
© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

7 March 2014

IBM Worklight V6.1.0
Getting Started

Custom authenticator and login module

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.2

Trademarks

IBM, the IBM logo, and ibm.com, are trademarks or registered trademarks of
International Business Machines Corporation, registered in many
jurisdictions worldwide. Worklight is a trademark or registered trademark of
Worklight, an IBM Company. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is
available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.
Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.
Other company products or service names may be trademarks or service
marks of others.
This document may not be reproduced in whole or in part without the prior
written permission of IBM.

See http://www.ibm.com/ibm/us/en/
About IBM®

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/ibm/us/en/

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.3

Agenda

Authentication introduction

Configuring authenticationConfig.xml

Creating a custom Java authenticator

Creating a custom Java login module

Creating client-side authentication components

Examining the result

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.4

Authentication introduction (1 of 3)
The authentication process can be interactive
(for example, user name and password) or
non-interactive (for example, header-based
authentication).
It can involve a single step (for example, a
simple user name/password form) or multiple
steps (for example, it might have to add a
challenge after it issued the first password).
The definition of the authentication realm
includes the class name of an authenticator
and a reference to a login module.
An authenticator is an entity that collects user
information.
–

For example: a login form
A login module is a server entity that validates
the retrieved user credentials and builds the
user identity.
You configure authentication settings such as
realms, authenticators, and login modules, in
the authenticationConfig.xml file that is
on the Worklight Server.

An unauthenticated user
tries to access the resource

that is protected by an
authentication realm.

An authenticator is called
 and used to collect user

credentials, that is, the user
name

and password.

The Login module receives
collected credentials and

validates them.

If the supplied credentials
pass validation, the Login
Module

creates the User
Identity object, and flags the
session as authenticated in a

specified realm.

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.5

Authentication introduction (2 of 3)
The authenticator, login module, and user identity instances are stored in a
session scope, therefore they exist while the session is alive.

You can write custom login modules and authenticators when the default
ones do not match your requirements.

In previous modules:

–

You implemented a form-based authentication and used a non-validating
login module.

–

You implemented an adapter-based authentication without having to add
login modules, and ran

credentials validation manually.

In some cases, when the credential validation cannot be ran on the adapter
level and requires more complex code, an extra login module can be
implemented.

–

For example: when an enterprise-custom credentials validation is required;
or when more

information must be retrieved from each client request, such

as cookie, header, and user-agent.

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.6

Authentication Introduction (3 of 3)

This module explains how to create a custom authenticator and a login
module:

–

You learn how to implement a custom authenticator that collects the
user name and password by using a request to a predefined URL.

–

You learn how to implement

a custom login module that checks
credentials that are received

from the authenticator.

–

You learn how to define

a realm that uses your custom authenticator
and login module.

–

You learn how to use this realm to protect resources.

For more information about Worklight® authentication concepts, see the
IBM Worklight user documentation.

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.7

Agenda

Authentication introduction

Configuring authenticationConfig.xml

Creating a custom Java authenticator

Creating a custom Java Login Module

Creating client-side authentication components

Examining the result

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.8

Configuring authenticationConfig.xml (1 of 2)
Add authentication information to the authenticationConfig.xml file.

In the realms section, define a realm that is called
CustomAuthenticatorRealm.

–

Make sure that it uses CustomLoginModule.

Specify MyCustomAuthenticator as the className. You implement it in
later slides.

In the loginModules section, add a loginModule called
CustomLoginModule.

Specify MyCustomLoginModule as the className. You implement it in
later slides.

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.9

Configuring authenticationConfig.xml (2 of 2)

Add a security test to the <securityTests> section of the
authenticationConfig.xml file.

