platform-specific Dojo libraries.

Considerations for applications that use JAX-RS, JSON-RPC,
or proxying

Mobile web applications that connect to SOA-based services by using JAX-RS,
JSON-RPC, or through a proxy, might have additional steps when being migrated
from the WebSphere Application Server Feature Pack for Web 2.0 and Mobile to
IBM Worklight.

Migrating an application that uses JAX-RS

If your application contains services that were written using JAX-RS hosted on
WebSphere Application Server, consider the following points:
v No change is required to continue to use the WebSphere Security Model. You

can use existing REST services from the app.
v To integrate security with IBM Worklight, you must proxy existing REST

services that use JSON-RPC through an HTTP adapter.
v Services are hosted in a separate EAR or WAR file from the IBM Worklight

Application. However, there might be restrictions on host name and port
because the services and application are in the same sandbox domain.

Migrating an application that uses JSON-RPC

If your application contains services that were written using JSON-RPC hosted on
WebSphere Application Server, consider the following points:
v No change is required to continue to use the WebSphere Security Model. You

can use existing RPC services from the app.
v To integrate security with IBM Worklight, you must proxy existing RPC services

that use JSON-RPC through an HTTP adapter.
v Services are hosted in a separate EAR or WAR file from the IBM Worklight

Application. However, there might be restrictions on host name and port
because the services and application are in the same sandbox domain.

Migrating an application that uses proxying

If your application contains external services that require an Ajax Proxy on
WebSphere Application Server, consider the following points:
v No change is required to continue to use the WebSphere Security Model. You

can use the existing Ajax Proxy from the app.
v To integrate security with IBM Worklight you must proxy existing HTTP

requests that use JSON-RPC through an HTTP adapter
v Services are hosted externally of the IBM Worklight Application. However, you

can use the Ajax Proxy for advanced features.

Example: Migrating the Dojo showcase sample
Demonstrate the steps required to migrate the Dojo showcase sample from the
WebSphere Application Server Feature Pack for Web 2.0 and Mobile to IBM
Worklight®.

Chapter 4. Migrating from the WebSphere Application Server Feature Pack 171

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

The application to be migrated is the Dojo showcase which is a mobile web
application that demonstrates the capabilities of the Dojo toolkit. You can run the
demonstration at http://demos.dojotoolkit.org/demos/mobileGallery/demo-
iphone.html

To migrate the application, complete the following steps:

Procedure
1. Create an IBM Worklight project and create an IBM Worklight application in

the project.
2. Copy all the resources for the web application to the common directory of the

IBM Worklight application.
3. The Dojo showcase application contains only static html pages. If you have

remote dynamic server pages, you can either use the JavaScript templating
library or use web view. The JavaScript templating library renders the pages
locally on devices. Web view loads the remote server pages.

4. Change the <mainfile> element in the application-descriptor.xml file in the
IBM Worklight application. Make sure the content of <mainfile> element
points to the correct startup html page.

5. If you have startup JavaScript logic that initializes the web application when
the browser loads it, move the startup logic to the wlCommonInit method of the
.js file in the common/js directory. IBM Worklight initializes its own library and
runtime environment during startup and the application startup logic follows
the IBM Worklight initialization process.

6. To keep the application as small as possible, do not add any other IBM
Worklight skin to the application. Adding a skin results in the duplication of all
the web application resources in the final package built.

7. Minimize the required Dojo modules into one .js file so that the file size of the
application is minimal. IBM Worklight does not provide any javascript
shrinking in the build process.

172 IBM Worklight V5.0.6

http://demos.dojotoolkit.org/demos/mobileGallery/demo-iphone.html
http://demos.dojotoolkit.org/demos/mobileGallery/demo-iphone.html

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 5. API reference

To develop your native or hybrid applications, refer to the classes and methods of
the JavaScript, Objective-C, Java, and Java Micro Edition APIs.

Purpose

To enable you to develop IBM Worklight applications in JavaScript, Java Micro
Edition, Java for Android, and Objective-C for iOS.

IBM Worklight client-side API
This collection of topics contains a description of the application programming
interface (API) for use in writing client applications with IBM Worklight.

JavaScript client-side API
You can use JavaScript API to develop apps for all environments.

WLClient JavaScript client library
This collection of topics lists the public methods of the IBM Worklight runtime
client API for mobile apps, desktop, and web.

WLClient is a JavaScript client library that provides access to IBM Worklight
capabilities. You can use WLClient to perform the following types of functions:
v Initialize and reload the application
v Manage authenticated sessions
v Obtain general application information
v Retrieve and update data from corporate information systems
v Store and retrieve user preferences across sessions
v Internationalize application texts
v Specify environment-specific user interface behavior
v Store custom log lines for auditing and reporting purposes in special database

tables
v Write debug lines to a logger window
v Use functions specific to iPhone, iPad, Android, BlackBerry 6 and 7, Windows

Phone 7.5, and Windows Phone 8 devices

Note: Although JavaScript does not support encapsulation, do not use any
method or member not listed in this document. Their semantics or existence is not
guaranteed in future versions of the IBM Worklight Client API.

Calls to the Worklight Server:

WLClient uses asynchronous JavaScript calls, which accept an options parameter.
Success and failure handlers receive a response parameter. The API consists of
many calls, listed here.

WLClient uses asynchronous JavaScript calls to access the IBM Worklight Server.
Each asynchronous method accepts an options parameter, which includes success
and failure handlers to communicate the results of the call. If you want to be

173

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

notified when an asynchronous function returns, you must supply these callback
functions within the options parameter when you call the function.

Augmented Options

The options parameter often contains additional properties applicable to the
specific method that is being called. These additional properties are detailed in the
description of the specific method.

Augmented Response

The success and failure handlers of all asynchronous calls always receive a
response parameter that contains a common set of properties. Some calls pass
additional properties in the response object of the success and failure handlers. In
such cases, these additional properties are detailed in the description of the specific
method.

Quick Reference

The Worklight Client API consists of the following API methods:
v General application methods

– Lifecycle: “WL.Client.init” on page 189, “WL.Client.reloadApp” on page 200
– Connectivity: “WL.Client.setHeartBeatInterval” on page 201,

“WL.Client.connect” on page 182, Connectivity-related JavaScript Events
– Session management methods: “WL.Client.getUserName” on page 187,

“WL.Client.getLoginName” on page 186, “WL.Client.login” on page 197,
“WL.Client.logout” on page 198, “WL.Client.isUserAuthenticated” on page
196, “WL.Client.getUserInfo” on page 187, “WL.Client.updateUserInfo” on
page 202

– Data access methods: “WL.Client.invokeProcedure” on page 194
– Activity logging methods: “WL.Client.logActivity” on page 197
– User preference methods: “WL.Client.setUserPref” on page 201,

“WL.Client.getUserPref(key)” on page 188
– Application properties methods: “WL.Client.getEnvironment” on page 186,

“WL.Client.getAppProperty” on page 184
– Error handling: “WL.App.getErrorMessage” on page 178
– Debugging: “The WL.Logger object” on page 241

v Mobile functionality and UI
– Push notification API: “WL.Client.Push.isPushSupported” on page 244,

“WL.Client.Push.isPushSMSSupported” on page 244,
“WL.Client.Push.onReadyToSubscribe” on page 245,
“WL.Client.Push.registerEventSourceCallback” on page 245,
“WL.Client.Push.subscribe” on page 246, “WL.Client.Push.subscribeSMS” on
page 247, “WL.Client.Push.unsubscribe” on page 248,
“WL.Client.Push.unsubscribeSMS” on page 249

– Network details: “WL.Device.getNetworkInfo” on page 203
– Opening a URL: “WL.App.openURL” on page 178
– Options menu: WL.OptionsMenu
– Tab bar: Tab Bar API
– Badge: “WL.Badge.setNumber” on page 181
– Toast: “WL.Toast.show” on page 206

174 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

– Globalization: “WL.App.getDeviceLocale” on page 178,
“WL.App.getDeviceLanguage” on page 178

– Back button: “WL.App.overrideBackButton” on page 180,
“WL.App.resetBackButton” on page 181

– Dialog box: “WL.SimpleDialog” on page 258
– Busy indicator: “WL.BusyIndicator (constructor)” on page 207
– Closing an app: “WL.App.close” on page 177
– Accessing native pages on mobile apps: “WL.NativePage.show” on page 205
– Switching between HTML Pages: “WL.Fragment.load” on page 261,“Class

WL.Page” on page 262
– Encrypted offline cache: WL.EncryptedCache
– Clipboard: “WL.App.copyToClipboard” on page 203

v Web and desktop widget methods
– Desktop window state: “WL.Client.onDock, WL.Client.onUndock” on page

199, “WL.Client.onShow, WL.Client.onHide” on page 199, “WL.Client.close”
on page 182, “WL.Client.minimize” on page 198

– Globalization: “WL.Client.getLanguage” on page 213
v Mechanisms used by the WLClient methods

– “The options object” on page 249, Timeout

WL.App.BackgroundHandler.setOnAppEnteringBackground
Define the behavior of the application before it enters the background.

Syntax
WL.App.BackgroundHandler.setOnAppEnteringBackground (handler)

Description

Applies for iOS 4 and above.

Defines the behavior of the application just before iOS takes a screen capture of it
before moving it to the background.

Chapter 5. API reference 175

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

Table 25. WL.App.BackgroundHandler.setOnAppEnteringBackground parameters

Parameter Description

handler Function. The function that is called upon
receiving the event from iOS that the
application is about to enter background.
Values:

WL.App.BackgroundHandler.defaultIOSBehavior
Use the default behavior of iOS
(which is equivalent to not doing
anything).

WL.App.BackgroundHandler.hideView
Display a black screen instead of
the browser component. To ensure
that the view is hidden also when
the application returns to the
foreground, Choose between one of
the following options:

v Do not call
setOnAppEnteringForeground: this
option automatically shows the
application after it returns from
the background.

v Call
setOnAppEnteringForeground, but
customize what the application
does when it returns from the
background. Return
WL.App.BackgroundHandler.hideViewToForeground()
at the end of the function. For an
example, see
“WL.App.BackgroundHandler.setOnAppEnteringForeground”
on page 177.

WL.App.BackgroundHandler.showSplashScreen
Show a splash screen instead of the
application

WL.App.BackgroundHandler.hideElements
Hide all HTML elements that have
the style
WLHideOnEnteringBackground

Custom function

Examples

Example: Use hideElements
// CSS
 ...
// JavaScript
WL.App.BackgroundHandler.setOnAppEnteringBackground(
WL.App.BackgroundHandler.hideElements);

Example: Use custom function

176 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

// JavaScript
WL.App.BackgroundHandler.setOnAppEnteringBackground(myFunc);

WL.App.BackgroundHandler.setOnAppEnteringForeground
Define the behavior of the application before it enters the foreground

Syntax
WL.App.BackgroundHandler.setOnAppEnteringForeground (handler)

Description

Applies for iOS 4 and later.

Defines the behavior of the application just before it enters the foreground.

Parameters

Table 26. WL.App.BackgroundHandler.setOnAppEnteringForeground parameters

Parameter Description

handler Mandatory. Function. The function that is
called upon receiving the event from iOS
that the application is about to enter
foreground.

Example
WL.App.BackgroundHandler.setOnAppEnteringForeground(myFunc);

Example: Customizing what the application does when it returns from the
background to ensure that the view is hidden. (See also
“WL.App.BackgroundHandler.setOnAppEnteringBackground” on page 175.)
WL.App.BackgroundHandler.setOnAppEnteringForeground(function () {

alert("This is my custom code");
return WL.App.BackgroundHandler.hideViewToForeground();

});

WL.App.close
Quits the application.

Note: Note: According to iOS Human Interface Guidelines, an iOS app must not
contain code that exits the app. The device's Home button is used for this purpose
instead. Therefore WL.App.close() API has no effect in iOS applications (tapping a
button that is implemented with this API has no effect).

Syntax
WL.App.close();

Parameters

None.

Return value

None.

Chapter 5. API reference 177

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WL.App.getDeviceLanguage
Returns the language code.

Syntax
WL.App.getDeviceLanguage()

Description

Returns the language code according to user device settings, for example: en.

Parameters

None.

WL.App.getDeviceLocale
Returns the locale code (or device language on BlackBerry)

Syntax
WL.App.getDeviceLocale()

Description

Returns the locale code according to user device settings, for example: en_US.

Note: On BlackBerry 6 and 7, this method returns the device language (for
example, en), not the device locale.

Parameters

None.

WL.App.getErrorMessage
Extracts a string that contains an error message.

Syntax
WL.App.getErrorMessage(exception)

Description

Extracts a string that contains the error message within the specified exception
object. Use for exceptions that are thrown by the IBM Worklight client runtime
framework.

Parameters

Table 27. WL.App.getErrorMessage parameters

Parameter Description

exception Mandatory. The exception object from which
the error string is extracted.

WL.App.openURL
Open a URL. The behavior depends on the application platform.

178 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Syntax
WL.App.openURL(url, target, options)

Description

Opens the specified URL according to the specified target and options (specs). The
behavior of this method depends on the application environment, as follows:

Table 28. WL.App.openURL application environments and behavior

Environment Description

Adobe AIR Opens a new browser window at the
specified URL. The target and options
parameters are ignored.

Android Replaces the application with a new default
browser window at the specified URL. The
target and options parameters are ignored.
The application is not closed; pressing Back
on the phone brings the user back to the
application.

Apple OSX dashboard Opens a new browser window at the
specified URL. The target and options
parameters are ignored.

BlackBerry 6 and 7 Replaces the application with a new default
browser window at the specified URL. The
target and options parameters are ignored.

iPhone, iPad Replaces the application with a new Safari
window at the specified URL. The target
and options parameters are ignored.

Mobile web apps Opens a new browser window at the
specified URL. Whether the target and
options parameters are ignored or not
depends on the specific mobile browser.

Vista Sidebar Opens a new browser window at the
specified URL. The target and options
parameters are NOT ignored.

Windows Phone 8 Replaces the application with a new Internet
Explorer window at the specified URL. The
target and options parameters are ignored.

Windows Phone 7.5 Replaces the application with a new Internet
Explorer window at the specified URL. The
target and options parameters are ignored.

Windows 8 Replaces the application with a new Internet
Explorer window at the specified URL. The
target and options parameters are ignored.

Other environments If the value of the target parameter is _self
or unspecified, replaces the application
iframe with the specified URL. Otherwise,
opens a new browser window with the
specified URL. The target and options
parameters are NOT ignored.

Chapter 5. API reference 179

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

Table 29. WL.App.openURL parameters

Parameter Description

url Mandatory. The URL of the web page to be
opened.

target Optional. The value to be used as the target
(or name) parameter of the JavaScript
window.open method. If no value is
specified, _self is used.

options Optional. The value to be used as the
options (or specs) parameter of the
JavaScript window.open method.

If no value is specified, the following
options are used:

status=1, toolbar=1, location=1, menubar=1,
directories=1, resizable=1, scrollbars=1

Return Value

A reference to the newly opened window, or NULL if no window was opened.

WL.App.overrideBackButton
Overrides the default behavior of the Back button on Android, Windows Phone
7.5, and Windows Phone 8.

Note: This method applies to Android, Windows Phone 7.5, and Windows Phone 8
only.

Syntax
WL.App.overrideBackButton (callback)

Description

Overrides the default behavior of the Back button on Android, Windows Phone
7.5, and Windows Phone 8 devices, calling the callback function whenever Back is
pressed.

Parameters

Table 30. WL.App.overrideBackButton parameters

Parameter Description

callback Mandatory. Function. The function that is
called when Back is pressed.

Return Value

None
WL.App.overrideBackButton(backFunc);
function backFunc(){
alert(’you hit the back key!’);
}

180 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WL.App.resetBackButton
Resets the original Back button behavior.

Note: This method applies to Android, Windows Phone 7.5, and Windows Phone 8
only.

Syntax
WL.App.resetBackButton()

Description

Resets the original Back button behavior after it was changed by the
overrideBackButton method.

Parameters

None

Return Value

None

WL.Badge.setNumber
Sets the application badge to the number provided.

Note: This object is only applicable to iOS applications.

Syntax
WL.Badge.setNumber(number)

Description

Sets the application badge to the number provided.

Parameters

Table 31. WL.Badge.setNumber parameters

Parameter Description

number Mandatory. Integer. An integer that is
displayed as a badge over the application
icon. A value of 0 or below removes the
application badge. Values which are too long
to be displayed entirely (5 or more digits in
an iPhone device) are truncated with ellipsis.

Return Value

None.

WL.Client.addGlobalHeader
This method adds an HTTP header to be used in server requests issued by an IBM
Worklight framework

Syntax
WL.Client.addGlobalHeader(headerName, headerValue)

Chapter 5. API reference 181

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Description

Adds an HTTP header to be used in server requests issued by an IBM Worklight
framework.

The HTTP header is used in all requests until removed by the
WL.Client.removeGlobalHeader API call.

Parameters

Parameter Description

headerName Mandatory. The name of the header to be
added..

headerValue Mandatory. The value of the header to be
added.

Return Value

None.

Example
WL.Client.addGlobalHeader("MyCustomHeader","abcdefgh");

WL.Client.close
Close a widget on Adobe AIR.

Syntax
WL.Client.close()

Description

Note: This method is only applicable to widgets that are running on Adobe AIR.

Closes the AIR widget (making it exit).

Parameters

None.

WL.Client.connect
This method establishes a connection to the Worklight Server.

Syntax
WL.Client.connect(options)

Description

The connect() method tries to establish a connection to the Worklight Server. You
must call this method before calling any other WL.Client method that
communicates with the Worklight Server.

182 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

Parameter Description

options Optional. A JSON block with the following
additional properties:

onSuccess
A callback function invoked when the
connection to the IBM Worklight Server
is established

onFailure
A callback function invoked when the
WL.Client.connect method fails to
establish connection with the IBM
Worklight server. The callback receives
one parameter of type WL.FailResponse,
which might be null if connect is called
while a previous call to connect has not
yet returned.

timeout
Integer. Number of milliseconds to wait
for the server response before failing
with a request timeout.

Connectivity-related JavaScript Events

The IBM Worklight runtime framework fires two events, to which you can listen to
capture changes in connectivity. The events are fired only on change of
connectivity state.
v WL.Events.WORKLIGHT_IS_CONNECTED: fired when the application connects to the

Worklight Server
v WL.Events.WORKLIGHT_IS_DISCONNECTED: fired when loss of connectivity to

Worklight Server is detected
document.addEventListener(WL.Events.WORKLIGHT_IS_CONNECTED , handleConnectionUp, false);
document.addEventListener(WL.Events.WORKLIGHT_IS_DISCONNECTED, handleConnectionDown, false);

WL.Client.deleteUserPref
Delete a user preference key.

Syntax
WL.Client.deleteUserPref(key, options)

Description

An asynchronous function that deletes a specified user preference key.

Note: The local user preferences in the application are updated only when a
successful response is received from the server.

Parameters

Table 32. Parameters for user preference method WL.Client.deleteUserPref

Parameter Description

key Mandatory. The user preference key. Can be
up to 128 characters long.

Chapter 5. API reference 183

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 32. Parameters for user preference method WL.Client.deleteUserPref (continued)

Parameter Description

options Optional. A standard options object.

Return Value

None.

WL.Client.getAppProperty
Returns the value of a property.

Syntax
WL.Client.getAppProperty (property)

Description

This method returns the value of the specified property.

184 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

Table 33. Values returned for a specified property

Property Description

property Mandatory. One of the following values:

WL.AppProperty.AIR_ICON_16x16_PATH
For AIR widgets only; the relative path
to the AIR icon.

WL.AppProperty.AIR_ICON_128x128_PATH
For AIR widgets only; the relative path
to the AIR icon.

WL.AppProperty.DOWNLOAD_APP_LINK
For desktop widgets only; the URL for
downloading an updated version of the
application.

WL.AppProperty.APP_DISPLAY_NAME
The application display name, as
defined in the application descriptor.

WL.AppProperty.APP_LOGIN_TYPE
The application login type, as defined in
the application descriptor: never,
onstartup, or ondemand

WL.AppProperty.APP_VERSION
The application version, as defined in
the application descriptor (a newer
version might be available on the
Worklight Server)

WL.AppProperty.HEIGHT
For web and desktop environments
only.

WL.AppProperty.IID
The application instance ID (string). All
mobile environments use "0".

WL.AppProperty.LANGUAGE
The application's language locale.

WL.AppProperty.LATEST_VERSION
The latest application version available
on the Worklight Server.

WL.AppProperty.LOGIN_DISPLAY_TYPE
The login display type, as defined in the
worklight.properties file: popup or
embedded.

WL.AppProperty.LOGIN_POPUP_HEIGHT
The login window height, as defined in
the worklight.properties file; relevant
when LOGIN_DISPLAY_TYPE is popup.

WL.AppProperty.LOGIN_POPUP_WIDTH
The login window width, as defined in
the worklight.properties file; relevant
when LOGIN_DISPLAY_TYPE is popup.

WL.AppProperty.MAIN_FILE_PATH
For web environments only; the
absolute URL to the main application
file.

WL.AppProperty.SHOW_IN_TASKBAR
For AIR widgets only; a Boolean stating
whether the Air application shows in
the taskbar as defined in the descriptor

Chapter 5. API reference 185

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WL.Client.getEnvironment
Identifies the type of environment in which the application is running.

Syntax
WL.Client.getEnvironment()

Description

Identifies the type of environment in which the application is running, such as
iPhone, Facebook, Windows, or iGoogle.

Parameters

None.

Return Value

A constant that identifies the type of environment. The valid values are defined in
the WL.Environment variable in the worklight.js file, and are as follows:
v WL.Environment.ADOBE_AIR

v WL.Environment.ANDROID

v WL.Environment.EMBEDDED

v WL.Environment.FACEBOOK

v WL.Environment.IGOOGLE

v WL.Environment.IPAD

v WL.Environment.IPHONE

v WL.Environment.MOBILE_WEB

v WL.Environment.OSX_DASHBOARD

v WL.Environment.PREVIEW (when the application runs in Preview mode)
v WL.Environment.VISTA_SIDEBAR

v WL.Environment.WINDOWS_PHONE_8

v WL.Environment.WINDOWS_PHONE (Windows Phone 7.5)
v WL.Environment.WINDOWS8

When an app is running in Preview mode, this method returns
WL.Environment.PREVIEW, regardless of the previewed environment. There are two
reasons for this behavior:
v Environment-specific code can fail when invoked from the browser (because the

environment might support features that are not available in the browser).
v WL.Client behaves differently in different environments (for example, cookie

management).

A good practice is to rely on the IBM Worklight UI optimization framework and
separate environment-dependent JS to separate files rather than using the
WL.Client.getEnvironment() function.

WL.Client.getLoginName
Returns the login name of the user who is currently logged in.

186 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Syntax
WL.Client.getLoginName(realm)

Description

Note: This method is applicable only to applications that support login.

This method returns the login name of the user who is logged in. The login name
is the name that the user entered when logging in.

Parameters

Table 34. Parameters for session management method WL.Client.getLoginName

Parameter Description

realm Optional. The name of a realm that is
defined in the authenticationConfig.xml
file.

If specified, the realm must be a Facebook
realm. The use of Facebook realms is
deprecated in Worklight version 5.0.5.
Support might be removed in any future
version.

If no value is specified, the method returns
the login name in the resource realm that is
assigned to the application when it was
deployed.

Return Value

The login name of the user who is logged in, or NULL if the login name is
unknown.

WL.Client.getUserInfo
This method returns a user property.

Syntax
WL.Client.getUserInfo(realm, key)

Description

This method returns a user property with the specified key in the specified
authentication realm.

Parameters

Parameter Description

realm Mandatory. The name of a realm name
defined in the authenticationConfig.xml
file.

key Optional. A standard options object.

WL.Client.getUserName
This method returns the user name of the user who is currently logged in.

Chapter 5. API reference 187

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Syntax
WL.Client.getUserName(realm)

Description

Note: This method is only applicable to applications that support login.

This method returns the user name of the user who is currently logged in, as
defined by the login module used to authenticate the user.

Parameters

Parameter Description

realm Optional. The name of a realm defined in
the authenticationConfig.xml file.

If specified, the realm must be a Facebook
realm. The use of Facebook realms is
deprecated in Worklight version 5.0.5.
Support might be removed in any future
version.

If no value is specified, the method returns
the user name in the resource realm
assigned to the application when it was
deployed.

Return Value

The user name of the user who is currently logged in, or NULL if the user name is
unknown.

WL.Client.getUserPref(key)
Returns the local value of a user preference.

Description

This method returns the local value of a specified user preference.

Parameters

Table 35. Parameters for user preference method WL.Client.getUserPref(key)

Parameter Description

key Mandatory. The user preference key.

Return Value

The value of the user preference or NULL if there is no user preference with the
specified key.

Exceptions

An exception is thrown when invalid parameters are passed to the function.

188 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WL.Client.hasUserPref
Checks whether a user preference is defined locally in the application.

Syntax
WL.Client.hasUserPref(key)

Description

This method checks whether a specified user preference is defined locally in the
application.

Parameters

Table 36. Parameters for user preference method WL.Client.hasUserPref

Parameter Description

key Mandatory. The user preference key.

Return Value

Returns true if the preference exists, false otherwise.

Exceptions

An exception is thrown when invalid parameters are passed to the function.

WL.Client.init
This method initializes the WL.Client object.

Syntax
WL.Client.init({options})

Description

This method initializes the WL.Client object. The options of this method reside in
the initOptions.js file.

Parameters

An optional options object, as described in “The options object” on page 249,
augmented with the following optional properties:

Property Description

Timeout An integer value, denoting the timeout in
milliseconds. The timeout affects all calls
from the app to the Worklight Server. If not
specified, a timeout of 30,000 milliseconds
(30 seconds) is used.

Chapter 5. API reference 189

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Property Description

enableLogger A Boolean value, indicating whether the
WL.Logger.debug() outputs data.

If set to true, WL.Logger.debug() outputs
data to the respective log (for example, to
the Xcode console for iOS, to LogCat for
Android, and to the developer console for
desktop browsers).

If set to false, WL.Logger.debug() does not
output data.

The default value, unless specified
otherwise, is true.
Note: The logger is for development
purposes only. Log lines can be added to the
logger by using the WL.Logger object, as
described in “The WL.Logger object” on
page 241.

messages A dictionary object for localizing texts, in the
messages.js file. If not specified, the default
object Messages (in the same file) is used.

authenticator An object that implements the Authenticator
API. If not specified, Authenticator is used.

heartBeatIntervalInSecs An integer value that denotes the interval in
seconds between heartbeat messages that are
automatically sent by WLClient to the
Worklight Server. The default value is 420 (7
minutes).

minAppWidth Relevant only for iGoogle. The use of
iGoogle is deprecated in Worklight version
5.0.5. Support might be removed in any
future version.

The minimum width for the application in
pixels. If the application is contracted to less
than this width, IBM Worklight
automatically displays a message, which
asks the user to expand the application. The
default value is 170.

connectOnStartup A Boolean value that indicates whether to
connect to the Worklight Server. The default
if no value is specified is true. However, the
default value that is set in the
initOptions.js file is false.

The value false is appropriate if your app
does not retrieve any corporate data on
startup. Note, though, that any server
features such as Remote Disable or Direct
Update are only available after the app
connects to the server.

The value true is appropriate if your app
must receive data from the server when it
starts. However, the app might start more
slowly.

190 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Property Description

onConnectionFailure A failure handling function that is invoked
when connection to the Worklight Server,
performed on initialization by default, or if
the connectOnStartup flag is true, fails.

onUnsupportedVersion A failure handling function that is invoked
when the current version of the application
is no longer supported (a newer application
was deployed to the server). For more
information about the signature of failure
handling functions, see “The options object”
on page 249.

onRequestTimeout A failure handling function that is invoked
when the init() request times out. For more
information about the signature of failure
handling functions, see “The options object”
on page 249.

onUnsupportedBrowser A failure handling function that is invoked
when the application is running in an
unsupported browser. For more information
about the signature of failure handling
functions, see “The options object” on page
249.

onDisabledCookies A failure handling function that is invoked
when cookies are displayed in the user's
browser. For more information about the
signature of failure handling functions, see
“The options object” on page 249.

onUserInstanceAccessViolation A failure handling function that is invoked
when the user is trying to access an
application that was provisioned to a
different user. For more information about
the signature of failure handling functions,
see “The options object” on page 249.

Chapter 5. API reference 191

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Property Description

onErrorRemoteDisableDenial A failure-handling function that is invoked
when the server denies access to the
application, according to rules defined in the
Worklight Console. If this function is not
provided, the application opens a dialog
box, which displays an error message that is
defined in the Worklight Console. When
used, the function can provide an
application-specific dialog box, or can be
used to implement additional behavior in
situations where the server denies access to
the application. It is important to ensure that
the application remains offline (not
connected).

You can add the following parameters:

message
This parameter contains the notification
text that you defined in the Worklight
Console, which indicates that an
application is denied access to the
Worklight Server.

downloadLink
This parameter contains the URL that
you defined in the Worklight Console to
download the new version of the
application, which users can find in the
appropriate application store.

Example:

var wlInitOptions = {
connectOnStartup : true,
onErrorRemoteDisableDenial : function (message, downloadLink) {

WL.SimpleDialog.show(
"Application Disabled",
message,
[{text: "Close application", handler: function() {WL.App.close();}},
{text: "Download new version", handler: function() {WL.App.openURL(downloadLink, "_blank");}}]

);
}

};

onErrorAppVersionAccessDenial A failure-handling function that is invoked
when the server denies access to the
application, according to rules defined in the
Worklight Console. If this function is used,
the developer takes full ownership of the
implementation and handling if Remote
Disable took place. If the failure-handling
function is not provided, the application
opens a dialog box, which displays an error
message that is defined in the IBM
Worklight Console.
Note: onErrorAppVersionAccessDenial is
deprecated since V5.0.6. Instead, use
onErrorRemoteDisableDenial.

validateArguments A Boolean value, indicating whether the IBM
Worklight Client runtime library validates
the number and type of method parameters.
Default is true.

192 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Property Description

updateSilently A Boolean value, indicating whether Direct
Update is performed without notifying the
user before downloading new application
resources. Default is false.

onGetCustomDeviceProvisioningProperties A callback function that is invoked during
the provisioning process of the device ID
created by the app on the device. Typical
implementation collects an out-of-band
provisioning token from the user.

The function receives a
resumeDeviceProvisioningProcess argument,
which must be called to resume the
provisioning process, and transfers the
custom provisioning data as a JSON hash
map.

Example:

In initOptions.js:
var wlInitOptions = {

...

...
onGetCustomDeviceProvisioningProperties: collectCustomProvisioningProperties,
...

}

In application JavaScript file:
function collectCustomProvisioningProperties (

resumeDeviceProvisioningProcess) {
// Collect provisioning token from user resumeDeviceProvisioningProcess(
{

token: token
}

);
}

showCloseOnDirectUpdateFailure A Boolean value, indicating whether the
Close button is shown in dialogs that are
displayed after a Direct Update failure. Set
this value to false to ensure that any
dialogs displayed after a Direct Update
failure do not show the Close button; that is,
dialogs are modal for all mobile operating
systems. This prevents users from
continuing to use an application until a
Direct Update succeeds or until the user
completes a new installation of the
application from the application store. The
default is true.

Chapter 5. API reference 193

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Property Description

showCloseOnRemoteDisableDenial A Boolean value. If you set the value to
true, whenever you use the Remote Disable
feature from the Worklight Console to
remotely disable an application, the dialog
that is presented to users includes a Get
new version button and a Close button.
Clicking Close closes the dialog, but allows
the user to continue working offline, with no
connection to the Worklight Server.

If you set the value to false, the behavior is
as follows:

v If you disable the application on the
Worklight Console and specify a link to
the new version, the dialog displays only
the Get new version button. The Close
button is not shown. The user has no
choice but to update the application, and
the user is forced to exit the application.

v If you disable the application and do not
specify a link to a new version, the dialog
displays only the Close button.

The default is true.

Note:

The onSuccess function is used to initialize the application.

If an onFailure function is not passed, a default onFailure function is called. If
onFailure is passed, it overrides any specific failure-handling function.

Return Value

None.

WL.Client.invokeProcedure
This method invokes a procedure that is exposed by an IBM Worklight adapter

Syntax
WL.Client invokeProcedure (invocationData, options)

Parameters

Parameter Description

invocationData Mandatory. A JSON block of parameters. For a description of the
structure of the parameter block, see “The WL.Client
invokeProcedure JSON Parameter Block” on page 195.

194 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameter Description

options Optional. A standard options object, as defined in “The options
object” on page 249, augmented with the following property:

v timeout: Integer. Number of milliseconds to wait for the server
response before failing with a request timeout.

The success handler of this call receives an augmented response
that is described in “The WL.Client.invokeProcedure Success
Handler Response Object”

The failure handler of this call is called in two cases:

v The procedure was called but failed. In this case, the
invocationResult property is added to the response received by
the failure handler. This property has the same structure as the
invocationResult property returned to the success handler, but
the value of the isSuccessful attribute is false. For the
structure of the invocationResult property, see
invocationResult.

v A technical failure resulted in the procedure not being called. In
this case, the failure handler receives a standard response object.

The WL.Client invokeProcedure JSON Parameter Block

The WL.Client invokeProcedure function accepts the following JSON block of
parameters:
{
adapter: ’adapter-name’,
procedure: ’procedure-name’,
parameters: []
}

The JSON block contains the following properties:

Property Description

adapter Mandatory. A string that contains the name of the adapter as
specified when the adapter was defined.

procedure Mandatory. A string that contains the name of the procedure as
specified when the adapter was defined.

parameters Optional. An array of parameters that is passed to the back-end
procedure.

The WL.Client.invokeProcedure Success Handler Response Object

The success handler response object can contain the following properties:

Property Description

invocationContext The invocationContext object that was originally passed to the
Worklight Server in the callback object.

Chapter 5. API reference 195

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Property Description

invocationResult An object that contains the data that is returned by the invoked
procedure, and the invocation status. Its format is as follows:

invocationResult = {
isSuccessful: Boolean,
errors: "Error Message"
// Procedure results go here

}

Where:

v isSuccessful – Contains true if the procedure invocation
succeeded, false otherwise. If the invocation failed, the failure
handler for the request is called.

v errors – An optional string array that contains the error
messages.

Return Value

None.

Deprecated WL.Client.isConnected
This method is deprecated.

Syntax
WL.Client.isConnected()

Description

Note: This method is deprecated as of version 4.1.3. Use
WL.Device.getNetworkInfo instead.

Returns true if the application is connected to the IBM Worklight Server.

Parameters

None.

WL.Client.isUserAuthenticated
This method checks whether the user is authenticated.

Syntax
WL.Client.isUserAuthenticated(realm)

Description

Checks whether the user is authenticated in a specified resource realm, or in the
resource realm that was assigned to the application when it was deployed.

196 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

Parameter Description

realm Optional. The name of a realm name defined
in the authenticationConfig.xml file.

If no value is specified, the method uses the
resource realm assigned to the application
when it was deployed.

Return Values
v true if the user is authenticated in the realm
v false otherwise

WL.Client.logActivity
This method is used to report user activity.

Syntax
WL.Client.logActivity(activityType)

Description

This method is used to report user activity for auditing or reporting purposes.

The IBM Worklight Server maintains a separate database table to store application
statistics. For more information, see “Using raw data reports” on page 375.

Note: To ensure that the activity is stored in the database, set
reports.exportRawData to true in the worklight.properties file.

Parameters

Parameter Description

activityType Mandatory. A string that identifies the
activity.

Return Value

None.

WL.Client.login
This method logs in to a specific realm.

Syntax
WL.Client.login(realm, options)

Description

An asynchronous function. Logs in to a specific realm.

Chapter 5. API reference 197

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

Parameter Description

realm Mandatory. A realm that defines how the
login process is performed. The realm can
either be the one defined in the application
descriptor, or a Facebook realm.

Note: To log in to Facebook, the realm must
be a realm which uses a Facebook
authenticator, and therefore its name must
start with facebook..

options Optional. A standard options object.

Return Value

None.

WL.Client.logout
This method logs out of a specified realm.

Syntax
WL.Client.logout(realm, options)

Description

An asynchronous function that logs out of a specified realm.

Parameters

Parameter Description

realm Optional. The realm to be logged out of.

Specify NULL to log out of the resource realm
assigned to the application when it was
deployed.

options Optional. A standard options object.

Return Value

None.

WL.Client.minimize
Minimize a widget on Adobe Air.

Syntax
WL.Client.minimize()

Description

Note: This method is only applicable to widgets that are running on Adobe AIR.

This method minimizes the AIR widget to the taskbar, or to the tray, as defined in
the application descriptor.

198 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

None.

WL.Client.onDock, WL.Client.onUndock
Specify widget behavior on docking and undocking, in Windows.

Syntax
myOnDock = function () {
// Code here
}
myOnUndock = function () {
// Code here
}

Description

Note: These methods are applicable only to widgets that are running in Vista
Sidebar.

To specify widget behavior on docking and undocking, provide an implementation
for the WL.Client.onDock and WL.Client.onUndock callback functions. Neither of
these methods receive any parameters.

In your initialization function, assign myOndock() and myOnUnDock() to
WL.Client.onDock() and WL.Client.onUndock():
WL.Client.onDock = myOnDock;
WL.Client.onUndock = myOnUndock;

WL.Client.onShow, WL.Client.onHide
Specify widget behavior on showing and hiding, in Apple OS X.

The use of Apple OS X widgets is deprecated in Worklight version 5.0.5. Support
might be removed in any future version.

Syntax
myOnShow = function () {
// Code here
}
myOnHide = function () {
// Code here
}

Description

Note: These methods are applicable only to widgets that are running on Apple OS
X Dashboard.

Widgets running on Apple OS X Dashboard can be shown or hidden by pressing
F12 on the Apple computer keyboard. Developers of OS X Dashboard widgets are
instructed to stop any background processing while the widgets are hidden.

To specify the widget behavior on showing and hiding it, provide an
implementation for the WL.Client.onShow and WL.Client.onHide methods. Neither
of these methods take any parameters.

Chapter 5. API reference 199

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

In your initialization function, assign myOnShow() and myOnHide() to
WL.Client.onShow() and WL.Client.onHide():
WL.Client.onShow = myOnShow;
WL.Client.onHide = myOnHide;

WL.Client.reloadApp
This method reloads the application.

Syntax
WL.Client.reloadApp()

Description

This method reloads the application. It can be used to recover an application from
errors. It is preferable to avoid using it and to use alternative error handling
mechanisms instead. The method is mainly available for compatibility with earlier
versions.

Note: The Apple OS X Dashboard does not allow a widget to automatically reload.
Therefore, in this environment, the reloadApp method displays a dialog box that
tells the user how to manually reload the widget.

Parameters

None.

Return Value

None.

WL.Client.removeGlobalHeader
This method removes the global HTTP header added by the
WL.Client.addGlobalHeader API call

Syntax
WL.Client.removeGlobalHeader(headerName)

Description

Removes the global HTTP header added by the WL.Client.addGlobalHeader API
call.

Parameters

Parameter Description

headerName Mandatory. The name of the header to be
removed..

Return Value

None.

Example
WL.Client.removeGlobalHeader("MyCustomHeader");

200 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WL.Client.setHeartBeatInterval
This method sets the interval of the heartbeat signal.

Syntax
WL.Client.setHeartBeatInterval(interval)

Description

Sets the interval of the heartbeat signal sent to the IBM Worklight Server to the
specified number of seconds. The heartbeat is used to ensure that the session with
the server is kept alive when the app does not issue any call to the server (such as
invokeProcedure).

Parameters

Parameter Description

interval Mandatory. An integer value, denoting the
interval in seconds between heartbeat
messages automatically sent by WLClient to
the IBM Worklight Server.

An interval value of -1 disables the
heartbeat:WL.Client.setHeartBeatInterval(-
1)

WL.Client.setUserPref
This method creates a user preference, or updates the value of an existing user
preference.

Syntax
WL.Client.setUserPref(key, value, options)

Description

An asynchronous function that creates a user preference, or updates the value of
an existing user preference, as follows:
v If a user preference with the specified user key is already defined, the user

preference value is updated.
v If there is no user preference defined with the specified key, a new user

preference is created with the specified key and value. However, if there are
already 100 preferences, no preference is created, and the failure handler of the
method is called.

Note: The local user preferences in the application are updated only when a
successful response is received from the server.

Parameters

Parameter Description

key Mandatory. The user preference key. Can be
up to 128 characters long.

value Mandatory. The value of the user preference.
Can be up to 3072 characters long.

options Optional. A standard options object.

Chapter 5. API reference 201

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Return Value

None.

WL.Client.setUserPrefs
This method creates or updates one or more user preferences.

Syntax
WL.Client.setUserPrefs({key1:value1, key2:value2, ...}, options)

Description

An asynchronous function that creates one or more new user preferences, updates
the values of one or more existing user preferences, or both. For each user
preference key and value pair provided, the following occurs:
v If a user preference with the specified user key is already defined, the user

preference value is updated.
v If there is no user preference defined with the specified key, a new user

preference is created with the specified key and value.

If adding the new user preferences would result in the number of user preferences
exceeding 100, then no user preferences are added or updated, and the failure
handler of the method is called.

Note: The local user preferences in the application are updated only when a
successful response is received from the server.

Parameters

Parameter Description

{key1:value1, key2:value2, ...} Mandatory. A hash object that contains user
preference key and value pairs. The key can
be up to 128 characters long. The value can
be up to 3072 characters long.

options Optional. A standard options object.

Return Value

None.

WL.Client.updateUserInfo
This method refreshes user data after an exception.

Syntax
WL.Client.updateUserInfo (options)

Description

Use this method when the application receives an exception after calling the
invokeProcedure() method. The method refreshes the data for the following
methods:
v WL.Client.getUserName(realm)

202 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v WL.Client.getLoginName(realm)

v WL.Client.isUserAuthenticated(realm)

After such an exception, you can verify the user authentication status by calling
this function first, and then the isUserAuthenticated() method.

Parameters

Parameter Description

options Optional. A standard options object.

Return Value

None.

WL.App.copyToClipboard
Copy a string to the clipboard.

Syntax
WL.App.copyToClipboard(string)

Description

This method is applicable to iOS and Android.

It copies the specified string to the clipboard.

Parameters

Table 37. WL.App.copyToClipboard parameters

Parameter Description

string Mandatory. String. The text to be copied to
the clipboard

callback Optional. For Android environments only.
The callback function that is called after the
data is copied to the clipboard.

WL.Device.getNetworkInfo
Get network information from the device

Syntax
WL.Device.getNetworkInfo (callback)

Description

Fetches network information from the device and returns it to the specified
callback function. Available on Android and iOS.

Chapter 5. API reference 203

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

Table 38. WL.Device.getNetworkInfo parameters

Parameter Description

callback Mandatory. The function that is called after
the data is copied to the clipboard.

Return Value

The callback function receives a JSON structure, as described in the following
table:

Table 39. WL.Device.getNetworkInfo properties available on Android and iOS

Property Description
Availability on
Android Availability on iOS

isNetworkConnected Mandatory. Whether
the device has an IP
address (that is, it is
connected through
Wi-Fi or a mobile
network)

Yes Yes

isAirplaneMode Mandatory. Whether
the device is in
airplane mode or not

Yes No

isRoaming Mandatory. Whether
the device is roaming
(not on its home
mobile network)

Yes No

networkConnectionTypeMandatory. Returns
mobile or WIFI

Yes Yes

wifiName Mandatory. Name of
the Wi-Fi network, if
connected

Yes No

telephonyNetworkTypeMandatory. Type of
the mobile network
(such as HSDPA or
EDGE)

Yes No

carrierName Mandatory. Name
and ID of the mobile
carrier

Yes No

204 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 39. WL.Device.getNetworkInfo properties available on Android and iOS (continued)

Property Description
Availability on
Android Availability on iOS

ipAddress Mandatory. IP
address of the device
Note: The value
ipAddress is set to
the first non-null
value of the possible
four IP addresses in
this order:

v IPv4 Wi-Fi Address

v IPv4 3GAddress

v IPv6 Wi-Fi Address

v IPv6 3GAddress

For example, if both
IPv4 Addresses are
not present, the value
ipAddress takes the
value of the IPv6
Wi-Fi address.

Yes Yes

Ipv4Addresses Optional array that
contains key value
pairs:

v wifiAddress - The
IPv4 Wi-Fi address
if it is present

v 3GAddress - The
IPv4 3G address if
it is present

Yes Yes

Ipv6Addresses Optional array that
contains key value
pairs:

v wifiAddress - The
IPv6 Wi-Fi address
if it is present
(only on iOS)

v 3GAddress - The
IPv6 3G address if
it is present

Yes Yes

Example
WL.Device.getNetworkInfo(function (networkInfo) {

alert (networkInfo.ipAddress);
}

);

WL.NativePage.show
Switches the currently displayed, web-based screen with a natively written page

Syntax
WL.NativePage.show(className, callback, data);

Chapter 5. API reference 205

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

Table 40. WL.NativePage.show parameters

Parameter Description

className Mandatory. String. The name of the native
class. For iOS, the name of the class (for
example, BarCodeController). For Android,
the complete name of the class and package
(for example, com.neebula.barcode.Scanner).

callback Mandatory. Function. A function object that
is called when the native page switches back
to the web view. This function is passed a
single JSON object parameter when invoked.

data Optional. Object. A JSON object that is sent
to the native class. For iOS, The data must
be single string or a flat record of strings.

Examples
// Good
WL.NativePage.show("com.scan.BarCode", function(data){alert(data);}, {key1 : ’value1’});
WL.NativePage.show("com.scan.BarCode", function(data){alert(data);}, {key1 : ’value1’, key2 : ’value2’});

// Bad
WL.NativePage.show("com.scan.BarCode", function(data){alert(data);}, {key1 : ’value1’, innerStruct : {innerKey1 : ’innervalue1’}});

WL.Toast.show
Displays an Android toast box with the specified string.

Note: This object is only applicable to Android applications.

Syntax
WL.Toast.show (string)

Description

Displays an Android toast box with the specified string.

Parameters

Table 41. WL.Toast.show parameters – Android Only

Parameter Description

string Mandatory. String. The text to display in the
Android toast.

Return Value

None

WL.BusyIndicator (object)
Display an indication that the application is busy.

Use the WL.BusyIndicator object to display a modal, dynamic graphical image
when the application is temporarily "busy", that is, not responsive to user input.
WL.BusyIndicator is implemented natively on iOS, Android, Windows Phone 7.5,

206 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Windows Phone 8, and Windows 8. In other environments, it is implemented by
using JavaScript in the Busy.js file. The implementations differ in their option
parameters.

To change the appearance of the busy indicator, you can override the following
CSS selectors: #WLbusyOverlay, #WLbusy, and#WLbusyTitle.

Example
var busyInd = new WL.BusyIndicator(’content’, {text : ’Loading...’});

WL.BusyIndicator (constructor):

Syntax of the WL.BusyIndicator constructor

Syntax
WL.BusyIndicator (containerId, options)

Parameters

Table 42. WL.BusyIndicator parameters

Parameter Description

containerId Optional string. The name of the HTML
element in which the indicator is displayed.
The indicator is centered horizontally and
vertically within the element. If not
provided or null, the element with ID
content is used.

Not relevant where the busy indicator is
implemented natively, that is, on iOS,
Android, Windows Phone 7.5, Windows
Phone 8, and Windows 8.

options Optional. A JSON hash object. See details in
the following section.

Options for iPhone

text String.

bounceAnimation
Boolean.

Show a bounce animation when the busy indicator is displayed. Default:
false.

opacity
Float.

Number in the range 0 - 1.

textColor
String.

Color name or color notation, such as "00FF00" or "green". Default: white.

strokeOpacity
Float.

fullScreen
Boolean.

Chapter 5. API reference 207

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Show the overlay over the entire screen. Default: false.

boxLength
Float.

Height and width of the overlay, when fullScreen is false. The Height value
is automatically calculated based on the Width value provided.
Example:
var busy;
busy = new WL.BusyIndicator("content", {text: "Loading...", boxLength: 255.5};

duration
Double

Duration in seconds.

minDuration
Integer

Minimum duration in seconds.

Options for Android

text String.

Options for Windows Phone 7.5 and Windows Phone 8

None.

Options for Windows 8

None.

Options for Other Environments

text String.

Showing and Hiding the Busy Indicator:

Methods of WL.BusyIndicator

After the indicator is instantiated with a constructor, you can use the following
functions:

To show the busy indicator:
busyInd.show();

To hide the busy indicator:
busyInd.hide();

To test whether the busy indicator is visible:
if (busyInd.isVisible()) {...};

Encrypted offline cache
Encrypted offline cache is a mechanism for storing sensitive data on the client
application.

You can also use the JSONStore feature to obtain reliable secure on-device storage
of data. If you previously used the Encrypted offline cache (EOC) feature, you can
now use this improved on-device storage method for offline access. In addition,

208 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

the JSONStore provides the ability to populate and update data from an adapter
on the server. This technique provides a better alternative for storing adapter data
offline and synchronizing with a server the changes that were done when offline. If
you are developing a Worklight hybrid app to target both iOS and Android,
consider using JSONStore rather than EOC. HTML5 cache, as used in EOC, is not
guaranteed to be persistent on future iOS versions. JSONStore uses the same
encryption form and security mechanisms (PBKDF2 for key derivation from user
password and AES 256) as EOC. EOC continues to be supported as a
cross-platform on-device data store mechanism for iOS, Android, Windows, and
BlackBerry, but no major technical updates will be made to the EOC feature set.

For more information about JSONStore, see “Data synchronization with
JSONStore” on page 155

The cache uses HTML5 local storage to store user data. HTML5 imposes a limit of
5 MB, which is equivalent to approximately 1.3 MB of unencrypted text. If you
exceed this limit, the behavior is undefined. If you use a large amount of cache,
you might experience delays in processing it.

Data is stored in key-value pairs. Data is encrypted by using a 256-bit encryption
key. The encryption key is itself encrypted, using a separate 256-bit encryption key.
That key is generated from the user’s password by using the PKCS #5 PBKDF2
function.

The encrypted offline cache is available for mobile, desktop, and web
environments that support HTML5.

As an alternative to encrypted offline cache, you can use a JSONStore object. For
more information, see “Developing an app that uses data synchronization” on page
156.

WL.EncryptedCache – Exceptions

The following exceptions can be thrown by WL.EncryptedCache methods:

WL.EncryptedCache.ERROR_NO_EOC
Thrown when create_if_none is false but no encrypted cache was
previously initialized.

WL.EncryptedCache.ERROR_LOCAL_STORAGE_NOT_SUPPORTED
Thrown when the HTML5 local storage interface is unavailable.

WL.EncryptedCache.ERROR_KEY_CREATION_IN_PROGRESS
Thrown when the encrypted storage is processing an open or
changeCredentials request.

WL.EncryptedCache.ERROR_EOC_CLOSED
Thrown when the encrypted cache was not properly initialized by using
WL.EncryptedCache.open.

WL.EncryptedCache.close:

Close encrypted cache.

Syntax
WL.EncryptedCache.close(onCompleteHandler, onErrorHandler)

Chapter 5. API reference 209

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Description

Closes the cache. The cache must be reopened with the user’s credentials to be
used again.

Parameters

Parameter Description

onCompleteHandler Mandatory. Function. A callback method that
is invoked when the encrypted cache is
ready for use.

Signature: successCallback (status), where
status can be WL.EncryptedCache.OK.

onErrorHandler Mandatory. Function. A callback method that
is invoked when the action fails.

Signature: failureCallback(status), where
status can be
WL.EncryptedCache.ERROR_KEY_CREATION_IN_PROGRESS.

Return Value

None.

WL.EncryptedCache.destroy:

Deletes encrypted cache.

Syntax
WL.EncryptedCache.destroy(onCompleteHandler, onErrorHandler)

Description

Completely deletes the encrypted cache and its storage. The cache does not need to
be opened before it is destroyed.

Parameters

Parameter Description

successCallback Mandatory. Function. A callback method that
is invoked when the action succeeds.

Signature: successCallback (status), where
status can be WL.EncryptedCache.OK.

failureCallback Mandatory. Function. A callback method that
is invoked when the action fails.

Signature: successCallback (status), where
status can be
WL.EncryptedCache.ERROR_KEY_CREATION_IN_PROGRESS.

Return Value

WL.EncryptedCache.OK
The encryption data was successfully removed from memory.

210 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WL.EncryptedCache.open:

Open an existing cache, or create a cache.

Syntax
WL.EncryptedCache.open(credentials, create_if_none, onCompleteHandler, onErrorHandler)

Description

Opens an existing cache, or creates a cache, which is encrypted using the provided
credentials. This method runs asynchronously because the key generation process
is a lengthy process.

The process of creating a cache involves obtaining a random number from the IBM
Worklight Server. Hence, the action of creating a cache requires that the app is
connected to the IBM Worklight Server. After a cache is created, it can then be
opened without a connection.

Parameters

Table 43. WL.EncryptedCache.open parameters

Parameter Description

credentials Mandatory. String. The credentials that are
used to encrypt the stored data.

create_if_none Mandatory. Boolean. Whether to create an
encrypted cache if one does not exist.

onCompleteHandler Mandatory. Function. A callback method that
is invoked when the encrypted cache is
ready for use.

The signature of this method is
onCompleteHandler(status). The possible
value for status is WL.EncryptedCache.OK

onErrorHandler Mandatory. Function. A callback method that
is invoked when the action fails.

The signature of this method is
onErrorHandler(status). Possible values for
status are:
WL.EncryptedCache.ERROR_KEY_CREATION_IN_PROGRESS,
WL.EncryptedCache.ERROR_LOCAL_STORAGE_NOT_SUPPORTED,
WL.EncryptedCache.ERROR_NO_EOC,
WL.EncryptedCache.ERROR_COULD_NOT_GENERATE_KEY,
WL.EncryptedCache.ERROR_CREDENTIALS_MISMATCH

Return Value

None

WL.EncryptedCache.read:

Decrypts the value that is associated with the specified key.

Syntax
WL.EncryptedCache.read(key, successCallback, failureCallback)

Chapter 5. API reference 211

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

Table 44. WL.EncryptedCache.read parameters

Parameter Description

Key Mandatory. String. The key whose value
needs to be decrypted.

successCallback Mandatory. Function. A callback method that
is invoked when the action succeeded.

Signature: successCallback (value), where
value is the result of the read action.

failureCallback Mandatory. Function. A callback method that
is invoked when the action fails.

Signature: failureCallback(status), where
status can be
WL.EncryptedCache.ERROR_EOC_CLOSED.

Return Value

Decrypted value of the specified key.

WL.EncryptedCache.remove:

Removes a key-value pair from the cache.

Syntax
WL.EncryptedCache.remove(key, successCallback, failureCallback)

Description

Removes the key-value pair that is associated with key. Same as
WL.EncryptedCache.write(key, null).

Parameters

Table 45. WL.EncryptedCache.remove parameters

Parameter Description

Key Mandatory. String. The key to remove.

successCallback Mandatory. Function. A callback method that
is invoked when the action succeeded.

Signature: successCallback (status), where
status can be WL.EncryptedCache.OK.

failureCallback Mandatory. Function. A callback method that
is invoked when the action fails.

Signature: failureCallback(status), where
status can be
WL.EncryptedCache.ERROR_EOC_CLOSED.

Return Value

None

212 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WL.EncryptedCache.write:

Store a key-value pair in the cache.

Syntax
WL.EncryptedCache.write(key, value, successCallback, failureCallback)

Description

Stores the key-value pair, encrypting value and associating it with key for later
retrieval.

Parameters

Table 46. WL.EncryptedCache.write parameters

Parameter Description

key Mandatory. String. The key to associate the
data (value) with.

value Mandatory. String. The data to encrypt.
When set to null, the key is removed.

successCallback Mandatory. Function. A callback method that
is invoked when the action succeeds.

Signature: successCallback (status), where
status can be WL.EncryptedCache.OK.

failureCallback Mandatory. Function. A callback method that
is invoked when the action fails.

Signature: failureCallback(status), where
status can be
WL.EncryptedCache.ERROR_EOC_CLOSED.

Return Value

None

WL.Client.getLanguage
Return the language code of the language being used.

Syntax
WL.Client.getLanguage()

Description

Note: This method is not relevant for mobile operating systems. Use mobile locale
methods instead.

This method returns the language or dialect code of the language currently being
used for the application.

Parameters

None.

Chapter 5. API reference 213

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Return Value

The language or dialect code of the currently set language, or NULL if no language
is set. The language or dialect code has the format ll or ll-cc, where ll is a two-letter
ISO 639-1 language code and cc is a two-letter ISO3166-1-alpha-2 country code.

WL.JSONStore
Provides the application programming interface (API) for storing JSON data
locally, it can be linked to an adapter for data synchronization.

The JSONStore feature is only available on iOS and Android devices, and
simulators.

Definitions

WL.JSONStore
Creates JSON Document collections by the init method.

Collection
A group of related documents.

Document
A JavaScript object that has an _id key that holds an integer and a JSON
key that holds a JavaScript object. Document is an internal structure that
we generate when you add or store data, do not modify _id.
var doc = {_id : 0, json: {fn : ’carlos’, age : 99, active : false}};

Array of Documents
An array that holds only Documents.
var doc = [{_id : 0, json : {fn : ’carlos’, age : 99, active : false}}];

searchFields

Defines the keys in JavaScript objects that are indexed, thus determining
what you can query in a collection. The keys in the searchFields object
must correspond to paths in the stored JSON object. Search field keys are
applied to the JSON objects in a style similar to
object[’keyPart1][’keyPart2’]. When a searchField is in the JavaScript
object, it is indexed only if the value is a simple type (integer, number,
boolean, or string). The values for search fields are type hints and must be
one of 'string', 'integer', 'number', or 'boolean'. The type declared in the
searchField need not to match the type of the item that is matched at
runtime, but the better the match the better the optimization that can be
done.

In this example, the fields fn, age, gpa and active match keys that are
found only at the top level of the JavaScript object: var myObj = { age: 42
}, and would not match var myObj2 = { person : {age : 18 } }, the
search field must be person.age to match this case.
var searchfields = { fn : ’string’,

age : ’integer’,
gpa : ’number’, //floating point or int
active : ’boolean’,
’address.state’ : ’string’ };

Arrays are handled in a pass-through fashion, meaning that you cannot
index an array or a specific index of the array (arr[n]) but you can index
objects inside an array. For example:

214 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

var myObj = {
customers : [

{ fn: "tim", age: 31 },
{ fn: "carlos", age: 11 }

]
};

searchField keys customers.fn and customers.age then match the values in
the objects inside the customers array. However, 'customers' would not be
matched, as the value is an array.

Query
A JavaScript object that does not contain nested objects or arrays. Keys
must be specified in the search fields or be the special _id identifier.
var query = {_id : 0};
var query = {fn : ’carlos’};
var query = {age : 99};
var query = {active : false};
var query = {’address.state’ : ’TX’};

Adapter
Collections might be linked to an adapter, which is used to push data by
starting the specified adapter procedures that are based on the local
modifications performed. For example: A document that was removed
from the local collection is passed to the remove procedure in the adapter.
There is an optional function that you can pass by the accept key to the
adapter object that determines whether the document we try to push is
marked as pushed in local storage. timeout is an optional parameter that if
specified passes a value (in millis) to the WL.Client.invokeProcedure
function during push operations. See the “WL.Client.invokeProcedure” on
page 194 for more details.

You might optionally include a load key with an object that tells the
collection where to load the initial set of data. The procedure name must
be part of the adapter you linked to the collection, you can pass any
number of parameters through the parameters array to the procedure or an
empty array for no parameters and you must supply a key that is used to
determine what you want to store in the invocation result
(response.invocationResult[key]). See WL.JSONStore.load for more
details.
var adapter = {name: ’customerAdapter’,

add: ’addProcedureInCustomerAdapterName’,
remove: ’removeProcedureInCustomerAdapterName’,
replace: ’replaceProcedureInCustomerAdapterName’,
load: {

procedure: ’getCustomers’,
params: [],
key: "customers"

},
accept: function (data) {

return (data.status === 200);
}

},timeout: 3000
};

Options
A JavaScript object that contains additional options you can pass to a
specific method. The onSuccess and onFailure keys you pass by using the
options object, are deprecated in favor of Promises. These success and

Chapter 5. API reference 215

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

failure callbacks are specific to the function you are calling, for example the
onSuccess function that is passed to initCollection is called only when
initCollection is successful.
var win = function (data) { };
var fail = function (data) { };
var options = {onSuccess: win, onFailure: fail};

Promises
All the asynchronous functions in the API currently support jQuery
compatible promises. A promise object is returned after a JSONStore
asynchronous operation is called (find, add, remove, and so on). Promises
have the following methods:
.then(success callbackFunction, failure callbackFunction);
.done(success callback);
.fail(failure callback);

see jQuery's API documentation for more details. The failure callback,
passed as either the second parameter of .then or the first parameter of
.fail returns an error object, which contains some of these keys: source,
error code, message, collection name, user name, document, and response
from the server. A failure is then initiated to the nearest error handler. You
can use WLJQ.when(promise1, promise2).then(success callback, failure
callback) if you need promise1 and promise2 to finish before calling the
callbacks. The deprecated WL.JSONStore.initCollection is a special case,
you must call .promise on the collection instance.
var collections = {

customers : {
searchFields : { fn: ’string’ }
}
};

WL.JSONStore.init(collections)

.then(function () {
//collection is initialized at this point
return WL.JSONStore.get(’customers’).add({name: ’carlos’});
})
.then(function (res) {
//res = 1, since one document was added to the collection
return WL.JSONStore.get(’customers’).count();
})
.done(function (res) {
//res = 1, since count returns the total number of documents in the collection
})
.fail(function (obj) {
WL.Logger.debug(obj.toString()); //obj may contain some of these keys:
//obj.src = operation that failed (eg. ’add’, ’count’, etc.)
//obj.err = error code (eg. -50)
//obj.msg = error code message (’PERSISTENT_STORAGE_FAILURE’)
//obj.col = collection name (eg. ’collection’)
//obj.usr = username (eg. ’jsonstore’)
//obj.doc = document (eg. {_id: 1, jsonstore: {name: ’carlos’}})
//obj.res = response from the server
});

Events
You can listen to events and capture successful and failure status codes
and data. The following assumes jQuery >1.7 or using WLJQ.
$(document.body).on(’WL/JSONSTORE/SUCCESS’, function (evt, data, src, collectionName, more){

if(src === ’find’){
console.log(status);
if(typeof data !== ’undefined’){

216 IBM Worklight V5.0.6

http://api.jquery.com/promise/

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

console.log(data);
}

}
});

You can also listen to the WL/JSONSTORE/FAILURE event.

additionalSearchFields

Defines additional fields that are searchable without modifying the stored
document. Usecases for additionalSearchFields include“ tagging” data and
forming relationships.

