
IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.IBM Worklight V6.1.0

���

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

ii IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Contents

Chapter 1. Overview of IBM Worklight . . 1
Introduction to mobile application development . . 1
Overview of IBM Worklight main capabilities . . . 3
Introducing IBM Worklight components 5
IBM Worklight editions 8
System requirements for using IBM Worklight . . . 9
Matrix of features and platforms. 9

Chapter 2. What's new 11
What's new in IBM Worklight V6.1.0.2 11
What's new in IBM Worklight V6.1.0.1 11
What's new in IBM Worklight V6.1.0 13

Easier Worklight Server upgrades and migration 13
Increased ability to integrate IBM Worklight in
common environments and production systems . 14
Faster development of better apps 18
Improved mobile operations 22
Augmented support of mobile environments and
operating systems 23
Enhanced IBM Worklight API 24
Miscellaneous modifications 25

Chapter 3. Tutorials and samples . . . 27

Chapter 4. Known limitations 37

Chapter 5. Troubleshooting 43

Chapter 6. Installing and configuring 45
IBM Worklight installation overview 45
Installing Worklight Studio 46

Running post-installation tasks 47
Starting Worklight Studio. 48
Installing mobile specific tools 48
Changing the port number of the internal
application server 50

Installing IBM Mobile Test Workbench for Worklight 50
Troubleshooting IBM Mobile Test Workbench for
Worklight 51

Installing Worklight Server 52
Installation prerequisites 52
Worklight Server installation process
walkthrough 53
Running IBM Installation Manager 59
Distribution structure of Worklight Server . . . 78
Manually installing Application Center 82

Configuring Worklight Server 101
Backup and recovery 102
Optimization and tuning of Worklight Server 102
Optimization and tuning of Worklight Server
project databases 104
Security configuration 106
Transmitting IBM Worklight data on the
BlackBerry Enterprise Server MDS channel . . 112

Protecting your mobile application traffic by
using IBM WebSphere DataPower as a security
gateway 112
Configuring SSL between Worklight adapters
and back-end servers by using self-signed
certificates 124
Configuring SSL between Worklight Servers and
clients by using certificates that are not signed
by a trusted certificate authority 125
Handling MySQL stale connections 135
Configuring DB2 HADR seamless failover for
Worklight Server and Application Center data
sources 137

Installing the Application Center 138
Configuring the Application Center after
installation 138

Configuring WebSphere Application Server full
profile 139
Configuring WebSphere Application Server
Liberty Profile 140
Configuring Apache Tomcat 141
Configuring properties of DB2 JDBC driver in
WebSphere Application Server. 142
Configuring WebSphere Application Server to
support applications in public app stores . . . 142
Managing users with LDAP 144
Defining the endpoint of the application
resources 165
Configuring Secure Sockets Layer (SSL) . . . 170
List of JNDI properties for the Application
Center 172

Typical topologies of an IBM Worklight instance 178
Setting up IBM Worklight in an IBM WebSphere
Application Server Network Deployment V8.5
cluster environment 180
Setting up IBM Worklight in an IBM WebSphere
Application Server Liberty Profile farm. . . . 191
Integrating IBM WebSphere DataPower with a
cluster of Worklight Servers 201

Installing and configuring IBM SmartCloud
Analytics Embedded 213

Configuring Worklight Server for analytics . . 215
Troubleshooting Worklight Server 216

Troubleshooting to find the cause of installation
failure 216
Troubleshooting failure to create the DB2
database 217
Troubleshooting an installation blocked by DB2
connection errors 217
Troubleshooting a Worklight Server upgrade
with Derby as the database. 218
Troubleshooting failure to authenticate to
Application Center and applications that use the
basic registry element 219

iii

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 7. Upgrading from one
version of IBM Worklight to another . 221
Migrating from IBM Worklight V5.0.6 or later to
V6.1.0 221

Separation of lifecycle between Worklight Server
and Worklight Studio. 221
Upgrading to Worklight Studio V6.1.0 222
Upgrading to Worklight Server V6.1.0 in a
production environment 226

Migrating from IBM Worklight V5.0.6 to V6.0.0 . . 259
Migrating an IBM Worklight project to use the
Dojo library 262
Manually migrating Facebook apps 267
Migrating Worklight Studio to V6.0.0 268
Migrating projects to a new Worklight Studio
instance 269
Upgrading Worklight Server in a production
environment. 270

Migrating from IBM Worklight V5.0.5 to V5.0.6 . . 303
Dojo iOS fixes 307
Dojo 1.8.3 code migration 307

Migrating from IBM Worklight V5.0.0.3 to V5.0.5 308

Chapter 8. Developing IBM Worklight
applications 311
Worklight Studio overview 311
Artifacts produced during development cycle . . 314

IBM Worklight projects, environments, and
skins 314
Creating IBM Worklight projects 316
Creating an application in an IBM Worklight
project. 317
Creating the client-side of an IBM Worklight
application 318
Integrating with source control systems . . . 320

Developing hybrid and web applications 322
Anatomy of an IBM Worklight project 322
Anatomy of an IBM Worklight application . . 323
Setting up a new IBM Worklight environment
for your application 338
The Worklight Development Server and the
Worklight Console. 343
Working with multiple Worklight Servers in
Worklight Studio 345
Developing user interface of hybrid applications 353
Using the IBM Worklight client API 414
Connecting to Worklight Server 414
Configuring the Worklight Logger 415
Developing hybrid applications with IBM
Worklight Application Framework 425
Web and native code in iPhone, iPad, and
Android 449
Developing hybrid applications for iOS. . . . 452
Developing hybrid applications for Android . . 453
Developing hybrid applications for BlackBerry 458
Development guidelines for desktop and web
environments 464

Developing native applications 467
Development guidelines for using native API 467
Developing native applications for iOS 469

Developing native applications for Android . . 472
Developing native applications for Java
Platform, Micro Edition 476

Accelerating application development by reusing
resources 478

Configuring application component and
template preferences 478
Application components. 479
IBM Worklight project templates 494

Building and deploying in Worklight Studio . . . 497
The Run on Worklight Development Server
command 499
Troubleshooting Worklight Development Server
startup 500
The Build All Environments command 501
The Preview command 502
The Build Settings and Deploy Target command 503
Additional Run As menu options. 506

Optimizing IBM Worklight applications 507
Including and excluding application features 507
Application cache management in Desktop
Browser and Mobile Web apps 511
IBM Worklight application build settings . . . 516
Minification of JS and CSS files 519
Concatenation of JS and CSS files. 521

Developing the server side of an IBM Worklight
application 525

Overview of IBM Worklight adapters 525
The adapter XML File 529
Creating an IBM Worklight adapter 544
Generating adapters with the services discovery
wizard 547
Adapter invocation service 552
Implementing adapter procedures 552
Encoding a SOAP XML envelope 553
Calling Java code from a JavaScript adapter . . 554
Features of Worklight Studio 555
Procedure invocation 559
Invoking a back-end service 560
Deploying an adapter 562
JMS adapters 563

JSONStore overview 567
JSONStore features comparison 569
Enabling JSONStore 569
JSONStore document 570
JSONStore collection 571
JSONStore store 571
JSONStore search fields 571
JSONStore queries 572
Store internals 572
JSONStore asynchronicity, callbacks, and
promises 573
Chain JSONStore functions and concurrency . . 574
JSONStore events 574
JSONStore errors 574
JSONStore error codes 575
JSONStore support 578
JSONStore performance 579
JSONStore multiple user support 581
JSONStore security 581
Worklight adapter integration for JSONStore 582

iv IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Troubleshooting JSONStore and data
synchronization 584

Push notification 585
Possible IBM Worklight push notification
architectures. 586
Setting up push notifications 588
Subscribing to push notifications 591
Web-based SMS subscription 592
Sending push notifications to the device . . . 593
Sending SMS push notifications to the device 594
Sending push notifications from WebSphere
Application Server – IBM DB2. 595
Configuring a polling event source to send push
notifications 595
Using two-way SMS communication 598

IBM Worklight security framework 600
IBM Worklight Security Overview 600
Security Tests 605
Authentication realms 607
Authenticators and Login Modules 608
The authentication configuration file 608
Configuring IBM Worklight web application
authorization 610
Configuring authenticators and realms 610
Basic authenticator 611
Form-based authenticator 611
Header authenticator 612
Persistent cookie authenticator 612
Adapter-based authentication 613
LTPA authenticator 615
Configuring login modules 616
Non-validating login module 617
Single identity login module 617
Header login module 617
WASLTPAModule login module 618
LDAP login module 619
Mobile device authentication 621
Configuring and implementing device
provisioning. 624
Implementing client-side components for
custom device provisioning. 625
Implementing server-side components for
custom device provisioning. 627
Device single sign-on (SSO) 629
Configuring device single sign-on 630
IBM Worklight application authenticity
overview 631
User certificate authentication realm 634
Troubleshooting authenticity problems 634

Developing globalized hybrid applications . . . 635
Globalization in JavaScript frameworks. . . . 635
Globalization mechanisms in IBM Worklight 646
Globalization of web services 654
Globalization of push notifications 655

Developing accessible applications 658
Location services 659

Platform support for location services 661
Location services permissions 661
Triggers 662
Setting an acquisition policy 664
Working with geofences and triggers 666

Differentiating between indoor areas 668
Securing server resources based on location . . 674
Tracking the current location of devices . . . 675
Keeping the application running in the
background 678
Testing hybrid location service applications with
MBS 679

Client-side log capture 689
Server preparation for uploaded log data . . . 690
Client-side logging in client apps 691

Chapter 9. API reference 695
IBM Worklight client-side API 695

JavaScript client-side API 696
Objective-C client-side API for native iOS apps 699
Java client-side API for native Android apps 699
Java client-side API for Java ME apps 700

IBM Worklight server-side API 700
JavaScript server-side API 701
Java server-side API 701

Internal IBM Worklight database tables 701
HTTP Interface of the production server 705

Chapter 10. Deploying IBM Worklight
projects 711
Deploying IBM Worklight applications to test and
production environments 711

Deploying an application from development to
a test or production environment 711
Building a project WAR file with Ant 714
Deploying the project WAR file 714
Configuration of IBM Worklight applications on
the server 772
Ant tasks for building and deploying
applications and adapters 791
Deploying applications and adapters to
Worklight Server 795
Administering adapters and apps in Worklight
Console 798
Worklight Security and LTPA overview. . . . 801
High availability 811
Updating IBM Worklight apps in production 813

Deploying to the cloud by using IBM
PureApplication System and IBM SmartCloud
Orchestrator 815

Installing IBM Worklight support for cloud
deployment 816
Working with the IBM Mobile Application
Platform Pattern Type 818
Working with IBM Mobile Application Platform
Pattern Extension for Worklight Studio 823
Building and deploying IBM Worklight virtual
applications by using the command line
interface 825
Deployment of the Application Center on IBM
PureApplication System 828

Contents v

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 11. Administering IBM
Worklight applications 833
Administering IBM Worklight applications with
Worklight Console. 833

Direct updates of app versions to mobile
devices 833
Direct updates of app versions to desktop apps 836
Locking an application 836
Remotely disabling application connectivity . . 837
Displaying a notification message on application
startup 840
Defining administrator messages from
Worklight Console in multiple languages . . . 840
Controlling authenticity testing for an app . . 844

Administering push notifications with the
Worklight Console. 846
Application Center 848

Concept of the Application Center 848
Specific platform requirements 849
General architecture 850
Preliminary information 851
Preparations for using the mobile client . . . 852
Push notifications of application updates . . . 860
The Application Center console 865
Command-line tool for uploading or deleting an
application 887
Publishing Worklight applications to the
Application Center 893
The mobile client 896
Advanced information for BlackBerry users . . 921

Federal standards support in IBM Worklight . . . 924
FDCC and USGCB support. 924
FIPS 140-2 support 925

Chapter 12. Monitoring and mobile
operations. 933
Logging and monitoring mechanisms 933

Vitality queries for checking server health . . . 934
Configuring logging in the development server 936

Analytics 938
Comparison of operational analytics and reports
features 939
IBM Worklight analytics components 940
Reports database 967
IBM Tealeaf CX integration 986

Mobile application management 988
User to device mapping and control 989
Device access management in the Worklight
Console 990
Enabling the device access management features 992
Performance implications for the server . . . 993

User certificate authentication 994
User certificate authentication overview . . . 995
Protecting resources with user certificate
authentication 997
User certificate authentication on the server . . 998
User certificate authentication on the client 1007
Troubleshooting the User Certificate
Authentication feature 1009

License tracking 1010
Configuring your license tracking details . . . 1011
License Tracking report. 1012

Chapter 13. Integrating with other
IBM products 1015
Introduction to IBM Worklight integration options 1015
Integration with Cast Iron 1016
Integration with reverse proxy 1017

Authentication at the gateway 1018
IBM Endpoint Manager for Mobile Devices
overview 1019
Managing end points with IBM Endpoint
Manager 1021
Using WebSphere DataPower as a push
notification proxy 1022
Useful links 1022

Chapter 14. Migrating from the
WebSphere Application Server
Feature Pack 1025
Migration scenarios 1025
Migrating an application that uses the client
programming model 1025
Migrating an application that uses the server
programming model 1026
Considerations for applications that use JAX-RS,
JSON-RPC, or proxying 1027
Example: Migrating the Dojo showcase sample 1027

Chapter 15. Glossary 1029
A 1029
B 1030
C 1030
D 1031
E 1032
F 1032
G 1032
H 1033
I 1033
K 1033
L 1033
M 1034
N 1034
P 1034
R 1035
S 1035
T 1036
V 1036
W 1037
X 1037

Chapter 16. Notices 1039

Chapter 17. Support and comments 1043

Index 1047

vi IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 1. Overview of IBM Worklight

Start here to learn about the IBM® Worklight® product.

With IBM Worklight, you can extend your business to mobile devices. IBM
Worklight provides an open, comprehensive, and advanced mobile application
platform for smartphones and tablets. It helps organizations of all sizes to
efficiently develop, test, connect, run, and manage mobile applications (apps).
Using standards-based technologies and tools, IBM Worklight provides an
integrated platform that includes a comprehensive development environment,
mobile-optimized runtime middleware, a private enterprise application store, and
an integrated management and analytics console, all supported by various security
mechanisms.

For more information about IBM Worklight, see the following topics.

Introduction to mobile application development
With IBM Worklight, you can develop mobile applications by using any of four
different approaches: web development, hybrid development, hybrid mixed
development, and native development.

IBM Worklight provides capabilities to help you respond to the fast-paced
development of mobile devices. IBM Worklight is based on open standards such as
HTML, CSS, or JavaScript, and solutions such as Apache Cordova, Eclipse
Foundation, or the Android and Apple SDKs, for delivering mobile solutions. This
flexible structure gives you more options when you implement your mobile
communication channel, or release a new version of your application. You can
evaluate the best approach for each situation according to skills, time, and
functionality, without being limited by a specific approach to mobile application
development.

Web development

With the web development approach, your application runs inside the browser of
the mobile device, and uses standard technologies such as HTML5, CSS3, and
JavaScript. Your application is platform independent, so you do not need to
develop a new application to support a new mobile platform. Modifications to
your application might be required to support a different browser engine. Mobile
web applications cannot access the platform functions because they rely only on
the browser, and the associated web standards. Mobile web applications are not
distributed through an application store. They are accessed through a link on a
website, or a bookmark in the mobile browser of the user.

Hybrid development

With the hybrid development approach, you can create applications that use parts
of both the native development and web development approaches. Your hybrid
application runs inside a native container and uses the browser engine to display
the application interface, which is based on HTML and JavaScript. With the native
container, your application can access device capabilities that are not accessible to
web applications, such as the accelerometer, camera, and local storage on a
smartphone. Similar to native applications, hybrid applications are distributed

1

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

through the application store of the platform.

Hybrid mixed development

You can enhance the hybrid development approach with hybrid mixed
development. With the hybrid mixed development approach, you can create
applications that use a container to access device capabilities, but also use other
native, platform-specific components such as libraries, or specific user-interface
elements, to enhance the mobile application.

Native development

With the native development approach, you can create applications that are written
for a specific platform and run on that platform only. Your applications can fully
use all platform functions such as accessing the camera or contact list, or
interacting with other applications on the device. To support platforms such as
Android, iOS, BlackBerry, and Windows Phone, you must develop separate
applications with different programming languages, such as Objective-C for iOS, or
Java™ for Android. Typically, native applications are distributed through an
application store.

Aspects of each development approach

Each of these development approaches has advantages and disadvantages. You
must select the appropriate development approach according to the specific
requirements for an individual mobile solution. This choice depends heavily on the
specifics of your mobile application and its functional requirements. Mapping your
requirements to select an appropriate development approach is the first step in a
mobile development project. Table 1 outlines the major aspects of the four
development approaches, and can help you decide which development approach is
appropriate for your specific mobile application.

Table 1. Comparison of mobile development approaches

Aspect
Web
development

Hybrid
development

Hybrid mixed
development

Native
development

Easy to learn Easy Medium Medium Hard

Application
performance

Slow Moderate Moderate Fast

Device
knowledge
required

None Some Some A lot

Development
lifecycle
(build/test/
deploy)

Short Medium Medium Long

Application
portability to
other platforms

High High Medium None

Support for
native device
functionality

Some Most All All

Distribution
with built-in
mechanisms

No Yes Yes Yes

2 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 1. Comparison of mobile development approaches (continued)

Aspect
Web
development

Hybrid
development

Hybrid mixed
development

Native
development

Ability to write
extensions to
device
capabilities

No Yes Yes Yes

Overview of IBM Worklight main capabilities
With IBM Worklight, you can use capabilities such as development, testing,
back-end connections, push notifications, offline mode, update, security, analytics,
monitoring, and application publishing.

Development

IBM Worklight provides a framework that enables the development, optimization,
integration, and management of secure mobile applications (apps). IBM Worklight
does not introduce a proprietary programming language or model that users must
learn. You can develop apps by using HTML5, CSS3, and JavaScript. You can
optionally write native code (Java or Objective-C), and IBM Worklight provides an
SDK that includes libraries that you can access from native code.

Testing

IBM Worklight includes IBM Mobile Test Workbench for IBM Worklight for testing
mobile applications. With the mobile testing capabilities of IBM Mobile Test
Workbench for IBM Worklight, you can automate the creation, execution, and
analysis of functional tests for IBM Worklight native and hybrid applications on
Android and iOS devices.

Back-end connections

Some mobile applications run strictly offline with no connection to a back-end
system, but most mobile applications connect to existing enterprise services to
provide the critical user-related functions. For example, customers can use a mobile
application to shop anywhere, at any time, independent of the operating hours of
the store. Their orders must still be processed by using the existing e-commerce
platform of the store. To integrate a mobile application with enterprise services,
you must use middleware such as a mobile gateway. IBM Worklight can act as this
middleware solution and make communication with back-end services easier.

Push notifications

With push notifications, mobile applications can send information to mobile
devices, even when the application is not being used. IBM Worklight includes a
unified notification framework that provides a consistent mechanism for such push
notifications. With this unified notification framework, you can send push
notifications without having to know the details of each targeted device or
platform because each mobile platform has a different mechanism for these push
notifications.

Chapter 1. Overview of IBM Worklight 3

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Offline mode

In terms of connectivity, mobile applications can operate offline, online, or in a
mixed mode. IBM Worklight uses a client/server architecture that can detect
whether a device has network connectivity, and the quality of the connection.
Acting as a client, mobile applications periodically attempt to connect to the server
and to assess the strength of the connection. An offline-enabled mobile application
can be used when a mobile device lacks connectivity but some functions can be
limited. When you create an offline-enabled mobile application, it is useful to store
information about the mobile device that can help preserve its functionality in
offline mode. This information typically comes from a back-end system, and you
must consider data synchronization with the back end as part of the application
architecture. IBM Worklight includes a feature that is called JSONStore for data
exchange and storage. With this feature, you can create, read, update, and delete
data records from a data source. Each operation is queued when operating offline.
When a connection is available, the operation is transferred to the server and each
operation is then performed against the source data.

Update

IBM Worklight simplifies version management and mobile application
compatibility. Whenever a user starts a mobile application, the application
communicates with a server. By using this server, IBM Worklight can determine
whether a newer version of the application is available, and if so, give information
to the user about it, or push an application update to the device. The server can
also force an upgrade to the latest version of an application to prevent continued
use of an outdated version.

Security

Protecting confidential and private information is critical for all applications within
an enterprise, including mobile applications. Mobile security applies at various
levels, such as mobile application, mobile application services, or back-end service.
You must ensure customer privacy and protect confidential data from being
accessed by unauthorized users. Dealing with privately owned mobile devices
means giving up control on certain lower levels of security, such as the mobile
operating system.

IBM Worklight provides secure, end-to-end communication by positioning a server
that oversees the flow of data between the mobile application and your back-end
systems. With IBM Worklight, you can define custom security handlers for any
access to this flow of data. Because any access to data of a mobile application must
go through this server instance, you can define different security handlers for
mobile applications, web applications, and back-end access. With this kind of
granular security, you can define separate levels of authentication for different
functions of your mobile application, or avoid sensitive information to be accessed
from a mobile application entirely.

Analytics

The operational analytics feature enables searching across apps, services, devices,
and other sources to collect data about usage, or to detect problems.

In addition to reports that summarize app activity, IBM Worklight includes a
scalable operational analytics platform accessible in the Worklight Console. The
analytics feature enables enterprises to search across logs and events that are

4 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

collected from devices, apps, and servers for patterns, problems, and platform
usage statistics. You can enable analytics, reports, or both, depending on your
needs.

Monitoring

IBM Worklight includes a range of operational analytics and reporting mechanisms
for collecting, viewing, and analyzing data from your IBM Worklight applications
and servers, and for monitoring server health.

Application publishing

IBM Worklight Application Center is an enterprise application store. With the
Application Center, you can install, configure, and administer a repository of
mobile applications for use by individuals and groups across your enterprise. You
can control who in your organization can access the Application Center and
upload applications to the Application Center repository, and who can download
and install these applications onto a mobile device. You can also use the
Application Center to collect feedback from users and access information about
devices on which applications are installed.

The concept of the Application Center is similar to the concept of the Apple public
App Store or the Google Play store, except that it targets the development process.
The Application Center provides a repository for storing the mobile application
files and a web-based console for managing that repository. The Application Center
also provides a mobile client application to allow users to browse the catalog of
applications that are stored by the Application Center, install applications, leave
feedback for the development team, and expose production applications to IBM
Endpoint Manager. Access to download and install applications from the
Application Center is controlled by using access control lists (ACLs).

Introducing IBM Worklight components
IBM Worklight consists of the following components: Worklight Studio, Worklight
Server, client-side runtime components, Worklight Console, Application Center, and
IBM Mobile Application Platform Pattern.

Worklight Studio

In a mobile development platform, cross-platform portability of the application
code is critical for mobile device application development. Various methods exist
to achieve this portability. With IBM Worklight, you can develop multiplatform
applications by using Worklight Studio, which is an integrated development
environment for mobile applications.

You can use Worklight Studio for the following tasks:
v Develop rich HTML5, hybrid and native applications for all supporting modern

devices by using native code, a bidirectional WYSIWYG editor, and standard
web technologies and tools.

v Maximize code sharing by defining custom behavior and styling guidelines that
match the target environment.

v Access device APIs by using native code or standard web languages over a
uniform Apache Cordova bridge.

Chapter 1. Overview of IBM Worklight 5

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: Because Apache Cordova is preinstalled with IBM Worklight, do not
download your own version of Apache Cordova.

v Use both native and standard web languages within the same application to
achieve development efficiency and provide a rich user experience.

v Use third-party tools, libraries, and frameworks such as JQuery Mobile, Sencha
Touch, and Dojo Mobile.

v Implement runtime skins to build apps that automatically adjust to environment
guidelines such as form factor, screen density, HTML support, and UI input
method.

Worklight Server

The Worklight Server is a runtime container for the mobile applications you
develop in Worklight Studio. It is not an application server in the Java Platform,
Enterprise Edition (JEE) sense. It acts as a container for IBM Worklight application
packages and is in fact a collection of web applications, optionally packaged as an
EAR (Enterprise Application ARchive) file, that runs on top of traditional
application servers.

Worklight Server is designed to integrate into the enterprise environment and use
its existing resources and infrastructure. This integration is based on adapters that
are server-side software components responsible for channeling back-end
enterprise systems and cloud-based services to the user device. You can use
adapters to retrieve and update data from information sources, and to allow users
to perform transactions and start other services and applications.

You can use Worklight Server for the following tasks:
v Empower hundreds of thousands of users with transactional capabilities and

enable their direct access to back-end systems and cloud-based services.
v Configure, test, and deploy descriptive XML files to connect to various back-end

systems by using standard Worklight Studio tools.
v Directly update deployed hybrid and web applications, without going through

the different app stores (subject to the terms of service of the vendor).
v Automatically convert hierarchical data to JSON format for optimal delivery and

consumption.
v Enhance user interaction with a uniform push notification architecture.
v Define complex mashups of multiple data sources to reduce overall traffic.
v Integrate with the existing security and authentication mechanisms of the

organization.

Client-side runtime components

IBM Worklight provides client-side runtime code that embeds server functionality
within the target environment of deployed apps. These runtime client APIs are
libraries that are integrated into the locally stored app code. They complement the
Worklight Server by defining a predefined interface for apps to access native
device functions. Among these APIs, IBM Worklight uses the Apache Cordova
development framework. This framework delivers a uniform bridge between
standard web technologies (HTML5, CSS3, JavaScript) and the native functions that
different mobile platforms provide.

The client-side runtime components provide the following functions:
v Mobile data integration: connectivity and authentication APIs

6 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Security features: on-device encryption, offline authentication, and remote
disablement of the ability to connect to Worklight Server

v Cross-platform support: runtime skins, UI abstractions, and HTML5 toolkits
compatibility

v Mobile client functionality: hybrid app framework, access to device APIs and
push notification registration

v Reports and analytics: built-in reports and event-based custom reporting
v Resource serving: direct update of app web resources and HTML5 caching

Worklight Console

The Worklight Console is used for the control and management of the mobile
applications.

You can use the Worklight Console for the following tasks:
v Monitor all deployed applications, adapters, and push notification rules from a

centralized, web-based console.
v Assign device-specific identifiers (IDs) to ensure secure application provisioning.
v Remotely disable the ability to connect to Worklight Server by using

preconfigured rules of app version and device type.
v Customize messages that are sent to users on application launch.
v Collect user statistics from all running applications.
v Generate built-in, pre-configured reports about user adoption and usage

(number and frequency of users that are engaging with the server through the
applications).

v Configure data collection rules for application-specific events.
v Export raw reporting data to be analyzed by the Business Intelligence systems of

the organization.

Application Center

With the Application Center, you can share mobile applications that are under
development within your organization in a single repository of mobile
applications. Development team members can use the Application Center to share
applications with members of the team. This process facilitates collaboration
between all the people who are involved in the development of an application.

Your company can typically use the Application Center as follows:
1. The development team creates a version of an application.
2. The development team uploads the application to the Application Center,

enters its description, and asks the extended team to review and test it.
3. When the new version of the application is available, a tester runs the

Application Center installer application, which is the mobile client. Then, the
tester locates this new version of the application, installs it on their mobile
device, and tests it.

4. After the tests, the tester rates the application and submits feedback, which is
visible to the developer from the Application Center console.

The Application Center is aimed for private use within a company, and you can
target some mobile applications to specific groups of users. You can use the
Application Center as an enterprise application store.

Chapter 1. Overview of IBM Worklight 7

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

With the Application Center, you can manage native or hybrid applications that are
installed on mobile devices. The Application Center supports applications that are
built for the Google Android platform, the Apple iOS platform, the Windows
Phone 8 platform, and the BlackBerry OS 6 and 7 platform, but does not target
mobile web applications. Windows Phone 7, Windows RT, and BlackBerry OS 10
are not supported by the current version of the Application Center.

IBM Mobile Application Platform Pattern

With the IBM Mobile Application Platform Pattern, you can deploy the Worklight
Server on IBM PureApplication® System or IBM SmartCloud Orchestrator. With
this pattern, administrators and corporations can respond quickly to changes in the
business environment by taking advantage of on-premises Cloud technologies. This
approach simplifies the deployment process, and improves the operational
efficiency to cope with increased mobile demand. The demand accelerates iteration
of solutions that exceed traditional demand cycles. Deploying the IBM Mobile
Application Platform Pattern on IBM PureApplication System or IBM SmartCloud
Orchestrator also gives access to best practices and built-in expertise, such as
built-in scaling policies.

IBM Worklight editions
IBM Worklight is available to you in several editions: the IBM Worklight Developer
Edition, the IBM Worklight Consumer Edition, and the IBM Worklight Enterprise
Edition.

IBM Worklight Developer Edition

IBM Worklight Developer Edition is a free, non-warrantied program that consists
of a single plug-in for the Eclipse integrated development environment (IDE). It is
available from the developerWorks® website. You must install it with P2 Eclipse
update. It provides the same Worklight Studio functions that are available in the
IBM Worklight Consumer Edition and the IBM Worklight Enterprise Edition,
except for some security-related features. Support is only provided as a best-effort
service. For full product support, choose the IBM Worklight Consumer Edition or
the IBM Worklight Enterprise Edition.

The P2 Eclipse update version of IBM Mobile Test Workbench for IBM Worklight is
also downloadable for free as a separate plug-in from the developerWorks website.
After you install the IBM Worklight Developer Edition, you can then optionally
install the test workbench in Eclipse.

IBM Worklight Consumer Edition and IBM Worklight Enterprise
Edition

IBM Worklight Consumer Edition and IBM Worklight Enterprise Edition are
identical programs that differ in license only. These programs are supported
through an IBM International License Agreement and are available from IBM
Passport Advantage®. The IBM Worklight Consumer Edition and the IBM
Worklight Enterprise Edition contain the following components:
v A separate Worklight Studio component, which is available as an Eclipse plug-in

(Eclipse P2 installation)
v A separate Worklight Server component, which is available as an IBM

Installation Manager package

8 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v A separate, optional, IBM Mobile Test Workbench for IBM Worklight component,
which is available as an Eclipse plug-in (Eclipse P2 installation)

Note: When you install and upgrade IBM Worklight Consumer Edition or IBM
Worklight Enterprise Edition, you must make sure that the version numbers of
your Worklight Studio and Worklight Server components stay in sync. You must
not mix components across releases.

System requirements for using IBM Worklight
System requirements for IBM Worklight include operating systems, Eclipse
versions, SDKs, and other software.

To identify the system requirements for this release of IBM Worklight, see the IBM
Worklight and IBM Mobile Foundation detailed system requirements on the IBM
Support Portal. The IBM Worklight system requirements include:
v The operating systems that support IBM Worklight, including mobile device

operating systems
v The required hardware configuration
v The editions of Eclipse that support Worklight Studio, which is an Eclipse-based

integrated development environment (IDE)
v The supported software development kits (SDKs)
v The supported web browsers
v The application servers, database management systems, and other software that

are required or supported by IBM Worklight

Matrix of features and platforms
IBM Worklight provides many features and supports many platforms.

The Mobile OS feature mapping for IBM Worklight technote on the IBM Support
Portal lists the IBM Worklight features that are available on each of the platforms
that IBM Worklight supports.

Chapter 1. Overview of IBM Worklight 9

http://www.ibm.com/support/docview.wss?uid=swg27024838
http://www.ibm.com/support/docview.wss?uid=swg27024838
http://www.ibm.com/support/docview.wss?uid=swg27039422

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

10 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 2. What's new

This section details the new features and changes in IBM Worklight V6.1.0 and
subsequent fix packs.

What's new in IBM Worklight V6.1.0.2
IBM Worklight V6.1.0.2 fixes issues that were identified in previous versions.

Inclusion of interim fix for IBM Mobile Test Workbench for
Worklight

Interim fix 001 for IBM Mobile Test Workbench for Worklight V8.5.1.3 is
incorporated into IBM Worklight V6.1.0.2. The interim fix supports iOS 7 and 7.1.

Documentation improvements

The IBM Worklight V6.1.0.2 user documentation is updated to include the
following improvements:
v Instructions on how to configure Worklight BlackBerry 10 project to work with

WebWorks SDK 2.0. See “Worklight BlackBerry 10 project with WebWorks SDK
2.0” on page 460

v Additional details added to the descriptions of the onSuccess and onFailure
methods. See WLResponseListener.

v Updated instructions on configuring device single sign-on. See “Configuring
device single sign-on” on page 630.

v Clarified the description of the BusyIndicator API class. See WL.BusyIndicator.
v Clarification that multicultural support in the Application Center includes only

the mobile client. The Application Center console is not translated. See
“Multicultural support in the Application Center” on page 14.

Connection policy of HTTP adapters

In IBM Worklight V6.1.0, starting with Fix Pack 2, the behavior of the maxRedirects
attribute of the <ConnectionPolicy> element of the HTTP adapter changed, as
described in“The <connectionPolicy> element of the HTTP adapter” on page 534.

List of fixes for IBM Worklight V6.1.0.2

For a complete list of issues that are fixed in IBM Worklight V6.1.0.2, see Version
6.1.0 Fix Pack 2.

What's new in IBM Worklight V6.1.0.1
IBM Worklight V6.1.0.1 fixes many problems that were identified in previous
versions.

Client-side log collection

Starting with IBM Worklight V6.1.0.1, you can now capture and receive uploaded
client-side logs. For more information, see “Client-side log capture” on page 689.

11

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-android/html/com/worklight/wlclient/api/WLResponseListener.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.BusyIndicator.html
http://www.ibm.com/support/docview.wss?uid=swg27041452#6102
http://www.ibm.com/support/docview.wss?uid=swg27041452#6102

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Application startup time improvement

Significant improvements have been made on the amount of time the user must
wait when IBM Worklight applications are started for the first time. The
performance improvement applies to both Android and iOS. In cases where the
web resources are not encrypted (that is, when encryptWebResources is set to the
default value of false), a change was made resulting in a significant improvement
in the application startup time.
v Maximum improvement is achieved with testWebResourcesChecksum and

encryptWebResources set to their default value of false in the application
descriptor file.

v Setting the testWebResourcesChecksum value to true reduces the improvement
slightly.

v Setting the encryptWebResources value to true results in no improvement.

Changes to the WL.Client.init JavaScript client-side API method

The init method of the WL.Client class supports the following new properties and
parameters:
v New showCloseOnDirectUpdateFailure property.
v New showCloseOnRemoteDisableDenial property.
v New message and downloadLink parameters for the onErrorRemoteDisableDenial

property.

Change in Remote Disable behavior

When you use the Worklight Console to disable an application's access to the
server, the default behavior is no longer to exit the application completely. For
more information, see “Remotely disabling application connectivity” on page 837.

Deprecation of WL.OptionsMenu with Android 3.0, API level 11

If your application targets Android 3.0 (API level 11) or higher, WL.OptionsMenu
might have no effect, depending on the device. For more information, see Creating
an Options Menu in the Android Developers API Guides.

Documentation improvements

The IBM Worklight V6.1.0.1 user documentation is updated to include the
following improvements:
v Clarification on how to use the WL.App.BackgroundHandler hideView handler

to hide the application splash screen.
v Instructions on how to install IBM Worklight support for cloud deployment from

the command line. See “Installing IBM Worklight support for cloud deployment
from the command line” on page 817.

v Instructions on how to integrate IBM WebSphere® DataPower® with a cluster of
Worklight Servers. See “Integrating IBM WebSphere DataPower with a cluster of
Worklight Servers” on page 201.

v Instructions on how to change message text strings. See “The
WL.ClientMessages object” on page 699 and “Globalization mechanisms in IBM
Worklight” on page 646.

v Descriptions of the JNDI properties that can be configured for the Application
Center. See “List of JNDI properties for the Application Center” on page 172.

12 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.OptionsMenu.html
http://developer.android.com/guide/topics/ui/menus.html#options-menu
http://developer.android.com/guide/topics/ui/menus.html#options-menu
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.App.BackgroundHandler.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Instructions on how to use IBM WebSphere DataPower as a push notification
proxy for IBM Worklight. See “Using WebSphere DataPower as a push
notification proxy” on page 1022.

List of fixes for IBM Worklight V6.1.0.1

For a complete list of issues that are fixed in IBM Worklight V6.1.0.1, see Version
6.1.0 Fix Pack 1.

Upgrading from Worklight Server V6.1.0 to V6.1.0.x in a
production environment

For more information about the specific installation instructions to upgrade to
Worklight Server V6.1.0.x (fix pack), see “Upgrading from Worklight Server V6.1.0
to V6.1.0.x in a production environment” on page 258.

Upgrading from Worklight Server V6.1.0 to an interim fix in a
production environment

For more information about the specific installation instructions to upgrade to an
interim fix, see “Upgrading from Worklight Server V6.1.0 to an interim fix in a
production environment” on page 259.

New tutorials and samples

The list of tutorials and samples is augmented with the following new tutorials
and their companion samples:
v The module Windows Phone 8 - Using native pages in hybrid applications, under

category 6, Adding native functionality to hybrid applications with Apache Cordova

v The module Creating an application with IBM Worklight Application Framework,
under category 9, Advanced topics

v The module Developing dynamic, collaborative mobile applications with MQ Telemetry
Transport, under category 11, Integrating with other products

For more information about these new tutorials and samples, and how you can get
started with IBM Worklight, see Chapter 3, “Tutorials and samples,” on page 27.

What's new in IBM Worklight V6.1.0
This section details the new features and changes in IBM Worklight V6.1.0
compared to the previous version of this product.

Easier Worklight Server upgrades and migration
Starting with IBM Worklight V6.1.0, numerous changes are implemented in
Worklight Server. These improvements make it possible for you to deploy and run
apps that are developed in any supported version of Worklight Studio on
Worklight Server V6.1.0 or higher.

In the past, upgrading to a new version of Worklight Server required the
involvement of IT personnel (to install and configure the new server) and
Worklight developers (to migrate their existing apps to work with the new server
version). This cooperation was required to ensure that the Worklight files
(.war.wlapp, and .wladapter) deployed to the server matched the run time
components of the server.

Chapter 2. What's new 13

http://www.ibm.com/support/docview.wss?uid=swg27041452#6101
http://www.ibm.com/support/docview.wss?uid=swg27041452#6101

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Since IBM Worklight V6.1.0, there is a separation of the Worklight Studio and the
Worklight Server upgrade lifecycles. This separation means that:
v It is possible to upgrade an instance of Worklight Server to version 6.1.0 without

upgrading your existing applications to Worklight Studio version 6.1.0. For
further information, see “Separation of lifecycle between Worklight Server and
Worklight Studio” on page 221.

v It is possible to deploy server artifacts (project WAR files, apps, and adapter
files) that are developed with any supported version of Worklight Studio (V5.0.5,
V5.0.6.x, V6.0.0.x, and V6.1.0) to an instance of Worklight Server V6.1.0. Direct
Update also continues to work.

Increased ability to integrate IBM Worklight in common
environments and production systems

IBM Worklight V6.1.0 makes it easier for you to reuse the skills, resources, and
existing processes of your enterprise as you embrace IBM MobileFirst. It increases
your ability to integrate IBM Worklight in common enterprise environments and in
your production systems so that you can handle several applications to satisfy
your business demands securely.

Multicultural support for user facing text

With IBM Worklight V6.1.0, the following languages are supported in the IBM
Worklight client runtime user interface:
v English
v Chinese (Simplified)
v Chinese (Traditional)
v French
v German
v Italian
v Japanese
v Korean
v Portuguese (Brazil)
v Russian
v Spanish

With this support, all the messages and labels that are visible in user interface
components that are part of the IBM Worklight client runtime components are
available in these languages. This availability makes it easier for application
developers to create globalized native and hybrid applications.

Developers are still responsible for providing translation for application-specific
texts.

For more information about the language support and how to develop globalized
apps, see “Developing globalized hybrid applications” on page 635.

Multicultural support in the Application Center

With IBM Worklight V6.1.0, the user interface of the Application Center mobile
client has been translated into the following languages:
v Chinese (simplified)
v Chinese (traditional)

14 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v French
v German
v Italian
v Japanese
v Korean
v Brazilian Portuguese
v Russian
v Spanish

The user interface of the Application Center console has not been translated.

Deployment to a protected console

With IBM Worklight V6.1.0, when you try to deploy an application or an adapter
from Worklight Studio to a secure console, IBM Worklight checks whether the
console is protected. If the console is protected, IBM Worklight presents a dialog to
the user that asks to enter the user name and password.

The provided credentials are stored in Eclipse secure storage.

You can configure this storage by using Window > Preferences > General >
Security > Secure Storage, for reuse for the next deployment.

Ant tasks are also available, for you to add credentials, and automate your
deployment.

For more information, see “The Run on Worklight Development Server command”
on page 499.

New Server Configuration Tool to ease deployment of IBM
Worklight projects

With IBM Worklight V6.1.0, you can deploy a Worklight project by using the
Server Configuration Tool.

The introduction of the new Worklight Server Configuration Tool makes it easier
for IT staff to install and configure a new release of Worklight Server, and to
deploy applications to it.

For more information, see “Deploying, updating, and undeploying a Worklight
Server by using the Server Configuration Tool” on page 715.

Additional cloud deployment option by using IBM SmartCloud®

Orchestrator

With IBM Worklight V6.1.0, you can deploy to the cloud by using IBM SmartCloud
Orchestrator as well as IBM PureApplication System.

For more information, see “Deploying to the cloud by using IBM PureApplication
System and IBM SmartCloud Orchestrator” on page 815.

Chapter 2. What's new 15

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Easy upgradability of mobile apps for new version of mobile OS
without server upgrade

With IBM Worklight V6.1.0, you can easily enable your IBM Worklight applications
to work on a newly released version of an already supported mobile OS by using
the existing production server. Before this release, you also required a new version
of Worklight Server to support an application that is generated from the
corresponding new version of Worklight Studio.

FIPS 140-2 Support

With IBM Worklight V6.1.0, Federal Information Processing Standards (FIPS) 140-2
compliant libraries can be used to encrypt and decrypt data at rest (data stored
locally using JSONStore) and data in motion (data exchanged between the
Worklight Client and Worklight Server using HTTPS).

For more information, see “FIPS 140-2 support” on page 925.

Encryption of Worklight Server configuration properties with
WebSphere encryption mechanism

The configuration of a Worklight server is based on confidential information that
includes several passwords.

With IBM Worklight V6.1.0, when you deploy Worklight Server to WebSphere
Application Server, you can use standard WebSphere encryption mechanisms to
ensure that passwords that are stored in the worklight.properties file are not
written in clear text.

For more information, see “Configuring an IBM Worklight project in production by
using JNDI environment entries” on page 784.

Support of Windows Phone 8 in the Application Center

With IBM Worklight V6.1.0, the Application Center now supports the distribution
of Windows Phone 8 company applications in addition to iOS, Android, and
BlackBerry 6 and 7 applications.

The distribution of Windows Phone company applications imposes the following
requirements:
v The organization has a Windows Phone enterprise account that permits the

signing and internal distribution of applications.
v The Application Center mobile client and all Windows Phone 8 applications in

the catalog must be signed with the enterprise signature.
v Each user must enroll their Windows Phone device with the enrollment token

that corresponds to the enterprise account; the Application Center simplifies the
delivery of the enrollment token to mobile devices.

In the Application Center, the administrator can perform the following operations
for the distribution of Windows Phone applications:
v Upload Windows Phone applications to the catalog.
v Upload and manage enrollment tokens, so that users can enroll their devices

before they install the mobile client for Windows Phone 8.

For more information, see:

16 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Application enrollment tokens in Windows Phone 8
v Installing the client on Windows Phone 8
v Installing an application on a Windows Phone device

Ability to access apps from enterprise or public app stores in
Application Center

With IBM Worklight V6.1.0, the Application Center now supports links to
applications stored in Apple iTunes or Google play. Now, both company
applications and public applications are available from the Application Center.
Therefore, the productivity tools that employees should be using are available
through the same enterprise app store. You are no longer restricted to company
applications that are available only in the Application Center.

Public applications are installed by following a link from the Application Center
catalog and then following the installation procedure in the corresponding
supported public app store.

When you have installed an application from a public app store, you can review it
locally, but these reviews are not visible in the public app store.

For more information, see:
v Adding an application from a public app store
v Installing applications through public app stores

Improved LDAP support for configuring the Application Center

With IBM Worklight V6.1.0, the Application Center now benefits from the
following improvements:
v Strong LDAP authentication for defining access control for the users and groups

who can install mobile applications
v With Liberty Profile V8.5.5, the ability to connect to a federated registry that uses

several LDAP registries for mapping users and groups to Application Center
roles

For more information, see:
v Managing users with LDAP
v LDAP with Liberty Profile

Java EE role-based authorization option in WebSphere login
module

Java Platform, Enterprise Edition (Java EE) role-based authorization option in the
IBM WebSphere Login Module: The WebSphere Login Module
(com.worklight.core.auth.ext.WebSphereLoginModule) now has an optional role
parameter to specify the Java EE role that is required by the authenticated user.
This option enforces the role-based authorization of Worklight resources that are
protected by the IBM WebSphere Login Module. This feature takes advantage of
the standard Java EE roles that are defined and managed by the IBM WebSphere
Application Server.

For more information, see “WASLTPAModule login module” on page 618.

Chapter 2. What's new 17

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Improved license reports

With IBM Worklight V6.1.0, license reporting was improved, and you can now
perform the following operations:
v Track client devices for IBM Worklight Enterprise Edition license
v Track apps for IBM Worklight Consumer Edition license

For more information, see “License tracking” on page 1010.

Improved documentation

With IBM Worklight V6.1.0, the documentation continues to be improved to help
users develop, install, configure, and administer Worklight applications.
v The documentation now contains an administrator-focused introduction to IBM

Worklight Security, LTPA, and LTPA integration with IBM Worklight.
For more information, see “Worklight Security and LTPA overview” on page 801.

v The documentation now contains more information about push notification.
For more information, see “Push notification” on page 585.

Faster development of better apps
IBM Worklight V6.1.0 delivers significant productivity improvement for developing
hybrid applications and consuming services from either hybrid or native
applications.

UI-based API discovery for SOAP and SAP

In IBM Worklight V6.1.0, you can quickly create apps that interact with back-end
systems. With the new services discovery wizard, you can produce back-end
integration code in IBM Worklight adapters much faster. Using this wizard,
developers can explore WSDL or SAP Netweaver Gateway services, and generate
IBM Worklight adapters that can interact with these services. The wizard takes you
through the services discovery process and automates the creation of adapters,
therefore considerably reducing the amount of coding required. To know how to
use the services discovery wizard to automatically generate adapters, see
“Generating adapters with the services discovery wizard” on page 547

You can then consume these services by using the generated adapter directly from
your application code, or with IBM Worklight Application Framework (Beta code)
that further facilitates the creation of services-driven mobile applications. For more
information about IBM Worklight Application Framework, see “Visual rapid
application development (Beta code).”

Visual rapid application development (Beta code)

IBM Worklight V6.1.0 provides a new set of tools, IBM Worklight Application
Framework (Beta code), to help you develop services-driven mobile applications.
With the IBM Worklight Application Framework editor, you can quickly build
Worklight hybrid applications that interact with services exposed through WSDL
or SAP Netweaver Gateway. To configure a services-driven app with IBM
Worklight Application Framework, you perform the following operations in a
single editor:
v Create representations of back-end services.
v Define data objects.

18 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Map data objects to services.
v Define views, and map them to data objects.
v Configure interactions between the services, data objects, and views

For more information about how to use IBM Worklight Application Framework,
see “Developing hybrid applications with IBM Worklight Application Framework”
on page 425.

Faster hybrid and web app development with instant preview

In IBM Worklight V6.1.0, your hybrid Worklight applications can be tested and
debugged much faster as the web code can be instantaneously previewed inside
the desktop browser and devices. With this new feature, the mobile front-end
developer can save changes to the web resources (html, JavaScript, or css files),
and immediately see the result of the changes by refreshing the previewed
application in the browser and devices, without the need to rebuild the final app.

For more information, see “The Preview command” on page 502.

Developing and sharing enterprise UI patterns

Extending IBM Worklight V6.0.0, which provides out-of-box patterns for mobile UI
page construction in Rich Page Editor, you can now configure the tool to use your
own patterns with IBM Worklight V6.1.0. You can develop UI patterns with HTML,
CSS, and JavaScript files, and package them inside a predefined archive format, so
that they can be distributed among IT teams to reuse in their Worklight projects
with Worklight Studio.

For more information, see “Adding a UI pattern to a Pattern Project” on page 395.

Sharing reusable application components

In IBM Worklight V6.1.0, you can define reusable libraries called application
components that are based on Worklight project resources. You can then reuse
application components by importing them into the applications you develop.

For more information, see “Application components” on page 479.

Sharing reusable Worklight project templates

With the streamlined "Run As" menus in IBM Worklight V6.1.0, you can export
Worklight projects to define Worklight project templates. You can then reuse these
templates to create new Worklight projects.

For more information, see “IBM Worklight project templates” on page 494.

Improved deployment UI from Worklight Studio

With IBM Worklight V6.1.0, it is now easier to run tasks to build and test
Worklight applications with the local server, a remote server, in the browser, or on
a device.

For more information, see “Building and deploying in Worklight Studio” on page
497.

Chapter 2. What's new 19

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Improved functional testing

IBM Worklight V6.1.0 includes an improved version of IBM Mobile Test
Workbench for Worklight that offers the following improvements:
v Support for testing Dojo Mobile applications in addition to JQuery Mobile
v Ability to test mobile web applications
v Ability to record a test for a hybrid application on one family of device (Android

or iOS) and replay on the other
v Support of iOS 7

For more information, see Testing with IBM Worklight.