You will use this security test later to protect the adapter procedure, so
make it a <customSecurityTest>

Remember the security test name, to use in following slides

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.10

Agenda

Authentication introduction

Configuring authenticationConfig.xml

Creating a custom Java authenticator

Creating a custom Java login module

Creating client-side authentication components

Examining the result

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.11

Creating a custom Java™ authenticator (1 of 21)
The Authenticator API is:
–

void init(Map<String, String> options)

–

AuthenticationResult processRequest(HttpServletRequest
request, HttpServletResponse response, boolean
isAccessToProtectedResource)

–

AuthenticationResult
processAuthenticationFailure(HttpServletRequest request,
HttpServletResponse response, String errorMessage)

–

AuthenticationResult
processRequestAlreadyAuthenticated(HttpServletRequest
request, HttpServletResponse response)

–

Map<String, Object> getAuthenticationData()
–

HttpServletRequest getRequestToProceed(HttpServletRequest
request, HttpServletResponse response, UserIdentity
userIdentity, LoginExtension... loginExtension)

–

Boolean changeResponseOnSuccess (HttpServletRequest
request, HttpServletResponse response)

–

WorkLightAuthenticator clone()

The init() method

of the
authenticator is called

when the

Authenticator instance is created. It
receives the options that are

specified

in the realm definition in
the authenticationConfig.xml.

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.12

Creating a custom Java authenticator (2 of 21)
The Authenticator API is:
–

void init(Map<String, String> options)

–

AuthenticationResult processRequest(HttpServletRequest
request, HttpServletResponse response, boolean
isAccessToProtectedResource)

–

AuthenticationResult
processAuthenticationFailure(HttpServletRequest request,
HttpServletResponse response, String errorMessage)

–

AuthenticationResult
processRequestAlreadyAuthenticated(HttpServletRequest
request, HttpServletResponse response)

–

Map<String, Object> getAuthenticationData()
–

HttpServletRequest getRequestToProceed(HttpServletRequest
request, HttpServletResponse response, UserIdentity
userIdentity, LoginExtension... loginExtension)

–

Boolean changeResponseOnSuccess (HttpServletRequest
request, HttpServletResponse response)

–

WorkLightAuthenticator clone()

The processRequest()
method is called

for each

request from an unauthenticated
session.

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.13

The Authenticator API is:
–

void init(Map<String, String> options)

–

AuthenticationResult processRequest(HttpServletRequest
request, HttpServletResponse response, boolean
isAccessToProtectedResource)

–

AuthenticationResult
processAuthenticationFailure(HttpServletRequest request,
HttpServletResponse response, String errorMessage)

–

AuthenticationResult
processRequestAlreadyAuthenticated(HttpServletRequest
request, HttpServletResponse response)

–

Map<String, Object> getAuthenticationData()
–

HttpServletRequest getRequestToProceed(HttpServletRequest
request, HttpServletResponse response, UserIdentity
userIdentity, LoginExtension... loginExtension)

–

Boolean changeResponseOnSuccess (HttpServletRequest
request, HttpServletResponse response)

–

WorkLightAuthenticator clone()

The
processAuthenticationFailure()

method is called

if the login module
returns a credentials validation failure.

Creating a custom Java authenticator (3 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.14

The Authenticator API is:
–

void init(Map<String, String> options)

–

AuthenticationResult processRequest(HttpServletRequest
request, HttpServletResponse response, boolean
isAccessToProtectedResource)

–

AuthenticationResult
processAuthenticationFailure(HttpServletRequest request,
HttpServletResponse response, String errorMessage)

–

AuthenticationResult
processRequestAlreadyAuthenticated(HttpServletRequest
request, HttpServletResponse response)

–

Map<String, Object> getAuthenticationData()
–

HttpServletRequest getRequestToProceed(HttpServletRequest
request, HttpServletResponse response, UserIdentity
userIdentity, LoginExtension... loginExtension)

–

Boolean changeResponseOnSuccess (HttpServletRequest
request, HttpServletResponse response)

–

WorkLightAuthenticator clone()

The
processRequestAlreadyAuthenticated()

method is called

for each request from an
already authenticated session.

Creating a custom Java authenticator (4 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.15

The Authenticator API is:
–

void init(Map<String, String> options)

–

AuthenticationResult processRequest(HttpServletRequest
request, HttpServletResponse response, boolean
isAccessToProtectedResource)

–

AuthenticationResult
processAuthenticationFailure(HttpServletRequest request,
HttpServletResponse response, String errorMessage)

–

AuthenticationResult
processRequestAlreadyAuthenticated(HttpServletRequest
request, HttpServletResponse response)

–

Map<String, Object> getAuthenticationData()
–

HttpServletRequest getRequestToProceed(HttpServletRequest
request, HttpServletResponse response, UserIdentity
userIdentity, LoginExtension... loginExtension)

–

Boolean changeResponseOnSuccess (HttpServletRequest
request, HttpServletResponse response)

–

WorkLightAuthenticator clone()

The getAuthenticationData()
method is used by a login module to
get the credentials that are collected

by an authenticator.