//Note that this example has certain elements omitted for brevity,
//see the documentation for init, add, and find
//for complete examples of those functions.

var orders = [
{
orderid : 23,
item : ’tasty coffee’
},
{
orderid : 99,
item : ’good book’
}
];
//Appear in objects to add to the collection
var searchFields = { orderid: ’integer’, item: ’string’ };

//Do not appear in objects to add to the collection
var addSearchFields = { customerId : ’string’ };

var orderCollection = WL.JSONStore.init({
orders: {
searchFields: searchFields,
additionalSearchFields : addSearchFields
}
});

//call this after init finishes
orderCollection.store(orders, {additionalSearchFields : { customerId: ’abc123’} },<store options>);

//call this after init finishes
orderCollection.find({customerId: ’abc123’}, <find options>);

Find calls the onSuccess callback with a parameter that contains the
following data:

[
{
_id : 1,
json : {
orderid : 23,
item : ’tasty coffee’
}
},
{
_id : 2,
json : {
orderid :99,
item : ’good book’
}
}
];

Chapter 5. API reference 217

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Notice how the 'customerId' field was not added to the actual document,
but is available as a searchable field in the find function.

List of error codes
-50 = "PERSISTENT_STORE_NOT_OPEN";
-40 = "FIPS_ENABLEMENT_FAILURE";
-12 = "INVALID_SEARCH_FIELD_TYPES";
-11 = "OPERATION_FAILED_ON_SPECIFIC_DOCUMENT";
-10 = "ACCEPT_CONDITION_FAILED";
-9 = "OFFSET_WITHOUT_LIMIT";
-8 = "INVALID_LIMIT_OR_OFFSET";
-7 = "INVALID_USERNAME";
-6 = "USERNAME_MISMATCH_DETECTED";
-5 = "DESTROY_REMOVE_PERSISTENT_STORE_FAILED";
-4 = "DESTROY_REMOVE_KEYS_FAILED";
-3 = "INVALID_KEY_ON_PROVISION";
-2 = "PROVISION_TABLE_SEARCH_FIELDS_MISMATCH";
-1 = "PERSISTENT_STORE_FAILURE";
0 = "SUCCESS";
1 = "BAD_PARAMETER_EXPECTED_INT";
2 = "BAD_PARAMETER_EXPECTED_STRING";
3 = "BAD_PARAMETER_EXPECTED_FUNCTION";
4 = "BAD_PARAMETER_EXPECTED_ALPHANUMERIC_STRING";
5 = "BAD_PARAMETER_EXPECTED_OBJECT";
6 = "BAD_PARAMETER_EXPECTED_SIMPLE_OBJECT";
7 = "BAD_PARAMETER_EXPECTED_DOCUMENT";
8 = "FAILED_TO_GET_UNPUSHED_DOCUMENTS_FROM_DB";
9 = "NO_ADAPTER_LINKED_TO_COLLECTION";
10 =
"BAD_PARAMETER_EXPECTED_DOCUMENT_OR_ARRAY_OF_DOCUMENTS";
11 =
"INVALID_PASSWORD_EXPECTED_ALPHANUMERIC_STRING_WITH_LENGTH_GREATER_THAN_ZERO";
12 = "ADAPTER_FAILURE";
13 = "BAD_PARAMETER_EXPECTED_DOCUMENT_OR_ID";
14 = "CAN_NOT_REPLACE_DEFAULT_FUNCTIONS";
15 = "COULD_NOT_MARK_DOCUMENT_PUSHED";
16 = "COULD_NOT_GET_SECURE_KEY";
17 = "FAILED_TO_LOAD_INITIAL_DATA_FROM_ADAPTER";
18 =
"FAILED_TO_LOAD_INITIAL_DATA_FROM_ADAPTER_INVALID_LOAD_OBJ";
19 = "INVALID_KEY_IN_LOAD_OBJECT";
20 = "UNDEFINED_PUSH_OPERATION";
21 = "INVALID_ADD_INDEX_KEY";
22 = "INVALID_SEARCH_FIELD";
23 = "CLOSING_ALL";
24 = "CHANGING_PASSWORD";

218 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

25 = "DURING_DESTROY";
26 = "CLEARING_COLLECTION";
27 = "INVALID_PARAMETER_FOR_FIND_BY_ID";

Typical Usage

The JSONStore can be used to create a collection either from an adapter or
otherwise. When tied to an adapter, the API supports a convention of tying the
various sync operations (pushing to server) based on the action the user can
perform on the local collection in the JSONStore.
v Decide whether the collections, as part of the JSONStore, must be encrypted. If

there is a requirement to secure the data at rest, send a password via the options
object when you call WL.JSONStore.init.

v If you need multiple stores, then send a username via the options object when
you call WL.JSONStore.init.

v Start with defining the collections, then initialize them with WL.JSONStore.init,
see, WL.JSONStore.init. This action includes defining adapter configuration,
collection name, and the searchfields options.

v After you initialize your collections, you can get them with WL.JSONStore.get
('collection-name') and it returns the right JSONStoreInstance.

v You can load data from an adapter by using load and store new data by calling
add on the JSONStoreInstance.

v Your users can then find and work with the collection locally: they can replace,
add or remove JSON Documents.

v Calling push on a JSONStoreInstance sends data that has been changed to your
backend via an adapter. isPushRequired, getPushRequired and
pushRequiredCount provide further information about the state of the collection.

v You can optionally close the collection after you use it by closeAll which closes
the JSONStore and the collections in it.

WL.JSONStore.add:

Adds data to a collection.

Syntax
add(data,[options])Promise

Description

Adds data to a collection, creates a new Document or Documents. The documents
require “WL.JSONStore.push” on page 234, unless `{push: false}` is specified.

Parameters

data
Object or Array of Objects. Data to be added to the collection.

options
Optional.

Options.

Additional options: additionalSearchFields: {}'

Chapter 5. API reference 219

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Returns

Promise:
OnSuccess

Integer with the amount of data stored

onFailure
An error code

Example
//See .init for context
WL.JSONStore.get(’customers’).add({fn: ’carlos’})
.then(function (res) {
//res => number of documents added
})
.fail(function (errobject) {
WL.Logger.debug(errobject.toString());
});
//Deprecated Example:
var data = {fn: ’jeremy’, age: 88, active: true};
collection.add(data, options);

WL.JSONStore.changePassword:

Changes the password for the internal storage.

Syntax
changePassword(oldPW, newPW, user,[options]) Promise static

Description

Changes the password for the internal storage. You must have a collection
initialized before calling change password. Deprecated but currently supported
function signature: changePassword(oldPW, newPW, options), the user is assumed
to be the default user: jsonstore.

Parameters

oldPW

String

The old password. Must be alphanumeric ([a�z, A�Z, 0�9]) with at least 1
character.

newPW

String

The new password. Must be alphanumeric ([a�z, A�Z, 0�9]) with at least 1
character.

user

String

The user name. Must be an alphanumeric string ([a�z, A�Z, 0�9]) with length
greater than 0. See WL.JSONStore.initCollection for more details.

options

Optional

Options

220 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Returns

promise
promise

Example
var oldPW = ’myOldPassword’,
newPW = ’newSecret’,
user = ’tim’; //optional, default ’jsonstore’
WL.JSONStore.changePassword(oldPW, newPW, user)
.then(function () {
//the password has been changed
})
.fail(function (errobject) {
WL.Logger.debug(errobject.toString());
});
//Deprecated Example:
var win = function () {
console.log(’SUCCESS’);
};
var fail = function (err) {
console.log(’FAILURE’);
};
WL.JSONStore.changePassword(oldPW, newPW, user, {onSuccess: win, onFailure: fail});

WL.JSONStore.clearPassword:

Deprecated. Clears the password

Syntax
clearPassword() Boolean deprecated

Description

Removes the password from memory. This function is deprecated.

Deprecated

Use WL.JSONStore.init

Returns

Boolean
true if the password stored in memory was set to null, false if there was no
password in memory or if it was not set to null.

Example
WL.JSONStore.clearPassword();

WL.JSONStore.closeAll:

Closes the persistent store.

Syntax
closeAll ([options]) Promise static

Chapter 5. API reference 221

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Description

Closes all the collections in the JSONStore. After a closeAll, each collection in the
store must have WL.JSONStore.init called again before that collection can be used.

Note: If the collections in the persistent store are password protected, the
password must be specified during init. See “WL.JSONStore.initCollection” on
page 229.

Parameters

options

Optional

Options

Returns

promise
promise

Example
WL.JSONStore.closeAll()
.then(function () {
//close all finished
})
.fail(function (errobject) {
WL.Logger.debug(errobject.toString());
});
//Deprecated Example:
var win = function () {
console.log(’SUCCESS’);
};
var fail = function (err) {
console.log(’FAILURE’);
};
WL.JSONStore.closeAll({onSuccess: win, onFailure: fail});

WL.JSONStore.count:

Number of documents in the collection

Syntax
count([options])Promise

Description

Number of documents in the collection (not including those marked 'removed').

Parameters

options
Optional

Options

Returns

Promise:
onSuccess

Integer with the number of documents in the collection.

222 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

onFailure
An error code.

Example
//See .init and .add for context
WL.JSONStore.get(’customers’).count()
.then(function (res) {
//res => number of documents inside the collection
})
.fail(function (errobject) {
WL.Logger.debug(errobject.toString());
});
//Deprecated Example:
var win = function (data) {
console.log(data);
=> 5
};
var options = {onSuccess: win, onFailure: fail};
collection.count(options);

WL.JSONStore.destroy:

A complete data wipe for all users, destroys the internal storage and clears security
artifacts.

Syntax
destroy([options]) Promise static

Parameters

options
Optional

Options

Returns

Promise
Promise

Example
WL.JSONStore.destroy()
.then(function () {
//all the stores and keys for decrypting the store are removed from disk
})
.fail(function (errobject) {
WL.Logger.debug(errobject.toString());
});
//Deprecated Example:
var win = function (status) {
console.log(’SUCCESS’);
};
var fail = function (status) {
console.log(’FAILURE’);
};
WL.JSONStore.destroy({onSuccess: win, onFailure: fail});

WL.JSONStore.documentify:

Creates a Document.

Chapter 5. API reference 223

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Syntax
documentify (id, data) Document static

Parameters

id Integer

ID for the document

data
Object

JSON data for the Document

Returns

Document
Returns the document.

onFailure
Returns an error code.

Example
var doc = WL.JSONStore.documentify(1, {fn: ’carlos’, age: 99, active: false});
console.log(doc);
=> {_id: 1, json: {fn: ’carlos’, age: 99, active: false}}

WL.JSONStore.enhance:

Add a new function to a collection's prototype.

Syntax
enhance(name, func,) Integer

Parameters

name
String

Function name

func
Function

The function to add

Returns

Integer
0 if success, or an error code

Example
//Definition
collection.enhance(’findByName’, function (name) {
return this.find({fn: name});
});
//Usage - see .init for context
WL.JSONStore.get(’customers’).findByName(’carlos’)
.then(function (res) {
//res => all documents that have a fn (first name) of ’carlos’

224 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

})
.fail(function (errobject) {
WL.Logger.debug(errobject.toString());
});

WL.JSONStore.erase:

Removes Documents from a collection.

Syntax
erase(doc, [options]) OnSuccess deprecated

Description

Same as remove, but really does remove the document from the internal storage
instead of marking it for removal and then really removing it when you call push
or pushSelected with that specific document.

Deprecated, use “WL.JSONStore.remove” on page 237

Parameters

doc
Document or Array of Documents or Query or Integer.

The Integer is an_id.

options
Optional

Options

Returns

OnSuccess
Integer with the number of documents removed.

onFailure
An error code.

Example
var doc = {_id : 0, json: {fn : ’carlos’, age : 99, active : false}};
collection.erase(doc, options); //Remove a Document
//or
collection.erase([doc], options); //Remove an Array of Documents
//or
collection.erase(1, options); //Remove by _id
//or
collection.erase({fn: ’carlos’}, options); //Remove all Documents that match {fn: ’carlos

WL.JSONStore.find:

Returns documents that are stored in the collection that match the query. Query
matching returns partial results. It is not an exact match. For example, the query
{name: 'carl'} matches “carlos” and “carl”. To find all documents use the following
query: var query = {}.

Syntax
find(query, [options]) Promise

Chapter 5. API reference 225

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

query
Query

options
Optional

Options

Returns

Promise:
OnSuccess

An Array of Documents or an empty Array if no matches

onFailure
An error code.

Example
//See .init and .add for context
var query = {fn: ’carlos’}
WL.JSONStore.get(’customers’).find(query)
.then(function (res) {
//res => results from find
})
.fail(function (errobject) {
WL.Logger.debug(errobject.toString());
});
//Deprecated Example:
var query = {fn: ’carlos’};
var win = function (data) {
console.log(data);
=> [{_id : 0, json: {fn : ’carlos’, age : 99, active : false}}];
};
var options = {onSuccess: win, onFailure: fail};
collection.find(query, options);

WL.JSONStore.findAll:

Returns all the documents stored in the JSON Store.

Syntax
findAll ([options]) Promise

Parameters

options
Optional

Options

Returns

Promise:
OnSuccess

An Array of Documents or an empty Array if the collection is empty.

onFailure
An error code.

226 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Example
//See .init and .add for context
WL.JSONStore.get(’customers’).findAll()
.then(function (res) {
//res => results from findAll
})
.fail(function (errobject) {
WL.Logger.debug(errobject.toString());
});
//Deprecated Example:
var win = function (data) {
console.log(data);
=> [{_id : 0, json: {fn : ’carlos’, age : 99, active : false}}];
};
var options = {onSuccess: win, onFailure: fail};
collection.findAll(options);

WL.JSONStore.findById:

Returns one or more documents that match the ID or ID's supplied to the function.

Syntax
findById (id, [options]) Promise

Parameters

id Integer or Array of Integers

Integer values must be greater than 0.

options
Optional

Options

Returns

Promise:
OnSuccess

An Array of Documents or an empty Array if no matches

onFailure
An error code.

Example
//See .init and .add for context
WL.JSONStore.get(’customers’).findById(1)
.then(function (res) {
//res => results from find
})
.fail(function (errobject) {
WL.Logger.debug(errobject.toString());
});
//Deprecated Example:
var id = 1;
//You can also pass id = [1,2,3] if you want the first 3 documents in the JSONStore
var win = function (data) {
console.log(data);
=> [{_id : 1, json: {fn : ’carlos’, age : 99, active : false}}];
};
var options = {onSuccess: win, onFailure: fail};
collection.findById(id, options);

Chapter 5. API reference 227

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WL.JSONStore.get:

Returns a JSONStoreInstance linked to a collection

Syntax
get (collection) JSONStoreInstance static

Description

Returns a JSONStoreInstance linked to a collection, or undefined if the instance is
not found. The instances are populated with WL.JSONStore.init. The following
methods clear the instances that are stored: WL.JSONStore.init with {clear: true},
WL.JSONStore.destroy and WL.JSONStore.closeAll. Instances must not be altered.
To update values call WL.JSONStore.init again.

Parameters

collection
string

Name of the collection instance you want to get

Returns

JSONStoreInstance

Example
WL.JSONStore.get(’customers’) //returns the JSONStoreInstance
.findAll() //example of an operation performed on a JSONStoreInstance
.then(function (res) {
//res => array of all documents inside the ’customers’ collection
});
.fail(function (errobject) {
WL.Logger.debug(errobject.toString());
});

WL.JSONStore.getErrorMessage:

Returns the message associated with a status code.

Syntax
getErrorMessage(statusCode) String static

Parameters

statusCode
Integer

Returns

String
The Error Message that is associated with the status code or 'Not Found' if you
pass an invalid value (non-integer) or a non-existent status code.

Example
WL.JSONStore.getErrorMessage(-50);
=> "PERSISTENT_STORE_NOT_OPEN"

228 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WL.JSONStore.getPushRequired:

Get all the Documents that are unpushed.

Syntax
getPushRequired([options]) Promise

Parameters

options
Optional

Options

Returns

Promise:
onSuccess

Array of Documents that are not pushed.

onFailure
An error code.

Example
//See .init and .add for context
WL.JSONStore.get(’customers’).getPushRequired()
.then(function (res) {
//res => array of documents that need to be pushed
})
.fail(function (errobject) {
WL.Logger.debug(errobject.toString());
});
//Deprecated Example:
var win = function (data) {
console.log(data);
=> [{_id: 1, json: {fn: ’jeremy’, age: 88, active: true} }]
};
var options = {onSuccess: win, onFailure: fail};
collection.getPushRequired(options)

WL.JSONStore.initCollection:

Creates a new object to interact with a single collection.

Syntax
initCollection (name, searchfields, [options]) JSONStoreInstance deprecated static

Description

Creates a new object to interact with a single collection. initCollection must be
called sequentially, meaning the previous initCollection must finish before trying
to call initCollection again. If local storage for the collection does not exist, it is
provisioned with the searchFields. Otherwise, the searchFields are validated
against the searchFields used to originally provision the collection. If you are
using usernames, you must call WL.JSONStore.closeAll to “logout” the current user,
then you can call WL.JSONStore.initCollection with another username. The
following example shows how to supply a username and a password, both are
optional. If no username is passed, it uses the default one. You cannot use the
following default usernames: jsonstore, JSONStoreKey, dpk.

Chapter 5. API reference 229

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Deprecated, use WL.JSONStore.init

Parameters

name
String

Collection name.

searchfields
searchFields

options
Optional

Options

Additionally, you can link a collection to an adapter. You can also pass load:true
and it checks whether the collection is empty, and load data by using the adapter
that you defined to get data. You can pass a username by using alphanumeric
strings only: [a-z, A�Z, 0�9]) and a password.

Returns

JSONStoreInstance
The collection will not be usable until the promise is resolved, or the successful
callback is called.

onSuccess
Called if successful.

onFailure
Called if it was unsuccessful with an error code.

Example
var name = ’customers’;
var searchFields = { fn: ’string’,
age: ’integer’,
active: ’boolean’ };
var adapterDefinition = { name: ’customerAdapter’,
add: ’addProcedureInCustomerAdapterName’,
remove: ’removeProcedureInCustomerAdapterName’,
replace: ’replaceProcedureInCustomerAdapterName’,
load: {
procedure: ’getCustomers’,
params: [],
key: "customers"
},
accept : function (data, doc) { //doc is the document pushed via the adapter
return (data.status === 200); //data is what we got back from the adapter
}
};
var options = {adapter: adapterDefinition};
//[Optional] You may assign a username to the store:
options.username = ’carlos’;
//[Optional] If you want encryption you need to supply a password:
options.password = ’12345’;
var c = WL.JSONStore.initCollection(name, searchFields, options);
c.promise
.then(function (res) {
//res is 0 if a new collection was created, or 1 if an existing collection was opened
})
.fail(function (errobject) {
WL.Logger.debug(errobject.toString());
});

230 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

//Deprecated Example:
//Create success and failure callbacks
var win = function (status) {
console.log(’SUCCESS’);
if (status === 1) {
console.log(’Collection already existed’);
} else if (status == 0) {
console.log(’New Collection’);
}
};
var fail = function (err) {
console.log(’FAILURE’);
//Display the error message:
console.log(WL.JSONStore.getErrorMessage(err));
//Calling getErrorMessage is equivalent to something like this:
//if (err === -1) {
// console.log(’PERSISTENT_STORE_FAILURE’);
//} else if (err === -2){
// console.log(’PROVISION_TABLE_SEARCH_FIELDS_MISMATCH’);
//} else if (err === -3) {
// console.log(’INVALID_KEY_ON_PROVISION’);
//} else if(err == 16) {
// console.log(’COULD_NOT_GET_SECURE_KEY’);
//}
};
//Add the success and failure callbacks to options
var options = {adapter: adapterDefinition, onSuccess: win, onFailure: fail};
var collection = WL.JSONStore.initCollection(name, searchFields, options);

WL.JSONStore.init:

Syntax
init (collections, [options]) Promise static

Description

Initializes a set of collections. See get to retrieve JSONStoreInstances. There is
minimal overhead in initializing all the collections when an application starts.
Search fields are given a type hint and represent values we index on a specific
collection. Refer to the JSONStore Overview for further details on the collections
object, such as additionalSearchfields. You can call init multiple times with
different collections and it initializes without affecting collections that are already
initialized. Passing {clear: true} clears the JSONStore instances without removing
its contents from the store. For encrypted collection sets, the password is only
required the first time init is called. See WL.JSONStore.closeAll and
WL.JSONStore.destroy to logout the current user or destroy the contents of the
store. See removeCollection to remove the contents of a specific collection from
disk.

Parameters

Collections
Object

Collections that can be initialized. See example for format.

options
Optional

Options

Username (string [a-z, A�Z, 0�9]), password (string) and clear (boolean).

Chapter 5. API reference 231

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Returns

Promise
The Promise is resolved when all collections are initialized. If any collection
fails to initialize, the Promise is rejected and no JSONStoreInstances are available.

Example
var collections = {
customers : {
searchFields : {fn: ’string’, age: ’integer’, active: ’boolean’},
//Adapter is optional:
adapter : { name: ’customerAdapter’,
add: ’addProcedureInCustomerAdapterName’,
remove: ’removeProcedureInCustomerAdapterName’,
replace: ’replaceProcedureInCustomerAdapterName’,
load: {
procedure: ’getCustomers’,
params: [],
key: "customers"
},
accept : function (data, doc) { //doc is the document pushed via the adapter
return (data.status === 200); //data is what we got back from the adapter
}
}
},
orders: {
searchFields : {name: ’string’, stock: ’boolean’}
}
};
var options = { //all optional
username: ’carlos’, //default: ’jsonstore’
password: ’123’ //default: no encryption
}
WL.JSONStore.init(collections, options)
.then(function (res) {
//res => Mutable object of all the JSONStoreInstances
return WL.JSONStore.get(’customers’).add({fn: ’carlos’, age: 99, active: true});
})
.then(function (res) {
//res => number of documents added to the collection
})
.fail(function (errobject) {
WL.Logger.debug(errobject.toString());
});

WL.JSONStore.isPushRequired:

Determines if a Document is pushed.

Syntax
isPushRequired(doc, [options]) Promise

Parameters

doc
Document or Integer. I

The integer is an _id.

options
Optional.

Options.

232 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Returns

Promise:
onSuccess

true if it is pushed and false otherwise

onFailure
An error code

Example
//See .init and .add for context
WL.JSONStore.get(’customers’).isPushRequired(0) //{_id : 0}
.then(function (res) {
//res => true if document needs to be pushed, false otherwise
})
.fail(function (errobject) {
WL.Logger.debug(errobject.toString());
});
//Deprecated Example:
var doc = {_id : 0, json: {fn : ’carlos’, age : 99, active : false}};
var win = function (data) {
console.log(data);
=> false
};
var options = {onSuccess: win, onFailure: fail};
collection.isPushRequired(doc, options);
//or
collection.isPushRequired(0, options);

WL.JSONStore.load:

Gets data defined in load portion of the adapter. This is analogous to invoking an
Adapter using WL.Client.invokeProcedure and calling the add method in
JSONStore with the {push : false} flag with the data returned by the adapter.

Syntax
load([options]) Promise

Parameters

options
Optional

Options

Returns

Promise:
OnSuccess

Number of documents stored

onFailure
An error code.

Example
//See .init for context
WL.JSONStore.get(’customers’).load()
.then(function (res) {
//res => number of documents stored
})
.fail(function (errobject) {

Chapter 5. API reference 233

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WL.Logger.debug(errobject.toString());
});
//Deprecated Example:
customers.load(options)

WL.JSONStore.push:

Push the collection with an Adapter.

Syntax
push([options]) Promise

Description

Push the collection with an Adapter. For every Document marked requiring push,
call the corresponding Adapter procedure linked to the collection. The Documents
will be processed on the client by order of their last modification date. Error
handling for push is more involved than other methods as a result of sending data
to the server. Errors such as input validation or invalid states in the local collection
will go to the promise's fail function, this class of error implies the push operation
as a whole is unable to complete. Any documents that fail the actual process of
being pushed to the server Adapter, such as a network error, server rejection or
failure by the user written accept function will go to the promise's then or done
function. To check the number of records to push, see
“WL.JSONStore.getPushRequired” on page 229.

Parameters

options
Optional

Options or Array of Documents or Document

You can specify a document or an array of documents you want to push.

Returns

Promise
The success callback will be called when all the documents have been pushed.
If you get an empty array it means everything was pushed, if something fails
that array will contain error objects.

The following is deprecated behavior:

onSuccess called if it was successful or there where you records to push (you
can check the number of records to push with the getPushRequired function),

onFailure returns an error code. The success callbacks are called once per
document. If you try to push ten documents, your success callback might get
called nine times and the failure callback once.

Example
//See .init and .add for context
WL.JSONStore.get(’customers’).push()
.then(function (res) {
//res => Empty array if everything worked or Array of error objects if something failed
})
.fail(function (errobject) {
//Normal errors: collection is closed, invalid data sent to push, ...

234 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WL.Logger.debug(errobject.toString());
});
//Deprecated Example:
collection.push(options);

WL.JSONStore.pushRequiredCount:

Returns the number of documents not pushed. (Includes Documents marked as
'removed'.)

Syntax
pushRequiredCount([options]) Promise

Parameters

options
Optional

Options

Returns

Promise:
OnSuccess

Returns the number of documents only changed locally.

onFailure
Returns an error code.

Example
//See .init and .add for context
WL.JSONStore.get(’customers’).pushRequiredCount()
.then(function (res) {
//res => array of documents that need to be pushed
})
.fail(function (errobject) {
WL.Logger.debug(errobject.toString());
});
//Deprecated Example:
//Assumes that 1 document has been modified in the collection.
var win = function (data) {
console.log(data);
=> 1
};
var options = {onSuccess: win, onFailure: fail};
collection.pushRequiredCount(options);

WL.JSONStore.pushSelected:

Push the selected Documents

Syntax
pushSelected(doc, [options])

Description

Pushes only the selected Documents. See “WL.JSONStore.push” on page 234. The
Document passed will not be sent to the Adapter (pushed) if it is not marked
unpushed.

Deprecated, use push(doc)

Chapter 5. API reference 235

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

doc
Document or Array of Documents

options
Optional

Options

Returns

See WL.JSONStore.push.

Example
var doc = {_id : 0, json: {fn : ’carlos’, age : 99, active : false}};

collection.pushSelected(doc, options);
collection.pushSelected([doc], options);

WL.JSONStore.refresh:

Replaces a Document with another Document.

Syntax
refresh(doc, [options]) OnSuccess deprecated

Description

Replaces a Document with another Document just like replace, but it does not
mark that change to push to the back end via an adapter. Compare with
“WL.JSONStore.replace” on page 238.

Deprecated, use replace

Parameters

doc
Document or Array of Documents

options
Optional

Options

Returns

OnSuccess
Integer with the amount of Documents replaced.

onFailure
An error code.

Example
var doc = {_id : 0, json: {fn : ’carlos’, age : 99, active : false}};
doc.json.age = 100;
collection.refresh(doc, options);
//or
collection.refresh([doc], options);

236 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WL.JSONStore.remove:

Marks Documents as removed from a collection.

Syntax
remove(doc, [options]) Promise

Description

Marks one or more Documents as removed from a collection. Removed Documents
are not returned by find, see “WL.JSONStore.find” on page 225 or count, see
“WL.JSONStore.count” on page 222. The actual Documents are not deleted from
the collection until successfully pushed. This action requires push, unless {push:
false} is specified.

Parameters

doc
Document or Array of Documents or Query or Integer.

The Integer is an _id.

options
Optional

Options

Returns

Promise:
OnSuccess

Integer with the number of documents removed.

onFailure
An error code.

Example
//See .init and .add for context
var doc = {_id : 0, json: {fn : ’carlos’, age : 99, active : false}};
WL.JSONStore.get(’customers’).remove(doc)
.then(function (res) {
//res => number of documents removed
})
.fail(function (errobject) {
WL.Logger.debug(errobject.toString());
});
//Deprecated Example:
var doc = {_id : 0, json: {fn : ’carlos’, age : 99, active : false}};
collection.remove(doc, options); //Remove a Document
//or
collection.remove([doc], options); //Remove an Array of Documents
//or
collection.remove(1, options); //Remove by _id
//or
collection.remove({fn: ’carlos’}, options); //Remove all Documents that match {fn: ’carlos’}

WL.JSONStore.removeCollection:

Remove the collection.

Chapter 5. API reference 237

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Syntax
removeCollection([options]) Promise

Removes the collection locally, to use a collection with the same name you must
call WL.JSONStore.init, see WL.JSONStore.init. This action does not call push
before the operation. In order to remove specific documents see
“WL.JSONStore.remove” on page 237 function.

Parameters

options
Optional

Options

Returns

Promise:
OnSuccess

Boolean if the operation succeeded

onFailure
An error code

Example
//See .init for context
WL.JSONStore.get(’customers’).removeCollection()
.then(function () {
// the collection was removed
})
.fail(function (errobject) {
WL.Logger.debug(errobject.toString());
});
//Deprecated Example:
collection.removeCollection(options);

WL.JSONStore.replace:

Replaces a Document with another Document.

Syntax
replace(doc, [options]) Promise

Description

Replaces a Document with another Document. This action requires push, unless
{push: false} is specified.

Parameters

doc
Document or Array of Documents

options
Optional

Options

Returns

Promise:

238 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

OnSuccess
Integer with the number of Documents replaced.

onFailure
An error code.

Example
//See .init and .add for context
var doc = {_id : 0, json: {fn : ’carlos’, age : 99, active : false}};
doc.json.age = 100;
WL.JSONStore.get(’customers’).replace(doc)
.then(function (res) {
//res => number of documents replaced
})
.fail(function (errobject) {
WL.Logger.debug(errobject.toString());
});
//Deprecated Example:
var doc = {_id : 0, json: {fn : ’carlos’, age : 99, active : false}};
doc.json.age = 100;
collection.replace(doc, options);
//or
collection.replace([doc], options);

WL.JSONStore.store:

Load JSON objects into a collection as Documents.

Syntax
store(data, [options]) OnSuccess deprecated

Description

Used to initially load JSON objects into a collection as Documents. Stores data
marked as pushed, see “WL.JSONStore.add” on page 219 to store Documents as
unpushed.

Deprecated, use add

Parameters

data
Object or Array of Objects.

Data to be added the collection.

options
Optional

Options

Additional options:additionalSearchFields : {}

Returns

OnSuccess
Integer with the amount of data stored.

onFailure
An error code.

Chapter 5. API reference 239

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Example
//Store an Object
var data = {fn: ’carlos’, age: 99, active: false};
collection.store(data, options);
//Store Multiple Objects
var dataArray = [{fn: ’Tim’, age: 88, active: true},
{fn: ’Jeff’, age: 77, active: false}];
collection.store(dataArray, options);
//Store Multuple Objects without the Array
var data1 = dataArray[0];
var data2 = dataArray[1];
collection.store(data1, {onSuccess: function(){
collection.store(data2, {onSuccess: win});
}});

WL.JSONStore.toString:

Prints the contents of the collection by using WL.Logger.debug asynchronously.

Syntax
toString (limit , offset)

Parameters

limit Integer
How many documents to print. 0 for none, if it is missing it prints up to the
first 100 documents.

offset Integer
How many documents to skip. Requires a valid limit.

Example
collection.toString() // Print up to the first 100 documents
collection.toString(10) //Prints up to the first 10 documents
collection.toString(10,10) //Prints up to the first 10 documents after the first 10
collection.toString(0) //Prints no documents, only the collection metadata

(name, searchFields and adapter)

//Equivalent to:
collection.findAll().done(function(data){console.log(JSON.stringify(data))})

WL.JSONStore.usePassword:

Deprecated. Sets a password.

Syntax
usePassword(pwd) Boolean deprecated static

Description

Sets the password that is used to generate keys to encrypt date that is stored
locally on the device. This function is deprecated.

Deprecated, use WL.JSONStore.init

Parameters

pwd
String

String containing the password

240 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Returns

Boolean
true if the password is a string, false otherwise.

Example
var pwd = prompt(’What is your password?’);
WL.JSONStore.usePassword(pwd);

The WL.Logger object
The Logger object prints log messages to the log for the environment.
v In mobile apps, messages are printed to a log file displayed in the mobile OS

SDK.
v In web environments, they are printed to the browser log.
v In desktop environments, they are printed to the applicable debug console of

each environment. See details in the following section.

Setting Logger Windows for Desktop Environments

Adobe AIR

Include the AIRIntrospector.js file in your project and call it in your
HTML file.

Apple OS X Dashboard

Open the application at /Users/user name/Library/Widgets/widget name
with Dashcode and run it. The log is displayed in the Run Log View. You
can also view the debug messages in the system log in the Console.

Windows 8

No configuration is required. Debug messages are displayed in the
Microsoft Visual Studio 2012 console.

Windows 7 and Vista

Disable the following check boxes in Internet Explorer: Internet Options >
Advanced > Browsing

v Disable script debugging (Internet Explorer)

v Disable script debugging (Other)

In your code, add a line debugger();. Run the application. When the
interrupter hits that line, you are asked to open a debug tool.

The WL.Logger.debug and WL.Logger.error methods:

These methods output a debug or error message. The developers that are creating
applications for all platforms and wanting to write common code must use
WL.Logger.debug and WL.Logger.error methods.

Syntax
WL.Logger.debug(msg, ex)
WL.Logger.error(msg, ex)

Description

The WL.Logger.debug and WL.Logger.error methods output a specified debug or
error message to the environment log.

Chapter 5. API reference 241

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For iPhone and iPad, these methods print the message to the debugger console of
Xcode, the development environment for iPhone and iPad.

For Android, these methods print the message to the Android LogCat, accessible in
the Android development environment. Error messages are displayed in red;
debug messages are displayed in the default log line color.

Android developers can call two more functions info and warn:
WL.Logger.info(msg, ex);
WL.Logger.warn(msg, ex);

and they accept the same parameters as debug and error. LogCat differentiates all
message levels by colors:
v debug = blue
v error = red
v information = green
v warning = yellow

and also allows filtering of messages by level. Therefore, calling these methods has
some additional value for developers.

The log method is a helper that must not be called by developers. For example, it
does not work for Windows Phone environments.

For BlackBerry 6 and 7, these methods print the message to the BlackBerry event
log. The event log can be viewed on the device and in the BlackBerry Eclipse
simulator and debugger by pressing the key sequence Alt+LGLG.

To disable logging, include enableLogger: false in the object wlInitOptions in the
initOptions.js file.
var wlInitOptions = {

// # Should application produce logs
// # Default value is true
enableLogger: false

}

Parameters

Table 47. Parameters for the WL.Logger.debug and WL.Logger.error methods

Parameter Description

msg Mandatory. The string to be displayed in the
logger window.

ex Optional. A JavaScript exception. If specified,
the file name and line number are appended
to the message.

Return Value

None.
try {

myNeverDeclaredFunction();
} catch (ex) {

WL.Logger.error("This method was never declared", ex);
}

242 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WL.Logger.send:

Send any logs that are collected up to this point in time to the
WLClientLogReceiver adapter.

Syntax
WL.Logger.send();

Description

Send any logs that are collected up to this point in time to the
WLClientLogReceiver adapter.

Parameters

None

Return Value

None

WL.Logger.setNativeOptions:

Set native options for logging.

Syntax
WL.Logger.setNativeOptions(object);

Description

Set native options for logging.

Parameters

Parameter Description

object Optional. An object that can contain any of
the following key/value pairs:

maxFileSize: integer
Minimum value is 10000 (bytes)

level: String
Any of the following values: debug, log,
info, warn, error

capture: boolean
true or false

Return Value

None

Mobile push notification methods
IBM Worklight provides a number of methods for supported push notification
mechanisms.

Push notifications are supported on iOS, Android, and Windows Phone 8 devices.

Chapter 5. API reference 243

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

SMS push notifications are supported on iOS, Android, Windows Phone 7.5,
Windows Phone 8, and BlackBerry devices that support SMS functions.

Note: Subscription, and unsubscription, to SMS notifications can also be performed
by making HTTP GET requests to the subscribe SMS servlet. The subscribe SMS
servlet can be used for SMS subscriptions without the requirement for a user to
have an app installed on their device. See “Subscribe SMS servlet” on page 398 for
information about configuration.

WL.Client.Push.isPushSMSSupported:

Checks whether SMS push notifications are supported.

Syntax
WL.Client.Push.isPushSMSSupported();

Description

Returns true if the IBM Worklight JavaScript API supports SMS push notifications
in the current environment.

Parameters

None.

WL.Client.Push.isPushSupported:

Checks whether push notification is supported.

Syntax
WL.Client.Push.isPushSupported();

Description

Returns true if the IBM Worklight JavaScript API supports push notifications in
the current environment.

Parameters

None.

WL.Client.Push.isSMSSubscribed:

Checks whether current user is subscribed to an SMS event source.

Syntax
WL.Client.Push.isSMSSubscribed(alias)

Description

Returns whether the currently logged-in user is subscribed to the SMS event source
alias

244 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

Table 48. WL.Client.Push.isSMSSubscribed parameters

Parameter Description

alias Mandatory string. The event source alias.

WL.Client.Push.isSubscribed:

Checks whether current user is subscribed to an event source.

Syntax
WL.Client.Push.isSubscribed(alias)

Description

Returns whether the currently logged-in user is subscribed to the specified event
source alias

Parameters

Table 49. WL.Client.Push.isSubscribed parameters

Parameter Description

alias Mandatory string. The event source alias.

WL.Client.Push.onReadyToSubscribe:

A callback function to notify that a device is ready to subscribe.

Syntax
WL.Client.Push.onReadyToSubscribe = { /*callback function code*/ };

Description

Implement this callback function to be notified when the device is ready for
subscribing to push notifications. You must declare it outside any function.

Parameters

None.
WL.Client.Push.onReadyToSubscribe= function () {
// You can enable the Subscribe button here or call WL.Client.Push.subscribe().
// This callback is useful in case your app needs to call subscribe() upon startup.

WL.Client.Push.registerEventSourceCallback (’myAlias’, ’myAdapter’, ’myEventSource’, notificationArrived);
}

function notificationArrived(props, payload){
alert("Provider notification data: " + Object.toJSON(props));
alert("Application notification data: " + Object.toJSON(payload));
}

WL.Client.Push.registerEventSourceCallback:

Registers a callback method that is called whenever a notification arrives from the
specified event source.

Chapter 5. API reference 245

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Syntax
WL.Client.Push.registerEventSourceCallback (alias, adapter, eventSource, callback);

Description

iOS and Android
Registers a callback method that is called whenever a notification arrives
from the specified event source. If the notification arrives while the
application is not running, the mobile OS starts the application at the
specified callback.

Windows Phone 8
Registers a callback method that is called whenever a raw notification or a
toast notification arrives and the application is running. If the notification
arrives when the application is not running, then the callback method is
not called. This behavior is defined in the Microsoft OS and cannot be
changed.

Parameters

Table 50. WL.Client.Push.registerEventSourceCallback parameters

Parameter Description

alias Mandatory string. A short ID that is used to
identify the event source when the push
notification arrives. Because notification text
is usually limited in length, providing a
short alias, rather than the entire adapter
and event source names, can free more space
in the notification text.

adapter Mandatory string. The name of the adapter
that contains the event source.

eventSource Mandatory string. The name of the event
source.

callback Mandatory function. The function that is
called if a notification arrives. The function
receives two parameters when invoked:

props
A JSON block, containing the notification
properties from the platform

payload
A JSON block, containing other data that
is sent from the IBM Worklight Server

WL.Client.Push.subscribe:

Subscribe to an event source.

Syntax
WL.Client.Push.subscribe(alias, options)

Description

Subscribes the user to the event source with the specified alias.

246 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

Table 51. WL.Client.Push.subscribe parameters

Parameter Description

alias Mandatory string. The event source alias, as
defined in the invocation of
WL.Client.Push.onReadyToSubscribe.

options Optional JSON block, containing:

v Custom subscription parameters that are
supported by the event source in the
adapter

v onFailure: a JavaScript function, called
when registration for the notification
service failed. The function receives one
string parameter with the failure
description. The default value is a
function that prints the failure reason to
the log.

v onSuccess: JavaScript function, called
when the subscription was successful.
Default value is an empty function.

if (WL.Client.Push.isPushSupported()){
WL.Client.Push.subscribe(’myAlias’, {foo: ’bar’, onFailure : notificationSubscriptionError});
}

function notificationSubscriptionError(error) {
alert("Error registering for push notifications. " + error);
}

WL.Client.Push.subscribeSMS:

Subscribe to an SMS event source.

Syntax
WL.Client.Push.subscribeSMS(alias, adapterName, eventSource, phoneNumber, options)

Description

Subscribes the user to the SMS event source with the specified alias.

Parameters

Table 52. WL.Client.Push.subscribeSMS parameters

Parameter Description

alias Mandatory string. A short ID defining the
event source.

adapterName Mandatory String. The name of the adapter
that sets up the event source and
communicates with the Worklight server.

eventSource Mandatory String. The name of the event
source.

Chapter 5. API reference 247

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 52. WL.Client.Push.subscribeSMS parameters (continued)

Parameter Description

phoneNumber Mandatory string. User phone number to
which SMS notifications are sent. The phone
number is provided by the user and can
contain digits (0-9), plus sign (+), minus sign
(-), and space (�) characters only.

options Optional JSON block, containing:

v Custom subscription parameters that are
supported by the event source in the
adapter

v onFailure: a JavaScript function, called
when registration for the notification
service failed. The function receives one
string parameter with the failure
description. The default value is a
function that prints the failure reason to
the log.

v onSuccess: a JavaScript function, called
when the subscription was successful. The
default value is an empty function.

if (WL.Client.Push.isPushSMSSupported()){
WL.Client.Push.subscribeSMS(“myAlias”,”SMSAdapter”,”SMSEventSource”, “1234567890”,
{onSuccess: notificationSubscriptionSuccess,
onFailure : notificationSubscriptionError
});
}

function notificationSubscriptionSuccess(){
alert(“Registered for SMS push notification”);
}

function notificationSubscriptionError(error) {
alert("Error registering for SMS push notifications. " + error);
}

WL.Client.Push.unsubscribe:

Unsubscribe from an event source.

Syntax
WL.Client.Push.unsubscribe(alias, options)

Description

Sends the device token (obtained by subscribe) and the event source name to the
IBM Worklight Server.

Parameters

Table 53. WL.Client.Push.unsubscribe parameters

Parameter Description

alias Mandatory string. The event source alias, as
defined in the invocation of
WL.Client.Push.onReadyToSubscribe.

248 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 53. WL.Client.Push.unsubscribe parameters (continued)

Parameter Description

options Optional JSON block, containing:

v Custom subscription parameters that are
supported by the event source in the
adapter

v onFailure: a JavaScript function, called
when registration for the notification
service failed. The function receives one
string parameter with the failure
description. The default value is a
function that prints the failure reason to
the log.

v onSuccess: a JavaScript function, called
when the subscription was successful.
Default value is an empty function.

WL.Client.Push.unsubscribeSMS:

Unsubscribe from an SMS event source.

Syntax
WL.Client.Push.unsubscribeSMS(alias, options)

Description

Unsubscribes the user from the SMS event source with the specified alias.

Parameters

Table 54. WL.Client.Push.unsubscribeSMS parameters

Parameter Description

alias Mandatory string. The alias defined when
subscribing.

options Optional JSON block, containing:

v onFailure: a JavaScript function, called
when communication with the IBM
Worklight Server did not succeed, or
when there are no subscriptions to
unsubscribe. Default value is a function
that logs the failure.

v onSuccess: a JavaScript function, called
when unsubscription was successful.
Default value is a function that logs the
success.

The options object
The options object contains properties that are common to all methods. It is used
in all asynchronous calls to the Worklight Server

Pass an options object for all asynchronous calls to IBM Worklight Server. The
options object contains properties that are common to all methods. Sometimes it is
augmented by properties that are only applicable to specific methods. These
additional properties are detailed as part of the description of the specific methods.

Chapter 5. API reference 249

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The common properties of the options object are as follows:
options = {

onSuccess: success-handler-function(response),
onFailure: failure-handler-function(response),
invocationContext: invocation-context

};

The meaning of each property is as follows:

Table 55. options object properties

Property Description

onSuccess Optional. The function to be invoked on successful completion of the
asynchronous call.

The syntax of the onSuccess function is:

success-handler-function(response)

where response is an object that contains at a minimum the following
property:

invocationContext
The invocationContext object that was originally passed to the
Worklight Server in the options object, or undefined if no
invocationContext object was passed.

status The HTTP response status
Note: For methods for which the response object contains additional
properties, these properties are detailed as part of the description of the
specific method.

onFailure Optional. The function to be invoked when the asynchronous call fails.
Such failures include both server-side errors, and client-side errors that
occurred during asynchronous calls, such as server connection failure or
timed out calls.

Note: The function is not called for client-side errors that stop the
execution by throwing an exception.

The syntax of the onFailure function is:

failure-handler-function(response)

where response is an object that contains the following properties:

invocationContext
The invocationContext object that was originally passed to the
Worklight Server in the options object, or undefined if no
invocationContext object was passed.

errorCode
An error code string. All error codes that can be returned are
defined as constants in the WL.ErrorCode object in the
worklight.js file.

errorMsg
An error message that is provided by the Worklight Server. This
message is for the developer's use only, and should not be
displayed to the user. It will not be translated to the user's
language.

status The HTTP response status
Note: For methods for which the response object contains additional
properties, these properties are detailed as part of the description of the
specific method.

250 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 55. options object properties (continued)

Property Description

invocationContextOptional. An object that is returned to the success and failure handlers.

The invocationContext object is used to preserve the context of the
calling asynchronous service upon returning from the service.

For example, the invokeProcedure method might be called successively,
using the same success handler. The success handler needs to be able to
identify which call to invokeProcedure is being handled. One solution is
to implement the invocationContext object as an integer, and increment
its value by one for each call of invokeProcedure. When it invokes the
success handler, Worklight passes it the invocationContext object of the
options object associated with the invokeProcedure method. The value of
the invocationContext object can be used to identify the call to
invokeProcedure with which the results that are being handled are
associated.

Options Menu and Application Bar API
IBM Worklight supplies a number of methods for manipulating the Android
options menu and the Windows Phone 7.5, Windows Phone 8, and Windows 8
apps application bar.

This section applies to Android, Windows Phone 7.5, Windows Phone 8, and
Windows 8 apps only.

The Android options menu and the Windows Phone 7.5, Windows Phone 8, and
Windows 8 apps application bar are accessible by pressing Menu on the device.
IBM Worklight provides a client-side API for managing the menu and application
bar.

Note: If your application targets Android 3.0 (API level 11) or higher,
WL.OptionsMenu might have no effect, depending on the device. For more
information, see http://developer.android.com/guide/topics/ui/
menus.html#options-menu.

WL.Item Methods:

Change an item’s callback function, title, or icon, or enables or disables an item.

Syntax
WL.Item.setTitle (title)
WL.Item.setImagePath (imagePath)
WL.Item.setEnabled (enabled)

Description

Changes the item’s callback function, title, or icon, or enables or disables it.

Note: You cannot instantiate a new WL.Item object; you can receive one as a result
of calling WL.OptionsMenu.getItem().

Chapter 5. API reference 251

http://developer.android.com/guide/topics/ui/menus.html#options-menu
http://developer.android.com/guide/topics/ui/menus.html#options-menu

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

Table 56. WL.Item method parameters

Parameter Description

callbackFunction Mandatory function. The callback function
that is invoked when the user selects the
item.

title Mandatory string. The title of the item.

iconPath Mandatory string. The path to the icon.

See WL.OptionsMenu.addItem for an
explanation of the icon path and format for
Android, Windows Phone 7.5, Windows
Phone 8, and Windows 8.

enabled Mandatory Boolean. Defines whether the
item is enabled or disabled.

Return Value

None

This example disables the first item.
var itemOne = WL.OptionsMenu.getItem(’first’);
itemOne.setEnabled(false);

WL.OptionsMenu.addItem:

Adds an item to the options menu or application bar.

Syntax
WL.OptionsMenu.addItem(id, callbackFunction, title, options)

Description

Adds an item to the options menu or application bar. Can be called only after the
menu is initialized. Items are placed in the menu in the order in which they are
added. If you add an item with an existing ID, the new item replaces the existing
one.

Parameters

Table 57. WL.OptionsMenu.addItem parameters

Parameter Description

id Mandatory string. Identifies the item.

callbackFunction Mandatory JavaScript function. The callback
function that is invoked when the user
selects the item in the options menu.

title Mandatory string. The title of the item.

252 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 57. WL.OptionsMenu.addItem parameters (continued)

Parameter Description

options The options parameter is mandatory, and
the image property within it is also
mandatory.

Contains the following fields:

image
For Android, this field contains the
name of the resource that contains the
icon image for the item. For Windows
Phone 7.5, Windows Phone 8, and
Windows 8, this field contains the path
to the icon image for the item.

For Android, the image is located under
the Android res/drawable* folders of
the application. You can provide
multiple images and place them in the
drawable* folders that belong to the
device densities your application
supports.

For Windows Phone 8, the path starts
from the folder /nativeResources/
applicationBar. Do not explicitly
mention this folder within the path.

For Windows Phone 7.5 and Windows
8, the path starts from the folder
/Resources/applicationBar. Do not
explicitly mention this folder within the
path.

The same set of images can be used for
Android, Windows Phone 7.5, Windows
Phone 8, and Windows 8.

For Android, the image size depends on
the density of the device. See the
Android Options Menu documentation
for details.

For Windows Phone 7.5, Windows
Phone 8, and Windows 8, these images
are 48 pixels by 48 pixels and have a
white foreground on a transparent
background that uses an alpha channel.
The Application Bar colorizes the icon
according to the current style settings
and colored icons can cause this effect
to display unpredictably.

Enabled
Optional Boolean. Defines whether the
item is enabled or disabled.

Return Value

None

Chapter 5. API reference 253

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

// Android
WL.OptionsMenu.addItem("first", function(){alert("hello one")}, ’one’, {image: ’one’, enabled: true});

// Windows Phone 7.5 and Windows Phone 8
WL.OptionsMenu.addItem("first", function(){alert("hello one")}, one’, {image: one.png’, enabled: true});

// Windows 8
WL.OptionsMenu.addItem("first", function(){alert("hello one")}, one’, {image: one.png’, enabled: true});

WL.OptionsMenu.getItem:

Returns an item.

Syntax
WL.OptionsMenu.getItem(id)

Description

Returns the item with the specified ID. You can use Item methods to change the
properties of the item.

Parameters

Table 58. WL.OptionsMenu.getItem parameters

Parameter Description

id Mandatory string. The ID of the required
item.

Return Value

An Item object. If the specified ID is not found, the method returns null.
var itemOne = WL.OptionsMenu.getItem(’first’);

WL.OptionsMenu.init:

Initializes and enables the options menu or application bar.

Syntax
WL.OptionsMenu.init()

Description

Initializes the options menu or application bar and enables it. Must be called
before it is used. On Windows Phone 7.5 and Windows Phone 8, the default
opacity of the application bar is 1.0 (opaque).

Parameters

A JSON block with the following properties:

Table 59. WL.OptionsMenu.init parameters

Property Description

msg Mandatory. The string to be displayed in the
logger window.

254 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 59. WL.OptionsMenu.init parameters (continued)

Property Description

ex Optional. A JavaScript exception. If specified,
the file name and line number are appended
to the message.

Return Value

None

WL.OptionsMenu.init({opacity: "0.5"});

WL.OptionsMenu.isEnabled:

Check whether the options menu or application bar is enabled.

Syntax
WL.OptionsMenu.isEnabled (callback)

Description

Returns whether the options menu or application bar is enabled. Can be called
only after the menu is initialized.

Parameters

@callback, a callback method that accepts the state enabled as a parameter.

Return Value

v In Android environments: true if the menu is enabled; false if it is not.
v In Windows Phone 7.5 and Windows Phone 8 environments: none. If the

callback is null or undefined, the method fails and sends a message to the
debugger console.

WL.OptionsMenu.isEnabled(isEnabledCallback);

function isEnabledCallback(enabled) {
if (enabled) {

// do something
}

}

WL.OptionsMenu.isVisible:

Check whether the options menu or application bar is visible.

Syntax
WL.OptionsMenu.isVisible (callback)

Description

Returns whether the options menu or application bar is visible. Can be called only
after the menu is initialized.

Chapter 5. API reference 255

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

@callback, a callback method that accepts the state visible as a parameter.

Return Value

v In Android environments: true if the menu is visible; false if it is not.
v In Windows Phone 7.5 and Windows Phone 8 environments: none. If the

callback is null or undefined, the method fails and sends a message to the
debugger console.

WL.OptionsMenu.isVisible(isVisibleCallback);

function isVisibleCallback(visible) {
if (visible) {

// do something
}

}

WL.OptionsMenu.removeItem:

Remove an item from the options menu or application bar.

Syntax
WL.OptionsMenu.removeItem(id)

Description

Removes the item with the indicated ID from the options menu or application bar.
Can be called only after the menu is initialized.

If no item is found with the specified ID, nothing happens.

Parameters

Table 60. WL.OptionsMenu.removeItem parameters

Parameter Description

id Mandatory string. Identifies the item to be
removed.

Return Value

None
WL.OptionsMenu.removeItem("first");

WL.OptionsMenu.removeItems:

Removes all items from the options menu or application bar.

Syntax
WL.OptionsMenu.removeItems()

Description

Removes all items from the options menu or application bar. Can be called only
after the menu is initialized.

256 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

None

Return Value

None
WL.OptionsMenu.removeItems();

WL.OptionsMenu.setEnabled:

Enable or disable the options menu or application bar.

Syntax
WL.OptionsMenu.setEnabled(isEnabled)

Description

This method enables or disables the options menu or application bar. When the
menu or bar is disabled, it might still be visible, but all its items are disabled. The
function disables all the items but does not change the enabled state of each Item.

Parameters

Table 61. WL.OptionsMenu.setEnabled parameters

Parameter Description

isEnabled Mandatory Boolean.

true: Enable the menu

false: Disable the menu

Return Value

None.
WL.OptionsMenu.setEnabled(false);

WL.OptionsMenu.setOpacity:

Sets the opacity of the Windows Phone 7.5 and Windows Phone 8 application bar.

Syntax
WL.OptionsMenu.setOpacity(number)

Description

Sets the value for the application bar opacity.

Note: This method is applicable only for the Windows Phone 7.5 and Windows
Phone 8 application bar.

Chapter 5. API reference 257

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

Table 62. WL.OptionsMenu.setOpacity parameters

Parameter Description

number Mandatory. Float between 0.0 and 1.0. 0.0 is
transparent; 1.0 is opaque.

When the application bar is not opaque,
Windows Phone 7.5 and Windows Phone 8
devices display it as an overlay on the
application.

Return Value

None.
WL.OptionsMenu.setOpacity(0.0);

WL.OptionsMenu.setVisible:

Make the options menu or application bar visible or invisible.

Syntax
WL.OptionsMenu.setVisible(isVisible)

Description

Determines whether the options menu or application bar is visible. Can be called
only after the options menu is initialized.

Note: This method is not supported on Windows 8.

Parameters

Table 63. WL.OptionsMenu.setVisible parameters

Parameter Description

isVisible Mandatory Boolean.

true: Makes the menu visible on pressing
Menu

false: Makes the menu invisible

Return Value

None
WL.OptionsMenu.setVisible(true);

WL.SimpleDialog
The simple dialog box object

WL.SimpleDialog implements a common API for showing a dialog with buttons for
the application. The implementation depends on the environment. On iPhone,
Android, BlackBerry 6 and 7, and Windows 8, WL.SimpleDialog opens a native
dialog box. In other environments, it opens an HTML dialog box.

258 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WL.SimpleDialog supports up to three buttons.

WL.SimpleDialog.show:

Display a dialog box.

Syntax
WL.SimpleDialog.show(title, text, buttons, options)

Description

Displays a dialog box.

Note: the dialog is displayed without blocking the JavaScript thread.

Parameters

Table 64. WL.SimpleDialog.show parameters

Parameter Description

title Mandatory string. The title of the dialog
box.

text Mandatory string. The text to show in the
dialog box.

buttons Mandatory array of JSON objects, each
corresponding to a button. The array must
have at least one item and no more than
three items. Each array item contains the
following properties:

text Mandatory string. The text of the
button.

handler
Optional function. The function that
is invoked when the button is
pressed.

options Ignored on iPhone and Android.

Optional. An object of the following form:

{
title: string,
text: string,
}

Returned Values

None.

Example

Example
WL.SimpleDialog.show(
"My Title", "My Text",
[{text: "First Button", handler: function() {WL.Logger.debug("First button pressed"); }
}]
)

Chapter 5. API reference 259

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Splitting Your Code between HTML Pages
WL.Page and WL.Fragment APIs are deprecated. To split your code between
pages, use the fragment implementation of JavaScript frameworks such as jQuery
Mobile, Sencha, and Dojo Mobile.

Fragments

Fragments are files that contain html tags that can be appended to a parent
element. Fragments can include JavaScript files by adding a <script> tag and style
sheets by adding a <link> tag.

For example:
<link href="css/page1.css" />
<script src="js/page1.js" type="text/javascript"></script>
<div id="page1div">

This is page1
</div>

Inline JavaScript and CSS

Inline JavaScript and CSS are not supported in fragments. For example, the method
test might not work in some environments:
<script type="text/javascript">
function test(){alert("test");}
</script>

<div id="one">
Hello Page 1!
</div>

The same problem might happen with inline style definitions:
<style type="text/css">
background-color:red;
</style>

<div id="one">
Hello Page 1!
</div>

Structure of <link> and <script> tags in Internet Explorer

In Internet Explorer, <link> and <script> tags are identified using regular
expressions. They are therefore vulnerable to white space within the markup. Be
sure to format these tags as in the example to ensure that they are recognized and
handled at run time.
<link href="css/page1.css" />
<script src="js/page1.js" type="text/javascript"></script>

When testing on Internet Explorer, you can check in the logger to verify that all
resources were loaded.

Support for Fragments for Windows Desktop Gadgets

Fragments are not supported on Windows 7 and Windows Vista Desktop Gadgets.

The use of Windows 7 and Vista gadgets is deprecated in Worklight version 5.0.5.
Support might be removed in any future version.

260 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The onUnload Callback

When you use fragments and pages, you are responsible for deleting from the
HTML DOM all objects that were created by scripts that are embedded in your
fragment. To do so, you must implement the onUnload callback method and clean
up your DOM there.

When you use fragments as pages, define all pages on a namespace object, which
is possible because no two pages are loaded simultaneously, and clean that object
in the onUnload method.

Example:

In the code that loads the page:
WL.Page.load("page1.fhtml", {
onComplete : function(){CurPage.pageFunction();},
onUnload: function(){CurPage.onUnload();}
});

// Define all JavaScript objects on a namespace object:
var CurPage = CurPage ? CurPage : {};

// Note that the onUnload callback is implemented once, not per fragment!
CurPage.onUnload = function() {

for (var att in CurPage){
delete CurPage[att];

}
}

In the page1.js file:
// Implement the specific callbacks
CurPage.pageFunction = function() {

WL.Logger.debug("pageFunction from page1.js called");
}

Note: The namespace (CurPage in the example) cannot be deleted, only the objects
and methods that are defined in it.

WL.Fragment.load:

Deprecated. Replaces the content of a DOM element parent

Syntax
WL.Fragment.load(fragmentPath, parent, options)

Description

Replaces the content of the DOM element parent with the Fragment referred to by
fragmentPath.

Parameters

Parameter Description

fragmentPath Mandatory. String. The path of the file that
contains the HTML fragment, relative to the
main HTML file.

parent Mandatory. Object. The parent element
which contains the fragment.

Chapter 5. API reference 261

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameter Description

options Mandatory. A hash object supporting the
following option:

v onComplete: Function. Callback function,
called after the fragment is appended to
the parent and all its JavaScript and CSS
files are loaded.

v onUnload: Function. Callback function,
called when the fragment is unloaded.
You are responsible to delete all objects
that were created by the fragment. See
The onUnload Callback for more details
about this callback function.

Example
WL.Fragment.load ("./list.html", document.getElementById("listContainer"), {onComplete: onListLoaded, onUnload: onListUnloaded});

Class WL.Page:

Deprecated. A Page is similar to a Fragment, but has additional properties.

A page is a fragment that is appended to the HTML <div> element with the
pagePort ID in the main HTML file. You can declare the pagePort element
anywhere you want within the content element of the app.

Page supports back navigation, which is not supported by Fragment.

WL.Page.back:

Deprecated. Loads the previous page into the main HTML pagePort element.

Syntax
WL.Page.back(options)

Description

Loads the previous page into the main HTML pagePort element. Does nothing if
the page history is empty. You can use the hasBack method to check whether the
page history is empty.

Parameters

Table 65. WL.Page.back parameters

Parameter Description

options A hash object supporting the options of the
WL.Page.load method, and in addition:

pagesBack: Optional. Positive integer. The
number of pages to go back. The default is
1. If the specified number exceeds the
number of pages in the page stack, the first
page in the stack is loaded.

262 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Example
WL.Page.back({onComplete: onPageLoaded, pagesBack: 2});

WL.Page.hasBack:

Deprecated. Returns true if the history stack contains at least one item.

Syntax
WL.Page.hasBack()

Parameters

None.

Returned Values

v true if the history stack contains at least one item
v false otherwise

Example
If (WL.Page.hasBack())
WL.Page.back({onComplete: onPageLoaded});

WL.Page.load:

Deprecated. Replaces the content of the DOM element pagePort

Syntax
WL.Page.load(pagePath, options)

Description

Replaces the content of the DOM element pagePort with the fragment referred to
by pagePath.

Parameters

Table 66. WL.Page.load parameters

Parameter Description

pagePath String. The path of the file that contains the
HTML fragment that implement the page,
relative to the main HTML file.

options A hash object supporting the following
option:

v onComplete: Function. Callback function,
called after the page is appended to the
parent and all its JavaScript and CSS files
are loaded.

v onUnload: Function. Callback function,
called when the page is unloaded. You are
responsible for deleting all objects that
were created by the page. See the
onUnload callback for more details about
this callback function.

Chapter 5. API reference 263

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Example
WL.Page.load ("./page2.html", {onComplete: CurPage.onPageLoaded, onUnload: CurPage.onPageUnloaded});

Tab Bar API
IBM Worklight provides an API for managing the tab bar on Android and iPhone.

This section applies to Android and iPhone only.

The Android and iPhone tab bars are graphical elements which look and work
very much like the tab bars of regular web or desktop applications. IBM Worklight
provides a client-side API for managing the tab bar. On iPhone, this API serves as
a proxy to the native iPhone tab bar object; on Android, it is implemented as an
HTML element.

The following example depicts an iPhone tab bar (on the left) and an Android tab
bar (on the right) The tab bars are enclosed in red rectangles.

WL.TabBar.addItem:

Add an item to the tab bar.

Syntax
WL.TabBar.addItem(id, callback, title, options)

Figure 33. iPhone tab bar (left) and Android tab bar (right)

264 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Description

Adds an item to the tab bar. Can be called only after the tab bar is initialized.
Items are displayed in the tab bar according to the order in which they were added
to the tab bar.

Parameters

Table 67. WL.TabBar.addItem parameters

Parameter Description

id Mandatory string. Identifies the tab.

callback Mandatory function. The callback function
that is invoked when the user touches the
tab.

title Mandatory string. The title of the tab. If
null is passed, no title is displayed.

options Options for customizing the tab item.

v On iPhone:

– image: String. File name or path relative
to the application root directory, with a
PNG image for the tab or an internal
identifier for standard tabs. See the list
of standard tabs in the next section.

– badge: String. A string to display in the
optional circular badge on the item; if
null or unspecified, no badge is
displayed.

v On Android:

– image: String. File name or path relative
to the application root directory, with a
PNG image for the tab in unselected
mode.