Simplified JavaScript client-side runtime framework

IBM Worklight V6.1.0 includes a simplified JavaScript client-side runtime
framework, which offers the following benefits:
v Improvement of the start time of mobile web and desktop browser applications

by including only the subset of the Worklight javaScript framework code that is
relevant for these environments

v Reduction of the size of hybrid applications by including only JavaScript
framework code that is supported for the specific environment other than
Android and iOS.

Ability to create apps with Location Services on more platforms

The geo-location toolkit makes it possible for business actions to be triggered when
users reach a point of interest, or when users enter or exit a region (geo-fencing),
and the geo-location toolkit can run server-side logic to enable meaningful reaction
to important geo events. In IBM Worklight V6.1.0, the geo-location services are
now available for developing applications of the following types:
v Native iOS apps
v Native Android apps
v Hybrid Windows Phone 8 apps

Improved Mobile Browser Simulator to help test location-based
apps

One of the challenges mobile application developers are facing is how to test
location-based applications. Although field testing is the best way to simulate real
life scenarios, it can take time and be costly, especially if considerable traveling is
required. With IBM Worklight V6.1.0, the improved Mobile Browser Simulator now
includes testing capabilities of location aware mobile applications that use versatile
location information like GPS and WiFi. The improved Mobile Browser Simulator
brings the following benefits:
v The Geolocation widget supports enhanced precision and integrates with

Worklight location services in addition to the W3C Geolocation API.
v The Network widget supports managing visible and connected access points,

including signal strengths. These integrate with Worklight location services.
v The Scenario widget supports testing the use of both Geolocation and WiFi

information including overlapping access points, areas with no GPS coverage,
and simulating a user moving throughout the environment.

20 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.mobtest.doc/topics/c_wl_mobile_test_ovw.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For more information, see “Platform support for location services” on page 661
and “Testing hybrid location service applications with MBS” on page 679.

Ability to subscribe or unsubscribe to notifications by using
SMS

New SMS capabilities in IBM Worklight V6.1.0
If you want to extend your services to a larger population of users,
especially in emerging markets, you must ensure that they cater to a large
feature-phone-user population. The feature phone users do not have access
to mobile apps or rich UI on their devices. Even in the case of smart phone
users, some data networks are either expensive or unreliable, and you need
an alternative channel of interaction with the enterprise. SMS is an effective
channel in these instances for providing instant notifications to the users
and providing them with ways to interact with the enterprise by sending
SMS requests. IBM Worklight V6.1.0 adds new and improved capabilities
for SMS messaging.

Two-way SMS messaging
Enterprises that choose to offer some of their services via the SMS channel
can now use the IBM Worklight mobile platform to enable SMS-based
two-way communication. IBM Worklight now offers support for both
Mobile Originated (MO) as well as Mobile Terminated (MT) SMS message
flows. An SMS message originating from the mobile device is routed via an
SMS gateway before reaching the Worklight Server. The incoming message
is then handled by an IBM Worklight custom adapter that in turn creates
the response message to be sent back to the device. The Worklight Server
can integrate with SMS gateway providers via the HTTP API and is
capable of sending as well as receiving SMS messages.

For more information, see Using two-way SMS communication.

Improved app performance over unreliable or slow networks

Slow and unreliable data networks can affect the app performance and the overall
user experience. To deal with such network, IBM Worklight V6.1.0 offers the
following improvements:
v Application Center: When the network connection is lost, and then reestablished,

the application download can be resumed from where it stopped.
v Application Management: Direct Update of changes in web resources of a

mobile app are safely delivered without disrupting the existing app. If the
network connection is lost, and then reestablished, the user can resume the
download from where it left off.

v Data Compression: JSON data that is returned from an adapter is compressed by
default (based on a predefined threshold), which reduces the overall time that is
taken to retrieve the back-end data. For more information, see “JSONStore
performance” on page 579.

Simplified Worklight project structure in Worklight Studio

With IBM Worklight V6.1.0, the structure of a project is simplified, to focus on
three main components that the user is interested in: adapters, apps, and services,
as shown in the following figure.

Figure 1. Project Explorer showing simplified structure

Chapter 2. What's new 21

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Support for Android Studio

In IBM Worklight V6.1.0, developers are encouraged to use the latest Android SDK
API level supported by Worklight Studio – Android 4.3 (API Level 18). Using the
latest Android SDK allows the Android system to disable forward compatibility
behaviors that slow the mobile application and to leverage the latest capabilities
and features it includes. For more information, see the Working with Android projects
section of “Migrating Worklight projects to Worklight Studio V6.1.0” on page 224.

With IBM Worklight V6.1.0, Android Studio V0.2.9 is now supported, in addition
to support for Eclipse-based Android Developer Tools (ADT). Worklight Studio is
now improved to integrate with Android Studio, the Android integrated
development environment (IDE).

With the new Android integration, when you build, Worklight Studio can generate
native Android project artifacts that are compatible with Android Studio. You can
then open the Android Studio project inside a Worklight project in Worklight
Studio in a similar way as Xcode projects or Visual Studio projects.

For more information, see “Additional Run As menu options” on page 506.

Improved mobile operations
IBM Worklight V6.1.0 brings improvements in terms of configuration, upgrade,
installation, governance, and security.

Deprovisioning of lost device to stop service

IBM Worklight V6.1.0 comes with an optional feature to register each device to a
user. When a device is registered, the administrator can use the Worklight Console
to control that device’s access rights to the Worklight Server. A device can be
marked as stolen, lost, or disabled and will no longer be able to access resources
on the Worklight server.

For more information, see “Mobile application management” on page 988.

Blocking access to apps

With IBM Worklight V6.1.0, the Worklight administrator can choose to block access
for the entire device or for individual applications. When users should no longer
access a specific app, the administrator can remove their access using the
Worklight Console. For more information, see “Mobile application management”
on page 988.

22 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The default behavior when an app is remotely disabled in this manner is that the
app can no longer be used by the device to access resources on the Worklight
Server, although it can be run in offline mode. For information on how to
completely disable an app so that the user is unable to even run it, see “Remotely
disabling application connectivity” on page 837.

Clustering and operations of analytics engine

The IBM SmartCloud Analytics Embedded is built for handling large volumes of
data. In this release, the IBM SmartCloud Analytics Embedded can be customized
to operate in a clustered environment in order to scale for large amounts of data.
For more information, see “IBM SmartCloud Analytics Embedded” on page 942.

User certificate authentication

X.509 certificates are typically provided by an MDM and are a costly solution. With
the User Certificate Authentication feature, enterprises can now enroll users to
their enterprise certificate authority (CA) and provision mobile devices with X.509
client-side certificates at a fraction of the cost.

With the User Certificate Authentication feature, enterprises can require users to
authenticate and establish a secure HTTPS connection to the enterprise by using
X.509 certificates that are issued to them by the enterprise PKI during an
enrollment process. Users are no longer required to enter credentials every time
they use an application. Additionally, access to the enterprise resources can now be
entirely controlled by a PKI of choice.

For more information, see “User certificate authentication” on page 994.

Augmented support of mobile environments and operating
systems

IBM Worklight V6.1.0 offers extended capabilities in terms of supported mobile
environments and operating systems.

Updated operating systems, hardware, and software support

The list of operating systems, hardware, and software supported by IBM Worklight
V6.1.0 has changed.

In particular, with IBM Worklight V6.1.0, the following environment is now
supported:
v iOS 7

For more information about this list, see “System requirements for using IBM
Worklight” on page 9.

Third-party libraries

IBM Worklight V6.1.0 is now based on Cordova 3.1. The upgrade process for
Cordova configuration is automated.

Removed environments

With IBM Worklight V6.1.0, the following environments are now removed:
v Android V2.2. The minimum supported version is now Android V2.3.3.

Chapter 2. What's new 23

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Windows Phone 7.5. The minimum supported version is now Windows Phone 8.

Enhanced IBM Worklight API
IBM Worklight V6.1.0 enhances and extends the API that you can use to develop
mobile applications.

Support of updated libraries and toolkits

IBM Worklight V6.1.0 supports recent versions of the following libraries, which
you can use during the development of your apps:
v Apache Cordova V3.1
v Dojo toolkit
v jQuery library
v jQuery Mobile library
v Sencha Touch framework

For more information, see “System requirements for using IBM Worklight” on page
9.

Updated JavaScript client-side API

IBM Worklight V6.1.0 includes some improvements in its JavaScript client-side API.
Notice, in particular, the following ones:
v JSONStore API: Improved count, especially when there are more than 1000

documents in the collection, and you must decide how to set up your screen
layout for optimal interaction. WL.JSONStore.count now supports a query.
For more information, see the JSONStoreInstance class.

In IBM Worklight V6.1.0, the following JavaScript client-side API is deprecated:
v The JSONStore fipsEnabled option on WL.JSONStore.init: Deprecated.

This option was described in the module JSONStore - Encrypting sensitive data
with FIPS 140-2 that was available for previous versions of IBM Worklight under
category 5, Advanced client side development. The combination of the FIPS 140-2
and JSONStore optional features supersedes this option.

In IBM Worklight V6.1.0, the following elements of the JavaScript client-side API,
which were deprecated in previous versions of IBM Worklight, are now removed:
v WL.Page: Removed
v WL.Fragment: Removed

Note: As a replacement to build your multi-page applications, consider using the
equivalent implementation in JavaScript frameworks such as jQuery Mobile,
Sencha Touch, and Dojo Mobile. You might also use embedded jQuery APIs to
load page fragments (see http://api.jquery.com/load/). For more information
about how to build a multi-page application, see the module Building a multi-page
application under category 3, Worklight client-side development basics, in Chapter 3,
“Tutorials and samples,” on page 27.

Updated JavaScript server-side API

IBM Worklight V6.1.0 includes some modifications in its JavaScript server-side API
that you can use to extend the Worklight Server. Notice, in particular, that the API
for geo-location services is now available for you.

24 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html
http://www.ibm.com/developerworks/mobile/worklight/previous-versions.html
http://api.jquery.com/load/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For more information, see “JavaScript server-side API” on page 701.

Updated Objective-C client-side API for iOS

IBM Worklight V6.1.0 includes some modifications in its Objective-C client-side
API to develop native apps on iOS. Notice, in particular, that the API for
geo-location services is now available for you to develop native apps on iOS.

For more information, see “Objective-C client-side API for native iOS apps” on
page 699.

Updated Java client-side API for Android

IBM Worklight V6.1.0 includes some modifications in its Java client-side API to
develop native apps on Android. Notice, in particular, that the API for geo-location
services is now available for you to develop native apps on Android.

For more information, see “Java client-side API for native Android apps” on page
699.

Miscellaneous modifications
IBM Worklight V6.1.0 includes other miscellaneous modifications, including
changes in project files and behaviors and in the provided tutorials and samples.

Changes in file names

When you create an application with IBM Worklight V6.1.0, the main HTML, CSS,
and JavaScript files of this new app are now called index.html, main.css, and
main.js respectively.

Note: The file names of projects that were created with earlier versions of IBM
Worklight do not change.

Enhanced tutorials and samples

In IBM Worklight V6.1.0, the list of tutorials and samples is augmented and
enhanced for you to learn how to get started with the new features of IBM
Worklight.

For more information about the new or highly modified tutorials and samples, and
how you can use to get started with IBM Worklight, see Chapter 3, “Tutorials and
samples,” on page 27.

Chapter 2. What's new 25

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

26 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 3. Tutorials and samples

Tutorials and samples help you to get started with and learn about IBM Worklight,
and evaluate what the product can do for you.

You can get started with IBM Worklight and learn how to develop mobile
applications with IBM Worklight by studying the following tutorials and samples:
v “Tutorials”
v “Worklight Starter application samples” on page 35
v “JavaScript framework-based application samples” on page 35

Before you start developing mobile applications with IBM Worklight, consider
reviewing the best practices at http://www.ibm.com/developerworks/mobile/
worklight/best-practices.html to help guide your design and architecture decisions.

You can find links to download compressed files that contain the materials for the
tutorials and samples in “Additional resources” on page 36.

Important: These materials have been created for use with only the IBM Worklight
Developer Edition and the Worklight Server inside Eclipse. If your configuration
differs, you might have to adapt the exercise instructions, the code samples, or
both.

Terms and conditions: The following resources are subject to these “Terms and
conditions” on page 36, and may include applicable third-party licenses. Please
review the third-party licenses before using any of the resources. The third-party
licenses applicable to each sample are available in the notices.txt file that is
included with each code sample.

Tutorials

Use the tutorials to learn the most important features of IBM Worklight.

Each tutorial is composed of one module and generally one companion sample:
v The module is a PDF file that provides step-by-step guidance on how to get

started with an important feature of IBM Worklight.
v The sample, if any, is a compressed (.zip) file that provides pieces of code or

script files that accompany and support the module. If a module has some
exercises, you also have a companion sample that provides the solutions to these
exercises.

The modules and companion samples of the tutorials are organized in the
following categories:
1. Setting up your development environment: The tutorials in this category

describe how to set up your development environment to work with IBM
Worklight.

2. Hello Worklight: The tutorials in this category describe how to create your
first IBM Worklight app and preview it in different mobile operating systems.

3. Worklight client-side development basics: The tutorials in this category
describe how to use basic IBM Worklight APIs to develop your apps, build a
multi-page application, work with the user interface framework, and debug

27

http://www.ibm.com/developerworks/mobile/worklight/best-practices.html
http://www.ibm.com/developerworks/mobile/worklight/best-practices.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

and optimize your apps. Some general information is also provided that you
must know to work in each specific environment.

4. Worklight server-side development: The tutorials in this category describe
how to develop the server code (adapters) that your mobile application
requires to integrate with enterprise back-end applications and cloud services.

5. Advanced client-side development: The tutorials in this category describe how
to implement different features in your mobile application, such as controls,
skins, offline access, translation, and encryption of sensitive data. You also
learn how to develop your client application by using native APIs.

6. Adding native functionality to hybrid applications with Apache Cordova: The
tutorials in this category describe how to use Apache Cordova with IBM
Worklight, and how to use native pages in hybrid applications.

7. Developing native applications with Worklight: The tutorials in this category
describe how to develop native applications with IBM Worklight.

8. Authentication and security: The tutorials in this category describe how to
protect your applications and adapter procedures against unauthorized access
by using authentication, login modules, and device provisioning.

9. Advanced topics: The tutorials in this category describe advanced topics that
you can use with IBM Worklight, such as how to develop by using shells, or
how to handle notifications.

10. Moving to production: The tutorials in this category describe how to move the
apps that you create from your development environment to the production
environment.

11. Integrating with other products: The tutorials in this category describe how
IBM Worklight integrates with some other IBM products, such as IBM
PureApplication System or Tivoli® Directory Server.

Note: Compared to the previous version of IBM Worklight, some modules are new
or highly revised. To help you identify these modules, their names are introduced
with either NEW or Highly Revised in the following table.

Table 2. Getting Started modules and samples

Module Sample (if any) Description

1. Setting up your development environment

Setting up your Worklight
development environment

This module explains how to set up
your environment.

Setting up your iOS
development environment

This module complements the module
“Setting up your Worklight
development environment ” with
further steps that are required for iOS
application development.

Setting up your Android
development environment

This module complements the module
“Setting up your Worklight
development environment ” with
further steps that are required for
Android application development.

Setting up your BlackBerry 6
and 7 development
environment

This module complements the module
“Setting up your Worklight
development environment ” with
further steps that are required for
BlackBerry 6 and BlackBerry 7
application development.

28 IBM Worklight V6.1.0

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/01_01_Setting_up_your_Worklight_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/01_01_Setting_up_your_Worklight_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/01_02_Setting_up_your_iOS_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/01_02_Setting_up_your_iOS_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/01_03_Setting_up_your_Android_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/01_03_Setting_up_your_Android_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/01_04_Setting_up_your_BlackBerry_6_and_7_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/01_04_Setting_up_your_BlackBerry_6_and_7_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/01_04_Setting_up_your_BlackBerry_6_and_7_development_environment.pdf

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 2. Getting Started modules and samples (continued)

Module Sample (if any) Description

Setting up your BlackBerry 10
development environment

This module complements the module
“Setting up your Worklight
development environment” with further
steps that are required for BlackBerry 10
application development.

Setting up your Windows
Phone 8 development
environment

This module complements the module
“Setting up your Worklight
development environment ” with
further steps that are required for
Windows Phone 8 application
development.

2. Hello Worklight

Creating your first Worklight
application

Exercise and
code sample

This module explains how to set up
your first mobile application.

Previewing your application
on iOS

This module explains how to preview
your application in the iOS
environment.

Previewing your application
on Android

This module explains how to preview
your application in the Android
environment.

Previewing your application
on BlackBerry 6 and 7

This module explains how to preview
your application in the BlackBerry 6
and BlackBerry 7 environments.

Previewing your application
on BlackBerry 10

This module explains how to preview
your application in the BlackBerry 10
environment.

Previewing your application
on Windows Phone 8

This module explains how to preview
your application in the Windows Phone
8 environment.

NEW: Previewing your
application in Windows 8

This module explains how to preview
your application in the Windows Phone
8 environment.

NEW: Previewing your
application on Mobile Web
and Desktop Browser

This module explains how to preview
your application in the mobile web
environment.

3. Worklight client-side development basics

Learning Worklight client-side
API

Exercise and
code sample

This module explains the basics of the
IBM Worklight Client API.

Building a multi-page
application

Exercise and
code sample

This module explains how to build a
multi-page application with IBM
Worklight.

Working with UI frameworks This module explains how to work with
the user interface (UI) frameworks of
IBM Worklight.

Debugging your applications This module explains how to debug the
client applications.

Optimizing your application
for various environments

This module explains how to optimize
the application code for specific
environments.

Chapter 3. Tutorials and samples 29

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/01_05_Setting_up_your_BlackBerry_10_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/01_05_Setting_up_your_BlackBerry_10_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/01_07_Setting_up_your_Windows_Phone_8_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/01_07_Setting_up_your_Windows_Phone_8_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/01_07_Setting_up_your_Windows_Phone_8_development_environment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/02_01_Creating_your_first_Worklight_application.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/02_01_Creating_your_first_Worklight_application.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/HelloWorklightProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/HelloWorklightProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/02_02_Previewing_your_application_on_iOS.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/02_02_Previewing_your_application_on_iOS.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/02_03_Previewing_your_application_on_Android.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/02_03_Previewing_your_application_on_Android.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/02_04_Previewing_your_application_on_BlackBerry_6_and_7.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/02_04_Previewing_your_application_on_BlackBerry_6_and_7.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/02_05_Previewing_your_application_on_BlackBerry_10.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/02_05_Previewing_your_application_on_BlackBerry_10.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/02_07_Previewing_your_application_on_Windows_Phone_8.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/02_07_Previewing_your_application_on_Windows_Phone_8.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/02_08_Previewing_your_application_on_Windows_8.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/02_08_Previewing_your_application_on_Windows_8.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/02_09_Previewing_your_application_on_Mobile_Web_and_Desktop_Browser.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/02_09_Previewing_your_application_on_Mobile_Web_and_Desktop_Browser.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/02_09_Previewing_your_application_on_Mobile_Web_and_Desktop_Browser.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_01_Learning_Worklight_client_side_API.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_01_Learning_Worklight_client_side_API.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/LearningWorklightClientSideAPIProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/LearningWorklightClientSideAPIProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_02_Building_a_multi_page_application.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_02_Building_a_multi_page_application.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/BuildingMultiPageApplicationProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/BuildingMultiPageApplicationProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_03_Working_with_UI_frameworks.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_04_Debugging_your_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_05_Optimizing_your_application_for_various_environments.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_05_Optimizing_your_application_for_various_environments.pdf

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 2. Getting Started modules and samples (continued)

Module Sample (if any) Description

General information when
developing for iOS

This module gives some general
information that you must know to
develop apps for the iOS environment.

General information when
developing for Android

This module gives some general
information that you must know to
develop apps for the Android
environment.

General information when
developing for BlackBerry 6
and 7

This module gives some general
information that you must know to
develop apps for the BlackBerry 6 and
BlackBerry 7 environments.

General information when
developing for BlackBerry 10

This module gives some general
information that you must know to
develop apps for the BlackBerry 10
environment.

General information when
developing for Windows
Phone 8

This module gives some general
information that you must know to
develop apps for the Windows Phone 8
environment.

General information when
developing Mobile Web
applications

This module gives some general
information that you must know to
develop mobile web applications.

General information when
developing desktop
applications

This module gives some general
information that you must know to
develop desktop applications.

4. Worklight server-side development

Adapter framework overview This module gives general information
about adapters and the adapter
framework in IBM Worklight, and how
to work with adapters.

HTTP adapter -
Communicating with HTTP
back-end systems

Exercise and
code sample

This module explains how to work with
adapters to communicate with HTTP
back-end systems.

SQL adapter - Communicating
with SQL database

Exercise and
code sample

This module explains how to work with
adapters to communicate with SQL
databases.
Note: This module has the same code
sample as the module HTTP adapter -
Communicating with HTTP back-end
systems.

Cast Iron® adapter -
Communicating with Cast Iron

This module explains how to work with
adapters to communicate with Cast
Iron.

JMS adapter - Communicating
with JMS

Exercise and
code sample

This module explains how to work with
adapters to communicate by using Java
Message Service (JMS).
Note: This module has the same code
sample as the module HTTP adapter -
Communicating with HTTP back-end
systems.

30 IBM Worklight V6.1.0

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_06_General_information_when_developing_for_iOS.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_06_General_information_when_developing_for_iOS.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_07_General_information_when_developing_for_Android.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_07_General_information_when_developing_for_Android.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_08_General_information_when_developing_for_BlackBerry_6_and_7.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_08_General_information_when_developing_for_BlackBerry_6_and_7.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_08_General_information_when_developing_for_BlackBerry_6_and_7.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_09_General_information_when_developing_for_BlackBerry_10.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_09_General_information_when_developing_for_BlackBerry_10.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_11_General_information_when_developing_for_Windows_Phone_8.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_11_General_information_when_developing_for_Windows_Phone_8.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_11_General_information_when_developing_for_Windows_Phone_8.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_12_General_information_when_developing_Mobile_Web_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_12_General_information_when_developing_Mobile_Web_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_12_General_information_when_developing_Mobile_Web_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_13_General_information_when_developing_desktop_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_13_General_information_when_developing_desktop_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/03_13_General_information_when_developing_desktop_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/04_01_Adapter_framework_overview.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/04_02_HTTP_adapter_-_Communicating_with_HTTP_back-end_systems.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/04_02_HTTP_adapter_-_Communicating_with_HTTP_back-end_systems.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/04_02_HTTP_adapter_-_Communicating_with_HTTP_back-end_systems.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorklightAdaptersProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorklightAdaptersProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/04_03_SQL_adapter_-_Communicating_with_SQL_database.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/04_03_SQL_adapter_-_Communicating_with_SQL_database.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorklightAdaptersProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorklightAdaptersProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/04_04_Cast_Iron_adapter_-_Communicating_with_Cast_Iron.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/04_04_Cast_Iron_adapter_-_Communicating_with_Cast_Iron.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/04_05_JMS_adapter_-_Communicating_with_JMS.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/04_05_JMS_adapter_-_Communicating_with_JMS.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorklightAdaptersProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorklightAdaptersProject.zip

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 2. Getting Started modules and samples (continued)

Module Sample (if any) Description

Invoking adapter procedures
from client applications

Exercise and
code sample

This module explains how to call the
adapter procedures from the client
application.

Advanced adapter usage and
mashup

Exercise and
code sample

This module explains advanced details
on how to use adapters.

Using Java in adapters Exercise and
code sample

This module explains how to use Java
in adapters.
Note: This module has the same code
sample as the module HTTP adapter -
Communicating with HTTP back-end
systems.

5. Advanced client-side development

Overview of client
technologies

This module explains the technologies
that support IBM Worklight clients.

Common UI controls Exercise and
code sample

This module explains the common
user-interface controls in IBM
Worklight.

Supporting multiple
form-factors using Worklight
skins

This module explains how you can
support multiple form factors by
working with skins in IBM Worklight.

Working offline Exercise and
code sample

This module explains how to detect
application connectivity failures, and
what actions are available to deal with
the failures.

Enabling translation Exercise and
code sample

This module explains how to enable
translation of the client applications.

Using Direct Update to
quickly update your
application

This module explains how to
automatically update your applications
with new versions of their web
resources.

Storing sensitive data in
encrypted cache

Exercise and
code sample

This module explains how to work with
the encrypted cache of the mobile
device.

JSONStore - The client-side
JSON-based database
overview

This module introduces the JSONStore,
and how you can work with JSON
documents.

JSONStore - Common
JSONStore Usage

Exercise and
code sample

This module explains the common tasks
that you can perform on a local JSON
collection.

6. Adding native functionality to hybrid applications with Apache Cordova

Apache Cordova overview This module explains what Apache
Cordova is, and how to use it with IBM
Worklight.

iOS - Using native pages in
hybrid applications

Exercise and
code sample

This module explains how to use native
pages in hybrid applications that are
developed for the iOS environment.

iOS - Adding native
functionality to hybrid
application with Apache
Cordova plugin

Exercise and
code sample

This module explains how to use
Apache Cordova plugs-in to add native
functionality to hybrid applications that
are developed for the iOS environment.

Chapter 3. Tutorials and samples 31

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/04_06_Invoking_adapter_procedures_from_client_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/04_06_Invoking_adapter_procedures_from_client_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/InvokingAdapterProceduresProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/InvokingAdapterProceduresProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/04_07_Advanced_adapter_usage_and_mashup.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/04_07_Advanced_adapter_usage_and_mashup.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/AdapterMashUpProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/AdapterMashUpProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/04_08_Using_Java_in_adapters.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorklightAdaptersProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorklightAdaptersProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/05_01_Overview_of_client_technologies.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/05_01_Overview_of_client_technologies.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/05_02_Common_UI_Controls.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/CommonUIControlsProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/CommonUIControlsProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/05_03_Supporting_multiple_form_factors_using_Worklight_skins.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/05_03_Supporting_multiple_form_factors_using_Worklight_skins.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/05_03_Supporting_multiple_form_factors_using_Worklight_skins.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/05_04_Working_offline.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorkingOfflineProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorkingOfflineProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/05_05_Enabling_translation.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/EnablingTranslationProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/EnablingTranslationProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/05_06_Using_Direct_Update_to_quickly_update_your_application.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/05_06_Using_Direct_Update_to_quickly_update_your_application.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/05_06_Using_Direct_Update_to_quickly_update_your_application.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/05_07_Storing_sensitive_data_in_Encrypted_Cache.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/05_07_Storing_sensitive_data_in_Encrypted_Cache.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/EncryptedCacheProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/EncryptedCacheProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/05_08_JSONStore_-_The_client_side_JSON_based_database_overview.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/05_08_JSONStore_-_The_client_side_JSON_based_database_overview.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/05_08_JSONStore_-_The_client_side_JSON_based_database_overview.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/05_09_JSONStore_-_Common_JSONStore_Usage.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/05_09_JSONStore_-_Common_JSONStore_Usage.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/JSONStoreAPIBasicsProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/JSONStoreAPIBasicsProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/06_01_Apache_Cordova_overview.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/06_02_iOS_-_Using_native_pages_in_hybrid_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/06_02_iOS_-_Using_native_pages_in_hybrid_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/UsingNativePagesInHybridAppsProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/UsingNativePagesInHybridAppsProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/06_03_iOS_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/06_03_iOS_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/06_03_iOS_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/06_03_iOS_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/iOSApacheCordovaPluginProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/iOSApacheCordovaPluginProject.zip

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 2. Getting Started modules and samples (continued)

Module Sample (if any) Description

Android - Using native pages
in hybrid applications

Exercise and
code sample

This module explains how to use native
pages in hybrid applications that are
developed for the Android
environment.
Note: This module has the same code
sample as the module iOS - Using native
pages in hybrid applications.

Android - Adding native
functionality to hybrid
application with Apache
Cordova plugin

Exercise and
code sample

This module explains how to use
Apache Cordova plug-ins to add native
functionality to hybrid applications that
are developed for the Android
environment.

NEW: Windows Phone 8 -
Using native pages in hybrid
applications

Exercise and
code sample

This module explains how to use native
pages in hybrid applications that are
developed for the Windows Phone 8
environment.
Note: This module has the same code
sample as the module iOS - Using native
pages in hybrid applications.

Windows Phone 8 - Adding
native functionality to hybrid
application with Apache
Cordova plugin

Exercise and
code sample

This module explains how to use
Apache Cordova plug-ins to add native
functionality to hybrid applications that
are developed for the Windows Phone 8
environment.

7. Developing native applications with Worklight

Using IBM Worklight API in
native iOS applications

Exercise and
code sample
(app) and
Exercise and
code sample
(native API)

This module explains how to create a
Worklight native API, and how to use
its components in a native iOS
applications.

Using IBM Worklight API in
native Android applications

Exercise and
code sample
(app) and
Exercise and
code sample
(native API)

This module explains how to create a
Worklight native API, and how to use
its components in a native Android
applications.

Using IBM Worklight API in
native Java ME applications

Exercise and
code sample
(app) and
Exercise and
code sample
(native API)

This module explains how to use Java
API to develop Java Platform, Micro
Edition (Java ME) applications.

Using IBM Worklight API for
push notifications in native
iOS applications

Exercise and
code sample
(app) and
Exercise and
code sample
(native API)

This module explains how to use
Worklight API to manage push
notifications in a native iOS
applications.

32 IBM Worklight V6.1.0

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/06_04_Android_-_Using_native_pages_in_hybrid_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/06_04_Android_-_Using_native_pages_in_hybrid_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/UsingNativePagesInHybridAppsProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/UsingNativePagesInHybridAppsProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/06_05_Android_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/06_05_Android_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/06_05_Android_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/06_05_Android_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/AndroidApacheCordovaPluginProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/AndroidApacheCordovaPluginProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/06_06_WindowsPhone8_-_Using_native_pages_in_hybrid_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/06_06_WindowsPhone8_-_Using_native_pages_in_hybrid_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/06_06_WindowsPhone8_-_Using_native_pages_in_hybrid_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/UsingNativePagesInHybridAppsProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/UsingNativePagesInHybridAppsProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/06_07_WindowsPhone8_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/06_07_WindowsPhone8_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/06_07_WindowsPhone8_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/06_07_WindowsPhone8_-_Adding_native_functionality_to_hybrid_application_with_Apache_Cordova_plugin.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WindowsPhone8CordovaPluginProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WindowsPhone8CordovaPluginProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/07_01_Using_Worklight_API_in_native_iOS_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/07_01_Using_Worklight_API_in_native_iOS_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/iOSNativeApp.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/iOSNativeApp.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/iOSNativeApp.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/NativeAPIForIOS.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/NativeAPIForIOS.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/NativeAPIForIOS.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/07_02_Using_Worklight_API_in_native_Android_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/07_02_Using_Worklight_API_in_native_Android_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/AndroidNativeApp.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/AndroidNativeApp.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/AndroidNativeApp.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/NativeAPIForAndroid.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/NativeAPIForAndroid.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/NativeAPIForAndroid.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/07_03_Using_Worklight_API_in_native_Java_ME_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/07_03_Using_Worklight_API_in_native_Java_ME_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/JavaMENativeApp.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/JavaMENativeApp.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/JavaMENativeApp.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/NativeAPIForJavaMe.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/NativeAPIForJavaMe.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/NativeAPIForJavaMe.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/07_04_Using_Worklight_API_for_push_notifications_in_native_iOS_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/07_04_Using_Worklight_API_for_push_notifications_in_native_iOS_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/07_04_Using_Worklight_API_for_push_notifications_in_native_iOS_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/iOSNativeAppWithPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/iOSNativeAppWithPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/iOSNativeAppWithPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/NativeAPIForIOSPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/NativeAPIForIOSPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/NativeAPIForIOSPush.zip

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 2. Getting Started modules and samples (continued)

Module Sample (if any) Description

Using IBM Worklight API for
push notifications in native
Android applications

Exercise and
code sample
(app) and
Exercise and
code sample
(native API)

This module explains how to use
Worklight API to manage push
notifications in a native Android
applications.

8. Authentication and security

Authentication concepts This module explains how to protect
your applications and adapter
procedures against unauthorized access
by using authentication.

Form-based authentication Exercise and
code sample

This module explains how to work with
the form-based authentication.

Adapter-based authentication Exercise and
code sample

This module explains how to work with
the adapter-based authentication.

Custom Authenticator and
Login Module

Exercise and
code sample

This module explains how to work with
custom login modules and
authenticators when the default ones do
not suffice.

Using LDAP Login Module to
authenticate users with LDAP
server

Exercise and
code sample

This module explains how to work with
the LDAP login module to authenticate
users with LDAP servers.

WebSphere LTPA-based
authentication

This module explains how to work with
the WebSphere LTPA-based
authentication.

Device provisioning concepts This module explains the basics of
device provisioning.

Custom device provisioning Exercise and
code sample

This module explains how to create a
custom provisioning that uses a
certificate from an external service to
authenticate a device. This module also
explains how to implement a custom
authenticator that connects to that
service.

Application Authenticity
Protection

This module explains how to work with
the application authenticity protection.

NEW: Client X.509 Certificate
Authentication and User
Enrollment

Exercise and
code sample

This module explains how to work with
the User Certificate Authentication
feature by using the embedded PKI.

9. Advanced topics

Shell development concepts Exercise and
code sample

This module explains the concepts that
support the shell development and the
inner applications.

Android shell development This module explains how to develop
Android applications by using shells.

iOS shell development This module explains how to develop
iOS applications by using shells.

Push notifications Exercise and
code sample

This module explains how to configure
mobile devices to receive messages that
are pushed from a server.

Chapter 3. Tutorials and samples 33

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/07_05_Using_Worklight_API_for_push_notifications_in_native_Android_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/07_05_Using_Worklight_API_for_push_notifications_in_native_Android_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/07_05_Using_Worklight_API_for_push_notifications_in_native_Android_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/AndroidNativeAppWithPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/AndroidNativeAppWithPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/AndroidNativeAppWithPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/NativeAPIForAndroidPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/NativeAPIForAndroidPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/NativeAPIForAndroidPush.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/08_01_Authentication_concepts.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/08_02_Form_based_authentication.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/FormBasedAuthenticationProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/FormBasedAuthenticationProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/08_03_Adapter_based_authentication.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/AdapterBasedAuthenticationProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/AdapterBasedAuthenticationProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/08_04_Custom_Authenticator_and_Login_Module.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/08_04_Custom_Authenticator_and_Login_Module.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/CustomLoginModuleProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/CustomLoginModuleProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/08_05_Using_LDAP_Login_Module_to_authenticate_user_with_LDAP_server.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/08_05_Using_LDAP_Login_Module_to_authenticate_user_with_LDAP_server.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/08_05_Using_LDAP_Login_Module_to_authenticate_user_with_LDAP_server.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/LDAPLoginModuleProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/LDAPLoginModuleProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/08_06_WebSphere_LTPA_based_authentication.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/08_06_WebSphere_LTPA_based_authentication.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/08_07_Device_provisioning_concepts.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/08_08_Custom_device_provisioning.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/CustomDeviceProvisioningProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/CustomDeviceProvisioningProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/08_09_Application_Authenticity_Protection.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/08_09_Application_Authenticity_Protection.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/08_10_Client_X509_Certificate_Authentication_and_User_Enrollment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/08_10_Client_X509_Certificate_Authentication_and_User_Enrollment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/08_10_Client_X509_Certificate_Authentication_and_User_Enrollment.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/UserCertificateAuthenticationProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/UserCertificateAuthenticationProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/09_01_Shell_development_concepts.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/ShellDevelopmentProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/ShellDevelopmentProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/09_02_Android_shell_development.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/09_03_iOS_shell_development.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/09_04_Push_notifications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/PushNotificationsProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/PushNotificationsProject.zip

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 2. Getting Started modules and samples (continued)

Module Sample (if any) Description

SMS notifications Exercise and
code sample

This module explains how to configure
mobile devices to receive notifications
through SMS messages that are pushed
from a server.

Two-way SMS communication Exercise and
code sample

This module explains how to
communicate with Worklight Server
from any mobile device by using the
SMS channel.

Integrating server-generated
pages in hybrid applications

Exercise and
code sample

This module explains how to remotely
load dynamic content, where the code
(HTML, CSS, and JavaScript) is hosted
externally.

Location services Exercise and
code sample,
Exercise and
code sample
(iOS), and
Exercise and
code sample
(Android)

This module explains how to use
geo-location services with IBM
Worklight.

NEW: Creating an application
with IBM Worklight
Application Framework

Exercise and
code sample

This module explains how to create an
application with IBM Worklight
Application Framework.

10. Moving to production

Moving from development
environment to stand-alone
QA and production servers

This module explains how to move the
components from the development
environment into the test or production
environment.

Operational Analytics This module explains how you can use
the operational analytics features of
IBM Worklight as an alternative
solution to BIRT reports.

Reports and analytics This module explains the BIRT reports
that help to collect the analytics data
that pertains to applications and to
devices that are accessing the Worklight
Server.

Distributing mobile
applications with Application
Center

This module explains how you can
distribute your apps with IBM
Worklight Application Center.

11. Integrating with other products

Using Rational Team Concert™

to build your applications
Exercise and
code sample

This module explains how to develop
as a team by using Rational® Team
Concert.

Introducing Worklight Server
and Application Center on
IBM PureApplication System

This module explains how you can
integrate IBM Worklight Server and
Application Center with IBM
PureApplication System.

Integrating IBM Tivoli
Directory Server on IBM
PureApplication System

This module explains how you can
integrate IBM Tivoli Directory Server
with IBM PureApplication System.

34 IBM Worklight V6.1.0

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/09_05_SMS_notifications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/SMSNotificationsProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/SMSNotificationsProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/09_06_Two_way_SMS_communication.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/SMS2WayProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/SMS2WayProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/09_07_Integrating_server_generated_pages_in_Worklight_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/09_07_Integrating_server_generated_pages_in_Worklight_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/IntegratingServerGeneratedPagesProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/IntegratingServerGeneratedPagesProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/09_08_Location_services.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/LocationServicesProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/LocationServicesProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/iOSNativeLocationServicesProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/iOSNativeLocationServicesProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/iOSNativeLocationServicesProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/AndroidNativeLocationServicesProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/AndroidNativeLocationServicesProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/AndroidNativeLocationServicesProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/09_09_Creating_an_application_with_IBM_Worklight_Application_Framework.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/09_09_Creating_an_application_with_IBM_Worklight_Application_Framework.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/09_09_Creating_an_application_with_IBM_Worklight_Application_Framework.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WeatherProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WeatherProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/10_01_Moving_from_development_environment_to_stand-alone_QA_and_production_servers.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/10_01_Moving_from_development_environment_to_stand-alone_QA_and_production_servers.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/10_01_Moving_from_development_environment_to_stand-alone_QA_and_production_servers.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/10_02_Operational_Analytics.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/10_03_Reports_and_analytics.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/10_04_Distributing_mobile_applications_with_Application_Center.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/10_04_Distributing_mobile_applications_with_Application_Center.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/10_04_Distributing_mobile_applications_with_Application_Center.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_01_Using_Rational_Team_Concert_to_build_your_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_01_Using_Rational_Team_Concert_to_build_your_applications.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/UsingRTCToBuildApplicationsProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/UsingRTCToBuildApplicationsProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_02_Introducing_Worklight_Server_and_Application_Center_on_IBM_PureApplication_System.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_02_Introducing_Worklight_Server_and_Application_Center_on_IBM_PureApplication_System.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_02_Introducing_Worklight_Server_and_Application_Center_on_IBM_PureApplication_System.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_03_Integrating_Tivoli_Directory_Server_on_IBM_PureApplication_System.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_03_Integrating_Tivoli_Directory_Server_on_IBM_PureApplication_System.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_03_Integrating_Tivoli_Directory_Server_on_IBM_PureApplication_System.pdf

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 2. Getting Started modules and samples (continued)

Module Sample (if any) Description

Using Worklight application as
a container for
server-generated pages

Exercise and
code sample

This module explains how to remotely
load dynamic content, where the code
(HTML, CSS, and JavaScript) is hosted
externally.

Container for advanced pages Exercise and
code sample

This module complements the module
“Using Worklight application as a
container for server-generated pages”
with advanced information about how
you can remotely load dynamic content.

Integrating with SiteMinder Exercise and
code sample

This module explains how you can
integrate IBM Worklight with
SiteMinder.

NEW: Accelerating application
development by reusing
resources

This module explains how you can use
components and project templates with
IBM Worklight.

Testing Worklight mobile
applications with the Mobile
Test Workbench

This module explains how to test your
applications with IBM Worklight.

NEW: Developing dynamic,
collaborative mobile
applications with MQ
Telemetry Transport

Exercise and
code sample

This module explains how to develop
dynamic, collaborative apps with MQ
Telemetry Transport.

Worklight Starter application samples

Study the Worklight Starter application samples to learn how to use IBM Worklight
to create mobile applications. These samples have no associated modules.

Table 3. Worklight Starter applications

Sample Description

Worklight Starter
application

This file contains the sample code of the IBM Worklight Starter
application.

Worklight Starter
application with
jQuery Mobile

This file contains the sample code of the IBM Worklight Starter
application with jQuery Mobile.

Worklight Starter
application with
Sencha

This file contains the sample code of the IBM Worklight Starter
application with Sencha Touch.

Worklight Starter
application with Dojo
Mobile

This file contains the sample code of the IBM Worklight Starter
application with Dojo Mobile.

JavaScript framework-based application samples

IBM Worklight provides several support materials for developing with JavaScript
frameworks, such as Dojo, Dojo Mobile, and jQuery Mobile. You can study the
following samples to learn how to use IBM Worklight to develop applications that
are based on such frameworks. These samples have associated modules that
describe them.

Chapter 3. Tutorials and samples 35

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_04_Using_Worklight_application_as_a_container_for_server_generated_pages.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_04_Using_Worklight_application_as_a_container_for_server_generated_pages.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_04_Using_Worklight_application_as_a_container_for_server_generated_pages.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/UsingWorklightApplicationAsAContainerProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/UsingWorklightApplicationAsAContainerProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_05_Container_for_advanced_pages.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/ContainerForAdvancedPagesProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/ContainerForAdvancedPagesProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_06_Integrating_with_SiteMinder.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/IntegratingWithSiteMinderProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/IntegratingWithSiteMinderProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_07_Accelerating_application_development_by_reusing_resources.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_07_Accelerating_application_development_by_reusing_resources.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_07_Accelerating_application_development_by_reusing_resources.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_08_Testing_Worklight_mobile_applications_with_the_Mobile_Test_Workbench.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_08_Testing_Worklight_mobile_applications_with_the_Mobile_Test_Workbench.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_08_Testing_Worklight_mobile_applications_with_the_Mobile_Test_Workbench.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_09_Developing_dynamic_collaborative_mobile_applications_with_MQTT.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_09_Developing_dynamic_collaborative_mobile_applications_with_MQTT.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_09_Developing_dynamic_collaborative_mobile_applications_with_MQTT.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/11_09_Developing_dynamic_collaborative_mobile_applications_with_MQTT.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/MQTTWhiteboardProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/MQTTWhiteboardProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorklightStarter.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorklightStarter.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorklightStarter_jQueryMobile.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorklightStarter_jQueryMobile.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorklightStarter_jQueryMobile.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorklightStarter_Sencha.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorklightStarter_Sencha.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorklightStarter_Sencha.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorklightStarter_DojoMobile.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorklightStarter_DojoMobile.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/WorklightStarter_DojoMobile.zip

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 4. JavaScript framework-based applications

Module Sample Description

Running the
Dojo-based sample

Exercise and
code sample

This module and its companion sample show how
to develop an application that is based on Dojo
through a basic sample application.

Running Dojo-based
Mysurance
end-to-end sample

Exercise and
code sample

This module and its companion sample show how
to develop an application that is based on Dojo
through the end-to-end “MySurance” sample
application.

Running Dojo
Mobile-based Apache
Cordova sample

Exercise and
code sample

This module and its companion sample show how
to develop an application that is based on Dojo
Mobile through an Apache Cordova sample
application.

Running jQuery
Mobile-based Flight
Ticket sample

Exercise and
code sample

This module and its companion sample constitute
an end-to-end application in the flight booking
domain that is based on jQuery Mobile.

Additional resources

The following compressed files contain all the materials for the tutorials and
samples:
v All IBM Worklight tutorial modules
v All IBM Worklight tutorial companion samples and application samples

Terms and conditions

Use of the IBM Worklight Getting Started modules, exercises, and code samples
available on this page is subject to you agreeing to the terms and conditions set
forth here:

This information contains sample code provided in source code form. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample code is written. Notwithstanding anything to the
contrary, IBM PROVIDES THE SAMPLE SOURCE CODE ON AN “AS IS” BASIS
AND IBM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR
PURPOSE, TITLE, AND ANY WARRANTY OR CONDITION OF
NON-INFRINGEMENT. IBM SHALL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY OR ECONOMIC
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR OPERATION OF
THE SAMPLE SOURCE CODE. IBM SHALL NOT BE LIABLE FOR LOSS OF, OR
DAMAGE TO, DATA, OR FOR LOST PROFITS, BUSINESS REVENUE,
GOODWILL, OR ANTICIPATED SAVINGS. IBM HAS NO OBLIGATION TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS OR
MODIFICATIONS TO THE SAMPLE SOURCE CODE.

Please review the third party licenses before using any of the resources. The third
party licenses applicable to each sample are available in the notices.txt file
included with each sample.

36 IBM Worklight V6.1.0

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/12_01_Running_Dojo_based_sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/12_01_Running_Dojo_based_sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/DojoShowcase.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/DojoShowcase.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/12_02_Running_Dojo_based_Mysurance_end_to_end_sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/12_02_Running_Dojo_based_Mysurance_end_to_end_sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/12_02_Running_Dojo_based_Mysurance_end_to_end_sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/Mysurance.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/Mysurance.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/12_03_Running_Dojo_Mobile_based_Apache_Cordova_sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/12_03_Running_Dojo_Mobile_based_Apache_Cordova_sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/12_03_Running_Dojo_Mobile_based_Apache_Cordova_sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/CordovaShowcase.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/CordovaShowcase.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/12_04_Running_jQuery_Mobile_based_Flight_Ticket_Sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/12_04_Running_jQuery_Mobile_based_Flight_Ticket_Sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/12_04_Running_jQuery_Mobile_based_Flight_Ticket_Sample.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/FlightTicketSampleProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/FlightTicketSampleProject.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/wl_gs_all_modules.zip
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/wl_gs_all_samples.zip

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 4. Known limitations

General limitations apply to IBM Worklight as detailed here. Limitations that apply
to specific features are explained in the topics that describe these features.

In this documentation, you can find the description of IBM Worklight known
limitations in different locations:
v When the known limitation applies to a specific feature, you can find its

description in the topic that explains this specific feature. You can then
immediately identify how it affects the feature.

v When the known limitation is general, that is, applies to different and possibly
not directly related topics, you can find its description here.

Note: You might find complementary information about product known
limitations or issues in the product release notes.

Globalization

If you are developing globalized apps, notice the following restrictions:
v Part of the product IBM Worklight V6.1.0, including its documentation, is

translated in the following languages: Simplified Chinese, Traditional Chinese,
French, German, Italian, Japanese, Korean, Portuguese (Brazil), Russian, and
Spanish. Only user-facing text is translated.

v The Worklight Studio and Worklight Console provide only partial support for
bidirectional languages.

v In Worklight Studio and Worklight Console, dates and numbers might not be
formatted according to the locale.

v Names of projects, apps, adapters, Dojo custom builds and Dojo library projects
must be composed only of the following characters:
– Uppercase and lowercase letters (A-Z and a-z)
– Digits (0-9)
– Underscore (_)

Some examples of the problems that you might encounter if the names of your
Dojo library projects are NL strings are the incorrect display of the UI pattern
preview, the failure of the generation of the Dojo custom build, and the failure to
display the NL string in the Dojo custom build console.

v There is no support for Unicode characters outside the Basic Multilingual Plane.

The Server Configuration Tool has the following restrictions:
v The descriptive name of a server configuration can contain only characters that

are in the system character set. On Windows, it is the ANSI character set.
v Passwords that contain single quotation mark or double quotation mark

characters might not work correctly.

IBM SmartCloud Analytics Embedded has the following limitations in terms of
globalization:
v In reports, the format for dates and times do not follow the International

Components for Unicode (ICU) rules.

37

http://www.ibm.com/support/docview.wss?uid=swg27043175

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v In reports, the format for numbers does not follow the International Components
for Unicode (ICU) rules.

v In reports, the numbers do not use the user's preferred number script.
v In reports, searching for Chinese, Japanese, and Korean characters (CJK) returns

no results.
v Messages that include non-ASCII characters and that are created with the log

method as defined in the WL.Analytics class, or with the error method as
defined in the WL.Logger class are not always logged successfully.

v The Analytics page of the Worklight Console does not work in the following
browsers:
– Microsoft Internet Explorer version 8 or earlier
– Apple Safari on iOS version 4.3 or earlier

v On Mozilla Firefox browser and Google Chrome browser, the locale that is used
to display dates and time might differ from the locale that is set for the browser.

v The dates on the X-axis are not localized.