Creating a custom Java authenticator (5 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.16

The Authenticator API is:
–

void init(Map<String, String> options)

–

AuthenticationResult processRequest(HttpServletRequest
request, HttpServletResponse response, boolean
isAccessToProtectedResource)

–

AuthenticationResult
processAuthenticationFailure(HttpServletRequest request,
HttpServletResponse response, String errorMessage)

–

AuthenticationResult
processRequestAlreadyAuthenticated(HttpServletRequest
request, HttpServletResponse response)

–

Map<String, Object> getAuthenticationData()
–

HttpServletRequest getRequestToProceed(HttpServletRequest
request, HttpServletResponse response, UserIdentity
userIdentity, LoginExtension... loginExtension)

–

Boolean changeResponseOnSuccess (HttpServletRequest
request, HttpServletResponse response)

–

WorkLightAuthenticator clone()

The getRequestToProceed()
method is called

only after the

login

 module successfully validates the
credentials that were collected

by

an authenticator.

The getRequestToProceed()
method is deprecated since IBM

Worklight

V5.0.0.3.

Creating a custom Java authenticator (6 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.17

The Authenticator API is:
–

void init(Map<String, String> options)

–

AuthenticationResult processRequest(HttpServletRequest
request, HttpServletResponse response, boolean
isAccessToProtectedResource)

–

AuthenticationResult
processAuthenticationFailure(HttpServletRequest request,
HttpServletResponse response, String errorMessage)

–

AuthenticationResult
processRequestAlreadyAuthenticated(HttpServletRequest
request, HttpServletResponse response)

–

Map<String, Object> getAuthenticationData()
–

HttpServletRequest getRequestToProceed(HttpServletRequest
request, HttpServletResponse response, UserIdentity
userIdentity, LoginExtension... loginExtension)

–

Boolean changeResponseOnSuccess (HttpServletRequest
request, HttpServletResponse response)

–

WorkLightAuthenticator clone()

The
changeResponseOnSuccess()

method is called after authentication
success. It is used to add data to

the response after the
authentication is successful.

Creating a custom Java authenticator (7 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.18

The Authenticator API is:
–

void init(Map<String, String> options)

–

AuthenticationResult processRequest(HttpServletRequest
request, HttpServletResponse response, boolean
isAccessToProtectedResource)

–

AuthenticationResult
processAuthenticationFailure(HttpServletRequest request,
HttpServletResponse response, String errorMessage)

–

AuthenticationResult
processRequestAlreadyAuthenticated(HttpServletRequest
request, HttpServletResponse response)

–

Map<String, Object> getAuthenticationData()
–

HttpServletRequest getRequestToProceed(HttpServletRequest
request, HttpServletResponse response, UserIdentity
userIdentity, LoginExtension... loginExtension)

–

Boolean changeResponseOnSuccess (HttpServletRequest
request, HttpServletResponse response)

–

WorkLightAuthenticator clone()

The clone() method is used to
create a deep copy of class

members.

Creating a custom Java authenticator (8 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.19

Create a MyCustomAuthenticator class in the server\java folder

Make sure that this class implements the WorkLightAuthenticator
interface

Add the authenticationData map to your authenticator to hold the
credentials information

–

This object is retrieved

and used by a login module

Creating a custom Java authenticator (9 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.20

You must add a Server runtime library dependency to use server-
related classes, for example, HttpServletRequest.

Right-click your Worklight project and select Properties.

Select Java Build Path → Libraries and click Add Library.

Select Server Runtime and click Next.

You see a list of Server Runtimes that are installed in your Eclipse.

Select one and click Finish.

Click OK.

Creating a custom Java authenticator (10 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.21

The init() method is called when the authenticator is created.

It receives options map specified in a realm definition in the
authenticationConfig.xml.

The clone() method of the authenticator creates a deep copy of the
object members.

Creating a custom Java authenticator (11 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.22

The processRequest() method is called for each unauthenticated
request to collect credentials.