– ImageSelected: String. File name with
an image for the tab in selected mode.

On iPhone, if the supplied image name is one of the labels in the following list,
this method constructs a tab button by using the standard system buttons. If you
use one of the system images, then the title you supply is ignored.
v tabButton:More

v tabButton:Favorites

v tabButton:Featured

v tabButton:TopRated

v tabButton:Recents

v tabButton:Contacts

v tabButton:History

v tabButton:Bookmarks

v tabButton:Search

v tabButton:Downloads

v tabButton:MostRecent

v tabButton:MostViewed

Chapter 5. API reference 265

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Return Value

A WL.TabBarItem object.

iPhone
function selectCredit(){
alert("the CREDIT tab was selected!");
}
var creditTab = WL.TabBar.addItem("CREDIT", selectCredit, "Visa", {image:"images/credit.png", badge: "2"});

Android
var tabFeeds = WL.TabBar.addItem (
’tab2’,
function(){worklightStarterApplication.selectTab(’feedsWrapper’); },
"Engadget Feeds",
{image:"images/feed.png", imageSelected:"images/feed.png"});

WL.TabBar.init:

Initialize the tab bar.

Syntax
WL.TabBar.init ()

Description

Initializes the tab bar, enabling it, but keeping it invisible. Must be called before
any other function, except setParentDivId on Android.

Parameters

None.

Return Value

None
WL.TabBar.init();

WL.TabBar.isVisible:

Returns whether the Android tab bar is visible.

Syntax
WL.TabBar.isVisible ()

Description

Returns whether the Android tab bar is visible. Can be called only after the tab bar
is initialized.

Parameters

None.

WL.TabBar.setEnabled:

Enables or disables the tab bar.

266 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Syntax
WL.TabBar.setEnabled(isEnabled)

Description

Enables or disables the tab bar. When the tab bar is disabled, it is still visible, but
all its items are disabled. However, the selected item remains selected.

Parameters

Table 68. WL.TabBar.setEnabled parameters

Parameter Description

isEnabled Mandatory Boolean.

v true: Enable the tab bar

v false: Disable the tab bar

Return Value

None
WL.TabBar.setEnabled(false);

WL.TabBar.RemoveAllItems:

Remove all items from a tab bar

Syntax
WL.TabBar.removeAllItems()

Description

Removes all the previously added items from the tab bar. The effect is immediate.

Parameters

None.

Return Value

None.

WL.TabBar.setParentDivId:

Place the tab bar within another element.

Syntax
WL.TabBar.setParentDivId(parentId)

Description

This method applies to Android only.

By default the tab bar is added to the element with ID content. In the application
template that is generated by the IBM Worklight Studio, the <body> element has
this ID. Use this function to place the tab bar within an arbitrary element. This

Chapter 5. API reference 267

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

function is useful when the location of the tab bar is not at the top of the
application screen.

Parameters

Table 69. WL.TabBar.setParentDivId parameters

Parameter Description

parentId Mandatory. Identifies the division in which
the tab bar is placed.

Return Value

None.

WL.TabBar.setSelectedItem:

Selects an item in the tab bar.

Syntax
WL.TabBar.setSelectedItem (id)

Description

Selects the specified item of the tab bar, deselecting any other item. If the ID does
not specify an existing tab, nothing happens.

Parameters

Table 70. WL.TabBar.setSelectedItem parameters

Parameter Description

id Mandatory. The ID of the tab to be selected.

Return Value

Integer: the ID of the selected tab.

WL.TabBar.setVisible:

Makes the tab bar visible or invisible.

Syntax
WL.TabBar.setVisible (isVisible)

Description

Determines whether the tab bar is visible. Call this method after the tab bar is
initialized and all necessary tabs are added.

268 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

Table 71. WL.TabBar.setVisible parameters

Parameter Description

isVisible Mandatory Boolean.

v true: Shows the tab bar

v false: Hides the tab bar

Return Value

None
WL.TabBar.setVisible(true);

WL.TabBarItem:

Do not create a TabBarItem manually.

Objects of this type are returned by the WL.TabBar.addItem function and must not
be created manually.

WL.TabBarItem.setEnabled:

Enables or disables a tab bar item.

Syntax
WL.TabBarItem.setEnabled(isEnabled)

Description

Enables or disables the tab bar item.

Parameters

Table 72. WL.TabBarItem.setEnabled parameters

Parameter Description

isEnabled Mandatory Boolean.

v true: Enable the tab bar item

v false: Disable the tab bar item

Return Value

None

For iPhone:
var creditTab = WL.TabBar.addItem("CREDIT", selectCredit, "Visa", {image:"images/credit.png", badge: "2"});

creditTab.setEnabled(false);

For Android:
var tabFeeds = WL.TabBar.addItem (
’tab2’,
function(){worklightStarterApplication.selectTab(’feedsWrapper’);},

Chapter 5. API reference 269

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

"Engadget Feeds",
{image:"images/feed.png",imageSelected:"images/feed.png"});

tabFeeds.setEnabled(false);

WL.TabBarItem.updateBadge:

On iOS only, updates the badge value on a tab bar item.

Syntax
WL.TabBarItem.updateBadge(badge)

Description

This method applies only to iOS.

Updates the badge value that is displayed on the tab bar item.

Parameters

Table 73. WL.TabBarItem.updateBadge parameters

Parameter Description

badge Optional string. The badge value to display
on the item. If null or not specified, no
badge value is displayed.

Return Value

None
var creditTab = WL.TabBar.addItem("CREDIT", selectCredit, "Visa", {image:"images/credit.png", badge: "2"});

creditTab.updateBadge("3");

// using null will remove the badge from the TabBar Item
creditTab.updateBadge(null);

Fixing the Tab Bar on the Screen – Android 2.2 and Above:

Fix the position of the tab bar by updating HTML and CSS.

About this task

To fix the tab bar in one location on the screen on Android 2.2 and above, perform
the following steps:

Procedure

1. Add the following meta tag to the HTML HEAD section:
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, minimum-scale=1.0, user-scalable=no" />

2. Update the Android CSS BODY tag to also apply to the HTML tag, as follows:
html, body {
height: auto;
overflow: auto;
}

270 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Objective-C client-side API for native iOS apps
You can use Objective-C API to develop native apps for the iOS environment.

Use the Objective-C client-side API for native iOS apps that IBM Worklight
provides if you want to access IBM Worklight services from native iOS applications

You can find the description of this API in the following document: Objective-C
client-side API for native iOS apps.

Java client-side API for native Android apps
You can use Java API to develop native apps for the Android environment.

Use the Java client-side API for native Android apps that IBM Worklight provides
if you want to access IBM Worklight services from native Android applications.

You can find the description of this API in the following document: Java client-side
API for native Android apps.

Java client-side API for Java ME apps
You can use Java API to develop Java Platform, Micro Edition (Java ME) apps.

Use the Java client-side API for Java Platform, Micro Edition (Java ME) that IBM
Worklight provides if you want to access IBM Worklight services from native Java
ME apps.

You can find the description of this API in the following document: Java client-side
API for Java Platform, Micro Edition.

IBM Worklight server-side API
Use the server-side API that IBM Worklight defines to modify the behavior of the
servers that your mobile applications rely on.

JavaScript server-side API
The IBM Worklight server-side JavaScript API comprises these methods and
objects.

The following table lists the methods and objects you can use to perform necessary
functions in server-side applications.

Table 74. JavaScript API methods and objects

Function Description

Accessing a web service WL.Server.invokeHttp

WL.Server.signSoapMessage

Accessing a JDBC database WL.Server.invokeSQLStoredProcedure

WL.Server.createSQLStatement

WL.Server.invokeSQLStatement

Accessing a JMS-enabled messaging
provider

WL.Server.readSingleJMSMessage

WL.Server.readAllJMSMessages

WL.Server.writeJMSMessage

WL.Server.requestReplyJMSMessage

Chapter 5. API reference 271

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/wl_objcref_ios.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/wl_objcref_ios.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/wl_javaref_android.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/wl_javaref_android.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/wl_javaref_javame.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/wl_javaref_javame.pdf

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 74. JavaScript API methods and objects (continued)

Function Description

Calling other procedures WL.Server.invokeProcedure

Accessing an HttpServletRequest object WL.Server.getClientRequest

Accessing user details WL.Server.getActiveUser

WL.Server.setActiveUser

Subscribing to push notifications WL.Server.createEventSource

WL.Server.createDefaultNotification

WL.Server.getUserNotificationSubscription

WL.Server.notifyAllDevices

WL.Server.notifyDeviceToken

WL.Server.notifyDeviceSubscription

Accessing Server configuration WL.Server.configuration

Debugging WL.Logger.debug, error, and log

Method WL.Server.invokeHttp
Call an HTTP service.

Syntax
WL.Server.invokeHttp(invocationData)

Description

The method can be used only inside a procedure declared within an HTTP adapter.
It calls a back-end HTTP service and converts the results to JSON.

Parameters

The invokeHttp function accepts the following JSON block of parameters:

Table 75. JSON block properties

Property Description

method Mandatory. Defines the HTTP method. Valid
values are get, post, put, and delete.

272 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 75. JSON block properties (continued)

Property Description

returnedContentType Optional. Defines the type of the content
that is returned by the called HTTP service,
overriding the HTTP response’s mime type.

If this parameter is not provided, the IBM
Worklight Server handles the response
according to the mime type.

If it is provided, the IBM Worklight Server
handles the response according to the
indicated value. The field can receive the
following values:

v css, csv, html, javascript, json, plain,
and xml

v Any mime type that includes one of these
values (note that any response with mime
type that containsjavascript or json is
considered to contain JSON objects).

returnedContentEncoding Optional. Defines the encoding of the
returned content. Default is utf-8.

path Mandatory. Defines the path of the URL
defining the HTTP service.

parameters Optional. Defines the set of parameters that
need to be passed to the HTTP service.

headers Optional. Defines the headers for the HTTP
request.

cookies Optional. Defines cookies to be passed with
the HTTP request.

body Defines the content of the request body.

v When the method is GET, this property is
not allowed.

v When the method is POST, this property
is optional.

Note: body.content must be a string. If you
are explicitly creating a DOM object, such as
in: var request = <soap:Envelope ...
</soap:Envelope>;, you must convert the
object to string before you assign it to
body.content, for example:
request.toString();

transformation Optional. If defined, the response of the
service undergoes the defined XSL
transformation. If the service returns HTML,
the IBM Worklight Server first converts the
response to XHTML, and then runs the XSL
transformation on the XHTML response.

Note: In IBM Worklight V5.0.6, the path is no longer modified when you make the
actual request. You might therefore face an issue if you use the parameters
property in the WL.Server.invokeHttp options with a query parameter specified in
the path. You might end up with two ? signs on the request. To avoid this, do not

Chapter 5. API reference 273

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

use query parameters in the path along with the parameters property in
WL.Server.invokeHttp when using the method GET.

Returned Value

The method returns the response of the HTTP service after the following
processing:
1. If the service returns HTML, the IBM Worklight Server converts the HTML

response to XHTML. If the service returns XML, the IBM Worklight Server
keeps it as is.

2. If an XSL transformation is defined in the transformation property, the IBM
Worklight Server runs the transformation on the result of Step 1. The
transformation should convert its XML input to JSON. If no transformation was
defined, the IBM Worklight Server automatically converts the result of Step 1 to
JSON.

Example
var response = WL.Server.invokeHttp(invocationData);
response.responseHeader; // responseHeader property contains HTTP response headers
response.statusCode; // statusCode property contains HTTP response status code

Method WL.Server.signSoapMessage
Sign a fragment of a SOAP envelope.

Syntax
WL.Server.signSoapMessage (envelope, wsId, keystoreAlias)

Description

The method can be used only inside a procedure that is declared within an HTTP
adapter. It signs a fragment of the specified envelope with ID wsId, by using the
key in the specified keystoreAlias, inserting the digital signature into the input
document.

To use WL.Server.signSoapMessage() API when IBM Worklight runs on IBM
WebSphere Application Server, you might need to add a JVM argument that
instructs WebSphere to use a specific SOAPMessageFactory implementation instead
of a default one. To do this, you must go to Application servers {server_name} >
Process definition > Java Virtual Machine and provide the following argument
under Generic JVM arguments, typing in the code phrase exactly as it is presented
here:

-Djavax.xml.soap.MessageFactory=com.sun.xml.internal.messaging.saaj.soap.ver1_1.SOAPMessageFactory1_1Impl

Then, you must restart the JVM.

Important: This workaround is only for IBM WebSphere.

Parameters

Table 76. WL.Server.signSoapMessage method parameters

Parameter Description

envelope Mandatory. The SOAP envelope that
contains the fragment to sign.

274 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 76. WL.Server.signSoapMessage method parameters (continued)

Parameter Description

wsId Mandatory. The value of the wsu:Id
attribute, within the envelope, which
identifies the fragment to be signed

keystoreAlias Mandatory. The alias of the certificate or key
entry in the keystore that is to be used for
the signature.

Worklight Server Configuration

This method relies on the following properties in the worklight.properties file:

Table 77. Properties in the worklight.properties file

Property Description Example

ssl.keystore.path Path to the certificate that
contains the key with which
the envelope fragment must
be encrypted

/conf/default.keystore

ssl.keystore.type Type of the keystore jks

ssl.keystore.password Password of the keystore
(can be encrypted)

worklight

Example
var myEnvelope =
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header>
...
</soapenv:Header>
<soapenv:Body wsu:Id="an-element-id" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
...
</soapenv:Body>
</soapenv:Envelope>;

WL.Server.signSoapMessage(myEnvelope , "an-element-id", keystoreAlias);

Method WL.Server.invokeSQLStoredProcedure
Call a stored procedure on a database.

Syntax
WL.Server.invokeSQLStoredProcedure(options)

Description

The method can be used only inside a procedure that is declared within an SQL
adapter.

It calls a stored procedure on a database.

Parameters

The invokeSQLStoredProcedure function accepts the following JSON block of
parameters:

Chapter 5. API reference 275

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

{
procedure: ’procedure-name’,
parameters: [value-1, value-2, ...]

}

The JSON block contains the following properties:

Table 78. JSON block properties

Property Description

procedure Mandatory. This string defines the name of
the stored procedure to call.

parameters Optional. An array of parameters to the
stored procedure.

Returned Value

The method returns the result set of the SQL stored procedure. This returned value
is formatted as a JSON array, in which each element corresponds to a row in the
result set of the SQL stored procedure.

Method WL.Server.createSQLStatement
Create a prepared SQL statement.

Syntax
WL.Server.createSQLStatement(statement)

Description

The method can be used only inside a procedure declared within an SQL adapter.
It must be used outside of the scope of any JavaScript function.

Creates a prepared SQL statement to be later invoked with
WL.Server.invokeSQLStatement.

Parameters

The invokeSQLStatement method accepts the following parameter:

Table 79. invokeSQLStatement method parameter

Parameter Description

statement Mandatory string. An SQL statement with
one of the following verbs: select, insert,
delete, update. Use a question mark (?) as a
parameter placeholder.

Returned Value

An object that represents the prepared statement.

Example
// Outside any function scope
var procedure1Statement = WL.Server.createPreparedStatement("select COLUMN1, COLUMN2 from TABLE1 where COLUMN3 = ?");

276 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Method WL.Server.invokeSQLStatement
Call a prepared SQL statement.

Syntax
WL.Server.invokeSQLStatement(options)

Description

The method can be used only inside a procedure that is declared within an SQL
adapter.

It calls a prepared SQL statement that was created with
WL.Server.createSQLStatement.

Parameters
{

preparedStatement: prepared-statement-variable,
parameters: [value-1, value-2, ...]

}

The JSON block contains the following properties:

Table 80. JSON block properties

Property Description

preparedStatement Mandatory. The prepared statement that was defined
previously with createSQLStatement.

parameters Optional. An array of parameters to the prepared
statement.

Returned Value

The method returns the result set of the prepared statement. This returned value is
formatted as a JSON array, in which each element corresponds to a row in the
result set of the prepared statement.
// Outside of the function scope
var procedure1Statement = WL.Server.createPreparedStatement("select COLUMN1, COLUMN2 from TABLE1 where COLUMN3 = ?");

function procedure1(param) {
return WL.Server.invokePreparedStatement({

preparedStatement : procedure1Statement,
parameters : [param]}

);
}

Method WL.Server.readSingleJMSMessage
Read a single message from the given destination.

Syntax
WL.Server.readSingleJMSMessage(options)

Description

The method attempts to read a single message from the given destination.

If the destination is a queue, this method also removes the message from the
queue.

Chapter 5. API reference 277

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

The readSingleJMSMessage function accepts the following JSON block of
parameters:
{

destination : jndi-name-of-the-destination,
timeout : wait-timeout-in-milliseconds,
filter : jms-filter-string

}

The JSON block contains the following properties:

Table 81. JSON block properties

Property Description

destination Mandatory. The name of the administered
destination object, held in the JNDI
repository, that the message will be received
from. For example: If the administered
destination object is a JEE container
managed object, the value may be
java:comp/env/....

timeout Optional. The time, in milliseconds, that the
method will wait for a message, if a message
is not immediately available. If timeout is
not specified, the method will not wait for a
message.

Special values for this parameter:

0 wait indefinitely

<0 do not wait

filter Optional. The JMS selector string applied to
the wait call. The filter follows the standard
JMS selector syntax rules.

Returned Value

The method returns the received message. If no message is immediately available
on the destination, the method waits for the specified millisecond timeout. If no
message is available after the specified timeout, the method returns successfully
but with no message.

The message must be of type JMSText. If the message is not of type JMSText, it is
read from the destination and written to the warnings element of the response
using the javax.jms.Message.toString() method.

The returned object has the following structure:
{

isSuccessful: Boolean,
errors : optional-error-messages,
warnings : optional-warnings-messages
message : { body : body of the message,

properties : properties: of the message
}

}

The invocation results object contains the following properties:

278 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 82. Invocation results object properties

Property Description

isSuccessful Identifies whether the method invocation
succeeded or failed. Valid values are:

true The method invocation succeeded.
This is the default value.

Also set to true if there is no
message on the destination and the
method returns without error.

false The method invocation failed.

errors Optional. Any errors during processing will
appear here.

warnings Optional. Any warnings during processing
will appear here. This includes warnings
about any messages not of a supported JMS
Message Type.

message Optional. The message, the message body,
and the message properties are all optional.

body The message body. If no message is
returned, this will not be available.

properties
An array of message properties
which follow the JMSMessage
property rules. The following
message properties can be returned:

v JMS* properties. For example:
JMSCorrelationID.

v JMS_Provider_* properties. For
example: JMS_IBM_Format.

v user properties. For example:
my_user_property.

Method WL.Server.readAllJMSMessages
Read all messages from the given destination.

Syntax
WL.Server.readAllJMSMessages(options)

Description

The method attempts to read all messages from the given destination.

If the destination is a queue, this method also removes the messages from the
queue.

Parameters

The readAllJMSMessages function accepts the same set of parameters as
readSingleJMSMessage.

Chapter 5. API reference 279

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Returned Value

The method returns all available messages on the destination. If no messages are
immediately available on the destination, the method waits for the specified
millisecond timeout.

Note: The timeout is applied per message. If a message is available within the
timeout period, it is added to the list of received messages. The method then
performs another wait with the same timeout for the next available message.
If no messages are available after the specified timeout, the method returns
successfully but with no messages.

The messages must be of type JMSText. If an individual message is not of type
JMSText, it is read from the destination and added to the warnings element of the
response. The method then continues to attempt to read messages from the
destination. If there is an error processing the messages, an optional error
parameter is returned in the result.

The returned object is a list of received messages. Each individual message holds
the same body type and property list as readSingleJMSMessage.

Example of a returned object:
{

isSuccessful: Boolean,
messages : [

{ body : body of the message,
properties : {properties: of the message,

....}
},
{ body : body of the next message,

properties : {properties: of the next message,
....}

}
]

}

Method WL.Server.writeJMSMessage
Write a single JMSText message to the given destination.

Syntax
WL.Server.writeJMSMessage(options)

Description

The method writes a single JMSText message to the given destination.

The method options include write options, the message body, and message
properties.

Parameters

The writeJMSMessage function accepts the following JSON block of parameters:
{

destination : jndi-name-of-the-destination,
message : { body : message body,

properties : { message-properties }
},

ttl : time-to-live-in-milliseconds
}

280 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The JSON block contains the following properties:

Table 83. JSON block properties

Property Description

destination Mandatory. The name of the administered
destination object, held in the JNDI
repository, that the message will be written
to. The administered object can be defined
as a queue or a topic. For example: If the
administered destination object is a JEE
container managed object, the value might
be java:comp/env/....

message Optional. The message to write to the
destination. The message, the message body,
and the message properties are all optional.
If there is no message body or message
properties, an empty message will be sent.
The properties follow the same property
naming and setting rules as standard JMS
messages.

ttl Optional. The message time-to-live. The time
is in milliseconds. If not specified, the
time-to-live is set to infinite.

Returned Value

If the method is successful, the JMSMessageID of the sent message is returned.

The returned object has the following structure:
{

isSuccessful: Boolean,
errors : optional-error-messages,
JMSMessageID : ID:jms-message-id

}

The invocation results object contains the following properties:

Table 84. Invocation results object properties

Property Description

isSuccessful Identifies whether the method invocation
succeeded or failed. Valid values are:

true The method invocation succeeded.
This is the default value.

false The method invocation failed.

errors Optional. Any errors during processing will
appear here.

JMSMessageID Optional. If the message was sent
successfully, this is the message ID of the
sent message. The message ID uses the
standard of the underlying JMS Message
provider.

For example: JMSMessageID :
ID:414d234e132a43c123d2b3c1e5a4a4b32132c.

Chapter 5. API reference 281

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Method WL.Server.requestReplyJMSMessage
Write a single JMSText message to the given destination and wait for the response.

Syntax
WL.Server.requestReplyJMSMessage(options)

Description

This method is designed for use when a service is called that uses the replyTo
destination in the originating message to send the response to.

The IBM Worklight server creates a temporary JMS destination for the reply to be
received on. The temporary JMS destination is deleted using the underlying JMS
provider cleaning up rules. The temporary destination that is created is of the same
type as the specified destination. For example: If the specified destination is a
queue, then a temporary queue is created as the replyTo destination.

Parameters

The requestReplyJMSMessage function accepts the following JSON block of
parameters:
{

destination : jndi-name-of-the-destination,
message : { body : message body,

properties : { message-properties },
timeout : wait-timeout-in-milliseconds,
ttl : time-to-live-in-milliseconds

}

The JSON block contains the following properties:

Table 85. JSON block properties

Property Description

destination Mandatory. The name of the administered
destination object, held in the JNDI
repository, that the message is written to.
The administered object can be defined as a
queue or a topic. For example: If the
administered destination object is a JEE
container managed object, the value might
be java:comp/env/....

message Optional. The message to write to the
destination. The message, the message body,
and the message properties are all optional.
If there is no message body or message
properties, an empty message is sent. The
properties follow the same property naming
and setting rules as standard JMS messages.

282 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 85. JSON block properties (continued)

Property Description

timeout Optional. The time, in milliseconds, that the
method waits for a message, if a message is
not immediately available. If timeout is not
specified, the method will not wait for a
message.

Special values for this parameter:

0 wait indefinitely

<0 do not wait

ttl Optional. The message time-to-live. The time
is in milliseconds. If not specified, the
time-to-live is set to infinite.

Returned Value

The requestReplyJMSMessage function follows the same syntax and rules as
readSingleJMSMessage.

Method WL.Server.invokeProcedure
Invoke a procedure that is exposed by a Worklight adapter.

Syntax
WL.Server.invokeProcedure (invocationData)

Parameters

The invokeProcedure function accepts the following JSON block of parameters:

Table 86. JSON block properties

Property Description

adapter Mandatory. A string that contains the name
of the adapter as specified when the adapter
was defined.

procedure Mandatory. A string that contains the name
of the procedure as specified when the
adapter was defined.

parameters Optional. An array of parameter values that
are passed to the back-end procedure. A
parameter can be a scalar or an object.

Example of a JSON block of Parameters
{
adapter : "AcmeBank",
procedure : " getTransactions",
parameters : [accountId, fromDate, toDate],
};

Chapter 5. API reference 283

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Returned Value
{
isSuccessful: Boolean,
errorMessages: ["Error Msg1", ...],
// Application object returned by procedure
}

The invocation results object contains the following properties:

Table 87. Invocation results object properties

Property Description

isSuccessful Optional. Identifies whether the procedure
invocation succeeded or failed. Valid values
are:

true The procedure invocation
succeeded. This is the default value.

false The procedure invocation failed.

errorMessages Optional. An array of strings that contain
error messages. If no errors are provided,
the returned array is empty.

Application object Any object that is returned by the procedure.

Method WL.Server.getClientRequest
This method returns a reference to the Java HttpServletRequest object that was
used to invoke an adapter procedure

Syntax
WL.Server.getClientRequest ()

Description

Returns a reference to the Java HttpServletRequest object that was used to invoke
an adapter procedure. This method can be used in any adapter procedure.

Use this method to return headers or other information stored in an
HttpServletRequest object.

Parameters

None.

Return Value

A reference to an HttpServletRequest object.

Example
var request = WL.Server.getClientRequest();
var userAgent = request.getHeader("User-Agent");

Method WL.Server.getActiveUser
Return an object that contains user identity properties.

Syntax
WL.Server.getActiveUser ()

284 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Description

Returns an object with the user identity properties, according to the following
rules:
v If no realm is defined on the adapter, the method returns null (active user is

unknown)
v If a realm is defined on the adapter:

– If there is no strong identity associated with the user (the user was
authenticated in this session or in a previous session), the method returns
null.

– If there is a strong identity associated with the user (from the current session
or a previous one), the method returns the strong identity.

Parameters

None.

Return Value

An object that contains the user identity properties, as defined by the login
module, with the following structure:

userId The login ID, mandatory

displayName
Optional

credentials
Optional. A string with the user's credentials, such as password

attributes
Optional. Custom user attributes. There are no constraints on the structure
of the object.

Example
{
userId: "38017840288"
displayName: "John Doe",
attributes: {lastLogin: "2010-07-13 19:25:08.0 GMT"}
}

Method WL.Server.setActiveUser
Create a user identity in a specified realm.

Syntax
WL.Server.setActiveUser (realm, identity)

Description

Used in authenticator adapters at the end of the login sequence. Creates a user
identity in the specified realm with the properties in the specified identity
parameter. As a result of this method, the user's session is considered
authenticated.

Chapter 5. API reference 285

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

Table 88. WL.Server.setActiveUser method parameters

Property Description

realm Mandatory. The realm to log in to (as
defined in the authenticationConfig.xml
file).

identity Mandatory. A user identity object, as
returned by WL.Server.getActiveUser, with
the following structure:

userId Mandatory. The login ID.

displayName
Optional.

credentials
Optional. A string with the user's
credentials, such as password.

attributes
Optional. Custom user attributes,

Return Value

None.

Example
WL.Server.setActiveUser ("ACMERealm", {
userId: "38017840288",
displayName: "John Doe",
attributes: {
"firstName": "John",
"lastName": "Doe",
"lastLogin": "2010-07-13 19:25:08.0 GMT",
}
})

Method WL.Server.createEventSource
Create an event source.

Syntax
WL.Server.createEventSource(JSON-parameter-block)

Description

Creates an event source according to the parameters in the parameter block.

Parameters

The JSON block contains the following properties:

Table 89. JSON block properties

Property Description

name Mandatory. A string that contains the name
of the event source.

286 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 89. JSON block properties (continued)

Property Description

onUserSubscribe Optional. The name of the JavaScript
function (in the adapter file) that is called
when the user subscribes to this event
source for the first time, on first device
subscription. The callback function receives
the user subscription object as an input
parameter.

onUserUnsubscribe Optional. The name of the JavaScript
function (in the adapter file) that is called
when the user unsubscribes from this event
source for the first time, on first device
subscription. The callback function receives
the user subscription object as an input
parameter.

onDeviceUnsubscribe Optional. The name of the JavaScript
function that is called when the device
subscription is removed by a client request
or by the cleanup task. The callback function
receives the device subscription as an input
parameter.

onUserChange Optional. The name of the JavaScript
function that is called when a subscription
from this device exists for a different user.

The callback function receives the options
sent to the createEventSource function.

The callback function must return a JSON
block that must contain at least an
isSuccessful property, indicating whether
the subscription should be created. The
returned JSON block can contain other
custom properties, and it is transferred back
to the client app.

poll Optional. If the method of getting the
notification data from the back-end is
polling, provide the following properties:

interval
Mandatory. The interval in seconds
between the polls.

onPoll Mandatory. The name of JavaScript
function which is called on each
poll.

securityTest Mandatory. Declares the appropriate
securityTest from authenticationConfig.xml
to be used for this event source.

Example
WL.Server.createEventSource({
name: ’newCoupons’,
onUserSubscribe: ’subscribeUser’,
onUserUnsubscribe: ’unsubscribeUser’,
onUserChange: ’onUserChange’,
poll : {

Chapter 5. API reference 287

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

interval: 2,
onPoll: ’produceNotifications’
}
});

Related links: Security Tests

Method WL.Server.createDefaultNotification
Return a default notification JSON block structure.

Syntax
var notification = WL.Server.createDefaultNotification(notificationText, badge, payload);

Description

The method creates and returns a notification JSON block for the supplied values,
for all supported environments:
v Push notifications on iOS, Android, and Windows Phone 8
v SMS push notifications on iOS, Android, Windows Phone 7.5, Windows Phone 8,

and BlackBerry devices that support SMS functions

Parameters

Table 90. WL.Server.createDefaultNotification(notificationText, badge, payload) method
parameters

Property Description

notificationText Optional. The string that is displayed in the
alert. On Windows Phone 8 the string is
displayed in the application tile title.

badge Optional. An integer value that is displayed
in a badge on the application icon. On
Windows Phone 8 the value is displayed as
the application tile count.

payload Optional. A JSON block that is transferred to
the application. On iOS and Android, the
payload is transferred to the application if
the application is opened by the user when
the notification is received, or if the
application is already open. On Windows
Phone 8, the payload is transferred to the
application as a raw notification only if the
application is already open.

Returned Value

The returned JSON block has the following structure:
APNS: {
badge: badge,
alert: notificationText,
payload: payload,
sound: "",
actionKey: null
},
GCM: {
alert: notificationText,
badge: badge,
payload: payload

288 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

},
SMS: {
text: notificationText
},
MPNS: {
raw: {
payload: payload
},
toast: null,
tile: {
title: notificationText,
count: badge
}
}

Example
var notification = WL.Server.createDefaultNotification("You have " + numCoupons + " coupons.", numCoupons, {foo: "bar"});

Method WL.Server.getUserNotificationSubscription
Return a subscription object for a user.

Syntax
WL.Server.getUserNotificationSubscription(eventSourceName, userId);

Description

Returns a subscription object for the user with the specified ID to the specified
event source.

Parameters

Table 91. WL.Server.getUserNotificationSubscription method parameters

Parameter Description

eventSourceName Mandatory. A string that contains the name
of the event source.

userId Mandatory. A string that contains the user
ID, created during the login process. The
user ID can be obtained by calling
WL.Server.getActiveUser.

Return Value

The method returns a subscription object that contains the user ID and the mutable
subscription state.

Note: All subscription object fields are read-only, except for the user subscription
state. You can modify the user subscription state in your JavaScript code, and then
must use the save method to save it to the IBM Worklight database.

Example
{userId: ’bjones’, state: {numCoupons: 3}}

Method userSubscription.getDeviceSubscriptions
Return an array of device subscriptions.

Syntax
userSubscription.getDeviceSubscriptions();

Chapter 5. API reference 289

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Description

Returns an array of device subscriptions for the user subscription object on which
it is invoked.

Parameters

None.

Return Value

The method returns an array of the device subscriptions. The device subscriptions
contain the device token, the application ID, the platform, and the options that
were passed by the client in the subscribe call.

Example
[
{
alias: "myPush,
device: "123123123123....",
token: ’53d8d76d0ec54b79552dd98dfeb4b4565c2b13cad53ff3898e7441d1f91b4574’,
applicationId: ’HelloBookstore’,
platform: ’Apple’,
userAgent: ’Mozilla/5.0 (iPad; ...’,
options: {foo: ’bar’, alert: true, badge: true, sound: true}
}
]

Method userSubscription.save
Save the state of a user subscription.

Syntax
userSubscription.save();

Description

Saves the state of the user subscription. Should be called only after you explicitly
change the state property of the user subscription object.

Parameters

None.

Return Value

None.

Method WL.Server.notifyAllDevices
Submit a notification to all a specified user's device subscriptions

Syntax
WL.Server.notifyAllDevices(userSubscription, notificationOptions)

Description

Submits a notification to all the device subscriptions of the specified user,
according to the specified options.

290 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Push notifications are supported on iOS, Android, and Windows Phone 8 devices.
iOS apps use the Apple Push Notification Service (APNS), Android apps use
Google Cloud Messaging (GCM), and Windows Phone 8 apps use the Microsoft
Push Notification Service (MPNS).

Note: If a notification to a specific Windows Phone 8 device subscription fails, the
notification is dismissed and not resubmitted.

SMS push notifications are supported on iOS, Android, Windows Phone 7.5,
Windows Phone 8, and BlackBerry devices that support SMS functions.

For SMS notifications, the text property of the notificationOptions parameter
contains the SMS text. A text message is sent as a single message if the text
message length is less than or equal to 160 characters. If the text message length is
greater than 160 characters, the message is either split into multiple messages of
160 characters or less, or it is rejected. The action that is taken depends on the
configured SMS gateway. All other properties of notificationOptions are ignored.

Parameters

In IBM Worklight V5.0.6, the JSON block for the notificationOptions parameter
has changed. The JSON block that was used in IBM Worklight V5.0.5 and earlier is
deprecated in IBM Worklight V5.0.6. Support might be removed in any future
version. See “Parameters for IBM Worklight V5.0.5 and earlier” on page 297 for
details on the JSON block that was used in IBM Worklight V5.0.5 and earlier, and
how it is used in IBM Worklight V5.0.6.

The notificationOptions parameter accepts the following JSON block:
APNS

alert
badge
sound
actionKey
payload

GCM
alert
sound
payload
delayWhileIdle
timeToLive

SMS
text

MPNS
raw

payload
toast

text1
text2
param

tile
id
count
title
backgroundImage
smallBackgroundImage
wideBackgroundImage
wideBackBackgroundImage
wideBackContent
backBackgroundImage
backTitle
backContent

Chapter 5. API reference 291

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

smallIconImage
iconImage
wideContent1
wideContent2
wideContent3
backgroundColor
cycleImage1
cycleImage2
cycleImage3
cycleImage4
cycleImage5
cycleImage6
cycleImage7
cycleImage8
cycleImage9

Table 92. WL.Server.notifyAllDevices(userSubscription, notificationOptions) method
parameters

Name Description

userSubscription Mandatory. A user subscription object,
obtained by calling
WL.Server.getUserNotificationSubscription

292 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 92. WL.Server.notifyAllDevices(userSubscription, notificationOptions) method
parameters (continued)

Name Description

notificationOptions Mandatory. The JSON block contains the
following properties:

APNS

alert Optional. A string to be displayed
in the alert.

badge Mandatory. An integer value to be
displayed in a badge on the
application icon.

sound Optional. The name of a file to play
when the notification arrives.

actionKey
Optional. The label of the dialog
box button that allows the user to
open the app upon receiving the
notification.

payload
Optional. A JSON block that is
transferred to the application if the
application is opened by the user
when the notification is received, or
if the application is already open.

GCM

alert Optional. A string to be displayed
in the alert.

sound Optional. The name of a file to play
when the notification arrives.

payload
Optional. A JSON block that is
transferred to the application if the
application is opened by the user
when the notification is received, or
if the application is already open.

delayWhileIdle
Optional. A Boolean value that
indicates that the message should
not be sent if the device is idle. The
server waits for the device to
become active before the message is
sent. Default value is false.

timeToLive
Optional. How long, in seconds, the
message should be kept on GCM
storage if the device is offline.
Default value is 4 weeks, and must
be set as a JSON number.

SMS

text Mandatory. A string to be displayed
in the alert.

MPNS

raw

payload
Optional. A JSON block
that is transferred to the

Chapter 5. API reference 293

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Windows Phone 8 Tile images can be local or remote. Store a local image, for
example, myImage.jpg, as a web resource in the images folder. The URL of the
image is then www/default/images/myImage.jpg. To use a remote image, you must
declare the remote image domain in the <allowedDomainsForRemoteImages>
subelement of <windowsPhone8> in the application-descriptor.xml file.

To clear a Windows Phone 8 Tile property, set it to an empty string for texts and
URLs, or to zero for the count property, when you send a notification.

Note:

v If you submit a notification to MPNS and none of the appropriate properties are
set, then the notification is not sent; for example, a raw notification is not sent if
payload is not set; a toast notification is not sent if text1, text2, and param are
not set.

v If you submit a notification to Windows Phone 8 with Tile properties that do not
match the Tile template declared in the WMAppManifest.xml file, the Tile
notification is ignored by the device OS.

v If you declare a Windows Phone 8 Tile as cycle in the WMAppManifest.xml file
and the notification comprises only the title and count properties, then the
notification is ignored by the device OS. As a workaround, add one of the
notificationOptions cycle properties that are described in Table 92 on page 292.

v If you declare a Windows Phone 8 Tile as iconic in the WMAppManifest.xml file
and the notification comprises only the title and count properties, then the
notification is ignored by the device OS. As a workaround, add one of the
notificationOptions iconic properties that are described in Table 92 on page
292.

See http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj662938
%28v=vs.105%29.aspx for more details on Windows Phone 8 toast notifications.

See http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh202948
%28v=vs.105%29.aspx for more details on Windows Phone 8 Tiles.

Use the following process to create a notification that can be sent to all devices:
1. Call WL.Server.createDefaultNotification to create a default notification. See

“Method WL.Server.createDefaultNotification” on page 288 for details on this
method.

2. Individually set or change any property in the returned default notification.
3. Call WL.Server.notifyAllDevices with the updated notification.

Example
userSubscription = WL.Server.getUserNotificationSubscription ("MyEventSource", userID);

var notification = WL.Server.createDefaultNotification("You have " + numCoupons + " coupons.", numCoupons, {foo: "bar"});

// change the sound for APNS
notification.APNS.sound = mySound;
// change the alert for GCM
notification.GCM.alert = myAndroidAlert;
// change the payload for MPNS
notification.MPNS.raw.payload = myRawPayload;
// set toast notification properties for MPNS
notification.MPNS.toast = {};
notification.MPNS.toast.text1 = "Toast title”;

294 IBM Worklight V5.0.6

http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj662938%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj662938%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh202948%28v=vs.105%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh202948%28v=vs.105%29.aspx

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

notification.MPNS.toast.text2 = "Toast content”;
// set a local image for MPNS
notification.MPNS.tile.backgroundImage = “www/default/images/myImage.jpg”;
// set a remote image for MPNS
notification.MPNS.tile.backBackgroundImage = “http://icons.aniboom.com/Animators/00e45896-68c6-446a-8d9f-471dd6d577f9.jpg”;

WL.Server.notifyAllDevices(
userSubscription, notification
);

The following figure shows the notification dialog box, text, and badge numbers:

Chapter 5. API reference 295

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

296 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters for IBM Worklight V5.0.5 and earlier

The JSON block that was used in IBM Worklight V5.0.5 and earlier is deprecated in
IBM Worklight V5.0.6. Support might be removed in any future version. If the
deprecated JSON block structure is used in IBM Worklight V5.0.6, a deprecation
warning message is printed to the console. A notification message is still submitted
to all supported environments, however, the notification message that is sent to a
Windows Phone 8 device is sent as two notifications:
v A tile message, which contains the badge, or count, and an alert, or title
v A raw message, which contains the payload

Table 93. WL.Server.notifyAllDevices(userSubscription, notificationOptions) method
parameters

Name Description

userSubscription Mandatory. A user subscription object,
obtained by calling
WL.Server.getUserNotificationSubscription

notificationOptions Mandatory. The JSON block contains the
following properties:

badge Mandatory. An integer value to be
displayed in a badge on the
application icon.

sound Optional. The name of a file to play
when the notification arrives.

alert Optional. A string to be displayed
in the alert.

activateButtonLabel
Optional. The label of the dialog
box button that allows the user to
open the app upon receiving the
notification.

payload
Optional. A JSON block that is
transferred to the application if the
application is opened by the user
when the notification is received, or
if the application is already open.

Method WL.Server.notifyDevice
Submit a notification to a specified user and a specified device.

Syntax
WL.Server.notifyDevice(userSubscription, device, options)

Description

Submits a notification to the specified user with the specified device ID according
to the specified options.

If the device ID does not exist, the server outputs an error to the log and returns.

Chapter 5. API reference 297

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Push notifications are supported on iOS, Android, and Windows Phone 8 devices.
iOS apps use the Apple Push Notification Service (APNS), Android apps use
Google Cloud Messaging (GCM), and Windows Phone 8 apps use the Microsoft
Push Notification Service (MPNS).

Note: If a notification to a specific Windows Phone 8 device subscription fails, the
notification is dismissed and not resubmitted.

SMS push notifications are supported on iOS, Android, Windows Phone 7.5,
Windows Phone 8, and BlackBerry devices that support SMS functions.

Useful when the notifications are generated by a back-end system, and directs
them to specific device IDs.

For SMS notifications, the text property of the options parameter contains the SMS
text. A text message is sent as a single message if the text message length is less
than or equal to 160 characters. If the text message length is greater than 160
characters, the message is either split into multiple messages of 160 characters or
less, or it is rejected. The action that is taken depends on the configured SMS
gateway. All other properties of options are ignored.

Parameters

Table 94. WL.Server.notifyDevice method parameters

Name Description

userSubscription Mandatory. A user subscription object,
obtained by calling
WL.Server.getUserNotificationSubscription

device Mandatory. The device ID that is used to
identify the device by the Worklight Server.

options Mandatory. See Method
WL.Server.notifyAllDevices.

Use the following process to create a notification that can be sent to any device:
1. Call WL.Server.createDefaultNotification to create a default notification. See

“Method WL.Server.createDefaultNotification” on page 288 for details on this
method.

2. Individually set or change any property in the returned default notification.
3. Call WL.Server.notifyDevice with the updated notification.

Example
userSubscription = WL.Server.getUserNotificationSubscription ("MyEventSource", userID);

var notification = WL.Server.createDefaultNotification("You have " + numCoupons + " coupons.", numCoupons, {foo: "bar"});

WL.Server.notifyDevice(
userSubscription, userSubscription.getDeviceSubscriptions()[0].token, notification
);

Method WL.Server.notifyDeviceSubscription
Submit a notification to the specified device of a subscribed user.

Syntax
WL.Server.notifyDeviceSubscription (deviceSubscription, notificationOptions)

298 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Description

This method replaces the deprecated method WL.Server.submitNotification.

Submits a notification to the specified device of a subscribed user, according to the
specified options.

Push notifications are supported on iOS, Android, and Windows Phone 8 devices.
iOS apps use the Apple Push Notification Service (APNS), Android apps use
Google Cloud Messaging (GCM), and Windows Phone 8 apps use the Microsoft
Push Notification Service (MPNS).

Note: If a notification to a specific Windows Phone 8 device subscription fails, the
notification is dismissed and not resubmitted.

SMS push notifications are supported on iOS, Android, Windows Phone 7.5,
Windows Phone 8, and BlackBerry devices that support SMS functions.

For SMS notifications, the text property of the notificationOptions parameter
contains the SMS text. A text message is sent as a single message if the text
message length is less than or equal to 160 characters. If the text message length is
greater than 160 characters, the message is either split into multiple messages of
160 characters or less, or it is rejected. The action that is taken depends on the
configured SMS gateway. All other properties of notificationOptions are ignored.

Parameters

Table 95. WL.Server.notifyDeviceSubscription method parameters

Name Description

deviceSubscription Mandatory. The device subscription,
obtained by calling getDeviceSubscriptions
on the user subscription object.

notificationOptions Mandatory. See Method
WL.Server.notifyAllDevices.

Use the following process to create a notification that can be sent to any device:
1. Call WL.Server.createDefaultNotification to create a default notification. See

“Method WL.Server.createDefaultNotification” on page 288 for details on this
method.

2. Individually set or change any property in the returned default notification.
3. Call WL.Server.notifyDeviceSubscription with the updated notification.

Example
userSubscription = WL.Server.getUserNotificationSubscription ("MyEventSource", userID);

var notification = WL.Server.createDefaultNotification("You have " + numCoupons + " coupons.", numCoupons, {foo: "bar"});

WL.Server.notifyDeviceSubscription(
userSubscription.getDeviceSubscriptions()[0], notification
);

Deprecated Method WL.Server.submitNotification
This method is deprecated.

Chapter 5. API reference 299

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Syntax
WL.Server.submitNotification (deviceSubscription, notificationOptions)

Description

Note: This method is deprecated as of version 4.1.3, and should be replaced by
WL.Server.notifyDeviceSubscription, which has the same signature.

Submits a notification to the specified device of a subscribed user, according to the
specified options.

It is possible to submit notifications only to iOS and Android devices.

Parameters

Table 96. Deprecated Method WL.Server.submitNotification parameters

Name Description

deviceSubscription Mandatory. The device subscription obtained
by calling getDeviceSubscriptions on the
user subscription object.

notificationOptions Mandatory. See Method
WL.Server.notifyAllDevices.

Methods WL.Logger.debug, error, and log
Logger methods for server-side code.

Syntax
v WL.Logger.debug (message)

v WL.Logger.error (message)

v WL.Logger.log (message)

Description

Logger methods for server-side code. Each method writes a message to the
Worklight Project Name/server/log/server/server.log file.

Note: For the development environment only, you can define the level of the
traces that are logged by setting the appropriate values in the
development.logging.properties file that is in the Worklight Project
Name/server/conf folder. This property file contains default definitions that you
can use as a starting point. By default, the messages that are of the debug level or
higher are printed in the server.log file and the Worklight Studio console. If you
are using a stand-alone server that has its specific logging level definitions, such as
WebSphere Application Server or Tomcat, the development.logging.properties file
is irrelevant. For more information, see “Logging and monitoring mechanisms” on
page 400.

Parameters

Table 97. Methods WL.Logger.debug, error, and log parameters

Name Description

message Mandatory. A string that contains the
message to be written to the log file.

300 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Return Value

None.

Object WL.Server.configuration
A map that contains all the server properties that are defined in the file
worklight.properties.

Syntax
WL.Server.configuration ["property-name"]
WL.Server.configuration.property-name

Both syntaxes are equivalent. When the property name contains a period ('.'), for
examplelocal.IPAddress, the array index syntax must be used.

Example
var addr = WL.Server.configuration["local.IPAddress"];

Java server-side API
The IBM Worklight server-side Java API comprises these interfaces.

Interface WorklightAuthenticator
The WorklightAuthenticator interface contains the methods necessary to write a
custom authenticator in Java.

A custom authenticator class must implement this interface.

Method changeResponseOnSuccess:

This method is invoked after authentication success. It is used to add data to the
response after the authentication is successful.

Syntax
Boolean changeResponseOnSuccess (HttpServletRequest request, HttpServletResponse response)

Parameters

request
Input.

response
Output.

Returns

true
The response is modified. This value is returned only if the method actually
changed the response.

false
The response is not modified.

Method clone:

This method creates a deep copy of class members

Chapter 5. API reference 301

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Syntax
WorkLightAuthenticator clone()

Parameters

None.

Throws

CloneNotSupportedException

Method getAuthenticationData:

This method is used by a Login Module to get the credentials collected by an
authenticator.

Syntax
Map<String, Object> getAuthenticationData()

Parameters

None.

Returns

Authentication data as a Map.

Method init:

This method is invoked when the authenticator instance is created.

Syntax
void init(Map<String, String> options)

Parameters

Map
An options map specified in a realm definition in the
authenticationConfig.xml file.

Throws

MissingConfigurationOptionException

Example

Assume that you have the following realm definition in the
authenticationConfig.xml file:
<realm name="realmForMyApp" loginModule="DatabaseLoginModule">
<className> com.worklight.core.auth.ext.BasicAuthenticator </className>
<parameter name="basic-realm-name" value="My App" >
</realm>

The init method is called with the options map populated with an entry:
"basic-realm-name"="My App".

302 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Method processAuthenticationFailure:

This method is invoked if the Login Module returns a credentials validation
failure.

Syntax
AuthenticationResult processAuthenticationFailure(HttpServletRequest request, HttpServletResponse response,
String errorMessage)

Parameters

request
Input.

response
Input.

Error message
Output.

Returns

FAILURE
Authentication failed

CLIENT_INTERACTION_REQUIRED
Additional information is required from the client

Method processRequestAlreadyAuthenticated:

This method is invoked for each request from an already authenticated session. It
returns an AuthenticationResult for a request that is already authenticated.

Syntax
AuthenticationResult processRequestAlreadyAuthenticated(HttpServletRequest request, HttpServletResponse response)

Parameters

request
Input. The client request.

response
Output. The response to the request.

Returns

REQUEST_NOT_RECOGNIZED
The request should be ignored.

CLIENT_INTERACTION_REQUIRED
The response should be returned to the client and the login context should
wait for the client request.

SEND_RESPONSE_TO_CLIENT_ONE_WAY
The response should be returned to the client and the login context should not
wait for the client request.

FAILURE
The client failed authentication

Chapter 5. API reference 303

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Throws

java.io.IOException

javax.servlet.ServletException

Method processRequest:

This method processes a request from an unauthenticated session, by sending an
authentication request to a specific URL.

Syntax
AuthenticationResult processRequest(HttpServletRequest request, HttpServletResponse response, boolean isAccessToProtectedResource)

Parameters

request
Input. The Client request.

response
Input. Optionally output, may be modified by the authenticator.

isAccessToProtectedResource
Input.

true
The request is to a resource protected by this authenticator and it should
not be ignored.

false
The request is to a different resource than the one that is protected by this
authenticator, and it should be ignored by returning
REQUEST_NOT_RECOGNIZED.

Returns

SUCCESS
All login data was received.

FAILURE
The client cannot provide the login data.

REQUEST_NOT_RECOGNIZED
The request does not belong to the login process.

CLIENT_INTERACTION_REQUIRED
The method invocation modified the response.

Throws

IOException

ServletException

Deprecated method getRequestToProceed:

This method is invoked after the Login Module successfully validates the
credentials that are collected by an authenticator.

Note: This method is deprecated since IBM Worklight V5.0.0.3.

304 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Syntax
HttpServletRequest getRequestToProceed(HttpServletRequest request, HttpServletResponse response,
UserIdentity userIdentity, LoginExtension... loginExtension)

Interface WorkLightAuthLoginModule
The WorkLightAuthLoginModule interface contains the methods necessary to write
a custom login module in Java.

A custom login module class must implement this interface.

Note: Use this WorkLightAuthLoginModule interface as a replacement of the
“Deprecated interface WorkLightLoginModule” on page 307 interface, which is
deprecated as of IBM Worklight V5.0.6.

This WorkLightAuthLoginModule interface defines the same methods as the
“Deprecated interface WorkLightLoginModule” on page 307 interface, except for
the “Method createIdentity” on page 306, which this interface defines as a
replacement of the “Deprecated Method createIdenity” on page 308. Except for this
specific method name change, the two interfaces offers the same sets of methods
and have the same purpose. Use this WorkLightAuthLoginModule interface and its
method as you used the “Deprecated interface WorkLightLoginModule” on page
307 interface in previous versions of IBM Worklight.

Method abort:

This method is used to clean up cached data, and is called when the login process
is interrupted.

Syntax
void abort()

Parameters

None.

Method clone:

This method creates a deep copy of class members.

Syntax
WorkLightLoginModule clone()

Parameters

None.

Returns

WorklightLoginModule

Throws

CloneNotSupportedException

Chapter 5. API reference 305

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Method createIdentity:

This method is used to create an authenticated UserIdentity object after the
credentials validation succeeds.

Note: Use this createIdentity method (defined in the “Interface
WorkLightAuthLoginModule” on page 305) as a replacement of the “Deprecated
Method createIdenity” on page 308 method that is defined in the “Deprecated
interface WorkLightLoginModule” on page 307. The “Deprecated Method
createIdenity” on page 308 and the “Deprecated interface WorkLightLoginModule”
on page 307 are both deprecated as of IBM Worklight V5.0.6.

Syntax
UserIdentity createIdentity(String realm)

Parameters

realm

Returns

A UserIdentity object

Method init:

This method is invoked when the Login Module instance is created.

Syntax
void init(Map<String, String> options)

Parameters

Map
An options map specified in a login module definition in the
authenticationConfig.xml file.

Throws

MissingConfigurationOptionException

Example

Assume that you have the following realm definition in the
authenticationConfig.xml file:
<realm name="realmForMyApp" loginModule="DatabaseLoginModule">
<className> com.worklight.core.auth.ext.BasicAuthenticator </className>
<parameter name="basic-realm-name" value="My App" >
</realm>

The init method is called with the options map populated with an entry:
"basic-realm-name"="My App".

Method login:

This method is used to validate the credentials that are collected by the
authenticator.

306 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Syntax
boolean login(Map<String, Object> authenticationData)

Parameters

authenticationData

Returns

true
Credential validation passed.

false
Credential validation failed.

Throws

A runtime exception.

Method logout:

This method is used to clean up cached data after a logout.

Syntax
void logout()

Parameters

None.

Deprecated interface WorkLightLoginModule
The WorkLightLoginModule interface contains the methods necessary to write a
custom login module in Java. This interface is deprecated as of IBM Worklight
V5.0.6.

Deprecated. A custom login module class must implement this interface.

Note: As of IBM Worklight V5.0.6, this WorkLightLoginModule interface is
deprecated and replaced with the “Interface WorkLightAuthLoginModule” on page
305.

Method abort:

This method is used to clean up cached data, and is called when the login process
is interrupted.

Syntax
void abort()

Parameters

None.

Method clone:

This method creates a deep copy of class members.

Chapter 5. API reference 307

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Syntax
WorkLightLoginModule clone()

Parameters

None.

Returns

WorklightLoginModule

Throws

CloneNotSupportedException

Deprecated Method createIdenity:

This method is used to create an authenticated UserIdentity object after the
credentials validation succeeds.

Note: As of IBM Worklight V5.0.6, this method createIdenity is deprecated. The
“Deprecated interface WorkLightLoginModule” on page 307 where this method is
defined is also deprecated. Instead of this method createIdenity, use the “Method
createIdentity” on page 306 that is defined in the “Interface
WorkLightAuthLoginModule” on page 305.

Syntax
UserIdentity createIdenity(String realm)

Parameters

realm

Returns

A UserIdentity object

Method init:

This method is invoked when the Login Module instance is created.

Syntax
void init(Map<String, String> options)

Parameters

Map
An options map specified in a login module definition in the
authenticationConfig.xml file.

Throws

MissingConfigurationOptionException

308 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Example

Assume that you have the following realm definition in the
authenticationConfig.xml file:
<realm name="realmForMyApp" loginModule="DatabaseLoginModule">
<className> com.worklight.core.auth.ext.BasicAuthenticator </className>
<parameter name="basic-realm-name" value="My App" >
</realm>

The init method is called with the options map populated with an entry:
"basic-realm-name"="My App".

Method login:

This method is used to validate the credentials that are collected by the
authenticator.

Syntax
boolean login(Map<String, Object> authenticationData)

Parameters

authenticationData

Returns

true
Credential validation passed.

false
Credential validation failed.

Throws

A runtime exception.

Method logout:

This method is used to clean up cached data after a logout.

Syntax
void logout()

Parameters

None.

Chapter 5. API reference 309

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

310 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 6. IBM Worklight Server administration

This topic is intended for IT administrators who want to install and administer
IBM Worklight. It describes the server-side components of the IBM Mobile
Platform offering and requires administrative knowledge of WebSphere Application
Server v7.0+, Apache Tomcat v7+, or Liberty profile v8.5+.

This topic describes the tasks required to install and maintain the IBM Worklight
V5.0 production server. More precisely, it explains how to install, configure,
optimize, and test the IBM Worklight Server.

It also contains information about installing and configuring database and
application server software to support the IBM Worklight database.

For more information about how to size your system, see the following documents:
v Scalability and Hardware Sizing (PDF)
v Hardware Calculator (XLS)

.

Architecture and concepts
You can use the IBM Worklight framework for rapid development of mobile
applications for the enterprise.

The framework consists of a development tool (IBM Worklight Studio) and a
server (IBM Worklight Server). Each mobile application that is created by using the
IBM Worklight Studio connects at run time to an IBM Worklight server.

To obtain maximum benefit from the framework and server administration
information that is provided, any development organization must create the
necessary files to be deployed on an IBM Worklight Server.

IBM Worklight server uses the following artifacts:

Platform
The Worklight server run time binary files

Project
A set of resources that are deployed on a Worklight server which define
the behavior of applications and adapters. Not to be confused with an
Eclipse Worklight Project, as used by Worklight Studio.

Application
Server-side metadata and web resources of a mobile application

Adapter
Metadata and code for server-side logic.

All but the Platform are created by using the Worklight Studio running on Eclipse.

The Worklight Server runs on top of an Application Server, such as Apache Tomcat
or IBM WebSphere Application Server. Deployment is the process of installing

311

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/Scalability_and_Hardware_Sizing.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/Hardware_Calculator.xls

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Worklight artifacts into an Application Server. All four of the Worklight artifacts
must be deployed to the Application Server in order for Worklight client
applications to connect and run.

IBM Worklight development lifecycle
When you use IBM Worklight Studio within the IBM Worklight framework to
develop a mobile application, you produce client and server artifacts, and a
.adapter file.

Client artifacts
A mobile binary file ready for deployment on a mobile device. For
example, an Android apk file, or an iPhone ipa file. These are usually
uploaded to an “App Store” such as the Apple Store or Google Play.

Server artifacts
A .wlapp file. Metadata and web resources of an IBM Worklight app
deployed on the IBM Worklight Server. Used by the IBM Worklight Server
to identify and service mobile Applications.

A .adapter file
An IBM Worklight adapter deployed on the IBM Worklight Server. This file
contains server-side code written by the IBM Worklight developer (for
example, retrieve data from a remote database). Adapter code is accessed
by IBM Worklight apps via a simple invocation API.

wlapp and adapter files are referred to in this topic as content. These are
typically identical between the organization’s development, testing, and
production environments.

A web archive (WAR) file to be deployed on each IBM Worklight server
This file is also called a Customization WAR file and it contains
server-specific configurations such as security profiles, server properties,
database connectivity, server hostname, and more. wlapp and adapters use
these properties at various stages. The WAR content typically changes
during the development lifecycle, that is, development, testing, and
production.

The following diagram explains these three terms graphically.

Figure 35. IBM Worklight development lifecycle

312 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Typical topology of an IBM Worklight instance
An IBM Worklight instance uses a particular topology that is typical for
organizations with an established extranet infrastructure.

The following figure depicts this topology.

Such a topology is based on the following principles:
v IBM Worklight Server is installed in the organization LAN, connecting to various

enterprise back-end systems.
v IBM Worklight Server can be clustered for high availability and scalability.

Figure 36. Typical topology of an IBM Worklight instance

Chapter 6. IBM Worklight Server administration 313

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v IBM Worklight Server uses a database for storing push notification information,
statistics for reporting and analytics, and storing metadata required by the server
at run time. A single instance of the database is shared by all IBM Worklight
servers.

v IBM Worklight Server is installed behind a web authentication infrastructure
(Web SSO) acting as a reverse proxy and providing SSL.

IBM Worklight Server can be installed in different network configurations, which
might include several DMZ layers, reverse proxies, NAT devices, firewalls, high
availability components such as load balancers, IP sprayers, clustering, and alike.
Some of these components are explained, though for the purpose of this document,
a simpler configuration is assumed in which IBM Worklight Server is installed in
the DMZ.

Installation
IBM installations are based on an IBM product called “IBM Installation Manager".

Install “IBM Installation Manager 1.5.2 or later" separately prior to installing IBM
Worklight.

To ensure correct installation of IBM Worklight Server, please see installation
prerequisites.

Installation prerequisites
For smooth installation of IBM Worklight Server, ensure that you have fulfilled all
required environment setup and software prerequisites before attempting
installation.

You can find a complete list of supported hardware as well as pre-requisite
software under: IBM Worklight and IBM Mobile Foundation detailed system
requirements.

Important: If you already have a version of IBM Worklight Server installed, you
must uninstall it before you install a new version. Failure to do so can result in
incomplete installation.

Download the IBM Mobile Platform foundation package from the IBM Passport
Advantage site.

Ensure that you have the latest FixPacks for the IBM Worklight product. If you are
connected to the Internet during the installation, IBM Installation manager can
download the latest fixPacks for you.

The package contains an Install Wizard that guides you through the IBM Worklight
Server installation.

The server installation wizard requires an application server and a database. You
must choose which database management system and which application server to
use. Database options include:
v IBM DB2®

v MySQL
v Oracle
v Apache Derby. Included in the installation image.

314 IBM Worklight V5.0.6

http://www-01.ibm.com/support/docview.wss?uid=swg27024838
http://www-01.ibm.com/support/docview.wss?uid=swg27024838
http://www.ibm.com/software/dre/h2b/buildh2bpage.wss?synkey=R450727J37022R62
http://www.ibm.com/software/dre/h2b/buildh2bpage.wss?synkey=R450727J37022R62

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: Apache Derby is supplied for evaluation and testing purposes only and is
not a production-grade database.

Application server options include:
v WebSphere Application Server Liberty Profile. Included in the installation image.
v WebSphere Application Server.
v Apache Tomcat.

The IBM Worklight installation automatically configures an application server and
a database, resulting in a fully functional IBM Worklight server.

Creating the DB2 databases
During IBM Worklight installation, the installer can create the necessary databases
for you.

About this task

The installer can create the databases for you if you enter the name and password
of a user account on the database server that has the DB2 SYSADM or SYSCTRL
privilege, and the account can be accessed through SSH. Otherwise, the database
administrator can create the databases for you. For more information, see the DB2
Solution user documentation.

When you manually create the database instances, the IBM Worklight installation
requires that the databases have specific names. You should replace the password
in the script below with one of your choosing.

Important: You can name your user differently, or set a different password, but
ensure that you enter the appropriate user name and password correctly across the
DB2 database setup. DB2 has a user name and password length limit of 8
characters for Unix and Linux systems, and 30 characters for Windows.

Procedure
1. Create a system user wluser in a DB2 admin group such as DB2USERS, using the

appropriate commands for your operating system. Give it the password wluser.
For more information, see the DB2 documentation and the documentation for
your operating system.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:
v On Windows systems, click Start > IBM DB2 > Command Line Processor

v On Linux or UNIX systems, navigate to db2_install/sqllib/bin and enter
./db2.

v Enter the following database manager and SQL statements to create the three
databases:
CREATE DATABASE WRKLGHT COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WRKLGHT
GRANT CONNECT ON DATABASE TO USER wluser
DISCONNECT WRKLGHT
CREATE DATABASE WLREPORT COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WLREPORT
GRANT CONNECT ON DATABASE TO USER wluser
DISCONNECT WLREPORT
CREATE DATABASE APPCNTR COLLATE USING SYSTEM PAGESIZE 32768

Chapter 6. IBM Worklight Server administration 315

http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.sec.doc%2Fdoc%2Fc0055206.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.sec.doc%2Fdoc%2Fc0055206.html

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

CONNECT TO APPCNTR
GRANT CONNECT ON DATABASE TO USER wluser
DISCONNECT APPCNTR
QUIT

Creating the MySQL databases
During the IBM® Worklight installation, the installer can create the necessary
databases for you.