You might also experience restrictions or anomalies in various aspects of
globalization because of limitations in other products, such as browsers, database
management systems, or software development kits in use. For example:
v You must define the user name and password of the Application Center with

ASCII characters only. This limitation exists because IBM WebSphere Application
Server (full or Liberty profiles) does not support non-ASCII passwords and user
names. See http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/
com.ibm.websphere.nd.doc/info/ae/ae/csec_chars.html.

v To deploy a virtual application, you must define the user name and ID in the
corresponding Worklight configuration component with ASCII characters only.
This limitation exists because IBM PureApplication System does not support
non-ASCII passwords and user names.

v On Windows:
– To see any localized messages in the log file that the Worklight Test Server

that is embedded in Worklight Studio creates, you must open this log file
with the UTF8 encoding.

– In the Worklight Test Server console in Eclipse, the localized messages are not
properly displayed.

These limitations exist because of the following causes:
– The Worklight Test Server is installed on IBM WebSphere Application Server

Liberty Profile, which creates log file with the ANSI encoding except for its
localized messages for which it uses the UTF8 encoding.

– The Worklight Test Server console in Eclipse displays the content by using the
ANSI encoding, not the UTF8 encoding.

Application Center mobile client

The Application Center mobile client follows the cultural conventions of the
running device, such as the date formatting. It does not always follow the stricter
International Components for Unicode (ICU) rules.

The Application Center mobile client for BlackBerry has the following known
limitations:
v It supports only a limited set of languages. In particular, it does not fully

support right-to-left languages, such as Arabic and Hebrew.

38 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Analytics.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Logger.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/csec_chars.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.nd.doc/info/ae/ae/csec_chars.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v It does not support Unicode characters outside the Basic Multilingual Plane.
v It supports Unicode characters inside the Basic Multilingual Plane but how these

characters are displayed depends on the fonts that are available on the device

Application Center mobile client: refresh issues on Android 4.0.x

Android 4.0.x WebView component is known to have several refresh issues.
Updating devices to Android 4.1.x should provide a better user experience.

If you build the Application Center client from sources, disabling the hardware
acceleration at the application level in the Android manifest should improve the
situation for Android 4.0.x. In that case, the application must be built with Android
SDK 11 or later.

Rich Page Editor

The Rich Page Editor fails to show your page when the code that initializes it
attempts to communicate with Worklight Server.

The Rich Page Editor simulates the mobile device environment without any
connection to a real server. If the code that initializes your page tries to
communicate with Worklight Server, a failure occurs. Because of this failure, the
page content remains hidden, and you cannot use the Design pane of the Rich
Page Editor.

As an example, a failure occurs if your page calls an adapter procedure in the
wlCommonInit() function or the wlEnvInit() function.

In general, however, the initialization code is not strictly necessary to get a
reasonable visual rendering of your page. To avoid this limitation, temporarily
remove the "display: none" style from the body element in your page. Your page
then renders even if the initialization functions do not execute completely.

Note: The standard Eclipse editor does not handle UTF-8 with the BOM (byte
order mark) properly, therefore the Rich Page Editor does not support UTF-8 with
byte order mark.

JSONStore resources for iPhone and iPad

When you develop apps for iPhone and iPad, the JSONStore resources are always
packaged in the application, regardless of whether you enabled JSONStore or not
in the application descriptor. The application size is not reduced even if JSONStore
is not enabled.

Analytics page of the Worklight Console

Response times in the Analytics page of the Worklight Console are dependent on
several factors, such as hardware (RAM, CPUs), quantity of accumulated analytics
data, and IBM SmartCloud Analytics Embedded clustering. Consider testing your
load prior to integrating IBM SmartCloud Analytics Embedded into production.

Deployment of an app from Worklight Studio to Tomcat

If you use Tomcat as an external server in Eclipse (for example to test and debug
the applications directly in Worklight Studio), the following restrictions apply:

Chapter 4. Known limitations 39

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v The context path that you set to your project is ignored. When you deploy your
app from Worklight Studio to Tomcat, the default context path, which is the
project name, is used instead of the context path. The URL of the Worklight
Console for your app similarly uses the project name.

v When you deploy your app from Worklight Studio to Tomcat, the deployed
WAR file is not visible in the Server view of Eclipse (in Worklight Studio), even
if the application is correctly deployed.

To avoid these issues, keep the default value of the context path of your project,
which is the project name.

Worklight components cannot contain multiple environments

During the creation of a Worklight component, you include Android as well as
iPhone or iOS environments. The addition of the same component fails because it
contains multiple environments.

Separate Worklight component needs to be created for each environment, such as
Android, iOS or iPhone.

Installation on a cluster of IBM WebSphere Application Servers
Liberty Profile, that you administer with a collective controller

The following limitations apply if you install Worklight Server on a cluster of IBM
WebSphere Application Servers, Liberty Profile, that you administer with a
collective controller:
v The Application Center installation with the Worklight Server installer does not

use the collective controller. You must install Worklight Server on each server
separately.

v The Worklight console installation with the <configureApplicationServer> Ant
task does not use the collective controller. You must run the
<configureApplicationServer> Ant task for each server separately.

Installation of a fix pack or interim fix to the IBM Application
Center or the Worklight Server

When you apply a fix pack or an interim fix to IBM Application Center or
Worklight Server, manual operations are required, and you might have to shut
down your applications for some time. For more information, see “Migrating from
IBM Worklight V5.0.6 or later to V6.1.0” on page 221 or “Upgrading to Worklight
Server V6.1.0 in a production environment” on page 226

Upgrade from Worklight Studio V5.0.0.3 to Worklight Studio
V6.1.0

If you are using Worklight Studio V5.0.0.3 and you want to upgrade your projects
to Worklight Studio V6.1.0, you must first migrate your projects to an intermediate
version of the product, such as Worklight Studio V6.0.0. You can then migrate your
projects from Worklight Studio V6.0.0 to Worklight Studio V6.1.0.

Note: This limitation applies only for Worklight Studio, and does not apply for
Worklight Server.

40 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

FIPS 140-2 feature limitations

The following known limitations apply when using the FIPS 140-2 feature in IBM
Worklight:
v This FIPS 140-2 validated mode applies only to the protection (encryption) of

local data that is stored by the JSONStore feature and protection of HTTPS
communications between the Worklight client and the Worklight Server.
– For HTTPS communications, only the communications between the Worklight

client and the Worklight Server use the FIPS 140-2 libraries on the client.
Direct connections to other servers or services do not use the FIPS 140-2
libraries.

v This feature is only supported on the iOS and Android platforms.
– On Android, this feature is only supported on devices or simulators that use

the x86 or armv7 architectures. It is not supported on Android using armv5 or
armv6 architectures. The reason is because the OpenSSL library used did not
obtain FIPS 140-2 validation for armv5 or armv6 on Android.

– On iOS, it is supported on i386, armv7, and armv7s architectures.
v This feature works with hybrid applications only (not native).
v The use of the analytics feature (Tealeaf®) on the client is not supported by the

FIPS 140-2 feature.
v The use of the user enrollment feature on the client is not supported by the FIPS

140-2 feature.
v The Worklight Application Center client does not support the FIPS 140-2 feature.
v The FIPS 140-2 feature supersedes the features described in the following

module and article:
– The module JSONStore - Encrypting sensitive data with FIPS 140-2 that was

available for previous versions of IBM Worklight under category 5, Advanced
client side development.

– The article Enable FIPS 140-2 HTTPS encryption for IBM Worklight mobile apps at
http://www.ibm.com/developerworks/mobile/library/mo-fips-worklight/
index.html.

In both cases, you must delete the iPhone, iPad, and Android environments and
re-create them.

Important: When you delete the previous environments, you lose any
environment-specific changes that you made. You must back up any
environment-specific changes, and apply them to the newly created
environment.

v The use of the Direct Update feature is not supported by the FIPS 140-2 feature.

Support for Android Emulator 2.3.x

IBM Worklight does not support Android Emulator 2.3.x because of known issues,
as detailed in the Android list of issues at https://code.google.com/p/android/
issues/list (search for issue 12987).

IBM Worklight Application Framework runtime library and Studio
tools: beta code

You can add IBM Worklight Application Framework, as described in “Developing
hybrid applications with IBM Worklight Application Framework” on page 425, to
your IBM Worklight project or application. You use this feature for rapid

Chapter 4. Known limitations 41

http://www.ibm.com/developerworks/mobile/worklight/previous-versions.html
http://www.ibm.com/developerworks/mobile/library/mo-fips-worklight/index.html
http://www.ibm.com/developerworks/mobile/library/mo-fips-worklight/index.html
https://code.google.com/p/android/issues/list
https://code.google.com/p/android/issues/list

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

development of hybrid Worklight applications. With IBM Worklight V6.1.0, the
runtime library and the tooling support in Worklight Studio are beta code.

User Certificate Authentication feature limitations

The following known limitations apply when using the User Certificate
Authentication feature in IBM Worklight:
v This feature is available only on the hybrid iOS and Android environments for

this current release.
v This feature is not supported with the FIPS 140-2 feature.
v This feature is supported on WebSphere Application Server and WebSphere

Application Server Liberty profile.
v This feature does not support an environment where the Worklight Server is

protected by container security that requires a CLIENT-CERT authentication
method. Instead, the server must be configured to accept the client certificate
optionally, and not require one.

v Self-signed certificates are not supported with the User Certificate Authentication
feature.

42 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 5. Troubleshooting

You can find advice on how to troubleshoot problems, and more information about
known limitations and Technote (Troubleshooting).

The following links point to troubleshooting topics in other parts of this user
documentation. To navigate from there back to this topic, click the Go Back button
in the menu bar above the topic, or click Back in your Web browser.
v “Troubleshooting IBM Mobile Test Workbench for Worklight” on page 51
v “Troubleshooting Worklight Server” on page 216
v “Troubleshooting an installation blocked by DB2 connection errors” on page 217
v “Troubleshooting failure to create the DB2 database” on page 217
v “Troubleshooting Worklight Development Server startup” on page 500
v “Troubleshooting IBM HTTP Server startup” on page 199
v “Troubleshooting to find the cause of installation failure” on page 216
v “Troubleshooting a Cast Iron adapter – connectivity issues” on page 529
v “Troubleshooting JSONStore and data synchronization” on page 584
v “Troubleshooting analytics” on page 966
v “Troubleshooting adding and removing application components” on page 494
v “Troubleshooting authenticity problems” on page 634
v “Troubleshooting the User Certificate Authentication feature” on page 1009
v “Troubleshooting a corrupt login page (Apache Tomcat)” on page 866
v “Troubleshooting failure to authenticate to Application Center and applications

that use the basic registry element” on page 219

Important: For more information about known limitations or issues in the product,
see Chapter 4, “Known limitations,” on page 37 and the product release notes.

Important: If you have to contact IBM Support for help, see the information in
Collect troubleshooting data for IBM Mobile Foundation and IBM Worklight
products. This document details how to gather the necessary information about
your environment so that IBM Support can help diagnose and resolve your
problem.

43

http://www.ibm.com/support/docview.wss?uid=swg27043175
http://www.ibm.com/support/docview.wss?uid=swg21598161
http://www.ibm.com/support/docview.wss?uid=swg21598161

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

44 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 6. Installing and configuring

This topic is intended for IT developers and administrators who want to install
and configure IBM Worklight.

This topic describes the tasks required to install and configure the different
components of IBM Worklight. It also contains information about installing and
configuring database and application server software that you need to support the
IBM Worklight database.

For more information about how to size your system, see the following documents:
v Scalability and Hardware Sizing (PDF)
v Hardware Calculator (XLS)

IBM Worklight installation overview
IBM Worklight provides the following installable components: Worklight Studio,
Worklight Server, and IBM Mobile Test Workbench for Worklight. This section
gives an overview of the installation process.

Installing Worklight Studio on Eclipse with a P2 update site

You install Worklight Studio into an existing installation of Eclipse by using its P2
install and update features. For actual instructions, see “Installing Worklight
Studio” on page 46.

After the Worklight Studio installation, you must also install extra software
development kits (SDKs) and Eclipse plug-ins for each mobile environment that
you are developing for (for example, the Android Development Toolkit).

Installing IBM Mobile Test Workbench for Worklight on Eclipse
with a P2 update site

You must install IBM Mobile Test Workbench for Worklight into an existing,
properly configured installation of Worklight Studio by using the Eclipse P2 install
and update feature. For actual instructions, see “Installing IBM Mobile Test
Workbench for Worklight” on page 50.

Installing Worklight Server with IBM Installation Manager

To ensure the correct installation of Worklight Server, see “Installation
prerequisites” on page 52.

You must install IBM Installation Manager 1.6.3 or later separately before installing
IBM Worklight. For more information, see “Running IBM Installation Manager” on
page 59.

Note: IBM Installation Manager is sometimes referred to on the eXtreme Leverage
and Passport Advantage® sites and on the distribution disks as IBM Rational
Enterprise Deployment. The filenames for the images take the form IBM Rational
Enterprise Deployment <version number><hardware platform> <language>; for
example, IBM Rational Enterprise Deployment V1.6.3.1Windows Multilingual.

45

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/Scalability_and_Hardware_Sizing.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/Hardware_Calculator.xls

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

You then use IBM Installation Manager to install Worklight server-side components
on your application server, and to create databases on your database management
system. Some application server and database configuration is required. For actual
instructions, see “Installing Worklight Server” on page 52.

Upgrading IBM Worklight

The preceding sections provide an overview of IBM Worklight "first time"
installations. For information about upgrading existing installations of IBM
Worklight Studio and IBM Worklight Server to a newer version, see Chapter 7,
“Upgrading from one version of IBM Worklight to another,” on page 221.

Installing Worklight Studio
You install Worklight Studio from your existing Eclipse IDE workbench.

Before you begin
v All Worklight Studio editions are installed with a P2 Eclipse update.
v Worklight Studio Developer Edition provides every Worklight Studio function

available in Worklight Studio Consumer Edition and Worklight Studio Enterprise
Edition, except for some security-related features.
To know more about the specificities of IBM Worklight Developer Edition, IBM
Worklight Consumer Edition, and IBM Worklight Enterprise Edition, see “IBM
Worklight editions” on page 8.

v Ensure that your computer meets the system requirements for the software that
you install, as detailed in “System requirements for using IBM Worklight” on
page 9. In particular, notice the minimum required version of Eclipse (errors
happen if you use a previous version).

v Ensure that an Internet connection is available in case dependencies that are
required by the installation are not already included in the Eclipse IDE.

About this task
v To install Worklight Studio Developer Edition, go to the IBM Mobile

development website at https://www.ibm.com/developerworks/mobile/
worklight.html.

v To install Worklight Studio Consumer Edition or Worklight Studio Enterprise
Edition, complete the following procedure.

Procedure
1. Start your Eclipse IDE workbench and verify your version of Eclipse.

Worklight Studio V6.1.0 must be installed into Eclipse V4.2.2 (Juno) or Eclipse
V4.3.1 (Kepler) as a new installation. It cannot be installed in earlier versions
of Eclipse (prior to V4.2.2).

2. Click Help > Install new software.
3. Beside the Work with field, click Add.
4. In the Add Repository window, click Archive.
5. Browse to the location of the P2 update .zip file on the DVD, or of the

archive file on your machine, and click Open.
6. Click OK to exit the Add Repository window.

46 IBM Worklight V6.1.0

https://www.ibm.com/developerworks/mobile/worklight.html
https://www.ibm.com/developerworks/mobile/worklight.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

7. On the Available Software page, select IBM Worklight Studio Development
Tools, and click Next. If you want to see the components to be installed,
expand IBM Worklight Studio Development Tools, and select the
components you want:
v Always select IBM Worklight Studio.
v Select IBM Dojo Mobile Tools if you anticipate using that JavaScript

library.
v Select IBM jQuery Mobile Tools if you anticipate using that JavaScript

library.
8. On the Install Details page, review the features of Worklight Studio to be

installed, and then click Next.
9. On the Review Licenses page, review the license text. If you agree to the

terms, select I accept the terms of the license agreement and then click
Finish.

10. The installation process starts. Follow the prompts (during which you may be
asked to restart Eclipse) to complete the installation.

What to do next

Before you run Worklight Studio, determine whether you must run extra
post-installation tasks.

Running post-installation tasks
Before you run Worklight Studio, you may need to run additional post-installation
tasks.

Running additional tasks for Rational Team Concert V4.0
You might need to clean the Eclipse environment before you run Worklight Studio.

About this task

If your Eclipse workbench has IBM Rational Team Concert, version 4.0, Eclipse
Client already installed, the Worklight Studio plug-ins might not be properly
activated when you open an existing workbench. For example, the wizard New >
IBM Worklight Project might not be available. To work around this problem,
follow these instructions.

Note: You need to perform these steps only the first time that you start the
product.

Procedure
1. Stop the workbench.
2. Locate the eclipse.ini file in eclipse_installation_directory\eclipse\

eclipse.ini.
3. Make a copy of the eclipse.ini file, or back it up.
4. Open the eclipse.ini file in a text editor.
5. Append the following text on a new line: -clean
6. Save and close the file.
7. Start the product and select a workspace. You should be able to successfully

open the workspace.
8. Remove the -clean line from the eclipse.ini file and save the file.

Chapter 6. Installing and configuring 47

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Starting Worklight Studio
Start Worklight Studio by running the Eclipse executable file.

Procedure
v On Linux systems, run the eclipse file.
v On Windows systems, run the eclipse.exe file.

Installing mobile specific tools
When you develop mobile applications, you must install and use specialized tools
(such as SDKs). These tools depend on the operating system that you develop the
applications for (such as iOS or Android).

This collection of topics details the required tools for each operating system.

Installing tools for Adobe AIR
To build and sign applications for Adobe AIR, you must install the Adobe AIR
SDK.

Procedure
1. Download the Adobe Air SDK from the Air SDK on Adobe website.
2. Unpack the archive into a folder of your choice.
3. Set an environment variable (either locally or on the central build server)

named AIR_HOME, pointing to the place where you opened the SDK. The
Worklight Builder uses this environment variable to run the build and sign tool
when building AIR applications.

Installing tools for iOS
To build and sign applications for iOS, you must install the latest Xcode IDE
(including the iOS simulator) on a Mac.

Procedure
1. Register as an Apple developer on the Apple Registration Center website at

https://developer.apple.com/programs/register/.
2. Download Xcode from the Mac App Store at http://www.apple.com/osx/

apps/app-store.html.
3. Install Xcode on your Mac.

For more information about the iOS development environment, see the module
Setting Up Your iOS Development Environment, under category 1, Setting up your
development environment, in Chapter 3, “Tutorials and samples,” on page 27.

Installing tools for Android
To build and sign applications for Android, you must install the Android SDK and
the Android Development Tools plug-in for Eclipse. Alternatively, you can install
Android Studio.

Procedure
v Using the Android SDK and the Android Development Tools plug-in for Eclipse

1. Install the Android SDK, available at http://developer.android.com/sdk/.
2. Install the Android Development Tools plug-in for Eclipse, available at

https://dl-ssl.google.com/android/eclipse/.
3. Add SDK Platform and Virtual Devices to the SDK.

48 IBM Worklight V6.1.0

https://developer.apple.com/programs/register/
http://www.apple.com/osx/apps/app-store.html
http://www.apple.com/osx/apps/app-store.html
http://developer.android.com/sdk/
https://dl-ssl.google.com/android/eclipse/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For more information about the Android development environment, see the
module Setting Up Your Android Development Environment, under category 1,
Setting up your development environment, in Chapter 3, “Tutorials and
samples,” on page 27.

Note: On Ubuntu (Linux), you must check that the Android SDK works
properly. You might need to add some .lib files. For more information, see
http://developer.android.com/sdk/installing/index.html.

v Using Android Studio
1. Install Android Studio, available at http://developer.android.com/sdk/

installing/studio.html.
2. Update the Worklight Studio preferences with the location of Android

Studio: from Worklight Studio, click Window > Preferences > Worklight (or
Eclipse > Preferences > Worklight on Mac OS), and specify the location of
the Android Studio installation.

3. Right-click your Android applications, and click Run As > Android Studio
project to start Android Studio.

Installing tools for BlackBerry
To build and sign applications for BlackBerry OS 6, 7 or 10, you must install the
WebWorks tools.

Procedure
1. Download Ripple emulator available at https://developer.blackberry.com/

html5/download/ and install it.
2. Download WebWorks SDK from the same site, at https://

developer.blackberry.com/html5/download/, and install it to the folder of your
choice.

3. (Only for BlackBerry 10) Set an environment variable (either locally or on the
central build server) named WEBWORKS_HOME, pointing to the SDK root
folder. The Worklight Builder uses this environment variable when it builds
BlackBerry 10 applications. On each build, the environment variable value is
transferred to native\project.properties.

Note: WEBWORKS_HOME must be set before you start Worklight Studio. This
variable is important for the normal operation of the client. If you use Ant
scripts to build and deploy the application to the device, and the
WEBWORKS_HOME value is set incorrectly, your file structure might become
corrupted, and produce a new directory with the incorrect WEBWORKS_HOME
value name.

Note: BlackBerry OS 10 is not supported by the current version of the
Application Center.

4. Download and install a simulator.
For more information about the BlackBerry development environment, see the
module Setting Up Your BlackBerry 6 and 7 Development Environment and Setting
up your BlackBerry 10 development environment, under category 1, Setting up your
development environment, in Chapter 3, “Tutorials and samples,” on page 27.

Installing tools for Windows Phone 8
To build and sign applications for Windows Phone 8, you must install Microsoft
Visual Studio Express 2012 for Windows Phone.

Chapter 6. Installing and configuring 49

http://developer.android.com/sdk/installing/index.html
 http://developer.android.com/sdk/installing/studio.html
 http://developer.android.com/sdk/installing/studio.html
https://developer.blackberry.com/html5/download/
https://developer.blackberry.com/html5/download/
https://developer.blackberry.com/html5/download/
https://developer.blackberry.com/html5/download/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

Download Microsoft Visual Studio Express 2012 from http://www.microsoft.com/
visualstudio/eng/products/visual-studio-express-for-windows-phone and install it.
For more information about the Windows Phone 8 development environment, see
the module Setting Up Your Windows Phone 8 Development Environment, under
category 1, Setting up your development environment, in Chapter 3, “Tutorials and
samples,” on page 27.

Installing tools for Windows 8
Windows Store apps run only on Windows 8, so to develop Windows Store apps,
you need Windows 8 and some developer tools.

Procedure
1. After you install Windows 8, go to http://msdn.microsoft.com/en-us/

windows/apps/br229516.aspx.
2. Click Download now under “Download the tools and SDK”.
3. Download Microsoft Visual Studio Express 2012 from http://

www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-
windows-phone and install it. Microsoft Visual Studio Express 2012 for
Windows 8 includes the Windows 8 SDK. It also gives you tools to code,
debug, package, and deploy a Windows Store app.

4. Start Visual Studio Express 2012. You will be prompted to obtain a developer
license. You need a developer license to install, develop, test, and evaluate
Windows Store apps.

5. For more information about obtaining a developer license, see
http://msdn.microsoft.com/en-us/library/windows/apps/br211384.aspx.

Changing the port number of the internal application server
If the default port number is already in use, edit the eclipse.ini file to change to
a different port.

About this task

When you start Eclipse with Worklight Studio, an embedded application server is
started automatically to host a Worklight Server instance for your adapters and
apps. This internal server uses port 10080 by default.

If port 10080 is occupied by another application that is running on your
development computer, you can configure the Worklight Studio internal server to
use a different port. To do so, follow these instructions:

Procedure
1. Open the Servers view in Eclipse.
2. Expand the Worklight Development Server list.
3. Double-click Server Configuration [server.xml] worklight.
4. In the Server Configuration window, click HTTP endpoint.
5. Change the Port value to any port number of your choice.

Installing IBM Mobile Test Workbench for Worklight
You must install IBM Mobile Test Workbench for Worklight into an Eclipse IDE
where Worklight Studio V6.0.0 or later is already installed.

50 IBM Worklight V6.1.0

http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-windows-phone
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-windows-phone
http://msdn.microsoft.com/en-us/windows/apps/br229516.aspx
http://msdn.microsoft.com/en-us/windows/apps/br229516.aspx
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-windows-phone
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-windows-phone
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-for-windows-phone
http://msdn.microsoft.com/en-us/library/windows/apps/br211384.aspx

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Before you begin
v Your computer must meet the system requirements for the software that you

install. For more information, see “System requirements for using IBM
Worklight” on page 9.

v Worklight Studio V6.0.0 or later must be already installed on your computer.
v Ensure that an Internet connection is available in case dependencies that are

required by the installation are not already included in the Eclipse IDE.

About this task
v To install IBM Mobile Test Workbench for Worklight on top of IBM Worklight

Developer Edition, go to the IBM Worklight development website at
https://www.ibm.com/developerworks/mobile/worklight/.

v To install IBM Mobile Test Workbench for Worklight on top of IBM Worklight
Consumer Edition or IBM Worklight Enterprise Edition, complete the following
procedure.

Procedure
1. Start your Eclipse IDE workbench.
2. Click Help > Install new software.
3. Beside the Work with field, click Add.
4. In the Add Repository window, click Archive.
5. Browse to the location of the P2 update .zip file on the DVD, or of the archive

file on your machine, and click Open.
6. Click OK to exit the Add Repository window.
7. Select the features of IBM Mobile Test Workbench for Worklight that you want

to install, and then click Next.
8. On the Install Details page, review the features that you install, and then click

Next.
9. On the Review Licenses page, review the license text. If you agree to the

terms, click I accept the terms of the license agreement and then click Finish.
The installation process starts.

10. Follow the prompts to complete the installation.

What to do next

When IBM Mobile Test Workbench for Worklight is installed, you can install the
mobile test client. For more information about the mobile test client installation,
see Installing the mobile test client.

To understand the various available features, see Testing with IBM Worklight.

Make sure you add a JDK to your path in Eclipse. For more information, see
“Troubleshooting IBM Mobile Test Workbench for Worklight.”

Troubleshooting IBM Mobile Test Workbench for Worklight
If you do not set Eclipse to use a JDK installed on your system, you cannot test
Android applications with IBM Mobile Test Workbench for Worklight. The testing
process fails and you get error messages.

Chapter 6. Installing and configuring 51

https://www.ibm.com/developerworks/mobile/worklight/
PLUGINS_ROOT/com.ibm.rational.test.lt.mob.wl.ditaval.doc/topics/cmobinstovr.html
PLUGINS_ROOT/com.ibm.worklight.mobtest.doc/topics/c_wl_mobile_test_ovw.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Contents

Chapter 1. Installing the mobile test
client 1
Software and hardware requirements 1
Installing Android mobile test client 2

Installing the mobile test client on an Android
device 2
Installing the mobile test client for Android with
adb 3
Installing the mobile test client on an Android
emulator. 4
Connecting an Android device to the test
workbench with USB tethering 5
Uninstalling the Android mobile test client . . . 6

Installing iOS mobile test client 6
Installing the mobile test client on the iOS
Simulator 6

Chapter 2. Configuring the mobile test
client 9
Configuring the mobile test client for Android . . . 9
Configuring the iOS mobile test client on the iOS
Simulator 10

Index 11

iii

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

iv Installing

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 1. Installing the mobile test client

This section contains instructions for installing the IBM® Rational® Test Workbench
Mobile Client.

Software and hardware requirements
Before you install the mobile test client and start working with the test workbench,
be sure to understand the following requirements.

Operating system for the test workbench
v Microsoft Windows version 7, Vista, and 8
v Red Hat Linux version 5 and 6, SuSE Linux version 11
v Apple Mac OS X v.10.8 Mountain Lion or later (only supported in the IBM

Worklight® environment)

Operating system for the device
v Android 2.2 - 4.3
v iOS 6.x and 7.x

JavaScript frameworks
v jQuery Mobile 1.3
v Dojo Mobile 1.9

The following jQuery widget is not supported in this release: Rangeslider

The following Dojo widgets are not supported in this release:
v Audio Player
v Video Player
v Time Picker
v Date Picker
v Gauges
v Map

Additional requirements for Android
v Android SDK 21 or 22

Additional requirements for iOS
v Mac OS X v10.8 Mountain Lion or later
v Xcode 4.6 or 5.0
v iOS Simulator 6.x or 7.x
v An Apple Developer or Enterprise License with a provisioning profile for each

device. This is required for testing on iOS devices. It is not required for testing
on the iOS Simulator.

Note: An Apple Macintosh computer is required to build and compile native and
hybrid applications or to test with the iOS Simulator. A Macintosh computer is not

1

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

required to test a web application on an iOS device or to test a native or hybrid
application if you already have an instrumented version of the application under
test.

Installing Android mobile test client
This section contains instructions for installing themobile test client for Android.

Installing the mobile test client on an Android device
To record and run tests from your Android mobile device, you must install the
Android mobile test client on the device. This topic describes how to download the
installer in order to install the client on the device. Refer to other installation topics
if you are running Android on a virtual machine or emulator.

Before you begin

The mobile device must support Android version 2.2 or later.

The mobile device must be on the same network as the computer that is running
the test workbench and be able to ping that computer. Furthermore, the mobile
device must have a working internet connection (WiFi or cellular) or be tethered to
the test workbench. You can use an app that tests the connection to a computer.

The device must be allowed to install apps from any sources. To enable this option
on the device, depending on the version of Android, tap Settings > Applications >
Unknown sources or Settings > Security > Unknown sources. Tap this option.
Otherwise, you can use the following method “Installing the mobile test client for
Android with adb” on page 3.

Procedure

To install the mobile test client on the device:
1. In the Test Workbench perspective, click File > New > Other > Test > Add

Device. A window displays a list of workbench URLs and a QR code that
contains the selected URL.

2. Depending on the mobile device, perform one of the following steps:
v If the mobile device is equipped with a camera and a QR code reading app,

then run the QR code app and flash the QR code that is displayed on the
workbench screen.

v If the mobile device cannot flash a QR code, open the web browser and go to
the URL that is displayed on the workbench screen.

The mobile device displays a web page with the download link for the mobile
test client.

3. In the mobile web browser, tap the link to download the mobile test client
installer. A notification is displayed when the download is completed. Open the
notification and select the downloaded file, tap Install to install it.

4. If the mobile test client does not install automatically, use a file manager app to
locate the APK installer file (usually in the Downloads folder) and run the
installer manually.

2 Installing

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

What to do next

After installing the mobile test client, configure and connect the device to the test
workbench. See “Configuring the mobile test client for Android” on page 9.
Related concepts:
Mobile testing overview
The mobile testing capabilities of IBM Mobile Test Workbench for Worklight
automate the creation, execution, and analysis of functional tests for native, web,
and hybrid applications on Android and iOS devices.
Related tasks:
Getting started with Android testing
Use this topic to help you get started with your testing of applications that run on
Android devices.
“Connecting an Android device to the test workbench with USB tethering” on
page 5
The Android mobile client can be connected to the IBM Mobile Test Workbench for
Worklight even if you have no WiFi connection. You can use a USB tethering and
modify the settings on your device to enable this option.

Installing the mobile test client for Android with adb
On some mobile devices, it might not be possible to install the Android IBM
Rational Test Workbench Mobile Client by downloading the installer. This topic
describes an alternative installation method that uses a USB connection and the
adb tool that is provided with the Android SDK.

About this task

For the typical method of installing the mobile test client, see “Installing the mobile
test client on an Android device” on page 2.

Procedure

To install the mobile test client with adb.
1. Enable USB debugging on the mobile device:

v On Android 3.2 and earlier versions, tap Settings > Applications >
Development and select USB Debugging.

v On Android 4.0 and 4.1, tap Settings > Developer options and select USB
Debugging.

v On Android 4.2 and later, tap Settings > About phone and tap Build
number seven times. Then, return to the previous screen, tap Developer
options and select USB Debugging.

2. Connect the Android device with a USB cable to the computer that is running
the IBM Mobile Test Workbench for Worklight. Some mobile devices might
require a specific USB driver. If necessary, go to the web site of the device
vendor to download and install the USB driver for the device.

3. In the test workbench, click File > New > Device. The Add New Device
wizard shows the Workbench URL.

4. Open a web browser, type the Workbench URL, and download the mobile test
client.

5. Copy com.ibm.rational.test.mobile.android.client.ui-release.apk to a
temporary folder. For example, C:\tmp.

Chapter 1. Installing the mobile test client 3

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

6. Open a command prompt window and point to the Android SDK directory
that typically is C:\Users\Administrator\AppData\Local\Android\android-sdk\
platform-tools.

7. Type the following commands:
adb connect <IP address of workbench computer>

adb install <temporary folder>/
com.ibm.rational.test.mobile.android.client.ui-release.apk

What to do next

After installing the mobile test client, configure and connect the device to the test
workbench. See “Configuring the mobile test client for Android” on page 9.
Related concepts:
Mobile testing overview
The mobile testing capabilities of IBM Mobile Test Workbench for Worklight
automate the creation, execution, and analysis of functional tests for native, web,
and hybrid applications on Android and iOS devices.
Related tasks:
Getting started with Android testing
Use this topic to help you get started with your testing of applications that run on
Android devices.

Installing the mobile test client on an Android emulator
If the Android device is running on a virtual machine or on the emulator provided
by the Android SDK, you can install the IBM Rational Test Workbench Mobile
Client either by downloading it or using the adb tool.

About this task

For the typical method of installing the mobile test client, see “Installing the mobile
test client on an Android device” on page 2.

Procedure

To install the mobile test client on an emulator:
1. In IBM Mobile Test Workbench for Worklight, click File > New > Device. The

Add New Device wizard shows the Workbench URL.
2. Complete one of the following steps:

a. Download the mobile test client on the emulator.
1) In the emulator, open a web browser and enter the Workbench URL.
2) Click the link to download the mobile test client.
3) On the apps page of the emulator, click Downloads, click

com.ibm.rational.test.mobile.android.client.ui-release.apk, and
then click Install.

b. Use the adb tool to install mobile test client.
1) On the computer, open a web browser and enter the Workbench URL.
2) Click the link to download the mobile test client.
3) Copy com.ibm.rational.test.mobile.android.client.ui-release.apk to

a temporary folder. For example, copy the file to C:\tmp.

4 Installing

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

4) Open a command line window and point to the Android SDK directory.
The default path to the directory is C:\Users\admin_name\AppData\
Local\Android\android-sdk\platform-tools

5) Type the following command:
adb -e install temporary_folder\
com.ibm.rational.test.mobile.android.client.ui-release.apk

3. To install on a virtual machine, open a command line window and type the
following commands:
cd <temporary folder>

adb connect <IP address of the virtual machine>

adb -r install com.ibm.rational.test.mobile.android.client.ui-
release.apk

What to do next

After installing the mobile test client, configure and connect the device to the test
workbench. See “Configuring the mobile test client for Android” on page 9.
Related concepts:
Mobile testing overview
The mobile testing capabilities of IBM Mobile Test Workbench for Worklight
automate the creation, execution, and analysis of functional tests for native, web,
and hybrid applications on Android and iOS devices.
Related tasks:
Getting started with Android testing
Use this topic to help you get started with your testing of applications that run on
Android devices.

Connecting an Android device to the test workbench with USB
tethering

The Android mobile client can be connected to the IBM Mobile Test Workbench for
Worklight even if you have no WiFi connection. You can use a USB tethering and
modify the settings on your device to enable this option.

Before you begin

USB tethering is available on devices using Android 4.1 or later.

Procedure
1. Connect the Android device with the computer on which the Rational Test

Workbenchtest workbench is running.
2. On the Android device go to Settings > Wireless and networks, and tap More

settings and depending on the devices, tap Mobile network sharing > USB
network setting or tethering and hotspot settings, then check USB tethering
to share the mobile network with the PC.

3. On the computer make sure that all firewall windows are closed. Then click the

icon to display the workbench URL and type the URL on the browser of
the device to connect/reconnect to the test workbench. For more details on this
step, see Configuring the mobile test client for Android

Chapter 1. Installing the mobile test client 5

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Uninstalling the Android mobile test client
Before uninstalling the mobile test client, you can reset it to uninstall the
instrumented applications. When you uninstall the instrumented applications, you
can use your original applications on your mobile device. Also, if you are
upgrading to a new version of mobile test client, you will get updated version of
instrumented applications.

Before you begin

It is recommended to reset the mobile test client to uninstall the instrumented
applications. To reset, start mobile test client and from the menu, tap Reset and
then OK.

Procedure
1. In the Android mobile device, tap Settings > Apps > IBM Rational Test

Workbench Mobile Client.
2. Tap the Uninstall button and tap OK.

Installing iOS mobile test client
This section contains instructions for installing the IBM Rational Test Workbench
Mobile Client for iOS.

Installing the mobile test client on the iOS Simulator
To record and run tests from your iOS Simulator, you must install the mobile test
client on the Simulator.

Before you begin

You should have a Mac OS X v10.8 Mountain Lion or later with Xcode 4.6. For
supported versions, see the Software requirements topic.

Note: Before using the shell scripts, ensure that you have all the execution rights
required.

Procedure
1. In the Test Workbench perspective, click File > New > Other > Test > Add

Device and copy the Workbench URL.
2. In the MacOS 10 system, open the web browser, enter the Workbench URL, and

click the download link. This task downloads the RTW-iOS-Build-Archive.zip.
3. Before using the shell-scripts, unpack the archive and ensure that all shell

scripts in the build-script folder can be executed by the current user. This can
be checked with ls -l command and changed with chmod command. Refer to
Mac OS X documentation for more details on how to use these commands.

4. Open the terminal, point to the build-script folder and type the following
command:
./installIPAInSimu.sh /Users/XXX/Downloads/RTW-iOS-Build-Archive/client/iphonesimulator/RTWiOS.ipa .

The .ipa file parameter is required. It is located in the relative path to the shell
script ../client/iphonesimulator/RTWiOS.ipa. The iOS mobile test client is
installed on the simulator and the mobile test client icon shows up on the apps
screen of the simulator.

6 Installing

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

What to do next

You must now connect the iOS mobile test client with the test workbench. For
information about connecting to the test workbench, see Configuring test
workbench topic.
Related concepts:
Mobile testing overview
The mobile testing capabilities of IBM Mobile Test Workbench for Worklight
automate the creation, execution, and analysis of functional tests for native, web,
and hybrid applications on Android and iOS devices.
Related tasks:
Getting started with testing on the iOS Simulator
Use this topic to help you get started with your testing of native, hybrid, and web
applications on the iOS Simulator.

Chapter 1. Installing the mobile test client 7

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

8 Installing

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 2. Configuring the mobile test client

This section contains instructions for configuring the IBM Rational Test Workbench
Mobile Client.

You must add and configure devices to IBM Mobile Test Workbench for Worklight
from the Mobile Devices editor.

Configuring the mobile test client for Android
To use an Android mobile device for uploading mobile apps and recording or
running tests, you must configure the mobile test client to connect to the test
workbench.

Before you begin

The mobile test client must be installed and running on the Android device. For
details about downloading and installing the mobile test client for Android, see
“Installing the mobile test client on an Android device” on page 2.

The mobile device must be on the same network as the computer that is running
the test workbench and be able to ping that computer. Furthermore, the mobile
device must have a working internet connection (WiFi or cellular) or be tethered to
the test workbench. You can use an app that tests the connection to a computer.

Note: If you already have the workbench URL and the QR code up on your screen
from when you installed the mobile test client, you can skip the first two steps and
proceed to Step 3.

Procedure

To add a mobile device to the test workbench:
1. In the Test Navigator view, right-click the Mobile Devices node and select

Available Mobile Devices or click the Display available mobile devices icon.
The Mobile Devices editor opens.

2. In the editor, click the icon to add a device to the list. A window displays a
list of workbench URLs and a QR code that contains the selected URL from the
list.

Note: If the device fails to connect using the first URL in the list, try one of the
alternate URLs.

3. On the mobile device or on an emulator, start the mobile client.
4. Complete one of the following steps:

a. If the mobile device is equipped with a rear camera, tap the QR code
button and scan the QR code that is displayed on the test workbench. This
is the same QR code from when you installed the mobile test client. This
step is not applicable to the emulator.

b. Tap Configure Workbench > Address and type the URL manually. This
step is triggered automatically if no rear camera is detected.

On the first client start, you do not need to tap the QR code button, or type the
workbench address. These actions are executed automatically.

9

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Results

The name and properties of the device are displayed in the test workbench, in the
Mobile Devices editor.
Related tasks:
“Connecting an Android device to the test workbench with USB tethering” on
page 5
The Android mobile client can be connected to the IBM Mobile Test Workbench for
Worklight even if you have no WiFi connection. You can use a USB tethering and
modify the settings on your device to enable this option.

Configuring the iOS mobile test client on the iOS Simulator
To upload recordings and run tests from the mobile test client, the mobile test
client must be connected to the test workbench.

Before you begin

Note: This task applies to testing native applications from an iOS simulator.

Both the mobile test client and the test workbench must be installed and able to
communicate with each other.

About this task

If the mobile test client is connected to the test workbench, the recording is
automatically uploaded to the test workbench after recording the app on the
device. You can then generate and edit the test in the test workbench.

Procedure
1. In the iOS mobile test client, tap Configure Workbench > Address.
2. Type the Workbench URL and tap OK.

Note: To get the workbench URL, click the icon in the test workbench.
Related tasks:
“Installing the mobile test client on the iOS Simulator” on page 6
To record and run tests from your iOS Simulator, you must install the mobile test
client on the Simulator.
Instrumenting iOS applications on the iOS Simulator
Once the mobile test client is installed on the iOS Simulator, you must run a
supplied build script on an OS Xsystem to be able to instrument the iOS
application under test. The instrumented app can be optionally pushed to the test
workbench and installed on the iOS Simulator.
Recording tests from the iOS mobile test client
Mobile tests are typically created by recording a session on the mobile device or
simulator that runs the app being tested. At the end of the recording session, you
close the app and the IBM Rational Test Workbench Mobile Client uploads the
recorded session to the IBM Mobile Test Workbench for Worklight, where it is used
to generate a test.

10 Installing

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Index

A
Android

configuring the mobile client 9

C
configuring

Android mobile client 9

M
Mobile client

Android configuration 9

11

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

To test Android applications with IBM Mobile Test Workbench for Worklight, you
must add the path to the JDK in Eclipse.

Procedure
1. In Eclipse, go to Window > Preferences > Java > Installed JREs.
2. Select JDK to set the JDK as the default JRE.

Installing Worklight Server
IBM installations are based on an IBM product called IBM Installation Manager.
Install IBM Installation Manager 1.6.3.1 or later separately before you install IBM
Worklight.

Important: Ensure that you use IBM Installation Manager 1.6.3.1 or later. This
version contains an important fix for an issue identified in IBM Installation
Manager 1.6.3. See http://www.ibm.com/support/docview.wss?uid=swg24035049.

The Worklight Server installer copies onto your computer all the tools and libraries
that are required for deploying an IBM Worklight Project or the Application Center
in production, and IBM SmartCloud Analytics Embedded.

Worklight Server can also automatically deploy the Application Center at
installation time. In this case, a database management system and an application
server are required as prerequisites and must be installed before you start the
Worklight Server installer.

The installer can also help with upgrading an existing installation of Worklight
Server to the current version. See Chapter 7, “Upgrading from one version of IBM
Worklight to another,” on page 221.

The following topics describe the installation of Worklight Server, installation
prerequisites, and the procedures for a manual installation and configuration of
Application Center. After Worklight Server is installed, a Worklight project must be
deployed to an application server. This deployment installs a Worklight Console
that can be used to upload applications and adapters. The instructions in
“Worklight Server installation process walkthrough” on page 53 are based on a
simple installation scenario. For a complete description of the process of deploying
a Worklight project, see Chapter 10, “Deploying IBM Worklight projects,” on page
711.

Installation prerequisites
For smooth installation of Worklight Server, ensure that you fulfill all required
environment setup and software prerequisites before you attempt installation.

You can find a complete list of supported hardware together with prerequisite
software in “System requirements for using IBM Worklight” on page 9.

Important: If a version of Worklight Server is already installed, review Chapter 7,
“Upgrading from one version of IBM Worklight to another,” on page 221 before
you install Worklight Server and deploy a Worklight project on the same
application server or databases. Failure to do so can result in an incomplete
installation and a non-functional Worklight Server.

52 IBM Worklight V6.1.0

http://www.ibm.com/support/docview.wss?uid=swg24035049

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Download the IBM Worklight package from the IBM Passport Advantage site.

Ensure that you have the latest fix packs for the IBM Worklight product. If you are
connected to the Internet during the installation, IBM Installation manager can
download the latest fix packs for you.

The package contains an Install Wizard that guides you through the Worklight
Server installation.

Worklight Server requires an application server and relies on a database
management system.

You can use any of the following application servers:
v WebSphere Application Server Liberty Core.
v WebSphere Application Server.
v Apache Tomcat.

You can use any of the following database management systems:
v IBM DB2®

v MySQL
v Oracle
v Apache Derby in embedded mode. Included in the installation image.

Verify that the application server you selected provides support for your database.

Note: Apache Derby is supplied for evaluation and testing purposes only and is
not supported for production-grade IBM Worklight servers.

The IBM Worklight installer can install the Application Center and deploy it to
your application server. In this case, the application server and the database
management system (if different from Apache Derby) must be installed before you
start the Worklight Server installer. If you do not need the Application Center or
decide to install it manually, you do not need to install the application server and
database management system before starting the Worklight Server installer.
However, you need them before deploying IBM Worklight projects.

The IBM Worklight packages include the following installers:
v IBM DB2 Workgroup Server Edition
v IBM DB2 Enterprise Server Edition (on zLinux only)
v IBM WebSphere Application Server Liberty Core

Worklight Server installation process walkthrough
Learn about the Worklight Server installation process by walking through a simple
configuration that creates a functional Worklight Server that is usable for
demonstration purposes or tests.

Before you begin
v Install Worklight Studio on your computer, if you have not already done so. You

use Worklight Studio to create a simple IBM Worklight project, which you can
then run on Worklight Server.

Chapter 6. Installing and configuring 53

http://www.ibm.com/software/dre/h2b/buildh2bpage.wss?synkey=R450727J37022R62

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

This task shows you how to install Worklight Server, based on a walkthrough of a
simple configuration. It is designed as an overview, to show you where to find the
following tools and information:
v Tools to install a Worklight Server and the Application Center, and tools to

deploy an IBM Worklight project.
v Information about configuring Worklight Server and the Application Center.
v Information about manual Worklight Server installation. Manual installation

provides greater flexibility, but can make the diagnosis of issues more complex,
and make the subsequent description of your configuration to IBM Support
more difficult.

This task involves installing the following components:
v An IBM WebSphere Application Server Liberty Core application server.
v A database management System (IBM DB2, Oracle, or MySQL).
v The Application Center.
v A very simple IBM Worklight project and its console.

Procedure
1. Install IBM WebSphere Application Server Liberty Core. The installer for IBM

WebSphere Application Server Liberty Core is provided as part of the package
for IBM Worklight.
a. Load the repository for IBM WebSphere Application Server Liberty Core in

IBM Installation Manager and install the product.

Note: IBM Installation Manager is sometimes referred to on the eXtreme
Leverage and Passport Advantage sites and on the distribution disks as IBM
Rational Enterprise Deployment. The filenames for the images take the form
IBM Rational Enterprise Deployment <version number><hardware
platform> <language>; for example, IBM Rational Enterprise Deployment
V1.6.3.1Windows Multilingual.
If you are not familiar with IBM Installation Manager, see step 4a of this
procedure for more information on loading repositories. See also the IBM
Installation Manager user documentation at http://pic.dhe.ibm.com/
infocenter/install/v1r6/index.jsp.

b. During the installation process, take note of the installation directory of
Liberty. You need this information later on in the procedure.

2. Create a server for Liberty. You use this server to install the Application Center
and to deploy an IBM Worklight project and its console.
a. Go to the installation directory of Liberty. For example, on Windows, if the

product is installed with Administrator rights, it is located by default in
C:\Program Files\IBM\WebSphere\Liberty.

b. Type the command that creates a server. In this scenario, the server name is
simpleServer.

On UNIX and Linux systems:
bin/server create simpleServer

On Windows systems:
bin\server.bat create simpleServer

54 IBM Worklight V6.1.0

http://pic.dhe.ibm.com/infocenter/install/v1r6/index.jsp
http://pic.dhe.ibm.com/infocenter/install/v1r6/index.jsp

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The server is created with all default settings. For more information about
configuring a Liberty server, read the file README.txt in the Liberty installation
directory. Default settings are sufficient for this walkthrough.

3. Install the database management system. You use this DBMS to install the
Application Center and to deploy an IBM Worklight project and its console.
a. If you use IBM DB2:

1) The installer for IBM DB2 is provided as part of the package for IBM
Worklight. Run the installer and follow the instructions.

2) When, on Windows, you are asked whether to install the IBM Secure
Shell Server for Windows, say Yes.

3) In the next steps, you must have a secure shell server (such as, on
Windows, the IBM Secure Shell Server for Windows or the Cygwin
openssh package, or, on UNIX, the sshd daemon) installed and running
so that the Worklight tools can create the required databases.

4) Take note of the username and password for the DB2 administrator role.
They will be needed in the next steps.

b. If you use MySQL:
1) Install MySQL on your computer.
2) Take note of the username and password for the administrator.

v By default for some installations, the administrator is root and there
is no password.

v If there is no password for the MySQL administrator in your
installation, set a password for the administrator, following the
instructions from the MySQL documentation.

c. If you use Oracle:
1) Install the Oracle database on your computer.
2) Install an ssh shell on your computer (on Windows, install cygwin and

the openssh package, as described at http://docs.oracle.com/cd/
E25178_01/install.1111/e22624/preinstall_req_cygwin_ssh.htm).