The processRequest() method receives
the request, response, and

 isAccessToProtectedResource
arguments. The method might

retrieve data

from a request and write data to a
response, and must return a specific
AuthenticationResult status as

described in subsequent slides. Reminder:
the authenticator collects the credentials for
a login module; it does not validate them.

Creating a custom Java authenticator (12 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.23

The processRequest() method is called for each unauthenticated
request to collect credentials.

The application sends

an authentication
request to a specific URL. This request

URL contains
my_custom_auth_request_url
component, which is used by the

authenticator to make sure that this
request is an authentication request. It

is advised to have a different URL
component in every authenticator.

Creating a custom Java authenticator (13 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.24

The processRequest() method is called for each unauthenticated
request to collect credentials.

The authenticator retrieves
the user name

and password

credentials that are passed
as request parameters.

Creating a custom Java authenticator (14 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.25

The processRequest() method is called for each unauthenticated
request to collect credentials.

The authenticator checks the
credentials for basic validity, creates
an authenticationData object,
and returns SUCCESS. SUCCESS

 means only

credentials collection
success; the login module is called

 after that to validate the credentials.

Creating a custom Java authenticator (15 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.26

The processRequest() method is called for each unauthenticated
request to collect credentials

If there is a problem with the received
credentials, the authenticator adds

an

errorMessage

to the response and returns
CLIENT_INTERACTION_REQUIRED. The
client must

still supply authentication data.

Creating a custom Java authenticator (16 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.27

The processRequest() method is called for each unauthenticated
request to collect credentials.

The
isAccessToProtectedResource

argument specifies whether an
access attempt was made to a

protected resource. If not, the method
returns

REQUEST_NOT_RECOGNIZED,
which means that the authenticator

treatment is not required, and
proceed with the request as is.

Creating a custom Java authenticator (17 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.28

The processRequest() method is called for each unauthenticated
request to collect credentials.

If

the request made to a protected
resource does not contain

authentication data, the authenticator
adds

an authStatus:required

property to the response, and also
returns a

CLIENT_INTERACTION_REQUIRED
status.

Creating a custom Java authenticator (18 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.29

The authenticator getAuthenticationData() method is used by a
login module to get collected credentials.

After the authenticated session is established, all requests are
transported through the changeResponseOnSuccess() and
processRequestAlreadyAuthenticated() methods.

You can use those methods to retrieve data from requests and to update
responses.

Creating a custom Java authenticator (19 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.30

The changeResponseOnSuccess() method is called after credentials are
successfully validated by the login module.

You can use this method to modify the response before you return it to the client.

This method must return true if the response was modified, false otherwise.

Use it to notify a client application about the authentication success.

Creating a custom Java authenticator (20 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.31

The processRequestAlreadyAuthenticated() method returns
AuthenticationResult for authenticated requests.

If the login module returns an authentication failure,
processAuthenticationFailure() is called. This method writes an error
message to a response body, and returns CLIENT_INTERACTION_REQUIRED
status.

Creating a custom Java authenticator (21 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.32

Agenda

Authentication introduction

Configuring authenticationConfig.xml

Creating a custom Java authenticator

Creating a custom Java login module

Creating client-side authentication components

Examining the result

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.33

Creating a custom Java login module (1 of 20)
The login module API is:
–

void init(Map<String, String> options)

–

boolean login(Map<String, Object>
authenticationData)

–

UserIdentity createIdentity(String loginModule)

–

void logout()

–

void abort()

–

WorkLightAuthLoginModule clone()

The init() method

of the login
module is called

when the login module

 instance is created. This method
receives the options

that are

specified

in the login module definition of the
authenticationConfig.xml file.

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.34

Creating a custom Java login module (2 of 20)
The login module API is:
–

void init(Map<String, String> options)

–

boolean login(Map<String, Object>
authenticationData)

–

UserIdentity createIdentity(String loginModule)

–

void logout()

–

void abort()

–

WorkLightAuthLoginModule clone()
The login() method

of the login

module is used to validate the
credentials that are collected

by the

authenticator.