About this task

The installer can create the databases for you if you enter the name and password
of the superuser account. For more information, see Securing the Initial MySQL
Accounts on your MySQL database server. Your database administrator can also
create the databases for you. When you manually create the database instances, the
IBM Worklight installation requires that the databases have specific names. You
should replace the password in the script below with one of your choosing.

Procedure
1. Start the MySQL command-line tool.
2. Enter the following commands:

CREATE DATABASE WRKLGHT CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL privileges ON WRKLGHT.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’worklight’;
GRANT ALL privileges ON WRKLGHT.* TO ’worklight’@’localhost’ IDENTIFIED BY ’worklight’;
Flush privileges;
CREATE DATABASE WLREPORT CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL privileges ON WLREPORT.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’worklight’;
GRANT ALL privileges ON WLREPORT.* TO ’worklight’@’localhost’ IDENTIFIED BY ’worklight’;
Flush privileges;
CREATE DATABASE APPCNTR CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL privileges ON APPCNTR.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’worklight’;
GRANT ALL privileges ON APPCNTR.* TO ’worklight’@’localhost’ IDENTIFIED BY ’worklight’;
Flush privileges;

3. Replace Worklight-host with the name of the host on which IBM Worklight runs.

Creating the Oracle databases
During the IBM® Worklight installation, the installer can create the necessary
databases for you.

About this task

The installer can create the databases for you if you enter the name and password
of the Oracle administrator on the database server, and the account can be accessed
through SSH. Otherwise, the database administrator can create the databases for
you. When you manually create the database instances, the IBM Worklight
installation requires that the databases have specific names. You should replace the
password in the script below with one of your choosing.

Procedure
1. Use the Oracle Database Configuration Assistant (DBCA) and follow the steps

in the wizard to create a new general-purpose database named WRKLGHT:
a. Use global database name WRKLGHT_your_domain, and system identifier (SID)

WRKLGHT.
b. On the Custom Scripts tab of the step Database Content, do not run the

SQL scripts, because you must first create a user account.

316 IBM Worklight V5.0.6

http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html
http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

c. On the Character Sets tab of the step Initialization Parameters, select Use
Unicode (AL32UTF8) character set and UTF8 - Unicode 3.0 UTF-8 national
character set.

d. Complete the procedure, accepting the default values.
2. Repeat step 1 to create the IBM Worklight reports database. Use global database

name WLREPORT_your_domain and SID WLREPORT.
3. Repeat step 1 to create the IBM Application Center database. Use global

database name APPCNTR_your_domain and SIDAPPCNTR.
4. Create the users either by using Oracle Database Control, or by using the

Oracle SQLPlus command-line interpreter. To create the user for the WRKLGHT
database by using Oracle Database Control:
a. Connect as SYSDBA.
b. Go to the Users page:

v Click Server, then Users in the Security section.
v Create a user named worklight with the following attributes:

– Profile: DEFAULT
– Authentication: password
– Default table space: USERS
– Temporary table space: TEMP
– Status: UNLOCK
– Add role: CONNECT
– Add role: RESOURCE
– Add system privilege: CREATE VIEW

– Add system privilege: UNLIMITED TABLESPACE

c. Repeat the previous step to create the user worklight for the IBM Worklight
report database, WLREPORT.

d. Repeat the previous step to create the user worklight for the IBM
Application Center database, APPCNTR.

To create the user for all three databases with Oracle SQLPlus, enter the
following commands:
CONNECT system/<system_password>@WRKLGHT
CREATE USER worklight IDENTIFIED BY worklight;
GRANT CONNECT TO worklight;
GRANT RESOURCE TO worklight;
GRANT CREATE VIEW TO worklight;
DISCONNECT;

CONNECT system/<system_password>@WLREPORT
CREATE USER worklight IDENTIFIED BY worklight;
GRANT CONNECT TO worklight;
GRANT RESOURCE TO worklight;
GRANT CREATE VIEW TO worklight;
DISCONNECT;

CONNECT system/<system_password>@APPCNTR
CREATE USER worklight IDENTIFIED BY worklight;
GRANT CONNECT TO worklight;
GRANT RESOURCE TO worklight;
GRANT CREATE VIEW TO worklight;
DISCONNECT;

Chapter 6. IBM Worklight Server administration 317

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Running IBM Installation Manager
IBM Installation Manager is a tool that you can use to install and maintain your
software packages.

IBM Installation Manager helps you install, update, modify, roll back, and uninstall
packages on your computer. You can use IBM Installation Manager to install IBM
Worklight in several different modes, including single-user and multi-user
installation modes.

You can also use silent installations to deploy IBM Worklight to multiple systems,
or systems without a GUI interface.

For more information about Installation Manager, see the IBM Installation Manager
Information Center at http://pic.dhe.ibm.com/infocenter/install/v1r5/index.jsp.

Single-user versus multi-user installations
You can install IBM Worklight in several different modes.

Administrator installation
It is an administrator installation when Installation Manager is installed
through the install command. In this case, it requires administrator
privileges to run, and it produces multi-user installations of products.

Single-user installation
It is a single-user installation when Installation Manager is installed
through the userinst command. In this case, only the user who installed
this copy of Installation Manager can use it.

When, during the installation of IBM Worklight, you choose to install WebSphere
Application Server Liberty Profile, this server is either a multi-user or single-user
installation, depending on how you installed IBM Installation Manager.

Note: In multi-user mode, different users can run the server in sequence, but not
at the same time. There can only be one server process running, because the server
is configured to attach to a specific network port.

When, during the installation of IBM Worklight, you choose to use a pre-installed
application server, the following constraints regarding user accounts on UNIX
apply:
v If the pre-installed application server is owned by a non-root user, you can

install IBM Worklight in either of two ways:
– Through a single-user installation of IBM Installation Manager as the same

non-root user.
– Through an administrator installation of IBM Installation Manager, as root,

and afterwards change the owner of all files and directories added or
modified during the installation to that user. The result is a single-user
installation.

v If the pre-installed application server is owned by root, you can install IBM
Worklight only through an administrator installation of IBM Installation
Manager; a single-user installation of IBM Installation Manager does not work,
because it lacks the necessary privileges.

Silent installation
You can use IBM® Installation Manager to perform silent installation of IBM
Worklight on multiple machines or on machines where a GUI interface is not
available.

318 IBM Worklight V5.0.6

http://pic.dhe.ibm.com/infocenter/install/v1r5/index.jsp

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

Silent installation uses predetermined answers to wizard questions, rather than
presenting a GUI that asks the questions and records the answers. Silent
installation is useful when:
v You want to install IBM Worklight on a set of machines that are configured in

the same way.
v You want to install IBM Worklight on a machine where a GUI is not readily

available, for example a production server behind a firewall that prevents the
use of VNC, RDP, remote X11, and ssh -X.

Important: Silent installation support is one of the major features in the IBM
Worklight Server 5.0.5 installer. It applies only to IBM Worklight Server, not to IBM
Worklight Studio.

Silent installations are defined by an XML file called a response file. This file
contains the necessary data to complete installation operations silently. Silent
installations are launched from the command line or a batch file.

You can use IBM Installation Manager to record preferences and installation actions
for your response file in user interface mode. Alternatively, you can create a
response file manually by using the documented list of response file commands
and preferences.

You can use one response file to install, update, or uninstall multiple products.

Using a response file, you can perform almost any action that you can perform by
using Installation Manager in wizard mode. For example, with a response file you
can specify the location of the repository that contains the package, the package to
install, and the features to install for that package. You can also use a response file
to modify installed packages, to apply updates, and to apply a license.

Silent installation is described in the IBM Installation Manager documentation, see
Working in silent mode.

Procedure
1. Record a response file, by running IBM Installation Manager in wizard mode

and with option record responseFile on a machine where a GUI is available.
For more details, see Record a response file with Installation Manager. The
following code example shows a recorded response file:
<?xml version="1.0" encoding="UTF-8"?>
<agent-input acceptLicense=’true’>

<server>
<repository location=’http://packages.example.com/ibm/worklight-5.0.5/’/>

</server>
<profile id=’Worklight’ installLocation=’/opt/IBM/Worklight’>

<data key=’eclipseLocation’ value=’/opt/IBM/Worklight’/>
<data key=’user.import.profile’ value=’false’/>
<data key=’cic.selector.os’ value=’linux’/>
<data key=’cic.selector.ws’ value=’gtk’/>
<data key=’cic.selector.arch’ value=’x86’/>
<data key=’cic.selector.nl’ value=’en’/>
<data key=’user.writable.data.group’ value=’admin’/>
<data key=’user.database.db2.port’ value=’50000’/>
<data key=’user.database.preinstalled’ value=’true’/>
<data key=’user.database.selection’ value=’db2’/>
<data key=’user.database.db2.host’ value=’db2-101.example.com’/>
<data key=’user.database.db2.username’ value=’wl5test’/>

Chapter 6. IBM Worklight Server administration 319

http://pic.dhe.ibm.com/infocenter/install/v1r5/index.jsp?topic=%2Fcom.ibm.silentinstall12.doc%2Ftopics%2Ft_silentinstall_overview.html
http://pic.dhe.ibm.com/infocenter/install/v1r5/index.jsp?topic=%2Fcom.ibm.silentinstall12.doc%2Ftopics%2Ft_silent_create_response_files_IM.html

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<data key=’user.database.db2.password’ value=’{xyzzy}7284OFD1KRHW8AC13S’/>
<data key=’user.database.db2.driver’ value=’/n/databases/drivers/db2-10.1/db2jcc4.jar’/>
<data key=’user.appserver.was85liberty.preinstalled’ value=’false’/>
<data key=’user.appserver.selection’ value=’was85liberty’/>

</profile>
<install modify=’false’>

<offering id=’com.ibm.imp.mfee’ version=’5.0.5.20121018_0636’ profile=’Worklight’ features=’main.feature’ installFixes=’none’/>
</install>
<preference name=’com.ibm.cic.common.core.preferences.eclipseCache’ value=’/n/java/rational/SDP2Shared’/>
<preference name=’com.ibm.cic.common.core.preferences.connectTimeout’ value=’30’/>
<preference name=’com.ibm.cic.common.core.preferences.readTimeout’ value=’45’/>
<preference name=’com.ibm.cic.common.core.preferences.downloadAutoRetryCount’ value=’0’/>
<preference name=’offering.service.repositories.areUsed’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.ssl.nonsecureMode’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.http.disablePreemptiveAuthentication’ value=’false’/>
<preference name=’http.ntlm.auth.kind’ value=’NTLM’/>
<preference name=’http.ntlm.auth.enableIntegrated.win32’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.keepFetchedFiles’ value=’false’/>
<preference name=’PassportAdvantageIsEnabled’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.searchForUpdates’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.import.enabled’ value=’true’/>
<preference name=’com.ibm.cic.agent.ui.displayInternalVersion’ value=’false’/>
<preference name=’com.ibm.cic.common.sharedUI.showErrorLog’ value=’true’/>
<preference name=’com.ibm.cic.common.sharedUI.showWarningLog’ value=’true’/>
<preference name=’com.ibm.cic.common.sharedUI.showNoteLog’ value=’true’/>

</agent-input>

2. Modify the response file to take into account differences between the machine
on which the response file was created and the target machine. The following
code example shows the same response file, edited so that it can be used in
step 3.

Note: This is an example file based on the file in step 1. It might not be
suitable for your environment. It is important that you record your own
response file, so that it contains the correct parameters for your requirements.
<?xml version="1.0" encoding="UTF-8"?>
<agent-input acceptLicense=’true’>

<server>
<!-- The repositories where Installation Manager can find offerings.

URLs and absolute file names are accepted; they should point to
directories that contain a repository.config file. -->

<repository location=’http://packages.example.com/ibm/worklight-5.0.5/’/>
</server>

<!-- The declaration of the Installation Manager profile.
Make sure that the installLocation, if it exists, is empty. -->

<profile id=’Worklight’ installLocation=’/opt/IBM/Worklight’>

<!-- The eclipseLocation is not relevant for Worklight Server. -->
<data key=’eclipseLocation’ value=’/opt/IBM/Worklight’/>
<data key=’user.import.profile’ value=’false’/>

<!-- Characteristics of the target machine.
For the possible values, refer to
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fguide%2Fua_dynamic_filters.htm -->

<data key=’cic.selector.os’ value=’linux’/>
<data key=’cic.selector.ws’ value=’gtk’/>
<data key=’cic.selector.arch’ value=’x86’/>
<data key=’cic.selector.nl’ value=’en’/>

<!-- Database choice. Possible values are derby, db2, mysql, oracle. -->
<data key=’user.database.selection’ value=’db2’/>
<data key=’user.database.preinstalled’ value=’true’/>

320 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<!-- Settings for the database.
The database user password is obfuscated.
Make sure that the database driver jar file (including the accompanying
license file, in the case of DB2) exists on the target machine. -->

<data key=’user.database.db2.host’ value=’db2-101.example.com’/>
<data key=’user.database.db2.port’ value=’50000’/>
<data key=’user.database.db2.username’ value=’wl5test’/>
<data key=’user.database.db2.password’ value=’{xyzzy}7284OFD1KRHW8AC13S’/>
<data key=’user.database.db2.driver’ value=’/n/databases/drivers/db2-10.1/db2jcc4.jar’/>

<!-- Application server choice. -->
<data key=’user.appserver.selection’ value=’was85liberty’/>
<data key=’user.appserver.was85liberty.preinstalled’ value=’false’/>

<!-- Operating system group that shall be allowed to start the server. -->
<data key=’user.writable.data.group’ value=’admin’/>

</profile>

<!-- Define what Installation Manager should install. -->
<install modify=’false’>

<!-- You can omit the ’version’ and ’installFixes’ attributes. -->
<offering id=’com.ibm.imp.mfee’ version=’5.0.5.20121018_0636’ profile=’Worklight’ features=’main.feature’ installFixes=’none’/>

</install>

<!-- The Installation Manager preferences don’t need to be transferred to the
target machine. -->

</agent-input>

3. Install IBM Worklight using the response file on the target machine, as
described inInstall a package silently by using a response file.

Completing the installation
When installation is complete, you must restart the web application server in
certain cases.

You must restart the web application server in the following circumstances:
v If you are using WebSphere Application Server, with DB2 as database type.
v If you are using WebSphere Application Server Liberty Profile or Apache

Tomcat.
v After you upgraded from a previous version of IBM Worklight Server.

If you are using WebSphere Application Server Network Deployment and chose an
installation through the deployment manager:
v You must restart the servers that were running during the installation and on

which the Worklight Server applications were installed.
To restart these servers with the deployment manager console, select
Applications > Application Types > WebSphere enterprise applications >
IBM_Worklight_Console > Target specific application status.

v You do not have to restart the deployment manager or the node agents.

Manually configuring the databases
In some cases, you may want to re-configure IBM Worklight Server so that it uses
a different database from the one that was specified during installation of IBM
Worklight Server. The way you do this depends on the type of database and on the
kind of application server, as explained in the following topics.

Chapter 6. IBM Worklight Server administration 321

http://pic.dhe.ibm.com/infocenter/install/v1r5/index.jsp?topic=%2Fcom.ibm.silentinstall12.doc%2Ftopics%2Ft_silent_response_file_install.html

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Configuring the DB2 databases manually
You configure the DB2 databases manually by creating the databases, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure
1. Create the databases. This step is described in “Creating the DB2 databases” on

page 315
2. Create the tables in the databases. This step is described in “Setting up your

DB2 databases manually”
3. Configure the application server to use this database setup. Go to one of the

following topics:
v “Configuring Liberty Profile for DB2 manually” on page 324
v “Configuring WebSphere Application Server for DB2 manually” on page 325
v “Configuring Apache Tomcat for DB2 manually” on page 326

Setting up your DB2 databases manually:

IBM Worklight V5.0.5. automatically configures your databases. However, if you
are using an older version of IBM Worklight, or if you are experiencing problems
with the automatic configuration process, you must manually set up and configure
your DB2 database.

About this task

Complete the following procedure to set up your DB2 database.

Procedure

1. Create the database schema:
a. Create a system user, worklight, in a DB2 admin group such as DB2USERS,

using the appropriate commands for your operating system. Give it the
password worklight. For more information, see the DB2 documentation and
the documentation for your operating system.

Important: You can name your user differently, or set a different password,
but ensure that you enter the appropriate user name and password correctly
across the DB2 database setup. DB2 has a user name and password length
limit of 8 characters for Unix and Linux systems, and 30 characters for
Windows.

b. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:
On Windows systems, click Start > IBM DB2 > Command Line Processor.
On Linux or UNIX systems, navigate to db2_install/sqllib/bin and enter
./db2.

c. Enter the following database manager and SQL statements to create a
database called WRKLGHT:
CREATE DATABASE WRKLGHT COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WRKLGHT
GRANT CONNECT ON DATABASE TO USER worklight
QUIT

Where worklight is the name of the system user that you have previously
created. If you have defined a different user name, replace worklight
accordingly.

322 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

d. Invoke db2 with the following commands to create the WRKLGHT tables:
db2 CONNECT TO WRKLGHT USER worklight USING worklight
db2 -vf <worklight_install_dir>/WorklightServer/databases/create-worklight-db2.sql -t

Where worklight after USER is the name of the system user with
"CONNECT" access to the WRKLGHT database that you have previously
created, and worklight after USING is this user's password. If you have
defined either a different user name, or a different password, or both,
replace worklight accordingly.
DB2 has a user name and password length limit of 8 characters for Unix and
Linux systems, and 30 characters for Windows.

Important: If you do not specify the user name and password, DB2 assumes
that the user is the current user, and creates the tables by using this current
user's schema. If the current user differs from the settings in Worklight, then
the current user is denied access to the tables in the database.

e. Enter the following database manager and SQL statements to create a
database called WLREPORT:
CREATE DATABASE WLREPORT COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WLREPORT
GRANT CONNECT ON DATABASE TO USER worklight
QUIT

f. Invoke DB2 with the following commands to create the WLREPORT tables:
db2 CONNECT TO WLREPORT
db2 -vf
<worklight_install_dir>/WorklightServer/databases/create-worklightreports-db2.sql -t

g. Enter the following database manager and SQL statements to create a
database called APPCNTR:
CREATE DATABASE APPCNTR COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO APPCNTR
GRANT CONNECT ON DATABASE TO USER worklight
QUIT

h. Invoke DB2 with the following commands to create the APPCNTR tables:
db2 CONNECT TO APPCNTR
db2 -vf
<worklight_install_dir>/ApplicationCenter/databases/create-appcenter-db2.sql -t

2. Create a worklight.properties file. Give the file the following contents,
depending on whether you are using JDBC or JNDI.
a. JDBC version:

wl.db.jndi.name=
wl.db.type=DB2
wl.db.url=jdbc:db2://server:50000/WRKLGHT
wl.reports.db.type=DB2
wl.reports.db.url=jdbc:db2://server:50000/WLREPORT
wl.db.username=worklight
wl.db.password=worklight
reports.exportRawData=true

Where worklight after wl.db.username= is the name of the system user with
"CONNECT" access to the WRKLGHT database that you have previously
created, and worklight after wl.db.password= is this user's password. If you
have defined either a different user name, or a different password, or both,
replace worklight accordingly.
DB2 has a user name and password length limit of 8 characters for Unix
and Linux systems, and 30 characters for Windows.

b. JNDI version
wl.db.jndi.name=jdbc/WorklightDS wl.reports.db.jndi.name=jdbc/WorklightReportsDS wl.db.type=DB2 wl.db.username=worklight wl.db.password=workli

Chapter 6. IBM Worklight Server administration 323

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Where worklight after wl.db.username= is the name of the system user with
"CONNECT" access to the WRKLGHT database that you have previously
created, and worklight after wl.db.password= is this user's password. If you
have defined either a different user name, or a different password, or both,
replace worklight accordingly.
DB2 has a user name and password length limit of 8 characters for Unix
and Linux systems, and 30 characters for Windows.

3. Replace the WEB-INF/classes/conf.worklight.properties file in worklight.war
with the file you created in the previous step.

Configuring Liberty Profile for DB2 manually:

IBM Worklight V5.0.5. automatically configures your databases. However, if you
are using an older version of IBM Worklight, or if you are experiencing problems
with the automatic configuration process for the Liberty Application Server, you
must manually set up and configure your DB2 database and then the Liberty
Application Server for DB2.

About this task

Complete the DB2 Database Setup procedure before continuing.

Procedure

1. Add the DB2 JDBC driver JAR file (download it from DB2 JDBC Driver Versions,
or fetch it from the directory DB2_INSTALL_DIR/java on the DB2 server) to
$LIBERTY_HOME/wlp/usr/shared/resources/db2. If that directory does not exist,
create it.

2. Configure the data source in the $LIBERTY_HOME/wlp/usr/servers/
worklightServer/server.xml file as follows:
<!-- Declare the jar files for DB2 access through JDBC. -->
<library id="DB2Lib">

<fileset dir="${shared.resource.dir}/db2" includes="*.jar"/>
</library>

<!-- Declare the IBM Worklight Server database. Used through property wl.db.jndi.name.
If you change this declaration to refer to a different kind of database,
you have to update the property wl.db.type in the file worklight.properties
inside the file worklight.war. -->

<dataSource id="WorklightDS" jndiName="jdbc/WorklightDS">
<jdbcDriver libraryRef="DB2Lib"/>
<properties.db2.jcc databaseName="WRKLGHT"

serverName="db2server" portNumber="50000"
user="worklight" password="worklight"/>

</dataSource>

<!-- Declare the IBM Worklight Server Reports database. Used through property wl.reports.db.jndi.name.
If you change this declaration to refer to a different kind of database,
you have to update the property wl.reports.db.type in the file worklight.properties
inside the file worklight.war. -->

<dataSource id="WorklightReportsDS" jndiName="jdbc/WorklightReportsDS">
<jdbcDriver libraryRef="DB2Lib"/>
<properties.db2.jcc databaseName="WLREPORT"

serverName="db2server" portNumber="50000"
user="worklight" password="worklight"/>

</dataSource>

<!-- Declare the IBM Application Center database. -->
<dataSource id="AppCenterDS" jndiName="jdbc/AppCenterDS">

<jdbcDriver libraryRef="DB2Lib"/>

324 IBM Worklight V5.0.6

http://www-304.ibm.com/support/docview.wss?uid=swg21363866

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<properties.db2.jcc databaseName="APPCNTR"
serverName="db2server" portNumber="50000"
user="worklight" password="worklight"/>

</dataSource>

where worklight after user= is the name of the system user with "CONNECT"
access to the WRKLGHT database that you have previously created, and worklight
after password= is this user's password. If you have defined either a different
user name, or a different password, or both, replace worklight accordingly.
Also, replace db2server with the host name of your DB2 server (for example,
localhost, if it is on the same machine).
DB2 has a user name and password length limit of 8 characters for Unix and
Linux systems, and 30 characters for Windows.

Configuring WebSphere Application Server for DB2 manually:

IBM Worklight V5.0.5. automatically configures your databases. However, if you
are using an older version of IBM Worklight, or if you are experiencing problems
with the automatic configuration process for the WebSphere Application Server,
you must manually set up and configure your DB2 database and then the
WebSphere Application Server for DB2.

About this task

Complete the DB2 Database Setup procedure before continuing.

Procedure

1. Add the DB2 JDBC driver JAR file (download it from DB2 JDBC Driver Versions,
or fetch it from the directory DB2_INSTALL_DIR/java on the DB2 server) to
WAS_INSTALL_DIR/optionalLibraries/IBM/Worklight/5.0/db2. If that directory
does not exist, create it.

2. Set up the JDBC provider:
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers > New.
b. Set the scope of the JDBC connection to Node level.
c. Set Database type to DB2.
d. Set Provider type to DB2 Universal JDBC Driver Provider.
e. Set Implementation Type to Connection pool data source.
f. Set Name to DB2 Universal JDBC Driver Provider.
g. Click Next.
h. Set the class path to the set of jar files in the directory WAS_INSTALL_DIR/

optionalLibraries/IBM/Worklight/5.0/db2, one per line.
i. Do not set Native library path.
j. Click Next.
k. Click Finish.
l. The JDBC provider is created.
m. Click Save.

3. Create a data source for the IBM Worklight database:
a. Select the new JDBC provider and click Data Source.
b. Click New to create a data source.
c. Set the Data source name to Worklight Database.
d. Set JNDI Name to jdbc/WorklightDS.

Chapter 6. IBM Worklight Server administration 325

http://www-304.ibm.com/support/docview.wss?uid=swg21363866

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

e. Click Next.
f. Enter properties for the datasource: For example, Driver type: 4, Database

Name: WRKLGHT, Server name: localhost, Port number: 50000 (default).
Leave “Use this data source in (CMP)” checked;

g. Click Next.
h. Create JAAS-J2C authentication data, specifying the DB2 user name and

password for Container Connection.
i. Select the component-managed authentication alias that you created.
j. Click Next and Finish.
k. Click Save.

4. Create a data source for the IBM Worklight reports database:
a. Select the new JDBC provider and click Data Source.
b. Click New to create a data source.
c. Set the Data source name to Worklight Reports Database.
d. Set JNDI Name to jdbc/WorklightReportsDS.
e. Click Next.
f. Select the component-managed authentication alias that you created.
g. Click Next and Finish.

5. Create a data source for the IBM Application Center database:
a. Select the new JDBC provider and click Data Source.
b. Click New to create a data source.
c. Set the Data source name to Application Center Database.
d. Set JNDI Name to jdbc/AppCenterDS.
e. Click Next.
f. Select the component-managed authentication alias that you created.
g. Click Next and Finish.

6. Test the data source connection by selecting each Data Source and clicking Test
Connection.

Configuring Apache Tomcat for DB2 manually:

IBM Worklight V5.0.5. automatically configures your databases. However, if you
are using an older version of IBM Worklight, or if you are experiencing problems
with the automatic configuration process for the Apache Tomcat Server, you must
manually set up and configure your DB2 database and then the Apache Tomcat
Server for DB2.

About this task

Complete the DB2 Database Setup procedure before continuing.

Procedure

1. Add the DB2 JDBC driver JAR file (download it from DB2 JDBC Driver Versions,
or fetch it from the directory DB2_INSTALL_DIR/java on the DB2 server) to
$TOMCAT_HOME/lib.

2. Update the $TOMCAT_HOME/conf/context.xml file as follows:
<Context>

...
<Resource auth="Container"

driverClassName="com.ibm.db2.jcc.DB2Driver"

326 IBM Worklight V5.0.6

http://www-304.ibm.com/support/docview.wss?uid=swg21363866

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

name="jdbc/WorklightDS"
password="worklight"
username="worklight"
type="javax.sql.DataSource"
url="jdbc:db2://server:50000/WRKLGHT"/>

<Resource auth="Container"
driverClassName="com.ibm.db2.jcc.DB2Driver"
name="jdbc/WorklightReportsDS"
password="worklight"
username="worklight"
type="javax.sql.DataSource"
url="jdbc:db2://server:50000/WLREPORT"/>

<Resource auth="Container"
driverClassName="com.ibm.db2.jcc.DB2Driver"
name="jdbc/AppCenterDS"
password="worklight"
username="worklight"
type="javax.sql.DataSource"
url="jdbc:db2://server:50000/APPCNTR"/>

...
</Context>

Where worklight after user= is the name of the system user with "CONNECT"
access to the WRKLGHT database that you have previously created, and worklight
after password= is this user's password. If you have defined either a different
user name, or a different password, or both, replace worklight accordingly.
DB2 has a user name and password length limit of 8 characters for Unix and
Linux systems, and 30 characters for Windows.

3. Add references to the datasources:
a. For the JDBC Version, modify the Worklight.properties file as follows:

wl.db.url=jdbc:db2://<server>:50000/WRKLGHT
wl.db.type=DB2
wl.reports.db.type=DB2
wl.reports.db.url=jdbc:db2://<server>:50000/WLREPORT

b. For the JNDI Version, update the $TOMCAT_HOME/conf/web.xml file as follows:
<web-app>

....

....
<resource-ref>

<res-ref-name>jdbc/WorklightDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
<resource-ref>

<res-ref-name>jdbc/WorklightReportsDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</web-app>

4. Modify the worklight.properties file as follows:
wl.db.jndi.name=java:comp/env/jdbc/WorklightDS
wl.db.type=DB2
wl.reports.db.jndi.name=java:comp/env/jdbc/WorklightReportsDS

Configuring the Apache Derby databases manually
You configure the Apache Derby databases manually by creating the databases and
database tables, and then configuring the relevant application server to use this
database setup.

Chapter 6. IBM Worklight Server administration 327

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Create the databases and the tables within them. This step is described in

“Setting up your Apache Derby databases manually”
2. Configure the application server to use this database setup. Go to one of the

following topics:
v “Configuring Liberty Profile for Derby manually” on page 329
v “Configuring WebSphere Application Server for Derby manually” on page

329
v “Configuring Apache Tomcat for Derby manually” on page 330

Setting up your Apache Derby databases manually:

IBM Worklight V5.0.5. automatically configures your databases. However, if you
are using an older version of IBM Worklight, or if you are experiencing problems
with the automatic configuration process, you must manually set up and configure
your Apache Derby database.

About this task

Complete the following procedure to set up your Apache Derby database.

Procedure

1. Create the database schema:
a. In the location where you want the database to be created, run ij.bat on

Windows systems or ij.sh on UNIX and Linux systems. The script displays
ij version 10.4.

Note: The ij program is part of Apache Derby. If you do not already have
it installed, you can download it from Apache Derby: Downloads.

b. At the command prompt, enter the following commands:
connect ’jdbc:derby:WRKLGHT;user=WORKLIGHT;create=true’;
run ’<worklight_install_dir>/WorklightServer/databases/create-worklight-derby.sql’;
connect ’jdbc:derby:WLREPORT;user=WORKLIGHT;create=true’;
run ’<worklight_install_dir>/WorklightServer/databases/create-worklightreports-derby.sql’;
connect ’jdbc:derby:APPCNTR;user=APPCENTER;create=true’;
run ’<worklight_install_dir>/ApplicationCenter/databases/create-appcenter-derby.sql’;
quit;

2. Create a worklight.properties file. Give the file the following contents,
depending on whether you are using JDBC or JNDI.
a. JDBC version:

wl.db.jndi.name=
wl.db.type=DERBY
wl.db.url=path_to_db/WRKLGHT
wl.reports.db.type=DERBY
wl.reports.db.url=path_to_db/WLREPORT
wl.db.username=WORKLIGHT
wl.db.password=
reports.exportRawData=true

b. JNDI version:
wl.db.jndi.name=jdbc/WorklightDS
wl.db.type=DERBY
wl.reports.db.jndi.name=jdbc/WorklightReportsDS
wl.reports.db.type=DERBY
wl.db.username=WORKLIGHT
wl.db.password=

328 IBM Worklight V5.0.6

http://db.apache.org/derby/derby_downloads

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. Replace the WEB-INF/classes/conf/worklight.properties file in worklight.war
with the file you created in the previous step.

Configuring Liberty Profile for Derby manually:

IBM Worklight V5.0.5. automatically configures your databases. However, if you
are using an older version of IBM Worklight, or if you are experiencing problems
with the automatic configuration process for Liberty Profile on Derby, you must
manually set up and configure your Apache Derby database and then the Liberty
Profile for Derby.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

Configure the data source in the $LIBERTY_HOME/wlp/usr/servers/
worklightServer/server.xml file as follows:
<library id="derbyLib">

<fileset dir="C:/Drivers/derby" includes="derby.jar" />
</library>
<dataSource id="WorklightDS" jndiName="jdbc/WorklightDS" statementCacheSize="10">

<jdbcDriver libraryRef="DerbyLib"
javax.sql.ConnectionPoolDataSource="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource"/>

<properties.derby.embedded databaseName="DERBY_DATABASES_DIR/WRKLGHT" user="WORKLIGHT"
shutdownDatabase="false" connectionAttributes="upgrade=true"/>

<connectionManager connectionTimeout="180"
maxPoolSize="10" minPoolSize="1"
reapTime="180" maxIdleTime="1800"
agedTimeout="7200" purgePolicy="EntirePool" />

</dataSource>
<dataSource id="WorklightReportsDS" jndiName="jdbc/WorklightReportsDS" statementCacheSize="10">

<jdbcDriver libraryRef="DerbyLib"
javax.sql.ConnectionPoolDataSource="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource"/>

<properties.derby.embedded databaseName="DERBY_DATABASES_DIR/WLREPORT" user="WORKLIGHT"
shutdownDatabase="false" connectionAttributes="upgrade=true"/>

<connectionManager connectionTimeout="180"
maxPoolSize="10" minPoolSize="1"
reapTime="180" maxIdleTime="1800"
agedTimeout="7200" purgePolicy="EntirePool" />

</dataSource>
<dataSource id="AppCenterDS" jndiName="jdbc/AppCenterDS" statementCacheSize="10">

<jdbcDriver libraryRef="DerbyLib"
javax.sql.ConnectionPoolDataSource="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource"/>

<properties.derby.embedded databaseName="DERBY_DATABASES_DIR/APPCNTR" user="APPCENTER"
shutdownDatabase="false" connectionAttributes="upgrade=true"/>

<connectionManager connectionTimeout="180"
maxPoolSize="10" minPoolSize="1"
reapTime="180" maxIdleTime="1800"
agedTimeout="7200" purgePolicy="EntirePool"/>

</dataSource>

Configuring WebSphere Application Server for Derby manually:

IBM Worklight V5.0.5. automatically configures your databases. However, if you
are using an older version of IBM Worklight, or if you are experiencing problems
with the automatic configuration process for the WebSphere Application Server,
you must manually set up and configure your Apache Derby database and then
the WebSphere Application Server for Derby.

Chapter 6. IBM Worklight Server administration 329

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Add the Derby JAR file from WORKLIGHT_INSTALL_DIR/ApplicationCenter/tools/
lib/derby.jar to WAS_INSTALL_DIR/optionalLibraries/IBM/Worklight/5.0/
derby. If that directory does not exist, create it.

2. Set up the JDBC provider.
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers and select the Derby JDBC Provider.
b. Set Name to Derby JDBC Provider.
c. Set Implementation class name to

org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource.
d. Set the Class path to WAS_INSTALL_DIR/optionalLibraries/IBM/Worklight/

5.0/derby/derby.jar.
3. Set up the data source for the IBM Worklight database.

a. In the WebSphere Application Server console, click Resources > JDBC >
Data sources and select the Derby JDBC Driver datasource.

b. Set JNDI name to jdbc/WorklightDS.
c. In the “Common and required data source properties” pane, set Database

name to WRKLGHT.
d. Click Resources > JDBC > Data sources > Driver DataSource > Custom

properties.
e. Set user = WORKLIGHT.

4. Set up the data source for the IBM Worklight report database.
a. In the WebSphere Application Server console, click Resources > JDBC >

Data sources and select the Derby JDBC Driver datasource.
b. Set JNDI name to jdbc/WorklightReportsDS.
c. In the “Common and required data source properties” pane, set Database

name to WLREPORT.
d. Click Resources > JDBC > Data sources > Driver DataSource > Custom

properties.
e. Set user = WORKLIGHT.

5. Set up the data source for the IBM Application Center database.
a. In the WebSphere Application Server console, click Resources > JDBC >

Data sources and select the Derby JDBC Driver datasource.
b. Set JNDI name to jdbc/AppCenterDS.
c. In the “Common and required data source properties” pane, set Database

name to APPCNTR.
d. Click Resources > JDBC > Data sources > Driver DataSource > Custom

properties.
e. Set user = APPCENTER.

Configuring Apache Tomcat for Derby manually:

IBM Worklight V5.0.5. automatically configures your databases. However, if you
are using an older version of IBM Worklight, or if you are experiencing problems

330 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

with the automatic configuration process for the Apache Tomcat Server, you must
manually set up and configure your Apache Derby database and then the Apache
Tomcat Server for Derby.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Add the Derby JAR file from WORKLIGHT_INSTALL_DIR/ApplicationCenter/tools/
lib/derby.jar to the directory $TOMCAT_HOME/lib.

2. Update the $TOMCAT_HOME/conf/context.xml file as follows:
<Context>

...
<Resource auth="Container"

driverClassName="org.apache.derby.jdbc.EmbeddedDriver"
name="jdbc/WorklightDS"
password="WORKLIGHT"
username=""
type="javax.sql.DataSource"
url="jdbc:derby:DERBY_DATABASES_DIR/WRKLGHT"/>

<Resource auth="Container"
driverClassName="org.apache.derby.jdbc.EmbeddedDriver"
name="jdbc/WorklightReportsDS"
password="WORKLIGHT"
username=""
type="javax.sql.DataSource"
url="jdbc:derby:DERBY_DATABASES_DIR/WLREPORT"/>

<Resource auth="Container"
driverClassName="org.apache.derby.jdbc.EmbeddedDriver"
name="jdbc/AppCenterDS"
password="APPCENTER"
username=""
type="javax.sql.DataSource"
url="jdbc:derby:DERBY_DATABASES_DIR/APPCNTR"/>

...
</Context>

3. Add references to the datasources.
a. For JDBC, modify the worklight.properties file as follows:

wl.db.type=DERBY
wl.db.url=path_to_db/WRKLGHT
wl.reports.db.type=DERBY
wl.reports.db.url=path_to_db/WLREPORT
wl.db.username=worklight
wl.db.password=worklight
reports.exportRawData=true

b. For JNDI, update the $TOMCAT_HOME/conf/web.xml file as follows:
<web-app>

....

....
<resource-ref>

<res-ref-name>jdbc/WorklightDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
<resource-ref>

<res-ref-name>jdbc/WorklightReportsDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</web-app>

Chapter 6. IBM Worklight Server administration 331

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

4. In the worklight.properties file, update wl.db.jndi.name as follows:
wl.db.jndi.name=java:comp/env/jdbc/WorklightDS
wl.reports.db.jndi.name=java:comp/env/jdbc/WorklightReportsDS

Configuring the MySQL databases manually
You configure the MySQL databases manually by creating the databases, creating
the database tables, and then configuring the relevant application server to use this
database setup.

Procedure
1. Create the databases. This step is described in “Creating the MySQL databases”

on page 316
2. Create the tables in the databases. This step is described in “Setting up your

MySQL databases manually”
3. Configure the application server to use this database setup. Go to one of the

following topics:
v “Configuring Liberty Profile for MySQL manually” on page 333
v “Configuring WebSphere Application Server for MySQL manually” on page

334
v “Configuring Apache Tomcat for MySQL manually” on page 335

Setting up your MySQL databases manually:

IBM Worklight V5.0.5. automatically configures your databases. However, if you
are using an older version of IBM Worklight, or if you are experiencing problems
with the automatic configuration process, you must manually set up and configure
your MySQL databases.

About this task

Complete the following procedure to set up your MySQL databases.

Procedure

1. Create the database schema.
a. Run a MySQL command-line client with options -u root.
b. Enter the following commands:

CREATE DATABASE WRKLGHT CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL privileges ON WRKLGHT.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’worklight’;
GRANT ALL privileges ON WRKLGHT.* TO ’worklight’@’localhost’ IDENTIFIED BY ’worklight’;
Flush privileges;
CREATE DATABASE WLREPORT CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL privileges ON WLREPORT.* TO ’worklight’@’Worklight-host’IDENTIFIED BY ’worklight’;
GRANT ALL privileges ON WLREPORT.* TO ’worklight’@’localhost’ IDENTIFIED BY ’worklight’;
Flush privileges;
CREATE DATABASE APPCNTR CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL privileges ON APPCNTR.* TO ’worklight’@’Worklight-host’IDENTIFIED BY ’worklight’;
GRANT ALL privileges ON APPCNTR.* TO ’worklight’@’localhost’ IDENTIFIED BY ’worklight’;
Flush privileges;

USE WRKLGHT;
SOURCE <worklight_install_dir>/WorklightServer/databases/create-worklight-mysql.sql;

USE WLREPORT;
SOURCE <worklight_install_dir>/WorklightServer/databases/create-worklightreports-mysql.sql;

USE WLREPORT;
SOURCE <worklight_install_dir>/ApplicationCenter/databases/create-appcenter-mysql.sql;

332 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Where worklight before the @ sign is the user name, worklight after
IDENTIFIED BY is its password, and Worklight-host is the name of the host
on which IBM Worklight runs.

2. Create a worklight.properties file. Give the file the following contents,
depending on whether you are using JDBC or JNDI:
a. JDBC version:

wl.db.type=MYSQL
wl.db.url=jdbc:mysql://localhost:3306/WRKLGHT
wl.reports.db.type=MYSQL
wl.reports.db.url=jdbc:mysql://localhost:3306/WLREPORT
wl.db.username=worklight
wl.db.password=worklight
reports.exportRawData=true

b. JNDI version:
wl.db.jndi.name=jdbc/WorklightDS
wl.db.type=MYSQL
wl.reports.db.jndi.name=jdbc/WorklightReportsDS
wl.reports.db.type=MYSQL
reports.exportRawData=true

3. Add the following property to your MySQL option file: max_allowed_packet=16M
For more information about option files, see theMySQL documentation at
MySQL.

4. Replace the WEB-INF/classes/conf.worklight.properties file in worklight.war
with the file you created in the previous step.
If you do not already have the MySQL driver Connector/J, download it from
Download Connector/J. The driver is supplied as a compressed file. Extract the
.jar file from it.

Configuring Liberty Profile for MySQL manually:

IBM Worklight V5.0.5. automatically configures your databases. However, if you
are using an older version of IBM Worklight, or if you are experiencing problems
with the automatic configuration process for Liberty Profile on MySQL, you must
manually set up and configure your MySQL database and then the Liberty Profile
for MySQL.

About this task

Complete the MySQL database setup procedure before continuing.

Procedure

1. Add the MySQL JDBC driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/mysql. If that directory does not exist, create it.

2. Configure the data source in the $LIBERTY_HOME/wlp/usr/servers/
worklightServer/server.xml file as follows:
<!-- Declare the jar files for MySQL access through JDBC. -->
<library id="MySQLLib">

<fileset dir="${shared.resource.dir}/mysql" includes="*.jar"/>
</library>

<!-- Declare the IBM Worklight Server database. Used through property wl.db.jndi.name.
If you change this declaration to refer to a different kind of data base,
you have to update the property wl.db.type in the file worklight.properties
inside the file worklight.war. -->

<dataSource id="WorklightDS" jndiName="jdbc/WorklightDS">
<jdbcDriver libraryRef="MySQLLib"/>
<properties databaseName="WRKLGHT"

Chapter 6. IBM Worklight Server administration 333

http://dev.mysql.com
http://dev.mysql.com/downloads/connector/j/5.1.html.

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

serverName="mysqlserver" portNumber="3306"
user="worklight" password="worklight"/>

</dataSource>

<!-- Declare the IBM Worklight Server Reports database. Used through property wl.reports.db.jndi.name.
If you change this declaration to refer to a different kind of data base,
you have to update the property wl.reports.db.type in the file worklight.properties
inside the file worklight.war. -->

<dataSource id="WorklightReportsDS" jndiName="jdbc/WorklightReportsDS">
<jdbcDriver libraryRef="MySQLLib"/>
<properties databaseName="WLREPORT"

serverName="mysqlserver" portNumber="3306"
user="worklight" password="worklight"/>

</dataSource>

<!-- Declare the IBM Application Center database. -->
<dataSource id="AppCenterDS" jndiName="jdbc/AppCenterDS">

<jdbcDriver libraryRef="MySQLLib"/>
<properties databaseName="APPCNTR"

serverName="mysqlserver" portNumber="3306"
user="worklight" password="worklight"/>

</dataSource>

where worklight after user= is the user name, worklight after password= is this
user's password, and mysqlserver is the host name of your MySQL server (for
example, localhost, if it is on the same machine).

Configuring WebSphere Application Server for MySQL manually:

IBM Worklight V5.0.5. automatically configures your databases. However, if you
are using an older version of IBM Worklight, or if you are experiencing problems
with the automatic configuration process for the WebSphere Application Server,
you must manually set up and configure your MySQL database and then the
WebSphere Application Server for MySQL.

About this task

Complete the MySQL database setup procedure before continuing.

Procedure

1. Set up the JDBC provider:
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers.
b. Create a JDBC provider named MySQL.
c. Set Database type to User defined.
d. Set Scope to Cell.
e. Set Implementation class to

com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource.
f. Set Database classpath to the location of the MySQL JDBC connector .jar file.
g. Save your changes.

2. If you are using JNDI configuration, rather than URI configuration, create a data
source for the IBM Worklight database:
a. Click Resources > JDBC > Data sources.
b. Click New to create a data source.
c. Type any name (for example, Worklight Database).
d. Set JNDI Name to jdbc/WorklightDS.
e. Use the existing JDBC Provider MySQL, defined in the previous step.

334 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

f. Set Scope to New.
g. On the Configuration tab, select the Non-transactional data source check

box.
h. Click Next a number of times, leaving all other settings as defaults.
i. Save your changes.

3. If you are using JNDI configuration, rather than URI configuration, create a data
source for the IBM Worklight reports database:
a. Click New to create a data source.
b. Type any name (for example, Worklight Report Database).
c. Set JNDI Name to jdbc/WorklightReportsDS or any other name defined in

the worklight.properties file to refer to the IBM Worklight report database.
d. Use the existing JDBC Provider MySQL, defined in the previous step.
e. Set Scope to New.
f. On the Configuration tab, select the Non-transactional data source check

box. New.
g. Click Next a number of times, leaving all other settings as defaults.
h. Save your changes.

4. Create a data source for the IBM Application Center database:
a. Click New to create a data source.
b. Type any name (for example, Application Center Database).
c. Set JNDI Name to jdbc/AppCenterDS.
d. Use the existing JDBC Provider MySQL, defined in the previous step.
e. Set Scope to New.
f. On the Configuration tab, select the Non-transactional data source check

box. New.
g. Click Next a number of times, leaving all other settings as defaults.
h. Save your changes.

5. Set the custom properties of each new data source.
a. Select the new data source.
b. Click Custom properties.
c. Set the following properties:

portNumber = 3306
relaxAutoCommit=true
databaseName = WRKLGHT or WLREPORT or APPCNTR, respectively
serverName = the host name of the MySQL server
user = the user name of the MySQL server
password = the password associated with the user name

Configuring Apache Tomcat for MySQL manually:

IBM Worklight V5.0.5. automatically configures your databases. However, if you
are using an older version of IBM Worklight, or if you are experiencing problems
with the automatic configuration process for the Apache Tomcat Server, you must
manually set up and configure your MySQL database and then the Apache Tomcat
Server for MySQL.

About this task

Complete the MySQL database setup procedure before continuing.

Chapter 6. IBM Worklight Server administration 335

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

1. Add the MySQL Connector/J JAR file to the $TOMCAT_HOME/lib directory.
2. Update the $TOMCAT_HOME/conf/context.xml file as follows:

<Context>
...
<Resource name="jdbc/WorklightDS"

auth="Container"
type="javax.sql.DataSource"
maxActive="100"
maxIdle="30"
maxWait="10000"
username="worklight"
password="worklight"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://server:3306/WRKLGHT"/>

<Resource name="jdbc/WorklightReportsDS"
auth="Container"
type="javax.sql.DataSource"
maxActive="100"
maxIdle="30"
maxWait="10000"
username="worklight"
password="worklight"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://server:3306/WLREPORT"/>

<Resource name="jdbc/AppCenterDS"
auth="Container"
type="javax.sql.DataSource"
maxActive="100"
maxIdle="30"
maxWait="10000"
username="worklight"
password="worklight"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://server:3306/APPCNTR"/>

...
</Context>

3. Add references to the datasources:
For JDBC, modify worklight.properties as follows:
wl.db.type=MYSQL
wl.db.url= jdbc:mysql://localhost:3306/WRKLGHT
wl.reports.db.type=MYSQL
wl.reports.db.url=jdbc:mysql://localhost:3306/WLREPORT
wl.db.username=worklight
wl.db.password=worklight
reports.exportRawData=true

For JNDI, edit the $TOMCAT_HOME/conf/web.xml file as follows:
<web-app>

....

....
<resource-ref>

<res-ref-name>jdbc/WorklightDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
<resource-ref>

<res-ref-name>jdbc/WorklightReportsDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</web-app>

4. In the worklight.properties file, update the following properties:

336 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

wl.db.jndi.name=java:comp/env/jdbc/WorklightDS
wl.db.reports.jndi.name=java:comp/env/jdbc/WorklightReportsDS

The worklight.properties file is in worklight.war.
5. Copy the worklight.war file to $TOMCAT_HOME/webapps.
6. Copy the worklight-jee-library.jar file to $TOMCAT_HOME/lib.

Configuring the Oracle databases manually
You configure the Oracle databases manually by creating the databases, creating
the database tables, and then configuring the relevant application server to use this
database setup.

Procedure
1. Create the databases. This step is described in “Creating the Oracle databases”

on page 316
2. Create the tables in the databases. This step is described in “Setting up your

Oracle databases manually”
3. Configure the application server to use this database setup. Go to one of the

following topics:
v “Configuring Liberty Profile for Oracle manually” on page 339
v “Configuring WebSphere Application Server for Oracle manually” on page

340
v “Configuring Apache Tomcat for Oracle manually” on page 341

Setting up your Oracle databases manually:

IBM Worklight V5.0.5. automatically configures your databases. However, if you
are using an older version of IBM Worklight, or if you are experiencing problems
with the automatic configuration process, you must manually set up and configure
your Oracle databases.

About this task

Complete the following procedure to set up your Oracle databases.

Procedure

1. Create the database and users. Using the Oracle Database Configuration
Assistant (DBCA), follow the steps in the wizard to create a new
general-purpose database named WRKLGHT:
a. Use global database name WRKLGHT_your_domain, and system identifier (SID)

WRKLGHT.
b. On the Custom Scripts tab of the step Database Content, do not run the

SQL scripts, because you must first create a user account.
c. On the Character Sets tab of the step Initialization Parameters, select Use

Unicode (AL32UTF8) character set and UTF8 - Unicode 3.0 UTF-8 national
character set.

d. Complete the wizard, accepting the default values.
Repeat the previous step to create the IBM Worklight report database.
a. Use global database name WLREPORT_your_domain, and SID WLREPORT.
Repeat the previous step to create the IBM Application Center database.
a. Use global database name APPCNTR_your_domain, and SID APPCNTR.

2. Create the user worklight, either by using Oracle Database Control, or by using
the Oracle SQLPlus command-line interpreter.

Chapter 6. IBM Worklight Server administration 337

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Create the user for the WRKLGHT database, by using Oracle Database Control:
a. Connect as SYSDBA.
b. Go to the Users page.
c. Click Server, then Users in the Security section.
d. Create a user named worklight with the following attributes:

Profile: DEFAULT
Authentication: password
Default tablespace: USERS
Temporary tablespace: TEMP
Status: UNLOCK
Add role: CONNECT
Add role: RESOURCE
Add system privilege: CREATE VIEW
Add system privilege: UNLIMITED TABLESPACE

Repeat the previous step to create the user worklight for the IBM Worklight
report database, WLREPORT and the IBM Application Center database,
APPCNTR.

To create the user for all three databases by using Oracle SQLPlus, enter the
following commands:
CONNECT system/<system_password>@WRKLGHT
CREATE USER worklight IDENTIFIED BY worklight;
GRANT CONNECT TO worklight;
GRANT RESOURCE TO worklight;
GRANT CREATE VIEW TO worklight;
DISCONNECT;
CONNECT system/<system_password>@WLREPORT
CREATE USER worklight IDENTIFIED BY worklight;
GRANT CONNECT TO worklight;
GRANT RESOURCE TO worklight;
GRANT CREATE VIEW TO worklight;
DISCONNECT;
CONNECT system/<system_password>@APPCNTR
CREATE USER worklight IDENTIFIED BY worklight;
GRANT CONNECT TO worklight;
GRANT RESOURCE TO worklight;
GRANT CREATE VIEW TO worklight;
DISCONNECT;

3. Create the database tables for the IBM Worklight database and IBM Worklight
reports database:
a. Using the Oracle SQLPlus command-line interpreter, create the required

tables for the IBM Worklight database (WRKLGHT) by executing the
create-worklight-oracle.sql file:
CONNECT system/<system_password>@WRKLGHT
@<worklight_install_dir>/WorklightServer/databases/create-worklight-oracle.sql
DISCONNECT;

b. Using the Oracle SQLPlus command-line interpreter, create the required
tables for the IBM Worklight report database (WLREPORT) by executing the
create-worklightreports-oracle.sql file:
CONNECT system/<system_password>@WLREPORT
@<worklight_install_dir>/WorklightServer/databases/create-worklightreports-oracle.sql
DISCONNECT;

c. Using the Oracle SQLPlus command-line interpreter, create the required
tables for the IBM Application Center database (APPCNTR) by executing
the create-appcenter-oracle.sql file:
CONNECT system/<system_password>@APPCNTR
@<worklight_install_dir>/ApplicationCenter/databases/create-appcenter-oracle.sql
DISCONNECT;

338 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

4. Create a worklight.properties file. Give the file the following contents,
depending on whether you are using JDBC or JNDI. For JDBC:

wl.db.type=ORACLE
wl.db.url=jdbc:oracle:thin:@<HOST IP>:1521/WRKLGHT
wl.reports.db.type=ORACLE
wl.reports.db.url=jdbc:oracle:thin:@<HOST IP>:1521/WLREPORT
wl.db.username=worklight
wl.db.password=worklight
reports.exportRawData=true

For JNDI:
wl.db.jndi.name=jdbc/WorklightDS
wl.reports.db.jndi.name=jdbc/WorklightDS
wl.db.type=ORACLE

If you choose to use the worklight.properties file supplied as part of
worklight.war, remove all properties related to Apache Derby.

5. Replace the WEB-INF/classes/conf.worklight.properties file in worklight.war
with the file you created in the previous step.

6. Download and configure the Oracle JDBC driver:
a. Download the JDBC driver from the Oracle website at Oracle: JDBC, SQLJ,

Oracle JPublisher and Universal Connection Pool (UCP):
b. Ensure that the Oracle JDBC driver is in the system path. The driver file is

ojdbc6.jar.

Configuring Liberty Profile for Oracle manually:

IBM Worklight V5.0.5. automatically configures your databases. However, if you
are using an older version of IBM Worklight, or if you are experiencing problems
with the automatic configuration process for Liberty Profile on Oracle, you must
manually set up and configure your Oracle database and then the Liberty Profile
for Oracle.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Add the Oracle JDBC Driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/oracle. If that directory does not exist, create it.

2. If you are using JNDI, configure the data sources in the $LIBERTY_HOME/wlp/usr/
servers/worklightServer/server.xml file as shown in the following JNDI code
example:
<!-- Declare the jar files for Oracle access through JDBC. -->
<library id="OracleLib">

<fileset dir="${shared.resource.dir}/oracle" includes="*.jar"/>
</library>

<!-- Declare the IBM Worklight Server database. Used through property wl.db.jndi.name.
If you change this declaration to refer to a different kind of data base,
you have to update the property wl.db.type in the file worklight.properties
inside the file worklight.war. -->

<dataSource id="WorklightDS" jndiName="jdbc/WorklightDS">
<jdbcDriver libraryRef="OracleLib"/>
<properties.oracle driverType="thin" databaseName="WRKLGHT"

serverName="oserver" portNumber="1521"
user=’"worklight"’ password="worklight"/>

</dataSource>

<!-- Declare the IBM Worklight Server Reports database. Used through property wl.reports.db.jndi.name.

Chapter 6. IBM Worklight Server administration 339

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

If you change this declaration to refer to a different kind of data base,
you have to update the property wl.reports.db.type in the file worklight.properties
inside the file worklight.war. -->

<dataSource id="WorklightReportsDS" jndiName="jdbc/WorklightReportsDS">
<jdbcDriver libraryRef="OracleLib"/>
<properties.oracle driverType="thin" databaseName="WLREPORT"

serverName="oserver" portNumber="1521"
user=’"worklight"’ password="worklight"/>

</dataSource>

<!-- Declare the IBM Application Center database. -->
<dataSource id="AppCenterDS" jndiName="jdbc/AppCenterDS">

<jdbcDriver libraryRef="OracleLib"/>
<properties.oracle driverType="thin" databaseName="APPCNTR"

serverName="oserver" portNumber="1521"
user=’"worklight"’ password="worklight"/>

</dataSource>

where worklight after user= is the user name, worklight after password= is this
user's password, and oserver is the host name of your Oracle server (for
example, localhost, if it is on the same machine).

Configuring WebSphere Application Server for Oracle manually:

IBM Worklight V5.0.5. automatically configures your databases. However, if you
are using an older version of IBM Worklight, or if you are experiencing problems
with the automatic configuration process for the WebSphere Application Server,
you must manually set up and configure your Oracle database and then the
WebSphere Application Server for Oracle.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Set up the JDBC provider:
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers > New.
b. Set the scope of the JDBC connection to Node.
c. Complete the JDBC Provider fields as indicated in the following table:

Table 98. JDBC Provider field values

Field Value

Database type Oracle

Provider type Oracle JDBC Driver

Implementation type Connection pool data source

Name Oracle JDBC Driver

d. Click Next.
e. Set the class path for the ojdbc6.jar file, for example /home/Oracle-jar/

ojdbc6.jar.
f. Click Next.

The JDBC provider is created.
2. Create a data source for the IBM Worklight database:

a. Click Resources > JDBC > Data sources > New.
b. Set Data source name to Oracle JDBC Driver DataSource.

340 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

c. Set JNDI name to jdbc/WorklightDS.
d. Click Next.
e. Click Select an existing JDBC provider and select Oracle JDBC driver from

the list.
f. Click Next.
g. Set the URL value to jdbc:oracle:thin:@oserver:1521/WRKLGHT, where

oserver is the host name of your Oracle server (for example, localhost, if it
is on the same machine).

h. Click Next twice.
i. Click Resources > JDBC > Data sources > Oracle JDBC Driver DataSource

> Custom properties.
j. Set oracleLogPackageName to oracle.jdbc.driver.
k. Set user = worklight.
l. Set password = worklight.

3. Create a data source for the IBM Worklight reports database, following the
instructions in step 2, but using the JNDI name jdbc/WorklightReportsDS and
the URL value jdbc:oracle:thin:@oserver:1521/WLREPORT.

4. Create a data source for the IBM Application Center database, following the
instructions in step 2, but using the JNDI name jdbc/AppCenterDS and the URL
value jdbc:oracle:thin:@oserver:1521/APPCNTR.

Configuring Apache Tomcat for Oracle manually:

IBM Worklight V5.0.5. automatically configures your databases. However, if you
are using an older version of IBM Worklight, or if you are experiencing problems
with the automatic configuration process for the Apache Tomcat Server, you must
manually set up and configure your Oracle database and then the Apache Tomcat
Server for Oracle.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Add the Oracle JDBC driver JAR file to the directory $TOMCAT_HOME/lib.
2. Update the $TOMCAT_HOME/conf/context.xml file as follows:

<Context>
...
<Resource name="jdbc/WorklightDS"

auth="Container"
type="javax.sql.DataSource"
username="worklight"
password="worklight"
driverClassName="oracle.jdbc.driver.OracleDriver"
url="jdbc:oracle:thin:@oserver:1521/WRKLGHT"/>

<Resource name="jdbc/WorklightReportsDS"
auth="Container"
type="javax.sql.DataSource"
username="worklight"
password="worklight"
driverClassName="oracle.jdbc.driver.OracleDriver"
url="jdbc:oracle:thin:@oserver:1521/WLREPORT"/>

<Resource name="jdbc/AppCenterDS"
auth="Container"
type="javax.sql.DataSource"
username="worklight"

Chapter 6. IBM Worklight Server administration 341

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

password="worklight"
driverClassName="oracle.jdbc.driver.OracleDriver"
url="jdbc:oracle:thin:@oserver:1521/APPCNTR"/>

...
</Context>

Where oserver is the host name of your Oracle server (for example, localhost, if
it is on the same machine).

3. Add references to the datasources:
a. For JDBC, modify worklight.properties as follows:

wl.db.type=ORACLE
wl.db.url= jdbc:oracle:thin:@ host_ip_address:1521/WRKLGHT
wl.reports.db.type=ORACLE
wl.reports.db.url=jdbc:oracle:thin:@ host_ip_address:1521/WLREPORT
wl.db.username=worklight
wl.db.password=worklight
reports.exportRawData=true

b. For JNDI, update the $TOMCAT_HOME/conf/web.xml file as follows:
<web-app>

....

....
<resource-ref>

<res-ref-name>jdbc/WorklightDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
<resource-ref>

<res-ref-name>jdbc/WorklightDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</web-app>

Where oserver is the host name of your Oracle server (for example, localhost, if
it is on the same machine).

Manually configuring the application server
In some cases, you may want to re-configure IBM Worklight Server so that it uses
a different application server from the one you specified originally when installing
IBM Worklight Server. The procedure depends on the type of application server
being configured.

These manual instructions assume that you are familiar with your application
server.

Note: Installing by using IBM Installation Manager is more reliable than installing
and configuring manually, and should be used whenever possible.

Configuring the WebSphere Liberty Profile manually
To configure the Websphere Liberty Profile Application Server manually, you must
modify the server.xml file.

About this task

In addition to modifications for the databases that are described in “Manually
configuring the databases” on page 321, you must make the following
modifications to the server.xml file.

342 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Ensure that the <featureManager> element contains at least the following

<feature> elements:
<feature>ssl-1.0</feature>
<feature>servlet-3.0</feature>
<feature>jdbc-4.0</feature>
<feature>appSecurity-1.0</feature>

2. Add the following declarations in the <server> element, for the Worklight
runtime and the Worklight Console:
<!-- Declare the IBM Worklight Server application. -->
<application id="worklight" name="worklight" location="worklight.war" type="war">

<classloader delegation="parentLast">
<commonLibrary>

<fileset dir="${shared.resource.dir}/lib" includes="worklight-jee-library.jar"/>
</commonLibrary>

</classloader>
</application>

<!-- Declare web container custom properties for the IBM Worklight Server application. -->
<webContainer invokeFlushAfterService="false"/>

3. Add the following declarations for the Application Center:
<!-- Declare the IBM Application Center Console application. -->
<application id="appcenterconsole" name="appcenterconsole" location="appcenterconsole.war" type="war">

<application-bnd>
<security-role name="appcenteradmin">

<group name="appcentergroup"/>
</security-role>

</application-bnd>
</application>

<!-- Declare the IBM Application Center Services application. -->
<application id="applicationcenter" name="applicationcenter" location="applicationcenter.war" type="war">

<application-bnd>
<security-role name="appcenteradmin">

<group name="appcentergroup"/>
</security-role>

</application-bnd>
</application>

<!-- Declare the user registry for the IBM Application Center. -->
<basicRegistry id="applicationcenter-registry" realm="ApplicationCenter">

<!-- The users defined here are members of group "appcentergroup",
thus have role "appcenteradmin", and can therefore perform
administrative tasks through the Application Center Console. -->

<user name="appcenteradmin" password="admin"/>
<user name="demo" password="demo"/>
<group name="appcentergroup">

<member name="appcenteradmin"/>
<member name="demo"/>

</group>
</basicRegistry>

What to do next

For more steps to configure the IBM Application Center, see “Configuring
WebSphere Application Server Liberty Profile” on page 433.