3) Launch the ssh server (on Windows, with administrator rights).
4) In the next steps, you will need to have that secure shell server running.

4. Install Worklight Server.
a. Add the Worklight Server repository in IBM Installation Manager:

1) Download IBM Worklight Enterprise Edition V6.1 zip of Installation
Manager Repository for IBM Worklight Server Multiplatforms English.

2) Unzip the file on your disk.
3) Launch IBM Installation Manager.
4) Open the File > Preferences menu.
5) In the Preferences dialog, click Add Repositories.
6) Select the file disk1/diskTag.inf from the repository directory you

unzipped.
7) Click OK and close the Preferences dialog.

b. Load the repository for Worklight Server in IBM Installation Manager and
install the product.
1) In the Configuration Choice panel, select the first choice. This option

installs Application Center.

Chapter 6. Installing and configuring 55

http://docs.oracle.com/cd/E25178_01/install.1111/e22624/preinstall_req_cygwin_ssh.htm
http://docs.oracle.com/cd/E25178_01/install.1111/e22624/preinstall_req_cygwin_ssh.htm

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2) In the Database Choice panel, select the name of the database
management system you installed. Note that Apache Derby is not
supported by the Server Configuration Tool used later in this
walkthrough.

3) In the following database panels of the installer:
v If you use IBM DB2:

– In the Database Server Properties panel:
- Enter localhost as the host name.
- Select the db2jcc4.jar JAR file in the JDBC driver directory

(located in <DB2InstallDir>/Java).
– In the Database Server Additional Properties panel:

- Select Simple Mode.
- Enter a database user and password. This user must already

exist.
– In the Create Database panel:

- Enter the name and password of a user account on the database
server that has DB2 privilege SYSADM or SYSCTRL.

- The installer creates the database.
v If you use MySQL:

– In the Database Server Properties panel:
- Enter localhost as the host name.
- Enter the name of the JDBC JAR file for MySQL.

– In the Database Server Additional Properties panel:
- Select Simple Mode.
- Enter a database user and password. This user is already created

by the installer.
– In the Create Database panel:

- Enter the name and password of a superuser account in your
MySQL database server. The default superuser account is root.

- The installer creates the database.
v If you use Oracle:

– In the Database Server Properties panel:
- Enter localhost as the host name.
- Enter the name of the JDBC JAR file for Oracle.

– In the Database Server Additional Properties panel:
- Select Simple Mode.
- Enter a password for the user APPCENTER. This user is created by

the installer.
- The installer creates a database if it does not already exist.

– In the Create Database panel:
- For Administrator Login Name and Passwords, enter an

administrator login name and password that can be used to run
an ssh session. The default Oracle Administrator Login name is
oracle.

- If the database already exists, provide the password of the
SYSTEM user that is used to create the user APPCENTER. If the
database does not already exist, enter the passwords for the SYS
and SYSTEM users that are created to manage the database.

56 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

4) In the Application Server Selection panel, select WebSphere
Application Server.

5) In the Application Server Configuration panel, select the installation
directory for IBM WebSphere Application Server Liberty Core that is
installed in step 2.

6) Select simpleServer as the server name.
7) Install the product.

The files that are described in “Distribution structure of Worklight Server” on
page 78 are installed on your computer.

5. Explore Application Center. Application Center is now functional. The artifacts
of the Application Center are deployed into the Liberty server, which now
includes the features that Application Center requires, and a demonstration
user account exists. The required database also exists.
a. To test the Application Center, start the Liberty server.

On UNIX and Linux systems:
bin/server start simpleServer

On Windows systems:
bin\server.bat start simpleServer

b. Open the Application Center by using the program shortcut that the
installer creates: IBM Worklight Server > Application Center. Alternatively,
you can enter the URL for the Application Center into a browser window.
When a Liberty server is created with default settings, the default URL for
Application Center is http://localhost:9080/appcenterconsole/.

c. Log in to the Application Center with the demonstration account credentials
(login: demo, password: demo)

d. Explore further by using any of the following resources:
v See “Configuring the Application Center after installation” on page 138.
v See “Distribution structure of Worklight Server” on page 78 for a list of

IBM Worklight applications that you can compile and upload to the
application center. These applications provide access to the Application
Center for mobile devices.

v If you are considering a manual installation of Application Center, see
“Manually installing Application Center” on page 82. In some cases,
manual installations can make the diagnosis of issues more complex, and
can make the description of a configuration to IBM Support more
difficult.

6. Create a simple IBM Worklight project. You create a project to deploy a console.
a. Complete the following steps:

1) Install Worklight Studio on your computer. See “Installing Worklight
Studio” on page 46.

2) Start Worklight Studio.
3) Create an IBM Worklight project (File > New > Worklight Project).
4) Assign the name simpleProject, and accept the default project template

Hybrid Application.
5) In the next panel, name the application simpleApp, and then click Finish.

b. Build the application.
1) In the Project Explorer view in Worklight Studio, open the project.
2) Open the apps folder, right-click the subfolder simpleApp, and then

click Run As > Run on Worklight Development Server.

Chapter 6. Installing and configuring 57

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3) In the Project Explorer view, open the bin folder that was created by
this task. Right-click simpleProject.war and click Properties. The
properties show the path to the WAR file. This path is used in the next
step. For example, if the path of the Eclipse workspace is
C:\workspaces\WorklightStudioWorkspace, the path to the WAR file is
C:\workspaces\WorklightStudioWorkspace\simpleProject\bin\
simpleProject.war.

7. Deploy the Worklight Console with the Server Configuration Tool.
a. Start the IBM Worklight Server Configuration Tool.

v On Linux:
– Click the desktop menu IBM Worklight Server > Server

Configuration Tool.
v On Windows:

– Click the Start menu IBM Worklight Server > Server Configuration
Tool.

v On Mac OS X:
– In the Finder, double-click the file WL_INSTALL_DIR/shortcuts/

configuration-tool.sh.

Note: Worklight Server is not supported for production use on Mac OS
X.

b. Select Create a New Server Environment.
c. Name the configuration Hello Worklight Server.
d. In the General panel:

1) Load the WAR File that you created in the previous step.
2) Check Create Worklight Server Shortcut and enter a directory for the

shortcuts. The resulting files will contain the URL to the Worklight
Console.

e. In the Database Properties panel:
1) Select your database.
2) Proceed as described in the Install Worklight Server section when you

entered data to create the database for Application Center.
f. In the Application Server panel:

v Proceed as described in the Install Worklight Server section when you
entered data to create the database for Application Center.

g. When all the data is entered, click Deploy.
v The log of the deployment operations appears in the console.
v The Configuration appears in the tree view.
v After the database operation is completed, a log file named databases

appears in the tree view, under the Configuration.
v After the deployment to the application server is complete, a log file

named install appears in the tree view, under the Configuration.
8. Restart the Liberty server and open the Worklight Console.

a. Go to the Liberty installation directory. Type the following command:
v On Linux and UNIX systems:

bin/server stop simpleServer

v On Windows systems:
bin\server.bat stop simpleServer

b. Restart the server with the following command:

58 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v On Linux and UNIX systems:
bin/server start simpleServer

v On Windows systems:
bin\server.bat start simpleServer

c. In the shortcut directory that you specified in the General panel of the
Server Configuration Tool:
v On Linux and UNIX systems:

Run the worklight-console.sh script.
v On Windows systems:

Double-click the file worklight-console.url. (On Windows 7, this
shortcut can appear as worklight-console, with a file type of Internet
Shortcut.)

You should see the Worklight Console.

What to do next

For more information about the IBM Worklight Server Configuration Tool, see
“Deploying, updating, and undeploying a Worklight Server by using the Server
Configuration Tool” on page 715.

If you want to explore the Worklight Console further, you can complete the
following tasks:
v Deploy an application as described in “Deploying applications and adapters to

Worklight Server” on page 795.
v Review Chapter 11, “Administering IBM Worklight applications,” on page 833.
v Review “Deploying the project WAR file” on page 714.
v Review “Configuration of IBM Worklight applications on the server” on page

772 and “Configuring an IBM Worklight project in production by using JNDI
environment entries” on page 784

v Review the options to deploy an IBM Worklight project manually. In some cases,
manual installations can make the diagnosis of issues more complex, and can
make the description of a configuration to IBM Support more difficult. See
“Deploying a project WAR file and configuring the application server manually”
on page 767.

Running IBM Installation Manager
IBM Installation Manager installs the IBM Worklight files and tools on your
computer.

IBM Installation Manager helps you install, update, modify, and uninstall packages
on your computer. The installer for Worklight Server does not support rollback
operations and updates from versions 5.x to 6.0 cannot be undone.

The way you use IBM Installation Manager to upgrade from a previous release
depends on your upgrade path.

You can use IBM Installation Manager to install IBM Worklight in several different
modes, including single-user and multi-user installation modes.

You can also use silent installations to deploy IBM Worklight to multiple systems,
or systems without a GUI interface.

Chapter 6. Installing and configuring 59

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For more information about Installation Manager, see the IBM Installation Manager
Information Center at http://pic.dhe.ibm.com/infocenter/install/v1r6/index.jsp.

Note: IBM Installation Manager is sometimes referred to on the eXtreme Leverage
and Passport Advantage sites and on the distribution disks as IBM Rational
Enterprise Deployment. The filenames for the images take the form IBM Rational
Enterprise Deployment <version number><hardware platform> <language>; for
example, IBM Rational Enterprise Deployment V1.6.3.1Windows Multilingual.

Optional creation of databases
If you want to activate the option to install the Application Center when you run
the IBM Worklight Server installer, you need to have certain database access rights
that entitle you to create the tables that are required by the Application Center.

If you have sufficient database administration credentials, and if you enter the
administrator user name and password in the installer when prompted, the
installer can create the databases for you. Otherwise, you need to ask your
database administrator to create the required database for you. The database needs
to be created before you start the IBM Worklight Server installer.

The following topics describe the procedure for the supported database
management systems.

Creating the DB2 database for Application Center:

During IBM Worklight installation, the installer can create the Application Center
database for you.

About this task

The installer can create the Application Center database for you if you enter the
name and password of a user account on the database server that has the DB2
SYSADM or SYSCTRL privilege, and the account can be accessed through SSH.
Otherwise, the database administrator can create the Application Center database
for you. For more information, see the DB2 Solution user documentation.

When you manually create the database, you can replace the database name (here
APPCNTR) and the password with a database name and password of your
choosing.

Important: You can name your database and user differently, or set a different
password, but ensure that you enter the appropriate database name, user name,
and password correctly across the DB2 database setup. DB2 has a database name
limit of 8 characters on all platforms, and has a user name and password length
limit of 8 characters for UNIX and Linux systems, and 30 characters for Windows.

Procedure

1. Create a system user, for example, named wluser in a DB2 admin group such
as DB2USERS, using the appropriate commands for your operating system. Give
it a password, for example, wluser. If you want multiple IBM Worklight Servers
to connect to the same database, use a different user name for each connection.
Each database user has a separate default schema. For more information about
database users, see the DB2 documentation and the documentation for your
operating system.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:

60 IBM Worklight V6.1.0

http://pic.dhe.ibm.com/infocenter/install/v1r6/index.jsp
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.sec.doc%2Fdoc%2Fc0055206.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v On Windows systems, click Start > IBM DB2 > Command Line Processor

v On Linux or UNIX systems, navigate to ~/sqllib/bin and enter ./db2.
v Enter database manager and SQL statements similar to the following

example to create the Application Center database, replacing the user name
wluser with your chosen user names:
CREATE DATABASE APPCNTR COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO APPCNTR
GRANT CONNECT ON DATABASE TO USER wluser
DISCONNECT APPCNTR
QUIT

3. The installer can create the database tables and objects for Application Center
in a specific schema. This allows you to use the same database for Application
Center and for a Worklight project. If the IMPLICIT_SCHEMA authority is
granted to the user created in step 1 (the default in the database creation script
in step 2), no further action is required. If the user does not have the
IMPLICIT_SCHEMA authority, you need to create a SCHEMA for the
Application Center database tables and objects.

Creating the MySQL database for Application Center:

During the IBM Worklight installation, the installer can create the Application
Center database for you.

About this task

The installer can create the database for you if you enter the name and password
of the superuser account. For more information, see Securing the Initial MySQL
Accounts on your MySQL database server. Your database administrator can also
create the databases for you. When you manually create the database, you can
replace the database name (here APPCNTR) and password with a database name
and password of your choosing. Note that MySQL database names are
case-sensitive on Unix.

Procedure

1. Start the MySQL command-line tool.
2. Enter the following commands:

CREATE DATABASE APPCNTR CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON APPCNTR.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’password’;
GRANT ALL PRIVILEGES ON APPCNTR.* TO ’worklight’@’localhost’ IDENTIFIED BY ’password’;
FLUSH PRIVILEGES;

Here, you need to replace Worklight-host with the name of the host on which
IBM Worklight runs.

Creating the Oracle database for Application Center:

During the IBM Worklight installation, the installer can create the Application
Center database or the user and schema inside an existing database for you.

About this task

The installer can create the database or user and schema inside an existing
database for you if you enter the name and password of the Oracle administrator
on the database server, and the account can be accessed through SSH. Otherwise,
the database administrator can create the database or user and schema for you.
When you manually create the database or user, you can use database names, user

Chapter 6. Installing and configuring 61

http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html
http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

names, and a password of your choosing. Note that lowercase characters in Oracle
user names can lead to trouble.

Procedure

1. If you do not already have a database named ORCL, use the Oracle Database
Configuration Assistant (DBCA) and follow the steps in the wizard to create a
new general-purpose database named ORCL:
a. Use global database name ORCL_your_domain, and system identifier (SID)

ORCL.
b. On the Custom Scripts tab of the step Database Content, do not run the

SQL scripts, because you must first create a user account.
c. On the Character Sets tab of the step Initialization Parameters, select Use

Unicode (AL32UTF8) character set and UTF8 - Unicode 3.0 UTF-8 national
character set.

d. Complete the procedure, accepting the default values.
2. Create a database user either by using Oracle Database Control, or by using

the Oracle SQLPlus command-line interpreter.
v Using Oracle Database Control.

a. Connect as SYSDBA.
b. Go to the Users page: click Server, then Users in the Security section.
c. Create a user, for example, named APPCENTER. If you want multiple

Worklight Servers to connect to the same general-purpose database you
created in step 1, use a different user name for each connection. Each
database user has a separate default schema.

d. Assign the following attributes:
– Profile: DEFAULT
– Authentication: password
– Default table space: USERS
– Temporary table space: TEMP
– Status: UNLOCK
– Add role: CONNECT
– Add role: RESOURCE
– Add system privilege: CREATE VIEW

– Add system privilege: UNLIMITED TABLESPACE

v Using the Oracle SQLPlus command-line interpreter.
The commands in the following example create a user named APPCENTER for
the database:
CONNECT system/<system_password>@ORCL
CREATE USER APPCENTER IDENTIFIED BY password;
GRANT CONNECT, RESOURCE, CREATE VIEW TO APPCENTER;
DISCONNECT;

Single-user versus multi-user installations
You can install Worklight Server in two different IBM Installation Manager modes.

Administrator installation
It is an administrator installation when IBM Installation Manager is
installed through the install command. In this case, it requires
administrator privileges to run, and it produces multi-user installations of
products.

62 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

When you have chosen an administrator installation of Worklight Server, it
is advisable to run the application server from a non-administrator user
account. Running it from an administrator or root user account is
dangerous in terms of security risks.

Because of this, during an administrator installation of Worklight Server,
you have the option to choose an operating system user or an operating
system user group. Each of the users in this group can:
v Run the specified application server (if WebSphere Application Server

Liberty Profile, or Apache Tomcat).
v Modify the Application Center Derby database (if Apache Derby is

chosen as your database management system).

In this case, the Worklight Server installer will set restrictive access
permissions on the Liberty or Tomcat configuration files, so as to:
1. Allow the specified users to run the application server.
2. At the same time, protect the database or user passwords that these

files contain.

Nonadministrator (single-user) installation
It is a nonadministrator (single-user) installation when IBM Installation
Manager is installed through the userinst command. In this case, only the
user who installed this copy of IBM Installation Manager can use it.

The following constraints regarding user accounts on UNIX apply:
v If the application server is owned by a non-root user, you can install Worklight

Server in either of two ways:
– Through a nonadministrator (single-user) installation of IBM Installation

Manager, as the same non-root user.
– Through an administrator installation of IBM Installation Manager, as root,

and afterwards change the owner of all files and directories added or
modified during the installation to that user. The result is a single-user
installation.

v If the application server is owned by root, you can install Worklight Server only
through an administrator installation of IBM Installation Manager; a single-user
installation of IBM Installation Manager does not work, because it lacks the
necessary privileges.

Installing a new version of Worklight Server
Create a fresh installation of Worklight Server by creating a new package group in
IBM Installation Manager.

Procedure
1. Start IBM Installation Manager.
2. On the IBM Installation Manager main page, click Install.
3. In the panel that prompts for the package group name and the installation

directory, select Create a new package group.
4. Complete the installation by following the instructions that are displayed.

Upgrading Worklight Server from a previous release
The way that you use IBM Installation Manager to upgrade from a previous
version of Worklight Server depends on your upgrade path.

Chapter 6. Installing and configuring 63

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Before you begin

Before you apply these instructions, see Chapter 7, “Upgrading from one version of
IBM Worklight to another,” on page 221. It describes important steps to upgrade
IBM Worklight applications, or to upgrade a production server in a production
environment.

Procedure
1. Start the IBM Installation Manager.
2. Depending on your upgrade path, take one of the following actions:

v To upgrade from V5.x to V6.0 or later:
a. Click Install.
b. In the panel that prompts for the package group name and the

installation directory, select Use the existing package group. In this
situation, installation of V6.0 or later automatically removes a V5.x
installation that was installed in the same directory.

v To upgrade from V6.x to a newer version, click Update.

Installing Worklight Server into WebSphere Application Server
Network Deployment
To install Worklight Server into a set of WebSphere Application Server Network
Deployment servers, run IBM Installation Manager on the machine where the
deployment manager is running.

Procedure
1. When IBM Installation Manager prompts you to specify the database type,

select any option other than Apache Derby. IBM Worklight supports Apache
Derby only in embedded mode, and this choice is incompatible with
deployment through WebSphere Application Server Network Deployment.

2. In the installer panel in which you specify the WebSphere Application Server
installation directory, select the deployment manager profile.
Attention: Do not select an application server profile and then a single
managed server: doing so causes the deployment manager to overwrite the
configuration of the server regardless of whether you install on the machine on
which the deployment manager is running or on a different machine.

3. Select the required scope depending on where you want Worklight Server to be
installed. The following table lists the available scopes:

Table 5. Selecting the required scope

Scope Explanation

Cell Installs Worklight Server into all application
servers of the cell.

Cluster Installs Worklight Server into all application
servers of the specified cluster.

Node (excluding clusters) Installs Worklight Server into all application
servers of the specified node that are not in
a cluster.

Server Installs Worklight Server into the specified
server, which is not in a cluster.

4. Restart the target servers by following the procedure in “Completing the
installation” on page 77.

64 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Results

The installation has no effect outside the set of servers in the specified scope. The
JDBC providers and JDBC data sources are defined with the specified scope. The
entities that have a cell-wide scope (the applications and, for DB2, the
authentication alias) have a suffix in their name that makes them unique. So, you
can install Worklight Server in different configurations or even different versions of
Worklight Server, in different clusters of the same cell.

Note: Because the JDBC driver is installed only in the specified set of application
servers, the Test connection button for the JDBC data sources in the WebSphere
Application Server administration console of the deployment manager might not
work.

What to do next

You need to complete the following additional configuration:
v If you use a front-end HTTP server, you need to configure the public URL

Silent installation
You can use IBM Installation Manager to complete a silent installation of Worklight
Server on multiple computers or on computers where a GUI interface is not
available.

About this task

Silent installation uses predetermined answers to wizard questions, rather than
presenting a GUI that asks the questions and records the answers. Silent
installation is useful when:
v You want to install Worklight Server on a set of computers that are configured in

the same way.
v You want to install Worklight Server on a computer where a GUI is not readily

available. For example, a GUI might not be available on a production server
behind a firewall that prevents the use of VNC, RDP, remote X11, and ssh -X.

Silent installations are defined by an XML file that is called a response file. This file
contains the necessary data to complete installation operations silently. Silent
installations are started from the command line or a batch file.

You can use IBM Installation Manager to record preferences and installation actions
for your response file in user interface mode. Alternatively, you can create a
response file manually by using the documented list of response file commands
and preferences.

You can use one response file to install, update, or uninstall multiple products.

You can use a response file to do almost anything that is possible by using IBM
Installation Manager in wizard mode. For example, with a response file you can
specify the location of the repository that contains the package, the package to
install, and the features to install for that package. You can also use a response file
to apply updates or interim fixes or to uninstall a package.

Silent installation is described in the IBM Installation Manager documentation, see
Working in silent mode.

Chapter 6. Installing and configuring 65

http://pic.dhe.ibm.com/infocenter/install/v1r5/index.jsp?topic=%2Fcom.ibm.silentinstall12.doc%2Ftopics%2Ft_silentinstall_overview.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

There are two ways to create a suitable response file:
v Working with sample response files provided in the IBM Worklight Information

Center.
v Working with a response file recorded on a different computer.

Both of these methods are documented in the following sections.

In addition, for a list of the parameters that are created in the response file by the
IBM Installation Manager wizard, see “Silent installation parameters” on page 70.

Working with sample response files for IBM Installation Manager:

Instructions for working with sample response files for IBM Installation Manager
to facilitate creating a silent Worklight Server installation.

Procedure

Sample response files for IBM Installation Manager are provided in the
Silent_Install_Sample_Files.zip compressed file. The following procedures
describe how to make use of them.
1. Pick the appropriate sample response file from the compressed file. The

Silent_Install_Sample_Files.zip file contains one subdirectory per release; for
this release, you find the sample files in the subdirectory named 6.1.
For an installation that does not install IBM Application Center on an
application server, use the file named install-no-appcenter.xml. For an
installation that installs IBM Application Center, pick the sample response file
from the following table, depending on your application server and database.

Table 6. Sample installation response files in the Silent_Install_Sample_Files.zip file

Application
server Derby IBM DB2 MySQL Oracle

WebSphere
Application
Server Liberty
Profile

install-
liberty-
derby.xml

install-
liberty-db2.xml

install-
liberty-
mysql.xml (see
Note)

install-
liberty-
oracle.xml

WebSphere
Application
Server Full
Profile,
stand-alone
server

install-was-
derby.xml

install-was-
db2.xml

install-was-
mysql.xml (see
Note)

install-was-
oracle.xml

WebSphere
Application
Server Network
Deployment

n/a install-wasnd-
cluster-db2.xml

install-wasnd-
server-db2.xml

install-wasnd-
node-db2.xml

install-wasnd-
cell-db2.xml

install-wasnd-
cluster-
mysql.xml (see
Note)

install-wasnd-
server-
mysql.xml (see
Note)

install-wasnd-
node-mysql.xml

install-wasnd-
cell-mysql.xml
(see Note)

install-wasnd-
cluster-
oracle.xml

install-wasnd-
server-
oracle.xml

install-wasnd-
node-oracle.xml

install-wasnd-
cell-oracle.xml

66 IBM Worklight V6.1.0

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/Silent_Install_Sample_Files.zip

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 6. Sample installation response files in the Silent_Install_Sample_Files.zip
file (continued)

Application
server Derby IBM DB2 MySQL Oracle

Apache Tomcat install-tomcat-
derby.xml

install-tomcat-
db2.xml

install-tomcat-
mysql.xml

install-tomcat-
oracle.xml

Note: MySQL in combination with WebSphere Application Server Liberty
Profile or WebSphere Application Server Full Profile is not classified as a
supported configuration. For more information, see WebSphere Application
Server Support Statement. We suggest that you use IBM DB2 or another
database supported by WebSphere Application Server to benefit from a
configuration that is fully supported by IBM Support.
For uninstallation, use a sample file that depends on the version of Worklight
Server that you initially installed in the particular package group. (Worklight
Server V6.x and newer uses a package group named IBM Worklight, whereas
Worklight Server V5.x used the package group Worklight.)

Table 7. Sample uninstallation response files in the Silent_Install_Sample_Files.zip

Initial version of Worklight Server Sample file

V5.x uninstall-initially-v5.xml

V6.x uninstall-initially-v6.xml

2. Change the file access rights of the sample file to be as restrictive as possible.
Step 4 requires that you supply some passwords. If you must prevent other
users on the same computer from learning these passwords, you must remove
the read permissions of the file for users other than yourself. You can use a
command, such as the following examples:
v On UNIX:

chmod 600 <target-file.xml>

v On Windows:
cacls <target-file.xml> /P Administrators:F %USERDOMAIN%\%USERNAME%:F

3. Similarly, if the server is a WebSphere Application Server Liberty Profile or
Apache Tomcat server, and the server is meant to be started only from your
user account, you must also remove the read permissions for users other than
yourself from the following file:
v For WebSphere Application Server Liberty profile: wlp/usr/servers/

<server>/server.xml

v For Apache Tomcat: conf/server.xml
4. Adjust the list of repositories, in the <server> element. For more information

about this step, see section named Information about the repositories in “Become
familiar with IBM Installation Manager before you start” on page 236 and the
IBM Installation Manager documentation at Repositories.
In the <profile> element, adjust the values of each key/value pair.
In the <offering> element in the <install> element, set the version attribute to
match the release you want to install, or remove the version attribute if you
want to install the newest version available in the repositories.

5. Perform the installation by using the imcl command, as described in the IBM
Installation Manager documentation at Installing a package silently by using a
response file.

Chapter 6. Installing and configuring 67

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://pic.dhe.ibm.com/infocenter/install/v1r6/index.jsp?topic=%2Fcom.ibm.silentinstall12.doc%2Ftopics%2Fr_repository_types.html
http://pic.dhe.ibm.com/infocenter/install/v1r6/index.jsp?topic=%2Fcom.ibm.silentinstall12.doc%2Ftopics%2Ft_silent_response_file_install.html
http://pic.dhe.ibm.com/infocenter/install/v1r6/index.jsp?topic=%2Fcom.ibm.silentinstall12.doc%2Ftopics%2Ft_silent_response_file_install.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Working with a response file recorded on a different machine:

Instructions for working with response files for IBM Installation Manager created
on another machine to facilitate creating a silent Worklight Server installation.

Procedure

1. Record a response file, by running IBM Installation Manager in wizard mode
and with option -record responseFile on a machine where a GUI is available.
For more details, see Record a response file with Installation Manager. The
following code example shows a recorded response file:
<?xml version="1.0" encoding="UTF-8"?>
<agent-input acceptLicense=’true’>

<server>
<repository location=’http://packages.example.com/ibm/worklight-5.0.5/’/>

</server>
<profile id=’Worklight’ installLocation=’/opt/IBM/Worklight’>

<data key=’eclipseLocation’ value=’/opt/IBM/Worklight’/>
<data key=’user.import.profile’ value=’false’/>
<data key=’cic.selector.os’ value=’linux’/>
<data key=’cic.selector.ws’ value=’gtk’/>
<data key=’cic.selector.arch’ value=’x86’/>
<data key=’cic.selector.nl’ value=’en’/>
<data key=’user.writable.data.group’ value=’admin’/>
<data key=’user.database.db2.port’ value=’50000’/>
<data key=’user.database.preinstalled’ value=’true’/>
<data key=’user.database.selection’ value=’db2’/>
<data key=’user.database.db2.host’ value=’db2-101.example.com’/>
<data key=’user.database.db2.username’ value=’wl5test’/>
<data key=’user.database.db2.password’ value=’{xyzzy}7284OFD1KRHW8AC13S’/>
<data key=’user.database.db2.driver’ value=’/n/databases/drivers/db2-10.1/db2jcc4.jar’/>
<data key=’user.appserver.was85liberty.preinstalled’ value=’false’/>
<data key=’user.appserver.selection’ value=’was85liberty’/>

</profile>
<install modify=’false’>

<offering id=’com.ibm.imp.mfee’
version=’5.0.5.20121018_0636’
profile=’Worklight’
features=’main.feature’
installFixes=’none’/>

</install>
<preference name=’com.ibm.cic.common.core.preferences.eclipseCache’

value=’/n/java/rational/SDP2Shared’/>
<preference name=’com.ibm.cic.common.core.preferences.connectTimeout’ value=’30’/>
<preference name=’com.ibm.cic.common.core.preferences.readTimeout’ value=’45’/>
<preference name=’com.ibm.cic.common.core.preferences.downloadAutoRetryCount’ value=’0’/>
<preference name=’offering.service.repositories.areUsed’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.ssl.nonsecureMode’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.http.disablePreemptiveAuthentication’

value=’false’/>
<preference name=’http.ntlm.auth.kind’ value=’NTLM’/>
<preference name=’http.ntlm.auth.enableIntegrated.win32’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.keepFetchedFiles’ value=’false’/>
<preference name=’PassportAdvantageIsEnabled’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.searchForUpdates’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.import.enabled’ value=’true’/>
<preference name=’com.ibm.cic.agent.ui.displayInternalVersion’ value=’false’/>
<preference name=’com.ibm.cic.common.sharedUI.showErrorLog’ value=’true’/>
<preference name=’com.ibm.cic.common.sharedUI.showWarningLog’ value=’true’/>
<preference name=’com.ibm.cic.common.sharedUI.showNoteLog’ value=’true’/>

</agent-input>

2. Change the file access rights of the response file to be as restrictive as possible.
Step 4 requires that you supply some passwords. If you must prevent other
users on the same computer from learning these passwords, you must remove

68 IBM Worklight V6.1.0

http://pic.dhe.ibm.com/infocenter/install/v1r5/index.jsp?topic=%2Fcom.ibm.silentinstall12.doc%2Ftopics%2Ft_silent_create_response_files_IM.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

the read permissions of the file for users other than yourself. You can use a
command, such as the following examples:
v On UNIX:

chmod 600 response-file.xml

v On Windows:
cacls response-file.xml /P Administrators:F %USERDOMAIN%\%USERNAME%:F

3. Similarly, if the server is a WebSphere Application Server Liberty Profile or
Apache Tomcat server, and the server is meant to be started only from your
user account, you must also remove the read permissions for users other than
yourself from the following file:
v For WebSphere Application Server Liberty profile: wlp/usr/servers/

<server>/server.xml

v For Apache Tomcat: conf/server.xml
4. Modify the response file to take into account differences between the machine

on which the response file was created and the target machine. The following
code example shows the same response file, edited so that it can be used in
step 5.

Note: This is an example file based on the response file created in step 1. It
might not be suitable for your environment. It is important that you record
your own response file, so that it contains the correct parameters for your
requirements.
<?xml version="1.0" encoding="UTF-8"?>
<agent-input acceptLicense=’true’>

<server>
<!-- The repositories where IBM Installation Manager can find offerings.

URLs and absolute file names are accepted; they should point to
directories that contain a repository.config file. -->

<repository location=’http://packages.example.com/ibm/worklight-5.0.5/’/>
</server>

<!-- The declaration of the IBM Installation Manager profile.
Make sure that the installLocation, if it exists, is empty. -->

<profile id=’Worklight’ installLocation=’/opt/IBM/Worklight’>

<!-- The eclipseLocation is not relevant for Worklight Server. -->
<data key=’eclipseLocation’ value=’/opt/IBM/Worklight’/>
<data key=’user.import.profile’ value=’false’/>

<!-- Characteristics of the target machine.
For the possible values, refer to
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fguide%2Fua_dynamic_filters.htm -->

<data key=’cic.selector.os’ value=’linux’/>
<data key=’cic.selector.ws’ value=’gtk’/>
<data key=’cic.selector.arch’ value=’x86’/>
<data key=’cic.selector.nl’ value=’en’/>

<!-- Database choice. Possible values are derby, db2, mysql, oracle. -->
<data key=’user.database.selection’ value=’db2’/>
<data key=’user.database.preinstalled’ value=’true’/>

<!-- Settings for the database.
The database user password is obfuscated.
Make sure that the database driver jar file (including the accompanying
license file, in the case of DB2) exists on the target machine. -->

<data key=’user.database.db2.host’ value=’db2-101.example.com’/>
<data key=’user.database.db2.port’ value=’50000’/>
<data key=’user.database.db2.username’ value=’wl5test’/>
<data key=’user.database.db2.password’ value=’{xyzzy}7284OFD1KRHW8AC13S’/>

Chapter 6. Installing and configuring 69

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<data key=’user.database.db2.driver’ value=’/n/databases/drivers/db2-10.1/db2jcc4.jar’/>

<!-- Application server choice. -->
<data key=’user.appserver.selection’ value=’was85liberty’/>
<data key=’user.appserver.was85liberty.preinstalled’ value=’false’/>

<!-- Operating system group that shall be allowed to start the server. -->
<data key=’user.writable.data.group’ value=’admin’/>

</profile>

<!-- Define what IBM Installation Manager should install. -->
<install modify=’false’>

<!-- You can omit the ’version’ and ’installFixes’ attributes. -->
<offering id=’com.ibm.imp.mfee’

version=’5.0.5.20121018_0636’
profile=’Worklight’
features=’main.feature’
installFixes=’none’/>

</install>

<!-- The IBM Installation Manager preferences don’t need to be transferred to the
target machine. -->

</agent-input>

5. Install Worklight Server by using the response file on the target machine, as
described in Install a package silently by using a response file.

Silent installation parameters:

The response file that you create for silent installations by running the IBM
Installation Manager wizard supports a number of parameters.

Table 8. Parameters available for silent installation

Key When necessary Description
Allowed
values

user.appserver.selection2 Always Type of
application
server. was
means
preinstalled
WAS 7.0, 8.0,
or 8.5. tomcat
means Tomcat
7.0 or newer.

was, tomcat,
none

The value
none means
that the
installer will
not install
the
Application
Center. If
this value is
used, both
user.appserver.selection2
and
user.database.selection2
must take
the value
none.

user.appserver.was.installdir ${user.appserver.selection2}
== was

WAS
installation
directory.

An absolute
directory
name.

70 IBM Worklight V6.1.0

http://pic.dhe.ibm.com/infocenter/install/v1r5/index.jsp?topic=%2Fcom.ibm.silentinstall12.doc%2Ftopics%2Ft_silent_response_file_install.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 8. Parameters available for silent installation (continued)

Key When necessary Description
Allowed
values

user.appserver.was.profile ${user.appserver.selection2}
== was

Profile into
which to
install the
applications.
For WAS ND,
specify the
Deployment
Manager
profile.
Liberty
means the
Liberty profile
(subdirectory
wlp).

The name of
one of the
WAS
profiles.

user.appserver.was.cell ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

WAS cell into
which to
install the
applications.

The name of
the WAS cell.

user.appserver.was.node ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

WAS node
into which to
install the
applications.
This
corresponds
to the current
machine.

The name of
the WAS
node of the
current
machine.

user.appserver.was.scope ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

Type of set of
servers into
which to
install the
applications.
server means
a standalone
server.
nd-cell
means a WAS
ND cell.
nd-cluster
means a WAS
ND cluster.
nd-node
means a WAS
ND node
(excluding
clusters).
nd-server
means a
managed
WAS ND
server.

server,
nd-cell,
nd-cluster,
nd-node,
nd-server

Chapter 6. Installing and configuring 71

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 8. Parameters available for silent installation (continued)

Key When necessary Description
Allowed
values

user.appserver.was.serverInstance${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty &&
${user.appserver.was.scope}
== server

Name of WAS
server into
which to
install the
applications.

The name of
a WAS
server on the
current
machine.

user.appserver.was.nd.cluster ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty &&
${user.appserver.was.scope}
== nd-cluster

Name of WAS
ND cluster
into which to
install the
applications.

The name of
a WAS ND
cluster in the
WAS cell.

user.appserver.was.nd.node ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty &&
(${user.appserver.was.scope}
== nd-node ||
${user.appserver.was.scope}
== nd-server)

Name of WAS
ND node into
which to
install the
applications.

The name of
a WAS ND
node in the
WAS cell.

user.appserver.was.nd.server ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty &&
${user.appserver.was.scope}
== nd-server

Name of WAS
ND server
into which to
install the
applications.

The name of
a WAS ND
server in the
given WAS
ND node.

user.appserver.was.admin.name ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

Name of WAS
administrator.

user.appserver.was.admin.password2${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

Password of
WAS
administrator,
optionally
encrypted in a
specific way.

user.appserver.was.appcenteradmin.password${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

Password of
appcenteradmin
user to add to
the WAS
users list,
optionally
encrypted in a
specific way.

user.appserver.was.serial ${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
!= Liberty

Suffix that
distinguishes
the
applications
to be installed
from other
installations
of Worklight
Server.

String of 10
decimal
digits.

72 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 8. Parameters available for silent installation (continued)

Key When necessary Description
Allowed
values

user.appserver.was85liberty.serverInstance_${user.appserver.selection2}
== was &&
${user.appserver.was.profile}
== Liberty

Name of WAS
Liberty Server
into which to
install the
applications.

user.appserver.tomcat.installdir${user.appserver.selection2}
== tomcat

Apache
Tomcat
installation
directory. For
a Tomcat
installation
that is split
between a
CATALINA_HOME
directory and
a
CATALINA_BASE
directory, here
you need to
specify the
value of the
CATALINA_BASE
environment
variable.

An absolute
directory
name.

user.database.selection2 Always Type of
database
management
system used
to store the
databases.

derby, db2,
mysql,
oracle, none

The value
none means
that the
installer will
not install
the
Application
Center. If
this value is
used, both
user.appserver.selection2
and
user.database.selection2
must take
the value
none.

user.database.preinstalled Always true means a
preinstalled
database
management
system, false
means Apache
Derby to
install.

true, false

Chapter 6. Installing and configuring 73

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 8. Parameters available for silent installation (continued)

Key When necessary Description
Allowed
values

user.database.derby.datadir ${user.database.selection2}
== derby

The directory
in which to
create or
assume the
Derby
databases.

An absolute
directory
name.

user.database.db2.host ${user.database.selection2}
== db2

The host
name or IP
address of the
DB2 database
server.

user.database.db2.port ${user.database.selection2}
== db2

The port
where the
DB2 database
server listens
for JDBC
connections.
Usually 50000.

A number
between 1
and 65535.

user.database.db2.driver ${user.database.selection2}
== db2

The absolute
file name of
db2jcc.jar or
db2jcc4.jar.

An absolute
file name.

user.database.db2.appcenter.username${user.database.selection2}
== db2

The user
name used to
access the
DB2 database
for
Application
Center.

Non-empty.

user.database.db2.appcenter.password${user.database.selection2}
== db2

The password
used to access
the DB2
database for
Application
Center,
optionally
encrypted in a
specific way.

Non-empty
password.

user.database.db2.appcenter.dbname${user.database.selection2}
== db2

The name of
the DB2
database for
Application
Center.

Non-empty;
a valid DB2
database
name.

user.database.db2.appcenter.schema${user.database.selection2}
== db2

The name of
the schema
for
Application
Center in the
DB2 database.

74 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 8. Parameters available for silent installation (continued)

Key When necessary Description
Allowed
values

user.database.mysql.host ${user.database.selection2}
== mysql

The host
name or IP
address of the
MySQL
database
server.

user.database.mysql.port ${user.database.selection2}
== mysql

The port
where the
MySQL
database
server listens
for JDBC
connections.
Usually 3306.

A number
between 1
and 65535.

user.database.mysql.driver ${user.database.selection2}
== mysql

The absolute
file name of
mysql-
connector-
java-5.*-
bin.jar.

An absolute
file name.

user.database.mysql.appcenter.username${user.database.selection2}
== mysql

The user
name used to
access the
MySQL
database for
Application
Center.

Non-empty.

user.database.mysql.appcenter.password${user.database.selection2}
== mysql

The password
used to access
the MySQL
database for
Application
Center,
optionally
encrypted in a
specific way.

user.database.mysql.appcenter.dbname${user.database.selection2}
== mysql

The name of
the MySQL
database for
Application
Center.

Non-empty,
a valid
MySQL
database
name.

user.database.oracle.host ${user.database.selection2}
== oracle, unless
${user.database.oracle.appcenter.jdbc.url}
is specified

The host
name or IP
address of the
Oracle
database
server.

Chapter 6. Installing and configuring 75

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 8. Parameters available for silent installation (continued)

Key When necessary Description
Allowed
values

user.database.oracle.port ${user.database.selection2}
== oracle, unless
${user.database.oracle.appcenter.jdbc.url}
is specified

The port
where the
Oracle
database
server listens
for JDBC
connections.
Usually 1521.

A number
between 1
and 65535.

user.database.oracle.driver ${user.database.selection2}
== oracle

The absolute
file name of
ojdbc6.jar.

An absolute
file name.

user.database.oracle.appcenter.username${user.database.selection2}
== oracle

The user
name used to
access the
Oracle
database for
Application
Center.

A string
consisting of
1 to 30
characters:
ASCII digits,
ASCII
uppercase
and
lowercase
letters, '_', '#',
'$' are
allowed.

user.database.oracle.appcenter.username.jdbc${user.database.selection2}
== oracle

The user
name used to
access the
Oracle
database for
Application
Center, in a
syntax
suitable for
JDBC.

Same as
${user.database.oracle.appcenter.username}
if it starts
with an
alphabetic
character
and does not
contain
lowercase
characters,
otherwise it
must be
${user.database.oracle.appcenter.username}
surrounded
by double
quotes.

user.database.oracle.appcenter.password${user.database.selection2}
== oracle

The password
used to access
the Oracle
database for
Application
Center,
optionally
encrypted in a
specific way.

The
password
must be a
string
consisting of
1 to 30
characters:
ASCII digits,
ASCII
uppercase
and
lowercase
letters, '_', '#',
'$' are
allowed.

76 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 8. Parameters available for silent installation (continued)

Key When necessary Description
Allowed
values

user.database.oracle.appcenter.dbname${user.database.selection2}
== oracle, unless
${user.database.oracle.appcenter.jdbc.url}
is specified

The name of
the Oracle
database for
Application
Center.

Non-empty,
a valid
Oracle
database
name.

user.database.oracle.appcenter.jdbc.url${user.database.selection2}
== oracle, unless
${user.database.oracle.host},
${user.database.oracle.port},
${user.database.oracle.appcenter.dbname}
are all specified

The JDBC
URL of the
Oracle
database for
Application
Center.

A valid
Oracle JDBC
URL. Starts
with
"jdbc:oracle:".

user.writable.data.user Always The operating
system user
that is
allowed to
run the
installed
server.

An operating
system user
name, or
empty.

user.writable.data.group2 Always The operating
system users
group that is
allowed to
run the
installed
server.

An operating
system users
group name,
or empty.

Completing the installation
When installation is complete, you must restart the web application server in
certain cases.

You must restart the web application server in the following circumstances:
v When you are using WebSphere Application Server with DB2 as database type.
v When you are using WebSphere Application Server and have opened it without

the application security enabled before you installed Application Center or
Worklight Server.
The IBM Worklight installer must activate the application security of WebSphere
Application Server (if not active yet) to install Application Center. Then, for this
activation to take place, restart the application server after the installation of
Worklight Server completed.

v When you are using WebSphere Application Server Liberty Profile or Apache
Tomcat.

v After you upgraded from a previous version of Worklight Server.

If you are using WebSphere Application Server Network Deployment and chose an
installation through the deployment manager:
v You must restart the servers that were running during the installation and on

which the Worklight Server web applications are installed.
To restart these servers with the deployment manager console, select
Applications > Application Types > WebSphere enterprise applications >
IBM_Application_Center_Services > Target specific application status.

Chapter 6. Installing and configuring 77

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v You do not have to restart the deployment manager or the node agents.

Note: Only the IBM Application Center is installed into the application server. A
Worklight Console is not installed by default. To install a Worklight Console, you
need to follow the steps in Chapter 10, “Deploying IBM Worklight projects,” on
page 711.

Distribution structure of Worklight Server
The Worklight Server files and tools are installed in and below the Worklight
Server installation directory.

Table 9. Files and subdirectories in the Worklight Server installation directory

Item Description

shortcuts Launcher scripts for Apache Ant and the
Worklight Server Configuration Tool, which
are supplied with Worklight Server.

Table 10. Files and subdirectories in the WorklightServer subdirectory

Item Description

worklight-jee-library.jar The Worklight server library for production.
See Chapter 10, “Deploying IBM Worklight
projects,” on page 711 for instructions on
deploying an IBM Worklight Project and this
library to an Application Server. The
deployment is typically performed by using
Ant tasks, but instructions for manual
deployment are also provided.

worklight-ant-builder.jar A set of Ant tasks that help you build
projects, applications, and adapters for use
in Worklight Server. See Chapter 10,
“Deploying IBM Worklight projects,” on
page 711 for detailed documentation of the
Ant tasks that are provided in this library.

worklight-ant-deployer.jar A set of Ant tasks that help you deploy
projects, applications, and adapters to your
Worklight Server. See Chapter 10,
“Deploying IBM Worklight projects,” on
page 711 for detailed documentation of the
Ant tasks that are provided in this library.

configuration-samples Sample Ant files for configuring a database
for the Worklight Server and deploying an
IBM Worklight Project to an Application
Server. See “Sample configuration files” on
page 762 for instructions on how to use
these Ant projects.

databases SQL scripts to be used for the manual
creation of tables for Worklight Server,
instead of using Ant tasks for the automatic
configuration of the tables for Worklight
Server. These scripts are described in
“Creating and configuring the databases
manually” on page 732.

78 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 10. Files and subdirectories in the WorklightServer subdirectory (continued)

Item Description

encrypt.bat and encrypt.sh Tools to encrypt confidential properties that
are used to configure a Worklight Server,
such as a database password or a certificate.
This tool is documented in “Storing
properties in encrypted format” on page 779.

report-templates Report templates to configure BIRT Reports
for your Application Server. They are
documented in “Manually configuring BIRT
Reports for your application server” on page
982.

Table 11. Files and subdirectories in the ApplicationCenter subdirectory

Item Description

ApplicationCenter/installer
IBMApplicationCenter.apk

The Android version of the
Application Center Mobile client.

IBMApplicationCenterBB6.zip
The Blackberry version of the
Application Center Mobile client.

IBMApplicationCenterUnsigned.xap
The Windows Phone 8 version of
the Application Center Mobile
client. You must sign the .xap file
with your company account before
using it.

ApplicationCenter/installer/
IBMAppCenterBlackBerry6

Contains the BlackBerry project for the
mobile Client for OS V6 and V7. You must
compile this project to create the BlackBerry
version of the mobile client.

ApplicationCenter/installer/IBMAppCenter Contains the Worklight Studio project for the
mobile Client. You must compile this project
to create the iOS version of the mobile client.

ApplicationCenter/console/
appcenterconsole.war

The WAR file for the Application
Center console user interface web
application.

applicationcenter.war
The WAR file for the Application
Center REST services web
application.

applicationcenter.ear
The enterprise application archive
(EAR) file to be deployed under
IBM PureApplication System.

Chapter 6. Installing and configuring 79

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 11. Files and subdirectories in the ApplicationCenter subdirectory (continued)

Item Description

ApplicationCenter/databases
create-appcenter-derby.sql

The SQL script to recreate the
application center database on
derby.

create-appcenter-db2.sql
The SQL script to recreate the
application center database on DB2.

create-appcenter-mysql.sql
The SQL script to recreate the
application center database on
mySQL.

create-appcenter-oracle.sql
The SQL script to recreate the
application center database on
Oracle.

In addition, this directory contains the SQL
scripts to upgrade the database from earlier
versions of IBM Worklight.

80 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 11. Files and subdirectories in the ApplicationCenter subdirectory (continued)

Item Description

ApplicationCenter/tools
android-sdk

The directory that contains the part
of the Android SDK required by the
Application Center console.

applicationcenterdeploytool.jar
The JAR file that contains the Ant
task to deploy an application to the
Application Center.

acdeploytool.bat
The startup script of the
deployment tool for use on
Microsoft Windows systems.

acdeploytool.sh
The startup script of the
deployment tool for use on UNIX
systems.

build.xml
Example of an Ant script to deploy
applications to the Application
Center.

dbconvertertool.sh
The startup script of the database
converter tool for use on UNIX
systems.

dbconvertertool.bat
The startup script of the database
converter tool for use on Microsoft
Windows systems.

dbconvertertool.jar
The main library of the database
converter tool.

lib The directory that contains all Java™

Archive (JAR) files that are required
by the database converter tool.

json4j.jar
The required JSon4J Java archive
file.

README.TXT
Readme file that explains how to
use the deployment tool.

Table 12. Files and subdirectories in the License subdirectory

Item Description

License-wce License for IBM Worklight Consumer
Edition

License-wee License for IBM Worklight Enterprise
Edition

Chapter 6. Installing and configuring 81

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 13. Files and subdirectories in the tools subdirectory

Item Description

tools/apache-ant-<version> A binary installation of Apache Ant that can
be used to run the ant tasks described at
Chapter 10, “Deploying IBM Worklight
projects,” on page 711.