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.35

The login module API is:
–

void init(Map<String, String> options)

–

boolean login(Map<String, Object>
authenticationData)

–

UserIdentity createIdentity(String loginModule)

–

void logout()

–

void abort()

–

WorkLightAuthLoginModule clone()
The createIdentity() method

of

the login module is used to create a
userIdentity object after the
credentials validation succeeds.

Creating a custom Java login module (3 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.36

The login module API is:
–

void init(Map<String, String> options)

–

boolean login(Map<String, Object>
authenticationData)

–

UserIdentity createIdentity(String loginModule)

–

void logout()

–

void abort()

–

WorkLightAuthLoginModule clone()
The logout() and abort() methods
are used to clean up cached data after

a logout or an authentication abort
 occurs.

Creating a custom Java login module (4 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.37

The login module API is:
–

void init(Map<String, String> options)

–

boolean login(Map<String, Object>
authenticationData)

–

UserIdentity createIdentity(String loginModule)

–

void logout()

–

void abort()

–

WorkLightLoginModule clone()

The clone() method is used to create
a deep copy of the class members.

Creating a custom Java login module (5 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.38

Create a MyCustomLoginModule class in the server\java folder.

Make sure that this class implements the
WorkLightAuthLoginModule interface.

Add two private class members, USERNAME and PASSWORD, to
hold the user credentials

Creating a custom Java login module (6 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.39

The init() method is called when the login module instance is
created. It receives a map of options that are specified in a login
module definition in the authenticationConfig.xml file.

The clone() method of the login module creates a deep copy of the
object members.

Creating a custom Java login module (7 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.40

The login() method is called after the authenticator returns SUCCESS
status.

When called, the login()
method gets an

authenticationData object
from the authenticator.

Creating a custom Java login module (8 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.41

The login() method is called after the authenticator returns SUCCESS
status.

The login() method retrieves
the user name

and password

credentials that the
authenticator previously stored.

Creating a custom Java login module (9 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.42

The login() method is called after the authenticator returns SUCCESS
status.

In this example, the login module
validates the credentials against

hardcoded values. You can
implement your own validation
rules. The login() method

returns true if the credentials are
valid.

Creating a custom Java login module (10 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.43

The login() method is called after the authenticator returns SUCCESS
status.

If

the credential validation fails, the login() method
can either return false or throw

a

RuntimeException with a text that is returned to
the authenticator as an errorMessage parameter.

Creating a custom Java login module (11 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.44

The createIdentity() method is called when the login() method
returned true. It is used to create an authenticated user identity object.

After the login() method returns
true, the createIdentity()
method is called. It is used to

create a UserIdentity object.
You can store your own custom

attributes in it to use later in Java or
adapter code.

Creating a custom Java login module (12 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.45

The createIdentity() method is called when the login() method
returned true. It is used to create an authenticated user identity object.

The UserIdentity object contains user
information. Its constructor is:

 public UserIdentity(String loginModule,
String name,
String displayName,
Set<String> roles,
Map<String, Object> attributes,
Object credentials)

Creating a custom Java login module (13 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.46

The createIdentity() method is called when the login() method
returned true. It is used to create an authenticated user identity object.

The UserIdentity

object contains user information. Its
constructor is:

 public UserIdentity(String loginModule,
String name,
String displayName,
Set<String> roles,
Map<String, Object> attributes,
Object credentials)

Login module
name to set user

for

Creating a custom Java login module (14 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.47

The createIdentity() method is called when the login() method
returned true. It is used to create an authenticated user identity object.

The UserIdentity object contains user
information. Its constructor is:

 public UserIdentity(String loginModule,
String name,
String displayName,
Set<String> roles,
Map<String, Object> attributes,
Object credentials)

A unique user
identifier

Creating a custom Java login module (15 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.48

The createIdentity() method is called when the login() method
returned true. It is used to create an authenticated user identity object.

The UserIdentity object contains user
information. Its constructor is:

 public UserIdentity(String loginModule,
String name,
String displayName,
Set<String> roles,
Map<String, Object> attributes,
Object credentials)

User display name

Creating a custom Java login module (16 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.49

The createIdentity() method is called when the login() method
returned true. It is used to create an authenticated user identity object.