Configuring WebSphere Application Server manually
You need to configure variables, custom properties, and class loader policies.

Chapter 6. IBM Worklight Server administration 343

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Before you begin

These instructions assume that you already have a stand-alone profile created with
an application server named Worklight and that the server is using the default
ports.

Procedure
1. Log on to the WebSphere Application Server administration console for your

IBM Worklight server. The address is of the form http://server.com:9060/
ibm/console, where server is the name of the server.

2. Create the WORKLIGHT_INSTALL_DIR variable:
a. Click Environment > WebSphere Variables.
b. From the Scope list, select Worklight server.
c. Click New. The Configuration pane is displayed.
d. In the Name field, type WORKLIGHT_INSTALL_DIR.
e. In the Value field, type /opt/IBM/Worklight.
f. (Optional) In the Description field, type a description of the variable.
g. Click OK.
h. Save the changes.

3. Set the worklight.home Java Virtual Machine (JVM) custom property:
a. Click Servers > Server Types > Application Servers > Worklight.
b. In the Server Infrastructure section, select Java, or Java and Process

Management, depending on your version of WebSphere Application
Server.

c. Depending on your version of WebSphere Application Server, click one of
the following options:
v Process Management > Process Definition > Java Virtual Machine >

Custom Properties

v Process Definition > Java Virtual Machine > Custom Properties

d. Click New. The Configuration pane is displayed.
e. In the Name field, type worklight.home.
f. In the Value field, type ${USER_INSTALL_ROOT}/worklightHome. This

assumes that the environment variable USER_INSTALL_ROOT defines the
profile home directory for this server. If you have more than one
application server hosting IBM Worklight in the same profile, you must
specify a unique worklight.home value for each server.

g. (Optional) In the Description field, type a description of the variable.
h. Click OK.
i. Save the changes.

4. Create the IBM Worklight shared library definition:
a. Click Environment > Shared libraries.
b. From the Scope list, select Worklight server.
c. Click New. The Configuration pane is displayed.
d. In the Name field, type WL_PLATFORM_LIB.
e. (Optional) In the Description field, type a description of the library.
f. In the Classpath field, type ${WORKLIGHT_INSTALL_DIR}/WorklightServer/

worklight-jee-library.jar.

344 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

5. Create the IBM Worklight JDBC data source and provider. See the instructions
for the appropriate DBMS in “Manually configuring the databases” on page
321

6. Add a specific web container custom property.
a. Click Servers > Server Types > Application Servers, and select the server

used for Worklight.
b. Click Web Container Settings > Web container.
c. Click Custom properties.
d. Click New.
e. Enter the property values listed in the following table:

Table 99. Web container custom property values

Property Value

Name com.ibm.ws.webcontainer.invokeFlushAfterService

Value false

Description See http://www-01.ibm.com/support/
docview.wss?uid=swg1PM50111

f. Click OK.
g. Click Save.

7. Install an IBM Worklight customization WAR file:
a. Depending on your version of WebSphere Application Server, click one of

the following options:
v Applications > New > New Enterprise Application

v Applications > New Application > New Enterprise Application

b. Navigate to the IBM Worklight Server installation directory
WL_INSTALL_DIR/WorklightServer.

c. Select worklight.war, and then click Next.
d. On the "How do you want to install the application?" page, select

Detailed, and then click Next.
e. On the Application Security Warnings page, click Continue.
f. Click Continue repeatedly until you reach Step 4 of the wizard: Map

Shared Libraries.
g. Select the Select check box for worklight_war and click Reference shared

libraries.
h. From the Available list, select WL_PLATFORM_LIB and click the > button.
i. Click OK.
j. Click Next until you reach the “Map context roots for web modules” page.
k. In the Context Root field, type /worklight.
l. Click Next.
m. Click Finish.

8. (Optional). As an alternative to step 6, you can map the shared libraries as
follows:
a. Click Applications > Application Types > WebSphere enterprise

applications > worklight_war.
b. In the References section, click Shared library references.
c. Select the Select check box for worklight_war and click Reference shared

libraries.

Chapter 6. IBM Worklight Server administration 345

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

d. From the Available list, select WL_PLATFORM_LIB and click the > button.
e. Click OK twice to return to the worklight_war configuration page.
f. Click the Save link.

9. Configure the class loader policies and then start the application:
a. Click the Manage Applications link, or click Applications > WebSphere

Enterprise Applications.
b. From the list of applications, click worklight_war.
c. In the “Detail Properties” section, click the Class loading and update

detection link.
d. In the “Class loader order” pane, click Classes loaded with local class

loader first (parent last).
e. Click OK.
f. In the Modules section, click Manage Modules.
g. From the list of modules, click the Worklight module.
h. In the “Class loader order” pane, click Classes loaded with local class

loader first (parent last).
i. Click OK twice.
j. Click Save.
k. Select the Select check box for worklight_warand click Start.

10. Repeat steps 7 through 9 for appserverconsole.war and
applicationcenter.war.

11. Configure the server to use the single class loader policy:
a. Click Servers > Server Types > Application Servers > Worklight

b. Change the class loader policy from Multiple to Single.
c. Change the class loading mode to Classes loaded with local class loader

first (parent last).

Results

You can now access IBM Worklight Console at http://<server>:<port>/
worklight/console, where server is the host name of your server and port is the
port number (default 9080).

What to do next

For additional steps to configure the IBM Application Center, see “Configuring
WebSphere Application Server full profile” on page 431.

Configuring Apache Tomcat manually
You need to copy JAR and WAR files to Tomcat, add database drivers, edit the
server.xml file, and then start Tomcat.

Procedure
1. Copy the Worklight Platform JAR file to the Tomcat lib directory:

v On UNIX and Linux systems: cp WL_INSTALL_DIR/WorklightServer/
worklight-jee-library.jar TOMCAT_HOME/lib

v On Windows systems: copy /B WL_INSTALL_DIR\WorklightServer\worklight-
jee-library.jar TOMCAT_HOME\lib\worklight-jee-library.jar

2. Add the database drivers to the Tomcat lib directory. See the instructions for
the appropriate DBMS in “Manually configuring the databases” on page 321.

346 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. Copy the Worklight Customization War file to Tomcat:
v On UNIX and Linux systems: cp WL_INSTALL_DIR/WorklightServer/

worklight.war TOMCAT_HOME/webapps

v On Windows systems: copy /B WL_INSTALL_DIR\WorklightServer\
worklight.war TOMCAT_HOME\webapps\worklight.war

4. Edit TOMCAT_HOME/conf/server.xml.
a. Uncomment the following element, which is initially commented out:

<Valve className="org.apache.catalina.authenticator.SingleSignOn" />.
b. Declare the context and properties of the Worklight application:

<!-- Declare the IBM Worklight Console application. -->
<Context path="/worklight" docBase="worklight"/>

<!-- Declare the IBM Application Center application. -->
<Context path="/applicationcenter" docBase="applicationcenter"/>

<!-- Declare the user registry for the IBM Application Center.
The MemoryRealm recognizes the users defined in conf/tomcat-users.xml.
For other choices, see Apache Tomcat’s "Realm Configuration HOW-TO"
http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html . -->

<Realm className="org.apache.catalina.realm.MemoryRealm"/>

5. Copy the IBM Application Center WAR file to Tomcat:
v On UNIX and Linux systems: cp WL_INSTALL_DIR/ApplicationCenter/

console/*.war TOMCAT_HOME/webapps

v On Windows systems:
copy /B WL_INSTALL_DIR\ApplicationCenter\console\appcenterconsole.war TOMCAT_HOME\webapps\appcenterconsole.war
copy /B WL_INSTALL_DIR\ApplicationCenter\console\applicationcenter.war TOMCAT_HOME\webapps\applicationcenter.war

6. Start Tomcat.

What to do next

For additional steps to configure the IBM Application Center, see “Configuring
Apache Tomcat” on page 435.

Starting IBM Worklight Server with Liberty Profile
You can start IBM Worklight Server with Liberty Profile by using the appropriate
commands for your specific operating system.

About this task

Use the appropriate commands for UNIX, Windows 7, and Windows XP systems
to start IBM Worklight Server with Liberty Profile:

Procedure
1. Ensure that you have a Java 6 implementation in your PATH.
2. Issue the commands on the command line:

For UNIX systems:
cd /opt/IBM/Worklight (or your installation location, if different).

cd server/wlp/bin

./server start worklightServer

For Windows systems:
cd C:\Program Files (x86)\IBM\Worklight (or your installation
location, if different).

Chapter 6. IBM Worklight Server administration 347

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

cd server\wlp\bin

server.bat start worklightServer

On Windows 7 systems, if you installed IBM Worklight as a multi-user
installation for the group "Administrators", you must run the server with
administrator privileges. To this effect, launch the command window or the
desktop shortcut Start server with the Run as Administrator action.

Results

Worklight Server starts.

If you experience problems, inspect the server log files in the following directories:

On UNIX systems:
<INSTALL_DIR>/server/wlp/usr/servers/worklightServer

On Windows 7 systems:
C:\ProgramData\IBM\Worklight\WAS85liberty-server\wlp\usr\servers\
worklightServer

On Windows XP systems:
C:\Documents and Settings\All Users\Application Data\IBM\Worklight\
WAS85liberty-server\wlp\usr\servers\worklightServer

Starting IBM Worklight Server with WebSphere Application
Server

You can start IBM Worklight Server with WebSphere Application Server by using
the appropriate commands for your specific operating system.

See the WebSphere Application Server user documentation.

Note: Ensure that your PATH system variable contains the directory was\bin.

Starting IBM Worklight Server with Apache Tomcat
You can start IBM Worklight Server with Apache Tomcat by using the appropriate
commands for your specific operating system.

About this task

Use the appropriate commands for Unix and Linux, or Windows systems to start
IBM Worklight Server with Apache Tomcat:

Procedure

Start Tomcat:

On UNIX and Linux systems:
TOMCAT_HOME/bin/startup.sh

On Windows systems:
TOMCAT_HOME\bin\startup.bat

Verifying IBM Worklight Server startup
You can check that IBM Worklight Server is correctly installed.

348 IBM Worklight V5.0.6

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

You can easily verify correct installation of IBM Worklight Server, by opening a
web browser and pointing it to your application server.

Procedure
1. Open a web browser.
2. Point it to your application server http://<server>:<port>/

<publicWorkLightContext>/console. The port number might vary by
application server. The URL is referred to as the IBM Worklight Console URL.
The installation sets PublicWorkLightContext to worklight. This context changes,
as you work with different IBM Worklight projects.
An IBM Worklight console GUI with no errors indicates that the installation is
valid.

Applying environment-specific customization
You can apply environment-specific customization by creating a different
environment-specific customization war file for each environment, for example
testing, production, and so on.

About this task

The IBM Worklight installation creates a temporary customization war file that
causes an initial IBM Worklight server to be started (thus validating an initial
install).

You must now create a project-specific customization WAR file, which will be one of
several. A project-specific customization WAR file is required for each environment.

Project-specific
A customization WAR file contains properties, libraries, web applications,
and security settings that are specific to your mobile project.

Environment-specific
A different WAR file is required for each environment, testing, production,
and so on. For example, the public access URL, access passwords to
databases, and URL to back-end systems change between environments.

A WAR file is created from the IBM Worklight Project source code generated by a
developer from your organization. Specific customization WAR files can be created
in two ways:
v By working with the developer to re-build a variant of the mobile project using

the IBM Worklight Development Studio.
v By automating the process using an Ant task to generate the WAR file from the

project source code (usually stored in a source control system). The Ant task is
documented in “Ant tasks for building and deploying” on page 134.

Note: It is important to match the context root to which the WAR file is deployed to
the IBM Worklight property publicWorkLightContext in the worklight.properties
file. On most application servers, the default context root name is the WAR file
name.

Note: You cannot deploy more than one IBM Worklight WAR file per server. The
deployment might succeed, but might result in some unexpected runtime behavior.

Chapter 6. IBM Worklight Server administration 349

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Perform the following steps:

Procedure
1. Create a WAR file using one of the above methods. Prior to generating the file,

correct the worklight.properties file (part of the source) to include accurate
database connection properties. These properties can be:
v Created using the authorized worklight.properties values given in “IBM

Worklight properties” on page 406.
v Retrieved from the automatically generated WAR file created using the IBM

Worklight installation by viewing the file via a zip utility.
2. If the WAR file already exists, undeploy the automatically-created WAR file created

by the installation from the application server.
3. Deploy the new customization WAR to the IBM Worklight Server. Each

application server type (Tomcat, WebSphere, and Liberty) has its own way of
deploying a WAR file.

4. Repeat the verification process above using the new publicWorkLightContext in
the console URL.

Deploying content: applications and adapters
You can deploy customer-specific content (apps and adapters) only after the
customization is set and the server is started.

About this task

Customer-specific content includes applications that must be served by the IBM
Worklight Server and their underlying integration adapters. You can create apps
and adapters by building them in IBM Worklight Studio, or by using the Ant tasks
provided with the IBM Worklight platform to build them. The result of the build
action is files with extension .wlapp and .adapter respectively.

There are two ways to deploy applications and adapters to IBM Worklight
Console:
v Use Ant tasks provided with the IBM Worklight platform, and described in “Ant

tasks for building and deploying” on page 134.
v Use the IBM Worklight Console to manually deploy apps and adapters as

described below.

The IBM Worklight Console opens in a “Catalog” page that enables you to work
with apps and adapters.

To deploy an adapter:

Figure 37. IBM Worklight Catalog

350 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Click Browse, then navigate to the .adapter file and select it.
2. Click Submit.

A message is displayed indicating whether the deployment action succeeded or
failed.

As a result, the details of the deployed adapter are added to the catalog:

3. Click Show details to view connectivity details for the adapter and the list of
procedures it exposes.

4. Repeat steps 1 – 3 for each adapter.
To deploy an application:

5. In the catalog page, click Browse, then navigate to the .wlapp file and select it.

Figure 38. IBM Worklight adapter deployment success or failure message

Figure 39. Deployed adapter details

Figure 40. Adapter connectivity details

Chapter 6. IBM Worklight Server administration 351

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.6. Click Submit. A message is displayed indicating whether the deployment

action succeeded or failed.

As a result, the details of the deployed application are added to the catalog.

Figure 41. Browsing the catalog page to find the .wlapp file

Figure 42. Deployment success or failure message

352 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

7. Repeat steps 1 and 2 for each app.

Database and certificate security passwords
When you configure an IBM Worklight server, you must typically configure
database and certificate passwords for security.

Configuration of an IBM Worklight server typically includes the following
credentials:
v User name and password to the IBM Worklight database
v User name and password to other custom databases
v User name and password to certificates that enable the stamping of apps

All credentials are stored in the worklight.properties file. See “IBM Worklight
properties” on page 406 for information about individual properties stored in this
configuration file.

You can encrypt any or all of these passwords. For more information, see “Storing
properties in encrypted format” on page 411.

Apache Tomcat security options
An optimal Apache Tomcat security balances ease of use and access with
strengthening of security and hardening of access.

Figure 43. Details of the deployed application

Chapter 6. IBM Worklight Server administration 353

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

You must harden the Tomcat Server according to your company policy.
Information on how to harden Apache Tomcat is available on the Internet. IBM
Worklight usage of Apache Tomcat is limited to a single web app and a single
shared library. All other out-of-the-box services provided by Apache Tomcat are
unnecessary and can be removed.

WebSphere Application Server security options
The WebSphere Application Server provides Java Platform, Enterprise Edition
container and server security by supporting a variety of user registries and a
common mechanism to secure EAR/WAR/services.

IBM Worklight provides an extensible authentication model as part of its core
function. Follow the instructions to use WebSphere Application Server security to
protect the application and adapters hosted on the IBM Worklight runtime
environment.

There are three major phases to show how a device uses a typical IBM Worklight
app running on WebSphere Application Server shown in the following diagram.

354 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

When the user first accesses the app, the app issues an authentication challenge,
requiring the user to enter their credentials. If authentication is successful, an LTPA
token is obtained. This token is used in subsequent calls.

Figure 44. Phases in securing an IBM Worklight app

Chapter 6. IBM Worklight Server administration 355

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The LTPA token can also be transmitted to back-end WebSphere applications or
services that are in the same security domain as IBM Worklight Server.

You can secure IBM Worklight in a typical WebSphere Application Server runtime
environment in either of two ways:
v Option 1: Securing WebSphere Application Server using application security and

securing the IBM Worklight WAR file.
v Option 2: Securing WebSphere Application Server using application security but

not securing the IBM Worklight WAR file.

Each option has advantages and disadvantages. Both options use underlying
WebSphere Application Security configuration, but in different ways. Choose an
option based on your specific requirements.

Table 100. WebSphere Application Security Options

Option 1 Option 2

BENEFITS Uses the traditional
WebSphere Application
Server authentication and
trust model.

The container enforces all
security, so it can use
existing third-party SSO
products to secure the Java
Platform, Enterprise Edition
container.

Uses the traditional
WebSphere Application
Server authentication and
trust model without the
impact of modifying the IBM
Worklight Project WAR.

The container enforces all
security, so it can use
existing third-party SSO
products to secure the Java
Platform, Enterprise Edition
container.

The layered authentication of
device, application,
application instance, and
user functions as intended.

Flexibility in configuring
specific security settings that
are specific to the IBM
Worklight runtime
environment without being
hindered by the underlying
container security.

USAGE Suitable for scenarios where
the devices can be trusted
and access for rogue
applications is restricted.

Suitable for scenarios where
the devices or the apps on
the devices cannot be
trusted. The multi-step
authenticity checking built
into IBM Worklight platform
ensures denial of service to
devices subjected to
unauthorized modifications,
rogue applications, and
unauthorized users.

WebSphere Application Server security option 1 procedure
To secure WebSphere Application Server, you can choose between two different
configurations. The security option 1 procedure secures the IBM Worklight WAR file.

356 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

Complete the following steps to perform the WebSphere Application Server
security option 1 procedure and secure the IBM Worklight WAR file.

Procedure
1. Ensure that IBM Worklight is correctly installed on a WebSphere Application

Server instance. The IBM Worklight instance contains all the necessary libraries
to support WebSphere Application Server security.

2. When installation of the IBM Worklight Server application on WebSphere
Application Server is complete, open your WebSphere Application Server
integrated solutions console.

3. Ensure that application security is enabled and configured to your enterprise
user.
The IBM Worklight project uses the existing login page and login error page
and preconfigured realms as part of the IBM Worklight Server installation on
WebSphere Application Server. The IBM Worklight Server application is secured
by default using a generic role and using a login form and error page. The
following code snippet shows the web.xml file of the IBM Worklight Server WAR
that is generated for WebSphere Application Server.
<security-constraint id="SecurityConstraint_1">

<web-resource-collection id="WebResourceCollection_1">
<web-resource-name>Protected URI</web-resource-name>

<description>Protection area for stuff we want to protect, of course.</description>
<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint id="AuthConstraint_1">

<description>All Authenticated users for our protected stuff.</description>
<role-name>Role 3</role-name>

</auth-constraint>
<user-data-constraint id="UserDataConstraint_1">

<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>

</security-constraint>
<security-role id="SecurityRole_1">

<description>All Authenticated Users Role.</description>
<role-name>Role 3</role-name>

</security-role>

WebSphere Application Server security option 2 procedure
To secure WebSphere Application Server, you can choose between two different
configurations. The security option 2 procedure disables the security at the IBM
Worklight Server WAR file level and authenticates users within the IBM Worklight
Server runtime environment.

About this task

Complete the following steps to perform the WebSphere Application Server
security option 2 procedure, which disables the security at the IBM Worklight
Server WAR file level and authenticates users within the IBM Worklight Server
runtime environment.

Procedure
1. Complete the same steps as for the Security Option 1, but do not secure the WAR

file.

Chapter 6. IBM Worklight Server administration 357

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To secure WebSphere Application Server and secure the IBM Worklight Server
application:

2. Do not enable security-constraint on the web.xml file.
3. Configure applicationDescriptor.xml.
4. Complete the remaining steps.

Running IBM Worklight in WebSphere Application Server with
Java 2 security enabled

You can run IBM Worklight in WebSphere Application Server with Java 2 security
enabled.

About this task

To run IBM Worklight in WebSphere Application Server with Java 2 security
enabled, complete the following procedure to modify the app.policy file and then
restart WebSphere Application Server for the modification to take effect.

Procedure
1. Install IBM Worklight Server on a WebSphere Application Server instance. The

IBM Worklight instance contains all the necessary libraries to support
WebSphere Application Server security.

2. Enable Java 2 security in WebSphere Application Server.
a. In the WebSphere Application Server console, click Security > Global

security

b. Select the Use Java 2 security to restrict application access to local
resources check box.

3. Modify the app.policy file, <ws.install.root>/profiles/<server_name>/
config/cells/<cell_name>/node/<node_name>/app.policy.
The app.policy file is a default policy file that is shared by all of the
WebSphere Application Server enterprise applications. For more information,
see "app.policy file permissions" in the WebSphere Application Server
documentation.
In order to run IBM Worklight in WebSphere Application Server with Java 2
security enabled, add the following content into the app.policy file.
grant codeBase "file:${was.install.root}/worklight-jee-library-xxx.jar"{

permission java.security.AllPermission;
};

// The war file is your WL server war.
grant codeBase "file:worklight.war"{

//permission java.security.AllPermission;
//You can use all permission for simplicity, however, it might
// cause security problems.
permission java.lang.RuntimePermission "*";
permission java.io.FilePermission "${was.install.root}${/}-", "read,write,delete";
permission java.io.FilePermission "C:/Windows/TEMP/${/}-", "read,write,delete";// In Linux need to set TEMP folder of Linux.
permission java.util.PropertyPermission "*", "read, write";
permission java.lang.reflect.ReflectPermission "suppressAccessChecks";
permission com.ibm.tools.attach.AttachPermission "createAttachProvider";
permission com.ibm.tools.attach.AttachPermission "attachVirtualMachine";
permission com.sun.tools.attach.AttachPermission "createAttachProvider";
permission com.sun.tools.attach.AttachPermission "attachVirtualMachine";
permission java.net.SocketPermission "*", "accept,resolve";

};

358 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

4. Restart WebSphere Application Server for the modification of the app.policy
file to take effect.

Changing the IBM Worklight Server working directory
You can change the IBM Worklight server working directory according to your
application server.

IBM Worklight requires a working directory that stores logs, temporary files, and
so on. The default directory varies according to your application server:
v For WebSphere Application Server: WAS_INSTALL_DIR/profiles/profile/servers/

server/worklight.home

v For WebSphere Application Server Liberty Profile:wlp/usr/servers/server/
worklight.home

v For Tomcat: TOMCAT_INSTALL_DIR/bin/worklight.home

To change this directory, you must set either the JVM system property
worklight.home or the environment variable WORKLIGHT_HOME to a new directory.
The directory can be any folder to which the IBM Worklight Server has write
permissions.

Worklight properties file

The IBM worklight.properties file contains configuration properties for the IBM
Worklight Server. The file is packed into the customization WAR. Review the file on
the server location and ensure it is tuned for production, see “IBM Worklight
properties” on page 406 for further details.

Administering IBM Worklight applications
You can administer IBM Worklight applications through the Worklight console, by
implementing direct updates to mobile devices and desktop apps, by locking apps
or denying access, or by displaying notification messages.

Use the Worklight Console to manage your applications. You can use the console
to see all applications that are installed and all the device platforms that are
supported. You can use the console to disable specific application versions on
specific platforms and to force users to upgrade the application before they
continue to use them. Additionally, you can use the console to send out
notifications to application users, and to manage push notifications from defined
event sources to applications. You can also use the Worklight Console to install and
manage adapters that are used by applications, and to inspect aggregated usage
statistics from the Worklight Server.

When you implement direct updates to mobile devices and desktop apps, software
updates are pushed directly to application web resources or users’ desktops.

You can lock apps to prevent them from being mistakenly updated and to prevent
the redeployment of web resources for a particular application.

You can display a notification message on app startup to give information to users,
but which does not cause the application to exit.

You can also control authenticity testing for an application.

Chapter 6. IBM Worklight Server administration 359

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Direct updates of app versions to mobile devices
The IBM Worklight Server can directly push updated web resources to deployed
applications.

Subject to the terms and conditions of the target platform, organizations are not
required to upload new app versions to the app store or market. This option is
available for iPhone, iPad, and Android apps.

When you redeploy an app to the IBM Worklight Server without changing its
version, the IBM Worklight Server directly pushes the web resources (HTML,
JavaScript, and CSS) of the newly deployed app to the device. When an app with
an older version of these resources connects to the server. It does not push updated
native code.

Direct Update is enabled by default. To update the web resources of an app on a
certain environment, redeploy the app.

When the app connects to the IBM Worklight Server, it starts downloading the
newly deployed resources, as shown in the following figures.

Figure 45. Update notice from Android

360 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Figure 46. Downloading newly deployed resources to Android

Figure 47. Update notice from iOS

Chapter 6. IBM Worklight Server administration 361

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Direct updates of app versions to desktop apps
A direct updates mechanism is available for desktop apps as well as for mobile
devices.

The use of Windows 7 and Vista gadgets and OS X Dashboard widgets is
deprecated in Worklight V5.0.5. Support might be removed in any future version.

When you redeploy a desktop app with a new version, the IBM Worklight Server
automatically pushes the app to the user's desktop. When the desktop app
connects to the IBM Worklight Server and an update is available, it displays a
dialog box for the user, asking the user to accept a new version. If the user accepts
the new version, it is automatically downloaded to the user's desktop. The user
must then open the downloaded app to install it on the desktop.

This option is available for Adobe AIR applications, Windows 7 and Vista gadgets,
and Mac OS X Dashboard widgets.

Locking an application
You can prevent developers or administrators from mistakenly updating an
application, by locking it in IBM Worklight Console.

About this task

You can lock applications for iPhone, iPad, and Android.

Figure 48. Downloading newly deployed resources to iOS

362 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

To lock an application version in a certain environment, check the Lock this
version check box for that application version in the required environment.

Remotely disabling application connectivity
You can use the Remote Disable procedure to deny a user's access to a certain
application version due to phase-out policy or due to security issues encountered
in the application.

About this task

Using the IBM Worklight Console, you can disable access to a specific version of a
specific application on a specific mobile operating system and provide a custom
message to the user.

Figure 49. Locking an application version in a certain environment

Chapter 6. IBM Worklight Server administration 363

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

To use this Remote Disable feature, change the status of the application version
that must be disabled from Active to Access Disabled, and add a custom message:

You can also specify a URL for the new version of the application (usually in the
appropriate app store or market).
When users run an application after it has been Remotely Disabled, they receive a
text message about the access denial and can either close the dialog and continue
working offline (that is, without access to the Worklight Server), or they can
upgrade to the latest version of the application. Closing the dialog keeps the
application running, but any application interaction that requires server

Figure 50. Denying access to older application versions

364 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

connectivity causes the dialog to be displayed again.

Modifying the behavior of the Remote Disable operation
As noted above, the default dialog that is displayed to a user when an application
is remotely disabled contains two buttons, Get new version, and Close. Clicking
Close closes the dialog, but allows the user to continue working offline, with no
connection to the Worklight Server.

Note: The actual text on the two buttons is customizable, and can be overridden in
the message.properties file.
In older versions of IBM Worklight, when you disabled an application using the
Worklight Console, the default behavior was to completely disable it, such that the
application would not function, even in offline mode.
There is a way to modify the default behavior of the Remote Disable feature to
completely disable an application if there is a need to do so (such as a severe
security flaw).
v Add a new Boolean attribute to your initOptions.js file, named

showCloseOnRemoteDisableDenial.
v If this attribute is missing or is set to true, the Remote Disable notification

displays the default behavior described earlier.
v If this attribute is set to false (that is, "Do not show the Close button on the

dialog"), the behavior is as follows:
– If you disable the application on the Worklight Console and specify a link to

the new version, the dialog displays only a single button, the Get new
version button. The Close button is not shown. The user has no choice but to
update the application, and this preserves the older behavior of forcing the
user to exit the application.

– If you disable the application and do not specify a link to the new version,
the dialog again displays only a single button, but in this case the Close
button.

Related tasks:
“Defining administrator messages from the IBM Worklight Console in multiple
languages” on page 366
You can set the deny and notification messages from the IBM Worklight Console in
multiple languages. The messages are sent based on the locale of the device, and

Figure 51. Denying access to older application versions – message received by user

Chapter 6. IBM Worklight Server administration 365

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

must comply with the ISO 639-1 and ISO 3166-2 standards.

Displaying a notification message on application startup
You can set a notification message that is displayed for the user when the
application starts, but does not cause the application to exit.

About this task

You can use this type of message to notify application users of temporary
situations, such as planned service downtime.

Procedure

For the relevant application, change the status of the application version from
Active to Active, Notifying, and add a custom message:

Results

The message is displayed the next time that the app is started or resumed. The
message is displayed only once.
Related tasks:
“Defining administrator messages from the IBM Worklight Console in multiple
languages”
You can set the deny and notification messages from the IBM Worklight Console in
multiple languages. The messages are sent based on the locale of the device, and
must comply with the ISO 639-1 and ISO 3166-2 standards.

Defining administrator messages from the IBM Worklight
Console in multiple languages

You can set the deny and notification messages from the IBM Worklight Console in
multiple languages. The messages are sent based on the locale of the device, and
must comply with the ISO 639-1 and ISO 3166-2 standards.

Procedure

To add the deny and notification messages for multiple languages, follow these
steps.

Figure 52. Displaying a simple notification message

366 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

1. In the IBM Worklight Console, select the status Active, Notifying, or Disabled
in the list of application rules.

2. Click Enter messages for multiple languages.

3. In the Messages for multiple languages window that opens, notice that you
can upload a CSV file.

Figure 53. Defining the status of application rules in the IBM Worklight Console

Chapter 6. IBM Worklight Server administration 367

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Such a CSV file must define a series of lines. Each line contains a locale code,
such as "fr-FR" for French (France) or "en" for English, a comma, and the
corresponding message text. The specified locale codes must comply with the
ISO 639-1 and ISO 3166-2 standards. The first line with an empty locale defines
the default message. If you did not define an alternative, or if the locale from
the client matches none of the uploaded locales, this default message is
displayed

Note: To create a CSV file, you must use an editor that supports UTF-8
encoding, such as NotePad. In the CSV file.
The following figure shows an example of a CSV file:

4. Click Upload CSV to browse and select the CSV file that you want to upload.
You can see the languages that you uploaded in the Supported Languages list.

5. Click a language in the Supported Languages list to see the translation of your
message in this language in the Translation box.

Figure 54. Defining messages for multiple languages

Figure 55. Sample CVS file

Figure 56. View of your uploaded languages, and the default message with its translation

368 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

6. Optional: Click Clear to clear the Supported Languages list. This action does
not clear the default message.

7. Click Save to save the messages that you uploaded, or Cancel to discard the
changes and return to the IBM Worklight Console.

Note: If you modified the default message, then the new default message
shows.

Chapter 6. IBM Worklight Server administration 369

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Controlling authenticity testing for an app
You can control authenticity testing for apps that connect to the IBM Worklight
Server.

When an app first connects to the IBM Worklight Server, the server tests the
authenticity of the app. This test helps to protect apps against some malware and
repackaging attacks. This option is available for iPhone, iPad, and Android apps.

This figure displays the mobile device of the user, which shows the localized message. The title and the button
caption are in English. If the locale does not supply any messages, the default message is returned.
Figure 57. Application Disabled message

370 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The application developer must configure the app to enable authenticity testing
(see “Authentication configuration” on page 137 for details).
v If the app is configured with authenticity testing disabled for a specific version,

then the Authenticity Testing drop down menu in the Console is disabled. An
example for the iPhone environment is shown in the following figure.

v If the app is configured with authenticity testing enabled for a specific version,
then the Authenticity Testing drop-down menu in the Console is enabled. An
example for the Android environment is shown in the following figure.

The menu has three options:
v Disabled – the IBM Worklight Server does not test the authenticity of the app

(despite the developer's settings).
v Enabled, servicing – the IBM Worklight Server tests the authenticity of the app.

If the app fails the test, the IBM Worklight Server outputs an information
message to the log but services the app.

v Enabled, locking – the IBM Worklight Server tests the authenticity of the app. If
the app fails the test, the IBM Worklight Server outputs an information message
to the log and blocks the app.

Note: The authenticity feature is only enabled for apps that use the customer
version of the IBM Worklight Development Studio. Since the non-customer version
of the studio is available on the web, it is a common developer mistake to use it
instead of the customer version.

Setting up existing applications with a new server version
Using applications that were built with an earlier version of IBM Worklight
requires extra actions for each application.
v Upgrading to a newer version of IBM Worklight involves upgrading all the

studio instances and the development environments, including the production
environment.

v You must uninstall and reinstall IBM Worklight Server (for more information,
see the “Installation” on page 314 topics). When you do so, the existing data in
the server database (such as subscriptions to notifications) is saved.

v You must rebuild all the existing applications using the new version of IBM
Worklight, and redeploy the customization .war, .wlapp, and .adapter files to
the new server.

Figure 58. Authenticity testing enabled for the Android environment

Chapter 6. IBM Worklight Server administration 371

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Federal standards support in Worklight
IBM Worklight supports Federal Desktop Core Configuration (FDCC), and United
States Government Configuration Baseline (USGCB) specifications. IBM Worklight
also supports the Federal Information Processing Standards (FIPS) 140-2, which is a
security standard that is used to accredit cryptographic modules.

For more information about the Federal Desktop Core Configuration and United
States Government Configuration Baseline, see FDCC and USGCB.

For more information about the Federal Information Processing Standards 140-2,
see FIPS 140-2 support.

FDCC and USGCB support
The United States federal government mandates that federal agency desktops that
run on Microsoft Windows platforms adopt Federal Desktop Core Configuration
(FDCC) or the newer United States Government Configuration Baseline (USGCB)
security settings.

IBM Worklight 5.0.6 was tested by using the USGCB and FDCC security settings
via a self-certification process. Testing includes a reasonable level of testing to
ensure that installation and core features function on this configuration.

References

For more information about the Federal Desktop Core Configuration, see FDCC.

For more information about the United States Government Configuration Baseline,
see USGCB.

FIPS 140-2 support
Federal Information Processing Standards (FIPS) are standards and guidelines that
are issued by the United States National Institute of Standards and Technology
(NIST) for federal government computer systems. FIPS Publication 140-2 is a
security standard that is used to accredit cryptographic modules.

FIPS 140-2 on the IBM Worklight server, and SSL communications with
the IBM Worklight server

The IBM Worklight server runs in an application server, such as the WebSphere
Application Server. The WebSphere Application Server can be configured to enforce
the use of FIPS 140-2 validated cryptographic modules for inbound and outbound
Secure Socket Layer (SSL) connections. Also, for the cryptographic operations that
are performed by the applications by using the Java™ Cryptography Extension
(JCE). Since the IBM Worklight server is an application that runs on the application
server, it uses the FIPS 140-2 validated cryptographic modules for the inbound and
outbound SSL connections.

When an IBM Worklight client transacts a Secure Socket Layer (SSL) connection to
an IBM Worklight server, which is running on an application server that is using
the FIPS 140-2 mode, the results are the successful use of the FIPS 140-2 approved
cipher suite. If the client platform does not support one of the FIPS 140-2 approved
cipher suites, the SSL transaction fails and the client is not able to establish an SSL
connection to the server. If successful, the client uses a FIPS 140-2 approved cipher
suite.

372 IBM Worklight V5.0.6

http://nvd.nist.gov/fdcc/index.cfm
http://usgcb.nist.gov/

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: The cryptographic module instances that are used on the client are not
necessarily FIPS 140-2 validated.
Specifically, the client and server are using the same cipher suite
(SSL_RSA_WITH_AES_128_CBC_SHA) for example, but the client side
cryptographic module perhaps did not go through the FIPS 140-2 validation
process, whereas the server side is using FIPS 140-2 certified modules.

See the References section for links to documentation to enable FIPS 140-2 mode in
WebSphere Application Server.

FIPS 140-2 on the IBM Worklight client device for protection of data at
rest in JSONStore

Protection of data at rest on the client device is provided by the JSONStore feature
of IBM Worklight. By default, the JSONStore feature uses non-FIPS 140-2 validated
libraries. But for iOS and Android devices, there is an option to use FIPS 140-2
validated libraries for the protection (encryption and decryption) of the local data
that is stored by JSONStore. This option is enabled by using an OpenSSL library
that achieved FIPS 140-2 validation. The required libraries and instructions for
using them are provided as a module in “Getting started tutorials and samples” on
page 29.

Note: There are some restrictions to be aware of:
v This FIPS 140-2 validated mode applies only to the protection (encryption) of

local data that is stored by the JSONStore feature.
v It is only supported on the iOS and Android platforms.
v On Android, it is only supported on devices or simulators that use the x86 or

armv7 architectures. It is not supported on Android using armv5 or armv6
architectures. The reason is because the OpenSSL library used did not obtain
FIPS 140-2 validation for armv5 or armv6 on Android.

For more information, see the module JSONStore - Encrypting sensitive data with
FIPS, under category 5, Advanced client-side development, in “Getting started tutorials
and samples” on page 29.

For more information about JSONStore, see Data synchronization with JSONStore.

Figure 59. Example

Chapter 6. IBM Worklight Server administration 373

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

References

For information about how to enable FIPS 140-2 mode in the WebSphere
Application Server, see Federal Information Processing Standard support.

For the WebSphere Liberty Profile, there is no administrative console option to
enable FIPS 140-2 mode. But FIPS 140-2 can be enabled by configuring the Java
runtime to use the FIPS 140-2 validated modules. For more information, see Java
Secure Socket Extension (JSSE) IBMJSSE2 Provider Reference Guide.

Reports
IBM Worklight provides an extensible mechanism for enterprises to use their own
reporting tools to integrate with IBM Worklight and use the analytics data that is
captured.

IBM Worklight provides raw data reports and a number of device reports that are
aggregated from the raw data report table. IBM Worklight also comes bundled
with a third-party Business Intelligence Report Tools (BIRT) feature, which
provides a range of predefined report templates. Use the links to read about each
of these options.

IBM Worklight provides two reporting mechanisms: raw data feeds and device
usage reports.

Raw Data Feeds.
IBM Worklight emits raw data, which enables an OLAP system to extract
the required information and present it through corporate reporting
mechanisms. For more information, see “Using raw data reports” on page
375.

Device usage reports.
IBM Worklight provides reports on device usage. Device usage reports are
default aggregations that are based on raw data and are provided for the
benefit of organizations that do not have OLAP systems or choose not to
integrate IBM Worklight with an OLAP system. For more information, see
“Device usage reports” on page 378.

Note: Device usage reports are functional only in the Customer and
Enterprise Editions of IBM Worklight.

BIRT reports
IBM Worklight comes bundled with predefined BIRT report to use either as
they are or as templates to modify. For more information, see “Predefined
BIRT Reports” on page 380.

374 IBM Worklight V5.0.6

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.nd.multiplatform.doc/ae/rovr_fips.html
http://publib.boulder.ibm.com/infocenter/javasdk/v5r0/topic/com.ibm.java.security.component.doc.50/secguides/jsse2Docs/JSSE2RefGuide.html#enablefips
http://publib.boulder.ibm.com/infocenter/javasdk/v5r0/topic/com.ibm.java.security.component.doc.50/secguides/jsse2Docs/JSSE2RefGuide.html#enablefips

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Important: When you are working with report generation, you must update the
.rptdesign file with your reports database user name and password, which are
considered sensitive information. You are responsible for protecting it against
unauthorized access.

Using raw data reports
You can use the raw data reports feature to extract raw data to different databases
and view it in the form of reporting tables.

About this task

Raw data reports provide you with analytics information about your applications
and adapter usage, such as activity type, device information, and application
version. Complete the following steps to enable the raw data reports feature:

Figure 60. High-level overview of the reports architecture

Chapter 6. IBM Worklight Server administration 375

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Ensure that the IBM Worklight Server application server is not running.
2. Create a separate database for reports. This is not mandatory but useful,

because the raw data table is rapidly-populated. For more information, see
“IBM Worklight database setup” on page 407.

3. Edit the worklight.properties file. Uncomment the reports.exportRawData
property and set its value to true.

4. Modify the wl.reports.db properties to contain your database settings as
shown in the following screen capture.

5. Ensure that the wl.reports.db.url property contains the URL of the database
you are planning to use for raw data.

6. Restart your application server.
The app_activity_report table of the raw data database is populated with data
as you begin using your applications and adapters.

376 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The raw data app_activity_report table contains the following information:

Column Description

ACTIVITY_TIMESTAMP Time of entry (in UTC)

GADGET_NAME IBM Worklight Application name

GADGET_VERSION Application version

ACTIVITY Activity type

ENVIRONMENT Application environment name (iPhone,
Android, etc.)

SOURCE User identifier

ADAPTER IBM Worklight adapter name

PROC IBM Worklight adapter procedure name

USERAGENT User agent from HTTP header of client
device

SESSION_ID A unique identifier for the user’s session on
the server

IP_ADDRESS IP address of the client

DEVICE_ID n A unique device ID

DEVICE_MODEL Manufacturer model, for example Galaxy
I9000

DEVICE_OS Device operating system version

Possible activities include:

Activity Description

Init Application initialization

Login Successful authentication in using the
application

Adoption New Not supported in version 5.0

Adoption Not supported in version 5.0

Query Procedure call to an adapter

Logout User logout

In addition to predefined activity types, custom activities can be logged by
using WL.Client.logActivity("custom-string") APIs.

Important: Worklight raw data feed can increase rapidly. The data is typically
used by a BI system such as Cognos® or Business Objects. It is the
administrator’s responsibility to purge built-in tables periodically.
In addition to the app_activity_report table, the raw data engine also
populates the notification_report table. This raw data table contains
information about notifications that are sent from SMS event sources.

Chapter 6. IBM Worklight Server administration 377

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Device usage reports
For simpler and faster access to the reports data, the IBM Worklight Server runs an
analytics data processor task at a default time interval of every 24 hours.

The analytics data processor task retrieves raw entries for the specified time
interval from the app_activity_report table and processes them to populate the
fact_activities table.

378 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The fact_activities table contains a total activity count (number of logged
actions) per application, application version, device, and environment. The
fact_activities data is also processed and put into the activities_cube table.
This table has the same structure as the fact_activities table and only contains
records for the last 30 days.

Chapter 6. IBM Worklight Server administration 379

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Each time the above data processing is performed, a timestamp is added to a
proc_report table with the processing result (timestamp and number of processed
entries).

In addition, notification_report table data is also processed to populate the
notification_activities table with consolidated data. This is populated in the
same way as the fact_activities table. Every time the notification_report table
data is processed, an entry is added to the notification_proc_report table, which
is similar to the proc_report table.

The processing interval can be modified by adding the following property to your
worklight.properties file and setting the required interval in seconds.
Default interval value for analytics processing task
wl.db.factProcessingInterval=86400

Predefined BIRT Reports
You can use predefined BIRT reports to generate and display information about
mobile devices and usage.

IBM Worklight generates raw reports, which are stored in an app_activity_report
table. IBM Worklight also includes device usage reports, which are aggregations of
data from the app_activity_report, and are described in “Using raw data reports”
on page 375

380 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

on page 375. Users can view or extract data from the app_activity_report table or
from the device usage reports, and process it using their own business intelligence
systems.

For users with no existing business intelligence analysis system, IBM Worklight
provides a selection of predefined Business Intelligence Reporting Tool (BIRT)
reports. BIRT is a third-party tool, and is not created or supported by IBM. IBM
Worklight provides several *.rptdesign files that contain logic that allows you to
connect to the reports database, pull data from device usage tables, process, and
display the data.

IBM Worklight Customer and Enterprise Editions include the following predefined
BIRT reports:

Table 101. Predefined BIRT reports

Report Name Description Report file name

Active Users Active users in last 30
days.

report_active_users.rptdesign

Daily Hits The daily aggregated
hits for last 30 days.
Any action from the
user/device that
caused a request to the
server is counted as a
hit. This number,
aggregated over a day,
equals the daily hits.

report_daily_hits.rptdesign

Daily Visits The number of
discreet visits by
separate user/device
in last 30 days. All
actions by a
user/device that
caused one or more
requests to the server
within a day is
counted as a visit.

report_daily_visits.rptdesign

Environment
Usage

Application version
and application
environment used:
number of visits that
were recorded in the
last 30 days.

report_environment_usage.rptdesign

New Devices A record of unique
devices that were
connected in the last
30 days.

report_new_devices.rptdesign

Notification
Messages Per
Day

Number of messages
sent each day in the
past 90 days per data
source.

report_notification_messages_per_day.rptdesign

Notification
Messages Per
Source

Total number of
messages that were
sent in the last 90 days
per data source.

report_notification_messages_per_source.rptdesign

Chapter 6. IBM Worklight Server administration 381

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 101. Predefined BIRT reports (continued)

Report Name Description Report file name

License Total
New Device
Count

A record of unique
devices that were
connected over a
specified period (90
days as default), for
licensing purposes.

report_license_total_device_count.rptdesign

There are several ways of viewing predefined reports, by using one of the
following.
v The Eclipse report designer plug-in. For instructions, see “BIRT in Eclipse” on

page 388
v The BIRT Viewer application that is installed on your Tomcat, WebSphere® Full

Profile or WebSphere Liberty Profile application server.

Installing BIRT on Apache Tomcat
You can use the Business Intelligence Reporting Tool (BIRT) to generate and render
report content. You can view this content either by using an Eclipse plug-in, or an
application server and browser.

About this task

The IBM Worklight installation contains a number of predefined BIRT reports.
These reports are configurable XML files that are designed to retrieve and present
data from the IBM Worklight reports database tables. These files have an
.rptdesign extension.

Complete the following steps to set up the BIRT Reports for viewing in an Apache
Tomcat application server. For information about how to set up the BIRT Reports

Figure 61. An example of a report generated by BIRT, in this case report_license_total_device_count.rptdesign

382 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

on other application servers, refer to the BIRT Reports website at Birt Tools.

Procedure
1. Ensure that your Tomcat instance is NOT running.
2. Download the BIRT Reports runtime archive from Birt Report Downloads.
3. Unzip the BIRT Reports runtime archive.
4. Copy the WebViewerExample folder to the webapps folder of your Tomcat server.
5. Rename the WebViewerExample folder to birt (this step is optional, just to

simplify later execution).
6. Copy your database jdbc connector jar file package to the Tomcat \lib folder

(if you are using the same Tomcat instance that is running IBM Worklight
server the jdbc connector package is already in the \lib folder).

7. In some cases, Tomcat might not have enough memory allocated to run BIRT
Reports. To resolve this problem, edit the catalina.bat file under your Tomcat
\bin folder and add the following line at the start of it. You might want to
consult with your IT manager before adding it.

8. Restart your Tomcat.
9. Go to theTomcat manager application at http://your-server/manager/ to

verify that the BIRT Reports application started.

10. Your BIRT Reports viewer application is accessible at http://your-server/
birt/.

11. You can test the BIRT Reports installation by going to http://your-server/
birt/frameset?__report=test.rptdesign&sample=my+parameter.

Chapter 6. IBM Worklight Server administration 383

http://www.eclipse.org/birt/phoenix/
http://download.eclipse.org/birt/downloads/

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Installing BIRT on WebSphere Application Server Liberty
Profile

You can install Business Intelligence Reporting Tools (BIRT) on the WebSphere®

Application Server Liberty Profile.

Procedure
1. Verify that your WebSphere Application Server Liberty Profile instance is not

running.
2. Go to your WebSphere Application Server Liberty Profile folder and create

two folders as follows:
v apps
v libs

3. Locate the jdbc connector driver that you will be using and copy it to the libs
folder.

4. Download the latest release of BIRT runtime from http://
download.eclipse.org/birt/downloads/

5. Extract the downloaded file and go to the extracted folder.
6. Rename WebViewerExample folder to birt.

7. Go to the folder birt\WEB-INF\lib and delete the following files.
v org.apache.xerces*.jar
v org.apache.xml.resolver*.jar
v org.apache.xml.serializer*.jar

Setup the BIRT Viewer application on a Liberty instance by doing the
following.

8. Copy the birt folder to {your-liberty-instance}\usr\servers\{your-
server-name}\apps\

9. Update the server.xml file of your Liberty server profile.
10. Make sure that the JSP feature is enabled.
11. Add an application definition.
12. Add classloader with privateLibrary the definitions configured to point to

your JDBC connector driver.
<server description="new server">

<featureManager>
<feature>jsp-2.2</feature>

</featureManager>

<httpEndpoint id="defaultHttpEndpoint"
host="*"
httpPort="9080"
httpsPort="9443" />

<application id="birt"
name="birt"
type="war"
location="${server.config.dir}/apps/birt"
context-root="/birt">

<classloader delegation="parentLast">
<privateLibrary>

<fileset dir="${server.config.dir}/libs"
includes="mysql-connector*.jar" />

</privateLibrary>
</classloader>

</application>
</server>

384 IBM Worklight V5.0.6

http://download.eclipse.org/birt/downloads/
http://download.eclipse.org/birt/downloads/

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

13. Start your Liberty instance.
14. Browse to http://server:port/birt The BIRT Viewer landing page appears.

15. Click View Example link.
16. If you see the following error message, refresh your page.

17. The BIRT Viewer sample report appears.

Note test.rptdesign in the page URL. You can replace this with the name of
other rptdesign files, as shown here for example:

Chapter 6. IBM Worklight Server administration 385

http://server:port/birt

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Installing BIRT on WebSphere Application Server Full Profile
You can install Business Intelligence Reporting Tools (BIRT) on the WebSphere®

Application Server Full Profile.

Procedure
1. Download the BIRT package and extract the contents.
2. From the folder birt-runtime-version\WebViewerExample\WEB-INF\lib, delete

(or remove) the following packages:
v org.apache.xerces.jar

v org.apache.resolver.jar

v org.apache.serializer.jar

386 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. Use a .war command to package the directory WebViewerExample into a war
file named birt.war

4. Start the WebSphere Server.
5. Open the console web page.
6. Log in.
7. From the console, install BIRT package by installing birt.war from the

runtime download.
8. Click Enterprise Applications in left menu.
9. Click the name of the deployed application, birt_war, to enter the

configuration page.
10. Under the heading Modules, click Manage Modules.
11. In the Module list, click Eclipse BIRT Report Viewer.
12. In the General Properties page, under Class loader order, select Classes

loaded with application class loader first option.
13. Click OK.
14. Save the Master Configuration.

Configuring BIRT Reports For Your Application Server
To use BIRT reports, you must update them with your web application server
settings.

About this task

Before using the BIRT Viewer application to see predefined reports, you must edit
them to adjust the IBM Worklight Reports database settings, and then copy the
reports to a specific folder on the application server.

Procedure
1. Go to your IBM Worklight Server installation folder created by the IBM

Installation Manager.
2. Locate the \report-templates\ folder, which contains a set of .rptdesign files.

Figure 62. Deleting three files

Chapter 6. IBM Worklight Server administration 387

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. Copy all of the files with the .rptdesign extension from the
\report-templates\ folder to your server web applications folder.

4. Edit each .rptdesign file as needed and adjust the <data-sources> element
with the properties of your Worklight reports database.

5. Make sure that BIRT Viewer application is installed and running on your
application server

6. To view or edit a BIRT Report, go to the path http://your-server/birt/
frameset?__report=[report name].rptdesign., where [report name].rtpdesign
represents one of the following files:
v report_active_users.rptdesign

v report_daily_hits.rptdesign

v report_daily_visits.rptdesign

v report_environment_usage.rptdesign

v report_license_total_device_count.rptdesign

v report_new_devices.rptdesign

v report_notification_messages_per_day.rptdesign

v report_notification_messages_per_source.rptdesign

BIRT in Eclipse
BIRT installed in Eclipse displays reports through the Eclipse interface.

You can install Business Intelligence Reporting Tools (BIRT) as either a stand-alone
instance of Eclipse, or as a plug-in added to your existing IBM Worklight Eclipse
instance, or any other instance of Eclipse. Each of these choices has potential
advantages, depending on your needs.

Installing a stand-alone Eclipse instance means having a dedicated tool for creating
reports. This option involves downloading an Eclipse installer that comes with
BIRT included.

388 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Installing BIRT as a plug-in to your existing Eclipse instance that is running IBM
Worklight can provide you with a more integrated interface, for both IBM
Worklight and reports. Use the following links to select the option you want to
install.

Installing BIRT in Stand-alone Eclipse
You can install BIRT including the BIRT Report Designer in a stand-alone instance
of Eclipse as a dedicated reporting tool.

About this task

To use the BIRT Report Designer in a stand-alone, dedicated instance of Eclipse,
follow these steps:

Procedure
1. In your web browser, go to http://www.eclipse.org/downloads/
2. Download the Eclipse IDE for Java and Report Developers

3. Follow the instructions in the installation package. Eclipse as well as the BIRT
components, including the Report Designer, are installed.

Installing BIRT in Worklight Eclipse
You can install BIRT in the instance of Eclipse on which IBM Worklight is running,
and use the Report Designer as an integrated tool.

About this task

To install BIRT in the existing instance of Eclipse that is running Worklight, follow
these steps:

Procedure
1. Click Help > Install new software

2. In the Work with... dropbox, select http://download.eclipse.com/release/
indigo Note that you might have a different Eclipse version installed,
replace indigo with juno or another version as needed.

3. Select Business Intelligence Reporting and Charting

4. Click Next and follow the installation instructions. When the installation is
completed, you must install the reports.

5. Click Window > Open perspective > Other...

6. Select the Report Design perspective
7. Click File > New > Project

8. Select Report project and click Next

9. Enter a project name and click Finish

10. Using the import command, go to your IBM Worklight Server installation
folder created by IBM Installation Manager.

11. Locate the \report-templates\ folder, which contains a set of .rptdesign files.
12. Import all files with the suffix .rptdesign from the \report-templates\ folder

into the Eclipse project. Eclipse comes with a bundled driver for Apache
Derby database. If you use another database type, you must add a JDBC
connector driver manually.

13. Click Manage Drivers...

14. Click Add... and add the JDBC connector driver package to communicate with
your Worklight reports database

Chapter 6. IBM Worklight Server administration 389

http://www.eclipse.org/downloads/

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

15. Select Driver Class and adjust the rest of your database settings
16. Click Test Connection... to validate that database settings are correct.

Viewing BIRT reports in Eclipse
With BIRT in Eclipse, you can view reports through the Eclipse interface.

About this task

To view BIRT reports in Eclipse, follow these steps:

Procedure
1. Click the black arrow next to View Report.

2. Select the output format for your report
3. See the report.

Notification reports database schema
The IBM Worklight platform uses a database schema to store the notification
reports data derived from the raw data.

390 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

A notification activities table is populated to simplify the use of report
construction. This notification activities table, NOTIFICATION_ACTIVITIES, is
populated as part of the analytics setup.

High availability
High availability is provided through clustering, the ability to provide multiple
IBM Worklight Servers acting together.

Multiple IBM Worklight Servers enable horizontal scaling of the software as well as
the prevention of a single point of failure.

Clustering
The IBM Worklight Server creates a cluster by deploying multiple servers that
share the database instance.

The basic setup consists of the load balancer, the cluster nodes, and a database that
is shared by the cluster nodes.

All cluster nodes are identical, that is, the content of the installation folder is the
same in all nodes. Cluster nodes do not synchronize with each other at run time.
All shared runtime data is in the database so that database changes made through
one node are immediately available to all other nodes. The exception is the
customization WAR, which is not held in the database, and each node must have its
own copy and can be secured individually. With WebSphere Application Server
Network Deployment, you can use built in clustering support for distributing the
IBM Worklight customization WAR (and the Worklight Shared library). For more
information, see the IBM WebSphere Application Server V8 user documentation.

IBM Worklight Servers can run on a VMware virtual machine. In such cases, one
machine image is created and then deployed again and again.

IBM Worklight is stateful. It caches session state within the server memory. The
result is that if one Worklight Server is taken offline, active user sessions are lost
and the client is asked to log on again.

Figure 63. NOTIFICATION_ACTIVITIES schema

Chapter 6. IBM Worklight Server administration 391

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Configuring the load balancer
You can use hardware-based or software-based load balancers.

If you do not want to use a hardware-based load balancer, you can use a simpler,
software-based load balancer or reverse proxy such as the Apache Tomcat web
server. Any load balancer that can support the following features is adequate:
v Sticky session (recommended configuration)
v Reverse proxy capabilities
v Optional: SSL Acceleration

Configuration of the load balancer depends on the vendor and is not covered in
this document. It is common to define the range of the node addresses so that they
can be added or deleted dynamically.

Adding a node to the cluster
Follow the instructions for creating an IBM Worklight Server to add a node to the
cluster.

About this task

You can add a node to the cluster, by following the instructions for creating an
IBM Worklight Server:

Procedure
1. Add the IP address of the node to the load balancer or use an existing address

from a range that was pre-allocated to IBM Worklight Servers.
2. Install the IBM Worklight Server.
3. Apply the customization WAR.

Upgrading a production cluster
Upgrading a production cluster is part of the upgrade procedure when upgrading
your IBM Worklight Server. The client-server protocol supported by the IBM
Worklight V5.0 Server is different from the one supported by the IBM Worklight
V4.2 Server and, as a result, an IBM Worklight V5.0 Server cannot service
applications that are built on top of IBM Worklight V4.2.

About this task

Before you upgrade a production cluster, you must choose how to migrate users
from V4.2-based to V5.0-based apps from the following options:

Option 1
You can maintain two server clusters in production:
v A V5.0 server cluster for the V5.0-compatible apps.
v A V4.2 server cluster for the V4.2-compatible apps.

You must then remote disable the V4.2-compatible apps on the V4.2 server,
directing users to download the V5.0-compatible apps.

Option 2
You can upload both the original V4.2-compatible apps as well as the
V5.0-compatible apps to the V5.0 server.

You must then remote disable the V4.2-compatible apps.

392 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

You must then configure your reverse proxy to redirect or forward V4.2
requests to the V5.0 server, so that requests from devices running
V4.2-compatible apps reach the V5.0 server.

Migrating your apps from V4.2 to V5.0 includes updating the native IBM
Worklight libraries that are packaged with your applications. If you distribute your
iOS applications via the Apple app store, you must certify the new
V5.0-compatible version of your apps before you can make them available for
public use. To do so, you must make a V5.0 production server accessible to the
Internet so that your apps can be run and certified. This V5.0 server must be
exposed through a different public URL than the V4.2 servers, to avoid confusion
between the two.

To upgrade a production cluster, complete the following procedure:

Procedure
1. Install 5.0 server cluster.
2. Duplicate the 4.2 database and migrate it to 5.0. Under <Worklight

Installation Directory>/WorklightServer/databases, run
upgrade�Worklight-mysql.sql or upgrade�Worklight�oracle.sql, according to
the type of database you are using.

3. Migrate the reports database. Under <Worklight Installation
Directory>/WorklightServer/databases, run upgrade�Worklightreports-
mysql.sql or upgrade�Worklightreports-oracle.sql, according to the type of
database you are using.

4. Install the production customization.
5. Deploy old-apps so that you can remote disable them.
6. Deploy new-apps and new-adapters.

At this point you are having two server clusters: One of 4.2 and another one of
5.0.

7. If you chose Option 1 above for migrating users from V4.2-based to V5.0-based
apps, optionally remote disable the 4.2 apps in the 4.2 server, directing users to
the new 5.0-compatible apps.

8. If you chose Option 2 above for migrating users from V4.2-based to V5.0-based
apps, remote disable the old-apps in the 5.0 server and configure the reverse
proxy to forward or redirect requests to 4.2 server to the 5.0 server. The
upgrade procedure is now complete.

Firewalls
Firewalls can be configured at various layers of the IBM Worklight architecture.

Firewalls in front of an IBM Worklight Server use the typical configuration.

Special attention must be given to a firewall layer between the IBM Worklight
servers and the IBM Worklight database.
v IBM Worklight Server employs database connection pooling. Firewalls may

detect idle database connections and terminate them resulting in unexpected
behavior.

v Firewalls limit the number of connections allowed. This is done to prevent
Denial of Service (DoS) attacks. However, with multiple clustered IBM Worklight
servers, the number of connections might be higher than usual.

Chapter 6. IBM Worklight Server administration 393

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Disaster Recovery Site
IBM Worklight supports the creation of a separate disaster recovery site that
becomes operational if the original site goes down.

A disaster recovery site is a second, physically separate IT center on which a copy
of the IT systems exists and springs into operation if the original site is down. IBM
Worklight has such a site for some of its customers.

Within the site, IBM Worklight provides redundancy at every level: compensating
load balancers, multiple IBM Worklight servers that scale linearly, and database
redundancy through Oracle RAC. Some customers prefer to provide another level
of redundancy by using a disaster recovery site.

The key administrative factors for such a site are:
v Architecture
v Data mirroring from master to backup site
v Switching to back up site on disaster

Architecture
The architecture of the backup site is a copy of the original site. Special
care must be taken to:
v Provide access to all corporate back-end systems.
v Create a switch that transfers incoming requests from master to backup

site.

IBM Worklight relies on one single database, so an active-active
configuration of master and back-up sites is not encouraged (unless you
have the required bandwidth to perform database WAN replication).

Data mirroring
For the backup site to work, data on the master site must be mirrored to
the backup on a regular basis:

Table 102. Data mirroring

Component Description Mirror frequency

IBM Worklight Database All tables must be mirrored
except for report tables and
cache tables, which are
relatively small in size.

Highly dependent on
implementation and can
range from few minutes to
24 hours. For further details
contact software support.

IBM Worklight Software,
customization, and content

Any change in IBM
Worklight software,
customization, or content
must also be installed on the
mirror servers.

As it occurs.

Switching to backup site
When you switch to the backup site, some information might be lost:
v All clients lose context and disconnect. In the case of an authenticated

app, the user is prompted to log in again.
v Report information is lost (unless previously mirrored).
v Cache is lost. If Cache was implemented for various queries, an

additional server fetch is required to fill cache.

394 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Switching back to Master Site
Before you switch back to the master site, you must mirror the database
back to the master site.

Important: The success of a recovery site is in the details. To ensure the
successful functioning of such a site, you must develop and follow a strict
written procedure, which you test on a regular basis.

Push Notification
The IBM Worklight unified push notification mechanism enables sending mobile
notifications to mobile phones.

Notifications are sent through the vendor infrastructure. For example, iPhone
notifications are sent from the IBM Worklight Server to specialized Apple servers
and from there to the relevant phones.

Note: Push notification currently works for iOS, Android, and Windows Phone 8
only. SMS push notifications are supported on iOS, Android, Windows Phone 7.5,
Windows Phone 8, and Blackberry devices that support SMS functions.

Proxy settings

Use the proxy settings to set the optional proxy through which notifications are
sent to APNS and GCM. You can set the proxy by setting the properties
push.apns.proxy.* and push.GCM.proxy.* in worklight.properties.

For further information about these and other settings, see "Push Notification
Settings" in: “IBM Worklight properties” on page 406.

Architecture

Unlike other IBM Worklight servers, the push server requires outbound
connections to Apple, Google, and Microsoft servers using ports defined by these
companies.