Table 14. Files and subdirectories in the Analytics subdirectory

Item Description

analytics_aix_ppc64.zip Archive for IBM SmartCloud Analytics
Embedded for AIX®. See “Installing and
configuring IBM SmartCloud Analytics
Embedded” on page 213 for instructions to
install and configure this platform.

analytics_linux_x86_64.zip Archive for IBM SmartCloud Analytics
Embedded for Redhat Linux. See “Installing
and configuring IBM SmartCloud Analytics
Embedded” on page 213 for instructions to
install and configure this platform.

Manually installing Application Center
In some cases, you might want to reconfigure Worklight Server so that it uses a
different database or schema from the one that was specified during installation of
Worklight Server. The way that you do this reconfiguration depends on the type of
database and on the kind of application server, as explained in the following
topics.

Note: Whether you install Application Center with IBM Installation Manager as
part of the Worklight Server installation or manually, one point to bear in mind is
that "rolling updates" (see “Deciding between in-place upgrade and rolling
upgrade” on page 273) of Application Center are not supported. That is, you
cannot install two versions of Application Center (for example, V5.0.6 and V6.0.0)
that operate on the same database.

Configuring the DB2 database manually for Application Center
You configure the DB2 database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure
1. Create the database. This step is described in “Creating the DB2 database for

Application Center” on page 60.
2. Create the tables in the database. This step is described in “Setting up your

DB2 database manually for Application Center.”
3. Perform the application server-specific setup as the following list shows.

Setting up your DB2 database manually for Application Center:

You can set up your DB2 database for Application Center manually.

About this task

Set up your DB2 database for Application Center by creating the database schema.

82 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

1. Create a system user, worklight, in a DB2 admin group such as DB2USERS, by
using the appropriate commands for your operating system. Give it the
password worklight. For more information, see the DB2 documentation and the
documentation for your operating system.

Important: You can name your user differently, or set a different password, but
ensure that you enter the appropriate user name and password correctly across
the DB2 database setup. DB2 has a user name and password length limit of 8
characters for UNIX and Linux systems, and 30 characters for Windows.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:
v On Windows systems, click Start > IBM DB2 > Command Line Processor.
v On Linux or UNIX systems, go to ~/sqllib/bin and enter ./db2.

3. Enter the following database manager and SQL statements to create a database
that is called APPCNTR:
CREATE DATABASE APPCNTR COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO APPCNTR
GRANT CONNECT ON DATABASE TO USER worklight
QUIT

4. Run DB2 with the following commands to create the APPCNTR tables, in a
schema named APPSCHM (the name of the schema can be changed). This
command can be run on an existing database that has a page size compatible
with the one defined in step 3.
db2 CONNECT TO APPCNTR
db2 SET CURRENT SCHEMA = ’APPSCHM’
db2 -vf <worklight_install_dir>/ApplicationCenter/databases/create-appcenter-db2.sql -t

Configuring Liberty Profile for DB2 manually for Application Center:

If you want to manually set up and configure your DB2 database for Application
Center with WebSphere Application Server Liberty Profile, use the following
procedure.

About this task

Complete the DB2 Database Setup procedure before continuing.

Procedure

1. Add the DB2 JDBC driver JAR file (download it from DB2 JDBC Driver
Versions, or fetch it from the directory DB2_INSTALL_DIR/java on the DB2
server) to $LIBERTY_HOME/wlp/usr/shared/resources/db2. If that directory does
not exist, create it.

2. Configure the data source in the $LIBERTY_HOME/wlp/usr/servers/
worklightServer/server.xml file (worklightServer may be replaced in this path
by the name of your server) as follows:
<library id="DB2Lib">

<fileset dir="${shared.resource.dir}/db2" includes="*.jar"/>
</library>

<!-- Declare the IBM Application Center database. -->
<dataSource jndiName="jdbc/AppCenterDS" transactional="false">

<jdbcDriver libraryRef="DB2Lib"/>

Chapter 6. Installing and configuring 83

http://www.ibm.com/support/docview.wss?uid=swg21363866
http://www.ibm.com/support/docview.wss?uid=swg21363866

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<properties.db2.jcc databaseName="APPCNTR" currentSchema="APPSCHM"
serverName="db2server" portNumber="50000"
user="worklight" password="worklight"/>

</dataSource>

Where worklight after user= is the name of the system user with "CONNECT"
access to the APPCNTR database that you have previously created, and worklight
after password= is this user's password. If you have defined either a different
user name, or a different password, or both, replace worklight accordingly.
Also, replace db2server with the host name of your DB2 server (for example,
localhost, if it is on the same machine).
DB2 has a user name and password length limit of 8 characters for UNIX and
Linux systems, and 30 characters for Windows.

Configuring WebSphere Application Server for DB2 manually for Application
Center:

If you want to manually set up and configure your DB2 database for Application
Center with WebSphere Application Server, use the following procedure.

About this task

Complete the DB2 Database Setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/Worklight/db2.
v For deployment to a WebSphere Application Server ND cell, use

WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
Worklight/db2.

v For deployment to a WebSphere Application Server ND cluster, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/Worklight/db2.

v For deployment to a WebSphere Application Server ND node, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/Worklight/db2.

v For deployment to a WebSphere Application Server ND server, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/servers/server-name/Worklight/db2.

If this directory does not exist, create it.
2. Add the DB2 JDBC driver JAR file (download it from DB2 JDBC Driver

Versions, or fetch it from the directory DB2_INSTALL_DIR/java on the DB2
server) and its associated license files, if any, to the directory determined in
step 1.

3. Set up the JDBC provider:
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers > New.
b. Set the scope of the JDBC connection to Node level.
c. Set Database type to DB2.
d. Set Provider type to DB2 Using IBM JCC Driver.
e. Set Implementation Type to Connection pool data source.

84 IBM Worklight V6.1.0

http://www.ibm.com/support/docview.wss?uid=swg21363866
http://www.ibm.com/support/docview.wss?uid=swg21363866

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

f. Set Name to DB2 Using IBM JCC Driver.
g. Click Next.
h. Set the class path to the set of JAR files in the directory determined in step

1, replacing WAS_INSTALL_DIR/profiles/profile-name with the WebSphere
Application Server variable reference ${USER_INSTALL_ROOT}.

i. Do not set Native library path.
j. Click Next.
k. Click Finish.
l. The JDBC provider is created.
m. Click Save.

4. Create a data source for the IBM Application Center database:
a. Select the new JDBC provider and click Data Source.
b. Click New to create a data source.
c. Set the Data source name to Application Center Database.
d. Set JNDI Name to jdbc/AppCenterDS.
e. Click Next.
f. Create JAAS-J2C authentication data, specifying the DB2 user name and

password for Container Connection.
g. Select the component-managed authentication alias that you created.
h. Click Next and Finish.
i. Click Save.
j. In Resources > JDBC > Data sources, select the new data source.
k. Click WebSphere Application Server data source properties.
l. Select the Non-transactional data source check box.
m. Click OK.
n. Click Save.
o. Click Custom properties for the datasource, select property currentSchema,

and set the value to the schema used to create the Application Center tables
(APPSCHM in this example).

5. Test the data source connection by selecting Data Source and clicking Test
Connection.

Configuring Apache Tomcat for DB2 manually for Application Center:

If you want to manually set up and configure your DB2 database for Application
Center with Apache Tomcat server, use the following procedure.

About this task

Complete the DB2 Database Setup procedure before continuing.

Procedure

1. Add the DB2 JDBC driver JAR file (download it from DB2 JDBC Driver
Versions, or fetch it from the directory DB2_INSTALL_DIR/java on the DB2
server) to $TOMCAT_HOME/lib.

2. Update the $TOMCAT_HOME/conf/context.xml file as follows:
<Context>

...
<Resource auth="Container"

driverClassName="com.ibm.db2.jcc.DB2Driver"

Chapter 6. Installing and configuring 85

http://www.ibm.com/support/docview.wss?uid=swg21363866
http://www.ibm.com/support/docview.wss?uid=swg21363866

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

name="jdbc/AppCenterDS"
username="worklight"
password="password"
type="javax.sql.DataSource"
url="jdbc:db2://server:50000/APPCNTR:currentSchema=APPSCHM;"/>

...
</Context>

Where worklight after user= is the name of the system user with "CONNECT"
access to the APPCNTR database that you have previously created, and password
after password= is this user's password. If you have defined either a different
user name, or a different password, or both, replace these entries accordingly.
DB2 has a user name and password length limit of 8 characters for UNIX and
Linux systems, and 30 characters for Windows.

Configuring the Apache Derby database manually for Application
Center
You configure the Apache Derby database manually by creating the database and
database tables, and then configuring the relevant application server to use this
database setup.

Procedure
1. Create the database and the tables within them. This step is described in

“Setting up your Apache Derby database manually for Application Center”
2. Configure the application server to use this database setup. Go to one of the

following topics:
v “Configuring Liberty Profile for Derby manually for Application Center” on

page 87
v “Configuring WebSphere Application Server for Derby manually for

Application Center” on page 87
v “Configuring Apache Tomcat for Derby manually for Application Center” on

page 89

Setting up your Apache Derby database manually for Application Center:

You can set up your Apache Derby database for Application Center manually
using the procedures in this section.

About this task

Set up your Apache Derby database for Application Center by creating the database
schema.

Procedure

1. In the location where you want the database to be created, run ij.bat on
Windows systems or ij.sh on UNIX and Linux systems. The script displays ij
version 10.4.

Note: The ij program is part of Apache Derby. If you do not already have it
installed, you can download it from Apache Derby: Downloads.

2. At the command prompt, enter the following commands:
connect ’jdbc:derby:APPCNTR;user=APPCENTER;create=true’;
run ’<worklight_install_dir>/ApplicationCenter/databases/create-appcenter-derby.sql’;
quit;

86 IBM Worklight V6.1.0

http://db.apache.org/derby/derby_downloads

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Configuring Liberty Profile for Derby manually for Application Center:

If you want to manually set up and configure your Apache Derby database for
Application Center with WebSphere Application Server Liberty Profile, use the
following procedure.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of your
server) as follows:
<!-- Declare the jar files for Derby access through JDBC. -->
<library id="derbyLib">

<fileset dir="C:/Drivers/derby" includes="derby.jar" />
</library>

<!-- Declare the IBM Application Center database. -->
<dataSource jndiName="jdbc/AppCenterDS" transactional="false" statementCacheSize="10">

<jdbcDriver libraryRef="DerbyLib"
javax.sql.ConnectionPoolDataSource="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40"/>

<properties.derby.embedded databaseName="DERBY_DATABASES_DIR/APPCNTR" user="APPCENTER"
shutdownDatabase="false" connectionAttributes="upgrade=true"/>

<connectionManager connectionTimeout="180"
maxPoolSize="10" minPoolSize="1"
reapTime="180" maxIdleTime="1800"
agedTimeout="7200" purgePolicy="EntirePool"/>

</dataSource>

Configuring WebSphere Application Server for Derby manually for Application
Center:

If you want to manually set up and configure your Apache Derby database for
Application Center with WebSphere Application Server, use the following
procedure.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/Worklight/derby.
v For deployment to a WebSphere Application Server ND cell, use

WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
Worklight/derby.

v For deployment to a WebSphere Application Server ND cluster, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/Worklight/derby.

v For deployment to a WebSphere Application Server ND node, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/Worklight/derby.

Chapter 6. Installing and configuring 87

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v For deployment to a WebSphere Application Server ND server, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/servers/server-name/Worklight/derby.

If this directory does not exist, create it.
2. Add the Derby JAR file from WORKLIGHT_INSTALL_DIR/ApplicationCenter/tools/

lib/derby.jar to the directory determined in step 1.
3. Set up the JDBC provider.

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

b. Set Scope to Node level.
c. Click New.
d. Set Database Type to User-defined.
e. Set class Implementation name to

org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40.
f. Set Name to Worklight - Derby JDBC Provider.
g. Set Description to Derby JDBC provider for Worklight.
h. Click Next.
i. Set the Class path to the JAR file in the directory determined in step 1,

replacing WAS_INSTALL_DIR/profiles/profile-name with the WebSphere
Application Server variable reference ${USER_INSTALL_ROOT}.

j. Click Finish.
4. Create the data source for the IBM Worklight database.

a. In the WebSphere Application Server console, click Resources > JDBC >
Data sources.

b. Set Scope to Node Level.
c. Click New.
d. Set Data source Name to Application Center Database.
e. Set JNDI name to jdbc/AppCenterDS.
f. Click Next.
g. Select the existing JDBC Provider that is named Worklight - Derby JDBC

Provider.
h. Click Next.
i. Click Next.
j. Click Finish.
k. Click Save.
l. In the table, click the Application Center Database datasource that you

created.
m. Under Additional Properties, click Custom properties.
n. Click databaseName.
o. Set Value to the path to the APPCNTR database that is created in “Setting up

your Apache Derby database manually for Application Center” on page 86.
p. Click OK.
q. Click Save.
r. At the top of the page, click Application Center Database.
s. Under Additional Properties, click WebSphere Application Server data

source properties.
t. Select Non-transactional datasource.

88 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

u. Click OK.
v. Click Save.
w. In the table, select the Application Center Database datasource that you

created.
x. Click test connection (only if you are not on the console of a WAS

Deployment Manager).

Configuring Apache Tomcat for Derby manually for Application Center:

If you want to manually set up and configure your Apache Derby database for
Application Center with the Apache Tomcat server, use the following procedure.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Add the Derby JAR file from WORKLIGHT_INSTALL_DIR/ApplicationCenter/tools/
lib/derby.jar to the directory $TOMCAT_HOME/lib.

2. Update the $TOMCAT_HOME/conf/context.xml file as follows:
<Context>

<Resource auth="Container"
driverClassName="org.apache.derby.jdbc.EmbeddedDriver"
name="jdbc/AppCenterDS"
username="APPCENTER"
password=""
type="javax.sql.DataSource"
url="jdbc:derby:DERBY_DATABASES_DIR/APPCNTR"/>

...
</Context>

Configuring the MySQL database manually for Application Center
You configure the MySQL database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure
1. Create the database. This step is described in “Creating the MySQL database

for Application Center” on page 61.
2. Create the tables in the database. This step is described in “Setting up your

MySQL database manually for Application Center.”
3. Perform the application server-specific setup as the following list shows.

Setting up your MySQL database manually for Application Center:

You can set up your MySQL database for Application Center manually.

About this task

Complete the following procedure to set up your MySQL database.

Procedure

1. Create the database schema.
a. Run a MySQL command line client with the option -u root.
b. Enter the following commands:

Chapter 6. Installing and configuring 89

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

CREATE DATABASE APPCNTR CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON APPCNTR.* TO ’worklight’@’Worklight-host’IDENTIFIED BY ’worklight’;
GRANT ALL PRIVILEGES ON APPCNTR.* TO ’worklight’@’localhost’ IDENTIFIED BY ’worklight’;
FLUSH PRIVILEGES;

USE APPCNTR;
SOURCE <worklight_install_dir>/ApplicationCenter/databases/create-appcenter-mysql.sql;

Where worklight before the "at" sign (@) is the user name, worklight after
IDENTIFIED BY is its password, and Worklight-host is the name of the host
on which IBM Worklight runs.

2. Add the following property to your MySQL option file:
max_allowed_packet=256M

For more information about option files, see the MySQL documentation at
MySQL.

Configuring Liberty Profile for MySQL manually for Application Center:

If you want to manually set up and configure your MySQL database for
Application Center with WebSphere Application Server Liberty Profile, use the
following procedure.

About this task

Complete the MySQL database setup procedure before continuing.

Note: MySQL in combination with WebSphere Application Server Liberty Profile
or WebSphere Application Server Full Profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support
Statement. We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

Procedure

1. Add the MySQL JDBC driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/mysql. If that directory does not exist, create it.

2. Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of
your server) as follows:
<!-- Declare the jar files for MySQL access through JDBC. -->
<library id="MySQLLib">

<fileset dir="${shared.resource.dir}/mysql" includes="*.jar"/>
</library>

<!-- Declare the IBM Application Center database. -->
<dataSource jndiName="jdbc/AppCenterDS" transactional="false">

<jdbcDriver libraryRef="MySQLLib"/>
<properties databaseName="APPCNTR"

serverName="mysqlserver" portNumber="3306"
user="worklight" password="worklight"/>

</dataSource>

where worklight after user= is the user name, worklight after password= is this
user's password, and mysqlserver is the host name of your MySQL server (for
example, localhost, if it is on the same machine).

90 IBM Worklight V6.1.0

http://dev.mysql.com
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Configuring WebSphere Application Server for MySQL manually for
Application Center:

If you want to manually set up and configure your MySQL database for
Application Center with WebSphere Application Server, use the following
procedure.

About this task

Complete the MySQL database setup procedure before continuing.

Note: MySQL in combination with WebSphere Application Server Liberty Profile
or WebSphere Application Server Full Profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support
Statement. We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/Worklight/mysql.
v For deployment to a WebSphere Application Server ND cell, use

WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
Worklight/mysql.

v For deployment to a WebSphere Application Server ND cluster, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/Worklight/mysql.

v For deployment to a WebSphere Application Server ND node, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/Worklight/mysql.

v For deployment to a WebSphere Application Server ND server, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/servers/server-name/Worklight/mysql.

If this directory does not exist, create it.
2. Add the MySQL JDBC driver JAR file downloaded from Download

Connector/J to the directory determined in step 1.
3. Set up the JDBC provider:

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers.

b. Create a JDBC provider named MySQL.
c. Set Database type to User defined.
d. Set Scope to Cell.
e. Set Implementation class to

com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource.
f. Set Database classpath to the JAR file in the directory determined in step 1,

replacing WAS_INSTALL_DIR/profiles/profile-name with the WebSphere
Application Server variable reference ${USER_INSTALL_ROOT}.

g. Save your changes.
4. Create a data source for the IBM Application Center database:

Chapter 6. Installing and configuring 91

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

a. Click New to create a data source.
b. Type any name (for example, Application Center Database).
c. Set JNDI Name to jdbc/AppCenterDS.
d. Use the existing JDBC Provider MySQL, defined in the previous step.
e. Set Scope to New.
f. On the Configuration tab, select Non-transactional data source.
g. Click Next a number of times, leaving all other settings as defaults.
h. Save your changes.

5. Set the custom properties of the new data source.
a. Select the new data source.
b. Click Custom properties.
c. Set the following properties:

portNumber = 3306
relaxAutoCommit=true
databaseName = APPCNTR
serverName = the host name of the MySQL server
user = the user name of the MySQL server
password = the password associated with the user name

6. Set the WebSphere Application Server custom properties of the new data
source.
a. In Resources > JDBC > Data sources, select the new data source.
b. Click WebSphere Application Server data source properties.
c. Select Non-transactional data source.
d. Click OK.
e. Click Save.

Configuring Apache Tomcat for MySQL manually for Application Center:

If you want to manually set up and configure your MySQL database for
Application Center with the Apache Tomcat server, use the following procedure.

About this task

Complete the MySQL database setup procedure before continuing.

Procedure

1. Add the MySQL Connector/J JAR file to the $TOMCAT_HOME/lib directory.
2. Update the $TOMCAT_HOME/conf/context.xml file as follows:

<Context>
...
<Resource name="jdbc/AppCenterDS"

auth="Container"
type="javax.sql.DataSource"
maxActive="100"
maxIdle="30"
maxWait="10000"
username="worklight"
password="worklight"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://server:3306/APPCNTR"/>

...
</Context>

92 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Configuring the Oracle database manually for Application Center
You configure the Oracle database manually by creating the database, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure
1. Create the database. This step is described in “Creating the Oracle database for

Application Center” on page 61.
2. Create the tables in the database. This step is described in “Setting up your

Oracle database manually for Application Center.”
3. Perform the application server-specific setup as the following list shows.

Setting up your Oracle database manually for Application Center:

You can set up your Oracle database for Application Center manually.

About this task

Complete the following procedure to set up your Oracle database.

Procedure

1. Ensure that you have at least one Oracle database. In many Oracle installations,
the default database has the SID (name) ORCL. For best results, specify Unicode
(AL32UTF8) as the character set of the database.
If the Oracle installation is on a UNIX or Linux machine, make sure that the
database will be started the next time the Oracle installation is restarted. To this
effect, make sure the line in /etc/oratab that corresponds to the database ends
with a Y, not with an N.

2. Create the user APPCENTER, either by using Oracle Database Control, or by using
the Oracle SQLPlus command-line interpreter.
Create the user for the IBM Worklight database/schema, by using Oracle
Database Control:
a. Connect as SYSDBA.
b. Go to the Users page.
c. Click Server, then Users in the Security section.
d. Create a user named APPCENTER with the following attributes:

Profile: DEFAULT
Authentication: password
Default tablespace: USERS
Temporary tablespace: TEMP
Status: UNLOCK
Add role: CONNECT
Add role: RESOURCE
Add system privilege: CREATE VIEW
Add system privilege: UNLIMITED TABLESPACE

To create the user by using Oracle SQLPlus, enter the following commands:
CONNECT system/<system_password>@ORCL
CREATE USER APPCENTER IDENTIFIED BY password;
GRANT CONNECT, RESOURCE, CREATE VIEW TO APPCENTER;
DISCONNECT;

Note: Access to a TABLESPACE is required for the user. You can replace
UNLIMITED TABLESPACE by another TABLESPACE privilege.

Chapter 6. Installing and configuring 93

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. Create the database tables for the IBM Worklight database and IBM Worklight
reports database:
a. Using the Oracle SQLPlus command-line interpreter, create the required

tables for the IBM Application Center database by running the
create-appcenter-oracle.sql file:
CONNECT APPCENTER/<APPCENTER_password>@ORCL
@<worklight_install_dir>/ApplicationCenter/databases/create-appcenter-oracle.sql
DISCONNECT;

4. Download and configure the Oracle JDBC driver:
a. Download the JDBC driver from the Oracle website at Oracle: JDBC, SQLJ,

Oracle JPublisher and Universal Connection Pool (UCP):
b. Ensure that the Oracle JDBC driver is in the system path. The driver file is

ojdbc6.jar.

Configuring Liberty Profile for Oracle manually for Application Center:

If you want to manually set up and configure your Oracle database for Application
Center with WebSphere Application Server Liberty Profile, use the following
procedure.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Add the Oracle JDBC Driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/oracle. If that directory does not exist, create it.

2. If you are using JNDI, configure the data sources in the $LIBERTY_HOME/wlp/usr/
servers/worklightServer/server.xml file (worklightServer may be replaced in
this path by the name of your server) as shown in the following JNDI code
example:
<!-- Declare the jar files for Oracle access through JDBC. -->
<library id="OracleLib">

<fileset dir="${shared.resource.dir}/oracle" includes="*.jar"/>
</library>

<!-- Declare the IBM Application Center database. -->
<dataSource jndiName="jdbc/AppCenterDS" transactional="false">

<jdbcDriver libraryRef="OracleLib"/>
<properties.oracle driverType="thin"

serverName="oserver" portNumber="1521"
databaseName="ORCL"
user="APPCENTER" password="APPCENTER_password"/>

</dataSource>

where APPCENTER after user= is the user name, APPCENTER_password after
password= is this user's password, and oserver is the host name of your Oracle
server (for example, localhost, if it is on the same machine).

Configuring WebSphere Application Server for Oracle manually for Application
Center:

If you want to manually set up and configure your Oracle database for Application
Center with WebSphere Application Server, use the following procedure.

94 IBM Worklight V6.1.0

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Determine a suitable directory for the JDBC driver JAR file in the WebSphere
Application Server installation directory.
v For a standalone server, you can use a directory such as

WAS_INSTALL_DIR/optionalLibraries/IBM/Worklight/oracle.
v For deployment to a WebSphere Application Server ND cell, use

WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/
Worklight/oracle.

v For deployment to a WebSphere Application Server ND cluster, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/clusters/
cluster-name/Worklight/oracle.

v For deployment to a WebSphere Application Server ND node, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/Worklight/oracle.

v For deployment to a WebSphere Application Server ND server, use
WAS_INSTALL_DIR/profiles/profile-name/config/cells/cell-name/nodes/
node-name/servers/server-name/Worklight/oracle.

If this directory does not exist, create it.
2. Add the Oracle �ojdbc6.jar file downloaded from JDBC and Universal

Connection Pool (UCP) to the directory determined in step 1.
3. Set up the JDBC provider:

a. In the WebSphere Application Server console, click Resources > JDBC >
JDBC Providers > New.

b. Set the scope of the JDBC connection to Node.
c. Complete the JDBC Provider fields as indicated in the following table:

Table 15. JDBC Provider field values

Field Value

Database type Oracle

Provider type Oracle JDBC Driver

Implementation type Connection pool data source

Name Oracle JDBC Driver

d. Click Next.
e. Set the class path to the JAR file in the directory determined in step 1,

replacing WAS_INSTALL_DIR/profiles/profile-name with the WebSphere
Application Server variable reference ${USER_INSTALL_ROOT}

f. Click Next.
The JDBC provider is created.

4. Create a data source for the IBM Worklight database:
a. Click Resources > JDBC > Data sources > New.
b. Set Data source name to Oracle JDBC Driver DataSource.
c. Set JNDI name to jdbc/AppCenterDS.
d. Click Next.

Chapter 6. Installing and configuring 95

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

e. Click Select an existing JDBC provider and select Oracle JDBC driver from
the list.

f. Click Next.
g. Set the URL value to jdbc:oracle:thin:@oserver:1521/ORCL, where oserver

is the host name of your Oracle server (for example, localhost, if it is on the
same machine).

h. Click Next twice.
i. Click Resources > JDBC > Data sources > Oracle JDBC Driver DataSource

> Custom properties.
j. Set oracleLogPackageName to oracle.jdbc.driver.
k. Set user = APPCENTER.
l. Set password = APPCENTER_password.
m. Click OK and save the changes.
n. In Resources > JDBC > Data sources, select the new data source.
o. Click WebSphere Application Server data source properties.
p. Select the Non-transactional data source check box.
q. Click OK.
r. Click Save.

Configuring Apache Tomcat for Oracle manually for Application Center:

If you want to manually set up and configure your Oracle database for Application
Center with the Apache Tomcat server, use the following procedure.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Add the Oracle JDBC driver JAR file to the directory $TOMCAT_HOME/lib.
2. Update the $TOMCAT_HOME/conf/context.xml file as follows:

<Context>
...
<Resource name="jdbc/AppCenterDS"

auth="Container"
type="javax.sql.DataSource"
driverClassName="oracle.jdbc.driver.OracleDriver"
url="jdbc:oracle:thin:@oserver:1521/ORCL"
username="APPCENTER"
password="APPCENTER_password"/>

...
</Context>

Where APPCENTER after username= is the name of the system user with
"CONNECT" access to the APPCNTR database that you have previously created,
and APPCENTER_password after password= is this user's password. If you have
defined either a different user name, or a different password, or both, replace
these values accordingly.

Deploying the Application Center WAR files and configuring the
application server manually
The procedure to manually deploy the Application Center WAR files manually to
an application server depends on the type of application server being configured,
as detailed here.

96 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

These manual instructions assume that you are familiar with your application
server.

Note: Using the Worklight Server installer to install Application Center is more
reliable than installing manually, and should be used whenever possible.

If you prefer to use the manual process, follow these steps to configure your
application server for Application Center. You must deploy the
appcenterconsole.war and applicationcenter.war files to your Application Center.
The files are located in <worklightInstallDir>/ApplicationCenter/console.

Configuring WebSphere Application Server Liberty Profile for Application
Center manually:

To configure WebSphere Application Server Liberty Profile for Application Center
manually, you must modify the server.xml file.

About this task

In addition to modifications for the databases that are described in “Manually
installing Application Center” on page 82, you must make the following
modifications to the server.xml file.

Note: In the following procedure, when the example uses worklight.war, it should
be the name of your Worklight project, for example, myProject.war.

Procedure

1. Ensure that the <featureManager> element contains at least the following
<feature> elements:
<feature>ssl-1.0</feature>
<feature>servlet-3.0</feature>
<feature>jdbc-4.0</feature>
<feature>appSecurity-1.0</feature>

2. Add the following declarations for the Application Center:
<!-- The directory with binaries of the ’aapt’ program, from the Android SDK’s

platform-tools package. -->
<jndiEntry jndiName="android.aapt.dir" value="WL_INSTALL_DIR/ApplicationCenter/tools/android-sdk"/>

<!-- Declare the IBM Application Center Console application. -->
<application id="appcenterconsole"

name="appcenterconsole"
location="appcenterconsole.war"
type="war">

<application-bnd>
<security-role name="appcenteradmin">

<group name="appcentergroup"/>
</security-role>

</application-bnd>
</application>

<!-- Declare the IBM Application Center Services application. -->
<application id="applicationcenter"

name="applicationcenter"
location="applicationcenter.war"
type="war">

<application-bnd>
<security-role name="appcenteradmin">

<group name="appcentergroup"/>
</security-role>

</application-bnd>

Chapter 6. Installing and configuring 97

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

</application>

<!-- Declare the user registry for the IBM Application Center. -->
<basicRegistry id="applicationcenter-registry"

realm="ApplicationCenter">
<!-- The users defined here are members of group "appcentergroup",

thus have role "appcenteradmin", and can therefore perform
administrative tasks through the Application Center Console. -->

<user name="appcenteradmin" password="admin"/>
<user name="demo" password="demo"/>
<group name="appcentergroup">

<member name="appcenteradmin"/>
<member name="demo"/>

</group>
</basicRegistry>

What to do next

For more steps to configure the IBM Application Center, see “Configuring
WebSphere Application Server Liberty Profile” on page 140.

Configuring WebSphere Application Server for Application Center manually:

To configure WebSphere Application Server for Application Center manually, you
must configure variables, custom properties, and class loader policies.

Before you begin

These instructions assume that you already have a stand-alone profile created with
an application server named Worklight and that the server is using the default
ports.

Procedure

1. Log on to the WebSphere Application Server administration console for your
IBM Worklight server. The address is of the form http://server.com:9060/ibm/
console, where server is the name of the server.

2. Enable application security.
a. Click Security > Global Security.
b. Ensure that Enable administrative security is selected. Application security

can only be enabled if administrative security is enabled.
c. Ensure that Enable application security is selected.
d. Click OK.
e. Save the changes.

For more details, see http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/topic/
com.ibm.websphere.base.doc/info/aes/ae/tsec_csec2.html.

3. Create the Application Center JDBC data source and provider. See the
instructions in the appropriate subsection in “Manually installing Application
Center” on page 82.

4. Install the Application Center console WAR file.
a. Depending on your version of WebSphere Application Server, click one of

the following options:
v Applications > New > New Enterprise Application

v Applications > New Application > New Enterprise Application

b. Navigate to the IBM Worklight Server installation directory
WL_INSTALL_DIR/ApplicationCenter/console.

98 IBM Worklight V6.1.0

http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.base.doc/info/aes/ae/tsec_csec2.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.base.doc/info/aes/ae/tsec_csec2.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

c. Select appcenterconsole.war, and then click Next.
d. On the How do you want to install the application? page, click Detailed,

and then click Next.
e. On the Application Security Warnings page, click Continue.
f. Click Next until you reach the Map context roots for web modulespage.
g. In the Context Root field, type /appcenterconsole.
h. Click Next.
i. Click Finish.

5. Configure the class loader policies and then start the application:
a. Click the Manage Applications link, or click Applications > WebSphere

Enterprise Applications.
b. From the list of applications, click appcenterconsole_war.
c. In the “Detail Properties” section, click the Class loading and update

detection link.
d. In the “Class loader order” pane, click Classes loaded with local class

loader first (parent last).
e. Click OK.
f. In the Modules section, click Manage Modules.
g. From the list of modules, click the ApplicationCenterConsole module.
h. In the “Class loader order” pane, click Classes loaded with local class

loader first (parent last).
i. Click OK twice.
j. Click Save.
k. Select Select for appcenterconsole_war and click Start.

6. Repeat step 4, selecting applicationcenter.war in sub-step c, and using a
Context Root of /applicationcenter in sub-step g.

7. Repeat step 5, selecting applicationcenter.war from the list of applications in
sub-step b.

8. Review the server class loader policy: Click Servers > Server Types >
Application Servers > Worklight

v If the class loader policy is set to Multiple, do nothing.
v If the class loader policy is set to Single and the class loading mode is set to

parent-last, do nothing.
v If the class loader policy is set to Single and the class loading mode is set to

parent-first, change the class loader policy to Multiple, and set the class
loader order of all applications other than Worklight applications to
parent-first.

9. Configure a JNDI environment entry to indicate the directory with binaries of
the aapt program, from the Android SDK's platform-tools package. For a
standalone server:
a. Click Applications > WebSphere enterprise applications.
b. From the list of applications, select applicationcenter_war.
c. In the "Web Module Properties" section, select Environment entries for Web

modules.
d. Assign to the variable android.aapt.dir the value WL_INSTALL_DIR/

ApplicationCenter/tools/android-sdk where WL_INSTALL_DIR is the
Worklight Server installation directory.

For WebSphere Application Server Network Deployment, you must:

Chapter 6. Installing and configuring 99

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

a. Copy the WL_INSTALL_DIR/ApplicationCenter/tools/android-sdk directory
to a location in the config directory of the deployment manager's profile.
This will be propagated to the servers through the file synchronization
service; for example, WAS_INSTALL_DIR/profiles/Dmgr01/config/cells/cell-
name/clusters/cluster-name/android-sdk.

b. Configure the environment entry android.aapt.dir with value
${USER_INSTALL_ROOT}/config/cells/cell-name/clusters/cluster-name/
android-sdk.

c. Click System administration > Nodes, select the nodes, and click Full
Synchronize.

Results

You can now access the Application Center at http://<server>:<port>/
appcenterconsole, where server is the host name of your server and port is the port
number (default 9080).

What to do next

For additional steps to configure the Application Center, see “Configuring
WebSphere Application Server full profile” on page 139.

Configuring Apache Tomcat for Application Center manually:

To configure Apache Tomcat for Application Center manually, you must copy JAR
and WAR files to Tomcat, add database drivers, edit the server.xml file, and then
start Tomcat.

Procedure

1. Add the database drivers to the Tomcat lib directory. See the instructions for
the appropriate DBMS in “Manually installing Application Center” on page 82.

2. Edit TOMCAT_HOME/conf/server.xml.
a. Uncomment the following element, which is initially commented out:

<Valve className="org.apache.catalina.authenticator.SingleSignOn" />.
b. Declare the Application Center console and services applications and a user

registry:
<!-- Declare the IBM Application Center Console application. -->
<Context path="/appcenterconsole" docBase="appcenterconsole">

<!-- Define the AppCenter services endpoint in order for the AppCenter
console to be able to invoke the REST service.
You need to enable this property if the server is behind a reverse
proxy or if the context root of the Application Center Services
application is different from ’/applicationcenter’. -->

<!-- <Environment name="ibm.appcenter.services.endpoint"
value="http://proxy-host:proxy-port/applicationcenter"
type="java.lang.String" override="false"/>

-->

</Context>

<!-- Declare the IBM Application Center Services application. -->
<Context path="/applicationcenter" docBase="applicationcenter">

<!-- The directory with binaries of the ’aapt’ program, from
the Android SDK’s platform-tools package. -->

<Environment name="android.aapt.dir"
value="WL_INSTALL_DIR/ApplicationCenter/tools/android-sdk"

100 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

type="java.lang.String" override="false"/>

<!-- The protocol of the application resources URI.
This property is optional. It is only needed if the protocol
of the external and internal URI are different. -->

<!-- <Environment name="ibm.appcenter.proxy.protocol"
value="http" type="java.lang.String" override="false"/>

-->

<!-- The hostname of the application resources URI. -->
<!-- <Environment name="ibm.appcenter.proxy.host"

value="proxy-host"
type="java.lang.String" override="false"/>

-->

<!-- The port of the application resources URI.
This property is optional. -->

<!-- <Environment name="ibm.appcenter.proxy.port"
value="proxy-port"
type="java.lang.Integer" override="false"/> -->

<!-- Declare the IBM Application Center Services database. -->
<!-- <Resource name="jdbc/AppCenterDS" type="javax.sql.DataSource" ... -->

</Context>

<!-- Declare the user registry for the IBM Application Center.
The MemoryRealm recognizes the users defined in conf/tomcat-users.xml.
For other choices, see Apache Tomcat’s "Realm Configuration HOW-TO"
http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html . -->

<Realm className="org.apache.catalina.realm.MemoryRealm"/>

where you fill in the <Resource> element as described in one of the sections:
v “Configuring Apache Tomcat for DB2 manually for Application Center”

on page 85
v “Configuring Apache Tomcat for Derby manually for Application Center”

on page 89
v “Configuring Apache Tomcat for MySQL manually for Application

Center” on page 92
v “Configuring Apache Tomcat for Oracle manually for Application Center”

on page 96
3. Copy the Application Center WAR files to Tomcat.

v On UNIX and Linux systems: cp WL_INSTALL_DIR/ApplicationCenter/
console/*.war TOMCAT_HOME/webapps

v On Windows systems:
copy /B WL_INSTALL_DIR\ApplicationCenter\console\appcenterconsole.war TOMCAT_HOME\webapps\appcenterconsole.war
copy /B WL_INSTALL_DIR\ApplicationCenter\console\applicationcenter.war TOMCAT_HOME\webapps\applicationcenter.war

4. Start Tomcat.

What to do next

For additional steps to configure the Application Center, see “Configuring Apache
Tomcat” on page 141.

Configuring Worklight Server
Consider your backup and recovery policy, optimize your Worklight Server
configuration, and apply access restrictions and security options.

Chapter 6. Installing and configuring 101

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Backup and recovery
You can back up the customization and the content (adapters and applications)
outside the IBM Worklight instance, for example in a source control system.

It is advisable to back up the IBM Worklight database as-is. When Reports are
enabled, the database can become quite large. Consider the benefits of backing
them up separately. Report tables can be configured to be stored on a different
database instance.

Optimization and tuning of Worklight Server
Optimize the Worklight Server configuration by tuning the allocation of JVM
memory, HTTP connections, back-end connections, and internal settings.

For best results, install a Worklight Server on a 64-bit server.

JVM memory allocation

The Java instance of the application server allocates memory. Consider the
following guidelines:
v Set the JVM to have at least 2 GB memory.
v In a production environment, set the minimum heap size and maximum heap

size to the same value to avoid heap expansion and contraction.
v Set the required memory size of the application server:

– Liberty: set JAVA_ARGS in <install_dir>/Worklight/server/wlp/bin/
securityUtility.

– WebSphere Application Server: Log in to the admin console. Go to Servers >
Server types > WebSphere application servers: choose each server and set
Java memory settings under Java Process definition > JVM arguments.

– Apache Tomcat: find the catalina script and set JAVA_OPTS to inject memory.

For information about how to calculate memory size, see the following documents:
v Scalability and Hardware Sizing (PDF)
v Hardware Calculator (XLS)

Tuning HTTP connections

You tune HTTP connections by configuring threading and execution settings for
the application server.

Each incoming request requires a thread for the duration of the request. If more
simultaneous requests are received than can be handled by the currently available
request-processing threads, more threads are created up to the configured
maximum.

Apply the following settings:
v Liberty: See the executor section: http://pic.dhe.ibm.com/infocenter/wasinfo/

v8r5/index.jsp?topic=%2Fcom.ibm.websphere.wlp.nd.multiplatform.doc
%2Fautodita%2Frwlp_metatype_4ic.html.

v WebSphere Application Server: Log in to the admin console. Go to Servers >
Server types > WebSphere application servers > server_name > Web container.
By default, the maximum number of threads is 50.

102 IBM Worklight V6.1.0

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/Scalability_and_Hardware_Sizing.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/Hardware_Calculator.xls
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.wlp.nd.multiplatform.doc%2Fautodita%2Frwlp_metatype_4ic.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.wlp.nd.multiplatform.doc%2Fautodita%2Frwlp_metatype_4ic.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.wlp.nd.multiplatform.doc%2Fautodita%2Frwlp_metatype_4ic.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Apache Tomcat: See http://tomcat.apache.org/tomcat-7.0-doc/config/http.html.
By default, the maximum number of threads is 200.

Bear in mind the following points when you configure HTTP threads:
v If, for example, the longest call takes 500 milliseconds and you configure a

maximum of 50 threads, you can handle approximately 100 requests per second.
v If your environment includes a back-end system that runs slowly, increase the

number of default threads. In addition, increase the number of back-end
connection threads (See “Tuning back-end connections”).

Tuning back-end connections

Consider the following factors when you set the
maxConcurrentConnectionsPerNode parameter in the connectivity element of the
adapter.xml file:
v If the back-end system imposes no limitation on the number of incoming

connections, set the number of connection threads per adapter to the number of
HTTP threads in the application server. A more refined guideline would be to
take account of the percentage of requests to each back-end system.

v If the back-end system imposes a limitation on the number of incoming
connection threads, do not exceed BACKEND_MAX_CONNECTIONS/
NUM_OF_CLUSTER_NODES connection threads, where
BACKEND_MAX_CONNECTIONS is the maximum number of incoming
connections that are defined in the back-end server, and
NUM_OF_CLUSTER_NODES is the number IBM Worklight server nodes in the
cluster.

Worklight Server internal configuration

Consider the following factors:
v A session is an object that is stored in server memory for each connecting

device. Among other things, it stores authentication information. The number of
active sessions is the difference between the number of opened sessions and the
number of sessions that are timing out because of inactivity. The
serverSessionTimeout property configures the session timeout and affects the
server memory consumption. The default session timeout is 10 minutes.

v The mobile client "heartbeat" property causes the mobile client to ping the server
while the app is in the foreground. This feature prevents the server session from
timing out.

v When a mobile app runs in the background, it no longer interacts with the
server or sends a “heartbeat”. The server session drops after the specified server
session timeout period.

v For example, suppose every minute 1,000 users start a session against the server.
Even if they exit the application after 3 minutes, their sessions remain active on
the server for 10 minutes, leaving 10 x 1,000 = 10,000 active sessions.

The following worklight.properties parameters affect the intervals of background
tasks that perform various actions on the database and file system:

cluster.data.synchronization.taskFrequencyInSeconds
Application and adapter files are read from the file system and are stored
in the database that enables the synchronization of the deployment data
between all cluster nodes. The parameter controls the synchronization
interval of the file system with the database content. Every 2 seconds (the
default interval), each Worklight Server node checks the database to see

Chapter 6. Installing and configuring 103

http://tomcat.apache.org/tomcat-7.0-doc/config/http.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

whether new adapters or applications are deployed in another Worklight
server node. If new adapters or applications are found, they are deployed
to the local file system. If you increase the interval, the database is queried
less frequently but the Worklight Server nodes synchronize less frequently
with the latest adapters and applications.

deployables.cleanup.taskFrequencyInSeconds
Deletes unused deployables from the file system. The default frequency is
24 hours.

sso.cleanup.taskFrequencyInSeconds
The SSO (single sign-on) mechanism stores session data in a database table.
This parameter configures the interval for the SSO cleanup task that checks
whether there are inactive accounts in the SSO table. If inactive accounts
are found, they are deleted. The default frequency is 5 seconds. Accounts
are considered inactive if they remain idle for longer than
serverSessionTimeout.

Optimization and tuning of Worklight Server project databases
General information about ways that you can improve the performance of the
project databases or schemas that support Worklight Server is provided in this
topic.

The following sections provide general information about database tuning, and
techniques you can use to optimize your database performance for IBM Worklight.
In the following sections, the examples that are provided are for the IBM DB2
database. If you use MySQL or Oracle, consult that vendor's documentation for the
corresponding procedures.

Database disks

You can find some overview information about the Worklight Server project
databases in the Database usage and size section of the Scalability and Hardware
Sizing PDF document. Its accompanying Excel spreadsheet Hardware Calculator
can aid you in computing the hardware configuration that is best suited to your
planned server environment.

When you are computing your hardware needs, it is a good idea to consider
servers that offer multiple disks because the correct use of them when you set up
your Worklight Server project databases can greatly improve their performance.

For example, whether you use DB2, MySQL, or Oracle, you can almost always
speed up database performance by configuring the database to use separate disks
to store its database logs, index, and data. This allows faster access to your data
with every transaction because there is no contention resulting from the same disk
attempting to write to its log files or access its index at the same time it processes
the data transaction.

Database compression

Using your database vendor's compression feature can decrease the size of the
database and decrease I/O time.

For example, in tests that were performed on IBM DB2, adding COMPRESS YESto the
SQL that creates the APP_ACTIVITY_REPORT table decreased the size of that table on
the disk by a factor of 3 and decreased its I/O time by a factor of 2.

104 IBM Worklight V6.1.0

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/Scalability_and_Hardware_Sizing.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/Scalability_and_Hardware_Sizing.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/Hardware_Calculator.xls

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

CPU time might increase as a result of this compression, but it was not observed in
the tests on the APP_ACTIVITY_REPORT table, possibly because most of the activity
was INSERTs and the aggregation task was not monitored deeply.

On DB2, use the INLINE_LENGTH

If your database is DB2, consider using the INLINE_LENGTH option when
creating the tables used for SSO information, and for other tables that contain data
that is stored as large objects (LOBs), but which in actuality are not very large at
all, usually a few kilobytes in size.

By constraining the size of these LOBs, the performance of LOB data access can be
improved by placing the LOB data within the formatted rows on data pages
instead of in the LOB storage object. For more information about this technique,
see Inline LOBs improve performance.

Database table partitions

A partition is a division of a logical database table into distinct independent parts.
Using table partitions to map each of the table partitions to a different tablespace
can enable performance improvements and facilitate purging accumulated data.
This suggestion is primarily relevant only to the APP_ACTIVITY_REPORT table that
holds the majority of the row data.

Note: Partitioned tables are not the same thing as a partitioned database (DPF)
environment, which is not suggested for use with IBM Worklight.

To show how database partitions can be used, consider this example from DB2:
v A partition is defined on the ACTIVITY_TIMESTAMP column in the

APP_ACTIVITY_REPORT table.
v Each partition contains one day's data.
v The number of partitions is the number of days of data that you want to save.
v Each partition is created in a different table space.
v Thus in the SQL example that follows, you create seven partitions in DB2:
CREATE TABLESPACE app_act_rep_1;
CREATE TABLESPACE app_act_rep_2;
CREATE TABLESPACE app_act_rep_3;
CREATE TABLESPACE app_act_rep_4;
CREATE TABLESPACE app_act_rep_5;
CREATE TABLESPACE app_act_rep_6;
CREATE TABLESPACE app_act_rep_7;

CREATE TABLE "APP_ACTIVITY_REPORT" (
"ID" BIGINT NOT NULL ,
"ACTIVITY" CLOB(1048576) LOGGED NOT COMPACT ,
"ACTIVITY_TIMESTAMP" TIMESTAMP ,
"ADAPTER" VARCHAR(254) ,
"DEVICE_ID" VARCHAR(254) ,
"DEVICE_MODEL" VARCHAR(254) ,
"DEVICE_OS" VARCHAR(254) ,
"ENVIRONMENT" VARCHAR(254) ,
"GADGET_NAME" VARCHAR(254) ,
"GADGET_VERSION" VARCHAR(254) ,
"IP_ADDRESS" VARCHAR(254) ,
"PROC" VARCHAR(254) ,
"SESSION_ID" VARCHAR(254) ,
"SOURCE" VARCHAR(254) ,
"USER_AGENT" VARCHAR(254))

IN app_act_rep_1, app_act_rep_2, app_act_rep_3, app_act_rep_4,

Chapter 6. Installing and configuring 105

http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.perf.doc%2Fdoc%2Fc0053761.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

app_act_rep_5, app_act_rep_6, app_act_rep_7
PARTITION BY RANGE (ACTIVITY_TIMESTAMP)
(STARTING FROM (’2013-02-25-00.00.00.000000’)
ENDING AT (’2013-03-04-00.00.00.000000’) EXCLUSIVE
EVERY (1 DAY)
);

Database purge

Now that this high-volume data is allocated to separate tablespaces, the task of
periodically purging the data is simplified. This suggestion is also primarily
relevant only to the APP_ACTIVITY_REPORT table that holds the majority of the row
data. The process that is used in this DB2 example is as follows:
v Aggregate data either with an IBM Worklight process or with a client external

process.
v When the data is no longer needed (the aggregation task should successfully

process the data), it can be deleted.
v The most effective way to delete the data is to delete the partition. In DB2, this

data purge can be done by detaching the partition to a temp table, then
truncating that temp table and attaching a new day to the partition. The process
can be implemented as a scheduled stored procedure process in the database, as
in the following example:

ALTER TABLE "APP_ACTIVITY_REPORT"
DETACH PARTITION part0
INTO temptable;

TRUNCATE TABLE temptable;

ALTER TABLE "APP_ACTIVITY_REPORT"
ATTACH PARTITION part0
STARTING FROM (’2013-02-25-00.00.00.000000’)
ENDING AT (’2013-03-26-00.00.00.000000’) EXCLUSIVE
FROM temptable;

Security configuration
Configure the security of the Worklight Server as detailed here.

Database and certificate security passwords
When you configure a Worklight Server, you must typically configure database and
certificate passwords for security.

Configuration of a Worklight Server typically includes the following credentials:
v User name and password to the IBM Worklight database
v User name and password to other custom databases
v User name and password to certificates that enable the stamping of apps

All credentials are stored in the in JNDI properties of the application server.
Defaults can be stored in the worklight.properties file. See “Configuration of IBM
Worklight applications on the server” on page 772 for information about individual
properties.

You can encrypt any or all of these passwords. For more information, see “Storing
properties in encrypted format” on page 779.

Apache Tomcat security options
An optimal Apache Tomcat security balances ease of use and access with
strengthening of security and hardening of access.