The UserIdentity object contains user
information. Its constructor is:

 public UserIdentity(String loginModule,
String name,
String displayName,
Set<String> roles,
Map<String, Object> attributes,
Object credentials)

User Java security
roles

Creating a custom Java login module (17 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.50

The createIdentity() method is called when the login() method
returned true. It is used to create an authenticated user identity object.

The UserIdentity object contains user
information. Its constructor is:

 public UserIdentity(String loginModule,
String name,
String displayName,
Set<String> roles,
Map<String, Object> attributes,
Object credentials)

Custom user
attributes

Creating a custom Java login module (18 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.51

The createIdentity() method is called when the login() method
returned true. It is used to create an authenticated user identity object.

The UserIdentity object contains user
information. Its constructor is:

 public UserIdentity(String loginModule,
String name,
String displayName,
Set<String> roles,
Map<String, Object> attributes,
Object credentials)

Sensitive user
credentials that are
not to be persisted

Creating a custom Java login module (19 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.52

The logout() and abort() methods are used to clean up class
members after the user logs out or aborts the authentication flow.

Creating a custom Java login module (20 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.53

Agenda

Authentication introduction

Configuring authenticationConfig.xml

Creating a custom Java authenticator

Creating a custom Java login module

Creating client-side authentication components

Examining the result

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.54

Creating client-side authentication components (1 of
13)

Create a Worklight application.

The application consists of two main <div> elements:
–

<div id=“AppBody”> element is used to display

the

application content.
–

<div id=“AuthBody”> element is used for authentication
form purposes.

When authentication is required, the application hides the AppBody
and shows the AuthBody. When authentication is complete, it does
the opposite.

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.55

Start by creating an AppBody.

It has a basic structure and functions.

Buttons are used to invoke the getSecretData procedure and to
log out.

Creating client-side authentication components (2 of
13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.56

AuthBody contains the following elements:

–

Username

and Password input fields

–

Login

and Cancel buttons

AuthBody is styled as display:none because it must not be
displayed before the server requests the authentication.

Creating client-side authentication components (3 of
13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.57

The following API describes how to create the challenge handler and implement
its functionality:

Use
WL.Client.createChallengeHandler()
to create a challenge handler object. Supply a

realm name as a parameter.

Create a challenge handler to define a customized authentication flow. In
your challenge handler, do not add code that modifies the user interface

when this modification is not related to the authentication flow.

Creating client-side authentication components (4 of
13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.58

The following API describes how to create the challenge handler and
implement its functionality:

The isCustomResponse function of the
challenge handler is called each time that a

response is received from the server.
It is used to detect whether the response contains

data that is related to this challenge handler. It
must return true or false.

Creating client-side authentication components (5 of
13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.59

The following API describes how to create the challenge handler and
implement its functionality.

If isCustomResponse returns true, the
framework invokes the handleChallenge()

function. This function is used to perform required
actions, such as hide application screen and show

login screen.

Creating client-side authentication components (6 of
13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.60

In addition to the methods that the developer must implement, the challenge
handler contains functionality that the developer might want to use:

–

submitLoginForm() is used to send collected credentials to a
specific URL. The developer can also specify request parameters,

 headers, and

callback.
–

submitSuccess() notifies

the Worklight

framework that the

authentication successfully finished. The Worklight

framework then
automatically issues

the original request that triggered the

authentication
–

submitFailure() notifies

the Worklight

framework that the

authentication completed with a failure. The Worklight

framework then
disposes

of the original request that triggered the authentication

* Note that each one of these functions should be attached to its
object. For example: myChallengeHandler.submitSucces()

You use those functions during the implementation of the challenge handler
in the next slides.

Creating client-side authentication components (7 of
13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.61

Create a challenge handler.

If the challenge JSON contains
authStatus property, return
true, otherwise return false.

Creating client-side authentication components (8 of
13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.62

Create a challenge handler.

If the authStatus property equals
“required”, show login form, clean up
password input field, and display the

error message if it exists.

Creating client-side authentication components (9 of
13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.63

Create a challenge handler.

if authStatus equals “complete”, hide
the login screen, return to the

application, and notify Worklight
 framework that authentication is

successfully complete.

Creating client-side authentication components (10 of
13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.64

Create a challenge handler.

Clicking a login button triggers the
function that collects the user name

and password from HTML input fields,
and submits them to server. You can
set request headers here and specify

callback functions.