Figure 64. Push notification mechanism

Chapter 6. IBM Worklight Server administration 395

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

When running a cluster of application servers, only one node will actually send
push messages to Apple, Google, and Microsoft servers. This server is selected
randomly.

The push notification console
The Push Notifications tab in the IBM Worklight Console provides you with a
quick view of the various entities in the push notification chain.

The left column displays the list of data sources that are configured in your IBM
Worklight Server, including the number of users that are subscribed to notifications
from each source.

The right column displays deployed applications, which can receive push
notifications. For each application, the push notification services available for this
application are also displayed. The console displays the number of notifications
that are retrieved by an event source and sent to each application since system
startup. It also displays errors that are related to connectivity to the push
notification services.

Figure 65. Push notifications in IBM Worklight Console

396 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Administrators can forcibly unsubscribe existing SMS subscriptions by clicking
Unsubscribe devices. The Unsubscribe SMS Devices window opens, and the
administrator enters the mobile phone numbers to be unsubscribed.

Note: It is possible to have two subscriptions for the same phone number and user
name; one created by using the device and one created by using the subscribe SMS
servlet. If there are two subscriptions for the same phone number and user name,
unsubscription by using the IBM Worklight Console unsubscribes both
subscriptions.

Figure 66. SMS push notifications in IBM Worklight Console

Figure 67. Unsubscribe existing SMS subscriptions

Chapter 6. IBM Worklight Server administration 397

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Subscribe SMS servlet
Subscription, and unsubscription, to SMS notifications can be performed by
making HTTP GET requests to the subscribe SMS servlet. The subscribe SMS
servlet can be used for SMS subscriptions without the requirement for a user to
have an app installed on their device.

Enter the following URL to access the subscribe SMS servlet:
http://<hostname>:<port>/<context>/subscribeSMS

This URL can be used to subscribe and unsubscribe.

You must create an application and an event source within an adapter and deploy
them on the IBM Worklight Server before you make calls to the subscribe SMS
servlet. See “Method WL.Server.createEventSource” on page 286 for information
about creating an event source.

Table 103. Subscribe SMS servlet URL parameters

URL parameter URL parameter description

option Optional string. Subscribe or unsubscribe
action to perform. The default option is
subscribe. If any non-blank string other
than subscribe is supplied, the unsubscribe
action is performed.

eventSource Mandatory string. The name of the event
source. The event source name is in the
format AdapterName.EventSourceName.

alias Optional string. A short ID defining the
event source during subscription. This ID is
the same ID as provided in
WL.Client.Push.subscribeSMS.

phoneNumber Mandatory string. User phone number to
which SMS notifications are sent. The phone
number can contain digits (0-9), plus sign
(+), minus sign (-), and space (�) characters
only.

userName Optional string. Name of the user. If no user
name is provided during subscription, an
anonymous subscription is created by using
the phone number as the user name. If a
user name is provided during subscription,
it must also be provided during
unsubscription.

appId Mandatory string for subscribe. The ID of
the application that contains the SMS
gateway definition. The application ID is
constructed from the application name,
application environment, and application
version. For example, version 1.0 of Android
application SMSPushApp has appId =
SMSPushApp-android-1.0.

Note: If any parameter value contains special characters, this parameter must be
encoded by using URL encoding, also known as percent encoding, before the URL
is constructed. Parameter values containing only the following characters do not
need to be encoded:

398 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

a-z, A-Z, 0-9, period (.), plus sign (+), minus sign (-), and underscore (_)

Subscriptions that are created by using the subscribe SMS servlet are independent
of subscriptions that are created by using a device. For example, it is possible to
have two subscriptions for the same phone number and user name; one created by
using the device and one created by using the subscribe SMS servlet. If there are
two subscriptions for the same phone number and user name, unsubscription by
using the subscribe SMS servlet unsubscribes only the subscription that is made
through the subscribe SMS servlet. However, unsubscription by using the IBM
Worklight Console unsubscribes both subscriptions.

Security

It is important to secure the subscribe SMS servlet because it is possible for entities
with malicious intent to call the servlet and create spurious subscriptions. By
default, IBM Worklight protects static resources such as the subscribe SMS servlet.
The authenticationConfig.xml file is configured to reject all requests to the
subscribe SMS servlet with a rejecting login module. To allow restricted access to
the subscribe SMS servlet, IBM Worklight administrators must modify the
authenticationConfig.xml file with appropriate authenticator and login modules.

For example, the following configuration in the authenticationConfig.xml file
ensures only requests with a specific user name in the header of the HTTP request
are allowed:
<staticResources>
<resource id="subscribeServlet" securityTest="SubscribeServlet">
<urlPatterns>/subscribeSMS*</urlPatterns>
</resource>
...
</staticResources>

<securityTests>
<customSecurityTest name="SubscribeServlet">
<test realm="SubscribeServlet" isInternalUserID="true"/>
</customSecurityTest>
...
</securityTests>

<realms>
<realm name="SubscribeServlet" loginModule="headerLogin">
<className>com.worklight.core.auth.ext.HeaderAuthenticator</className>
</realm>
...
</realms>

<loginModules>
<loginModule name="headerLogin">
<className>com.worklight.core.auth.ext.HeaderLoginModule</className>
<parameter name="user-name-header" value="username"/>
</loginModule>
...
</loginModules>

Backup and recovery
You can back up the customization and the content (adapters and applications)
outside the IBM Worklight instance, for example in a source control system.

Chapter 6. IBM Worklight Server administration 399

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

It is advisable to back up the IBM Worklight database as-is. When Reports are
enabled the database can be quite large. Consider the benefits of backing them up
separately. Report tables can be configured to store on a different database
instance.

Logging and monitoring mechanisms
IBM Worklight reports errors, warnings, and informational messages into a log file.
The underlying logging mechanism varies by application server.

Worklight Server

For Worklight Server, logging models vary according to the server platform. For
more information, including the location of the log files, see the documentation for
the relevant platform, as shown in the following table.

Table 104. Documentation for different server platforms

Server platform Location of documentation

Apache Tomcat http://tomcat.apache.org/tomcat-7.0-doc/
logging.html#Using_java.util.logging_(default)

WebSphere Application
Server Version 7.0

http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/topic/
com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html

WebSphere Application
Server Version 8.0

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/
com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html

WebSphere Application
Server Version 8.5 Full
Profile

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/
com.ibm.websphere.nd.multiplatform.doc/ae/
ttrb_trcover.html

WebSphere Application
Server Version 8.5 Liberty
Profile

http://publib.boulder.ibm.com/infocenter/radhelp/v8r5/
topic/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/
rwlp_logging.html

Worklight Studio

Worklight Studio uses the standard JDK logging model. To use logging in
Worklight Studio, update a file called development.logging.properties. The
development.logging.properties file is created in the WorklightServerHome/conf
directory of your workspace when you create a project. This file contains default
logging parameters, held as name-value pairs in the standard JDK format. To use
logging in Worklight Studio, update these parameters. When a project is activated,
any properties that are set in the development.logging.properties file are used to
override the default logging properties.

When a project is active, log files are written to the WorklightServerHome/project/
logs directory, where project is the name of your project. If no projects are active,
the log files are written to the WorklightServerHome/logs directory. Two log files
are written: server.log and audit.log. The server.log file includes all server
messages and the audit.log file includes all adapter procedure calls, if audit=true
is set in the adapter definition.

Every message that is written to the server.log and audit.log files is also written
to the Studio console. Studio messages are also written to the Studio console. In
the case of an exception in the Studio, the exception reason is written to the studio
console and a full stack trace to an external .log file in the eclipse_workspace\
.metadata\.log directory, where eclipse_workspace is the Eclipse workspace folder.

400 IBM Worklight V5.0.6

http://tomcat.apache.org/tomcat-7.0-doc/logging.html#Using_java.util.logging_(default)
http://tomcat.apache.org/tomcat-7.0-doc/logging.html#Using_java.util.logging_(default)
http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.nd.multiplatform.doc/ae/ttrb_trcover.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.nd.multiplatform.doc/ae/ttrb_trcover.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.nd.multiplatform.doc/ae/ttrb_trcover.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8r5/topic/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_logging.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8r5/topic/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_logging.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8r5/topic/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_logging.html

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To check for errors, look first at the logs for the project and if none are found then
look at the logs in eclipse_workspace\WorklightServerHome\logs. Additionally,
look in the .log file for exceptions that come from the studio.

Log monitoring tools

For Apache Tomcat, you can use industry standard log file monitoring tools such
as Splunk to monitor logs and highlight errors and warnings.

For WebSphere Application Server, use the log viewing facilities that are described
in the information centers that are listed in the table in the Worklight Server
section.

Back-end connectivity

To enable trace to monitor back-end connectivity, see the documentation for your
server platform in the table in the Worklight Server section. The packages to be
enabled for trace are com.worklight.adapters and com.worklight.integration. Set
the log level to FINEST for each package.

Audit logs

To write audit log information, use the standard facilities of java.util.logging. Use
the audit category.

Login and authentication issues

To diagnose login and authentication issues, enable the package
com.worklight.auth for trace and set the log level to FINEST.

Vitality queries
Use IBM Worklight vitality queries to determine your server vitality.

You generally use the IBM Worklight vitality queries from a load balancer or from
a monitoring app (for example, Patrol).

You can run vitality queries for the server as a whole, for a specific adapter, for a
specific app, or for a combination of. The following table shows some examples of
vitality queries.

Table 105. Examples of queries that help determine server vitality

Query Purpose

http://<server>:<port>/
<publicWorkLightContext>/ws/rest/
vitality

Checks the server as a whole.

http://<server>:<port>/
<publicWorkLightContext>/ws/rest/
vitality?app=MyApp

Checks the server and the MyApp application.

http://<server>:<port>/
<publicWorkLightContext>/ws/rest/
vitality?app=MyApp&adapter=MyAdapter

Checks the server, the MyApp application, and
the MyAdapter adapter.

Note: Do not include the /<publicWorkLightContext> part of the URL if you use
IBM Worklight Developer Edition. You must add this part of the URL only if

Chapter 6. IBM Worklight Server administration 401

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Worklight Server is running on another application server, such as Apache Tomcat
or WebSphere Application Server (full profile or Liberty profile).

Vitality queries return an XML content that contains a series of <ALERT> tags, one
for each test.

Example query and response

By running the http://<server>:<port>/ws/rest/vitality?app=MyApp query, you
might have the following successful response, with an <ALERT> tag for each of the
two tests:
<ROOT>

<ALERT>
<DATE> 2011-05-17T15:31:35.583+0300 </DATE>
<EVENTID>0</EVENTID>
<SUBJECT>SRV</SUBJECT>
<TYPE>I</TYPE>
<COMPUTER>worklight.acme.com</COMPUTER>
<DESCRIPTION>Server is running</DESCRIPTION>

</ALERT>
<ALERT>

<DATE> 2011-05-17T15:31:35.640+0300 </DATE>
<EVENTID>0</EVENTID>
<SUBJECT>APPL</SUBJECT>
<TYPE>I</TYPE>
<COMPUTER>worklight.acme.com</COMPUTER>
<DESCRIPTION>Application 'MyApp’ is deployed</DESCRIPTION>

</ALERT>
</ROOT>

Return values

The following table lists the attributes that might be returned, and their possible
values.

Table 106. Return values and values

Return attribute Possible values

DATE Date value in JavaScript™ format

EVENTID 0 for the running server, deployed adapter,
or deployed application

1 for not deployed adapter

2 for not deployed application

3 for malfunctioning server

SUBJECT SRV for Worklight Server

ADPT for adapter

APPL for application

TYPE I – valid

E – error

COMPUTER Reporting computer name

DESCRIPTION Status description in plain text

402 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The returning XML contains more attributes, which are undocumented constants
that you must not use.

Routing logging to Windows event log
If you are using Apache Tomcat on Windows, you can change the log output
destination by configuring Windows Event Viewer.

Procedure
1. If it does not exist, create the file TOMCAT_DIRECTORY/bin/setenv.bat, where

TOMCAT_DIRECTORY is the directory in which Tomcat is installed.
2. Edit the setenv.bat file to include the following line:

CLASSPATH=WORKLIGHT_DIR/WorklightServer/logging/worklight-windows-event-
viewer-logging.jar, where WORKLIGHT_DIR is the directory in which you
installed Worklight.

3. Modify TOMCAT_DIRECTORY/conf/logging.properties to set up Windows Event
Viewer, by including the following lines:
handlers = 1catalina.org.apache.juli.FileHandler, 2localhost.org.apache.juli.FileHandler,
3manager.org.apache.juli.FileHandler, 4host-manager.org.apache.juli.FileHandler,
java.util.logging.ConsoleHandler, com.worklight.core.logging.windows.WindowsEventViewerHandler

.handlers = 1catalina.org.apache.juli.FileHandler, java.util.logging.ConsoleHandler

com.worklight.handlers = com.worklight.core.logging.windows.WindowsEventViewerHandler
com.worklight.core.logging.windows.WindowsEventViewerHandler.level = ALL
com.worklight.core.logging.windows.WindowsEventViewerHandler.formatter = java.util.logging.SimpleFormatter

4. Modify the value of your system variable PATH to include the path to the
Worklight .dll files. You can find the .dll files in the following folders,
depending on your system

WORKLIGHT_DIR/WorklightServer/logging/bin.windows-x86/IBMEventLog.dll

WORKLIGHT_DIR/WorklightServer/logging/bin.windows-x86/
EventLogCategories.dll

WORKLIGHT_DIR/WorklightServer/logging/bin.windows-x64/IBMEventLog.dll

WORKLIGHT_DIR/WorklightServer/logging/bin.windows-x64/
EventLogCategories.dll

5. Create the registry key EventMessageFile in the registry folder
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\eventlog\
Application\IBMEventLog. The value of the key is the full path to
EventLogCategories.dll.

Results

Events are logged in the Windows Event Viewer.

Enabling trace for adapters in an Eclipse-hosted server
To enable trace for adapters that are hosted in the Worklight Server embedded in
Eclipse, you must modify the development.logging.properties file.

Procedure
1. In the WorklightServerHome/conf directory of your workspace, open the

development.logging.properties file.
2. Uncomment the following lines:

. com.worklight.level = FINE

. java.util.logging.FileHandler.level = FINE

Chapter 6. IBM Worklight Server administration 403

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Results

When you use logger methods, the messages are then sent to the Worklight
console view in Eclipse.

Note: A large amount of other information might also be sent. To clearly identify
your debug messages, mark them with identifiers.

Optimizing and tuning of IBM Worklight Server
Memory allocation is performed on the Java instance of the application server.

For best results, you should install IBM Worklight Servers on a 64-bit server.

You must set the required memory size of the application server:
v Liberty: set JAVA_ARGS in <install_dir>/Worklight/server/wlp/bin/

securityUtility.
v WebSphere Application Server: Log in to the admin console. Go to Servers >

Server types > WebSphere application servers: choose each server and set Java
memory settings under Java Process definition > JVM arguments.

v Apache Tomcat: find the catalina script and set JAVA_OPTS to inject memory.

For information about how to calculate memory size, see the following documents:
v Scalability and Hardware Sizing (PDF)
v Hardware Calculator (XLS)

Troubleshooting Worklight Server
You can troubleshoot to locate the server and databases on Windows 8, Windows
7, and Windows XP, or to find the cause of installation or database creation failure.

Troubleshooting to locate the server and databases on
Windows

You can troubleshoot to locate the server and databases on Windows 8, Windows
7, and Windows XP.

About this task

If you cannot locate the directories even though the documentation states that the
server and databases are located in the C:\ProgramData\IBM\Worklight directory
for Windows 8 and Windows 7 and the C:\Documents and Settings\All
Users\Application Data\IBM\Worklight directory for Windows XP, complete the
following procedure to troubleshoot this problem:

Procedure
1. Click Tools > Folder Options dialog.
2. Select the View panel and enable the visibility of hidden files and folders. The

ProgramData folder in Windows 8 and Windows 7 and the Application Data
folder in Windows XP are hidden folders and visibility must be enabled to see
them.

Troubleshooting to find the cause of installation failure
You can troubleshoot to find the cause of installation failure.

404 IBM Worklight V5.0.6

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/Scalability_and_Hardware_Sizing.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v506/Hardware_Calculator.xls

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

If installation failed but the cause is not obvious, you can troubleshoot by
completing the following procedure:

Procedure

See the install.log file in the installation directory. On Windows systems, if the
default installation location was chosen, the directory is C:\Program
Files\IBM\Worklight\. This file contains details about the installation process.

What to do next

If you still cannot determine the cause of installation failure, you can use the
manual installation instructions to continue making progress. See “Manually
configuring the application server” on page 342.

Failed to create the DB2 database
An incompatible database connection mode might result in failure to create the
DB2 database.

About this task

Use this procedure if the following message is displayed when you attempt to
create a DB2 database:

"Creating database <WL_DB> (this may take 5 minutes) ... failed: Cannot
connect to database <WL_DB> after it was created:
com.ibm.db2.jcc.am.SqlException: DB2 SQL Error: SQLCODE=-1035,
SQLSTATE=57019, SQLERRMC=null, DRIVER=<driver_version>"

Procedure
1. Wait a few minutes for the current DB2 database connections to close, and then

click Back followed by Next to check if the issue is solved.
2. If the problem persists, contact your database administrator to solve the

database connection issue that is documented on the following web page:
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=
%2Fcom.ibm.db2.luw.messages.sql.doc%2Fdoc%2Fmsql01035n.html.

Installation blocked by DB2 connection errors
An incorrect DB2 JDBC driver can prevent connection to the database, and block
the IBM Worklight Server installation.

About this task

During installation, the IBM Worklight Server installer attempts to ensure that the
specified databases exist. If the database is present but attempting to access it
produces an error, the Worklight Server installer blocks the Next button, and
prevents the user from moving forward to complete the installation, displaying a
message similar to the following:

Cannot access database: WRKLGHT. Details: com.ibm.db2.jcc.am.io:
[jcc][t4][2057][11264][4.7.85] The application server rejected

Chapter 6. IBM Worklight Server administration 405

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.messages.sql.doc%2Fdoc%2Fmsql01035n.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.messages.sql.doc%2Fdoc%2Fmsql01035n.html

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

establishment of the connection. An attempt was made to access a database,
which was either not found or does not accept transactions.
ERRORCODE=-4499, SQLSTATE=08004

This error can be caused by an incorrect or outdated DB2 JDBC driver.

Procedure
1. If you receive this error, verify the current DB2 JBDC driver.
2. Newer fix packs of the DB2 JDBC driver may solve the issue. These fix pack

drivers are available from DB2 JDBC Driver Versions.

IBM Worklight properties
You can check and change the settings configured by the IBM Worklight Installer
during installation in the worklight.properties file.

IBM Worklight contains many configuration options that are important for the
production environment. These options are stored in the customization WAR file
under worklight.properties, which is located in the <Worklight Root
Directory>\conf directory.

Configuring the IBM Worklight Server location
You can change the settings that are normally configured by the IBM Worklight
Installer during installation if necessary.

To configure the IBM Worklight Server location you must set the values of the
following properties in the worklight.properties file:

Properties for configuring the IBM Worklight Server location found in the
worklight.properties file

Property Key Property Value

publicWorklightHostname The IP address or host name of the
computer running IBM Worklight.

If the IBM Worklight Server is behind a
reverse proxy, the value is the IP address or
host name of the reverse proxy.

This property must be identical for nodes
within the same cluster.

Default: IP address of current server.

publicWorklightPort The port for accessing the IBM Worklight
Server.

If the IBM Worklight Server is behind a
reverse proxy, the value is the port for
accessing the reverse proxy.

This property must be identical for nodes
within the same cluster.

Default: Same as local.httpPort.

406 IBM Worklight V5.0.6

http://www.ibm.com/support/docview.wss?uid=swg21363866

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Properties for configuring the IBM Worklight Server location found in the
worklight.properties file

Property Key Property Value

publicWorklightProtocol The protocol for accessing the IBM
Worklight Server.

The valid values are HTTP and HTTPS. If the
IBM Worklight Server is behind a reverse
proxy, the value is the protocol for accessing
the reverse proxy.

This property must be identical for nodes
within the same cluster.

Default: HTTP.

IBM Worklight database setup
IBM Worklight uses defaults to access the IBM Worklight database. You can use a
set of property keys to change the settings.

JDBC-based properties

The worklight.properties file might contain one of two methods to connect to a
database: old fashioned JDBC url or the newer JNDI resource name method. You
must not mix the two methods in one file.

Property keys and values for JDBC-based properties

Property Key Property Value

wl.db.username IBM Worklight database user name.

Default: Worklight

wl.db.type The database vendor. Options include: DB2,
MYSQL, ORACLE, HSQL, DERBY

Default: HSQL

wl.db.password IBM Worklight database password.

Default: Worklight

wl.db.driver The class that implements a JDBC driver for
each vendor. For example:

MySQL: com.mysql.jdbc.Driver

Oracle: oracle.jdbc.OracleDriver

DB2: com.ibm.db2.jcc.DB2Driver

Derby:
org.apache.derby.jdbc.EmbeddedDriver

wl.db.reports-url(*) JDBC path to IBM Worklight Reports
database

Default: refers to IBM Worklight database

wl.db.reports-username(*) IBM Worklight Reports database user name.

Default: refers to IBM Worklight database

Chapter 6. IBM Worklight Server administration 407

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Property keys and values for JDBC-based properties

Property Key Property Value

wl.db.reports-password(*) IBM Worklight Reports database password

Default: refers to IBM Worklight database

wl.reports.db.type(*) The database vendor. Options include: DB2,
MYSQL, ORACLE, HSQL, DERBY

Default: HSQL

Note: (*) By default all IBM Worklight report mechanisms use a single reports
database. The reports database is set to be the same database as the IBM Worklight
database. This default can be changed by setting the parameters in the following
table. Enabling Raw Data Reports

JNDI-based properties

Property keys and values for JNDI-based properties

Property Key Property Value

wl.db.jndi.name JNDI name for the Worklight database

wl.reports.db.jndi.name(*) JNDI name for the Worklight reports
database

wl.db.type The database vendor. Options include: DB2,
MYSQL, ORACLE, HSQL, DERBY

Default: HSQL

wl.reports.db.type (*) The database vendor. Options include: DB2,
MYSQL, ORACLE, HSQL, DERBY

Default: HSQL
Note: Must be identical to wl.db.type value

Note: (*) By default all IBM Worklight reports mechanisms use a single reports
database. The reports database is set to be the same database as the IBM Worklight
database, but it is possible to change this default.

Protecting IBM Worklight Console
You can protect IBM Worklight Console by defining user credentials required to
access it.

The user credential settings that you define to protect the IBM Worklight Console
can be encrypted as described in “Storing properties in encrypted format” on page
411.

Property Key Property Value

console.username Name of the user that can access the
Console

console.password User password

408 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

In addition to defining these two properties, configure the
authenticationConfig.xml file, located under <Worklight Root
Directory>\server\conf. This file is described in “The authentication configuration
file” on page 140

Push notification settings
Use the following GCM and APNS proxy settings for Android and iOS push
notification respectively.

Push notification settings

GCM proxy settings Value

push.gcm.proxy.enabled=false Shows whether Google GCM must be
accessed through a proxy. Default is false.

push.gcm.proxy.protocol= Can be either http or https.

push.gcm.proxy.host= GCM proxy host. Negative value means
default port.

push.gcm.proxy.port=-1 GCM proxy port. Use -1 for the default
port.

push.gcm.proxy.user= Proxy user name, if the proxy requires
authentication. Empty user name means no
authentication.

push.gcm.proxy.password= Proxy password, if the proxy requires
authentication.

APNS proxy settings Value

push.apns.proxy.enabled Shows whether APNS must be accessed
through a proxy. Default is false

push.apns.proxy.type Must be SOCKS

push.apns.proxy.host APNS proxy host

push.apns.proxy.port APNS proxy port

SSL certificate keystore setup
Mobile applications often connect to multiple back-end systems. Some back-end
systems require access through an HTTP adapter, and each back-end system can
require a different SSL certificate for secure communication using HTTPS. These
SSL certificates are stored in a keystore that is configured to the IBM Worklight
Server by using property keys.

IBM Worklight provides a default keystore. You can choose to use this default
keystore or replace it with your own keystore.

To configure an SSL certificate keystore, you must set the values of the following
property keys in the worklight.properties file:

Chapter 6. IBM Worklight Server administration 409

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Properties for configuring an SSL certificate keystore found in the worklight.properties file

Property Key Property Value

ssl.keystore.path SSL certificate keystore location.

Default: conf/default.keystore.

ssl.keystore.path can be configured in 2
ways:

v By using the relative path, for example,
ssl.keystore.path=conf/
default.keystore, where the root
directory is <Worklight Root
Directory>\server\.

v By using the absolute path, for example,
ssl.keystore.path=/opt/wl/
default.keystore for UNIX, or
C:\\wl\\default.keystore for Windows.

ssl.keystore.type SSL certificate keystore type.

Valid keystore types:

v jks

v PKCS12

Default: jks.

ssl.keystore.password SSL certificate keystore password.

Default: worklight.

For example:
############################
SSL-Security
############################
ssl.keystore.path=/opt/worklight/sslcertificates.keystore
ssl.keystore.type=PKCS12
ssl.keystore.password=worklight

In addition to defining these three properties, configure the HTTP adapter XML
file, which is located under <Worklight Root Directory>\adapters\<HTTP adapter
name>. This file is described in “The adapter XML File” on page 99.

If you use SSL with mutual authentication between the IBM Worklight Server and
a back-end system, be aware of the following requirement:
v Define an alias and password for the private key of the keystore where the SSL

certificate is stored. The alias and password are defined in the
<connectionPolicy> element of the HTTP adapter XML file, adaptername.xml.
The <sslCertificateAlias> and <sslCertificatePassword> subelements are
described in “The <connectionPolicy> element of the HTTP adapter” on page
103.

Note: The password that is specified in ssl.keystore.password is not the same
password that is specified in <sslCertificatePassword>. ssl.keystore.password
is used to access the keystore itself. <sslCertificatePassword> is used to access
the correct SSL certificate within the keystore.

410 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Miscellaneous Settings
Configure the serverSessionTimeout, bitly.username, and bitly.apikey
parameters.

Property keys and values for serverSessionTimeout, bitly.username, and bitly.apikey
parameters.

Property Key Property Value

serverSessionTimeout Client inactivity timeout, after which the
IBM Worklight session is invalidated.

Default is 10 minutes.

bitly.username User name for accessing the bit.ly API for
creating a shortened URL for mobile web
apps through IBM Worklight Console.

bitly.apikey The bit.ly API Key.

Storing properties in encrypted format
You must encrypt the properties that are too sensitive to be written in clear text
within the properties file.

Storing properties in encrypted format

You can keep properties contained in worklight.properties either in open or in
encrypted form.

An encrypted property is determined by a suffix .enc on its name, for example:
console.password.enc=TYakEHRba3rIU7pNjxtDxoAdqijKIEt7cy4mCr0iaEj0rY08ODK00yqR

The IBM Worklight configuration is accessed for a property. If the property is not
found, but the same encrypted property (with .enc suffix) is defined, IBM
Worklight automatically decrypts the value and returns it to the caller.

Storing the master key

All of the encrypted values use the same secret key, which is stored in the special
variable called worklight_enc_password. This variable is defined as an operating
system environment variable:
v On Windows systems: Set an environment variable under the user running the

IBM Worklight Server. When running under a Windows NT service, define the
password as a service property by using the registry editor. For more
information, see the Microsoft support website.

v On Linux systems: Set the environment variable.

Encryption

To encrypt IBM Worklight properties on Windows systems, use the encrypt.bat
utility under < worklight_install_dir>/WorklightServer.

This utility accepts a file that contains the properties to be encrypted and the
encryption password. The utility outputs the encrypted values to the same file (so
that sensitive data is deleted).

On Linux systems, use the encrypt.sh utility.

Chapter 6. IBM Worklight Server administration 411

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The input file for the encryption is called secret.properties and contains the
following data:
worklight_enc_password=abc123
certificate.password.enc=certificatepwd123
wl.db.password.enc=edf545

After running the encrypt.sh tool, the file secret.properties contains the
following data:
#Copy the contents of this file to the worklight.properties file.
#Keep the password value in the secure system property worklight_enc_password.
#Wed Nov 28 10:10:44 CST 2012
certificate.password.enc=dR4lnMQDaNEQyLQl7b2RmpdE99HKpqaSJ6mce0uJgaY\=
wl.db.password.enc=6boxojGZsUNTXwOOGgI6dg\=\=

Obsolete properties
Some properties are no longer required.

Category Properties

Proxy settings proxy.enabled, proxy.nonProxyHosts,
proxy.host, proxy.port, proxy.username,
proxy.password, https.proxy.host,
https.proxy.port

Public resource server settings publicResourceServer.deployDestination,
publicResourceServer.host,
publicResourceServer.port,
publicResourceServer.filesRootDir

Environments environment.igoogle, environment.netvibes,
environment.iphone, environment.vista,
environment.dashboard, environment.embedded,
environment.facebook, environment.air,
environment.android, environment.blackberry

Certificate settings certificate.certificatesDirPath,
certificate.keyStoreFilePath,
certificate.keyAlias,
certificate.keyStorePassword,
certificate.keyAliasPassword,
certificate.PFXFilePath,
certificate.password,
certificate.DERFilePath,
certificate.P7BFilePath,
vista.linux.osslsigncodeFilepath

Push notification settings push.apns.certificatePassword,
push.gcm.senderID, push.gcm.senderPassword

Miscellaneous settings devmode, guid, wlclientTimeout,
backend.request.timeout,
reports.produceReports,wl.db.initialSize,wl.db.maxActive,wl.db.maxIdle,wl.db.testOnBorrow,wl.db.autoddl

Tomcat settings local.bindAddress,local.httpPort

Console security settings console.username, console.password

SMS gateway configuration
An SMS gateway, or SMS aggregator, is a third-party entity which is used to
forward SMS notification messages to a destination mobile phone number. IBM
Worklight routes the SMS notification messages through the SMS gateway.

412 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To send SMS notifications from IBM Worklight, one or more SMS gateways must
be configured in the SMSConfig.xml file, which is in the /server/conf folder of
your project. To configure an SMS gateway, you must set the values of the
following elements, subelements, and attributes in the SMSConfig.xml file. The
Worklight Server must be restarted when any changes are made in the
SMSConfig.xml file.

Table 107. SMSConfig.xml elements and subelements

Element Element Value

gateway Mandatory. The <gateway> element is the
root element of the SMS gateway definition.
It includes 6 attributes:

v hostname

v id

v port

v programName

v toParamName

v textParamName

These attributes are described in Table 108

parameter Optional. The <parameter> subelement is
dependent on the SMS gateway. Each SMS
gateway may have its own set of
parameters. The number of <parameter>
subelements is dependent on SMS
gateway-specific parameters. If an SMS
gateway requires the user name and
password to be set, then these parameters
can be defined as <parameter> subelements.

Each <parameter> subelement has the
following attributes:

v name

v value

Table 108. <gateway> element attributes

Attribute Attribute Value

hostname Mandatory. The host name of the configured
SMS gateway.

id Mandatory. A unique ID that identifies the
SMS gateway. Application developers
specify the ID in the application descriptor
file, application-descriptor.xml, when they
develop an application.

port Optional. The port number of the SMS
gateway. The default value is 80.

programName Optional. The name of the program that the
SMS gateway expects. For example, if the
SMS gateway expects the following URI:

http://<hostname>:port/sendsms

then programName="sendsms"

Chapter 6. IBM Worklight Server administration 413

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 108. <gateway> element attributes (continued)

Attribute Attribute Value

toParamName Optional. The name that is used by the SMS
gateway to specify the destination mobile
phone number. The default value is to. The
destination mobile phone number is sent as
a name-value pair when SMS notifications
are sent; that is, toParamName=destination
mobile phone number.

textParamName Optional. The name that is used by the SMS
gateway to specify the SMS message text.
The default value is text.

If the SMS gateway expects an HTTP post in the following format to forward SMS
messages to a mobile device:

http://myhost:13011/cgi-bin/sendsms?to=destination mobile phone
number&text=message text&username=fcsuser&password=fcspass

The SMSConfig.xml file is configured as follows:
<?xml version="1.0" encoding="UTF-8"?>
<sms:config xmlns:sms="http://www.worklight.com/sms/config" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<gateway hostname="myhost" id="kannelgw" port="13011" programName="cgi-bin/sendsms" toParamName="to" textParamName="text">
<parameter name = "username" value = "fcsuser" />
<parameter name = "password" value = "fcspass" />
</gateway>

</sms:config>

Internal IBM Worklight Database Tables
You can access a database of common tables from the IBM Worklight Server. The
database must not be written to, and it might change from one release to another.

The following table provides a list of common IBM Worklight database tables, their
description, and how they are used.

Name Description Order of Magnitude

ADAPTER_SYNC_DATA Replication across cluster
nodes table for adapters.

10s of rows.

APP_ACTIVITY_REPORT Statistics for application
activity. Records a record per
server accessing user.

Size depends on Application.
Customer is responsible for
purging older entries after
aggregating to Data
Warehouse

APP_SYNC_DATA Replication across cluster
nodes table for applications.

10s of rows.

APP_VERSION_ACCESS_DATA Exceptions on App
availability used for the Deny
App feature

10s of rows.

414 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Name Description Order of Magnitude

AUTH_ASSOCIATED_IDENTITY Association between the user
IDs in different realms. Out
of the box associations are
not defined. This feature may
be enabled using code.

If configured, will contain a
single row per user.

BACKEND_SUBSCRIPTIONS Obsolete. Exists in pre v5.0
versions.

Definitions of the cached
data: procedures and
parameter values

-

CLUSTER_SYNC Cluster synchronization time 10s of rows

GADGET_APPLICATIONS Environments (for example,
iPhone, Android) of
deployed applications.
References the GADGETS table.

10s of rows

GADGET_USER_PREF User preferences according to
unique user identifier. Out of
the box, there are no user
preferences – preferences
may be added by App
developer.

1 row per preference, per
user.

GADGETS Deployed applications 10s of rows

NOTIFICATION_APPLICATION Push notification table 10s of rows

NOTIFICATION_DEVICE Push notification table. Stores
a record per device, per user
subscription. Many to one
relationship with
NOTIFICATION_USER table.

1 row per device subscribing
to event source

NOTIFICATION_MEDIATOR Push notification table Less than 10 rows

NOTIFICATION_USER Push notification table. Stores
a record per user
subscription to event sources

1 row per user subscribing to
an event

PROPERTIES N/A 10s of rows

USAGE_DATA Usage report 1 row per active user per
day.

The following table provides a list of common IBM Worklight WLREPORT database
tables and their usage.

Name Description Order of Magnitude

ACTIVITIES_CUBE A materialized table of the 4
dimensional data cube.

Populated every night based
on the last 30 days of data.
Can be used by BIRT or
other reporting tools.

Size depends on app and
device usage, but is limited
to last 30 days for faster
access to the last 30 days of
activities.

Chapter 6. IBM Worklight Server administration 415

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Name Description Order of Magnitude

FACT_ACTIVITIES Summarization of activities
used for device analytics.

Updated by Worklight Server
every 20 minutes with data
from APP_ACTIVITY_REPORT
table. Primarily used by BIRT
reports and by other
reporting tools.

Size depends on app/device
usage.

NOTIFICATION_ACTIVITIES Summarization of activities
used for notification
analytics.

Updated with data from
NOTIFICATION_REPORT table.
Primarily used by BIRT
reports and by other
reporting tools.

Size depends on
app/notification usage.

PROC_REPORT Internal table used for
housekeeping and
maintaining the state of the
scheduler tasks.

About 72 rows per day.

HTTP Interface of the production server
You can use the HTTP interface of the production server to make application API
requests or web application resource requests. Use the following request structures,
headers, and elements.

Application API requests

Use the following request structure to perform an application API request:
{Protocol}://{Worklight Server}/apps/services/api/{Application ID}/{Application Environment}/{Action}

Application API request headers

Header Name Data Type Description Valid values

x-wl-app-version String Version of the
application

WL-Instance-ID String Protection
mechanism for XSS
attacks.

Application API request elements

Header Name Data Type Description Valid values

Protocol String HTTP

Worklight Server String Host name or IP
address (and
possibly port)
identifying the
IBM Worklight
Server

416 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Application API request elements

Header Name Data Type Description Valid values

Application ID String Unique Identifier
of the
application
within the IBM
Worklight Server.
Every
application
deployed on the
IBM Worklight
Server must have
a unique
identifier

Up to 256
alphanumeric
and underscore
characters

Application Environment String Name of the
environment the
applicationis
running on

air, android,
Androidnative,
blackberry,
dashboard,
desktopbrowser,
facebook,
igoogle,iOSnative,
ipad, iphone,
JavaMEnative,
mobilewebapp,
vista,
windows8,
windowsphone

Action String Requested action Details in
following table

Actions

Action HTTP Request Parameters

init POST x, isAjaxRequest – see the
following table showing
common parameters.

heartbeat POST x, isAjaxRequest – see the
following table showing
common parameters.

logactivity POST x, isAjaxRequest – see the
following table showing
common parameters.

activity – string.

Chapter 6. IBM Worklight Server administration 417

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Actions

Action HTTP Request Parameters

query POST x, isAjaxRequest – see the
following table showing
common
parameters.filterList –
JSON block

parameterList – JSON block

sorterList – JSON block
Note: When the action is
query, the request URL has
the following structure:
.../query/{Adapter
Name}/{Procedure Name}
where Adapter Name and
Procedure Name are strings.

logout POST x, isAjaxRequest - see the
following table showing
common parameters.

login POST x, isAjaxRequest – see the
following table showing
common parameters.

realm – string.

updates POST x, isAjaxRequest – see the
following table showing
common parameters.

skin – current skin name
(string)

checksum – the checksum of
the current skin (string)

skinLoaderChecksum – the
checksum of the skin
selection code (string)

getup POST x, isAjaxRequest - see the
following table showing
common parameters.

deleteup POST x, isAjaxRequest – see the
following table showing
common parameters.

userprefkey – the user
preference to delete.

getuserinfo POST x, isAjaxRequest – see the
following table showing
common parameters.

getgadgetprefs POST x, isAjaxRequest - see the
following table showing
common parameters.

418 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Actions

Action HTTP Request Parameters

notifications POST x, isAjaxRequest – see the
following table showing
common parameters.

subscribe – JSON string
containing subscribe options

unsubscribe – when
specified, designates an
unsubscribe action

updateToken – the update
notification token (string)

adapter – the name of the
notification adapter (string)

eventSource – the name of
the notification event source
(string)

alias – notification
subscription alias (string)

fbcallback GET or POST x, isAjaxRequest – see the
following table showing
common parameters.

popup – string

composite POST x, isAjaxRequest - see the
following table showing
common parameters.

requests – a JSON string
containing information about
other actions to invoke.

This action is used to
combine several actions in a
single HTTP request.

appversionaccess GET x, isAjaxRequest – see the
following table showing
common parameters.

setup POST x, isAjaxRequest - see the
following table showing
common parameters.

userprefs contains JSON
pairs of preference key and
value

authentication POST x, isAjaxRequest - see the
following table showing
common parameters.

action values are popup,
test, or test_img

Chapter 6. IBM Worklight Server administration 419

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Actions

Action HTTP Request Parameters

authenticate POST x, isAjaxRequest - see the
following table showing
common parameters.

This is an empty handler
used to allow the client to
respond to authentication
challenges with a
challengeResponse that
cannot fit in a single header
or when all headers
combined are bigger than the
limit for header size.

Common parameters

Parameter Values Comments

x A random decimal number Included with all GET and
POST requests to prevent
caching by the Vista Sidebar
HTTP engine.

isAjaxRequest true Included with every GET and
POST request only from
Adobe™ AIR application.

_ None Included with every POST
request only from
Webkit-based browsers and
application frameworks:
Safari, Chrome, and Adobe
AIR.

Web application resource requests

Use the following request structure to perform a web application resource request:
{Protocol}://{Worklight Server}/apps/services/www/{Application ID}/{Application Environment}/{Application Resource Path}

Request elements

See Application API Request Elements for details about the following request
elements: Protocol, Worklight Server, Application ID, and Application
Environment.

Element Data Type Description Valid Values

Application
Resource Path

String HTML, image,
JavaScript, CSS, and
any other
application resource

Example values:
img/bg.png,
myWidget.html,
js/myWidget.js

Preview application resource requests

Use the following request structure to preview application resource requests:
{Protocol}://{Worklight Server}/apps/services/preview/{Application ID}/{Application Environment}/{Application Version}/{Application Resource Path}

420 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Request elements

See Application API Request Elements for details about the following request
elements: Protocol, Worklight Server, ApplicationID, and Application
Environment.

Element Data Type Description Valid Values

Application
Resource Path

String HTML, image,
JavaScript, CSS,
and any other
application
resource

Example values:
img/bg.png, myWidget.html,
js/myWidget.js

Console API requests

Use the following request structure to perform a console API request:
http://{hostname}:{port}/{context-root}/console/api/{api-context}/{action}/{parameters}

Actions

API
Context Action

HTTP
Request Parameters

Adapters

delete POST adapterName

get GET adapterName

all GET None

upload POST adapterName, input

Applications

getPublishUrl GET gadgetAppId

parseCSV POST CSV file

delete POST applicationName

deleteGadgetApplication POST gadgetAppId

setAccessRule POST gadgetAppId (mandatory), action
(mandatory: delete, block, or notify),
message (mandatory), downloadLink
(optional)

setAuthenticityRule POST gadgetAppId (mandatory), action
(mandatory: disabled, ignored, or
enabled)

setVersionLock POST gadgetAppId, lock (true or false)

getBinaryApp GET gadgetAppId

all GET None

get GET applicationName

upload POST input, applicationFolderPath

Push unsubscribeSMS POST phoneNumbers

Push,
Applications

all GET None

Push,
Mediators

all GET None

get GET gcm, apns, or mpns

Push,
Event
Sources

all GET None

get GET adapterName/eventSourceName

Chapter 6. IBM Worklight Server administration 421

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Actions

API
Context Action

HTTP
Request Parameters

Users
userName GET None

logout GET None

v To retrieve a specific adapter:
http://myWorklightServerHost:10080/myProjectRoot/console/api/adapters/get/myAdapterName

v To retrieve all applications:
http://myWorklightServerHost:10080/myProjectRoot/console/api/applications/all

422 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 7. Application Center

Install, configure, administer, and use an enterprise application store.

The Application Center provides an enterprise application store for sharing
applications across your organization for use in that organization.

Introduction to the Application Center
Tells you about the Application Center: what it is for, the different components,
how to get started, and the files in the distribution.

The sale of mobile devices now exceeds that of personal computers. Consequently,
mobile applications become critical for businesses.

The Application Center is a tool to make sharing mobile applications within an
organization easier.

You can use the Application Center as an enterprise application store. With the
Application Center, you can target some mobile applications to particular groups
of users within the company.

A development team can also use the Application Center during the development
phase of an application to share applications with testers, designers, or executives
in the company. In such a scenario, it makes collaboration easier between all the
people who are involved in the development process.

Concept of the Application Center
The Application Center can be used as an Enterprise application store and is a
means of sharing information among different team members within a company.

The concept of the Application Center is similar to the concept of the Apple public
App Store or the Android Market, except that it targets only private usage within a
company.

By using the Application Center, users from the same company or organization
download applications to mobile phones or tablets from a single place that serves
as a repository of mobile applications.

The Application Center targets mobile applications that are installed on the device
itself. Those applications can be native applications that are built by using the
device SDK or hybrid applications that mix native and web content. The
Application Center does not target mobile web applications; such applications are
delivered to the mobile device web browser through a URL like a website.

In the current version, the Application Center supports applications that are built
for the Google Android platform, the Apple iOS platform, and the BlackBerry
platform for OS versions 6 and 7. (BlackBerry OS 10 is not supported by the
current version of the Worklight Application Center.)

423

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The Application Center manages mobile applications; it supports any kind of
Android, iOS, or BlackBerry application, including applications that are built on
top of the IBM Worklight platform.

You can use the Application center as part of the development process of an
application. A typical scenario of the Application Center is a team building a
mobile application; the development team creates a new version of an Android,
iOS, or BlackBerry application. The development team wants this new version to
be reviewed and tested by the extended team. A developer goes to the Application
Center console and uploads the new version of the application to the Application
Center. As part of this process, the developer can enter a description of the
application version. For example, the description could mention the elements that
the development team added or fixed from the previous version. The new version
of the application is then available to the other members of the team.

Another person, for example, a beta tester, can launch the Application Center
installer application, the mobile client, to locate this new version of a mobile
application in the list of available applications and install it on his mobile device.
After testing the new version, the beta tester can rate the application and submit
feedback. The feedback is visible to the developer from the Application Center
console.

The Application Center is a convenient way to share mobile applications within a
company or a group; it is a means of sharing information among team members.

General architecture
The Application Center is composed of these main elements: a server-side
component, a repository, an administration console, and a mobile client
application.

Server-side component

The server-side component is a Java™ Enterprise application that must be deployed
in a web application server such as IBM WebSphere or Apache Tomcat.

The server-side component consists of an administration console and a mobile
application. This mobile application installs the mobile applications available to the
client-side component.

The web console and the installer application communicate through REST services
with the server component.

Several services compose the Application Center server-side component; for
example, a service that lists available applications, a service that delivers the
application binary files to the mobile device, or a service that registers feedback
and ratings.

Repository

A database that stores information such as which application is installed on which
devices, the feedback about applications, and the mobile application binary files.
The Application Center application is associated with the database when you
configure the Application Center for a particular web application server and a
supported database.

424 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Administration console

A web console through which administrators can manage applications, user access
rights to install applications, user feedback about mobile applications, and details
about applications installed on devices. See “The Application Center console” on
page 452.

Mobile client application

You use the mobile client to install applications on a mobile device and to send
feedback about an application to the server. See “The mobile client” on page 473.

The following figure shows an overview of the architecture.

From the Application Center console you can:
v Upload different versions of mobile applications.
v Remove unwanted applications.
v Control access to applications.

Access to the applications stored in the Application Center can be controlled from
the Application Center console. Each application is associated with the list of
people that can install the application.
v View feedback that mobile users have sent about an application.
v Obtain information about applications installed on a device.
v Make an application inactive so that it is not visible in the available applications

for download.

From the mobile client you can:
v List available mobile applications.
v Install a new application on a device.
v Send feedback about an application.

Figure 68. Architecture of the Application Center

Chapter 7. Application Center 425

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The Application Center supports applications for Android, iOS, and BlackBerry
devices. Therefore, the mobile client comes in several versions: an Android, an iOS,
and a BlackBerry version.

These mobile applications are built on the Worklight platform. You will find
instructions in this document about how to configure the Application Center
server-side component on various Java application servers after IBM Worklight is
installed, as well as how to build Worklight applications for the Application Center
client.

Preliminary information
To use the Application Center, you must configure security settings, start the web
application server where IBM Worklight is installed, start the Application Center
console, and log in.

When you install IBM Worklight, the Application Center is automatically installed
in the specified application server.

If you install the Application Center in WebSphere Application Server Liberty
profile, the server is created and located in installation-directory/server.

After the installation is complete, you must configure the security settings for the
applications. See “Configuration of the Application Center after installation” on
page 429 or, if you are using LDAP authentication, “Managing users with LDAP”
on page 436.

The following example shows how to start the server and then the Application
Center console on Liberty profile.

You can start the Liberty server by using the server command located in the
directory installation-directory/server/wlp/bin.

To start the server, use the command:
server start worklightServer

When the server is running, you can start the Application Center console by
entering this address in your browser:

http://localhost:9080/applicationcenter/

You are requested to log in. By default, the Application Center installed on Apache
Tomcat or WebSphere Liberty Profile has two users defined for this installation:
v demo with password demo

v appcenteradmin with password admin

To start using the Application Center console, refer to “The Application Center
console” on page 452.

To install and run the mobile client on:
v Android operating system: see “Installing the client on an Android mobile

device” on page 473
v iOS operating system: see “Installing the client on an iOS mobile device” on

page 477

426 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v BlackBerry OS 6 and OS 7: see “Installing the client on a BlackBerry mobile
device” on page 478.

Distribution structure
The components of the Application Center are installed in the ApplicationCenter
directory, which contains several subdirectories.

These elements are installed on disk in the ApplicationCenter directory.

Table 109. Content of the ApplicationCenter directory and its subdirectories

ApplicationCenter and subdirectories File name and description

ApplicationCenter/installer IbmApplicationCenter.apk

The Android version of the Application
Center Mobile client.

ApplicationCenter/installer/
IBMAppCenterBlackBerry6

Contains the BlackBerry project for the
mobile Client for OS V6 and V7. You must
compile this project to create the
BlackBerry version of the mobile client.

ApplicationCenter/installer/IBMAppCenter Contains the Worklight Studio project for
the mobile Client. You must compile this
project to create the iOs version of the
mobile client.

ApplicationCenter/console/ appcenterconsole.war

The WAR file for the Application Center
console user interface web application.

applicationcenter.war

The WAR file for the Application Center
REST services web application.

applicationcenter.ear

The enterprise application archive (EAR)
file to be deployed under IBM
PureApplication System.

ApplicationCenter/databases create-appcenter-derby.sql

The SQL script to re-create the application
center database on derby.create-
appcenter-oracle.sql

The SQL script to re-create the application
center database on Oracle.create-
appcenter-db2.sql

The SQL script to re-create the application
center database on DB2.create-
appcenter-mysql.sql

The SQL script to re-create the application
center database on mySQL.

Chapter 7. Application Center 427

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 109. Content of the ApplicationCenter directory and its subdirectories (continued)

ApplicationCenter and subdirectories File name and description

ApplicationCenter/tools android-sdk

The directory that contains the part of the
Android SDK required by the Application
Center console.

applicationcenterdeploytool.jar

The JAR file that contains the Ant task to
deploy an application to the Application
Center.

acdeploytool.bat

The startup script of the deploy tool for
use on Microsoft Windows
systems.build.xml

Example of an Ant script to deploy
applications to the Application Center.

dbconvertertool.sh

The startup script of the database
converter tool for use on UNIX systems.

dbconvertertool.bat

The startup script of the database
converter tool for use on Microsoft
Windows systems.

dbconvertertool.jar

The main library of the database converter
tool.

lib

The directory that contains all Java
Archive (JAR) files required by the
database converter tool.json4j.jar

The required JSon4J java archive
file.README.TXT

Readme file that explains how to use the
deployment tool.

Installation of the Application Center
You can install IBM Worklight with IBM Installation Manager.

The Application Center is part of IBM Worklight Server. To install the Application
Center, see “Installation” on page 314 under IBM Worklight Server administration.

When you install an IBM Worklight edition through IBM Installation Manager, the
Application Center and Worklight console are installed in the web application

428 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

server that you designate. You have minimal additional configuration to do. See
“Configuration of the Application Center after installation.”

If you chose a manual setup in the installer, see the documentation of the server of
your choice.

Configuration of the Application Center after installation
You configure user authentication and choose an authentication method;
configuration procedure depends on the web application server that you use.

The Application Center requires user authentication.

You must perform some configuration after the installer deploys the Application
Center web applications in the web application server.

The Application Center has two Java Platform, Enterprise Edition (JEE) security
roles defined:
v The appcenteruser role that represents an ordinary user of the Application

Center who can install mobile applications from the catalog to a mobile device
belonging to that user.

v The appcenteradmin role that represents a user who can perform administrative
tasks through the Application Center console.

You must map the roles to the corresponding sets of users.

If you choose to use an authentication method through a user repository such as
LDAP, you can configure the Application Center so that you can use users and
groups with the user repository to define the Access Control List (ACL) of the
Application Center. This procedure is conditioned by the type and version of the
web application server that you use. See “Managing users with LDAP” on page
436 for information about LDAP used with the Application Center.

After you configure authentication of the users of the Application Center, which
includes configuring LDAP if you plan to use it, you can, if necessary, define the
endpoint of the application resources. You must then build the Application Center
mobile client. The mobile client is used to install applications on mobile devices.
See “Preparations for using the mobile client” on page 449 for how to build the
Application Center mobile client.
Related concepts:
“Managing users with LDAP” on page 436
Use the Lightweight Directory Access Protocol (LDAP) registry to manage users..
Related reference:
“Preparations for using the mobile client” on page 449
To use the mobile client to install applications on mobile devices, you must first
import the IBMAppCenter project into Worklight Studio, or the
IBMAppCenterBlackBerry6 project into the BlackBerry Eclipse environment, build
the project, and deploy the mobile client in the Application Center.

Definition of the endpoint of the application resources
When you add a mobile application from the Application Center console, the
server-side component creates Uniform Resource Identifiers (URI) for the
application resources (package and icons). The mobile client uses these URI to
manage the applications on your device.

Chapter 7. Application Center 429

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Purpose

To manage the applications on your device, the Application Center console must
be able to locate the Application Center REST services and to generate the required
number of URI that enable the mobile client to find the Application Center REST
services.

By default, the URI protocol, hostname, and port are the same as those defined in
the web application server used to access the Application Center console; the
context root of the Application Center REST services is applicationcenter. When
the context root of the Application Center REST services is changed or when the
internal URI of the web application server is different from the external URI that
can be used by the mobile client, the externally accessible endpoint (protocol,
hostname, and port) of the application resources must be defined by configuring
the web application server. (Reasons for separating internal and external URI could
be, for example, a firewall or a secured reverse proxy that uses HTTP redirection.)

The following figure shows a configuration with a secured reverse proxy that hides
the internal address (192.168...). The mobile client must use the external address
(appcntr.net).

Table 110. The endpoint properties

Property name Purpose Example

ibm.appcenter.services.endpointThis property enables the
Application Center console
to locate the Application
Center REST services. The
value of this property must
be specified as the external
address and context root of
the applicationcenter.war
web application.

https://appcntr.net:443/
applicationcenter

ibm.appcenter.proxy.protocolThis property specifies the
protocol required for external
applications to connect to the
Application Center.

https

ibm.appcenter.proxy.host This property specifies the
host name required for
external applications to
connect to the Application
Center.

appcntr.net

Figure 69. Configuration with secured reverse proxy

430 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 110. The endpoint properties (continued)

Property name Purpose Example

ibm.appcenter.proxy.port This property specifies the
port required for external
applications to connect to the
Application Center.

443

Related tasks:
“Configuring the endpoint of the application resources (JVM server custom
properties)” on page 432
For the full profile, configure the endpoint of the application resources in the
custom properties of the JVM server.
Related reference:
“Configuring the endpoint of the application resources (bootstrap properties)” on
page 434
For the Liberty profile, configure the endpoint of the application resources in the
bootstrap.properties file.
“Configuring the endpoint of the application resources (catalina properties)” on
page 435
For the Apache Tomcat server, configure the endpoint of the application resources
in the catalina.properties file.

Configuring WebSphere Application Server full profile
Configure security by mapping the Application Center JEE roles to a set of users
for both web applications.

Procedure

You define the basics of user configuration in the WebSphere Application Server
console. Access to the console is usually by this address:
https://localhost:9043/ibm/console/

1. Select Security > Global Security.
2. Select Security Configuration Wizard to configure users.

You can manage individual user accounts by selecting Users and Groups >
Manage Users.

3. Map the roles appcenteruser and appcenteradmin to a set of users.
a. Select Servers > Server Types > WebSphere application servers.
b. Select the server.
c. In the Configuration tab, select Applications > Enterprise applications.

d. Select IBM_Application_Center_Services.

Figure 70. Mapping the Application Center roles

Chapter 7. Application Center 431

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

e. In the Configuration tab, select Details > Security role to user/group
mapping.

f. Perform the necessary customization.
g. Click OK.
h. Repeat steps c to g to map the roles for the console web application; in step

d, select IBM_Application_Center_Console.
i. Click Save to save the changes.

Configuring the endpoint of the application resources (JVM
server custom properties)
For the full profile, configure the endpoint of the application resources in the
custom properties of the JVM server.

About this task

Follow this procedure when you must change the URI protocol, hostname, and
port used by the mobile client to manage the applications on your device.

Procedure
1. Log in to the WebSphere Application Server console.
2. Select Server > Server Types > WebSphere application servers.
3. Select the appropriate application server. In a clustered environment you must

configure all the servers in the cluster in the same way.
4. In the Configuration tab, under "Server Infrastructure", click the Java and

Process Management tab and select Process definition.
5. In the Configuration tab, under "Additional Properties", select Java Virtual

Machine,
6. In the Configuration tab, under "Additional Properties", select Custom

properties.
7. Click New.

a. In the form, enter ibm.appcenter.services.endpoint and assign the full URI
of the Application Center REST services (applicationcenter.war). In a
scenario with a firewall or a secured reverse proxy, this URI must be the
external URI and not the internal URI inside the local LAN.

b. Click OK.
c. In the form, enter ibm.appcenter.proxy.host, assign the external hostname,

and click OK.
d. Optional: In the form, enter ibm.appcenter.proxy.port, assign the external

port, and click OK.
e. Optional: In the form, enter ibm.appcenter.proxy.protocol, assign the

external protocol, and click OK.

Figure 71. Mapping the appcenteruser and appcenteradmin roles: user groups

432 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

f. Click Save to save the changes.

Results

The following figure shows an example of custom properties with the correct
settings.

Configuring WebSphere Application Server Liberty Profile
Configure the JEE security roles of the Application Center and the data source in
the server.xml file.

Before you begin

In WebSphere Application Server Liberty Profile, you configure the roles of
appcenteruser and appcenteradmin in the server.xml configuration file of the
server.

The usual location of this file depends on the operating system:
v On UNIX systems:

INSTALL_DIR/server/wlp/usr/servers/worklightServer

v On Microsoft Windows 7 systems:
C:\ProgramData\IBM\Worklight\WAS85liberty-server\wlp\usr\servers\
worklightServer

v On Microsoft Windows XP systems:
C:\Documents and Settings\All Users\Application Data\IBM\Worklight\
WAS85liberty-server\wlp\usr\servers\worklightServer

About this task

To configure the security roles, you must edit the server.xml file. In the
<application-bnd> element of each <application> element, create two
<security-role> elements. One <security-role> element is for the appcenteruser
role and the other is for the appcenteradmin role. Map the roles to the appropriate
user group name appcenterusergroup or appcenteradmingroup. These groups are
defined through the <basicRegistry> element. You can customize this element or
replace it entirely with an <ldapRegistry> element or a <safRegistry> element.

Then, to maintain good response times with a large number of installed
applications, for example with 80 applications, you should configure a connection
pool for the Application Center database.

Figure 72. Custom properties for endpoint on WebSphere Application Server full profile

Chapter 7. Application Center 433

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Edit the server.xml file.

For example:
<security-role name="appcenteradmin">

<group name="appcenteradmingroup"/>
</security-role>
<security-role name="appcenteruser">

<group name="appcenterusergroup"/>
</security-role>

<basicRegistry id="appcenter">
<user name="admin" password="admin"/>
<user name="guest" password="guest"/>
<user name="demo" password="demo"/>
<group name="appcenterusergroup">

<member name="guest" />
<member name=" demo" />

</group>
<group name="appcenteradmingroup">

<member name="admin" id=”admin"/>
</group>

</basicRegistry>

2. Edit the server.xml file to define the AppCenterPool size.
<connectionManager id="AppCenterPool" minPoolSize="10" maxPoolSize="40"/>

3. In the <dataSource> element, define a reference to the connection manager:
<dataSource id="APPCNTR" jndiName="jdbc/AppCenterDS" connectionManagerRef="AppCenterPool"
...
</dataSource>

Configuring the endpoint of the application resources (bootstrap
properties)
For the Liberty profile, configure the endpoint of the application resources in the
bootstrap.properties file.

Purpose

Follow this procedure when you must change the URI protocol, hostname, and
port used by the mobile client to manage the applications on your device.

Properties

Edit the bootstrap.properties file in the same directory as the server.xml file. If
this file does not exist, create it. This file must contain these properties.

Table 111. Bootstrap properties for configuring the endpoint of the application resources

Property Description

ibm.appcenter.services.endpoint The URI of the Application Center REST
services (applicationcenter.war). In a
scenario with a firewall or a secured reverse
proxy, this URI must be the external URI
and not the internal URI inside the local
LAN.

ibm.appcenter.proxy.protocol The protocol of the application resources
URI. This property is optional. It is only
needed if the protocol of the external and of
the internal URI are different.

434 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 111. Bootstrap properties for configuring the endpoint of the application
resources (continued)

Property Description

ibm.appcenter.proxy.host The hostname of the application resources
URI.

ibm.appcenter.proxy.port The port of the application resources URI.
This property is optional. It is only needed if
the protocol of the external and of the
internal URI are different.

Example of setting properties for configuring the endpoint

This example shows the settings of the properties in the bootstrap.properties file
required for configuring the endpoint of the application resources.
ibm.appcenter.services.endpoint=https://appcntr.net:443/applicationcenter
ibm.appcenter.proxy.protocol=https
ibm.appcenter.proxy.host=appcntr.net
ibm.appcenter.proxy.port=443

Configuring Apache Tomcat
You must configure the JEE security roles for the Application Center on the Apache
Tomcat web application server.

Procedure
1. In the Apache Tomcat web application server, you configure the roles of

appcenteruser and appcenteradmin in the conf/tomcat-users.xml file. The
installation creates the following users:
<user username="appcenteradmin" password="admin" roles="appcenteradmin"/>
<user username="demo" password="demo" roles="appcenteradmin"/>
<user username="guest" password="guest" roles="appcenteradmin"/>

2. You can define the set of users as described in the Apache Tomcat
documentation, Realm Configuration HOW-TO.

Configuring the endpoint of the application resources (catalina
properties)
For the Apache Tomcat server, configure the endpoint of the application resources
in the catalina.properties file.

Purpose

Follow this procedure when you must change the URI protocol, hostname, and
port used by the mobile client to manage the applications on your device.

Properties

Edit the catalina.properties file in the conf directory of your Apache Tomcat
installation. This file must contain these properties.

Chapter 7. Application Center 435

http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 112. Bootstrap properties for configuring the endpoint of the application resources

Property Description

ibm.appcenter.services.endpoint The URI of the Application Center REST
services (applicationcenter.war). In a
scenario with a firewall or a secured reverse
proxy, this URI must be the external URI
and not the internal URI inside the local
LAN.

ibm.appcenter.proxy.protocol The protocol of the application resources
URI. This property is optional. It is only
needed if the protocol of the external and of
the internal URI are different.

ibm.appcenter.proxy.host The hostname of the application resources
URI.

ibm.appcenter.proxy.port The port of the application resources URI.
This property is optional. It is only needed if
the protocol of the external and of the
internal URI are different.

Example of setting catalina properties for configuring the endpoint

This example shows the settings of the properties in the catalina.properties file
required for configuring the endpoint of the application resources.
ibm.appcenter.services.endpoint=https://appcntr.net:443/applicationcenter
ibm.appcenter.proxy.protocol=https
ibm.appcenter.proxy.host=appcntr.net
ibm.appcenter.proxy.port=443

Managing users with LDAP
Use the Lightweight Directory Access Protocol (LDAP) registry to manage users..

If you plan to use an LDAP registry with the Application Center, you must
configure your WebSphere Application Server or your Apache Tomcat server to use
an LDAP registry to authenticate users..