106 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

You must harden the Tomcat Server according to your company policy.
Information on how to harden Apache Tomcat is available on the Internet. All
other out-of-the-box services provided by Apache Tomcat are unnecessary and can
be removed.

WebSphere Application Server security options
You can secure IBM Worklight in a typical WebSphere Application Server runtime
environment in two ways.

The WebSphere Application Server provides Java Platform, Enterprise Edition
container and server security by supporting various user registries and a common
mechanism to secure EAR/WAR/services. IBM Worklight provides an extensible
authentication model as part of its core function. Follow the instructions to use
WebSphere Application Server security to protect the application and adapters
hosted on the IBM Worklight runtime environment.

There are three major phases to show how a device uses a typical IBM Worklight
app that is running on WebSphere Application Server shown in the following
diagram.

Chapter 6. Installing and configuring 107

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

When the user first accesses the app, the app prompts the user to enter their
credentials. If authentication is successful, an LTPA token is obtained. This token is
used in subsequent calls.

Figure 2. Phases in securing an IBM Worklight app

108 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The LTPA token can also be transmitted to back-end WebSphere applications or
services that are in the same security domain as Worklight Server.

You can secure IBM Worklight in a typical WebSphere Application Server runtime
environment in either of two ways:
v Option 1: Securing WebSphere Application Server by using application security

and securing the IBM Worklight WAR file.
v Option 2: Securing WebSphere Application Server by using application security

but not securing the IBM Worklight WAR file.

Each option has advantages and disadvantages. Both options use underlying
WebSphere Application Security configuration, but in different ways. Choose an
option that is based on your specific requirements.

Option 1

Benefits

v Uses the traditional WebSphere Application Server authentication and
trust model.

v The container enforces all security, so it can use existing third-party SSO
products to secure the Java Platform, Enterprise Edition container.

Usage

v Suitable for scenarios where the devices can be trusted and access for
rogue applications is restricted.

Option 2

Benefits

v Uses the traditional WebSphere Application Server authentication and
trust model without the impact of modifying the IBM Worklight Project
WAR.

v The container enforces all security, so it can use existing third-party SSO
products to secure the Java Platform, Enterprise Edition container.

v The layered authentication of device, application, application instance,
and user functions as intended.

v Flexibility in configuring specific security settings that are specific to the
IBM Worklight runtime environment without being hindered by the
underlying container security.

Usage

v Suitable for scenarios where the devices or the apps on the devices
cannot be trusted. The multi-step authenticity check that is built into
IBM Worklight ensures denial of service to devices subjected to
unauthorized modifications, rogue applications, and unauthorized users.

For more information about supported configurations for LTPA, see “Supported
configurations for LTPA” on page 807.

WebSphere Application Server security option 1 procedure:

To secure WebSphere Application Server, you can choose between two different
configurations. The security option 1 procedure secures the IBM Worklight WAR file.

Chapter 6. Installing and configuring 109

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

Complete the following steps to perform the WebSphere Application Server
security option 1 procedure and secure the IBM Worklight WAR file.

Procedure

1. Ensure that IBM Worklight is correctly installed on a WebSphere Application
Server instance. The IBM Worklight instance contains all the necessary libraries
to support WebSphere Application Server security.

2. When installation of the Worklight Server application on WebSphere
Application Server is complete, open your WebSphere Application Server
integrated solutions console.

3. Ensure that application security is enabled and configured to your enterprise
user.
The IBM Worklight project uses the existing login page and login error page
and preconfigured realms as part of the Worklight Server installation on
WebSphere Application Server. The Worklight Server application is secured by
default using a generic role and using a login form and error page. The
following code snippet shows the web.xml file of the Worklight Server WAR that
is generated for WebSphere Application Server.
<security-constraint id="SecurityConstraint_1">

<web-resource-collection id="WebResourceCollection_1">
<web-resource-name>Protected URI</web-resource-name>
<description>Protection area for what you want to protect.</description>
<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint id="AuthConstraint_1">

<description>All Authenticated users for our protected stuff.</description>
<role-name>Role 3</role-name>

</auth-constraint>
<user-data-constraint id="UserDataConstraint_1">

<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>

</security-constraint>
<security-role id="SecurityRole_1">

<description>All Authenticated Users Role.</description>
<role-name>Role 3</role-name>

</security-role>

WebSphere Application Server security option 2 procedure:

To secure WebSphere Application Server, you can choose between two different
configurations. The security option 2 procedure disables the security at the
Worklight Server WAR file level and authenticates users within the Worklight Server
runtime environment.

About this task

Complete the following steps to run the WebSphere Application Server security
option 2 procedure, which disables the security at the Worklight Server WAR file
level and authenticates users within the Worklight Server runtime environment.

Procedure

1. Complete the same steps as for the Security Option 1, but do not secure the WAR
file.

110 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To secure WebSphere Application Server and secure the Worklight Server
application:

2. Do not enable security-constraint on the web.xml file.
3. Configure applicationDescriptor.xml.
4. Complete the remaining steps.

Running Worklight Server in WebSphere Application Server with
Java 2 security enabled
You can run Worklight Server in WebSphere Application Server with Java 2
security enabled.

About this task

To enable Java 2 security in WebSphere Application Server, complete the following
procedure to modify the app.policy file and then restart WebSphere Application
Server for the modification to take effect.

Procedure
1. Install Worklight Server on a WebSphere Application Server instance. The

installation contains all the necessary libraries to support WebSphere
Application Server security.

2. Enable Java 2 security in WebSphere Application Server.
a. In the WebSphere Application Server console, click Security > Global

security

b. Select Use Java 2 security to restrict application access to local resources.
3. Modify the app.policy file, <ws.install.root>/profiles/<server_name>/

config/cells/<cell_name>/node/<node_name>/app.policy.
The app.policy file is a default policy file that is shared by all of the
WebSphere Application Server enterprise applications. For more information,
see app.policy file permissions in the WebSphere Application Server
documentation.
Add the following content into the app.policy file.
grant codeBase "file:${was.install.root}/worklight-jee-library-xxx.jar" {

permission java.security.AllPermission;
};

// The war file is your WL server war.
grant codeBase "file:worklight.war" {

//permission java.security.AllPermission;
//You can use all permission for simplicity, however, it might
// cause security problems.
permission java.lang.RuntimePermission "*";
permission java.io.FilePermission "${was.install.root}${/}-", "read,write,delete";
// In Linux need to set TEMP folder of Linux.
permission java.io.FilePermission "C:/Windows/TEMP/${/}-", "read,write,delete";
permission java.util.PropertyPermission "*", "read, write";
permission java.lang.reflect.ReflectPermission "suppressAccessChecks";
permission com.ibm.tools.attach.AttachPermission "createAttachProvider";
permission com.ibm.tools.attach.AttachPermission "attachVirtualMachine";
permission com.sun.tools.attach.AttachPermission "createAttachProvider";
permission com.sun.tools.attach.AttachPermission "attachVirtualMachine";
permission java.net.SocketPermission "*", "accept,resolve";

};

4. Restart WebSphere Application Server for the modification of the app.policy
file to take effect.

Chapter 6. Installing and configuring 111

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Transmitting IBM Worklight data on the BlackBerry Enterprise
Server MDS channel

If you install IBM Worklight in an environment that includes a BlackBerry
Enterprise Server, you can use the BlackBerry MDS channel to transmit IBM
Worklight data.

About this task

Figure 3 shows an environment in which apps that are installed on BlackBerry
devices transmit data by using the BlackBerry MDS channel. When you install IBM
Worklight in environments such as these, you can configure IBM Worklight data to
use the same channel.

Procedure

On the BlackBerry Enterprise Server, configure an MDS connection service to the
IBM Worklight Server or to its intermediary proxy server. For information about
how to configure an MDS connection service, see the BlackBerry Enterprise Server
documentation.

Protecting your mobile application traffic by using IBM
WebSphere DataPower as a security gateway

You can use IBM WebSphere DataPower in the DMZ of your enterprise to protect
Worklight mobile application traffic.

Before you begin

Ensure that Worklight Studio is installed, and establish your stand-alone server
environment on Liberty or WebSphere Application Server before you start this
procedure.

Figure 3. IBM Worklight with BlackBerry Enterprise Server

112 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

Protecting mobile application traffic that comes into your network from customer
and employee devices involves taking precautions to prevent the data from being
altered, authenticating users, and allowing only authorized users to access
applications. You can use the security gateway features of IBM WebSphere
DataPower to protect mobile application traffic that is initiated by a client IBM
Worklight application.

Enterprise topologies are designed to include different zones of protection so that
specific processes can be secured and optimized. You can use IBM WebSphere
DataPower in different ways in the DMZ and in other zones within your network
to protect enterprise resources. As you start to build out Worklight applications to
be delivered to the devices of your customers and employees, these methods can
be applied to mobile traffic. The following procedure demonstrates the use of IBM
WebSphere DataPower as a front-end reverse proxy and security gateway. It uses a
multi-protocol gateway (MPGW) service to proxy and secure access to Worklight
mobile applications. Two alternative authentication options are demonstrated:
HTTP basic authentication and HTML forms-based login between the mobile client
and DataPower.

Consider adopting the following phased approach to establishing IBM WebSphere
DataPower as a security gateway:
1. Install and configure an IBM Worklight environment and test the installation

with a simple application without DataPower acting as the reverse proxy. Test
that your application logic works.

2. Configure an MPGW on DataPower to proxy the mobile application or the
Worklight console. Part of the configuration involves selecting one of the
following authentication options:
v Use basic authentication for end user authentication with AAA, and generate

a single sign-on (SSO) LTPA token for Worklight Server running on
WebSphere Application Server if the user successfully authenticates.

v Use HTML form-based login with AAA, and generate a single sign-on (SSO)
LTPA token for Worklight Server, running on WebSphere Application Server
if the user successfully authenticates.

3. Test the reverse proxy:
v Update the Worklight configuration on the server with the reverse proxy

configuration (described later in this procedure).
v Update the mobile security test configuration of each mobile application to

use forms-based authentication so that the application requests the user to
authenticate immediately upon application startup. Either HTTP basic
authentication or HTML forms-based login is supported before the
application starts. For web widgets, widget resources are only accessible to
the browser after a user has successfully authenticated.

Procedure
1. Set up IBM Worklight-specific configuration.

a. For each app that you are configuring, modify the
authenticationConfig.xml file on the server to include the following
security test, realm, and login module declarations:
<securityTests>

<mobileSecurityTest name="WASTest-securityTest">
<testDeviceId provisioningType="none"/>
<testUser realm="WASLTPARealm"/>

Chapter 6. Installing and configuring 113

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

</mobileSecurityTest>
<webSecurityTest name="WASTest-web-securityTest">

<testUser realm="WASLTPARealm"/>
</webSecurityTest>

</securityTests>

<realms>
<!-- For websphere -->
<realm name="WASLTPARealm" loginModule="WASLTPAModule">

<className>com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator</className>
<parameter name="login-page" value="/login.html"/>
<parameter name="error-page" value="/loginError.html"/>

</realm>
</realms>

<loginModules>
<!-- For websphere -->
<loginModule name="WASLTPAModule">

<className>com.worklight.core.auth.ext.WebSphereLoginModule</className>
</loginModule>

</loginModules>

The authenticationConfig.xml file is usually available in this directory:
<WAS_INSTALL_DIR>/profiles/<WAS_PROFILE>/installedApps/<WAS_CELL>/
IBM_Worklight_Console.ear/worklight.war/WEB-INF/classes/conf.

b. Restart the Worklight Console enterprise application.
2. Update your client mobile app.

a. In your client mobile app, add the following JavaScript to your HTML
Worklight application:
function showLoginScreen() {

$("#index").hide();
$("#authPage").show();

}

function showMainScreen() {
$("#authPage").hide();
$("#index").show();

}

var myChallengeHandler = WL.Client.createChallengeHandler("WASLTPARealm");
var lastRequestURL;

myChallengeHandler.isCustomResponse = function(response) {

//A normal login form has been returned
var findError = response.responseText.search("DataPower/Worklight Error");
if(findError >= 0) {

return true;
}

//A normal login form has been returned
var findLoginForm = response.responseText.search("DataPower/Worklight Form Login");
if(findLoginForm >= 0) {

lastRequestURL = response.request.url;
return true;

}

//This response is a worklight server response, handle it normally
return false;

};

myChallengeHandler.handleChallenge = function(response) {
showLoginScreen();

};

114 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

challengeHandler1.handleFailure = function(response) {
console.log("Error during WL authentication.");

};

myChallengeHandler.submitLoginFormCallback = function(response) {
var isCustom = myChallengeHandler.isCustomResponse(response);
if(isCustom) {

myChallengeHandler.handleChallenge(response);
}
else {

//hide the login screen, you are logged in
showMainScreen();

myChallengeHandler.submitSuccess();

}
};

//When the login button is pressed, submit a login form
$("#loginButton").click(function() {

var reqURL = "/j_security_check";
alert(lastRequestURL);
var options = {method: "POST"};
options.parameters = {
j_username: $("#username").val(),
j_password: $("#password").val(),
originalUrl : lastRequestURL,
login: "Login"

};

options.headers = {};
myChallengeHandler.submitLoginForm(reqURL, options, myChallengeHandler.submitLoginFormCallback);

});

b. If you want to retrieve the LTPA key file used for authentication from the
Worklight Server, you can also use the Worklight API function login
method as defined in the WL.Client class:
WL.Client.login(“WASLTPARealm”);

This call triggers the myChallengeHandler.isCustomResponse method with a
JSON response, where you can retrieve the LTPA key file.
if (response.responseJSON.WASLTPARealm && response.responseJSON.WASLTPARealm.isUserAuthenticated)
var sessionKey = response.responseJSON.WASLTPARealm.attributes.LtpaToken;

For any subsequent adapter calls that need to be proxied through the
reverse proxy, you can include this sessionKey as a header within the
request.
Ensure that the HTML body for your Worklight app reflects the login
information that is to be handled by DataPower.

c. To add the authentication test to an application or device, add a
securityTest attribute to the environment's tag in the application-
descriptor.xml file in your project to use the security test you declared in
the authenticationConfig.xml file on the server side in step 1a. Here is an
iPad example:
<ipad bundleId="com.Datapower" securityTest="WASTest-securityTest" version="1.0">

<worklightSettings include="true"/>
<security>

<encryptWebResources enabled="false"/>
<testWebResourcesChecksum enabled="false" ignoreFileExtensions="png, jpg, jpeg, gif, mp4, mp3"/>

</security>
</ipad>

3. Define a multi-protocol gateway.

Chapter 6. Installing and configuring 115

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

a. In the IBM DataPower WebGUI, in the search box under Control Panel,
enter Multi-Protocol, and then click New Multi-Protocol Gateway.

b. On the General Configuration page, provide the following details:

Table 16. General Configuration

Field Description

Multi-Protocol Gateway Name Provide a name for your gateway.

Response Type Select Non-XML. This allows HTTP Web
application traffic (including JSON,
JavaScript, and CSS) to pass through the
appliance.

Request Type Select Non-XML. This allows HTTP Web
application requests to be handled by the
appliance.

Front Side Protocol Select HTTPS (SSL). For this type of
interaction in which user credentials are
passed between the client and server, HTTPS
is appropriate. Provide the following
additional front-side handler details:

Name Enter a name for the configuration.

Port Number
Enter a number for the listening
port. This port number must match
the port number that you specify if
you define an AAA policy that uses
HTML forms-based authentication.
(See Table 18 on page 117.)

Allowed Methods and Versions
Select GET method to enable
support for HTTP Get.

SSL Proxy
Select an SSL Reverse Proxy profile
to identify the SSL server.

Multi-Protocol Gateway Policy Click +, and then create rules to define the
policies listed in the following topics
depending on the type of authentication you
decide to use:

v Policy worklight-basicauth for HTTP
basic authentication: see “Rules for HTTP
basic authentication” on page 118.

v Policy mpgw-form for HTML form-based
login authentication: see “Rules for HTML
forms-based authentication” on page 119.

Backend URL Specify the address and port of the
Worklight Server that is hosted on the
WebSphere Application Server.

4. Create an AAA policy that supports the HTTP basic authentication or HTML
forms-based login policy you defined in the previous step.
a. In the IBM DataPower WebGUI, in the search box under Control Panel,

enter AAA, and then click Add.
b. Provide information depending on the type of authentication you want to

use:

116 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v For HTTP basic authentication, provide the information listed in the
following table:

Table 17. AAA policy for HTTP basic authentication

Phase Description

Extract Identity In the Methods field, select HTTP
Authentication Header.

Authenticate Choose the authentication method. If
WebSphere Application Server is using
LDAP, configure LDAP here.

Extract Resource Select URL Sent by Client.

Post processing Generate an LTPA token. Specify LTPA
Token Expiry, LTPA Key File, and LTPA
Key File Password.

v Fir HTML forms-based login, provide the information listed in the
following table:

Table 18. AAA policy for HTML forms-based authentication

Phase Description

Extract Identity In the Methods field, select HTML
Forms-based Authentication. Select or create
an HTML forms-based policy that has the
Use SSL for Login option enabled, assigns
SSL Port to the port number on which the
MPGW is listening (that was specified in
step 3), and has the Enable Session
Migration option disabled.

Authenticate Choose the authentication method. If
WebSphere Application Server is using
LDAP, configure LDAP here.

Extract Resource Select URL Sent by Client.

Post processing Generate an LTPA token. Specify LTPA
Token Expiry, LTPA Key File, and LTPA
Key File Password.

5. On the Advanced page, specify the advanced settings listed in the following
table.

Table 19. Advanced settings

Field Value

Persistent Connections On.

Allow Cache-Control Header Off

Loop Detection Off

Follow Redirects Off. This prevents the DataPower back-end
user agent from resolving redirects from the
back-end. Web applications typically require
a client browser to resolve redirects so that
they can maintain the context for “directory”
along with setting an LTPA cookie on the
client.

Allow Chunked Uploads Off

MIME Back Header Processing Off

Chapter 6. Installing and configuring 117

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 19. Advanced settings (continued)

Field Value

MIME Front Header Processing Off

Results

Your Worklight mobile application traffic is now protected by an IBM WebSphere
DataPower secure gateway. Authentication is enforced on the DataPower device
and the credentials (header or LTPA token) are forwarded downstream to
Worklight Server to establish the user identity as part of the mobile traffic.

Rules for HTTP basic authentication
Add rules to define an HTTP basic authentication policy named
worklight-basicauth.

You create the worklight-basicauth policy as part of the process of defining a
multi-protocol gateway. See “Protecting your mobile application traffic by using
IBM WebSphere DataPower as a security gateway” on page 112, Table 16 on page
116.

Table 20. HTTP Basic Authentication properties

Property Value

Policy Name worklight-basicauth

Order of configured rules 1. worklight-basicauth_rule_0: see
Table 21

2. worklight-basicauth_rule_3: see
Table 24 on page 119

3. worklight-basicauth_rule_1: see
Table 22

4. worklight-basicauth_rule_2: see
Table 23 on page 119

Table 21. Properties of worklight-basicauth_rule_0

Property Value

Direction Client to Server or Both Directions.

Match v Type = URL

v Pattern = /favicon.ico

Advanced "Set Variable" -> var://service/mpgw/skip-
backside = 1

Result Not applicable.

Table 22. Properties of worklight-basicauth_rule_1

Property Value

Direction Client to Server.

Match v Type = URL

v Pattern = *

AAA BasicAuth2LTPA

v Output: NULL

118 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 22. Properties of worklight-basicauth_rule_1 (continued)

Property Value

Result Not applicable.

Table 23. Properties of worklight-basicauth_rule_2

Property Value

Direction Server to Client.

Match v Type = URL

v Pattern = *

Filter Provide a custom stylesheet that handles
redirect and content-type rewrite. For a
sample redirect stylesheet, see “Sample
redirect stylesheet” on page 123.

v Output: NULL

Result Not applicable.

Table 24. Properties of worklight-basicauth_rule_3

Property Value

Direction Client to Server.

Match v Type = HTTP

v HTTP header tag = Cookie

v HTTP value match = *LtpaToken*

AAA VerifyLTPA

v Output: NULL

Result Not applicable.

Rules for HTML forms-based authentication
Add rules to define an HTML forms-based authentication policy named mpgw-form.

You create the mpgw-form policy as part of the process of defining a multi-protocol
gateway. See “Protecting your mobile application traffic by using IBM WebSphere
DataPower as a security gateway” on page 112, Table 16 on page 116.

Table 25. HTTP Form-Based Login properties

Property Value

Policy Name mpgw-form

Order of configured rules 1. mpgw-form_rule_0: see Table 26 on page
120

2. mpgw-form_rule_1: see Table 27 on page
120

3. mpgw-form_rule_2: see Table 28 on page
120

4. mpgw-form_rule_3: see Table 29 on page
120

5. mpgw-form_rule_6: see Table 30 on page
121

Chapter 6. Installing and configuring 119

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 26. Properties of mpgw-form_rule_0

Property Value

Direction Client to Server or Both Directions.

Match v Type = URL

v Pattern = /favicon.ico

Advanced “Set Variable” -> var://service/mpgw/skip-
backside = 1

Result Not applicable.

Table 27. Properties of mpgw-form_rule_1

Property Value

Direction Client to Server.

Match v Type = HTTP

v HTTP header tag = Cookie

v HTTP value match = *LtpaToken*

AAA VerifyLTPA

v Output: NULL

Result Not applicable.

Table 28. Properties of mpgw-form_rule_2

Property Value

Direction Client to Server.

Match v Match with PCRE = on

v Type = URL

v Pattern = /(Login|Error)Page\.htm(l)?(\
?originalUrl=.*)?

Transform Provide a custom stylesheet that builds
either a Login or Error HTML page. For a
sample stylesheet, see “Sample form login
stylesheet” on page 121.
Note: The HTML Login Form policy allows
you to specify whether you retrieve the
login and error pages from DataPower or
from the back-end application server.

Advanced Select the set-var action and specify the
service variable: var://service/routing-url
and value with the endpoint of your login
page.

Result Not applicable.

Table 29. Properties of mpgw-form_rule_3

Property Value

Direction Client to Server.

Match v Type = URL

v Pattern = *

120 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 29. Properties of mpgw-form_rule_3 (continued)

Property Value

Advanced “Convert Query Parameter to XML”. Accept
default values for other selections.

AAA Form2LTPA

Table 30. Properties of mpgw-form_rule_6

Property Value

Direction Server to Client.

Match v Type = URL

v Pattern = *

Filter Provide a custom stylesheet that handles
redirect and content-type rewrite. For a
sample redirect stylesheet, see “Sample
redirect stylesheet” on page 123.

v Output: NULL

Result Not applicable.

Sample form login stylesheet
You can use this sample stylesheet to generate the HTML form login page or error
page when creating rules to define an HTML forms-based authentication policy.

You provide a custom stylesheet when defining rule mpgw-form_rule_2. See “Rules
for HTML forms-based authentication” on page 119, Table 28 on page 120.
<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0"
xmlns:dp="http://www.datapower.com/extensions"
xmlns:re="http://exslt.org/regular-expressions"
extension-element-prefixes="dp re"
exclude-result-prefixes="dp re">
<xsl:output method="html" omit-xml-declaration="yes" />
<xsl:template match="/">

<xsl:choose>
<xsl:when test="contains(dp:variable(’var://service/URI’), ’LoginPage.htm’)">

<xsl:variable name="uri_temp" select="dp:decode(dp:variable(’var://service/URI’), ’url’)" />
<xsl:variable name="uri">

<xsl:choose>
<xsl:when test="contains($uri_temp, ’originalUrl’)">

<xsl:value-of select="$uri_temp" />
</xsl:when>

<xsl:otherwise>
<xsl:value-of select="dp:decode(dp:http-request-header(’Cookie’), ’url’)" />

</xsl:otherwise>
</xsl:choose>

</xsl:variable>
<xsl:variable name="redirect_uri_preprocess">

<xsl:for-each select="re:match($uri, ’(.*)originalUrl=(.*)’)">
<xsl:if test="position()=3">

<xsl:value-of select="." />
</xsl:if>

</xsl:for-each>
</xsl:variable>
<xsl:variable name="redirect_uri">

<xsl:choose>
<xsl:when test="contains($redirect_uri_preprocess, ’;’)">

<xsl:value-of select="substring-before($redirect_uri_preprocess, ’;’)" />

Chapter 6. Installing and configuring 121

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

</xsl:when>
<xsl:otherwise>

<xsl:value-of select="$redirect_uri_preprocess" />
</xsl:otherwise>

</xsl:choose>
</xsl:variable>
<html>

<head>
<meta http-equiv="Pragma" content="no-cache" />
<title>Login Page</title>

</head>
<body>

<h2>DataPower/Worklight Form Login</h2>
<form name="LoginForm" method="post" action="j_security_check">

<p>
Please enter your user ID and password.

If you have forgotten your user ID or password, please contact the server administrator.
</p>
<p>

<table>
<tr>

<td>User ID:</td>
<td>

<input type="text" size="20" name="j_username" />
</td>

</tr>
<tr>

<td>Password:</td>
<td>

<input type="password" size="20" name="j_password" />
</td>

</tr>
</table>

</p>
<p>

<input type="hidden" name="originalUrl">
<xsl:attribute name="value">

<xsl:value-of select="$redirect_uri" />
</xsl:attribute>

</input>
<input type="submit" name="login" value="Login" />

</p>
</form>

</body>
</html>

</xsl:when>
<xsl:otherwise>

<!-- error -->
<html>

<head>
<meta http-equiv="Pragma" content="no-cache" />
<title>Error Page</title>

</head>
<body>

<h2>DataPower/Worklight Error</h2>
You must provide a valid user identity.

</body>
</html>

</xsl:otherwise>
</xsl:choose>
<dp:set-response-header name="’Content-Type’" value="’text/html’" />
<dp:set-variable name="’var://service/mpgw/skip-backside’" value="true()" />

</xsl:template>
</xsl:stylesheet>

122 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Sample redirect stylesheet
You can use this sample stylesheet to handle redirection and content-type
rewriting. You refer to the stylesheet when you create rules to define an HTTP
basic authentication policy or an HTML forms-based authentication policy.

You provide a custom stylesheet when you define rule mpgw-form_rule_6 (see
“Rules for HTML forms-based authentication” on page 119, Table 30 on page 121),
and when you define rule worklight-basicauth_rule_2 (see “Rules for HTTP basic
authentication” on page 118, Table 23 on page 119).
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:dp="http://www.datapower.com/extensions"
xmlns:re="http://exslt.org/regular-expressions"
extension-element-prefixes="dp re"
exclude-result-prefixes="dp">

<xsl:template match="/">
<xsl:choose>

<xsl:when test="dp:responding()">
<xsl:variable name="code">

<xsl:choose>
<xsl:when test="dp:http-response-header(’x-dp-response-code’) != ’’">

<xsl:value-of select="substring(dp:http-response-header(’x-dp-response-code’), 1, 3)"/>
</xsl:when>
<xsl:otherwise>

<xsl:value-of select="substring(dp:variable(’var://service/error-headers’), 10, 3)" />
</xsl:otherwise>

</xsl:choose>
</xsl:variable>

<xsl:choose>
<xsl:when test="$code = ’302’">

<xsl:variable name="dphost" select="dp:http-request-header(’Host’)"/>
<xsl:variable name="host" select="$dphost"/>
<xsl:variable name="location" select="dp:http-response-header(’Location’)"/>
<xsl:variable name="location_host">

<xsl:for-each select="re:match($location, ’(\w+):\/\/([^/]+)’)">
<xsl:if test="position()=3">

<xsl:value-of select="." />
</xsl:if>

</xsl:for-each>
</xsl:variable>
<xsl:variable name="location_final">

<xsl:value-of select="re:replace($location, $location_host, ’g’, $host)" />
</xsl:variable>
<dp:set-http-response-header name="’Location’" value="$location_final" />

</xsl:when>
<xsl:otherwise>

<xsl:variable name="orig-content" select="dp:variable(’var://service/original-response-content-type’)"/>
<xsl:if test="$orig-content != ’’">

<dp:set-http-response-header name="’Content-Type’" value=’$orig-content’/>
</xsl:if>

</xsl:otherwise>
</xsl:choose>

<!-- the following prevent DataPower from overriding the
response code coming back from WorkLight Server

-->
<dp:set-response-header name="’x-dp-response-code’" value="’-1’"/>

</xsl:when>
<xsl:otherwise/>

</xsl:choose>
</xsl:template>

</xsl:stylesheet>

Chapter 6. Installing and configuring 123

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Configuring SSL between Worklight adapters and back-end
servers by using self-signed certificates

You can configure SSL between IBM Worklight adapters and back-end servers by
importing the server's self-signed SSL certificate to the IBM Worklight keystore.

Procedure
1. Check the configuration in the worklight.properties file. The configuration

might look like this:
###
Worklight SSL keystore
###
#SSL certificate keystore location.
ssl.keystore.path=conf/default.keystore
#SSL certificate keystore type (jks or PKCS12)
ssl.keystore.type=jks
#SSL certificate keystore password.
ssl.keystore.password=worklight

2. Make sure the keystore file exists in the server/conf folder of the Worklight
project.

3. Export the server's public certificate from the back-end server keystore.

Note: Export back-end public certificates from the back-end keystore by using
keytool or openssl lib. Do not use the export feature using a web browser.

4. Import the back-end server certificate into the Worklight keystore.
5. Restart the Worklight server.

Example

The CN name of the back-end certificate should match what is configured in the
adapter.xml file. For example, consider an adapter.xml file that is configured as
follows:
<protocol>https</protocol>
<domain>mybackend.com</domain>

The back-end certificate should be generated with CN=mybackend.com.

As another example, consider the following adapter configuration:
<protocol>https</protocol>
<domain>123.124.125.126</domain>

The back-end certificate should be generated with CN=123.124.125.126.

The following example demonstrates how you complete the configuration by using
the keytool program.
1. Create a back-end server keystore with a private certificate for 365 days.

keytool -genkey -alias backend -keyalg RSA -validity 365 -keystore backend.keystore -storetype JKS

Note that the First and Last Name field should be your server URL that you
use in adapter configuration XML (for example mydomain.com or localhost).

2. Configure your back-end server to work with the keystore; for example, in
Apache Tomcat, you change the server.xml file:
<Connector port="443" SSLEnabled="true" maxHttpHeaderSize="8192"

maxThreads="150" minSpareThreads="25" maxSpareThreads="200"
enableLookups="false" disableUploadTimeout="true"

124 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

acceptCount="100" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS"
keystoreFile="backend.keystore" keystorePass="password" keystoreType="JKS"
keyAlias="backend"/>

3. Check the connectivity configuration in the adapter XML file:
<connectivity>

<connectionPolicy xsi:type="http:HTTPConnectionPolicyType">
<protocol>https</protocol>
<domain>mydomain.com</domain>
<port>443</port>
<!-- The following properties are used by adapter’s key manager for choosing a specific certificate from the key store
<sslCertificateAlias></sslCertificateAlias>
<sslCertificatePassword></sslCertificatePassword>
-->

</connectionPolicy>
<loadConstraints maxConcurrentConnectionsPerNode="2"/>
</connectivity>

4. Export the public certificate from the created back-end server keystore:
keytool -export -alias backend -keystore backend.keystore -rfc -file backend.crt

5. Import the exported certificate into your Worklight server default.keystore file
in the server/conf directory of the Worklight project:
keytool -import -alias backend -file backend.crt -storetype JKS -keystore default.keystore

6. Check that the certificate is correctly imported in the keystore:
keytool -list -keystore backend.keystore

Configuring SSL between Worklight Servers and clients by
using certificates that are not signed by a trusted certificate
authority

Getting SSL to work with certificates that are not signed by a known public
certificate authority (CA) can be challenging. Each mobile platform has its own
peculiarities, and adheres to and enforces different portions of the transport layer
security (TLS) standard at different times.

Note: The following recommendations focus mostly on the iOS and Android
environments. Support for X.509 certificates comes from the individual platforms,
and not from IBM Worklight. For more information about specific requirements for
X.509 certificates, see each mobile platform’s documentation.

If you have difficulties with getting your application to access a Worklight Server
because of SSL-related issues, the likely cause is a bad server certificate. Another
likely cause is a client that is not properly configured to trust your server. Many
other reasons can cause an SSL handshake to fail, so not all possibilities are
covered. Some hints and tips are provided to troubleshoot the most basic issues
that are sometimes forgotten or overlooked. These issues are important when you
deal with the mobile world and X.509 certificates.

Basic concepts

A CA is an entity that issues certificates. A CA can issue (sign) other certificates or
other CA certificates (intermediate CA certificates).

In a public key infrastructure (PKI), certificates are verified by using a hierarchical
chain of trust. The topmost certificate in this tree is the root CA certificate.

You can purchase your certificates from a public Internet CA or operate your own
private (local) CA to issue private certificates for your users and applications. A

Chapter 6. Installing and configuring 125

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

CA is meant to be an authority that is well-trusted by your clients. Most
commercial CAs issue certificates that are automatically trusted by most web
browsers and mobile platforms. Using private CAs means that you must take
certain actions to ensure that the client trusts certificates that are signed by your
root CA.

A certificate can be signed (issued) by one of the many public CAs that are known
by your mobile platforms, a private CA, or by itself.

A self-signed certificate is a certificate that is signed by itself and has no CA that
attests to its validity.

A self-signed CA is signed by itself. It is both a certificate and a CA. Because it is
the topmost certificate in a tree, it is also the root CA.

Using certificates that are signed by private CAs is not recommended for
production use on external Internet-facing servers because of security concerns.
However, they might be the preferred option for development and testing
environments due to their low cost. They are also often appropriate for internal
(intranet) servers as they can be deployed quickly and easily.

Using self-signed certificates is not recommended because most mobile platforms
do not support their use.

Certificate types that are supported by different mobile platforms

Table 31. Certificate types that are supported by different mobile platforms

Platform
self-signed
certificates

self-signed CA
certificates

certificates that
are signed by a

private CA

certificates that
are signed by a

public CA

iOS - � � �

Android - � � �

Self-signed certificates versus self-signed CAs

When you are dealing with mobile clients, the use of self-signed certificates is not
recommended because mobile platforms, like Android and iOS, for example, do
not allow the installation of these types of certificates onto the device’s truststore.
This restriction makes it impossible for the client to ever trust the server’s
certificate. Although self-signed certificates are often recommended for
development and testing purposes, they will not work when the client is a mobile
device.

The alternative is to use self-signed CA certificates instead of self-signed
certificates. Self-signed CA certificates are as easy to acquire and are also as
cost-effective of a solution.

You can create a self-signed CA with most tools. For example, the following
command uses the openssl tool to create a self-signed CA:
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout privateKey.key -out cerficate.crt -reqexts v3_req -extensions v3_ca

Note: X.509 version 1 certificates are not allowed by some mobile platforms. You
must use X.509 version 3 certificates instead. If you are generating self-signed CA
certificates, ensure that they are of the type X.509 version 3, and have the following

126 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

extension defined: basicConstraints = CA:TRUE. See the appropriate tool’s
documentation for how to specify the required version and certificate extensions.
For openssl commands, you can specify the -reqexts v3_req flag to indicate
version 3 X.509 certificates, and the -extensions v3_ca flag to indicate that the
certificate is also a CA.

You can check the certificate version and extensions by running the following
openssl command:
openssl x509 -in certificate.crt -text -noout

Establishing trust on the client

When you open a web page on your mobile browser or connect directly to your
Worklight Server on an HTTPS port, a client receives a server certificate in the SSL
handshake. The client then evaluates the server certificate against its list of known
and trusted CAs to establish trust. Each mobile platform includes a set of trusted
CAs that are deemed trustworthy for issuing SSL certificates. Trust is established if
your server certificate is signed by a CA that is already trusted by the device. After
trust is established, the SSL handshake is successful and you are allowed to open
the web page on a browser or connect directly to your server.

However, if your server uses a certificate that is signed by a CA that is unknown
to the client, the trust cannot be established, and your SSL handshake fails. To
ensure your client device trusts your server’s certificate, you must install the trust
anchor certificate (root CA) on the client device.

Note: Only the root CA certificate (trust anchor) needs to be installed. You do not
need to install any other certificates, such as intermediaries, on the device.

For iOS, see “Installing the root CA on iOS” on page 130.

For Android, see “Installing the root CA on Android” on page 133.

Configuring Android

It is important to note that the following flag is set to true by default in all
Worklight hybrid applications:
android:debuggable="true"

Setting the flag to true tells Android to ignore SSL errors under certain conditions.
The use of this flag is highly discouraged for production environments. It is not
necessary if you properly configured your server with a certificate that is signed by
a CA that is trusted by your client device.

Handling the certificate chain

If you are using a server certificate that is not signed by itself, you must ensure
that the server sends the full certificate chain to the client.

For the client to validate the certificate path, it must have access to the full
certificate chain. To ensure that the client has access to the full certificate chain,
including intermediate certificates, ensure that all the certificates in the chain are in
the server-side keystore file.

For the WebSphere Application Server Liberty profile, see “Updating your keystore
and Liberty profile configuration to use a certificate chain” on page 134.

Chapter 6. Installing and configuring 127

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Handling certificate extensions

RFC 5280 (and its predecessors) defines a number of certificate extensions that
provide extra information about the certificate. Certificate extensions provide a
means of expanding the original X.509 certificate information standards.

When an extension is specified in an X.509 certificate, the extension must specify
whether it is a critical or non-critical extension. A client that is processing a
certificate with a critical extension that the client does not recognize, or which the
client cannot process, must reject the certificate. A non-critical extension can be
ignored if it is not recognized.

Not all mobile platforms recognize or process certain certificate extensions in the
same manner. For this reason, you must follow the RFC as closely as possible.
Avoid certificate extensions unless you know that all of your targeted mobile
platforms can handle them as you expect.

CRL support

If your certificate supports certificate revocation lists (CRLs), ensure that the CRL
URL is valid and accessible. Otherwise, certificate chain validation fails.

Tools to use to verify the server certificate

To debug certificate path validation problems, try the openssl s_client command
line tool. This tool generates good diagnostic information that is helpful in
debugging SSL issues.

The following example shows how to use the openssl s_client command line
tool:
openssl s_client -CApath $HOME/CAdir -connect hostname:port

The following example shows how to inspect a certificate:
openssl x509 -in certificate.crt -text -noout

Troubleshooting problems with server certificates that are not
signed by a trusted certificate authority

Table 32. Troubleshoot problems with server certificates

Problem Actions to take

Unable to install the root CA on iOS.

Certificate installs, but after installation, iOS
shows the certificate as not trusted.

The certificate is not identified as a
certificate authority. Ensure that the
certificate specifies a certificate extension:

basicaConstraints = CA:TRUE

For more information, see “Self-signed
certificates versus self-signed CAs” on page
126.

Ensure that the certificate is in PEM format.

Ensure that the certificate has a .crt file
extension.

128 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 32. Troubleshoot problems with server certificates (continued)

Problem Actions to take

Unable to install the root CA on Android.

After installation, the certificate does not
show up in the system’s trusted credentials.

The certificate is an X.509 version 1
certificate or does not have the following
certificate extension:

basicConstraints = CA:TRUE

For more information, see “Self-signed
certificates versus self-signed CAs” on page
126.

Ensure that the certificate is in PEM or DER
format.

Ensure that the certificate has a .crt file
extension.

"errorCode":"UNRESPONSIVE_HOST","errorMsg":"The
service is currently not available."

This error usually indicates an SSL
handshake failure.

The client cannot establish trust for the
server certificate.

1. Ensure that you installed the server’s
root CA on the client device. For more
information, see “Establishing trust on
the client” on page 127.

2. Ensure that the server sends the
complete certificate chain and in the
right order. For more information, see
“Handling the certificate chain” on page
127.

The server certificate is invalid.

1. Check the validity of the server
certificate. For more information, see
“Tools to use to verify the server
certificate” on page 128.

2. Ensure that the CRL URL is valid and
reachable. For more information, see
“CRL support” on page 128.

3. The server certificate contains a critical
certificate extension that is not
recognized by the client platform. For
more information, see “Handling
certificate extensions” on page 128.

Chapter 6. Installing and configuring 129

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 32. Troubleshoot problems with server certificates (continued)

Problem Actions to take

SSL works on Android, but does not work
on iOS.

When Android is in debuggable mode,
Cordova ignores most SSL errors. This
behavior gives the impression that things are
working. Android is in debuggable mode
when the APK is unsigned, or when you
explicitly set the mode in the manifest.
Worklight sets the mode to debuggable in
the manifest by default. To make this
behavior consistent, set the Android
application to debuggable:false in the
manifest, or sign the APK. Make sure that
there is no explicit declaration in the
manifest that sets it to debuggable mode. For
more information about how trust server
certificates from a private CA, see
“Configuring SSL between Worklight Servers
and clients by using certificates that are not
signed by a trusted certificate authority” on
page 125.

After installation, the certificate does not
show up in the system’s trusted credentials
or truststore.

Ensure that you did not install the server
certificate by accessing the protected
resource directly from your browser. This
action imports the certificate only into the
browser space and not into the device
system truststore. The only requirement is
that you install the root CA.

For more information about how to properly
install the root CA on the device, see the
following topics.

For iOS, see “Installing the root CA on iOS.”

For Android, see “Installing the root CA on
Android” on page 133.

Related tasks:
“Configuring SSL for Liberty profile” on page 171
Create a keystore, import the Secure Socket Layer (SSL) certificate, and edit the
server.xml file to configure SSL on Liberty profile.
Related information:

Security with HTTPS and SSL

HTTPS Server Trust Evaluation

The Transport Layer Security (TLS) Protocol Version 1.2

RFC 5280 - Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile

Installing the root CA on iOS
The root CA must be installed on the client device to ensure that the client trusts
server certificates that are signed by your private CAs.

130 IBM Worklight V6.1.0

http://developer.android.com/training/articles/security-ssl.html
https://developer.apple.com/library/ios/technotes/tn2232/_index.html
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

To establish trust for your server certificate, you must install the trust anchor
certificate (root CA) on the client device.

Note: Only the root CA certificate (trust anchor) must be installed. You do not
need to install any other certificates, such as intermediaries, on the device.

Procedure
1. Ensure that the root CA is in PEM file format and has a .crt file extension.

Convert as needed.
2. Run the following command to view the certificate details.

openssl x509 -in certificate.crt -text -noout

3. Ensure that the certificate is of version X.509 v3. The certificate details must
show Version 3.

Note: The following openssl flag generates X.509 v3 certificates:
-reqexts v3_req

4. Ensure that the certificate is a certificate authority. The certificate details must
show X509v3 Basic Constraints: CA:TRUE

Note: The following openssl flag generates the CA extension:
-extensions v3_ca

5. To download the certificate file on the device, send it as an email attachment or
host it on a secure website.

Note: Do not install the server certificate by accessing the protected resource
directly from your browser. This action imports the certificate only into the
browser space and not into the device system truststore.

6. After you have the certificate file on the device, click the file to allow the iOS
system to install the certificate.

Chapter 6. Installing and configuring 131

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

7. Check that the certificate was properly installed under Settings > General >
Profiles > Configuration Profiles.

8. Ensure that the iOS device lists the CA as a trusted certificate authority.

132 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Installing the root CA on Android
The root CA must be installed on the client device to ensure that the client trusts
server certificates that are signed by your private CAs.

About this task

To establish trust for your server certificate, you must install the trust anchor
certificate (root CA) on the client device.

Note: Only the root CA certificate (trust anchor) must be installed. You do not
need to install any other certificates, such as intermediaries, on the device.

Procedure
1. Ensure that the root CA is in PEM or DER file format and has a .crt file

extension. Convert as needed.
2. Run the following command to view the certificate details.

openssl x509 -in certificate.crt -text -noout

3. Ensure that the certificate is of version X.509 v3. The certificate details must
show Version 3.

Note: The following openssl flag generates X.509 v3 certificates:
-reqexts v3_req

4. Ensure that the certificate is a certificate authority. The certificate details must
show X509v3 Basic Constraints: CA:TRUE

Note: The following openssl flag generates the CA extension:
-extensions v3_ca

5. To download the certificate file on the device, send it as an email attachment or
host it on a secure website.

Note: Do not install the server certificate by accessing the protected resource
directly from your browser. This action imports the certificate only into the
browser space and not into the device system truststore.

6. After you have the file on the device, click the file to allow the Android system
to install the certificate.

Chapter 6. Installing and configuring 133

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

7. Provide an alias name for the certificate when you are prompted.

8. Check that the certificate was properly installed under Settings > Security >
Trusted Credentials > User.

Updating your keystore and Liberty profile configuration to use a
certificate chain
You must ensure that your server sends the whole certificate chain to client devices
on an SSL handshake.

134 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

For the client to validate the certificate path, it must have access to the full
certificate chain. To ensure that the client has access to the full certificate chain
(including intermediate certificates), ensure that all the certificates in the chain are
in the server-side keystore file.

Assuming that you have a root CA certificate, intermediate certificates, and a
server certificate, the whole chain must be sent on the HTTPS connection. These
certificates must be concatenated in one file, by concatenating in the following
order: server certificate, intermediate CA certificates (if any exist, and if so, in the
order in which they were signed), and finally the root CA.

The following example assumes that you have a server certificate
(SERVER_IDENTITY_CERT_NAME), one intermediate CA certificate
(INTERMEDIATE_CA_CERT_NAME), and a root CA (ROOT_CA_CERT_NAME).

Procedure
1. Open a terminal and navigate to a temporary working directory.
2. Concatenate your certificates to form the certificate chain.

a. Concatenate the intermediate and the root CA certificates.
cat INTERMEDIATE_CA_CERT_NAME ROOT_CA_CERT_NAME > INTERMEDIATE_CA_CHAIN_CERT_NAME

b. Add the server certificate to the chain.
cat .SERVER_IDENTITY_CERT_NAME SIGNING_CA_CHAIN_CERT_NAME > server_chain.crt

3. Export the private key and certificate chain into a .p12 keystore.
openssl pkcs12 -export -in server_chain.crt -inkey server/server_key.pem -out server/server.p12 -passout pass:passServerP12 -passin pass:passServer

4. Update your Liberty profile server.xml file.
a. Enable the SSL feature.

<featureManager>
...

<feature>ssl-1.0</feature>
...
</featureManager>

b. Create an SSL configuration.
<ssl id="mySSLSettings" keyStoreRef="myKeyStore" />

<keyStore id="myKeyStore"
location="server/server.p12"
type="PKCS12"
password="passServer12" />

c. Configure your HTTP endpoint to use this SSL configuration or set the
configuration as the default.
<sslDefault sslRef="mySSLSettings" />

What to do next

For more information, see Enabling SSL communication for the Liberty profile.

Handling MySQL stale connections
Instructions for how to configure your application server to avoid MySQL timeout
issues.

The MySQL database closes its connections after a period of non-activity on a
connection. This timeout is defined by the system variable called wait_timeout.
The default is 28000 seconds (8 hours).

Chapter 6. Installing and configuring 135

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

When an application tries to connect to the database after MySQL closes the
connection, the following exception is generated:
com.mysql.jdbc.exceptions.jdbc4.MySQLNonTransientConnectionException: No operations allowed after statement closed.

The following sections provide the configuration elements specific to each
application server you can use to avoid this exception if you use the MySQL
database.

Apache Tomcat configuration

Edit the server.xml and context.xml files, and for every <Resource> element add
the following properties:
v testOnBorrow="true"

v validationQuery="select 1"

For example:
<Resource name="jdbc/AppCenterDS"

type="javax.sql.DataSource"
driverClassName="com.mysql.jdbc.Driver"
...
testOnBorrow="true"
validationQuery="select 1"

/>

WebSphere Application Server Liberty Profile configuration

Note: MySQL in combination with WebSphere Application Server Liberty Profile
or WebSphere Application Server Full Profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support
Statement. We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

Edit the server.xml file and for every <dataSource> element (Worklight and
Application Center databases) add a <connectionManager> element with the
agedTimeout property:
<connectionManager agedTimeout="timeout"/>

For example:
<dataSource jndiName="jdbc/AppCenterDS" transactional="false">

<connectionManager agedTimeout="7h30m"/>
<jdbcDriver libraryRef="MySQLLib"/>
...

</dataSource>

WebSphere Application Server Full Profile configuration

Note: MySQL in combination with WebSphere Application Server Liberty Profile
or WebSphere Application Server Full Profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support
Statement. We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.
1. Log in to the WebSphere Application Server console.
2. Select Resources > JDBC > Data sources.
3. For each MySQL data source:

136 IBM Worklight V6.1.0

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

a. Click the data source.
b. Select Connection pool properties under Additional Properties.
c. Modify the value of the Aged timeout property. The value must be lower

that the MySQL wait_timeout system variable to have the connections
purged prior to the time that MySQL closes these connections.

d. Click OK.

Configuring DB2 HADR seamless failover for Worklight Server
and Application Center data sources

You must enable the seamless failover feature with WebSphere Application Server
Liberty profile and WebSphere Application Server. With this feature, you can
manage an exception when a database fails over and gets rerouted by the DB2
JDBC driver.

By default with DB2 HADR, when the DB2 JDBC driver performs a client reroute
after detecting that a database failed over during the first attempt to reuse an
existing connection, the driver triggers
com.ibm.db2.jcc.am.ClientRerouteException, with ERRORCODE=-4498 and
SQLSTATE=08506. WebSphere Application Server maps this exception to
com.ibm.websphere.ce.cm.StaleConnectionException before it is received by the
application.