Creating client-side authentication components (11 of
13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.65

Create a challenge handler.

Clicking a cancel button hides
authBody, shows appBody, and
notifies the Worklight

framework

that authentication failed.

Creating client-side authentication components (12 of
13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.66

Create a challenge handler.

The callback function checks the
response for the containing

server challenge once again. If
the challenge is found, the

handleChallenge() function is
called again.

Creating client-side authentication components (13 of
13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.67

Agenda

Authentication introduction

Configuring authenticationConfig.xml

Creating a custom Java authenticator

Creating a custom Java login module

Creating client-side authentication components

Examining the result

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.68

Examining the Result
The sample for this training module can be found in the Getting Started page of
the IBM Worklight documentation website at
http://www.ibm.com/mobile-docs

Enter wluser and 12345 as the user credentials

http://www.ibm.com/mobile-docs

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.69

Notices

Permission for the use of these publications is granted subject to these terms and conditions.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

–

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

–

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa

242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

–

IBM Corporation

Dept

F6, Bldg

1

294 Route 100

Somers NY 10589-3216

USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright notice
as follows:

–

©

(your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.
©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

Privacy Policy Considerations

IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
session information (generated by the application server). These cookies contain no personally identifiable
information and are required for session management. Additionally, persistent cookies may be randomly
generated to recognize and manage anonymous users. These cookies also contain no personally
identifiable information and are required.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent. For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy
Statement at http://www.ibm.com/privacy/details the sections entitled “Cookies, Web Beacons and Other
Technologies” and the “IBM Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.70

Support and comments

For the entire IBM Worklight documentation set, training material and online forums where you can post questions, see the IBM website at:
–

http://www.ibm.com/mobile-docs
Support
–

Software Subscription and Support (also referred to

as Software Maintenance) is

included with licenses purchased through Passport
Advantage and Passport Advantage Express. For additional

information about the International Passport Advantage Agreement and the
IBM International Passport Advantage Express Agreement, visit

the Passport Advantage website at:
•

http://www.ibm.com/software/passportadvantage
–

If

you have a Software Subscription and Support in effect, IBM provides you assistance for your routine, short duration installation and
usage (how-to) questions, and code-related questions. For

additional

details,

consult

your

IBM

Software

Support

Handbook

at:
•

http://www.ibm.com/support/handbook
Comments
–

We

appreciate your comments about this publication. Please comment

on specific errors or omissions, accuracy, organization, subject
matter, or completeness of this document. The comments you send

should

pertain to only the information in this

manual

or product and
the way in which

the information is presented.
–

For technical questions and information about products and prices, please

contact your IBM branch

office, your IBM business partner,
or your authorized remarketer.

–

When

you send comments to IBM, you grant IBM a nonexclusive right to

use or distribute your comments in any way it believes
appropriate without incurring any obligation to you. IBM or any other organizations will

only

use

the personal information that you supply
to contact you about the issues that you state.

–

Thank you

for your support.
–

Submit your comments in the IBM Worklight

Developer Edition support community at:
•

https://www.ibm.com/developerworks/mobile/worklight/connect.html
–

If you would like a response from IBM, please

provide the following information:
•

Name
•

Address
•

Company or Organization
•

Phone No.
•

Email address

http://www.ibm.com/mobile-docs
http://www.ibm.com/software/passportadvantage
http://www.ibm.com/support/handbook
https://www.ibm.com/developerworks/mobile/worklight/connect.html

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

7 March 2014

Thank You

	IBM Worklight V6.1.0�Getting Started
	Trademarks
	Agenda
	Authentication introduction (1 of 3)
	Authentication introduction (2 of 3)
	Authentication Introduction (3 of 3)
	Agenda
	Configuring authenticationConfig.xml (1 of 2)
	Configuring authenticationConfig.xml (2 of 2)
	Agenda
	Creating a custom Java™ authenticator (1 of 21)
	Creating a custom Java authenticator (2 of 21)
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Agenda
	Creating a custom Java login module (1 of 20)
	Creating a custom Java login module (2 of 20)
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Agenda
	Creating client-side authentication components (1 of 13)
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Agenda
	Examining the Result
	Notices
	Support and comments
	Thank You