In addition to authentication of users, configuring the Application Center for
LDAP also enables you to use LDAP to define the users and groups who can
install mobile applications through the Application Center. The means of defining
these users and groups is the Access Control List (ACL).

Configuring ACL management with LDAP and WebSphere
Application Server V7

Use LDAP to authenticate users and to define the users and groups that can install
mobile applications with the Application Center.

About this task

You can configure LDAP based on the federated repository configuration or with
the stand-alone LDAP registry. See WebSphere Application Server V7.0 user
documentation for how to configure LDAP authentication with WebSphere
Application Server V7.

436 IBM Worklight V5.0.6

http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/index.jsp

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Log in to the WebSphere Application Server console.
2. Select Servers > Server Types > WebSphere application servers.
3. Select the appropriate application server.

In a clustered environment you must configure all the servers in the cluster in
the same way.

4. In the Configuration tab, under "Server Infrastructure", click the Java and
Process Management tab and select Process definition.

5. In the Configuration tab, under "Additional Properties", select Java Virtual
Machine,

6. In the Configuration tab, under "Additional Properties", select Custom
properties.

7. Click New.
a. In the form, enter ibm.appcenter.ldap.vmm.active and assign the value

"false".
b. Click OK.
c. In the form, enter ibm.appcenter.ldap.active and assign the value "true".
d. Click OK.

8. Continue to configure the remaining custom properties:
v ibm.appcenter.ldap.connectionURL: LDAP connection URL.
v ibm.appcenter.ldap.user.base: search base for users.
v ibm.appcenter.ldap.user.loginName: LDAP login attribute.
v ibm.appcenter.ldap.user.displayName: LDAP attribute for the user name to

be displayed, for example, a person's full name.
v ibm.appcenter.ldap.group.base: search base for groups.
v ibm.appcenter.ldap.group.name: LDAP attribute for the group name.
v ibm.appcenter.ldap.group.uniquemember: LDAP attribute that identifies the

members of a group.
v ibm.appcenter.ldap.user.groupmembership: LDAP attribute that identifies

the groups that a user belongs to.
a. In the form, enter the name of a custom property and its value.
b. Click OK.
c. Repeat steps a and b for each custom property.
The following figure shows the values to assign to each custom property or
resource.

Chapter 7. Application Center 437

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

9. Option: If security binding is required, follow this step. Configure the following
custom properties:
v ibm.appcenter.ldap.security.binddn: the distinguished name of the user

permitted to search the LDAP directory.
v ibm.appcenter.ldap.security.bindpwd: the password of the user permitted

to search the LDAP directory. The password can be encoded with the
"WebSphere PropFilePasswordEncoder" utility. Run the utility before you
configure the ibm.appcenter.ldap.security.bindpwd custom property.

a. In the form, enter the name of the optional custom property and its value.
Set the value of the ibm.appcenter.ldap.security.bindpwd property to the
encoded password generated by the "WebSphere PropFilePasswordEncoder"
utility.

b. Click OK.
c. Repeat steps a and b for each optional custom property.

What to do next

Save the configuration and restart the server.

Configuration of LDAP authentication (WebSphere Application
Server V8.x)

LDAP authentication is achieved based on the federated repository configuration.
ACL management configuration of the Application Center uses the Virtual Member
Manager API.

You must configure LDAP based on the federated repository configuration. The
stand-alone LDAP registry is not supported.

Several different repositories, LDAP and non-LDAP, can be configured in the
federated repository.

For information about configuring federated repositories, see the WebSphere
Application Server V8.0 user documentation or the WebSphere Application Server
V8.5 user documentation, depending on your version.

Figure 73. Custom properties and their values (LDAP and WebSphere Application Server V7)

438 IBM Worklight V5.0.6

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?lang=en
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?lang=en
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?lang=en
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?lang=en

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Configuration of the Application Center for ACL management
with LDAP

Some configuration details of ACL management are specific to the Application
Center, because it uses the Virtual Member Manager (VMM) API.

The Application Center refers to these VMM attributes for users:
uid represents the user login name.
sn represents the full name of the user.

For groups, the Application Center refers only to the VMM attribute cn.

If VMM attributes are not identical in LDAP, you must map the VMM attributes to
the corresponding LDAP attributes.

Configuring LDAP authentication for users and groups
(WebSphere Application Server V8.x)

Use LDAP to authenticate users and groups, and to define the users who can
install mobile applications with the Application Center.

About this task

You can configure LDAP based on the federated repository configuration only.

Procedure
1. Log in to the WebSphere Application Server console.
2. Select Security > Global security.
3. Select Configure in the "User account repository" section.
4. Select your LDAP repository entry.
5. Under Additional Properties, select LDAP attributes (WebSphere Application

Server V8.0) or Federated repositories property names to LDAP attributes
mapping (WebSphere Application Server V8.5).

6. Select Add > Supported.
7. Enter these property values:

a. For Name enter your LDAP login attribute.
b. For Property name enter uid.
c. For Entity types enter the LDAP entity type.
d. Click OK.

8. Select Add > Supported.
a. For Name enter your LDAP attribute for full user name.

Figure 74. Associating LDAP login with uid property (WebSphere Application Server V8.0)

Chapter 7. Application Center 439

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

b. For Property name enter sn.
c. For Entity types enter the LDAP entity type.
d. Click OK.

9. Select Add > Supported to configure a group name:
a. For Name enter the LDAP attribute for your group name.
b. For Property name enter cn.
c. For Entity types enter the LDAP entity type.
d. Click OK.

What to do next

You must enable ACL management with LDAP. See “Enabling ACL management
with LDAP (WebSphere Application Server V8.x).”

Enabling ACL management with LDAP (WebSphere
Application Server V8.x)

You can enable access control for the Application Center of the users and groups
defined through LDAP.

About this task

After you configure LDAP authentication for users and groups, follow these steps
from the WebSphere Application Server console to enable ACL management.

Procedure
1. Select Servers > Server Types > WebSphere application servers.
2. Select the appropriate application server.

In a clustered environment you must configure all the servers in the cluster in
the same way.

3. In the Configuration tab, under "Server Infrastructure", click the Java and
Process Management tab and select Process definition.

4. In the Configuration tab, under "Additional Properties", select Java Virtual
Machine,

5. In the Configuration tab, under "Additional Properties", select Custom
properties.

6. Click New.
a. In the form, enter ibm.appcenter.ldap.vmm.active and assign the value

"true".
b. Click Apply.
c. In the form, enter ibm.appcenter.ldap.active and assign the value "true".

Figure 75. Associating LDAP full user name with sn property (WebSphere Application Server V8.0)

440 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

d. Click OK.

Results

The following figure shows an example of custom properties with the correct
settings.

What to do next

Save the configuration and restart the server.

To use the VMM API, you must assign the "IdMgrReader" role to the users who
run the VMM code, or to the group owners of these users. You must assign this
role to all users and groups who have the roles of "appcenteruser" or
"appcenteradmin".

In the <was_home>\bin directory, where <was_home> is the home directory of your
WebSphere application server, run the wsadmin command.

After connecting with the WebSphere Application Server administrative user, run
the following command:
$AdminTask mapIdMgrGroupToRole {-roleName IdMgrReader -groupId your_LDAP_group_id}

Run the same command for all the groups mapped to the roles of "appcenteruser"
and "appcenteradmin".

For individual users who are not members of groups, run the following command:
$AdminTask mapIdMgrUserToRole {-roleName IdMgrReader -userId your_LDAP_user_id}

You can assign the special subject "All Authenticated in Application's Realm" as
roles for appcenteruser and appcenteradmin. If you choose to assign this special
subject, IdMgrReader must be configured in the following way:
$AdminTask mapIdMgrGroupToRole {-roleName IdMgrReader -groupId ALLAUTHENTICATED}

Enter exit to end wsadmin.

Configuring LDAP authentication (Liberty profile)
You configure LDAP authentication by defining an LDAP registry in the
server.xml file.

About this task

You can configure LDAP authentication of users and groups in the server.xml file
by defining an LDAP registry.

Figure 76. ACL management for Application Center with LDAP on WebSphere Application Server V8

Chapter 7. Application Center 441

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The usual location of this file depends on the operating system:
v On UNIX systems:

INSTALL_DIR/server/wlp/usr/servers/worklightServer

v On Microsoft Windows 7 systems:
C:\ProgramData\IBM\Worklight\WAS85liberty-server\wlp\usr\servers\
worklightServer

v On Microsoft Windows XP systems:
C:\Documents and Settings\All Users\Application Data\IBM\Worklight\
WAS85liberty-server\wlp\usr\servers\worklightServer

Procedure
1. To open the server.xml descriptor file, enter {server.config.dir}/server.xml

2. Insert an LDAP registry definition after the <httpEndpoint> element.

Example
<ldapRegistry baseDN="o=ibm.com" host="employees.com" id="Employees"
ldapType="IBM Tivoli Directory Server" port="389" realm="AppCenterLdap"
recursiveSearch="true">

<idsFilters
groupFilter="(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames))) " id="Employees"
userFilter="(&(emailAddress=%v)(objectclass=ibmPerson))"
groupMemberIdMap="ibm-allGroups:member;ibm-allGroups:uniqueMember"
userIdMap="*:emailAddress"/>

</ldapRegistry>

For information about the parameters used in this example, see the WebSphere
Application Server V8.5 user documentation.

What to do next

Map users and groups to Application Center roles. See “Mapping users and groups
to Application Center roles (LDAP on Liberty profile).”

Mapping users and groups to Application Center roles (LDAP
on Liberty profile)

Map Application Center users and groups defined for LDAP to Application Center
roles.

About this task

After configuring LDAP authentication, you map users and groups to Application
Center roles. Mapping is configured in the server.xml file. The mapping
configuration is the same for LDAP authentication and basic authentication.

Procedure
1. To open the server.xml descriptor file, enter {server.config.dir}/server.xml.
2. Insert a security role definition after the LDAP realm section or after the basic

registry definition.

Example

This example includes two sets of sample code that show how to code when the
group names are unique within LDAP and how to code when the group names are
not unique within LDAP.

442 IBM Worklight V5.0.6

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Group names unique within LDAP

This sample code shows how to use the group names
ldapGroupForAppcenteruser and ldapGroupForAppcenteradmin when they
exist and are unique within LDAP.
<application-bnd>

<security-role name="appcenteruser" id="appcenteruser">
<group name="ldapGroupForAppcenteruser" />

</security-role>
<security-role name="appcenteradmin" id="appcenteradmin">

<group name="ldapGroupForAppcenteradmin" />
</security-role>

</application-bnd>

Group names not unique within LDAP

This sample code shows how to code the mapping when the group names
are not unique within LDAP. The groups must be specified with the
access-id attribute.
<application-bnd>

<security-role name="appcenteruser" id="appcenteruser">
<group name="ldapGroup"

id="ldapGroup"
access-id="group:AppCenterLdap/CN=ldapGroup,OU=myorg,
DC=mydomain,DC=AD,DC=myco,DC=com"/>

</security-role>
...

</application-bnd>

The access-id attribute must refer to the realm name used to specify the
LDAP realm. In this sample code, the realm name is AppCenterLdap. The
remainder of the access-id attribute specifies one of the LDAP groups
named ldapGroup in a way that makes it unique.

If required, use similar code to map the appcenteradmin role.

What to do next

Configure ACL management. See “Configuring the Application Center for ACL
management with LDAP (Liberty profile).”

Configuring the Application Center for ACL management with
LDAP (Liberty profile)

Use LDAP to define the users and groups who can install mobile applications
through the Application Center. The means of defining these users and groups is
the Access Control List (ACL).

Purpose

To enable ACL management with LDAP. You enable ACL management after you
configure LDAP and map users and groups to Application Center roles.

Properties

Edit the bootstrap.properties file in the same directory as the server.xml file. If
this file does not exist, create it. This file must contain all properties, except
ibm.appcenter.ldap.security.binddn and ibm.appcenter.ldap.security.bindpwd,
which are only required for security binding. If security binding is required, these
two properties must also be included in the bootstrap.properties file.

Chapter 7. Application Center 443

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 113. Bootstrap properties for configuring ACL management with LDAP (Liberty profile)

Property Description

ibm.appcenter.ldap.active Set to true to enable LDAP; set to false to
disable LDAP.

ibm.appcenter.ldap.connectionURL LDAP connection URL.

ibm.appcenter.ldap.user.base Search base of users.

ibm.appcenter.ldap.user.loginName LDAP login attribute.

ibm.appcenter.ldap.user.displayName LDAP attribute for the user name to be
displayed, for example, a person's full name.

ibm.appcenter.ldap.group.base Search base of groups.

ibm.appcenter.ldap.group.name LDAP attribute for the group name.

ibm.appcenter.ldap.group.uniquemember LDAP attribute that identifies the members
of a group.

ibm.appcenter.ldap.user.groupmembership LDAP attribute that identifies the groups to
which a user belongs.

ibm.appcenter.ldap.security.binddn Property that identifies the distinguished
name of the user permitted to search the
LDAP directory. Use this property only if
security binding is required.

ibm.appcenter.ldap.security.bindpwd Property that identifies the password of the
user permitted to search the LDAP directory.
Use this property only if security binding is
required.

The password can be encoded with the
"Liberty Profile securityUtility" tool. Run the
tool and then set the value of this property
to the encoded password generated by the
tool.

Edit the Liberty Profile server.xml file to
check whether the classloader is enabled to
load the JAR file that decodes the password.

Example of the entry for checking classloader enablement

Add the following entry, if it is not already present, to the <application
context-root="applicationcenter"> entry in the server.xml file. This entry should
appear just before the </application> closing tag.

<classloader delegation="parentLast">
<commonLibrary>

<fileset dir="${wlp.install.dir}/lib" includes="com.ibm.ws.crypto.passwordutil_1.0.jar"/>
</commonLibrary>

</classloader>

Example of setting properties for ACL management with LDAP

This example shows the settings of the properties in the bootstrap.properties file
required for ACL management with LDAP.
ibm.appcenter.ldap.active=true
ibm.appcenter.ldap.connectionURL="ldap://employees.com:389"
ibm.appcenter.ldap.user.base="ou=employees,o=ibm.com"
ibm.appcenter.ldap.user.loginName=emailAdress
ibm.appcenter.ldap.user.displayName=cn

444 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

ibm.appcenter.ldap.group.base="ou=groups,o=ibm.com"
ibm.appcenter.ldap.group.name=cn
ibm.appcenter.ldap.group.uniquemember=uniqueMember
ibm.appcenter.ldap.user.groupmembership=ibm-allGroups

Configuring ACL management with LDAP and Apache Tomcat
Configure the Apache Tomcat server for LDAP authentication and configure
security (Java Platform, Enterprise Edition) in the web.xml file of the Application
Center.

Purpose

To configure ACL management of the Application Center; configure LDAP for user
authentication, map the Java Platform, Enterprise Edition (JEE) roles of the
Application Center to the LDAP roles, and configure the Application Center
properties for LDAP authentication.

LDAP user authentication

You must configure a JNDIRealm in the server.xml file in the <Host> element. See
the Realm Component on the Apache Tomcat website for more information about
configuring a realm.

Example of configuration on Apache Tomcat to authenticate
against an LDAP server

This example shows how to configure user authentication on an Apache Tomcat
server by comparing with the authorization of these users on a server enabled for
LDAP authentication.
<Host appBase="webapps" autoDeploy="true" name="localhost" unpackWARs="true">
...
<Realm className="org.apache.catalina.realm.JNDIRealm"

connectionURL="ldap://bluepages.ibm.com:389"

userSubtree="true"

userBase="ou=bluepages,o=ibm.com"

userSearch="(emailAddress={0})"

roleBase="ou=ibmgroups,o=ibm.com"

roleName="cn"

roleSubtree="true"

roleSearch="(uniqueMember={0})"

allRolesMode="authOnly"

commonRole="appcenter"

/>
...
/>

The value of connectionURL is the LDAP URL of your LDAP server.

Chapter 7. Application Center 445

http://tomcat.apache.org/tomcat-7.0-doc/config/realm.html

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The userSubtree, userBase, and userSearch attributes define how to use the name
given to the Application Center in login form (in the browser message box) to
match an LDAP user entry.

In the example, the definition of userSearch specifies that the user name is used to
match the email address of an LDAP user entry.

The basis or scope of the search is defined by the value of the userBase attribute.
In LDAP, an information tree is defined; the user base indicates a node in that tree.

The value of userSubtree should be set to true; if it is false, the search is
performed only on the direct child nodes of the user base. The child nodes of
ou=bluepages,o=ibm.com indicate countries, for example, c=fr. It is important that
the search penetrates the subtree and does not stop at the first level.

For authentication, you define only the userSubtree, userBase, and userSearch
attributes. The Application Center also uses JEE security roles. Therefore, you must
map LDAP attributes to some JEE roles. These attributes are used for mapping
LDAP attributes to security roles:
v roleBase

v roleName

v roleSubtree

v roleSearch

In this example, the value of the roleSearch attribute matches all LDAP entries
with a uniqueMember attribute whose value is the Distinguished Name (DN) of the
authenticated user.

The roleBase attribute specifies a node in the LDAP tree below which the roles are
defined.

The roleSubtree attribute indicates whether the LDAP search should search the
entire subtree, whose root is defined by the value of roleBase, or only the direct
child nodes.

The roleName attribute defines the name of the LDAP attribute.

The allRolesMode attribute specifies that you can use the asterisk (*) character as
the value of role-name in the web.xml file. This attribute is optional.

The commonRole attribute adds a role shared by all authenticated users. This
attribute is optional.

Mapping the JEE roles of the Application Center to LDAP roles

After you define the LDAP request for the JEE roles, you must change the web.xml
file of the Application Center to map the JEE roles of "appcenteradmin" and
"appcenteruser" to the LDAP roles.

These examples, where LDAP users have LDAP roles called "MyLdapAdmin" and
"MyLdapUser", show where and how to change the web.xml file.

446 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The security-role-ref element in the JAX_RS servlet
<servlet>

<servlet-name>MobileServicesServlet</servlet-name>

<servlet-class>org.apache.wink.server.internal.servlet.RestServlet</servlet-class>

<init-param>

<param-name>javax.ws.rs.Application</param-name>

<param-value>com.ibm.puremeap.services.MobileServicesServlet</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

<security-role-ref>

<role-name>appcenteradmin</role-name>

<role-link>MyLdapAdmin</role-link>

</security-role-ref>

<security-role-ref>

<role-name>appcenteruser</role-name>

<role-link>MyLdapUser</role-link>

</security-role-ref>

</servlet>

The security-role element
<security-role>

<role-name>MyLdapAdmin</role-name>

</security-role>

The auth-constraint element

After you edit the security-role-ref and the security-role elements, you can use
the roles defined in the auth-constraint elements to protect the web resources. See
the appcenteradminConstraint element and the appcenteruserConstraint element
in this example for definition of the web resource collection to be protected by the
role defined in the auth-constraint element.

<security-constraint>

<display-name>appcenteruserConstraint</display-name>

<web-resource-collection>

<web-resource-name>appcenteruser</web-resource-name>

Chapter 7. Application Center 447

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<url-pattern>/installers.html</url-pattern>

<url-pattern>/service/device/*</url-pattern>

<url-pattern>/service/directory/*</url-pattern>

<url-pattern>/service/plist/*</url-pattern>

<url-pattern>/service/auth/*</url-pattern>

<url-pattern>/service/application/*</url-pattern>

<url-pattern>/service/desktop/*</url-pattern>

<url-pattern>/service/principal/*</url-pattern>

<url-pattern>/service/acl/*</url-pattern>

<url-pattern>/service/userAndConfigInfo</url-pattern>

<http-method>DELETE</http-method>

<http-method>GET</http-method>

<http-method>POST</http-method>
<http-method>PUT</http-method>

<http-method>HEAD</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>MyLdapUser</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>

</security-constraint>

Configuring the Application Center with LDAP

You can define properties in the catalina.properties file or the web.xml file.

Table 114. Bootstrap properties for configuring ACL management for LDAP on Apache
Tomcat

Property Description

ibm.appcenter.ldap.active Set to true to enable LDAP; set to false to
disable LDAP.

ibm.appcenter.ldap.connectionURL LDAP connection URL.

ibm.appcenter.ldap.user.base Search base of users.

ibm.appcenter.ldap.user.loginName LDAP login attribute.

448 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 114. Bootstrap properties for configuring ACL management for LDAP on Apache
Tomcat (continued)

Property Description

ibm.appcenter.ldap.user.displayName LDAP attribute for the user name to be
displayed, for example, a person's full name.

ibm.appcenter.ldap.group.base Search base of groups.

ibm.appcenter.ldap.group.name LDAP attribute for the group name.

ibm.appcenter.ldap.group.uniquemember LDAP attribute that identifies the members
of a group.

ibm.appcenter.ldap.user.groupmembership LDAP attribute that identifies the groups to
which a user belongs.

ibm.appcenter.ldap.security.binddn Property that identifies the distinguished
name of the user permitted to search the
LDAP directory. Use this property only if
security binding is required.

ibm.appcenter.ldap.security.bindpwd Property that identifies the password of the
user permitted to search the LDAP directory.
Use this property only if security binding is
required.

The example shows properties defined in the catalina.properties file.
ibm.appcenter.ldap.active=true

ibm.appcenter.ldap.connectionURL=ldap://bluepages.ibm.com:389

ibm.appcenter.ldap.user.base=ou=bluepages,o=ibm.com

ibm.appcenter.ldap.user.loginName=emailAddress

ibm.appcenter.ldap.user.displayName=cn

ibm.appcenter.ldap.group.base=ou=memberlist,ou=ibmgroups,o=ibm.com

ibm.appcenter.ldap.group.name=cn

ibm.appcenter.ldap.group.uniquemember=uniquemember

Preparations for using the mobile client
To use the mobile client to install applications on mobile devices, you must first
import the IBMAppCenter project into Worklight Studio, or the
IBMAppCenterBlackBerry6 project into the BlackBerry Eclipse environment, build
the project, and deploy the mobile client in the Application Center.

Prerequisites for building the Application Center installer

The Application Center comes with an Android, an iOS, and a BlackBerry version
of the client application that runs on the mobile device. This mobile application
that supports installation of applications on your mobile device is called the mobile
client. The mobile client is an IBM Worklight mobile application.

The Worklight project IBMAppCenter contains both the Android and the iOS
versions of the client.

Chapter 7. Application Center 449

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The BlackBerry project IBMAppCenterBlackBerry6 contains the version of the client
for BlackBerry OS 6 and OS 7 devices.

The Android version of the mobile client is included in the software delivery in the
form of an Android application package (.apk) file. You can find the
ibmapplicationcenter.apk file in the directory ApplicationCenter/installer.

To build the Android version, you must have the latest version of the Android
development tools.

The iOS version for iPad and iPhone is not delivered as a compiled application.
The application must be created from the Worklight project named IBMAppCenter.
This project is also delivered as part of the distribution in the ApplicationCenter/
installer directory.

To build the iOS version, you must have the appropriate Worklight and Apple
software. The version of Worklight Studio must be the same as the version of
Worklight Server on which this documentation is based. The Apple Xcode version
is V4.5.

The BlackBerry version is not delivered as a compiled application. The application
must be created from the BlackBerry project named IBMAppCenterBlackBerry6. This
project is delivered as part of the distribution in the ApplicationCenter/ installer
directory.

To build the BlackBerry version, you must have the BlackBerry Eclipse IDE (or
Eclipse with the BlackBerry Java plug-in) with the BlackBerry SDK 6.0. The
application also runs on BlackBerry OS 7 when compiled with BlackBerry SDK 6.0.

Download the software from: https://developer.blackberry.com/java/download/
eclipse/.
1. Start the BlackBerry Eclipse IDE.
2. Select Help > Install New Software > Work with: BlackBerry Update Site.
3. Expand the BlackBerry Java Plug-in Category and select "BlackBerry Java SDK

6.0.x.y."

Android and iOS

You must import the IBMAppCenter project and then build the project.

Importing the IBMAppCenter project into Worklight Studio

Follow the normal procedure to import a project into Worklight Studio.
1. Select File > Import.
2. Select General > Existing Project into Workspace.
3. On the next page, select Select root directory and locate the root of the

IBMAppCenter project.
4. Select "IBMAppCenter project".
5. Click Finish to import the IBMAppCenter project into Worklight Studio.

450 IBM Worklight V5.0.6

https://developer.blackberry.com/java/download/eclipse/
https://developer.blackberry.com/java/download/eclipse/

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Building the project

Build the IBMAppCenter project. The Worklight project contains a single application
named AppCenter. Right-click the application and select Run as > Build All and
Deploy.

Android

Worklight Studio generates a native Android project in
IBMAppCenter/apps/AppCenter/android/native. A native Android
development tools (ADT) project is located directly under the
android/native folder. You can compile and sign this project using the
ADT tools.

Refer to the Android site for developers https://developer.android.com/
index.html for more specific Android information that affects the mobile
client application.

iOS

Worklight Studio generates a native iOS project in IBMAppCenter/apps/
AppCenter/iphone/native. The IBMAppCenterAppCenterIphone.xcodeproj
file is in the ios/native folder. This file is the Xcode project that you have
to compile and sign by using Xcode.

Refer to the Apple developer site https://developer.apple.com/ to learn
more about how to sign the iOS mobile client application.

For signing the iOS application, you must change the Bundle Identifier of
the application to a bundle identifier that can be used with the
provisioning profile that you are using. The value is defined in the Xcode
project settings as com.your_internet_domain_name.appcenter.

Refer to the documentation of Worklight Studio for more about how you can create
hybrid mobile applications with Worklight Studio.

BlackBerry

You must import the BlackBerry project and then build the project.

Importing the IBMAppCenterBlackBerry6 project into Eclipse

Follow the normal procedure to import a project into the BlackBerry Eclipse IDE.
1. Select File > Import.
2. Select General > Existing Project into Workspace.
3. On the next page, select Select root directory and locate the root of the

IBMAppCenterBlackBerry6 project.
4. Select "IBMAppCenterBlackBerry6 project".
5. Click Finish to import the IBMAppCenterBlackBerry6 project into the BlackBerry

Eclipse IDE.

Building the BlackBerry project

The IBMAppCenterBlackBerry6 project is a native BlackBerry application that
requires protected BlackBerry API. Therefore, you must first obtain a signature to
sign the project. In your web browser, open https://www.blackberry.com/
SignedKeys/codesigning.html. Follow the instructions to obtain the signature,

Chapter 7. Application Center 451

https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.apple.com/
https://www.blackberry.com/SignedKeys/codesigning.html
https://www.blackberry.com/SignedKeys/codesigning.html

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

which consists of several keys. All signature keys must be imported into Eclipse by
using Window > Preferences > BlackBerry Java Plugin > Signature Tool.

To build the IBMAppCenterBlackBerry6 project:
1. Right-click the project and select BlackBerry > Package Project(s).

This action packages the project.
2. Right-click the project and select BlackBerry > Sign with Signature Tool.

This action signs the project.

The result is located in a generated directory called deliverables. This directory
contains two subdirectories:

Standard
This directory contains the packaged application for uploading with USB
cable to the device. This method is incompatible with the packaging
required for the IBM Application Center server.

Web This directory contains the packaged application for uploading over the air.
This method is compatible with the IBM Application Center. Therefore, use
this directory and not the Standard directory. Place this directory into an
archive (.zip) file.

Important: Make sure that the archive file does not contain the Standard
directory.

Refer to the BlackBerry site for developers for more specific information that affects
the mobile client application for BlackBerry projects.

For Experts

Look and feel and various features are controlled by a central property file called
appcenter.properties in the directory IBMAppCenterBlackBerry6/src/main/
resources. If you want to disable various features, you can adapt this property file
before you build the project. For example, you can disable the feature for reverting
the installation of an application to a previous version.

Deploying the mobile client in the Application Center

The Android, iOS, and BlackBerry versions of the mobile client must be deployed
to the Application Center. To do so, you must upload the Android application
package (.apk) files, iOS application (.ipa) files, and BlackBerry Web directory
archive files to the Application Center.

Follow the steps described in “Adding a mobile application” on page 455 to add
the mobile client application for Android, iOS, and BlackBerry. Make sure that you
select the Installer application property to indicate that the application is an
installer. Selecting this property enables mobile device users to install the mobile
client application easily over the air. To install the mobile client, see “Installing the
client on an Android mobile device” on page 473, “Installing the client on an iOS
mobile device” on page 477, or “Installing the client on a BlackBerry mobile
device” on page 478.

The Application Center console
With the Application Center console, you can manage the repository of the
Application Center and your applications.

452 IBM Worklight V5.0.6

https://developer.blackberry.com/java/

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The Application Center console is a web application to manage the repository of
the Application Center. The Application Center repository is the central location
where you store the mobile applications that can be installed on mobile devices.

Use the Application Center console to:
v Upload Android or iOS applications.
v Manage several different versions of mobile applications.
v Review the feedback of testers of mobile applications.
v Define the users who have the rights to list and install an application on the

mobile devices.
v Track which applications are installed on which devices.

Note:

Only users with the administrator role can log in to the Application Center
console.

Starting the Application Center console
You can start the Application Center with your web browser and log in if you have
the administrator role.

Procedure
1. Start a web browser session on your desktop.
2. Contact your system administrator to obtain the address and port of the server

where the Application Center is installed.
3. Enter the following URL: http://server/appcenterconsole

Where server is the address and port of the server where the Application Center
is installed.
http://localhost:9080/appcenterconsole

4. Log in to the Application Center console
Contact your system administrator to get your credentials so that you can log
in to the Application Center console.

Chapter 7. Application Center 453

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note:

Only users with the administrator role can log in to the Application Center
console.

Application Management
You can use Application Management to add new applications and versions and to
manage those applications.

The Application Center enables you to add new applications and versions and to
manage those applications.

Select Applications to access Application Management.

Application Center installed on WebSphere Application Server
Liberty Profile or on Apache Tomcat

Installations of the Application Center on these application servers, during
installation of Worklight with the Installation Manager package, have two different
users defined that you can use to get started.
v User with login demo and password demo

v User with login appcenteradmin and password admin

Figure 77. Login of the Application Center console

454 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WebSphere Application Server full profile

If you installed the Application Center on Websphere Application Server full
profile, one user named appcenteradmin is created by default with the password
indicated by the installer.

Adding a mobile application
Add applications to the repository on the server by using the Application Center
console. These applications can then be installed on mobile devices by using the
mobile client.

About this task

In the Applications view, you can add applications to the Application Center.
Initially the list of applications is empty and you must upload an application file.
Application files are described in this procedure.

Procedure

To add an application to make it available to be installed on mobile devices:
1. Click Add Application.
2. Click Upload.
3. Select the application file to upload to the Application Center repository.

Android

The application file extension is apk.

iOS

The application file extension is ipa.

BlackBerry

The application file extension is zip. This archive file must contain a
file with extension jad and all related files with extension cod.

Figure 78. Empty application list

Chapter 7. Application Center 455

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

4. Click Next to access the properties to complete the definition of the application.
5. Complete the properties to define the application. See Application properties

for information about how to complete property values.
6. Click Finish.

Application properties
Android applications and iOS applications have their own sets of properties that
cannot be edited and common properties, and editable properties.

The values of the following fields are taken from the application and you cannot
edit them.
v Package

v Internal Version

v Commercial Version

Figure 79. Application properties, adding an application

456 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Label

Properties of Android applications
v Package is the package name of the application; package attribute of the

manifest element in the manifest file of the application. See the Android SDK
documentation.

v Internal Version is the internal version identification of the application;
android:versionCode attribute of the manifest element in the manifest file of the
application. See the Android SDK documentation.

v Commercial Version is the published version of the application.
v Label is the label of the application; android:label attribute of the application

element in the manifest file of the application. See the Android SDK
documentation.

Properties of iOS applications
v Package is the company identifier and the product name; CFBundleIdentifier

key. See the iOS SDK documentation.
v Internal Version is the build number of the application; CFBundleVersion key

of the application. See the iOS SDK documentation.
v Commercial Version is the published version of the application.
v Label is the label of the application; CFBundleDisplayName key of the application.

See the iOS SDK documentation.

Properties of BlackBerry applications
v Package is the name of the application project; MIDlet-Name entry of the jad file.

See JSR-118 specification.
v Internal Version is the version of the application; MIDlet-Version entry of the

jad file. See JSR-118 specification.
v Commercial Version, like Internal Version, is the version of the application.
v Label is the label of the application; MIDlet-l entry of the jad file. See JSR-118

specification. This property is optional. The label can be set or updated during
the import of the application to the Application Center.

v Vendor is the vendor who created this application; MIDlet-Vendor entry of the
jad file. See JSR-118 specification.

Common property

Author

The Author field is read only. It displays the user name of the user who uploads
the application.

Editable properties

You can edit the following fields:

Description

Use this field to describe the application to the mobile user.

Recommended

Chapter 7. Application Center 457

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Select Recommended to indicate that you recommend users to install this application.
Recommended applications appear in a special list of recommended applications in
the mobile client.

Installer

For the Administrator only: This property indicates that the application is used to
install other applications on the mobile device and send feedback on an application
from the mobile device to the Application Center. Usually only one application is
qualified as Installer and is called the mobile client. This application is
documented in “The mobile client” on page 473.

Active

Select Active to indicate that an application can be installed on a mobile device. If
you do not select Active, the mobile user will not see the application in the list of
available applications displayed on the device.

If you do not select Active, the application is inactive. In the list of available
applications in Application Management, if Show inactive is selected, the
application is disabled.

If Show inactive is not selected, the application does not appear in the list of
available applications.

Ready for production

Select Ready for production to indicate that an application can be managed by the
application store of Tivoli Endpoint Manager. Applications with this property
selected are the only ones that are flagged to Tivoli Endpoint Manager. The
property Ready for production indicates that an application is ready to be
deployed in a production environment and is therefore suitable to be managed by
Tivoli Endpoint Manager through its application store.

Editing application properties
You can edit the properties of an application in the list of uploaded applications.

Procedure

To edit the properties of an uploaded application:
1. Select Applications to see the list of uploaded applications: Available

Applications.
2. Click the version of the application to edit the properties: Application Details.
3. Edit any of the editable properties that you want. See “Application properties”

on page 456 for details about these properties. The name of the current
application file is shown below the properties.
Important: If you want to update the file, it must belong to the same package
and be the same version number. If either of these properties is not the same
you must go back to the application list and add the new version first.

4. Click OK to save your changes and return to Available Applications or Apply
to save and keep Application Details open.

458 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Downloading an application file
You can download the file of an application registered in the Application Center.

Procedure
1. Select Applications to see the list of uploaded applications: Available

Applications.
2. Tap the version of the application under Application Details.
3. Tap the file name in the "Application File" section.

Figure 80. Application properties for editing

Chapter 7. Application Center 459

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Viewing application feedback
In the Application Center console, you can see feedback about mobile applications
sent by users.

About this task

Users of mobile applications can rate an application and send feedback through the
Application Center mobile client. The feedback is available in the Application
Center console. Individual feedback is always associated with a particular version
of an application.

Procedure

To view feedback from mobile users or testers about an application:
1. Select Applications to see the list of uploaded applications: Available

Applications.
2. Select the version of the application.
3. Click the feedback rating.

The rating is an average of all recorded feedback. It consists of one to five stars,
where one star represents the lowest level of appreciation and five stars
represents the highest level of appreciation. If no stars are selected, no feedback
is recorded.
The average rating gives an indication of how the application satisfies the
intended use of the application.

4. Click the two arrow heads on the right to expand the comment that
provides the feedback and to view the details of the mobile device where the
feedback is generated.

Figure 81. Application feedback

460 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For example, the comment can give the reason for feedback, such as failure to
install.
If you want to delete the feedback, click the trash can on the right.

User and group management
You can use users and groups to define who has access to some features of the
Application Center, such as installing applications on mobile devices.

Purpose

Use users and groups in the definition of access control lists (ACL).

Managing registered users

You manage registered users by clicking the Users/Groups tab and selecting
Registered users. You obtain a list of registered users of the Application Center
that includes:
v Mobile client users
v Console users
v Local group members
v Members of an access control list

If the Application Center is connected to an LDAP repository, you cannot edit the
user display names. If the repository is not LDAP, you can change a user display
name by selecting it and editing it.

You can register new users by clicking Register User, entering the login name and
the display name, and clicking OK.

To unregister a user, click the trash icon next to the user name.

Unregistering a user from the Application Center has the effect of:

Figure 82. List of registered users of the Application Center

Chapter 7. Application Center 461

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Removing feedback given by the user
v Removing the user from the access control lists
v Removing the user from local groups

Note:

When you unregister a user, the user is not removed from the application server or
the LDAP repository.

Managing local groups

You manage local groups by clicking the Users/Groups tab and selecting User
group.

To create a local group, click Create group. Enter the name of the new group and
click OK.

If the Application Center is connected to an LDAP repository, the search includes
local groups as well as the groups defined in the LDAP repository. If the repository
is not LDAP, only local groups are available to the search.

To delete a group, click the trash icon next to the group name. The group is also
removed from the access control lists.

To add or remove members of a group, click the Edit members link of the group.

Figure 83. Local user groups

462 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To add a new member, search for the user by entering the user display name,
select the user, and click Add.

If the Application Center is connected to an LDAP repository, the search for the
user is performed in the LDAP repository. If the repository is not LDAP, the search
is performed in the list of registered users.

To remove a member from a group, click the cross on the right of the user name.

Access control
You can decide whether installation of an application on mobile devices is open to
any users or whether you want to restrict the ability to install an application.

Installation of applications on a mobile device can be limited to specific users or
available to any users.

Access control is defined at the application level and not at the version level.

By default, after an application is uploaded, any user has the right to install the
application on a mobile device.

The current access control for an application is displayed in Available Applications
for each application. The unrestricted or restricted access status for installation is
shown as a link to the page for editing access control.

Installation rights are only about the installation of the application on the mobile
device. If access control is not enabled, everybody has access to the application.

Managing access control
You can add or remove access for users or groups to install an application on
mobile devices.

Figure 84. Managing group membership

Chapter 7. Application Center 463

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

You can edit access control:
1. In Application Management under Available Applications, click the unrestricted

or restricted state of Installation of an application.

2. Select Access control enabled to enable access control.
3. Add users or groups to the access list.

To add a single user or group, enter a name, select the entry in the matching
entries found, and click Add.
If the Application Center is connected to an LDAP repository, you can search
for users and groups in the repository as well as locally defined groups. If the
repository is not LDAP, you can search only local groups and registered users.
Local groups are exclusively defined in the Users/Groups tab.
You can register a user at the same time as adding the user to the access list by
entering the name and clicking Add. Then you must specify the login name
and the display name of the user.
To add all the users of an application, click Add users from application and
select the appropriate application.

To remove access from a user or group, click the cross on the right of the name.

Device Management
You can see the devices that connected to the Application Center from the
Application Center mobile client and their properties.

Figure 85. Adding users to the access list

464 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Device Management shows under Registered Devices the list of devices that have
connected to the Application Center at least once from the Application Center
mobile client.

Device properties

Click a device in the list of devices to view the properties of the device or the
applications installed on that device.

Figure 86. The device list

Figure 87. Device properties

Chapter 7. Application Center 465

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Select Properties to view the device properties.

Name

The name of the device. You can edit this property.

Note: on iOS, the user can define this name in the settings of the device in
Settings > General > Information > Name. The same name is displayed on
iTunes.

User Name

The name of the first user who logged into the device.

Manufacturer

The manufacturer of the device.

Model

The model identifier.

Operating System

The operating system of the mobile device.

Unique identifier

The unique identifier of the mobile device.

If you edit the device name, click OK to save the name and return to Registered
Devices or Apply to save and keep Edit Device Properties open.

Applications installed on device

Select Applications installed on device to list all the applications installed on the
device.

466 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Signing out of the Application Center console
For security purposes, you must sign out of the console when you have finished
your administrative tasks.

Purpose

To log out of the secure sign-on to the Application Center console..

To sign out of the Application Center console, click Sign out next to the Welcome
message that is displayed in the banner of every page.

Command-line tool for uploading an application
To deploy applications to the Application Center through a build process, use the
command-line tool.

You can upload an application to the Application Center by using the web
interface of the Application Center console. You can also upload a new application
by using a command-line tool.

This is particularly useful when you want to incorporate the deployment of an
application to the Application Center into a build process. This tool is located at:

installDir/ApplicationCenter/tools/applicationcenterdeploytool.jar

The tool can be used for application files with extension APK or IPA. It can be
used stand alone or as an ant task.

The tools directory contains all the files required to support the use of the tool.
v applicationcenterdeploytool.jar: the upload tool.
v json4j.jar: the library for the JSON format required by the upload tool.

Figure 88. Applications installed on a device

Chapter 7. Application Center 467

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v build.xml: a sample ant script that you can use to upload a single file or a
sequence of files to the Application Center.

Using the stand-alone tool to upload an application
To upload an application, call the stand-alone tool from the command line.

Procedure

Use the stand-alone tool by following these steps.
1. Add applicationcenterdeploytool.jar and json4j.jar to the java classpath

environment variable.
2. Call the upload tool from the command line:

java com.ibm.appcenter.Upload [options] [files]

You can pass any of the available options in the command line.

Option Content indicated by Description

-s serverpath The path to the Application
Center server.

-c context The context of the
Application Center web
application.

-u user The user credentials to access
the Application Center.

-p password The password of the user.

-f Force uploading of
applications, even if they
exist already.

The files parameter can specify files of type Android application package
(.apk) files or iOS application (.ipa) files.
In this example user demo has the password demopassword. Use this command
line.
java com.ibm.appcenter.Upload -s http://localhost:8080 -c applicationcenter -u demo -p demopassword -f app1.apk app2.ipa

Ant task for uploading an application
You can use the upload tool as an Ant task and use the Ant task in your own Ant
script.

When you use the upload tool as an ant task, the classname of the ant task is
com.ibm.appcenter.ant.UploadApps.

Parameters of ant task Description

serverPath To connect to the Application Center. The
default value is http://localhost:8080.

context The context of the Application Center. The
default value is /applicationcenter.

loginUser The user name with permissions to upload
an application.

loginPass The password of the user with permissions
to upload an application.

468 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

forceOverwrite If set to true, the ant task attempts to
overwrite applications in the Application
Center when it uploads an application that
is already present.

file The .apk or .ipa file to be uploaded. This
parameter has no default value.

fileset To upload multiple files.

Example

This example shows how to use the ant task in your own ant script.
<?xml version="1.0" encoding="UTF-8"?>
<project name="PureMeapAntDeployTask" basedir="." default="upload.AllApps">

<property name="install.dir" value="../../" />
<property name="workspace.root" value="../../" />

<!-- Server Properties -->
<property name="server.path" value="http://localhost:9080/" />
<property name="context.path" value="applicationcenter" />
<property name="upload.file" value="" />
<property name="force" value="true" />

<!-- Authentication Properties -->
<property name="login.user" value="appcenteradmin" />
<property name="login.pass" value="admin" />
<path id="classpath.run">

<fileset dir="${install.dir}/ApplicationCenter/tools/">
<include name="applicationcenterdeploytool.jar" />
<include name="json4j.jar"/>

</fileset>
</path>
<target name="upload.init">
<taskdef name="uploadapps" classname="com.ibm.appcenter.ant.UploadApps">
<classpath refid="classpath.run" />
</taskdef>
</target>
<target name="upload.App" description="Uploads a single application" depends="upload.init">
<uploadapps serverPath="${server.path}"
context="${context.path}"
loginUser="${login.user}"
loginPass="${login.pass}"
forceOverwrite="${force}"
file="${upload.file}"
</target>
<target name="upload.AllApps" description="Uploads all found APK and IPA files" depends="upload.init">
<uploadapps serverPath="${server.path}"

loginUser="${login.user}"
loginPass="${login.pass}"
forceOverwrite="${force}"
context="${context.path}"
<fileset dir="${workspace.root}">

<include name="**/*.ipa" />
<include name="**/*.apk" />
</fileset>
</uploadapps>
</target>
</project>

This sample ant script is in the tools directory. You can use it to upload a single
application to the Application Center.
ant upload.App -Dupload.file=sample.apk

Chapter 7. Application Center 469

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

You can also use it to upload all applications found in a directory hierarchy.
ant upload.AllApps -Dworkspace.root=myDirectory

Properties of the sample ant script

Property Comment

install.dir Defaults to ../../

server.path The default value is http://localhost:9080.

context.path The default value is applicationcenter.

upload.file This property has no default value. It must
include the exact file path.

workspace.root Defaults to ../../

login.user The default value is appcenteradmin.

login.pass The default value is admin.

force The default value is true..

To specify these parameters by command line when you call ant, add -D before the
property name. For example:
-Dserver.path=http://localhost:8888/

Publishing Worklight applications to the Application Center
You can use the application management plug-in to publish native applications to
the IBM Application Center.

About this task

You can deploy applications for Android and iOS operating systems to the
Application Center directly from the IBM Worklight Studio IDE. In Worklight
Studio, you can deploy Android application package (.apk) files and iOS
application (.ipa) files that you choose from your file system. You can right-click an
application (.apk or .ipa) file to deploy it to the Application Center.

Procedure

To publish an application to the Application Center, complete the following steps:
1. Specify the publish preferences for the Application Center:

a. In the main menu, click Window > Preferences.
b. Expand IBM Application Center > Publish Preferences.

470 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

c. Specify the default publish preference settings for the Application Center:

Preference Description

Credentials Specify the login and password required to
access the application repository.

Application Center Server Specify the URL of the application center
server to use when publishing applications.

2. Publish an application (.apk or .ipa file) from a Worklight project:
a. Right-click the application and click IBM Application Center > Publish on

IBM Application Center. The Publish Confirm dialog opens.

b. In the Publish Confirm dialog, choose one of the following options:

Option Description

Publish the application by using the current
preferences.

Click Publish.

Chapter 7. Application Center 471

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Option Description

Change any of the preferences before
publishing the application.

Click Preferences to open the Publish
Preferences page and edit the preference
settings.

You receive confirmation when publication is successful.

If the application already exists, publication will fail. You are given the
option to overwrite the existing version of the application.

Tip: To publish an application that is not part of the Worklight project:
1) Right-click the Worklight project and click IBM Application Center >

Publish on IBM Application Center. The Select Application to Publish
window opens.

472 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2) Navigate to the application (.apk or .ipa) file that you want to publish
and click Open to open the Publish Confirm dialog.

The mobile client
You can install applications on your mobile device with the Application Center
mobile client.

The Application Center mobile client is the application that runs on your Android,
iOS, or BlackBerry device. (Only BlackBerry OS V6 and OS V7 are supported by
the current version of the Application Center.) You use the mobile client to list the
catalog of available applications in the Application Center. You can install these
applications on your device. The mobile client is sometimes referred to as the
Application Center installer. This application must be present on your device if
you want to install on your device applications from your private application
repository.

Prerequisites

Your system administrator must give you a user name and password before you
can download and install the mobile client. This user name and password is
required whenever you start the mobile client on your device. For security reasons,
do not disseminate these credentials. These credentials are the same credentials
used to log in to the Application Center console.

Installing the client on an Android mobile device
You can install the mobile client on your Android mobile device by entering the
access URL in your browser, entering your credentials, and completing the
required steps.

Procedure
1. Start the browser on your mobile device.

Chapter 7. Application Center 473

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. Enter the following access URL in the address text field: http://
hostname:portnumber/appcenterconsole/installers.html

Where hostname is the address of the server and portnumber is the number of
the port where the Application Center is installed. Your system administrator
can provide this information.

The Android browser is not able to run pages when SSL communication and
self-signed certificates are used. In this case, you must use a non self-signed
certificate or use another browser on the Android device, such as Firefox, Chrome,
or Opera.
3. Enter your user name and password. See Prerequisites in “The mobile client”

on page 473.
When your user name and password are validated, the list of compatible
installer applications for your device is displayed in the browser. Normally,
only one application, the mobile client, appears in this list.

Before you can see the mobile client in the list of available applications, the
Application Center administrator must install the mobile client application. The
administrator uploads the mobile client to the Application Center and sets the
Installer property to true. See “Application properties” on page 456.

474 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

4. Select an item in the list to display the application details.
Typically, these details include the application name and its version number.

Figure 89. List of available mobile client applications to install

Chapter 7. Application Center 475

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

5. Tap Install Now to download the mobile client.
6. Launch the Android Download applications.
7. Select the Application Center client installer.

You can see the access granted to the application when you choose to install it.

Figure 90. Application details

476 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

8. Select Install to install the mobile client.
9. When the application is installed, select Open to open the mobile client or

Done to close the Downloads application.

Installing the client on an iOS mobile device
You can install the mobile client on your iOS mobile device by entering the access
URL in your browser, entering your credentials, and completing the required steps.

Figure 91. Installation of the mobile client on Android

Chapter 7. Application Center 477

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

Installing the mobile client on an iOS device is similar to installing it on Android,
but with some differences. The installer is automatically launched directly after
download. Your user name and password credentials are requested for almost all
the installation steps.
1. Start the browser on your mobile device.
2. Enter the following access URL in the address text field: http://

hostname:portnumber/appcenterconsole/installers.html

Where hostname is the address of the server and portnumber is the number of
the port where the Application Center is installed. Your system administrator
can provide this information.

3. Select an item in the list of available applications to display the application
details.

4. Tap Install Now to download the mobile client.
5. Enter your credentials to authorize the downloader transaction.
6. To authorize the download, tap Install.

7. Enter your credentials to authorize the installation.
If you entered valid credentials, the browser will close and you can watch the
download progress.

Installing the client on a BlackBerry mobile device
You can install the mobile client on your BlackBerry mobile device by entering the
access URL in your browser, entering your credentials, and completing the
required steps.

Figure 92. Confirm app to be installed

478 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

The installer is automatically launched directly after download. Your user name
and password credentials are requested for almost all the installation steps.
1. Start the browser on your mobile device.
2. Enter the following access URL in the address text field: http://

hostname:portnumber/appcenterconsole/installers.html.
Where hostname is the address of the server and portnumber is the number of
the port where the Application Center is installed. Your system administrator
can provide this information.

3. Enter your credentials to authorize access to the server.
4. Select an item in the list of available applications to display the application

details.
5. Tap Install Now to download the mobile client.
6. In the BlackBerry Over The Air Installation Screen, tap Download to complete

the installation.

Views in the mobile client
The mobile client provides views that are adapted to the various tasks that you
want to perform.

When you open the mobile client, you see the available views.

These views enable you to communicate with a server to send or retrieve
information about applications or to manage the applications located on your
device. Here are descriptions of the different views.

My Mobile on Android and iOS versions.

My Applications on BlackBerry version.

Figure 93. The installer in the BlackBerry browser

Figure 94. Views of the mobile client (Android and iOS operating systems)

Figure 95. Views of the mobile client (BlackBerry devices)

Chapter 7. Application Center 479

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

This view shows the applications installed on your mobile device.

Catalog on Android and iOS versions.

All Applications on BlackBerry version.

This view shows the applications that can be installed.

In Progress on Android and iOS systems.

This view shows the progress of installing an application. This view is not required
in the BlackBery version of the mobile client.

Settings

This view shows login information.

You can refresh a view by tapping the Refresh button.

When you first start the mobile client, it opens the Settings view for you to enter
your user name, password, and the address of the Application Center server. This
information is mandatory.

The layout of the views is specific to the Android, iOS, or BlackBerry environment,
even though the functions you can perform in the views are the same for both
operating systems. For example, the tabs are located in the upper part of the view
on an Android device and in the lower part of the view on an IOS device. Devices
might have quite different screen real estate, so all of the information a main tab
view has to show might not be available at one time.

The Settings view
In the Settings view, you can access the fields that are required to connect to the
server to view the list of applications available for your device.

Use the Settings view to enter your credentials to connect to the Application
Center server to view the list of applications available for your device.

The Settings view presents all the mandatory fields for the information required to
connect to the server.

User name and password

Enter your credentials for access to the server. These are the same user name and
password granted by your system administrator for downloading and installing
the mobile client.

Application Center server address

A preformatted example address fills this field. Use it as a model for entering the
correct server address to avoid address format errors.

Secure Socket Layer (SSL)

Select SSL to turn on the SSL protocol for communications over the network.
(Tapping this field again when SSL is selected switches SSL off.)

480 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

SSL selection is available for cases where the Application Center server is
configured to run over an SSL connection. Selecting SSL when the server is not
configured to handle an SSL layer prevents you from connecting to the server. Your
system administrator can inform you whether the Application Center runs over an
SSL connection.

Connect to the server.
1. Enter your user name and password.
2. Edit the example server address to make it correspond to your Application

Center configuration.
3. If your configuration of the Application Center runs over the SSL protocol,

select SSL.
4. Tap Connect to connect to the server.

When you start the Application Center on subsequent occasions, it opens in the
Settings view. You are required to enter only your password. Your user name and
the server address are retained.

Offline mode notification

Offline mode notification is shown in the Android and iOS versions of the mobile
client only. If the connection to the server is lost while the mobile client is running,
an unplugged icon is displayed in the current view, which could be the My
Mobile, Catalog, or In Progress view. This icon disappears at the first successful
communication attempt with the server.

The My Mobile and My Applications views
In the My Mobile and My Applications views, you can manage applications
installed on your device; you can remove or update these applications and send
feedback about them.

The view shows the installed applications and available updates for those
applications. The location of this information in the screen real estate depends on
the type of mobile device.

Depending on the type of device, you can display the entire content of the view at
one time (on a tablet) or switch between different parts of the view (on a
smartphone).

For example, to switch between the application list and the properties of an
application, tap the application name. To switch back, tap Back.

Figure 96. Connection lost indicated on Android devices

Figure 97. Connection lost indicated on iOS devices

Chapter 7. Application Center 481

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Installed

This list shows all the applications installed on your mobile device.

Update or Recommended

This list shows the updates that are available for the applications installed on your
mobile device and applications that have been recommended by the administrator.

Application properties

The properties of an application are accessed by tapping the application name.

The properties shown are the package, version, description, and recommendation
level of the installed application.

You can use this part of the My Mobile view to manage the application.
v Submit feedback about the application.
v Upgrade or downgrade the update state of the application.
v Remove the application from your mobile device.

Removing an installed application
You can remove an application that is installed on your mobile device.

Procedure
1. Open the My Mobile or My Applications view.
2. Remove an application:

v Android: In the installed applications list, select the application you want to
remove and tap Remove Now in the application properties part of the view.

Figure 98. Installed application list, updates or recommended versions, and application properties

Figure 99. Installed application list on BlackBerry devices

482 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

See “The My Mobile and My Applications views” on page 481 for how to
switch between different parts of the view.
The mobile client is one of the installed applications. If you select it, you can
shut it down and remove it from your mobile device by tapping Remove
Now.

v iOS: Use the normal iOS procedure for removing an application and then
click Report Not Install.

v BlackBerry: Follow steps a. and b.
a. Select the application to see the application detail screen. If the application

is installed, an Uninstall button is displayed.
b. Tap the Uninstall button. Removing an installed application often results in

a reboot request. If you choose to reboot later, the list of installed
applications displayed in the mobile client might temporarily become
unsynchronized until the next reboot.

Rating an installed application
You can rate your appreciation of an application and give feedback about it.

About this task

You can rate an application in the My Mobile or My Applications view.

Procedure
1. Tap the name of the application that you want to rate in the list of installed

applications.
2. Make the next gestures according to the kind of device.

v On Android or iOS operating systems: Expand the Rating and feedback
property.

v On BlackBerry devices: Scroll horizontally to the Feedback pane and tap
Submit Feedback.

3. Tap a star, from 0 to 5, to represent your approval rating of the version of the
application. On a BlackBerry device without touch screen, use the trackpad to
slide horizontally to select the number of stars.
One star represents the lowest level of appreciation and five stars represents the
highest level of appreciation.

4. Enter a comment about this version of the application.
5. Tap Submit to send your feedback to the server; tap Back or Cancel to return

to the application properties without submitting your feedback.

Updating an installed application (Android and iOS)
You can update an application that is installed on your iOS or Android device.

About this task

You can update an application in the My Mobile view.

If a more up-to-date version of an installed application is available on the server, it
is listed under Update or Recommended.

You can update the version of the installed application.

Chapter 7. Application Center 483

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Tap the version of the application that you want to update to.

The version number of the application is updated in the application properties.
2. Tap Install Now to start the update process.

3. Confirm that you want to replace the currently installed version with the
updated version or cancel the update.

4. To confirm or cancel version installation on an Android or iOS device, see
related tasks.

Related tasks:
“Confirming or canceling version installation on an Android device”
On an Android device, you can confirm the version installation and wait for it to
install, or you can cancel the version installation and complete cancellation of the
upgrade.
“Confirming or canceling installation on an iOS device” on page 485
On an iOS device, you can confirm or cancel the version installation by entering
your credentials and choosing the appropriate option.

Confirming or canceling version installation on an Android
device
On an Android device, you can confirm the version installation and wait for it to
install, or you can cancel the version installation and complete cancellation of the
upgrade.

Procedure

You can see the rights that are granted to the upgraded application when you
choose to install it.
1. Tap Install to confirm upgrade of the application version or Cancel to cancel

the upgrade.
2. Optional: If you tap Install, wait for the installation progress to complete.

a. Open the new version of the application or remain in the In Progress view.
3. Optional: If you tap Cancel, you must perform the following steps to complete

cancellation of the upgrade.
a. Go to the In Progress view.
b. Select the version of the application to be canceled and tap Cancel Now.

The cancellation process might take several minutes.

Figure 100. Updating the version of an installed application

484 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

c. Tap Dismiss to exit the information message.
You are informed when the cancellation is complete.

Confirming or canceling installation on an iOS device
On an iOS device, you can confirm or cancel the version installation by entering
your credentials and choosing the appropriate option.

Procedure

You must enter your credentials to continue the upgrade.
1. Enter your user name and password.

When your credentials are validated, the In Progress view is displayed.
2. Tap Install to confirm upgrade of the application version or Cancel to cancel

the upgrade.
3. Optional: If you tap Install, the application upgrade is managed by the

operating system. The mobile client is closed and the upgrade progress is
shown on the mobile device desktop.
a. When the upgrade is complete, start the mobile client.
b. Tap the My Mobile view to see that the version of the selected installed

application is upgraded.
4. Optional: If you tap Cancel, you must complete the cancelation from the In

Progress view.
a. In the In Progress view, select the canceled item.
b. Tap Report Not in Progress to complete the cancelation process for the

same application.

Reverting an installed application (Android and iOS)
You can revert the version of an installed application if an earlier version exists on
the server.

About this task

In the My Mobile view, you can revert the version of an installed application,
provided that an earlier version is available on the server.

Procedure
1. Tap the name of the application you want to downgrade in the installed

applications list.
2. Tap Switch Version in the application properties part of the view.

Below the currently installed version is a list of versions available for
downgrade.

3. Select the version that you want to revert.
4. Tap Switch Now to install the downgraded version.

Chapter 7. Application Center 485

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

5. Confirm that you want to replace the existing installed version with the
downgrade or cancel the downgrade.
See related tasks.

Note: Upgrading an application always works, but downgrading an
application does not work on Android V4.2 and later.

Related tasks:
“Confirming or canceling version installation on an Android device” on page 484
On an Android device, you can confirm the version installation and wait for it to
install, or you can cancel the version installation and complete cancellation of the
upgrade.
“Confirming or canceling installation on an iOS device” on page 485
On an iOS device, you can confirm or cancel the version installation by entering
your credentials and choosing the appropriate option.

Updating and reverting an installed application (BlackBerry)
On BlackBerry, you can update or revert the version of an application. You can
revert the version if an earlier version exists on the server.

About this task

In the Application Properties view, you can update or revert the version of an
installed application. You access the Application Properties view after you select
an application in the All Applications, My Applications, or My Updates view.

Procedure
1. Select the application in the All Applications view, the My Applications view,

or the My Updates view. The Application Properties view shows the
information about the latest available version and the installed version of an
application. In this view you can:
v Install the latest version, if the application is not installed.

Figure 101. Downgrading the version of an installed application

Figure 102. The Application Properties view on BlackBerry devices

486 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Update to the latest version, if an earlier version of the application is
installed.

v Uninstall the application, if it is installed.
2. If you want to update or revert to a specific version, slide horizontally to the

Versions pane. In the Versions pane, you see all available versions of the
application.

3. Select a version that you want to inspect. The Application Properties view is
updated with information about this specific version. You can:
v Update or revert to that specific version.
v Uninstall that version, if it is installed.

During the installation, a progress bar is displayed. While you are downloading
the application, the installation can be canceled by tapping the red cross next to
the progress bar. When the download of the application is complete, the
installation can no longer be canceled.
Updating or reverting the version of an application often results in a request
for a reboot. If you choose to reboot later, the list of installed applications
displayed in the mobile client might temporarily become unsynchronized until
the next reboot.

The Catalog or All Applications view
In the Catalog or All Applications view, you can see a list of applications that can
be installed on your device.

The Catalog or All Applications view has a list of applications that can be
installed from the server and the properties and actions that are relevant to the
selected application. The location of this information in the screen real estate
depends on the type of mobile device.

Depending on the type of device, you can display the entire content of the view at
one time (on a tablet) or switch between different parts of the view (on a
smartphone).

For example, to switch between the application list and the properties and actions
for an application, tap the application name. To switch back, tap Back.

Selecting an application retrieves its related properties and actions from the server.

Figure 103. Selecting a version of an application

Figure 104. The progress bar during installation of an application version

Chapter 7. Application Center 487

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Installing an application on an Android device
From the Catalog view, you can install an application on your Android device.

About this task

Installation is initiated from the Catalog view.

Procedure
1. Tap the name of the application you want to install.

The application properties and action data are retrieved from the server.
2. Tap Install Now.

You can see the rights that are granted to the upgraded application.

Figure 105. Selecting an application to install on your device

488 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. Tap Install to confirm installation of the application or Cancel to cancel
installation.

4. Optional: If you tap Install, wait for the installation progress to complete.
a. Open the installed application or return to the mobile client.

5. Optional: If you tap Cancel, you must perform the following steps to complete
cancellation of the installation.
a. Go to the In Progress view.
b. Select the application to be canceled and tap Cancel Now.

Figure 106. Application rights on your Android device

Chapter 7. Application Center 489

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The cancellation process might take several minutes.
c. Tap Dismiss to exit the information message.

You are informed when the cancellation is complete.

Installing an application on an iOS device
From the Catalog view, you can install an application on your iOS mobile device.

About this task

Look under Listed Applications in the Catalog view.

Procedure
1. Tap the name of the application you want to install.

The application properties and action data are retrieved from the server.
2. Tap Install Now.

Figure 107. In Progress view, canceling application installation on your Android device

490 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The In Progress view is displayed.

3. Tap Install to confirm installation of the application version or Cancel to cancel
the installation.

4. Optional: If you tap Install, the installation of the application is managed by
the operating system. The mobile client is closed and the installation progress is
shown on the mobile device desktop.
a. When the installation is complete, start the mobile client.
b. Tap the My Mobile view to see that the selected application is included in

the list of installed applications.
5. Optional: If you tap Cancel, you must complete the cancelation from the In

Progress view.
a. In the In Progress view, select the canceled item.
b. Tap Report Not in Progress to complete the cancelation process for the

same application.

Figure 108. In Progress view, application installation on your iOS device

Chapter 7. Application Center 491

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Installing an application on a BlackBerry device
From the My Applications view, you can install an application on your BlackBerry
device.

About this task

On a BlackBerry device, you install an application from the My Applications view.