In this case, the application would have to catch the exception and execute again
the transaction. The Worklight and Application Center runtime environments do
not manage the exception but rely on a feature that is called seamless failover. To
enable this feature, you must set the enableSeamlessFailover JDBC property to "1".

WebSphere Application Server Liberty profile configuration

You must edit the server.xml file, and add the enableSeamlessFailover property
to the properties.db2.jcc element of the Worklight and Application Center data
sources. For example:
<dataSource jndiName="jdbc/WorklightAdminDS" transactional="false">

<jdbcDriver libraryRef="DB2Lib"/>
<properties.db2.jcc databaseName="WLADMIN" currentSchema="WLADMSC"

serverName="db2server" portNumber="50000"
enableSeamlessFailover= "1"
user="worklight" password="worklight"/>

</dataSource>

WebSphere Application Server configuration

From the WebSphere Application Server administrative console for each Worklight
and Application Center data source:
1. Go to Resources > JDBC > Data sources > DataSource name.
2. Select New and add the following custom property, or update the values if the

properties already exist:
enableSeamlessFailover : 1

3. Click Apply.
4. Save your configuration.

Chapter 6. Installing and configuring 137

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Installing the Application Center
You install IBM Worklight Application Center as part of the Worklight Server
installation.

The Application Center is part of Worklight Server. To install the Application
Center, see “Installing Worklight Server” on page 52.

When you install an IBM Worklight edition through IBM Installation Manager, the
Application Center is installed in the web application server that you designate.
You have minimal additional configuration to do. See “Configuring the Application
Center after installation.”

If you chose a manual setup in the installer, see the documentation of the server of
your choice.

For a list of installed files and tools, see “Distribution structure of Worklight
Server” on page 78.

Configuring the Application Center after installation
You configure user authentication and choose an authentication method;
configuration procedure depends on the web application server that you use.

The Application Center requires user authentication.

You must perform some configuration after the installer deploys the Application
Center web applications in the web application server.

The Application Center has two Java Platform, Enterprise Edition (JEE) security
roles defined:
v The appcenteruser role that represents an ordinary user of the Application

Center who can install mobile applications from the catalog to a mobile device
belonging to that user.

v The appcenteradmin role that represents a user who can perform administrative
tasks through the Application Center console.

You must map the roles to the corresponding sets of users.

Figure 4. JEE security roles of the Application Center and the components that they influence

138 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

If you choose to use an authentication method through a user repository such as
LDAP, you can configure the Application Center so that you can use users and
groups with the user repository to define the Access Control List (ACL) of the
Application Center. This procedure is conditioned by the type and version of the
web application server that you use. See “Managing users with LDAP” on page
144 for information about LDAP used with the Application Center.

After you configure authentication of the users of the Application Center, which
includes configuring LDAP if you plan to use it, you can, if necessary, define the
endpoint of the application resources. You must then build the Application Center
mobile client. The mobile client is used to install applications on mobile devices.
See “Preparations for using the mobile client” on page 852 for how to build the
Application Center mobile client.
Related concepts:
“Managing users with LDAP” on page 144
Use the Lightweight Directory Access Protocol (LDAP) registry to manage users.
Related reference:
Preparations for using the mobile client
To use the mobile client to install applications on mobile devices, you must first
import the IBMAppCenter project into Worklight Studio, or the
IBMAppCenterBlackBerry6 project into the BlackBerry Eclipse environment, build
the project, and deploy the mobile client in the Application Center.

Configuring WebSphere Application Server full profile
Configure security by mapping the Application Center JEE roles to a set of users
for both web applications.

Procedure

You define the basics of user configuration in the WebSphere Application Server
console. Access to the console is usually by this address:
https://localhost:9043/ibm/console/

1. Select Security > Global Security.
2. Select Security Configuration Wizard to configure users.

You can manage individual user accounts by selecting Users and Groups >
Manage Users.

3. Map the roles appcenteruser and appcenteradmin to a set of users.
a. Select Servers > Server Types > WebSphere application servers.
b. Select the server.
c. In the Configuration tab, select Applications > Enterprise applications.

Chapter 6. Installing and configuring 139

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

d. Select IBM_Application_Center_Services.
e. In the Configuration tab, select Details > Security role to user/group

mapping.

f. Perform the necessary customization.
g. Click OK.
h. Repeat steps c to g to map the roles for the console web application; in step

d, select IBM_Application_Center_Console.
i. Click Save to save the changes.

Configuring WebSphere Application Server Liberty Profile
Configure the JEE security roles of the Application Center and the data source in
the server.xml file.

Figure 5. Mapping the Application Center roles

Figure 6. Mapping the appcenteruser and appcenteradmin roles: user groups

140 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Before you begin

In WebSphere Application Server Liberty Profile, you configure the roles of
appcenteruser and appcenteradmin in the server.xml configuration file of the
server.

About this task

To configure the security roles, you must edit the server.xml file. In the
<application-bnd> element of each <application> element, create two
<security-role> elements. One <security-role> element is for the appcenteruser
role and the other is for the appcenteradmin role. Map the roles to the appropriate
user group name appcenterusergroup or appcenteradmingroup. These groups are
defined through the <basicRegistry> element. You can customize this element or
replace it entirely with an <ldapRegistry> element or a <safRegistry> element.

Then, to maintain good response times with a large number of installed
applications, for example with 80 applications, you should configure a connection
pool for the Application Center database.

Procedure
1. Edit the server.xml file.

For example:
<security-role name="appcenteradmin">

<group name="appcenteradmingroup"/>
</security-role>
<security-role name="appcenteruser">

<group name="appcenterusergroup"/>
</security-role>

<basicRegistry id="appcenter">
<user name="admin" password="admin"/>
<user name="guest" password="guest"/>
<user name="demo" password="demo"/>
<group name="appcenterusergroup">

<member name="guest" />
<member name=" demo" />

</group>
<group name="appcenteradmingroup">

<member name="admin" id=”admin"/>
</group>

</basicRegistry>

2. Edit the server.xml file to define the AppCenterPool size.
<connectionManager id="AppCenterPool" minPoolSize="10" maxPoolSize="40"/>

3. In the <dataSource> element, define a reference to the connection manager:
<dataSource id="APPCNTR" jndiName="jdbc/AppCenterDS" connectionManagerRef="AppCenterPool"
...
</dataSource>

Configuring Apache Tomcat
You must configure the JEE security roles for the Application Center on the Apache
Tomcat web application server.

Chapter 6. Installing and configuring 141

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. In the Apache Tomcat web application server, you configure the roles of

appcenteruser and appcenteradmin in the conf/tomcat-users.xml file. The
installation creates the following users:
<user username="appcenteradmin" password="admin" roles="appcenteradmin"/>
<user username="demo" password="demo" roles="appcenteradmin"/>
<user username="guest" password="guest" roles="appcenteradmin"/>

2. You can define the set of users as described in the Apache Tomcat
documentation, Realm Configuration HOW-TO.

Configuring properties of DB2 JDBC driver in WebSphere
Application Server

Add some JDBC custom properties to avoid DB2 exceptions from a WebSphere
Application Server that uses the IBM DB2 database.

About this task

When you use WebSphere Application Server with an IBM DB2 database, this
exception could occur:
Invalid operation: result set is closed. ERRORCODE=-4470, SQLSTATE=null

To avoid such exceptions, you must add custom properties in WebSphere
Application Server at the Application Center data source level.

Procedure
1. 1. Log in to the WebSphere Application Server administration console.
2. Select Resources > JDBC > Data sources > Application Center DataSource

name > Custom properties and click New.
3. In the Name field, enter allowNextOnExhaustedResultSet.
4. In the Value field, type 1.
5. Change the type to java.lang.Integer.
6. Click OK.
7. Click New.
8. In the Name field, enter resultSetHoldability.
9. In the Value field, type 1.

10. Change the type to java.lang.Integer.
11. Click OK and save your changes.

Configuring WebSphere Application Server to support
applications in public app stores

Configure WebSphere Application Server full profile and Liberty profile before
access to public app stores through application links, because of the use of SSL
connections.

The constraint imposed by the use of SSL connections requires the root certificates
of public app stores to exist in the WebSphere trust store before you can use
application links to access these public stores. The configuration requirement
applies to both WebSphere Application Server full profile and Liberty profile.

The root certificate of Google play must be imported into the WebSphere trust
store before you can use application links to Google play.

142 IBM Worklight V6.1.0

http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The root certificate of Apple iTunes must be imported into the WebSphere trust
store before you can use application links to iTunes.

To use application links to Google play, see “Configuring WebSphere Application
Server to support applications in Google play.”

To use application links to Apple iTunes, see “Configuring WebSphere Application
Server to support applications in Apple iTunes.”

Configuring WebSphere Application Server to support
applications in Google play
Configure WebSphere Application Server to enable links in the Application Center
console to access applications in Google play.

About this task

Follow this procedure to import the root certificate of Google play into the
WebSphere trust store. You must import this certificate before the Application
Center can support links to applications stored in Google Play.

Procedure
1. Log in to the WebSphere Application Server console and navigate to Security >

SSL certificate and key management > Key stores and certificates >
NodeDefaultTrustStore > Signer certificates.

2. Click Retrieve from port.
3. In the Host field, enter play.google.com.
4. In the Port field, enter 443.
5. In the Alias field, enter play.google.com.
6. Click Retrieve signer information.
7. Click OK and save the configuration.

Configuring WebSphere Application Server to support
applications in Apple iTunes
Configure WebSphere Application Server to enable links in the Application Center
console to access applications in Apple iTunes.

About this task

Follow this procedure to import the root certificate of Apple iTunes into the
WebSphere trust store. You must import this certificate before the Application
Center can support links to applications stored in iTunes.

Procedure
1. Log in to the WebSphere Application Server console and navigate to Security >

SSL certificate and key management > Key stores and certificates >
NodeDefaultTrustStore > Signer certificates.

2. Click Retrieve from port.
3. In the Host field, enter itunes.apple.com.
4. In the Port field, enter 443.
5. In the Alias field, enter itunes.apple.com.
6. Click Retrieve signer information.
7. Click OK and save the configuration.

Chapter 6. Installing and configuring 143

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Configuring Liberty Profile when IBM JDK is used
Configure Liberty Profile to use default JSSE socket factories instead of SSL socket
factories of WebSphere Application Server when IBM JDK is used.

Purpose

This configuration is required only when IBM JDK is used. (The configuration does
not apply for use of Oracle JDK.) By default, IBM JDK uses the SSL socket factories
of WebSphere Application Server. These factories are not supported by Liberty
Profile, so you must edit the java.security file from the JDK.
v You must uncomment the two lines that set the SSL socket factories to the

default JSSE factories.
v You must comment out the two lines that set the SSL socket factories to the SSL

socket factories of WebSphere Application Server.

Exception when WebSphere Application Server SSL socket factories
are used

If you use the SSL socket factories of WebSphere Application Server, this exception
occurs when the connection with SSL is attempted. In this case, you must edit the
java.security file.
java.net.SocketException: java.lang.ClassNotFoundException: Cannot find the specified class com.ibm.websphere.ssl.protocol.SSLSocketFactory

at javax.net.ssl.DefaultSSLSocketFactory.a(SSLSocketFactory.java:11)
at javax.net.ssl.DefaultSSLSocketFactory.createSocket(SSLSocketFactory.java:6)
at com.ibm.net.ssl.www2.protocol.https.c.afterConnect(c.java:161)
at com.ibm.net.ssl.www2.protocol.https.d.connect(d.java:36)
at sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1184)
at java.net.HttpURLConnection.getResponseCode(HttpURLConnection.java:390)
at com.ibm.net.ssl.www2.protocol.https.b.getResponseCode(b.java:75)
at com.ibm.ws.jmx.connector.client.rest.internal.RESTMBeanServerConnection.loadJMXServerInfo(RESTMBeanServerConnection.java:142)
at com.ibm.ws.jmx.connector.client.rest.internal.RESTMBeanServerConnection.<init>(RESTMBeanServerConnection.java:114)
at com.ibm.ws.jmx.connector.client.rest.internal.Connector.connect(Connector.java:315)
at com.ibm.ws.jmx.connector.client.rest.internal.Connector.connect(Connector.java:103)

Edited content of the java.security file

This sample shows the edits made to the java.security file.
Default JSSE socket factories
ssl.SocketFactory.provider=com.ibm.jsse2.SSLSocketFactoryImpl
ssl.ServerSocketFactory.provider=com.ibm.jsse2.SSLServerSocketFactoryImpl
WebSphere socket factories (in cryptosf.jar)
#ssl.SocketFactory.provider=com.ibm.websphere.ssl.protocol.SSLSocketFactory
#ssl.ServerSocketFactory.provider=com.ibm.websphere.ssl.protocol.SSLServerSocketFactory

Managing users with LDAP
Use the Lightweight Directory Access Protocol (LDAP) registry to manage users.

LDAP is a way to centralize the user management for multiple web applications in
an LDAP Server that maintains a user registry. It can be used instead of specifying
one by one the users for the security roles appcenteradmin and appcenteruser.

If you plan to use an LDAP registry with the Application Center, you must
configure your WebSphere Application Server or your Apache Tomcat server to use
an LDAP registry to authenticate users.

In addition to authentication of users, configuring the Application Center for
LDAP also enables you to use LDAP to define the users and groups who can

144 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

install mobile applications through the Application Center. The means of defining
these users and groups is the Access Control List (ACL).

Since IBM Worklight V6.0, use the JNDI environment entries for defining LDAP
configuration properties.

Expert users could configure the application servers to use LDAP authentication by
using the methods that were documented in releases before IBM Worklight V6.0.

LDAP with WebSphere Application Server V7
Use LDAP to authenticate users and define the users and groups who can install
mobile applications with the Application Center; you can use the JNDI
environment or the VMM API to define the LDAP mapping

You use LDAP to define the roles appcenteradmin and appcenteruser. Then, you
have two ways of defining LDAP mapping for WebSphere Application Server V7:
v By using the JNDI environment with a stand-alone LDAP configuration
v By using federated repositories with the Virtual Member Manager (VMM) API

Configuring LDAP authentication (WebSphere Application Server V7):

Define the users who can access the Application Center console and the users who
can log in to the client by configuring LDAP as a stand-alone LDAP server or as a
federated repository.

About this task

This procedure shows you how to use LDAP to define the roles appcenteradmin
and appcenteruser in WebSphere Application Server V7.

Procedure

1. Log in to the WebSphere Application Server console.
2. In Security > Global Security, verify that administrative security and

application security are enabled.
3. Select Federated repositories or Standalone LDAP registry.
4. Click Configure. For federated repositories, follow step 5. For stand-alone

LDAP registry, follow step 6
5. Option for federated repositories: add the new repository and configure the

required additional properties.
a. To add a new repository, click Add Base entry to Realm.
b. Specify the value of “Distinguished name of a base entry that uniquely

identifies entries in the realm” and click Add Repository.
c. Select LDAP Repository.
d. Give this repository a name and enter the values required to connect to

your LDAP server.
e. Under Additional Properties, click LDAP entity types.
f. Configure the Group, OrgContainer, and PersonAccount properties. These

configuration details depend on your LDAP server.
6. Option for stand-alone LDAP registry: Configure access control (ACL)

management. You can use JNDI properties for this configuration, but you
cannot use VMM.

Chapter 6. Installing and configuring 145

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

a. Enter the values of General Properties. These values depend on your
LDAP server.

b. Under Additional Properties, click Advanced Lightweight Directory
Access Protocol (LDAP) and configure the user and group filters and
maps. These configuration details depend on your LDAP server.

7. Save the configuration, log out, and restart the server.
8. In the WebSphere Application Server console, map the security roles to users

and groups.
a. In the Configuration tab, select Applications > WebSphere Enterprise

applications.
b. Select “IBM_Application_Center_Services”.
c. In the Configuration tab, select Details > Security role to user/group

mapping.
d. For appcenteradmin and appcenteruser roles, select Map groups. This

selection enables you to select users and groups inside the WebSphere user
repository, including LDAP users and groups. The selected users can
access the Application Center as appcenteradmin or appcenteruser. You
can also map the roles to Special Subjects “All authenticated in
application realm” to give everyone in the WebSphere user repository,
including everyone registered in the LDAP registry, access to the
Application Center.

9. Repeat the procedure described in step 8 for IBM_Application_Center_Console.
(Make sure that you select “IBM_Application_Center_Console” in step 8.b
instead of “IBM_Application_Center_Services”).

10. Click Save to save your changes.

Configuring LDAP ACL management with JNDI (WebSphere Application Server
V7):

Use LDAP to define the users and groups who can install mobile applications with
the Application Center by using the JNDI environment.

About this task

Since IBM Worklight V6.0, two configuration approaches are available: the JNDI
API or the Virtual Member Manager (VMM) API. This procedure shows you how
to use the JNDI API to configure LDAP based on the federated repository
configuration or with the stand-alone LDAP registry. Only the simple type of
LDAP authentication is supported.

Procedure

1. Log in to the WebSphere Application Server console.
2. Select Applications > Application Types > WebSphere enterprise applications.
3. Click IBM_Application_Center_Services.
4. In the Web Module Properties section, select “Environment entries for Web

modules”.
a. For the ibm.appcenter.ldap.vmm.active entry, assign the value “false”.
b. For the ibm.appcenter.ldap.active entry, assign the value “true”.

5. Continue to configure the remaining entries:
v ibm.appcenter.ldap.connectionURL: LDAP connection URL.
v ibm.appcenter.ldap.user.base: search base for users.

146 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v ibm.appcenter.ldap.user.loginName: LDAP login attribute.
v ibm.appcenter.ldap.user.displayName: LDAP attribute for the user name to

be displayed, for example, a person's full name.
v ibm.appcenter.ldap.group.base: search base for groups.
v ibm.appcenter.ldap.group.name: LDAP attribute for the group name.
v ibm.appcenter.ldap.group.uniquemember: LDAP attribute that identifies the

members of a group.
v ibm.appcenter.ldap.user.groupmembership: LDAP attribute that identifies

the groups that a user belongs to.
v ibm.appcenter.ldap.group.nesting: management of nested groups. If nested

groups are not managed, set the value to false.
v ibm.appcenter.ldap.cache.expiration.seconds: delay in seconds before the

LDAP cache expires. If no value is entered, the default value is 86400, which
is equal to 24 hours.
Changes to users and groups on the LDAP server become visible to the
Application Center after a delay, which is specified by
ibm.appcenter.ldap.cache.expiration.seconds. The Application Center
maintains a cache of LDAP data and the changes only become visible after
the cache expires. By default, the delay is 24 hours. If you do not want to
wait for this delay to expire after changes to users or groups, you can call
this command to clear the cache of LDAP data:
acdeploytool.sh -clearLdapCache -s serverurl -c context -u user -p password

See Using the stand-alone tool to clear the LDAP cache for details.
a. Enter the value of each property.
b. Click OK and save the configuration.

6. Option: If the LDAP external SASL authentication mechanism is required to bind to
the LDAP server, configure the ibm.appcenter.ldap.active.sasl property, which
defines the value of the security authentication mechanism. The value depends
on the LDAP server; usually, it is set to “EXTERNAL”.

7. Option: If security binding is required, follow this step. Configure the following
entries:
v ibm.appcenter.ldap.security.binddn: the distinguished name of the user

permitted to search the LDAP directory.
v ibm.appcenter.ldap.security.bindpwd: the password of the user permitted

to search the LDAP directory. The password can be encoded with the
“WebSphere PropFilePasswordEncoder” utility. Run the utility before you
configure the ibm.appcenter.ldap.security.bindpwd custom property.

a. Enter the value of each optional property and click OK. Set the value of the
ibm.appcenter.ldap.security.bindpwd property to the encoded password
generated by the “WebSphere PropFilePasswordEncoder” utility.

b. Save the configuration.
8. Option: If LDAP referrals must be handled, follow this step. Configure

ibm.appcenter.ldap.referral: support of referrals by the JNDI API. v If no
value is given, the JNDI API will not handle LDAP referrals. Possible values
are:
v ignore: ignores referrals found in the LDAP server.
v follow: automatically follows any referrals found in the LDAP server.
v throw: causes an exception to occur for each referral found in the LDAP

server.
a. Enter the value of the property and click OK.

Chapter 6. Installing and configuring 147

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

b. Save the configuration.
9. Option: If users and groups are defined in the same subtree (the properties

ibm.appcenter.ldap.user.base and ibm.appcenter.ldap.group.base have the
same value), follow this step. Configure the following entries:
v ibm.appcenter.ldap.user.filter: LDAP user search filter for the attribute of

user login name. Use %v as the placeholder for the login name attribute.
v ibm.appcenter.ldap.group.filter: LDAP group search filter. Use %v as the

placeholder for the group attribute.
v ibm.appcenter.ldap.user.displayName.filter: LDAP user search filter for

the attribute of user display name. Use %v as the placeholder for the user
display name attribute.

a. Enter the value of each optional property and click OK.
b. Save the configuration.

Results

The following figure shows the values to assign to each property.

See “List of JNDI properties for the Application Center” on page 172 for a
complete list of properties that you can set.

Note: The attribute ibm.appcenter.ldap.user.groupmembership specifies the
groups of a member when you use LDAP without VMM. This property is the

Figure 7. Environment entries and their values (LDAP and WebSphere Application Server V7)

148 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

inverse of ibm.appcenter.ldap.group.uniquemember. This property is optional, but
if it is specified, the LDAP access is faster. One or both of the properties
ibm.appcenter.ldap.user.groupmembership or
ibm.appcenter.ldap.group.uniquemember must be specified. The system behaves
faster if both are specified, but some LDAP implementations do not support the
group membership attribute for a user. In this case, if
ibm.appcenter.ldap.group.uniquemember is specified, the property
ibm.appcenter.ldap.user.groupmembership is not set.

Configuring LDAP ACL management with VMM (WebSphere Application
Server V7):

Use LDAP to define the users and groups who can install mobile applications with
the Application Center with the Virtual Member Manager (VMM) API.

About this task

Since IBM Worklight V6.0, two configuration approaches are available: the JNDI
API or the VMM API. This procedure shows you how to use the VMM API to
configure LDAP based on the federated repository configuration.

You must configure LDAP based on the federated repository configuration. The
stand-alone LDAP registry is not supported.

Several different repositories, LDAP and non-LDAP, can be configured in the
federated repository.

Procedure

1. Configure the attribute mapping. For users, the Application Center refers to
these VMM attributes:
v uid: represents the user login name.
v sn: represents the full name of the user.
For groups, the Application Center refers only to the VMM attribute cn.
If VMM attributes are not identical to LDAP attributes, you must map the
VMM attributes to the corresponding LDAP attributes.
In WebShere Application Server V7, you cannot configure this mapping with
the WebSphere Application Server console.
a. Find in the file {WAS_HOME/profiles/{profileName/config/cells/{cellName/

wim/config/wimconfig.xml the section that contains the LDAP repository
configuration with id="your LDAP id":
<config:repositories xsi:type="config:LdapRepositoryType" adapterClassName="com.ibm.ws.wim.adapter.ldap.LdapAdapter"

id="your LDAP id"....

Where your LDAP id is the user ID configured for you in the LDAP
repository.

b. In this section, after the element <config:attributeConfiguration>, add
these entries:
<config:attributes name="your LDAP attribute for the user full name" propertyName="sn">

<config:entityTypes>PersonAccount</config:entityTypes>
</config:attributes>
<config:attributes name="your LDAP attribute for the user login name " propertyName="uid">

<config:entityTypes>PersonAccount</config:entityTypes>
</config:attributes>

c. Save the file and restart the server.

Chapter 6. Installing and configuring 149

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. Configure the Application Center for ACL management with LDAP. In
WebSphere Application Server V7, only a WebSphere administrator user can
run VMM access. (VMM roles are only supported by WebSphere Application
Server V8.)
You must define these properties:
v ibm.appcenter.ldap.active = true.
v ibm.appcenter.ldap.vmm.active = true.
v ibm.appcenter.ldap.vmm.adminuser = WebSphere administrator user.
v ibm.appcenter.ldap.vmm.adminpwd = WebSphere administrator password.

The password can be encoded or not.
v ibm.appcenter.ldap.cache.expiration.seconds = : the delay in seconds

before the LDAP cache expires. If no value is entered, the default value is
86400, which is equal to 24 hours.
Changes to users and groups on the LDAP server become visible to the
Application Center after a delay, which is specified by
ibm.appcenter.ldap.cache.expiration.seconds. The Application Center
maintains a cache of LDAP data and the changes only become visible after
the cache expires. By default, the delay is 24 hours. If you do not want to
wait for this delay to expire after changes to users or groups, you can call
this command to clear the cache of LDAP data:
acdeploytool.sh -clearLdapCache -s serverurl -c context -u user -p password

See Using the stand-alone tool to clear the LDAP cache for details.
See “List of JNDI properties for the Application Center” on page 172 for a
complete list of properties that you can set.
a. Log in to the WebSphere Application Server console.
b. Select Applications > Application Types > WebSphere enterprise

applications.
c. In the “Web Module Properties” section, select

IBM_Application_Center_Services and then select Environment entries for
Web modules.

d. Set the values for the properties.
e. Click OK and save the configuration. The application is automatically

restarted.
3. Optional: Encode the password with the PropFilePasswordEncoder utility.

a. Create a file pwd.txt that contains the entry adminpwd=your clear password,
where your clear password is the unencoded administrator password.

b. Run this command:
{WAS_HOME}/profiles/profile name/bin/PropFilePasswordEncoder "file path/ pwd.txt" adminpwd

c. Open the pwd.txt file and copy the encoded password into the value of the
ibm.appcenter.ldap.vmm.adminpwd property.

LDAP with WebSphere Application Server V8.x
LDAP authentication is achieved based on the federated repository configuration.
ACL management configuration of the Application Center uses the Virtual Member
Manager API.

You must configure LDAP based on the federated repository configuration. The
stand-alone LDAP registry is not supported.

Several different repositories, LDAP and non-LDAP, can be configured in the
federated repository.

150 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For information about configuring federated repositories, see the WebSphere
Application Server V8.0 user documentation or the WebSphere Application Server
V8.5 user documentation, depending on your version.

Configuration of the Application Center for ACL management with
LDAP

Some configuration details of ACL management are specific to the Application
Center, because it uses the Virtual Member Manager (VMM) API.

The Application Center refers to these VMM attributes for users:
uid represents the user login name.
sn represents the full name of the user.

For groups, the Application Center refers only to the VMM attribute cn.

If VMM attributes are not identical in LDAP, you must map the VMM attributes to
the corresponding LDAP attributes.

Configuring LDAP authentication (WebSphere Application Server V8.x):

Use LDAP to define users who can access the Application Center console and
users who can log in to the client.

About this task

You can configure LDAP based on the federated repository configuration only. This
procedure shows you how to use LDAP to define the roles appcenteradmin and
appcenteruser in WebSphere Application Server V8.x.

Procedure

1. Log in to the WebSphere Application Server console.
2. Select Security > Global security and verify that administrative security and

application security are enabled.
3. In the “User account repository” section, select Federated repositories.
4. Click Configure.
5. Add a new repository and configure the required repository.

a. Click Add Base entry to Realm.
b. Specify the value of “Distinguished name of a base entry that uniquely

identifies entries in the realm” and click Add Repository.
c. Select LDAP Repository.
d. Give this repository a name and enter the values required to connect to

your LDAP server.
e. Under Additional Properties, click LDAP entity types.
f. Configure the Group, OrgContainer, and PersonAccount properties. These

configuration details depend on your LDAP server.
6. Save the configuration, log out, and restart the server.
7. In the WebSphere Application Server console, map the security roles to users

and groups.
a. In the Configuration tab, select Applications > WebSphere Enterprise

applications.
b. Select “IBM_Application_Center_Services”.

Chapter 6. Installing and configuring 151

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?lang=en
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp?lang=en
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?lang=en
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?lang=en

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

c. In the Configuration tab, select Details > Security role to user/group
mapping.

d. For appcenteradmin and appcenteruser roles, select Map groups. This
selection enables you to select users and groups inside the WebSphere user
repository, including LDAP users and groups. The selected users can access
the Application Center as appcenteradmin or appcenteruser. You can also
map the roles to Special Subjects “All authenticated in application realm”
to give everyone in the WebSphere user repository, including everyone
registered in the LDAP registry, access to the Application Center.

8. Repeat the procedure described in step 7 on page 151 for
IBM_Application_Center_Console. (Make sure that you select
“IBM_Application_Center_Console” in step 7.b instead of
“IBM_Application_Center_Services”.)

9. Click Save to save your changes.

What to do next

You must enable ACL management with LDAP. See “Configuring LDAP ACL
management (WebSphere Application Server V8.x).”

Configuring LDAP ACL management (WebSphere Application Server V8.x):

Use LDAP to define the users and groups who can install mobile applications with
the Application Center with the Virtual Member Manager (VMM) API.

About this task

To configure ACL with LDAP, you should define three properties: uid, sn, and cn.
These properties enable the login name and the full name of users and the name of
user groups to be identified in the Application Center.

Then you should enable ACL management with VMM. You can configure LDAP
based on the federated repository configuration only.

Procedure

1. Log in to the WebSphere Application Server console.
2. Select Security > Global security.
3. In the “User account repository” section, select Configure.
4. Select your LDAP repository entry.
5. Under Additional Properties, select LDAP attributes (WebSphere Application

Server V8.0) or Federated repositories property names to LDAP attributes
mapping (WebSphere Application Server V8.5).

6. Select Add > Supported.
7. Enter these property values:

a. For Name enter your LDAP login attribute.
b. For Property name enter uid.
c. For Entity types enter the LDAP entity type.
d. Click OK.

152 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

8. Select Add > Supported.
a. For Name enter your LDAP attribute for full user name.
b. For Property name enter sn.
c. For Entity types enter the LDAP entity type.
d. Click OK.

9. Select Add > Supported to configure a group name:
a. For Name enter the LDAP attribute for your group name.
b. For Property name enter cn.
c. For Entity types enter the LDAP entity type.
d. Click OK.

10. Enable ACL management with LDAP:
a. Select Servers > Server Types > WebSphere application servers.
b. Select the appropriate application server.

In a clustered environment you must configure all the servers in the
cluster in the same way.

c. In the Configuration tab, under “Server Infrastructure”, click the Java and
Process Management tab and select Process definition.

d. In the Configuration tab, under “Additional Properties”, select Java
Virtual Machine,

e. In the Configuration tab, under “Additional Properties”, select Custom
properties.

f. Enter the required property-value pairs in the form. To enter each pair,
click New, enter the property and its value, and click OK.
Property-value pairs:
v ibm.appcenter.ldap.vmm.active = true

v ibm.appcenter.ldap.active = true

v ibm.appcenter.ldap.cache.expiration.seconds = delay_in_seconds

Enter the delay in seconds before the LDAP cache expires. If you do not
enter a value, the default value is 86400, which is equal to 24 hours.

Figure 8. Associating LDAP login with uid property (WebSphere Application Server V8.0)

Figure 9. Associating LDAP full user name with sn property (WebSphere Application Server V8.0)

Chapter 6. Installing and configuring 153

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Changes to users and groups on the LDAP server become visible to the
Application Center after a delay, which is specified by
ibm.appcenter.ldap.cache.expiration.seconds. The Application Center
maintains a cache of LDAP data and the changes only become visible
after the cache expires. By default, the delay is 24 hours. If you do not
want to wait for this delay to expire after changes to users or groups,
you can call this command to clear the cache of LDAP data:
acdeploytool.sh -clearLdapCache -s serverurl -c context -u user -p password

See Using the stand-alone tool to clear the LDAP cache for details.

Results

The following figure shows an example of custom properties with the correct
settings.

What to do next

Save the configuration and restart the server.

To use the VMM API, you must assign the “IdMgrReader” role to the users who
run the VMM code, or to the group owners of these users. You must assign this
role to all users and groups who have the roles of “appcenteruser” or
“appcenteradmin”.

In the <was_home>\bin directory, where <was_home> is the home directory of your
WebSphere application server, run the wsadmin command.

After connecting with the WebSphere Application Server administrative user, run
the following command:
$AdminTask mapIdMgrGroupToRole {-roleName IdMgrReader -groupId your_LDAP_group_id}

Run the same command for all the groups mapped to the roles of “appcenteruser”
and “appcenteradmin”.

For individual users who are not members of groups, run the following command:
$AdminTask mapIdMgrUserToRole {-roleName IdMgrReader -userId your_LDAP_user_id}

You can assign the special subject “All Authenticated in Application's Realm” as
roles for appcenteruser and appcenteradmin. If you choose to assign this special
subject, IdMgrReader must be configured in the following way:
$AdminTask mapIdMgrGroupToRole {-roleName IdMgrReader -groupId ALLAUTHENTICATED}

Enter exit to end wsadmin.

Figure 10. ACL management for Application Center with LDAP on WebSphere Application Server V8

154 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

LDAP with Liberty Profile
Use LDAP to authenticate users and to define the users and groups who can install
mobile applications with the Application Center by using the JNDI environment.

Using LDAP with Liberty Profile requires you to configure LDAP authentication
and LDAP ACL management.

Configuring LDAP authentication (Liberty Profile):

You configure LDAP authentication by defining one or more LDAP registries in the
server.xml file and you map LDAP users and groups to Application Center roles.

About this task

You can configure LDAP authentication of users and groups in the server.xml file
by defining an LDAP registry or, since WebSphere Application Server Liberty
Profile V8.5.5, a federated registry that uses several LDAP registries. Then you map
users and groups to Application Center roles. The mapping configuration is the
same for LDAP authentication and basic authentication.

Procedure

1. To open the server.xml descriptor file, enter {server.config.dir}/server.xml

2. Insert one or several LDAP registry definitions after the <httpEndpoint>
element.
Example for the LDAP registry:
<ldapRegistry baseDN="o=ibm.com" host="employees.com" id="Employees"

ldapType="IBM Tivoli Directory Server" port="389" realm="AppCenterLdap"
recursiveSearch="true">

<idsFilters
groupFilter="(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames))) " id="Employees"
userFilter="(&(emailAddress=%v)(objectclass=ibmPerson))"
groupMemberIdMap="ibm-allGroups:member;ibm-allGroups:uniqueMember"
userIdMap="*:emailAddress"/>

</ldapRegistry>

For information about the parameters used in this example, see the WebSphere
Application Server V8.5 user documentation.

3. Insert a security role definition after each Application Center application
definition (applicationcenter and appcenterconsole).
Example for security role definition: this example includes two sets of sample
code that show how to code when the group names are unique within LDAP
and how to code when the group names are not unique within LDAP.

Group names unique within LDAP
This sample code shows how to use the group names
ldapGroupForAppcenteruser and ldapGroupForAppcenteradmin when
they exist and are unique within LDAP.

<application-bnd>
<security-role name="appcenteruser" id="appcenteruser">

<group name="ldapGroupForAppcenteruser" />
</security-role>
<security-role name="appcenteradmin" id="appcenteradmin">

<group name="ldapGroupForAppcenteradmin" />
</security-role>

</application-bnd>

Chapter 6. Installing and configuring 155

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Group names not unique within LDAP
This sample code shows how to code the mapping when the group
names are not unique within LDAP. The groups must be specified with
the access-id attribute.

<application-bnd>
<security-role name="appcenteruser" id="appcenteruser">

<group name="ldapGroup"
id="ldapGroup"
access-id="group:AppCenterLdap/CN=ldapGroup,OU=myorg,

DC=mydomain,DC=AD,DC=myco,DC=com"/>
</security-role>
...

</application-bnd>

The access-id attribute must refer to the realm name used to specify
the LDAP realm. In this sample code, the realm name is AppCenterLdap.
The remainder of the access-id attribute specifies one of the LDAP
groups named ldapGroup in a way that makes it unique.

If required, use similar code to map the appcenteradmin role.

Configuring LDAP ACL management (Liberty Profile):

Use LDAP to define the users and groups who can install mobile applications
through the Application Center. The means of defining these users and groups is
the Access Control List (ACL).

Purpose

To enable ACL management with LDAP. You enable ACL management after you
configure LDAP and map users and groups to Application Center roles. Only the
simple type of LDAP authentication is supported.

Properties

To be able to define JNDI entries, the following feature must be defined in the
server.xml file:
<feature>jndi-1.0</feature>

Add an entry for each property in the <server> section of the server.xml file. This
entry should have the following syntax:
<jndiEntry jndiName="JNDI_property_name" value="property_value"/>

Where:

JNDI_property_name is the name of the property you are adding.

property_value is the value of the property you are adding.

Table 33. JNDI properties for configuring ACL management with LDAP in the server.xml file

Property Description

ibm.appcenter.ldap.active Set to true to enable LDAP; set to false to
disable LDAP.

156 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 33. JNDI properties for configuring ACL management with LDAP in the server.xml
file (continued)

Property Description

ibm.appcenter.ldap.federated.active Since WebSphere Application Server Liberty
Profile V8.5.5: set to true to enable use of the
federated registry; set to false to disable use
of the federated registry, which is the default
setting.

ibm.appcenter.ldap.connectionURL LDAP connection URL.

ibm.appcenter.ldap.user.base Search base of users.

ibm.appcenter.ldap.user.loginName LDAP login attribute.

ibm.appcenter.ldap.user.displayName LDAP attribute for the user name to be
displayed, for example, a person's full name.

ibm.appcenter.ldap.group.base Search base of groups.

ibm.appcenter.ldap.group.name LDAP attribute for the group name.

ibm.appcenter.ldap.group.uniquemember LDAP attribute that identifies the members
of a group.

ibm.appcenter.ldap.user.groupmembership LDAP attribute that identifies the groups to
which a user belongs. Specifies the groups of
a member when you use LDAP without
VMM. This property is the inverse of
ibm.appcenter.ldap.group.uniquemember.
This property is optional, but if it is
specified, the LDAP access is faster.

ibm.appcenter.ldap.group.nesting Management of nested groups: if nested
groups are not managed, set the value to
false.

ibm.appcenter.ldap.user.filter LDAP user search filter for the attribute of
user login name. Use %v as the placeholder
for the login name attribute.

This property is only required when LDAP
users and groups are defined in the same
subtree; that is, when the properties
ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the
same value.

ibm.appcenter.ldap.displayName.filter LDAP user search filter for the attribute of
user display name. Use %v as the placeholder
for the display name attribute.

This property is only required when LDAP
users and groups are defined in the same
subtree; that is, when the properties
ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the
same value.

Chapter 6. Installing and configuring 157

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 33. JNDI properties for configuring ACL management with LDAP in the server.xml
file (continued)

Property Description

ibm.appcenter.ldap.group.filter LDAP group search filter. Use %v as the
placeholder for the group attribute.

This property is only required when LDAP
users and groups are defined in the same
subtree; that is, when the properties
ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the
same value.

ibm.appcenter.ldap.active.sasl The value of the security authentication
mechanism when the LDAP external SASL
authentication mechanism is required to bind
to the LDAP server. The value depends on
the LDAP server; usually, it is set to
“EXTERNAL”.

ibm.appcenter.ldap.security.binddn Property that identifies the distinguished
name of the user permitted to search the
LDAP directory. Use this property only if
security binding is required.

ibm.appcenter.ldap.security.bindpwd Property that identifies the password of the
user permitted to search the LDAP directory.
Use this property only if security binding is
required.

The password can be encoded with the
“Liberty Profile securityUtility” tool. Run the
tool and then set the value of this property
to the encoded password generated by the
tool. The supported encoding types are xor
and aes.

Edit the Liberty Profile server.xml file to
check whether the classloader is enabled to
load the JAR file that decodes the password.

ibm.appcenter.ldap.cache.expiration.secondsDelay in seconds before the LDAP cache
expires. If no value is entered, the default
value is 86400, which is equal to 24 hours.

Changes to users and groups on the LDAP
server become visible to the Application
Center after a delay, which is specified by
ibm.appcenter.ldap.cache.expiration.seconds.
The Application Center maintains a cache of
LDAP data and the changes only become
visible after the cache expires. By default, the
delay is 24 hours. If you do not want to wait
for this delay to expire after changes to users
or groups, you can call this command to
clear the cache of LDAP data:

acdeploytool.sh -clearLdapCache -s serverurl -c context -u user -p password

See Using the stand-alone tool to clear the
LDAP cache for details.

158 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 33. JNDI properties for configuring ACL management with LDAP in the server.xml
file (continued)

Property Description

ibm.appcenter.ldap.referral Property that indicates whether referrals are
supported by the JNDI API. If no value is
given, the JNDI API will not handle LDAP
referrals. Possible values are:

v ignore: ignores referrals found in the
LDAP server.

v follow: automatically follows any referrals
found in the LDAP server.

v throw: causes an exception to occur for
each referral found in the LDAP server.

See “List of JNDI properties for the Application Center” on page 172 for a
complete list of properties that you can set.

Note: One or both of the properties ibm.appcenter.ldap.user.groupmembership or
ibm.appcenter.ldap.group.uniquemember must be specified. The system behaves
faster if both are specified, but some LDAP implementations do not support the
group membership attribute for a user. In this case, if
ibm.appcenter.ldap.group.uniquemember is specified, the property
ibm.appcenter.ldap.user.groupmembership is not set.

Example of setting properties for ACL management with LDAP

This example shows the settings of the properties in the server.xml file required
for ACL management with LDAP.
<jndiEntry jndiName="ibm.appcenter.ldap.active" value="true"/>
<jndiEntry jndiName="ibm.appcenter.ldap.connectionURL" value="ldap://employees.com:636"/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.loginName" value="uid"/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.base" value="dc=ibm,dc=com"/>
<jndiEntry jndiName="ibm.appcenter.ldap.group.base" value="dc=ibm,dc=com"/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.displayName" value="sn"/>
<jndiEntry jndiName="ibm.appcenter.ldap.group.name" value="cn"/>
<jndiEntry jndiName="ibm.appcenter.ldap.group.uniquemember" value="uniqueMember"/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.groupmembership" value=ibm-allGroups"/>
<jndiEntry jndiName="ibm.appcenter.ldap.cache.expiration.seconds" value=43200"/>
<jndiEntry jndiName="ibm.appcenter.ldap.security.sasl" value=’"EXTERNAL"’/>
<jndiEntry jndiName="ibm.appcenter.ldap.referral" value=’"follow"’/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.filter" value=’"(&(uid=%v)(objectclass=inetOrgPerson))"’/>
<jndiEntry jndiName="ibm.appcenter.ldap.user.displayName.filter" value=’"(&(cn=%v)(objectclass=inetOrgPerson))"’/>
<jndiEntry jndiName="ibm.appcenter.ldap.group.filter" value=’"(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))"’/>

LDAP with Apache Tomcat
Configure the Apache Tomcat server for LDAP authentication and configure
security (Java™ Platform, Enterprise Edition) in the web.xml file of the Application
Center.

To configure ACL management of the Application Center; configure LDAP for user
authentication, map the Java Platform, Enterprise Edition (JEE) roles of the
Application Center to the LDAP roles, and configure the Application Center
properties for LDAP authentication. Only the simple type of LDAP authentication
is supported.

Chapter 6. Installing and configuring 159

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Configuring LDAP authentication (Apache Tomcat):

Define the users who can access the Application Center console and the users who
can log in with the mobile client by mapping Java Platform, Enterprise Edition
roles to LDAP roles.

Purpose

To configure ACL management of the Application Center; configure LDAP for user
authentication, map the Java Platform, Enterprise Edition (JEE) roles of the
Application Center to the LDAP roles, and configure the Application Center
properties for LDAP authentication. Only the simple type of LDAP authentication
is supported.

You configure the Apache Tomcat server for LDAP authentication and configure
security (Java™ Platform, Enterprise Edition) in the web.xml file of the Application
Center Services web application (applicationcenter.war) and of the Application
Center Console web application (appcenterconsole.war).

LDAP user authentication

You must configure a JNDIRealm in the server.xml file in the <Host> element. See
the Realm Component on the Apache Tomcat website for more information about
configuring a realm.

Example of configuration on Apache Tomcat to authenticate against an LDAP
server

This example shows how to configure user authentication on an Apache Tomcat
server by comparing with the authorization of these users on a server enabled for
LDAP authentication.
<Host appBase="webapps" autoDeploy="true" name="localhost" unpackWARs="true">
...
<Realm className="org.apache.catalina.realm.JNDIRealm"

connectionURL="ldap://bluepages.ibm.com:389"
userSubtree="true"
userBase="ou=bluepages,o=ibm.com"
userSearch="(emailAddress={0})"
roleBase="ou=ibmgroups,o=ibm.com"
roleName="cn"
roleSubtree="true"
roleSearch="(uniqueMember={0})"
allRolesMode="authOnly"
commonRole="appcenter"/>

...
</Host>

The value of connectionURL is the LDAP URL of your LDAP server.

The userSubtree, userBase, and userSearch attributes define how to use the name
given to the Application Center in login form (in the browser message box) to
match an LDAP user entry.

In the example, the definition of userSearch specifies that the user name is used to
match the email address of an LDAP user entry.

The basis or scope of the search is defined by the value of the userBase attribute.
In LDAP, an information tree is defined; the user base indicates a node in that tree.

160 IBM Worklight V6.1.0

http://tomcat.apache.org/tomcat-7.0-doc/config/realm.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The value of userSubtree should be set to true; if it is false, the search is
performed only on the direct child nodes of the user base. It is important that the
search penetrates the subtree and does not stop at the first level.

For authentication, you define only the userSubtree, userBase, and userSearch
attributes. The Application Center also uses JEE security roles. Therefore, you must
map LDAP attributes to some JEE roles. These attributes are used for mapping
LDAP attributes to security roles:
v roleBase

v roleName

v roleSubtree

v roleSearch

In this example, the value of the roleSearch attribute matches all LDAP entries
with a uniqueMember attribute whose value is the Distinguished Name (DN) of the
authenticated user.

The roleBase attribute specifies a node in the LDAP tree below which the roles are
defined.

The roleSubtree attribute indicates whether the LDAP search should search the
entire subtree, whose root is defined by the value of roleBase, or only the direct
child nodes.

The roleName attribute defines the name of the LDAP attribute.

The allRolesMode attribute specifies that you can use the asterisk (*) character as
the value of role-name in the web.xml file. This attribute is optional.

The commonRole attribute adds a role shared by all authenticated users. This
attribute is optional.

Mapping the JEE roles of the Application Center to LDAP roles

After you define the LDAP request for the JEE roles, you must change the web.xml
file of the Application Center Services web application (applicationcenter.war)
and of the Application Center Console web application (appcenterconsole.war) to
map the JEE roles of "appcenteradmin" and "appcenteruser" to the LDAP roles.

These examples, where LDAP users have LDAP roles called "MyLdapAdmin" and
"MyLdapUser", show where and how to change the web.xml file.

The security-role-ref element in the JAX_RS servlet
<servlet>

<servlet-name>MobileServicesServlet</servlet-name>
<servlet-class>org.apache.wink.server.internal.servlet.RestServlet</servlet-class>
<init-param>

<param-name>javax.ws.rs.Application</param-name>
<param-value>com.ibm.puremeap.services.MobileServicesServlet</param-value>

</init-param>
<load-on-startup>1</load-on-startup>
<security-role-ref>

<role-name>appcenteradmin</role-name>
<role-link>MyLdapAdmin</role-link>

</security-role-ref>
<security-role-ref>

Chapter 6. Installing and configuring 161

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<role-name>appcenteruser</role-name>
<role-link>MyLdapUser</role-link>

</security-role-ref>
</servlet>

The security-role element
<security-role>

<role-name>MyLdapAdmin</role-name>
</security-role>

The auth-constraint element

After you edit the security-role-ref and the security-role elements, you can use
the roles defined in the auth-constraint elements to protect the web resources. See
the appcenteradminConstraint element and the appcenteruserConstraint element
in this example for definition of the web resource collection to be protected by the
role defined in the auth-constraint element.

<security-constraint>
<display-name>appcenteruserConstraint</display-name>
<web-resource-collection>

<web-resource-name>appcenteruser</web-resource-name>
<url-pattern>/installers.html</url-pattern>
<url-pattern>/service/device/*</url-pattern>
<url-pattern>/service/directory/*</url-pattern>
<url-pattern>/service/plist/*</url-pattern>
<url-pattern>/service/auth/*</url-pattern>
<url-pattern>/service/application/*</url-pattern>
<url-pattern>/service/desktop/*</url-pattern>
<url-pattern>/service/principal/*</url-pattern>
<url-pattern>/service/acl/*</url-pattern>
<url-pattern>/service/userAndConfigInfo</url-pattern>
<http-method>DELETE</http-method>
<http-method>GET</http-method>
<http-method>POST</http-method>
<http-method>PUT</http-method>
<http-method>HEAD</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>MyLdapUser</role-name>
</auth-constraint>
<user-data-constraint>

<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>

</security-constraint>

Configuring LDAP ACL management (Apache Tomcat):

Use LDAP to define the users and groups who can install mobile applications with
the Application Center by defining the Application Center LDAP properties
through JNDI.

Purpose

To configure LDAP ACL management of the Application Center; add an entry for
each property in the <context> section of the IBM Application Center Services
application in the server.xml file. This entry should have the following syntax:
<Environment name="JNDI_property_name" value="property_value" type="java.lang.String" override="false"/>

Where:

JNDI_property_name is the name of the property you are adding.

162 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

property_value is the value of the property you are adding.