If the list of applications is too long, you can use the search field to find an
application that contains the search string it its name.

You can also sort the application list by using the sort icon in the upper right
corner.

Procedure
1. Tap or click the name of the application you want to install. The application

properties and action data of the latest version of this application are retrieved
from the server.

2. Tap or click Install. During the installation, a progress bar is displayed. While
you are downloading the application, the installation can be canceled by
tapping the red cross next to the progress bar. When the download of the
application is complete, the installation can no longer be canceled.
Updating or reverting an application often results in a request for a reboot. If
you choose to reboot later, the list of installed applications displayed in the
mobile client might temporarily become unsynchronized until the next reboot.

Figure 109. Canceling application installation on your iOS device

492 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The In Progress view (Android and iOS)
In the In Progress view, you can see the progress of the installation of an
application or of an upgrade or downgrade of an application, or the cancelation of
these actions.

The In Progress view shows applications that are at some stage of the installation
or cancellation of the installation process. It also shows the progress of the upgrade
or downgrade of a version of an application, or of the cancellation of such an
upgrade or downgrade.

The BlackBerry version of the mobile client dooes not have this view, because
progress is shown in the Application Properties view.

This view is automatically opened when an installation is in progress. You can also
select the In Progress tab manually to access the view.

The In Progress view has a list of applications that are currently in the process of
installation called In Progress Applications. The view also shows the status of the
installation of the selected application. The location of this information in the
screen real estate depends on the type of mobile device.

Depending on the type of device, you can display the entire content of the view at
one time (on a tablet) or switch between different parts of the view (on a
smartphone).

For example, to switch between the application list and the properties and actions
for an application, tap the application name. To switch back, tap Back.

When no installation is in progress, the application list shows Nothing to report
and you cannot switch between different parts of the view.

Installation

If you follow the normal procedure to install an application, the selected
application is removed from the Catalog view (which shows applications that can
be installed on your mobile device).

When you tap Install Now, you start the process to open the In Progress view.
This view includes details of the application you selected to install; the package
name, the application version, description, and recommendation level. It shows the
current state of the installation of the application.

Cancellation

If you cancel an installation, the cancellation interrupts asynchronous server
transactions. Facilities in the In Progress view enable you to terminate the
installation request and to restore the list of applications that can be installed on
your mobile device to a real and accurate state. For example, see “Installing an
application on an Android device” on page 488 or “Installing an application on an
iOS device” on page 490.

The installation of the application is considered to be in progress and it is removed
from the Catalog view.

Chapter 7. Application Center 493

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Details specific to the Android environment

If you accept installation of the application, you can follow the progress of the
installation. When installation is complete, you can open the application or return
to the In Progress view in the mobile client. The installed application is no longer
shown under In Progress Applications.

The part of the view showing the application details and installation progress
exists primarily to provide the opportunity to cancel the installation (see “Installing
an application on an Android device” on page 488) and to interrupt repeated
requests to confirm the installation.

Details specific to the iOS environment

The installation is performed by the operating system. For this reason, you must
tap Report Not in Progress to actually cancel the installation. See “Installing an
application on an iOS device” on page 490.

If you close the mobile client before the installation or cancellation operation is
complete, this facility is available for the selected application in the My Mobile
view. You can then tap Report Not in Progress in the My Mobile view.

Advanced information for BlackBerry users
You have a choice of connection suffixes for manual connection between the
mobile client and BlackBerry.

Purpose

Sometimes you might have to set up the connection between the Application
Center mobile client and BlackBerry service manually. This information helps you
to set the correct connection.

The mobile client connects to the Application Center Server through HTTP.
BlackBerry offers a wide range of HTTP connection modes that can be controlled
by a connection suffix. The Application Center mobile client tries to detect the
connection mode automatically. By default, the mobile client tries Wifi, then WAP
2.0, and then direct TCP over the mobile carrier (GPRS, 3G, and so on).

Setup of a manual connection

In rare cases, it might be necessary to set up the connection suffix manually.

On the BlackBerry home screen:
1. Open Options.
2. Open Third Party Application.
3. Open IBM Application Center.

You can then specify the connection suffix and the connection timeout
parameter.

The table shows the possible connection suffixes. For corporate-owned devices, you
might need to contact your network administrator for the correct connection suffix.
Corporate-owned devices might disallow certain connection modes in the service
book of the device.

494 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

See http://supportforums.blackberry.com/t5/Java-Development/Network-
Transports/ta-p/482457 for more details.

Table 115. Details for manual connection

Connection suffix User type Conditions Connection path

interface=wifi All users Wifi must be
enabled. The
device service
book must allow
Wifi. The device
must be
connected to a
Wifi access point.

Device > Wifi
access point >
Internet > IBM
Application
Center Server

deviceside=true All users The mobile carrier
must allow data
connections. The
device service
book must allow
direct TCP. The
mobile carrier's
APN must be set
up.

Device > Mobile
carrier > Internet
> IBM Application
Center Server

deviceside=true;apn=xyz Similar to
deviceside=true,
but uses the
specified APN.

deviceside=true;apn=xyz;TunnelAuthUsername=user;TunnelAuthPassword=passwordSimilar to
deviceside=true,
but uses the
specified APN
and user name
and password.

deviceside=true;ConnectionUID=xyzAll users The mobile carrier
must allow data
connections. The
device service
book must allow
WAP 2.0. The
WAP 2.0
connection details
for the UID must
be set up in the
service book.

Device > Mobile
carrier > WAP 2.0
Gateway >
Internet > IBM
Application
Center Server

deviceside=true;WapGatewayIP=127.0.0.1;WapGatewayPort:9201;
WapGatewayAPN=xyz

All users The mobile carrier
must allow data
connections. The
device service
book must allow
WAP 1.0/1.1.

Device > Mobile
carrier > WAP 1.0
/1.1 Gateway >
Internet > IBM
Application
Center Server

Chapter 7. Application Center 495

http://supportforums.blackberry.com/t5/Java-Development/Network-Transports/ta-p/482457
http://supportforums.blackberry.com/t5/Java-Development/Network-Transports/ta-p/482457

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 115. Details for manual connection (continued)

Connection suffix User type Conditions Connection path

deviceside=false Corporate users Your corporate
entity must set up
a BlackBerry
Enterprise Server
(BES) for mobile
device services
(MDS). The MDS
connection UID
must be set up in
the service book.

Device > Wifi or
Mobile carrier >
Blackberry
Infrastructure
Network
Operation Center
(NOC) >
Corporate BES >
IBM Application
Center Server

deviceside=false;ConnectionUID=xyz Similar to
deviceside=false,
but uses the
specified UID.
This setting is
useful when your
corporate entity
has set up
multiple BES.

A secret connection suffix. BlackBerry
Alliance members

You must be a
member of the
BlackBerry
Alliance. In this
case, you have
received your
own connection
suffix. Instead of a
corporate BES,
you connect to the
central Internet
Service Browsing
Server (BIS-B) of
BlackBerry.

Device > Wifi or
Mobile carrier >
Blackberry
Infrastructure
Network
Operation Center
(NOC) > BIS-B >
IBM Application
Center Server

EndToEndRequired All users SSL connections
only; use this
suffix in
combination with
the other
connection
suffixes.

Device > ... > IBM
Application
Center Server is
fully SSL
encrypted

EndToEndDesired All users SSL connections
only; use this
suffix in
combination with
the other
connection
suffixes.

Device > ... > (BES
or BIS-B does not
necessarily use
SSL) BES or BIS-B
> ... > IBM
Application
Center Server
uses SSL

Application rating feature called from another application (advanced
feature)

You can send feedback to the server from another IBM Worklight application.

496 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The application rating feature described in “Rating an installed application” on
page 483 can be called from another IBM Worklight application. The Worklight
application must be installed on the mobile device by using the Application Center
mobile client.

The rating and feedback form of the Application Center mobile client for the
Worklight application that issues the call is shown when the API is called. The
form contains any rating and comment that were passed through the API. The user
can edit the feedback and tap Submit to send the feedback to the server.

API parameters

The same API parameters are required on both Android and iOS operating
systems.

Parameters:

pkg - The application package ID. Mandatory.

version - The application package version; if
unspecified, the version installed. Optional.

stars - A value between 0 and 5 representing the
number of stars of the rating. Optional.

comment - The comment string. Optional.

On Android systems, the API is implemented with an Android intent class, with
an action and extras corresponding to the parameters.

On iOS, the API object is part of a URL that is completed by the values of the
parameters.

API for Android operating system

Start an intent with the action com.ibm.appcenter.FEEDBACK_REQUEST. The intent
must contain an extra with the package ID named pkg. Optionally, it can also
contain three more extras: version, stars, and comment.

Example of use of the API on Android
Intent intent = new Intent("com.ibm.appcenter.FEEDBACK_REQUEST");
intent.putExtra("pkg", "com.TestFeedbackApp");
//optional
intent.putExtra("version", 2);
//optional
intent.putExtra("stars", 1);
//optional
intent.putExtra("comment", "Good");
//optional

API for iOS

Open the URL:

ibmappctrfeedback://pkg/version?stars=number&comment=text.

Where the parameters in the path:

pkg is mandatory.

Chapter 7. Application Center 497

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

version is optional.

stars is optional.

comment is optional.

Example of use of the API on iOS
ibmappctrfeedback://com.TestFeedbackApp/2?stars=1&comment=Good

498 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 8. Deploying to the cloud by using IBM
PureApplication System

IBM Worklight provides the capability to deploy IBM Worklight Servers and
applications to the cloud by using IBM PureApplication System.

Using Worklight in combination with PureApplication System provides a simple
and intuitive environment for developers and administrators to develop mobile
applications, test them, and deploy them to the cloud. The following components
are available:

IBM Mobile Application Platform Pattern Type
Provides Worklight runtime and artifacts support for PureApplication
System.

IBM Worklight PureApplication System Extension for Worklight Studio
Provides PureApplication System tooling support for Worklight Studio.

Ant command line interface
Provides an alternative method to build and deploy Worklight Virtual
Application.

Installation of IBM Worklight support for PureApplication System
You must install the IBM Mobile Application Platform Pattern Type and IBM
Worklight PureApplication System Extension for Worklight Studio.

Installing the IBM Mobile Application Platform Pattern Type
You use the PureApplication System Workload Console to install the IBM Mobile
Application Platform Pattern Type.

Before you begin

You can find the worklight.ptype-5.0.6.0.tgz file in the worklight-pattern-
offering.zip file. Make sure you extract it before you start this procedure.

Procedure
1. Log in to IBM PureApplication System with an account that has permission to

create new pattern types.
2. Go to Workload Console > Cloud > Pattern Types.
3. Upload the IBM Mobile Application Platform Pattern Type .tgz file.
4. On the toolbar, click the plus (+) button. The "Install a pattern type" window

opens.
5. On the Local tab, click Browse, select the IBM Mobile Application Platform

Pattern Type .tgz file, and then wait for the upload process to complete. The
pattern type is displayed in the list and is marked as not enabled.

6. In the list of pattern types, click the uploaded pattern type. Details of the
pattern type are displayed.

7. In the License Agreement row, click License. The License window is displayed
stating the terms of the license agreement.

499

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

8. To accept the license, click the Accept button. Details of the pattern type now
show that the license is accepted.

9. In the Status row, click Enable. The pattern type is now listed as being enabled.

Installation of IBM Worklight PureApplication System
Extension for Worklight Studio

IBM Worklight PureApplication System Extension is included with IBM Worklight
Studio Enterprise Edition and Consumer Edition. When IBM Worklight Studio is
installed in the Eclipse development environment, the Worklight PureApplication
System Extension is also installed.

For more information about installation and configuration of IBM Worklight
Studio, see “Setting up IBM Worklight Studio” on page 13.

Working with the IBM Mobile Application Platform Pattern Type
Working with the IBM Mobile Application Platform Pattern Type involves creating
an IBM Mobile Application Platform Pattern, integrating with Tivoli Directory
Server, connecting to a Tivoli Directory Server, and managing Worklight VAP
instances.

Composition and components
The IBM Mobile Application Platform Pattern Type is composed of the IBM Web
Application Pattern and the IBM Mobile Application Platform Pattern. The IBM
Mobile Application Platform Pattern provides a number of components.

Composition

IBM Mobile Application Platform Pattern Type is composed of the following
patterns:
v IBM Web Application Pattern
v IBM Mobile Application Platform Pattern

Components

In addition to all components provided by IBM Web Application Pattern, IBM
Mobile Application Platform Pattern provides the following components:
v Worklight application component
v Worklight adapter component
v Worklight configuration component
v Worklight application component link to enterprise application (Websphere

Application Server) component
v Worklight adapter component link to enterprise application (Websphere

Application Server) component
v Enterprise application (Websphere Application Server) component link to

Worklight configuration component
v Worklight configuration link to user registry (Tivoli Directory Server)

Creating an IBM Mobile Application Platform Pattern
You create an IBM Mobile Application Platform Pattern by creating and
configuring an IBM Worklight Server and database, configuring database
connectivity, and uploading applications and adapters.

500 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Before you begin

This procedure involves uploading certain artifacts to IBM PureApplication System
such as the IBM Worklight Server. Before you begin, ensure that the artifacts are
available for upload.

Procedure
1. Create an IBM Worklight Server.

a. If necessary, use the Worklight Studio PureApplication System Extension or
the command line interface to package up the IBM Worklight Server into an
EAR file.

b. In IBM PureApplication System, in the Virtual Application Builder, click the
Diagram tab.

c. From the Assets list, expand Application Components, and then drag and
drop an Enterprise Application WebSphere Application Server component
onto the canvas.

d. Supply the following information in the fields provided:

Table 116. IBM Worklight Server component properties

Property Description

Name Name for the IBM Worklight Server.

EAR file Worklight EAR file that contains the IBM
Worklight Server package to be uploaded.

2. Create a Worklight database.
a. From the Assets list, expand Database Components, and then drag and

drop a Database DB2 component onto the canvas.
b. Supply the following information in the fields provided:

Table 117. Worklight database component properties

Property Description

Name Name for the Worklight database
component.

Database name Name for the database.

Schema file Select the create-worklight-db2.sql or
create-worklightreports-db2.sql file. These
files can be found in the IBM Worklight
Server installation directory.

3. Configure database connectivity.
a. Drag a connection from the IBM Worklight Server component to the

database component.
b. In the JNDI Name of Data Source field, enter the JNDI name of the

Worklight datasource; for example, jdbc/WorklightDS.
c. Repeat the previous steps to create a Worklight reports database component

and a link from the IBM Worklight Server component to the reports
database component.

4. Configure the IBM Worklight Server.
a. From the Assets list, expand Worklight Components, and then drag and

drop a Worklight Configuration component onto the canvas.

Chapter 8. Deploying to the cloud by using IBM PureApplication System 501

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

b. Create a link from the IBM Worklight Server component to the Worklight
configuration component.

c. Supply the following information in the fields provided:

Table 118. Worklight configuration component properties

Property Description

Name Name for the Worklight configuration
component.

Worklight Console Protection Select this check box to enable security
protection for the Worklight console. Clear
the check box to disable security protection.

Worklight Console Username User name for Worklight console protection.

Worklight Console Password Password for Worklight console protection.

5. Create Worklight applications and adapters.
a. From the Assets list, expand Worklight Components, and then drag and

drop a Worklight adapter component and a Worklight application
component onto the canvas.

b. For the Worklight application component, supply the following information
in the fields provided:

Table 119. Worklight application component properties

Property Description

Name Name for the Worklight application.

Worklight Application Files Worklight application files to upload.
Supported formats are *.wlapp and *.zip.

c. For the Worklight Adapter component, supply the following information in
the fields provided:

Table 120. Worklight adapter component properties

Property Description

Name Name for the Worklight adapter.

Worklight Adapter Files Worklight adapter files to upload. Supported
formats are *.wlapp and *.zip.

d. Create links from the Worklight application component to the IBM
Worklight Server component, and from the Worklight adapter component to
the IBM Worklight Server component.

Integrating with Tivoli Directory Server
Tivoli Directory Server is supported as a directory server in IBM Mobile
Application Platform Pattern and can be used in conjunction with LdapLoginModule
provided by IBM Worklight.

To use Tivoli Directory Server, LDAPLoginModuleIPAS must be defined in your
Worklight application. For more information, see “Integration with Tivoli Directory
Server” on page 506

502 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Connecting to a new Tivoli Directory Server
You connect to a new Tivoli Directory Server by dragging and dropping a new
User Registry TDS component onto the PureApplication System canvas, linking the
Worklight configuration component to it, and then uploading an LDIF file for
Tivoli Directory Server.

Procedure
1. In IBM PureApplication System, in the Virtual Application Builder, click the

Diagram tab.
2. From the Assets list, expand User Registry Components, and then drag and

drop an User Registry Tivoli Directory Server component onto the canvas.
3. Supply the following information in the fields provided:

Table 121. Tivoli Directory Server component properties

Property Description

Name Name for the directory server.

LDIF file LDIF file to be uploaded for the Tivoli
Directory Server.

Base DN Effective only when the LDAP login module
has the parameter baseDN.

User filter Effective only when the LDAP login module
has the parameter userFilter.

Group filter Effective only when the LDAP login module
has the parameter groupFilter.

Connecting to an existing Tivoli Directory Server
You connect to an existing Tivoli Directory Server by dragging and dropping a
Connect Out component onto the PureApplication System canvas, specifying the IP
address and port number of your existing Tivoli Directory Server, and linking the
IBM Worklight Server component to the Connect Out component.

Procedure
1. In IBM PureApplication System, in the Virtual Application Builder, click the

Diagram tab.
2. From the Assets list, drag and drop a Connect Out component onto the canvas.
3. Specify the IP address and port number of your existing Tivoli Directory Server.
4. Drag a link from the IBM Worklight Server component to the Connect Out

component.

Performing operations on running IBM Worklight VAP
instances

Use the PureApplication System Workload Console to perform management tasks
on a running IBM Worklight VAP instance.

Procedure
1. In IBM PureApplication System, in the Workload Console, click the Instances

tab.
2. From the Virtual Application Instances list, click the required instance, and then

click Manage.

Chapter 8. Deploying to the cloud by using IBM PureApplication System 503

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. Click the Operations tab, and then from the Operations list, click
WORKLIGHT.

4. In the details panel, you can perform the following operations:

Table 122. Operations on VAP instances

Operation Description

Worklight Application/Adapter Install or update Worklight applications and
adapters. Supported file types: *.wlapp,
*.adapter, *.zip.

Worklight Console Protection Enable and disable security protection for
the Worklight Console.

Worklight Console Username Username for Worklight Console protection.

Worklight Console Password Password for Worklight Console protection.

5. To submit the changes you have made, click the Submit button.
6. Navigate back to the Instances tab and verify that the status of the instance is

displayed as "Running".

Upgrading IBM Mobile Application Platform Pattern
To upgrade IBM Mobile Application Platform Pattern, upload the .tgz file that
contains the latest updates.

Procedure
1. Log into IBM PureApplication System with an account that is allowed to

upload new system plugins.
2. Navigate to Workload Console > Cloud > System Plug-ins.
3. Upload the IBM Mobile Application Platform Pattern .tgz file that contains the

updates.
4. Enable the plugins you have uploaded.
5. Redeploy the pattern.

Working with IBM Worklight PureApplication System Extension for
Worklight Studio

Working with IBM Worklight PureApplication System Extension for Worklight
Studio involves setting up PureApplication System preferences, deploying your
Worklight project to PureApplication System, and integrating with Tivoli Directory
Server.

Setting up PureApplication System preferences in IBM
Worklight Studio

Set up PureApplication System preferences in Worklight Studio before you deploy
IBM Worklight projects to PureApplication System.

Procedure
1. In Eclipse, click Windows > Preferences > IBM Worklight For IPAS.
2. Supply the following information in the fields provided:

504 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 123. PureApplication System preferences

Property Description

IPAS Host IP address of the PureApplication System
host.

User name Account user name for accessing the
PureApplication System host.

Password Password for accessing the PureApplication
System host.

3. Click the Fetch Environment Profiles button. Details of retrieved environment
profiles are displayed in the Preferences panel.

4. From the Profiles list, select the correct profile for cloud deployment.
5. Click Apply to save the settings, and then click OK to close the Preferences

panel.

Deploying an IBM Worklight project to PureApplication
System

You deploy an IBM Worklight project to PureApplication System by running the
project in Eclipse.

Before you begin

Before deploying to PureApplication System, write your Worklight application and
test it in the local development environment. Since you are deploying to an
environment outside Eclipse, make sure you have applied the correct settings for
the Worklight Server location in the worklight.properties file. For more
information, see “Configuring the IBM Worklight Server location” on page 406.

Procedure
1. In Eclipse, navigate to the Project Explorer view.
2. Right-click your IBM Worklight project, and then click Run As > Deploy

project to IPAS.
3. Select Worklight applications and adapters to be deployed on PureApplication

System, and then click Run.
4. In the Worklight Console, check the status and wait for the project to be

deployed on PureApplication System. When the project has been deployed, a
window opens displaying the Worklight Console URL.

Fetching the Worklight Console URL for a deployed IBM
Worklight project

You can fetch the Worklight Console URL for a deployed IBM Worklight project by
using a command available in the Worklight Console.

Procedure

In the Worklight Console, right-click the IBM Worklight project, and then click
Fetch Worklight Console URL on IPAS. A window opens displaying the
Worklight Console URL.

Chapter 8. Deploying to the cloud by using IBM PureApplication System 505

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Integration with Tivoli Directory Server
To use Tivoli Directory Server as a user registry on PureApplication System for
your Worklight application, you need to implement an LDAP login module.

You need to implement the LDAP login module as follows:
v The name attribute of LoginModule must be set to LDAPLoginModuleIPAS.
v The module must include a parameter with a name attribute set to

ldapProviderURL.
This is an example of a suitable LDAP login module:
<loginModule name="LDAPLoginModuleIPAS">
<className>com.worklight.core.auth.ext.LdapLoginModule</className>
<parameter name="ldapProviderURL" value="ldaps://192.0.2.123:636"/>
...
...
</loginModule>

v If Connect to a new TDS is enabled in your Worklight project configuration,
you need to specify a .ldif file.

v If Connect to existing TDS is enabled, the value of the ldapProviderURL
parameter is taken as the Tivoli Directory Server address.

Building and deploying IBM Worklight virtual applications by using the
command line interface

IBM Mobile Application Platform Pattern includes a set of Ant tasks to help you
build Worklight virtual applications and artifacts and deploy to IBM
PureApplication System.

Building an IBM Worklight virtual application
You can use an Ant task to build a Worklight virtual application.

Before you begin

The Ant tasks are contained in the worklight-ant.jar file, which you can find in
the worklight-pattern-offering.zip file. Make sure you extract it before you
build and deploy Worklight virtual applications with the command line interface.

About this task

The Ant task for building a Worklight virtual application has the following
structure:
<taskdef resource="com/worklight/ant/defaults.properties"

classpath="${taskdefClasspath}"/>
<target name="buildIPAS_VAP"

depends="buildAll" >
<vap-builder

worklightWar="${worklightWar}"
destinationFolder="${wlProjectDestDir}"
artifactsFolder="${artifactsFolder}"
elbHost="${elbHost}"/>

</target>

The following table describes the attributes.

506 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 124. Ant task build attributes

Attributes Description

worklightWar Required. The Worklight Console WAR file
including the full file path.

destinationFolder Optional. Default value:
${projectfolder}/bin.

artifactsFolder Optional. Folder for adapters and
applications.

elbHost Optional. Host name for elastic load
balancer.

createVAPFlag Optional. Whether to generate a VAP .zip
file. Default value: true.

isConnectNewTDS Optional. Whether to connect a new Tivoli
Directory Service.

ldifFile Optional. When isConnectNewTDS is true,
you must set this attribute.

ipasModel Optional. Default value is W1500; in this case,
it works on Intel. You can set its value to
W1700; in this case, IPAS® runs on Power®

system.

Deploying an IBM Worklight virtual application
You can use an Ant task to deploy a Worklight virtual application.

Before you begin

The Ant tasks are contained in the worklight-ant.jar file, which you can find in
the worklight-pattern-offering.zip file. Make sure you extract it before you
build and deploy Worklight virtual applications with the command line interface.

About this task

The Ant task for deploying a Worklight virtual application has the following
structure:
<taskdef resource="com/worklight/ant/defaults.properties" classpath="${taskdefClasspath}"/>
<target name="deployVAP" depends="buildVap4IPAS">

<ipas-deployer
vapZipFile="${vapFile}"
ipasHost="${ipasHost}"
username="${username}"
password="${password}"
profileName="${profileName}"
cloudGroupName="${cloudGroupName}"
ipGroupName="${ipGroupName}"
priority="${ipasPriority}"

/>
</target>

The following table describes the attributes.

Table 125. Ant task deployment attributes

Attributes Description

vapZipFile Required. Path to the zip file built by
vap-builder.

Chapter 8. Deploying to the cloud by using IBM PureApplication System 507

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 125. Ant task deployment attributes (continued)

Attributes Description

ipasHost Required. The URL of IBM PureApplication
System.

username Required. Username to access
PureApplication System console.

password Required. Password to access
PureApplication System console.

profileName Required. Profile name for deploying VAP.

cloudGroupName Required. Cloud group name for deploying
VAP.

ipGroupName Required. IP group name for deploying VAP.

priority Required. Priority for deploying VAP.

Deployment of the Application Center on IBM PureApplication System
You must configure and connect the operational components of the Application
Center to deploy the enterprise application on PureApplication System.

The operational model of the Application Center is composed of:
v An application server that hosts the administration console and services.
v A user authentication system; here, an LDAP server that handles user and group

authentication and user management, but the basic authentication mechanism of
the application server can be used.

v The database, a repository for tracking users, applications, and feedback.

508 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Related concepts:
“Introduction to the Application Center” on page 423
Tells you about the Application Center: what it is for, the different components,
how to get started, and the files in the distribution.
“Configuration of the Application Center after installation” on page 429
You configure user authentication and choose an authentication method;
configuration procedure depends on the web application server that you use.
“Managing users with LDAP” on page 436
Use the Lightweight Directory Access Protocol (LDAP) registry to manage users..

Deploying the Application Center on IBM PureApplication
System

Configure the enterprise application, the database, the user registry, and map the
security roles before you deploy the Application Center on PureApplication
System.

Figure 110. Typical operational model of the Application Center

Chapter 8. Deploying to the cloud by using IBM PureApplication System 509

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Before you begin

Install the Application Center. The Application Center is part of IBM Worklight
Server. You can install it through IBM Installation Manager or manually, See
“Installation” on page 314 under IBM Worklight Server administration.

Make a note of the path of the installation folder, because later in the procedure
you will need some assets that are located in it. When you install the Worklight
Server through the IBM Installation Manager, the Application Center artifacts are
installed in the {worklight_install_folder }/ApplicationCenter.

You must have an IBM PureApplication System environment and the privilege to
create Virtual Application Pattern (VAP) and to run Virtual Application instances.

About this task

By following this procedure you prepare the operational components of the
Application Center for deployment of the enterprise application on
PureApplication System. You connect the operational components to each other
and then you can save the configuration and deploy the Application Center on
PureApplication System as a web application.

Procedure
1. Get the enterprise archive (EAR) file for the Application Center. This file is

located in {worklight_install_folder }/ApplicationCenter/console. As of
V5.0.6, the Application Center has two web archive (WAR) files, one for the
console and one for the services. An EAR file containing them is supplied to
simplify deployment on PureApplication System. The context roots of the
WAR files within the EAR file are:
v /appcenterconsole for the console
v /applicationcenter for the services
If you choose to build the EAR file manually, you must remember the context
roots of the WAR files.

2. Create the Virtual Application Pattern.
a. Log in to IBM PureApplication System
b. Select Workload Console > Patterns > Virtual Application Patterns.
c. Select Web Application Pattern Type 2.0.
d. Click the plus (+) button.
e. Select a template to start from and then click Start Building. You can select

any template that conforms with the operational model used in this
documentation. You must create one web application component, one
database component, and one user registry component. The example is
based on selection of "Blank application".

3. Add an Enterprise Application component.
a. Expand Application Components.
b. Drag the Enterprise Application component into the pane on the right.
c. Select the component in this property pane and specify the path of the

Application Center EAR file.
4. Add routing policy.

a. Move the mouse over the Enterprise Application component and click the
plus sign (+).

b. Select Routing Policy.

510 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

c. In the property pane, click Routing Policy and specify Virtual Host name.
Take a note of the host name, because you will use it later.

5. Optional: Add JVM policy. If you use the supplied EAR file or have defined
the context root of the services WAR file as /applicationcenter, this step is
optional.
a. Select JVM Policy in the same way as you selected Routing Policy.
b. In the property pane, specify Generic JVM arguments:

-Dibm.appcenter.services.endpoint=http://{virtual_host}/
{services_context_root} where:
virtual_host is the virtual host name that you specified in Routing Policy.
services_context_root is the context root of the services WAR file.

6. Add a database component.
a. In the left pane, expand Database Components.
b. Drag a database into the property pane on the right. The database used in

the example is DB2.
c. In the property panel, click the Database component and specify the

schema file. You can find create-appcenter-{db}.sql, used in the example,
in {worklight_install_folder}/ApplicationCenter/database.

7. Connect enterprise application and database.
a. On the Enterprise Application component, click and drag the connection

point on the right edge to the Database component. This gesture creates
the connection between the web application and the database.

b. Click the connector and specify the data source as jdbc/AppCenterDS.
8. Add a user registry component.

a. In the left pane, expand User Registry Components.
b. Drag the user registry component into the property pane.
c. In the property pane, select the User Registry component and specify the

"Base DN" and the "LDIF file".
9. Connect web application and user registry.

a. Drag two connectors between the Enterprise Application component and
the User Registry component.

b. Specify the "Role name" appcenteradmin.
c. Set "Mapping special subjects" to AllAuthenticatedUsers.
d. Specify the next "Role name" appcenteruser.
e. Set "Mapping special subjects" to AllAuthenticatedUsers.

10. Save the configuration and deploy the Application Center on PureApplication
System.
a. Save the virtual application; give it a name, for example, "Worklight

Application Center".
b. Return to Virtual Application Patterns. You should see the pattern that

you created in this procedure.
c. Click Deploy to deploy the Application Center on PureApplication System.

Chapter 8. Deploying to the cloud by using IBM PureApplication System 511

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

512 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 9. Troubleshooting and known limitations

You can find advice about how to troubleshoot problems, and more information
about known limitations and Technote (Troubleshooting).

Troubleshooting

The following links point to troubleshooting topics in other parts of this user
documentation. To navigate from there back to this topic, click the Go Back button
in the menu bar above the topic, or click Back in your Web browser.
v “Troubleshooting Worklight Server” on page 404
v “Troubleshooting IBM Worklight Studio installation” on page 17
v “Troubleshooting a Cast Iron adapter – connectivity issues” on page 98
v “Troubleshooting information for synchronization” on page 157

Important: For more information about known limitations or issues in the product,
see “Known limitations” on page 12 and the product Technote (Troubleshooting)
information.

513

http://www-01.ibm.com/support/search.wss?tc=SS4HGH&q=IMF50
http://www-01.ibm.com/support/search.wss?tc=SS4HGH&q=IMF50

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

514 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 10. Notices

Permission for the use of these publications is granted subject to these terms and
conditions.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

515

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

516 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Privacy Policy Considerations

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies that collect session information (generated by the application
server). These cookies contain no personally identifiable information and are
required for session management. Additionally, persistent cookies may be
randomly generated to recognize and manage anonymous users. These cookies
also contain no personally identifiable information and are required.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent. For more information about the use of various technologies, including
cookies, for these purposes, see IBM’s Privacy Policy at http://www.ibm.com/
privacy and IBM’s Online Privacy Statement at http://www.ibm.com/privacy/
details/en/us sections entitled “Cookies, Web Beacons and Other Technologies”
and “Software Products and Software-as-a-Service”.

Copyright

© Copyright IBM Corp. 2006, 2014

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com®, Cast Iron, Cognos, DataPower, DB2,
developerWorks, IPAS, Passport Advantage, Power, PureApplication, Rational,
Rational Team Concert, Redbooks, Tealeaf, Tivoli, and WebSphere are trademarks
or registered trademarks of International Business Machines Corporation,
registered in many jurisdictions worldwide. Worklight is a trademark or registered
trademark of Worklight, an IBM Company. Other product and service names might
be trademarks of IBM or other companies. A current list of IBM trademarks is
available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

Chapter 10. Notices 517

http://www.ibm.com/privacy
http://www.ibm.com/privacy
http://www.ibm.com/privacy/details/en/us
http://www.ibm.com/privacy/details/en/us
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Other company products or service names may be trademarks or service marks of
others.

This document may not be reproduced in whole or in part without the prior
written permission of IBM.

518 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 11. Support and comments

For the entire IBM Worklight documentation set, training material and online
forums where you can post questions, see the IBM website at:

http://www.ibm.com/mobile-docs

Support

Software Subscription and Support (also referred to as Software Maintenance) is
included with licenses purchased through Passport Advantage and Passport
Advantage Express. For additional information about the International Passport
Advantage Agreement and the IBM International Passport Advantage Express
Agreement, visit the Passport Advantage website at:

http://www.ibm.com/software/passportadvantage

If you have a Software Subscription and Support in effect, IBM provides you
assistance for your routine, short duration installation and usage (how-to)
questions, and code-related questions. For additional details, consult your IBM
Software Support Handbook at:

http://www.ibm.com/support/handbook

Comments

We appreciate your comments about this publication. Please comment on specific
errors or omissions, accuracy, organization, subject matter, or completeness of this
document. The comments you send should pertain to only the information in this
manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact
your IBM branch office, your IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you. IBM or any other organizations will only use the personal
information that you supply to contact you about the issues that you state.

Thank you for your support.

Submit your comments in the IBM Worklight Developer Edition support
community at:

https://www.ibm.com/developerworks/mobile/worklight/connect.html

If you would like a response from IBM, please provide the following information:
v Name
v Address
v Company or Organization
v Phone No.
v Email address

519

http://www.ibm.com/mobile-docs
http://www.ibm.com/software/passportadvantage
http://www.ibm.com/support/handbook
https://www.ibm.com/developerworks/mobile/worklight/connect.html

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

520 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 12. Terms and conditions for information centers

Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein. IBM
reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed. You
may not download, export or re-export this information except in full compliance
with all applicable laws and regulations, including all United States export laws
and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at www.ibm.com/legal/
copytrade.shtml.

© Copyright IBM Corporation 2006, 2014.

521

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

This information center is Built on Eclipse. (www.eclipse.org)

522 IBM Worklight V5.0.6

http://www.eclipse.org

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Index

Special characters
<adapter>

element of adapter XML file 99
<authentication>

element of HTTP adapter 105
<connectionPolicy>

element of adapter XML file 101
element of the Cast Iron adapter 108
element of the HTTP adapter 103
element of the JMS adapter 109
element of the SL adapter 107

<connectivity>
element of adapter XML file 101

<jmsConnection>
element of the JMS adapter 110

<loadConstraints>
element of adapter XML file 101

<namingConnection>
element of the JMS adapter 110

<procedure>
element of adapter XML file 102

<proxy>
element of HTTP adapter 106

A
Access Control List

Application Center 436, 438
access for users and groups

Application Center 436, 438, 439, 440
ACL

Application Center 436, 438
ACL management for Application Center

with LDAP
WebSphere Application Server

V8 440
adapter authenticator 145
adapter configuration files

exporting 133
adapter framework 95
adapter invocation 114
adapter procedures

HTTP
implementing 116

implementing 115
adapter validation 117
adapter XML file 99

<adapter> element 99
<connectionPolicy> element 101
<connectivity> element 101
<loadConstraints> element 101
<procedure> element 102

adapterAuthenticator 145
adapters

administering in console 132
anatomy 95
benefits 95
building

Ant task 134

adapters (continued)
Cast Iron

See Cast Iron adapters
composition 95
configuring 111
creating 111
deleting 134
deploying

Ant task 134
from the console 134
from the Studio 126

HTTP
See HTTP adapters

JMS
See JMS adapters

modifying 134
overview 95
replacing 134
SQL

See SQL adapters
transporting between

environments 127
adding custom splash images 49
administering

apps and adapters
in Worklight Console 132

Adobe AIR applications
signing 82

Adobe AIR tools
installing 19

AIR
See Adobe AIR

AIR applications
signing 82

analysis 63
analytics 63
android 11
Android tools

installing 20
animating transitions

from and to Java page 72
from Objective-C page to web

view 70
from web view to Objective-C

page 70
Ant tasks

building adapters 134
building applications 134
deploying adapters 134
deploying applications 134
deploying projects 134

API
JavaScript 22

Application Center 22
access for users and groups 436, 438,

439, 440
LDAP and WebSphere Application

Server V7 436
LDAP and WebSphere Application

Server V8 438, 439

Application Center Access Control List
Virtual Member Manager 438

application descriptor 49, 55
<security> element 55

application folder 47
application icons 49
application main file 49
application resources 49
Application Server 22, 28
application skins

applying 67
deleting 67
developing 67

applications
anatomy 47
building

Ant task 134
composition 47
creating 39, 40, 42
deploying

Ant task 134
developing 39, 40
hybrid 39, 40
native 39, 40
overview 47
web 39, 40

applying skins 67
apps

administering in console 132
deleting 133
deploying 133

on Facebook 81
on iGoogle 81

submitting 133
transporting between

environments 127
authentication

configuring
Administration Console 141
Application Center 141
usage reports 141

device
scope 151

authentication configuration
attributes of login modules 147
authentication realms 139
authenticators 140
configuring

authenticators 142
realms 142

database login module 148
header login module 149
LDAP login module 149
login modules 140

attributes 147
database 148
header 149
LDAP 149
non-validating 147
single identity 148
WASLTPAModule 149

523

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

authentication configuration (continued)
non-validating login module 147
overview 137
single identity login module 148
WASLTPAModule login module 149

authentication configuration file 140
authentication realms 139
authenticationConfig.xml 140
authenticators 140

basic 142
configuring 142
form-based 143
header 144
LTPA 146
persistent cookie 144

auto-complete 117
auto-provisioning 152

B
back-end services

invoking 123
basic authenticator 142
BasicAuthenticator 142, 143
benefits of adapters 95
building adapters

Ant task 134
building applications

Ant task 134

C
CA certificates

selecting 153
Cast Iron adapter

<connectionPolicy> element 108
root element 108
troubleshooting 95

Cast Iron adapters 95
changing

port number of application server 22
collections

encrypting 157
configuring

adapters 111
authentication

web widgets 80
authenticators 142
device provisioning 153
realms 142
web widget authentication 80

configuring LDAP for Application Center
WebSphere Application Center

V7 436
WebSphere Application Center

V8 439
connecting

to Worklight Server 78
connectOnStartup 78
console

administering apps and adapters 132
Cordova 22
createIdenity 22
createIdentity 22
creating

adapters 111

creating (continued)
applications 39, 40, 42
projects 42
QNX 72

custom code 22
custom splash images 49
customer behavior analysis 63
customSecurityTest 137

D
data synchronization 156

overview 155
troubleshooting 158

database login module 148
deleting

adapters 134
apps 133

deleting skins 67
deploying

.war file 129
to Apache Tomcat 130
to WebSphere Application Server

Full Profile 131
to WebSphere Application Server

Liberty Profile 130
adapters

from the console 134
from the Studio 126

application 129
to Apache Tomcat 130
to WebSphere Application Server

Full Profile 131
to WebSphere Application Server

Liberty Profile 130
apps 133

on Facebook 81
on iGoogle 81

deploying adapters
Ant task 134

deploying applications
Ant task 134

deploying projects
Ant task 134

descriptors
application 55

developing
app

data synchronization 156
JSON store 156

application skins 67
applications 39, 40
guidelines

desktop and web
environments 79

mobile environments 61
development environment 22, 28
development guidelines

desktop and web environments 79
mobile environments 61

device authentication
scope 151

device provisioning 152
configuring 153
implementing 153

digital 63
disabling an app 363

display
switching

between web view and native
page 68

Dojo 22
code 26
code migration 26
iOS fixes 25
migration 26
toolkit 25

E
Eclipse

supported versions 4
eclipse.ini

updating after installing Worklight
Studio 16

encrypting
JSON collections 157

environments 39, 40
production 127
QA 127
test 127

existing applications 371
exporting

adapter configuration files 133
extracting

public signing keys 74

F
features

Worklight Studio 117
federal 372
Federal Desktop Core Configuration 372
Federal Information Processing

Standards 372
folder

application 47
form-based authenticator 143
FormBasedAuthenticator 143
framework

adapter 95

G
getting started 29

samples 29
tutorials 29

globalization
limitations 12

H
header authenticator 144
header login module 149
HeaderAuthenticator 144
HeaderLoginModule 149
HTTP adapter

<authentication> element 105
<connectionPolicy> element 103
<proxy> element 106
root element 103

HTTP adapters 95

524 IBM Worklight V5.0.6

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

I
icons

specifying
Android apps 73
iPhone apps 74

implementing
adapter procedures 115

HTTP 116
device provisioning 153

initialization options 43
initOptions.js 43
installing

tools 19
Worklight Studio

updating eclipse.ini 16
Installing

Adobe AIR tools 19
Android tools 20
Developer Edition 14
iOS tools 20
WebWorks 20
Windows 8 tools 21
Windows Phone 7.5 tools 21
Windows Phone 8 tools 21
Worklight Studio 14

from DVD 15
from Passport Advantage 15
into an Eclipse IDE 17
into Eclipse IDE 15
with Rational Team Concert

V4.0 17
Xcode 20

integrating 11
invoking

back-end services 123
iOS 11
iOS tools

installing 20

J
Java ME 22
JavaScript

Rhino container 115
JMS adapter

<connectionPolicy> element 109
<jmsConnection> element 110
<namingConnection> element 110
root element 109

JMS adapters 95
JSONStore 155, 372

K
keys

extracting 74
known limitations 12

L
LDAP

Application Center on WebSphere
Application Server V7 436

Application Center on WebSphere
Application Server V8 438, 439, 440

LDAP login module 149
LdapLoginModule 149
Lightweight Directory Access Protocol

Application Center on WebSphere
Application Server V7 436

Application Center on WebSphere
Application Server V8 438, 439, 440

limitations 12
logging 400
login form 61
login forms

web widgets 80
login modules 140

attributes 147
database 148
header 149
LDAP 149
non-validating 147
single identity 148
WASLTPAModule 149

login screen
screen widgets

setting size 80
logs

location 400
monitoring 400

LTPA authenticator 146

M
main file, of application 49
migration 22, 28
mobile 11
Mobile SDKs

installing 19
tools 19

mobileSecurityTest 137
modifying

adapters 134
monitoring 400

N
native pages

overview 68
new server version 371
non-validating login module 147
NonValidatingLoginModule 147

O
operating systems

supported 4
overview

adapters 95
data synchronization 155

P
persistent cookie authenticator 144
PersistentCookieAuthenticator 144
port number

of application server 22
procedures

invoking 122

procedures (continued)
running 122
testing 122

production environment 22, 28
projects 39, 40

anatomy 43
composition 43
creating 42
deploying

Ant task 134
overview 43

protected resources 137
provisioning 152

devices 153
public signing keys

extracting 74
push notification 22

Q
quick fix 117

R
RDBMSLoginModule 148
realms

authentication 139
configuring 142

receiving data
Java page 70
Objective-C page 69

remote disable 363
default behavior 363
modifying the default behavior 363

remoteDisable 363
replacing

adapters 134
resources

protected 137
returning control

from Java page 71
from Objective-C page 69

Rhino container 115
Rich Page Editor

limitations 12
root element

Cast Iron adapter 108
HTTP adapter 103
JMS adapter 109
SQL adapter 106

running
back-end services 123

S
samples 29
screen widgets

setting size of login screen 80
scripts 49
SDK

See Worklight
security

BlackBerry 10
creating QNX environment 72

security tests 137
securityTest 137

Index 525

Exp
eri

men
tal

 IB
M W

ork
lig

ht
off

lin
e u

se
r d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

setting size
login screen

screen widgets 80
signing

AIR applications 82
Windows 8 apps 83
Windows gadgets 83

single identity login module 148
SingleIdentityLoginModule 148
skins 39, 40

applying 67
deleting 67
developing 67

SOAP
invoking services 116

software development kits
supported 4

source control 61
specifying

icons
Android apps 73
iPhone apps 74

taskbar
AIR 79

splash images 49
splash screens 49
SQL adapter

<connectionPolicy> element 107
root element 106

SQL adapters 95
SSL 22
starting

Worklight Studio
Consumer Edition 19
Developer Edition 19
Enterprise Edition 19

status codes 158
Studio

features 117
style sheets 49
submitting

apps 133
switching display

between web view and native
page 68

synchronization
See data synchronization

synchronizing
data 156

T
taskbar

AIR
specifying 79

Tealeaf 11
Tealeaf CX 11, 63
thumbnail images 49
tools

installing 19
transporting

adapters 127
apps 127

troubleshooting
Cast Iron adapter 95
data synchronization 158

tutorials 29

U
United States Government Configuration

Baseline 372
upgrade 371
upgrading 22, 28
Upgrading

Worklight Studio 18

V
validation

adapters 117
version control 61
Virtual Member Manager

Application Center Access Control
List 438

Visual Studio 21
Visual Studio 2010 21
Visual Studio 2012 21
VMM

Virtual Member Manager 438

W
WASLTPAModule login module 149
web and native pages

interaction 68
web browsers

supported 4
web widget authentication

configuring 80
web widgets

login forms 80
webSecurityTest 137

WebSphere Application Server V7
configuring LDAP for Application

Center 436
WebSphere Application Server V8

configuring LDAP for Application
Center 439

managing ACL for Application Center
with LDAP 440

WebSphereFormBasedAuthenticator 146
WebSphereLoginModule 149
WEBWORKS_HOME

installing 20
widgets

embedding in web pages 84
login forms 80

Windows 21
Windows 8 apps

signing 83
Windows 8 tools

installing 21
Windows gadgets

signing 83
Windows Phone 7.5 tools

installing 21
Windows Phone 8 22
Windows Phone 8 tools

installing 21
WL.Client.connect 78
Worklight Console

Access Disabled 363
Active 363
administering apps and adapters 132

Worklight Server 22, 28
Worklight Studio

Consumer Edition
starting 19

Developer Edition
starting 19

Enterprise edition
starting 19

features 117
WorkLightLoginModule

Interface 22

X
Xcode

installing 20

Z
Zune Software 21

526 IBM Worklight V5.0.6

	Contents
	Chapter 1. Starting with IBM Worklight
	Introducing IBM Worklight
	System requirements for using IBM Worklight
	What's new
	What's new in IBM Worklight V5.0.6.2
	What's new in IBM Worklight V5.0.6.1
	What's new in IBM Worklight V5.0.6
	Simplified deployment and operational experience
	Improved security and user experience
	Enhanced IBM Worklight API
	Integration with complementary products
	Miscellaneous modifications

	Known limitations
	Setting up IBM Worklight Studio
	Installing IBM Worklight Studio
	Installing IBM Worklight Studio from the DVD or from an image downloaded from Passport Advantage
	Installing IBM Worklight Studio into an existing Eclipse IDE from an update site or the installation disk

	Troubleshooting IBM Worklight Studio installation
	IBM Worklight Studio installation errors with Eclipse 3.6.2

	Upgrading IBM Worklight Studio in Eclipse
	Starting IBM Worklight Studio installed with IBM Installation Manager
	Starting IBM Worklight Studio installed with P2 Eclipse update
	Installing mobile specific tools
	Installing tools for Adobe AIR
	Installing tools for iOS
	Installing tools for Android
	Installing tools for BlackBerry
	Installing tools for Windows Phone 7.5
	Installing tools for Windows Phone 8
	Installing tools for Windows 8

	Changing the port number of the internal application server
	Migrating to a newer version of IBM Worklight
	Dojo iOS fixes
	Dojo 1.8.3 code migration
	Migrating from Worklight V5.0.0.3 to V5.0.5
	Upgrading IBM Worklight Server in a production environment

	Setting up IBM Worklight Server
	Getting started tutorials and samples

	Chapter 2. Developing IBM Worklight applications
	Starting with IBM Worklight projects, applications, environments, and skins
	Overview: IBM Worklight projects, applications, environments, and skins
	Creating IBM Worklight projects
	Anatomy of an IBM Worklight Project
	Creating the client side of an IBM Worklight application
	Creating an application in an IBM Worklight project

	Anatomy of an IBM Worklight Application
	The application folder
	Application resources
	The application descriptor
	Login form and authenticator

	Development guidelines for mobile environments
	Integrating with source control systems
	Integrate Tealeaf CX with IBM Worklight
	Configuring Tealeaf by using the Android environment
	Configuring Tealeaf by using the iOS environment

	Application skins
	Web and native code in iPhone, iPad, and Android
	Switching the display from the web view to a native page
	Receiving data from the web view in an Objective-C page
	Returning control to the web view from an Objective-C page
	Animating the transition from an Objective-C page to a web view
	Animating the transition from a web view to an Objective-C page
	Receiving data from the web view in a Java page
	Returning control to the web view from a Java page
	Animating the transitions from and to a Java page

	Creating an IBM Worklight BlackBerry 10 environment
	Specifying the icon for an Android application
	Specifying the icon for an iPhone application
	Extracting a public signing key
	Connecting to Worklight Server
	Adding custom code to an Android app

	Development guidelines for desktop and web environments
	Specifying the application taskbar for Adobe AIR applications
	Configuring the authentication for web widgets
	Writing login form files for web widgets
	Setting the size of the login screen for web widgets
	Deploying applications on iGoogle
	Deploying applications on Facebook
	Signing Adobe AIR applications
	Signing Windows 8 apps
	Signing Windows 7 and Vista gadgets
	Embedding widgets in predefined web pages

	Development guidelines for using native API
	Application Descriptor of Native API applications for iOS
	Client property file for iOS
	Copying files of Native API applications for iOS
	Application Descriptor of Native API application for Android
	Client property file for Android
	Copying files of Native API applications for Android
	Application Descriptor of Native API application for Java Platform, Micro Edition (Java ME)
	Client property file for Java Platform, Micro Edition (Java ME)
	Copying files of Native API applications for Java Platform, Micro Edition (Java ME)

	Developing the server side of an IBM Worklight application
	Overview of IBM Worklight adapters
	The adapter XML File
	<adapter> element of the adapter XML file
	<connectivity> element of the adapter XML file
	<connectionPolicy> element of the adapter XML file
	<loadConstraints> element of the adapter XML file
	<procedure> element of the adapter XML file
	The root element of the HTTP adapter XML file
	The <connectionPolicy> element of the HTTP adapter
	The <authentication> element of the HTTP adapter
	The <proxy> element of the HTTP adapter
	The root element of the SQL adapter XML file
	The <connectionPolicy> element of the SQL adapter
	The root element of the Cast Iron adapter XML file
	The <connectionPolicy> element of the Cast Iron adapter
	The root element of the JMS adapter XML file
	The <connectionPolicy> element of the JMS adapter
	The <namingConnection> element of the JMS adapter
	The <jmsConnection> element of the JMS adapter

	Creating an IBM Worklight adapter
	Adapter invocation service
	Implementing adapter procedures
	The Rhino container

	Encoding a SOAP XML envelope
	Calling Java code from a JavaScript adapter
	Features of the IBM Worklight Studio
	Procedure invocation
	Invoking a back-end service
	Deploying an adapter

	Transporting Worklight applications to test and production environments
	Transporting an application from development to another environment
	Deploying a customization .war file to an application server
	Deploying a customization .war file to Apache Tomcat
	Deploying a customization .war file to WebSphere Application Server Liberty Profile
	Deploying a customization .war file to WebSphere Application Server Full Profile

	Administering adapters and apps in the IBM Worklight Console
	Deploying apps
	Deleting apps
	Exporting adapter configuration files
	Deploying adapters
	Modifying adapters
	Deleting adapters

	Ant tasks for building and deploying

	Authentication configuration
	Protected resources
	Security Tests
	Authentication realms
	Authenticators and Login Modules
	The authentication configuration file
	Configuring IBM Worklight web application authorization
	Configuring Authenticators and Realms
	Basic authenticator
	Form-based authenticator
	Header authenticator
	Persistent cookie authenticator
	Adapter authenticator
	LTPA authenticator
	Attributes of login modules
	Non-validating login module
	Database login module
	Single identity login module
	Header login module
	WASLTPAModule login module
	LDAP login module
	Scope of mobile device authentication
	Mobile device provisioning
	Configuring and implementing device provisioning
	Device single sign-on (SSO)
	Configuring device single sign-on

	Data synchronization with JSONStore
	Developing an app that uses data synchronization
	Encrypting collections
	Troubleshooting information for synchronization

	Client-side log capture
	Server preparation for uploaded log data
	Client-side logging in client apps

	Chapter 3. Integration with other IBM Mobile Foundation products
	Introducing the IBM Worklight platform
	Integration with Cast Iron
	Integration with reverse proxy
	Authentication at the gateway
	Header-based authentication
	LTPA-based authentication

	Managing end points with IBM Endpoint Manager
	Useful links

	Chapter 4. Migrating from the WebSphere Application Server Feature Pack
	Migration scenarios
	Migrating an application that uses the client programming model
	Migrating an application that uses the server programming model
	Considerations for applications that use JAX-RS, JSON-RPC, or proxying
	Example: Migrating the Dojo showcase sample

	Chapter 5. API reference
	IBM Worklight client-side API
	JavaScript client-side API
	WLClient JavaScript client library
	WL.App.BackgroundHandler.setOnAppEnteringBackground
	WL.App.BackgroundHandler.setOnAppEnteringForeground
	WL.App.close
	WL.App.getDeviceLanguage
	WL.App.getDeviceLocale
	WL.App.getErrorMessage
	WL.App.openURL
	WL.App.overrideBackButton
	WL.App.resetBackButton
	WL.Badge.setNumber
	WL.Client.addGlobalHeader
	WL.Client.close
	WL.Client.connect
	WL.Client.deleteUserPref
	WL.Client.getAppProperty
	WL.Client.getEnvironment
	WL.Client.getLoginName
	WL.Client.getUserInfo
	WL.Client.getUserName
	WL.Client.getUserPref(key)
	WL.Client.hasUserPref
	WL.Client.init
	WL.Client.invokeProcedure
	Deprecated WL.Client.isConnected
	WL.Client.isUserAuthenticated
	WL.Client.logActivity
	WL.Client.login
	WL.Client.logout
	WL.Client.minimize
	WL.Client.onDock, WL.Client.onUndock
	WL.Client.onShow, WL.Client.onHide
	WL.Client.reloadApp
	WL.Client.removeGlobalHeader
	WL.Client.setHeartBeatInterval
	WL.Client.setUserPref
	WL.Client.setUserPrefs
	WL.Client.updateUserInfo
	WL.App.copyToClipboard
	WL.Device.getNetworkInfo
	WL.NativePage.show
	WL.Toast.show
	WL.BusyIndicator (object)
	Encrypted offline cache
	WL.Client.getLanguage
	WL.JSONStore
	The WL.Logger object
	Mobile push notification methods
	The options object
	Options Menu and Application Bar API
	WL.SimpleDialog
	Splitting Your Code between HTML Pages
	Tab Bar API

	Objective-C client-side API for native iOS apps
	Java client-side API for native Android apps
	Java client-side API for Java ME apps

	IBM Worklight server-side API
	JavaScript server-side API
	Method WL.Server.invokeHttp
	Method WL.Server.signSoapMessage
	Method WL.Server.invokeSQLStoredProcedure
	Method WL.Server.createSQLStatement
	Method WL.Server.invokeSQLStatement
	Method WL.Server.readSingleJMSMessage
	Method WL.Server.readAllJMSMessages
	Method WL.Server.writeJMSMessage
	Method WL.Server.requestReplyJMSMessage
	Method WL.Server.invokeProcedure
	Method WL.Server.getClientRequest
	Method WL.Server.getActiveUser
	Method WL.Server.setActiveUser
	Method WL.Server.createEventSource
	Method WL.Server.createDefaultNotification
	Method WL.Server.getUserNotificationSubscription
	Method userSubscription.getDeviceSubscriptions
	Method userSubscription.save
	Method WL.Server.notifyAllDevices
	Method WL.Server.notifyDevice
	Method WL.Server.notifyDeviceSubscription
	Deprecated Method WL.Server.submitNotification
	Methods WL.Logger.debug, error, and log
	Object WL.Server.configuration

	Java server-side API
	Interface WorklightAuthenticator
	Interface WorkLightAuthLoginModule
	Deprecated interface WorkLightLoginModule

	Chapter 6. IBM Worklight Server administration
	Architecture and concepts
	IBM Worklight development lifecycle
	Typical topology of an IBM Worklight instance

	Installation
	Installation prerequisites
	Creating the DB2 databases
	Creating the MySQL databases
	Creating the Oracle databases
	Running IBM Installation Manager
	Single-user versus multi-user installations
	Silent installation
	Completing the installation

	Manually configuring the databases
	Configuring the DB2 databases manually
	Configuring the Apache Derby databases manually
	Configuring the MySQL databases manually
	Configuring the Oracle databases manually

	Manually configuring the application server
	Configuring the WebSphere Liberty Profile manually
	Configuring WebSphere Application Server manually
	Configuring Apache Tomcat manually

	Starting IBM Worklight Server with Liberty Profile
	Starting IBM Worklight Server with WebSphere Application Server
	Starting IBM Worklight Server with Apache Tomcat
	Verifying IBM Worklight Server startup
	Applying environment-specific customization
	Deploying content: applications and adapters
	Database and certificate security passwords
	Apache Tomcat security options
	WebSphere Application Server security options
	WebSphere Application Server security option 1 procedure
	WebSphere Application Server security option 2 procedure
	Running IBM Worklight in WebSphere Application Server with Java 2 security enabled
	Changing the IBM Worklight Server working directory

	Administering IBM Worklight applications
	Direct updates of app versions to mobile devices
	Direct updates of app versions to desktop apps
	Locking an application
	Remotely disabling application connectivity
	Displaying a notification message on application startup
	Defining administrator messages from the IBM Worklight Console in multiple languages
	Controlling authenticity testing for an app
	Setting up existing applications with a new server version
	Federal standards support in Worklight
	FDCC and USGCB support
	FIPS 140-2 support

	Reports
	Using raw data reports
	Device usage reports
	Predefined BIRT Reports
	Installing BIRT on Apache Tomcat
	Installing BIRT on WebSphere Application Server Liberty Profile
	Installing BIRT on WebSphere Application Server Full Profile
	Configuring BIRT Reports For Your Application Server
	BIRT in Eclipse
	Installing BIRT in Stand-alone Eclipse
	Installing BIRT in Worklight Eclipse
	Viewing BIRT reports in Eclipse

	Notification reports database schema

	High availability
	Clustering
	Configuring the load balancer
	Adding a node to the cluster
	Upgrading a production cluster
	Firewalls
	Disaster Recovery Site

	Push Notification
	The push notification console
	Subscribe SMS servlet

	Backup and recovery
	Logging and monitoring mechanisms
	Vitality queries
	Routing logging to Windows event log
	Enabling trace for adapters in an Eclipse-hosted server

	Optimizing and tuning of IBM Worklight Server
	Troubleshooting Worklight Server
	Troubleshooting to locate the server and databases on Windows
	Troubleshooting to find the cause of installation failure
	Failed to create the DB2 database
	Installation blocked by DB2 connection errors

	IBM Worklight properties
	Configuring the IBM Worklight Server location
	IBM Worklight database setup
	Protecting IBM Worklight Console
	Push notification settings
	SSL certificate keystore setup
	Miscellaneous Settings
	Storing properties in encrypted format
	Obsolete properties

	SMS gateway configuration
	Internal IBM Worklight Database Tables
	HTTP Interface of the production server

	Chapter 7. Application Center
	Introduction to the Application Center
	Concept of the Application Center
	General architecture
	Preliminary information
	Distribution structure

	Installation of the Application Center
	Configuration of the Application Center after installation
	Definition of the endpoint of the application resources
	Configuring WebSphere Application Server full profile
	Configuring the endpoint of the application resources (JVM server custom properties)

	Configuring WebSphere Application Server Liberty Profile
	Configuring the endpoint of the application resources (bootstrap properties)

	Configuring Apache Tomcat
	Configuring the endpoint of the application resources (catalina properties)

	Managing users with LDAP
	Configuring ACL management with LDAP and WebSphere Application Server V7
	Configuration of LDAP authentication (WebSphere Application Server V8.x)
	Configuring LDAP authentication for users and groups (WebSphere Application Server V8.x)
	Enabling ACL management with LDAP (WebSphere Application Server V8.x)
	Configuring LDAP authentication (Liberty profile)
	Mapping users and groups to Application Center roles (LDAP on Liberty profile)
	Configuring the Application Center for ACL management with LDAP (Liberty profile)
	Configuring ACL management with LDAP and Apache Tomcat

	Preparations for using the mobile client
	The Application Center console
	Starting the Application Center console
	Application Management
	Adding a mobile application
	Application properties
	Editing application properties
	Downloading an application file
	Viewing application feedback
	User and group management
	Access control
	Managing access control
	Device Management
	Signing out of the Application Center console

	Command-line tool for uploading an application
	Using the stand-alone tool to upload an application
	Ant task for uploading an application

	Publishing Worklight applications to the Application Center
	The mobile client
	Installing the client on an Android mobile device
	Installing the client on an iOS mobile device
	Installing the client on a BlackBerry mobile device
	Views in the mobile client
	The Settings view
	The My Mobile and My Applications views
	Removing an installed application
	Rating an installed application
	Updating an installed application (Android and iOS)
	Confirming or canceling version installation on an Android device
	Confirming or canceling installation on an iOS device

	Reverting an installed application (Android and iOS)
	Updating and reverting an installed application (BlackBerry)
	The Catalog or All Applications view
	Installing an application on an Android device
	Installing an application on an iOS device
	Installing an application on a BlackBerry device
	The In Progress view (Android and iOS)

	Advanced information for BlackBerry users
	Application rating feature called from another application (advanced feature)

	Chapter 8. Deploying to the cloud by using IBM PureApplication System
	Installation of IBM Worklight support for PureApplication System
	Installing the IBM Mobile Application Platform Pattern Type
	Installation of IBM Worklight PureApplication System Extension for Worklight Studio

	Working with the IBM Mobile Application Platform Pattern Type
	Composition and components
	Creating an IBM Mobile Application Platform Pattern
	Integrating with Tivoli Directory Server
	Connecting to a new Tivoli Directory Server
	Connecting to an existing Tivoli Directory Server

	Performing operations on running IBM Worklight VAP instances
	Upgrading IBM Mobile Application Platform Pattern

	Working with IBM Worklight PureApplication System Extension for Worklight Studio
	Setting up PureApplication System preferences in IBM Worklight Studio
	Deploying an IBM Worklight project to PureApplication System
	Fetching the Worklight Console URL for a deployed IBM Worklight project
	Integration with Tivoli Directory Server

	Building and deploying IBM Worklight virtual applications by using the command line interface
	Building an IBM Worklight virtual application
	Deploying an IBM Worklight virtual application

	Deployment of the Application Center on IBM PureApplication System
	Deploying the Application Center on IBM PureApplication System

	Chapter 9. Troubleshooting and known limitations
	Chapter 10. Notices
	Chapter 11. Support and comments
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