Table 34. Properties for configuring ACL management for LDAP in the server.xml file on
Apache Tomcat

Property Description

ibm.appcenter.ldap.active Set to true to enable LDAP; set to false to
disable LDAP.

ibm.appcenter.ldap.connectionURL LDAP connection URL.

ibm.appcenter.ldap.user.base Search base of users.

ibm.appcenter.ldap.user.loginName LDAP login attribute.

ibm.appcenter.ldap.user.displayName LDAP attribute for the user name to be
displayed, for example, a person's full name.

ibm.appcenter.ldap.group.base Search base of groups.

ibm.appcenter.ldap.group.name LDAP attribute for the group name.

ibm.appcenter.ldap.group.uniquemember LDAP attribute that identifies the members
of a group.

ibm.appcenter.ldap.user.groupmembership LDAP attribute that identifies the groups to
which a user belongs. Specifies the groups of
a member when you use LDAP without
VMM. This property is the inverse of
ibm.appcenter.ldap.group.uniquemember.
This property is optional, but if it is
specified, the LDAP access is faster.

ibm.appcenter.ldap.group.nesting Management of nested groups: if nested
groups are not managed, set the value to
false.

ibm.appcenter.ldap.user.filter LDAP user search filter for the attribute of
user login name. Use %v as the placeholder
for the login name attribute.

This property is only required when LDAP
users and groups are defined in the same
subtree; that is, when the properties
ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the
same value.

ibm.appcenter.ldap.displayName.filter LDAP user search filter for the attribute of
user display name. Use %v as the
placeholder for the display name attribute.

This property is only required when LDAP
users and groups are defined in the same
subtree; that is, when the properties
ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the
same value.

ibm.appcenter.ldap.group.filter LDAP group search filter. Use %v as the
placeholder for the group attribute.

This property is only required when LDAP
users and groups are defined in the same
subtree; that is, when the properties
ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the
same value.

Chapter 6. Installing and configuring 163

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 34. Properties for configuring ACL management for LDAP in the server.xml file on
Apache Tomcat (continued)

Property Description

ibm.appcenter.ldap.active.sasl The value of the security authentication
mechanism when the LDAP external SASL
authentication mechanism is required to
bind to the LDAP server. The value depends
on the LDAP server; usually, it is set to
"EXTERNAL".

ibm.appcenter.ldap.security.binddn Property that identifies the distinguished
name of the user permitted to search the
LDAP directory. Use this property only if
security binding is required.

ibm.appcenter.ldap.security.bindpwd Property that identifies the password of the
user permitted to search the LDAP directory.
Use this property only if security binding is
required.

ibm.appcenter.ldap.cache.expiration.secondsDelay in seconds before the LDAP cache
expires. If no value is entered, the default
value is 86400, which is equal to 24 hours.

Changes to users and groups on the LDAP
server become visible to the Application
Center after a delay, which is specified by
ibm.appcenter.ldap.cache.expiration.seconds.
The Application Center maintains a cache of
LDAP data and the changes only become
visible after the cache expires. By default,
the delay is 24 hours. If you do not want to
wait for this delay to expire after changes to
users or groups, you can call this command
to clear the cache of LDAP data:

acdeploytool.sh -clearLdapCache -s serverurl -c context -u user -p password

See Using the stand-alone tool to clear the
LDAP cache for details.

ibm.appcenter.ldap.referral Property that indicates whether referrals are
supported by the JNDI API. If no value is
given, the JNDI API will not handle LDAP
referrals. Possible values are:

v ignore: ignores referrals found in the
LDAP server.

v follow: automatically follows any referrals
found in the LDAP server.

v throw: causes an exception to occur for
each referral found in the LDAP server.

The example shows properties defined in the server.xml file.

See “List of JNDI properties for the Application Center” on page 172 for a
complete list of properties that you can set.

Note: One or both of the properties ibm.appcenter.ldap.user.groupmembership or
ibm.appcenter.ldap.group.uniquemember must be specified. The system behaves
faster if both are specified, but some LDAP implementations do not support the

164 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

group membership attribute for a user. In this case, if
ibm.appcenter.ldap.group.uniquemember is specified, the property
ibm.appcenter.ldap.user.groupmembership is not set.
<Environment name="ibm.appcenter.ldap.active" value="true" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.connectionURL" value="ldaps://employees.com:636" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.base" value="dc=ibm,dc=com" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.loginName" value="uid" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.displayName" value="cn" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.groupmembership" value="ibm-allGroups" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.group.base" value="dc=ibm,dc=com" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.group.name" value="cn" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.group.uniquemember" value="uniquemember" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.cache.expiration.seconds" value="43200" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.security.sasl" value="EXTERNAL" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.security.referral" value="follow" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.filter" value="(&(uid=%v)(objectclass=inetOrgPerson))" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.ldap.user.displayName.filter" value="(&(cn=%v)(objectclass=inetOrgPerson))" type="java.lang.String" override="fa
<Environment name="ibm.appcenter.ldap.group.filter" value="(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))" type="java.la

Defining the endpoint of the application resources
When you add a mobile application from the Application Center console, the
server-side component creates Uniform Resource Identifiers (URI) for the
application resources (package and icons). The mobile client uses these URI to
manage the applications on your device.

Purpose

To manage the applications on your device, the Application Center console must
be able to locate the Application Center REST services and to generate the required
number of URI that enable the mobile client to find the Application Center REST
services.

By default, the URI protocol, host name, and port are the same as those defined in
the web application server used to access the Application Center console; the
context root of the Application Center REST services is applicationcenter. When
the context root of the Application Center REST services is changed or when the
internal URI of the web application server is different from the external URI that
can be used by the mobile client, the externally accessible endpoint (protocol, host
name, and port) of the application resources must be defined by configuring the
web application server. (Reasons for separating internal and external URI could be,
for example, a firewall or a secured reverse proxy that uses HTTP redirection.)

The following figure shows a configuration with a secured reverse proxy that hides
the internal address (192.168...). The mobile client must use the external address
(appcntr.net).

Figure 11. Configuration with secured reverse proxy

Chapter 6. Installing and configuring 165

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 35. The endpoint properties

Property name Purpose Example

ibm.appcenter.services.endpointThis property enables the
Application Center console
to locate the Application
Center REST services. The
value of this property must
be specified as the external
address and context root of
the applicationcenter.war
web application. You can use
the asterisk (*) character as
wildcard to specify that the
Application Center REST
services use the same value
as the Application Center
console. For example:
://:*/appcenter means use
the same protocol, host, and
port as the Application
Center console, but use
appcenter as context root.

This property must be
specified for the Application
Center console application.

https://appcntr.net:443/
applicationcenter

ibm.appcenter.proxy.protocolThis property specifies the
protocol required for external
applications to connect to the
Application Center.

https

ibm.appcenter.proxy.host This property specifies the
host name required for
external applications to
connect to the Application
Center.

appcntr.net

ibm.appcenter.proxy.port This property specifies the
port required for external
applications to connect to the
Application Center.

443

See “List of JNDI properties for the Application Center” on page 172 for a
complete list of properties that you can set.

Configuring the endpoint of the application resources (Full
Profile)
For the WebSphere Application Server full profile, configure the endpoint of the
application resources in the environment entries of the Application Center services
and the Application Center console applications.

About this task

Follow this procedure when you must change the URI protocol, hostname, and
port used by the mobile client to manage the applications on your device. Since
IBM Worklight V6.0, you use the JNDI environment entries.

166 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Log in to the WebSphere Application Server console.
2. Select Applications > Application Types > WebSphere enterprise

applications.
3. Click IBM Application Center Services.
4. In the “Web Module Properties” section, select Environment entries for Web

modules.
5. Assign the appropriate values for the following environment entries:

a. For ibm.appcenter.proxy.host, assign the hostname.
b. For ibm.appcenter.proxy.port, assign the port number.
c. For ibm.appcenter.proxy.protocol, assign the external protocol.
d. Click OK and save the configuration.

6. Select Applications > Application Types > WebSphere enterprise
applications.

7. Click IBM Application Center Console.
8. In the “Web Module Properties” section, select Environment entries for Web

modules.
9. For ibm.appcenter.services.endpoint, assign the full URI of the Application

Center REST services (the URI of the applicationcenter.war file).
v In a scenario with a firewall or a secured reverse proxy, this URI must be

the external URI and not the internal URI inside the local LAN.
v You can use the asterisk (*) character as wildcard to specify that the

Application Center REST services use the same value as the Application
Center console. For example: *://*:*/appcenter means use the same
protocol, host, and port as the Application Center console, but use
appcenter as context root.

10. Click OK and save the configuration. For a complete list of JNDI properties
that you can set, see “List of JNDI properties for the Application Center” on
page 172.

Configuring the endpoint of the application resources (Liberty
profile)
For the Liberty profile, configure the endpoint of the application resources through
the JNDI environment.

Purpose

Since IBM Worklight V6.0, follow this procedure when you must change the URI
protocol, hostname, and port used by the Application Center client to manage the
applications on your device.

Properties

Edit the server.xml file. To be able to define JNDI entries, the <feature> element
must be defined correctly in the server.xml file:
<feature>jndi-1.0</feature>

Add an entry for each property in the <server> section of the server.xml file. This
entry should have the following syntax:
<jndiEntry jndiName="JNDI_property_name" value="property_value"/>

Where:

Chapter 6. Installing and configuring 167

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

JNDI_property_name is the name of the property you are adding.

property_value is the value of the property you are adding.

Table 36. Properties in the server.xml file for configuring the endpoint of the application
resources

Property Description

ibm.appcenter.services.endpoint The URI of the Application Center REST
services (applicationcenter.war). In a
scenario with a firewall or a secured reverse
proxy, this URI must be the external URI
and not the internal URI inside the local
LAN.

ibm.appcenter.proxy.protocol The protocol of the application resources
URI. This property is optional. It is only
needed if the protocol of the external and of
the internal URI are different.

ibm.appcenter.proxy.host The hostname of the application resources
URI.

ibm.appcenter.proxy.port The port of the application resources URI.
This property is optional. It is only needed if
the protocol of the external and of the
internal URI are different.

See “List of JNDI properties for the Application Center” on page 172 for a
complete list of JNDI properties that you can set.

Example of setting properties for configuring the endpoint

This example shows the settings of the properties in the server.xml file required
for configuring the endpoint of the application resources.
<jndiEntry jndiName="ibm.appcenter.services.endpoint" value=" https://appcntr.net:443/applicationcenter" />
<jndiEntry jndiName="ibm.appcenter.proxy.protocol" value="https" />
<jndiEntry jndiName="ibm.appcenter.proxy.host" value="appcntr.net" />
<jndiEntry jndiName="ibm.appcenter.proxy.port" value=" 443"/>

For ibm.appcenter.services.endpoint, you can use the asterisk (*) character as
wildcard to specify that the Application Center services use the same value as the
Application Center console. For example: *://*:*/appcenter means use the same
protocol, host, and port as the Application Center console, but use appcenter as
context root.

Configuring the endpoint of the application resources (Apache
Tomcat)
For the Apache Tomcat server, configure the endpoint of the application resources
in the server.xml file.

Purpose

Since IBM Worklight V6.0, follow this procedure when you must change the URI
protocol, hostname, and port used by the Application Center client to manage the
applications on your device.

168 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Properties

Edit the server.xml file in the conf directory of your Apache Tomcat installation.

Add an entry for each property in the <context> section of the corresponding
application. This entry should have the following syntax:
<Environment name="JNDI_property_name" value="property_value" type="property_type" override="false"/>

Where:

JNDI_property_name is the name of the property you are adding.

property_value is the value of the property you are adding.

property_type is the type of the property you are adding.

Table 37. Properties in the server.xml file for configuring the endpoint of the application
resources

Property Type Description

ibm.appcenter.services.endpointjava.lang.String The URI of the Application
Center REST services
(applicationcenter.war). In a
scenario with a firewall or a
secured reverse proxy, this URI
must be the external URI and
not the internal URI inside the
local LAN.

ibm.appcenter.proxy.protocoljava.lang.String The protocol of the application
resources URI. This property is
optional. It is only needed if the
protocol of the external and of
the internal URI are different.

ibm.appcenter.proxy.host java.lang.String The hostname of the application
resources URI.

ibm.appcenter.proxy.port java.lang.Integer The port of the application
resources URI. This property is
optional. It is only needed if the
protocol of the external and of
the internal URI are different.

See “List of JNDI properties for the Application Center” on page 172 for a
complete list of JNDI properties that you can set.

Example of setting server.xml properties for configuring the endpoint

This example shows the settings of the properties in the server.xml file required
for configuring the endpoint of the application resources.

In the context section of the Application Center Console application:
<Environment name="ibm.appcenter.services.endpoint" value="https://appcntr.net:443/applicationcenter" type="java.lang.String" override="false"/>

You can use the asterisk (*) character as wildcard to specify that the Application
Center services use the same value as the Application Center console. For example:
://:*/appcenter means use the same protocol, host, and port as the Application
Center console, but use appcenter as context root.

Chapter 6. Installing and configuring 169

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

In the context section of the Application Center Services application:
<Environment name="ibm.appcenter.proxy.protocol" value="https" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.proxy.host" value="appcntr.net" type="java.lang.String" override="false"/>
<Environment name="ibm.appcenter.proxy.port" value="443" type="java.lang.Integer" override="false"/>

Configuring Secure Sockets Layer (SSL)
Learn about configuring SSL for the Application Center on supported application
servers and the limitations of certificate verification on mobile operating systems.

You can configure the Application Center with SSL or without SSL.

SSL transmits data over the network in a secured channel. You must purchase an
official SSL certificate from an SSL certificate authority. The SSL certificate must be
compatible with Android, iOS, and BlackBerry OS 6 and 7. Self-signed certificates
do not work with the Application Center.

When the client accesses the server through SSL, the client verifies the server
through the SSL certificate. If the server address matches the address filed in the
SSL certificate, the client accepts the connection. For the verification to be
successful, the client must know the root certificate of the certificate authority.
Many root certificates are preinstalled on Android, iOS, and BlackBerry devices.
The exact list of preinstalled root certificates varies between versions of mobile
operating systems.

You should consult the SSL certificate authority for information about the mobile
operating system versions that support its certificates.

If the SSL certificate verification fails, a normal web browser requests confirmation
to contact an untrusted site. The same behavior occurs when you use a self-signed
certificate that was not purchased from a certificate authority. When mobile
applications are installed, this control is not performed by a normal web browser,
but by operating system calls.

Some versions of Android and iOS operating systems do not support this
confirmation dialog in system calls. This limitation is a reason to avoid self-signed
certificates or SSL certificates that are not suited to mobile operating systems.

Configuring SSL for WebSphere Application Server full profile
Request a Secure Sockets Layer (SSL) certificate and process the received
documents to import them into the key store.

About this task

This procedure indicates how to request an SSL certificate and import it and the
chain certificate into your key store.

Procedure
1. Create a request to a certificate authority; in the WebSphere administrative

console, select Security > SSL certificate and key management > Key stores
and certificates > keystore > Personal certificate requests > New.
Where keystore identifies your key store.
The request is sent to the certificate authority.

2. When you receive the SSL certificate, import it and the corresponding chain
certificate into your key store by following the instructions provided by the
certificate authority. In the WebSphere administrative console, you can find the

170 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

corresponding option in Security > SSL certificate and key management >
Manage endpoint security configurations > node SSL settings > Key stores
and certificates > keystore > Personal certificates > certificate > Receive a
certificate from a certificate authority.
Where:
v node SSL settings shows the SSL settings of the nodes in your configuration.
v keystore identifies your key store.
v certificate identifies the certificate that you received.

3. Create an SSL configuration. See the instructions in the user documentation that
corresponds to the version of the WebSphere Application Server full profile that
supports your applications.
You can find configuration details in the WebSphere administrative console at
Security > SSL certificate and key management > Manage endpoint security
configurations > SSL Configurations.

Configuring SSL for Liberty profile
Create a keystore, import the Secure Socket Layer (SSL) certificate, and edit the
server.xml file to configure SSL on Liberty profile.

About this task

Follow the steps in this procedure to configure SSL on Liberty profile.

Procedure
1. Create a keystore for your web server; use the securityUtility with the

createSSLCertificate option. See Enabling SSL communication for the Liberty
profile for more information.

2. Import the SSL certificate and the corresponding chain certificate into your
keystore by following the instructions provided by the certificate authority.

3. Enable the ssl-1.0 Liberty feature in the server.xml file.
<featureManager>

<feature>ssl-1.0</feature>
</featureManager>

4. Add the keystore service object entry to the server.xml file. The keyStore
element is called defaultKeyStore and contains the keystore password. For
example:
<keyStore id="defaultKeyStore" location="/path/to/myKeyStore.p12"

password="myPassword" type="PKCS12"/>

5. Make sure that the value of the httpEndpoint element in the server.xml file
defines the httpsPort attribute. For example:
<httpEndpoint id="defaultHttpEndpoint” host="*" httpPort="9080” httpsPort="9443" >

6. Restart the web server. Now you can access the web server by
https://myserver:9443/...

Configuring SSL for Apache Tomcat
Create a key store, import the Secure Socket Layer (SSL) certificate, and edit the
conf/server.xml file to define a connector for SSL on Apache Tomcat.

About this task

Follow the steps in this procedure to configure SSL on Apache Tomcat. See SSL
Configuration HOW-TO for more details and examples of configuring SSL for
Apache Tomcat.

Chapter 6. Installing and configuring 171

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.wlp.nd.doc%2Fae%2Ftwlp_sec_ssl.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.wlp.nd.doc%2Fae%2Ftwlp_sec_ssl.html
http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Create a key store for your web server. You can use the Java keytool command

to create a key store.
keytool -genkey -alias tomcat -keyalg RSA -keystore /path/to/keystore.jks

2. Import the SSL certificate and the corresponding chain certificate into your key
store by following the instructions provided by the certificate authority.

3. Edit the conf/server.xml file to define a connector to use SSL. This connector
must point to your key store.
<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"

maxThreads="150" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS"
keystoreFile="/path/to/keystore.jks"
keystorePass="mypassword" />

4. Restart the web server. Now you can access the web server by
https://myserver:8443/...

List of JNDI properties for the Application Center
Here is a list of the JNDI properties that can be configured for the Application
Center.

Table 38. List of the JNDI properties for the Application Center

Property Description

appcenter.database.type The database type, which is only required when the
database is not specified in appcenter.jndi.name.

appcenter.jndi.name The JNDI name of the database. This parameter is
the normal mechanism to specify the database. The
default value is java:comp/env/jdbc/AppCenterDS.

appcenter.openjpa.ConnectionDriverNameThe fully qualified class name of the database
connection driver class. This property is only needed
when the database is not specified in
appcenter.jndi.name.

appcenter.openjpa.ConnectionPasswordThe password for the database connection. This
property is only needed when the database is not
specified in appcenter.jndi.name.

appcenter.openjpa.ConnectionURL The URL specific to the database connection driver
class. This property is only needed when the
database is not specified in appcenter.jndi.name.

appcenter.openjpa.ConnectionUserNameThe user name or the database connection. This
property is only needed when the database is not
specified in appcenter.jndi.name.

ibm.appcenter.apns.p12.certificate.isDevelopmentCertificateSpecifies whether the certificate that enables
Application Center to send push notifications about
updates of iOS applications is a development
certificate. Set to true to enable or false to disable.
See “Configuring the Application Center server for
connection to Apple Push Notification Services” on
page 863.

172 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 38. List of the JNDI properties for the Application Center (continued)

Property Description

ibm.appcenter.apns.p12.certificate.locationThe path to the file of the certificate that enables
Application Center to send push notifications about
updates of iOS applications is a development
certificate. For example, /Users/someUser/
someDirectory/apache-tomcat/conf/
AppCenter_apns_dev_cert.p12. See “Configuring the
Application Center server for connection to Apple
Push Notification Services” on page 863.

ibm.appcenter.apns.p12.certificate.passwordThe password of the certificate that enables
Application Center to send push notifications about
updates of iOS applications is a development
certificate. See “Configuring the Application Center
server for connection to Apple Push Notification
Services” on page 863.

ibm.appcenter.forceUpgradeDBTo60 The database design was changed starting from
Worklight version 6.0. The database is automatically
updated when the Application Center web
application starts. If you want to repeat this update,
you can set this parameter to true and start the web
application again. Later you can set this parameter to
false.

ibm.appcenter.gcm.signature.googleapikeyThe Google API key that enables the Application
Center to send push notifications about updates for
Android applications. For example,
AIxaScCHg0VSGdgfOZKtzDJ44-oi0muUasMZvAs. See
“Configuring the Application Center server for
connection to Google Cloud Messaging” on page 861.

ibm.appcenter.ios.plist.onetimeurl Specifies whether URLs stored in iOS plist manifests
use the one-time URL mechanism without
credentials. If you set this property to true, the
security level is medium since the one-time URLs are
generated with a cryptographic mechanism so that
nobody can guess the URL. However, they do not
require the user to log in when you use these URLs.
Setting this property to false is maximally secure,
since the user is then required to log in for each
URL. However, requesting the user to log in multiple
times when you install an iOS application can
degrade the user experience. See “Installing the client
on an iOS mobile device” on page 899.

ibm.appcenter.ldap.active Specifies whether Application Center is configured
for LDAP. Set to true to enable LDAP; set to false
to disable LDAP. See “Managing users with LDAP”
on page 144.

ibm.appcenter.ldap.active.sasl Specifies the security authentication mechanism
when the LDAP external SASL authentication
mechanism is required to bind to the LDAP server.
The value depends on the LDAP server and it is
typically set to EXTERNAL.

Chapter 6. Installing and configuring 173

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 38. List of the JNDI properties for the Application Center (continued)

Property Description

ibm.appcenter.ldap.cache.expiration.secondsThe Application Center maintains a cache of LDAP
data and the changes become visible only after the
cache expires. Specify the amount of time in seconds
an entry in the LDAP cache is valid. Set this property
to a value larger than 3600 (1 hour) to reduce the
amount of LDAP requests. If no value is entered, the
default value is 86400, which is equal to 24 hours.

If you need to manually clear the cache of LDAP
data, enter this command:

acdeploytool.sh -clearLdapCache -s serverurl -c context -u user -p password

See Using the stand-alone tool to clear the LDAP
cache for details.

ibm.appcenter.ldap.connectionURL The URL to access the LDAP server when no VMM
is used. See “Configuring LDAP ACL management
(Liberty Profile)” on page 156 and “Configuring
LDAP ACL management (Apache Tomcat)” on page
162.

ibm.appcenter.ldap.federated.activeSpecifies whether Application Center is configured
for LDAP with federated repositories. Since
WebSphere Application Server Liberty Profile V8.5.5.
set this property to true to enable use of the
federated registry. Set this property to false to
disable use of the federated registry, which is the
default setting. See “Managing users with LDAP” on
page 144.

ibm.appcenter.ldap.group.base The search base to find groups when you use LDAP
without VMM. See “Configuring LDAP ACL
management (Liberty Profile)” on page 156 and
“Configuring LDAP ACL management (Apache
Tomcat)” on page 162.

ibm.appcenter.ldap.group.filter LDAP group search filter. Use %v as the placeholder
for the group attribute.

This property is only required when LDAP users and
groups are defined in the same subtree; that is, when
the properties ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same
value.

ibm.appcenter.ldap.group.name The group name attribute when you use LDAP
without VMM. See “Configuring LDAP ACL
management (Liberty Profile)” on page 156 and
“Configuring LDAP ACL management (Apache
Tomcat)” on page 162.

ibm.appcenter.ldap.group.nesting Specifies whether the LDAP contains nested groups
(that is, groups in groups) when you use LDAP
without VMM. Setting this property to false speeds
up the LDAP access since the groups are then not
searched recursively. See “Configuring LDAP ACL
management (Liberty Profile)” on page 156 and
“Configuring LDAP ACL management (Apache
Tomcat)” on page 162.

174 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 38. List of the JNDI properties for the Application Center (continued)

Property Description

ibm.appcenter.ldap.group.uniquememberSpecifies the members of a group when you use
LDAP without VMM. This property is the inverse of
ibm.appcenter.ldap.user.groupmembership. See
“Configuring LDAP ACL management (Liberty
Profile)” on page 156 and “Configuring LDAP ACL
management (Apache Tomcat)” on page 162.

ibm.appcenter.ldap.referral Specifies whether referrals are supported by the JNDI
API. If no value is given, the JNDI API does not
handle LDAP referrals. Here are the possible values:

v ignore: ignores referrals that are found in the
LDAP server.

v follow: automatically follows any referrals that are
found in the LDAP server.

v throw: causes an exception to occur for each
referral found in the LDAP server.

ibm.appcenter.ldap.security.binddn The distinguished name of the user that is allowed to
search the LDAP directory. Use this property only if
security binding is required.

The password can be encoded with the “Liberty
Profile securityUtility” tool. Run the tool and then set
the value of this property to the encoded password
generated by the tool. The supported encoding types
are xor and aes.

Edit the Liberty Profile server.xml file to check
whether the classloader is enabled to load the JAR file
that decodes the password.See “Configuring LDAP
ACL management (Apache Tomcat)” on page 162.

ibm.appcenter.ldap.security.bindpwdThe password of the user that is permitted to search
the LDAP directory. Use this property only if security
binding is required. See “Configuring LDAP ACL
management (Apache Tomcat)” on page 162.

ibm.appcenter.ldap.security.sasl If set, security authentication is used when you
connect to LDAP without VMM. See “Configuring
LDAP ACL management (Liberty Profile)” on page
156 and “Configuring LDAP ACL management
(Apache Tomcat)” on page 162.

ibm.appcenter.ldap.user.base The search base to find users when you use LDAP
without VMM. See “Configuring LDAP ACL
management (Liberty Profile)” on page 156 and
“Configuring LDAP ACL management (Apache
Tomcat)” on page 162.

ibm.appcenter.ldap.user.displayNameThe display name attribute, such as the user's real
name, when you use LDAP without VMM. See
“Configuring LDAP ACL management (Liberty
Profile)” on page 156 and “Configuring LDAP ACL
management (Apache Tomcat)” on page 162.

Chapter 6. Installing and configuring 175

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 38. List of the JNDI properties for the Application Center (continued)

Property Description

ibm.appcenter.ldap.displayName.filterLDAP user search filter for the attribute of
ibm.appcenter.ldap.user.displayName. Use %v as the
placeholder for the display name attribute.

This property is only required when LDAP users and
groups are defined in the same subtree; that is, when
the properties ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same
value.

ibm.appcenter.ldap.user.filter LDAP user search filter for the attribute of
ibm.appcenter.ldap.user.loginName. Use %v as the
placeholder for the login name attribute.

This property is only required when LDAP users and
groups are defined in the same subtree; that is, when
the properties ibm.appcenter.ldap.user.base and
ibm.appcenter.ldap.group.base have the same
value.

ibm.appcenter.ldap.user.groupmembershipSpecifies the groups of a member when you use
LDAP without VMM. This property is the inverse of
ibm.appcenter.ldap.group.uniquemember. This
property is optional, but if it is specified, the LDAP
access is faster. See “Configuring LDAP ACL
management (Liberty Profile)” on page 156 and
“Configuring LDAP ACL management (Apache
Tomcat)” on page 162.

ibm.appcenter.ldap.user.loginName The login name attribute when you use LDAP
without VMM. See “Configuring LDAP ACL
management (Liberty Profile)” on page 156 and
“Configuring LDAP ACL management (Apache
Tomcat)” on page 162.

ibm.appcenter.ldap.vmm.active Specifies whether LDAP is done through VMM. Set
to true to enable or false to disable. See
“Configuring LDAP ACL management (WebSphere
Application Server V8.x)” on page 152 and
“Configuring LDAP ACL management with VMM
(WebSphere Application Server V7)” on page 149.

ibm.appcenter.ldap.vmm.adminpwd The password when LDAP is done through VMM.
See “Configuring LDAP ACL management
(WebSphere Application Server V8.x)” on page 152
and “Configuring LDAP ACL management with
VMM (WebSphere Application Server V7)” on page
149.

ibm.appcenter.ldap.vmm.adminuser The user when LDAP is done through VMM. See
“Configuring LDAP ACL management (WebSphere
Application Server V8.x)” on page 152 and
“Configuring LDAP ACL management with VMM
(WebSphere Application Server V7)” on page 149.

ibm.appcenter.logging.formatjson This property has only an effect when
ibm.appcenter.logging.tosystemerror is set to true.
If enabled, it formats JSON responses in logging
messages that are directed to System.Error. Setting
this property is helpful when you debug the server.

176 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 38. List of the JNDI properties for the Application Center (continued)

Property Description

ibm.appcenter.logging.tosystemerrorSpecifies whether all logging messages are also
directed to System.Error. Setting this property is
helpful when you debug the server.

ibm.appcenter.openjpa.Log This property is passed to OpenJPA and enables JPA
logging. For details, see the Apache OpenJPA User's
Guide.

ibm.appcenter.proxy.host If the Application Center server is behind a firewall
or reverse proxy, this property specifies the address
of the host. Setting this property allows a user
outside the firewall to reach the Application Center
server. Typically, this property is the address of the
proxy. See “Defining the endpoint of the application
resources” on page 165.

ibm.appcenter.proxy.port If the Application Center server is behind a firewall
or reverse proxy, this property specifies the address
of the host. Setting this property allows a user
outside the firewall to reach the Application Center
server. Typically, this property is the port of the
proxy, for example 443. It is only needed if the
protocol of the external and of the internal URI are
different. See “Defining the endpoint of the
application resources” on page 165.

ibm.appcenter.proxy.protocol If the Application Center server is behind a firewall
or reverse proxy, this property specifies the protocol
(http or https). Setting this property allows a user
outside the firewall to reach the Application Center
server. Typically, this property is set to the protocol
of the proxy. For example, appcntr.net. This
property is only needed if the protocol of the
external and of the internal URI are different. See
“Defining the endpoint of the application resources”
on page 165.

ibm.appcenter.proxy.scheme This property is just an alternative name for
ibm.appcenter.proxy.protocol.

ibm.appcenter.push.schedule.period.amountSpecifies the time schedule when you send push
notifications of application updates. When
applications are frequently changed on the server, set
this property to send batches of notifications. For
example, send all notifications that happened within
the past hour, instead of sending each individual
notification.

ibm.appcenter.push.schedule.period.unitSpecifies the unit for the time schedule when you
send push notifications of application updates.

ibm.appcenter.services.endpoint Enables the Application Center console to locate the
Application Center REST services. Specify the
external address and context root of the
applicationcenter.war web application. In a
scenario with a firewall or a secured reverse proxy,
this URI must be the external URI and not the
internal URI inside the local LAN. For example,
https://appcntr.net:443/applicationcenter. See
“Defining the endpoint of the application resources”
on page 165.

Chapter 6. Installing and configuring 177

http://openjpa.apache.org/builds/1.2.2/apache-openjpa-1.2.2/docs/manual/manual.html
http://openjpa.apache.org/builds/1.2.2/apache-openjpa-1.2.2/docs/manual/manual.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 38. List of the JNDI properties for the Application Center (continued)

Property Description

ibm.appcenter.services.iconCacheMaxAgeSpecifies the amount of time in seconds cached icons
remain valid for the Application Center Console and
the Client. Application icons rarely change, therefore
they are cached. Specify values larger than 600 (10
min) to reduce the amount of data transfer for the
icons.

Typical topologies of an IBM Worklight instance
An IBM Worklight instance uses a particular topology that is typical for
organizations with an established extranet infrastructure.

178 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The following figure depicts this topology.

Such a topology is based on the following principles:
v Worklight Server is installed in the organization LAN, connecting to various

enterprise back-end systems.
v Worklight Server can be clustered for high availability and scalability.
v Worklight Server uses a database for storing push notification information,

statistics for reporting and analytics, and storing metadata required by the server
at run time. A single instance of the database is shared by all Worklight Servers.

v Worklight Server is installed behind a web authentication infrastructure (Web
SSO) acting as a reverse proxy and providing SSL.

Figure 12. Typical topology of an IBM Worklight instance

Chapter 6. Installing and configuring 179

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Worklight Server can be installed in different network configurations, which might
include several DMZ layers, reverse proxies, NAT devices, firewalls, high
availability components such as load balancers, IP sprayers, clustering, and alike.
Some of these components are explained, though for the purpose of this document,
a simpler configuration is assumed in which Worklight Server is installed in the
DMZ.

Setting up IBM Worklight in an IBM WebSphere Application
Server Network Deployment V8.5 cluster environment

You can set up an IBM Worklight cluster environment with WebSphere Application
Server Network Deployment and IBM HTTP Server.

About this task

This procedure explains how to set up IBM Worklight in the topology shown in
Figure 13:

This procedure uses the hardware listed in Table 39 and the software listed in
Table 40 on page 181.

Table 39. Hardware

Host name Operating system Description

Host1 RHEL 6.2 WebSphere Application
Server Deployment Manager
and IBM HTTP Server.

Host2 RHEL 6.2 WebSphere Application
Server cluster node / server
1

Host3 RHEL 6.2 WebSphere Application
Server cluster node / server
2

Host4 RHEL 6.2 DB2 server

Figure 13. IBM Worklight cluster topology with IBM WebSphere Application Server Network Deployment

180 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 40. Software

Name Description

IBM Installation Manager 1.6 Install IBM WebSphere Application Server
Network Deployment, IBM HTTP Server ,
IBM Web Server Plug-ins for WebSphere
Application Server, and IBM Worklight.

IBM WebSphere Application Server 8.5 WebSphere Application Server. You need to
get the installation repository before you
start.

IBM HTTP Server 8.5 IBM HTTP Server. You need to get the
installation repository before start. It is also
included in the WebSphere Application
Server installation repository.

Web Server Plug-ins 8.5 IBM HTTP Server Plugin. You need to get
the installation repository before start. It is
also included in the WebSphere Application
Server installation repository.

IBM Worklight V6.1.0 IBM Worklight runtime. You need to get
access to the installation repository before
start.

IBM DB2 V9.7 or later DB2 Database. Your DB2 server must be
available before you start the IBM Worklight
installation.

Ant 1.8.3 Configure IBM Worklight with Liberty
Profile Server.

Procedure
1. Install WebSphere Application Server Network Deployment, IBM HTTP

Server, and Web Server Plugins.
a. On the Host1 machine. log on with the “root” user ID and run IBM

Installation Manager to install WebSphere Application Server Network
Deployment, IBM HTTP server and Web Server Plugins. This
documentation assumes that the applications are installed in the following
places:

WebSphere Application Server Network Deployment home
/opt/WAS85

IBM HTTP Server home
/opt/IBM/HTTPServer

Web Server Plugins home
/opt/IBM/HTTPServer/Plugins

b. Repeat step 1a on Host2 and Host3, but install only WebSphere
Application Server Network Deployment.

2. Create a deployment manager and nodes.
a. To avoid network errors, add the host name and IP mapping to the

/etc/hosts file.

On Windows:
Add the IP-to-host mapping to C:\Windows\System32\drivers\etc\
hosts.

On Linux:
Add the IP-to-host mapping to /etc/hosts.

Chapter 6. Installing and configuring 181

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For example:
9.186.9.75 Host1
9.186.9.73 Host2
9.186.9.76 Host3

b. Create a deployment manager and IBM HTTP Server node on Host1. You
can change the profile name and profile path to suit your environment.
1) Create the deployment manager profile. The following command

creates a profile named “dmgr:”

On Windows:
./manageprofiles.bat -create -profileName dmgr
-profilePath ../profiles/dmgr -templatePath
../profileTemplates/management -severType
DEPLOYMENT_MANAGER

On Linux:
./manageprofiles.sh -create -profileName dmgr
-profilePath ../profiles/dmgr506 -templatePath
../profileTemplates/management -severType
DEPLOYMENT_MANAGER

2) Create an IBM HTTP Server node profile. The following command
creates a profile named "ihs":

On Windows:
./manageprofiles.bat -create -profileName ihs
-profilePath ../profiles/ihs -templatePath
../profileTemplates/managed

On Linux:
./manageprofiles.sh -create -profileName ihs -profilePath
../profiles/ihs506 -templatePath ../profileTemplates/
managed

3) Start the deployment manager:

On Windows:
./startManager.bat

On Linux:
./startManager.sh

4) Add an IBM HTTP Server node to the deployment manager. The
following command adds the node defined by the “ihs” profile to the
deployment manager running on Host1, and assigns port 8879:

On Windows:
./addNode.bat Host1 8879 -profileName ihs

On Linux:
./addNode.sh Host1 8879 -profileName ihs

5) From the WebSphere Application Server administrative console, click
System administration > Nodes and check that the node is added to
the deployment manager.

182 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: Node names might be different from the profile names you
specify because WebSphere Application Server automatically generates
a display name for a new node.

c. Create Worklight node1 on Host2.
1) Create a profile for the node. The following command creates a profile

named node1:

On Windows:
./manageprofiles.bat -create -profileName node1
-profilePath ../profiles/node1 -templatePath
../profileTemplates/managed

On Linux:
./manageprofiles.sh -create -profileName node1
-profilePath ../profiles/node1 -templatePath
../profileTemplates/managed

2) Add the node to the deployment manager. The following command
adds the node defined by the node1 profile to the deployment manager
running on Host1, and assigns port 8879:

On Windows:
./addNode.bat Host1 8879 -profileName node1

On Linux:
./addNode.sh Host1 8879 -profileName node1

d. Repeat step 2c to create Worklight node2 on Host3.
e. From the WebSphere Application Server administrative console, click

System administration > Nodes and check that the nodes you added to
the deployment manager are listed.

Note: Node names might be different from the profile names you specify
because WebSphere Application Server automatically generates a display
name for a new node.

3. Create a cluster and add Worklight nodes as members.
a. From the WebSphere Application Server administrative console, click

Servers > Clusters > WebSphere application server clusters, and then
click New to create a new cluster.

Chapter 6. Installing and configuring 183

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

b. For each Worklight node, add a member to the cluster: in the fields
provided, enter the required information, and then click Add Member.

c. From the WebSphere Application Server administrative console, click
Servers > Server Types > WebSphere application servers to check that the
cluster member servers are listed.

d. If the status column indicates that nodes are not synchronized, click
System Administration > Nodes, and then click Synchronize to

184 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

synchronize your nodes to the deployment manager.

4. Install IBM Worklight Server on Host1. Ensure that the WebSphere Application
Server Network Deployment cluster is created without errors before you begin
the installation. For installation instructions, see “Installing Worklight Server”
on page 52.

5. Configure the databases. For instructions, see “Creating and configuring the
databases with Ant tasks” on page 722.

6. In Worklight Studio, create an IBM Worklight project and build a Worklight
project WAR file. See “Artifacts produced during development cycle” on page
314.

7. Configure IBM Worklight with the WebSphere Application Server Network
Deployment cluster. For instructions, see “Deploying a project WAR file and
configuring the application server with Ant tasks” on page 748. Modify the
Ant template to match your WebSphere Application Server cluster and
database server.

8. Verify the installation.
a. Restart the WebSphere Application Server cluster.
b. From the WebSphere Application Server administrative console, click

Resources > JDBC > Data sources, and check that the data sources
jdbc/WorklightDS and jdbc/WorklightReportsDS exist.

c. Select the two data sources and click Test connection to verify the DB2
database connection. Confirmations similar to the ones in the following
messages indicate a successful connection.

Chapter 6. Installing and configuring 185

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

d. Go to Applications > Application Types > WebSphere enterprise
applications and check that the Worklight Console application is running.

e. Now that you have deployed IBM Worklight on the two node servers, you
can access the Worklight Console on each host by browsing to the
associated URLs:
v http://Host2:9080/worklight/console

v http://Host3:9080/worklight/console

Check that both Worklight Consoles are running.
9. Configure the IBM HTTP Server.

a. From the WebSphere Application Server administrative console, go to
Servers > Server Types > Web servers, and then click New to create a
new IBM HTTP server.

b. Select the "ihs" node you previously created on Host1, then from the Type
list, select IBM HTTP Server, and then click Next.

c. Enter the IBM HTTP Server home and Web Server Plugins home you
previously selected on Host1, and then click Next and save your
configuration.

186 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

d. In the administrative console, on the Web servers page, click Generate
Plug-in to generate the plug-in configuration file.

A confirmation message is displayed.

e. Make a note of the plugin-cfg.xml location displayed in the confirmation
message.

f. In the administrative console, on the Web servers page, click "ihs", and then
in the Configuration file name field, click Edit.

Chapter 6. Installing and configuring 187

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

g. In the editor, add a was_ap22_module and a WebSpherePluginConfig
configuration to your http.conf file by adding the following text:

On Windows:
LoadModule was_ap22_module {IHS_Plugin_HOME}/bin/{64bits}/mod_was_ap22_http.dll
WebSpherePluginConfig {path to}/plugin-cfg.xml

On Linux:
LoadModule was_ap22_module {IHS_Plugin_HOME}/bin/{64bits}/mod_was_ap22_http.so
WebSpherePluginConfig {path to}/plugin-cfg.xml

h. In the administrative console, on the Web servers page for the "ihs" server,
click Plug-in properties.

i. In the Plug-in Configuration file name field, click View.

188 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

j. Search for the cluster node and Worklight URI in the plugin-cfg.xml file.
For example:
<ServerCluster CloneSeparatorChange="false"

GetDWLMTable="false"
IgnoreAffinityRequests="true"
LoadBalance="Round Robin"
Name="Worklight"
PostBufferSize="0"
PostSizeLimit="-1"
RemoveSpecialHeaders="true"
RetryInterval="60"
ServerIOTimeoutRetry="-1">
<Server CloneID="17oi9lu2o"

ConnectTimeout="5"
ExtendedHandshake="false"
LoadBalanceWeight="2"
MaxConnections="-1"
Name="topowas1Node01_server1"
ServerIOTimeout="900"
WaitForContinue="false">
<Transport Hostname="topowas1" Port="9080" Protocol="http"/>
<Transport Hostname="topowas1" Port="9443" Protocol="https">

<Property Name="keyring" Value="/opt/Plugins/config/ihs/plugin-key.kdb"/>
<Property Name="stashfile" Value="/opt/Plugins/config/ihs/plugin-key.sth"/>

</Transport>
</Server>
<Server CloneID="17oi9m7kg"

ConnectTimeout="5"
ExtendedHandshake="false"
LoadBalanceWeight="2"
MaxConnections="-1"
Name="topowas2Node01_server2"
ServerIOTimeout="900"
WaitForContinue="false">
<Transport Hostname="topowas2" Port="9080" Protocol="http"/>
<Transport Hostname="topowas2" Port="9443" Protocol="https">

<Property Name="keyring" Value="/opt/Plugins/config/ihs/plugin-key.kdb"/>
<Property Name="stashfile" Value="/opt/Plugins/config/ihs/plugin-key.sth"/>

</Transport>
</Server>

<PrimaryServers>
<Server Name="topowas1Node01_server1"/>
<Server Name="topowas2Node01_server2"/>

</PrimaryServers>
</ServerCluster>

Chapter 6. Installing and configuring 189

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<UriGroup Name="default_host_Worklight_URIs">
<Uri AffinityCookie="JSESSIONID"

AffinityURLIdentifier="jsessionid"
Name="/appcenterconsole/*"/>

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/worklight/*"/>
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/applicationcenter/*"/>

</UriGroup>

If your configuration file does not include cluster servers and URIs, delete
the "ihs" server and create it again.

k. Optional: On the Plug-in properties page for the "ihs" server, click Request
Routing if you want to set a load-balancing policy.

l. Optional: On the Plug-in properties page for the "ihs" server, click Caching
if you want to configure caching.

10. Start the IBM HTTP server and verify that the server is running.
a. In the WebSphere Application Server administrative console, go to Servers

> Server Types > Web servers.
b. Select the IBM HTTP server you created (in this example, named "ihs"),

and then click Start.

190 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

c. If the server fails to start, check the log file. To find the location of the log
file:
1) In the administrative console, on the Web servers page for the "ihs"

server, click Log file.
2) On the log file page, click the Configuration tab.
3) The location of the log file is displayed in the Error log file name field.

d. To verify that the IBM HTTP server is running, enter the URL for the
Worklight Console in a web browser. For example: http://Host1:80/
worklight/console.

Results

IBM Worklight is now installed on an IBM WebSphere Application Server Network
Deployment cluster, and is ready for use.

Setting up IBM Worklight in an IBM WebSphere Application
Server Liberty Profile farm

You can set up an IBM Worklight cluster environment with Liberty Profile.

About this task

This procedure explains how to set up IBM Worklight in the topology similar to
the one shown in Figure 14 on page 192:

Chapter 6. Installing and configuring 191

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

This procedure uses the hardware listed in Table 41 and the software listed in
Table 42.

Table 41. Hardware

Hostname Operating system Description

Host1 RHEL 6.2 IBM HTTP server with Web
Server plug-in, acting as load
balancer.

Host2 RHEL 6.2 Liberty farm server 1

Host3 RHEL 6.2 Liberty farm server 2

Host4 RHEL 6.2 DB2 server

Table 42. Software

Name Description

IBM Installation Manager 1.6 Install IBM HTTP Server , Liberty server,
and IBM Worklight.

IBM HTTP Server 8.5 IBM HTTP Server. You need to get the
installation repository before start. It is also
included in the WebSphere Application
Server installation repository.

Web Server Plug-ins 8.5 IBM HTTP Server Plugin. You need to get
the installation repository before start. It is
also included in the WebSphere Application
Server installation repository.

Figure 14. IBM Worklight cluster topology with Liberty Profile

192 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 42. Software (continued)

Name Description

IBM Liberty Profile 8.5 Liberty server. You need to get the
installation repository before you start. It is
also included in the WebSphere Application
Server installation repository.

IBM Worklight V6.1.0 IBM Worklight runtime. You need to get
access to the installation repository before
start.

IBM DB2 V9.7 or later DB2 Database. Your DB2 server must be
available before you start the IBM Worklight
installation.

Ant 1.8.3 Configure IBM Worklight with Liberty
Profile Server.

Procedure
1. Install IBM HTTP Server and Web Server Plugins.

a. On the Host1 machine. log on with the “root” user ID and run IBM
Installation Manager to install the IBM HTTP server and Web Server
Plugins. This documentation assumes that the applications are installed in
the following places:

IBM HTTP Server home
/opt/HTTPServer

Web Server Plugins home
/opt/Plugins

2. Install IBM WebSphere Liberty Profile.
a. On the Host2 machine, log in with the “root” user ID and run IBM

Installation Manager in GUI mode.
b. Go to File > Preferences > Repositories, and then add the Liberty

repository. If you are using the WebSphere Application Server installation
repository, select IBM WebSphere Application Server Network
Deployment.

c. In the Installation Directory field, accept the default installation directory
or enter an alternative directory, and then click Next.

Chapter 6. Installing and configuring 193

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

d. Select WebSphere Application Server Liberty Profile clear WebSphere
Application Server Full Profile, and then click Next repeatedly until the
installation is complete.

e. Repeat the previous steps to install another Liberty Profile server on
Host3.

3. Install IBM Worklight Server on Host2 and Host3. For instructions, see
“Installing Worklight Server” on page 52.

4. Configure the IBM Worklight databases. For instructions, see “Creating and
configuring the databases with Ant tasks” on page 722.

5. In Worklight Studio, create an IBM Worklight project and build a Worklight
project WAR file. See “Artifacts produced during development cycle” on page
314.

6. Configure IBM Worklight with Liberty Profile on Host 2 and Host 3. For
instructions, see “Deploying a project WAR file and configuring the
application server with Ant tasks” on page 748. Modify the Ant template to
match your Liberty Profile server and database server.

7. Start the Liberty Profile servers to test whether you can access the Worklight
Console on Host2 and Host3 by browsing to the associated URLs:
v http://Host2:9080/worklight/console

194 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v http://Host3:9080/worklight/console

Check that both Worklight Consoles are running.
8. Run the following command on Host1 to start the IBM HTTP server.

/opt/HTTPServer/bin/httpd -d /opt/HTTPServer -k start –f /opt/HTTPServer/conf/httpd.conf

If you encounter problems during IBM HTTP server startup, see
“Troubleshooting IBM HTTP Server startup” on page 199.

9. Ensure that the IBM HTTP Server can be accessed at the following URL in a
web browser:
http://<hostname>:<port>

10. For each Liberty server, generate a web server plug-in configuration file
named plugin-cfg.xml. The web server plug-in is used to forward HTTP
requests from the web server to the application server.
a. Start the server that hosts your applications and ensure that the

localConnector-1.0 feature and other required features are included in the
server configuration. Use the pluginConfiguration element in the server
configuration file to specify the webserverPort and webserverSecurePort
attributes for requests that are forwarded from the web server. By default,
the value of webserverPort is 80 and the value of webserverSecurePort is
443. Assign the value "*" to the host attribute to ensure that applications on
the Liberty server can be accessed from a remote browser. Here is an
example of a server.xml server configuration file:
<server description="new server">

<featureManager>
<feature>localConnector-1.0</feature>
<feature>jsp-2.2</feature>

</featureManager>
<httpEndpoint id="defaultHttpEndpoint" host="*" httpPort="9080">

<tcpOptions soReuseAddr="true" />
</httpEndpoint>
<pluginConfiguration webserverPort="80" webserverSecurePort="443"/>

</server>

b. Use one of the following methods to generate the plugin-cfg.xml file for
the Liberty server running your application.
v jConsole:

1) Using the same JDK as the server, run the jConsole Java utility from
a command prompt. For example, run the following command:
C:\java\bin\jconsole

2) In the jConsole window, click Local Process, click the server process
in the list of local processes, and then click Connect.

Chapter 6. Installing and configuring 195

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3) In the Java Monitoring & Management Console, click the MBeans
tab.

4) Select and invoke the defaultPluginConfig generation MBean
operation to generate the plugin-cfg.xml file.

196 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

You can find the generated file in the \wlp\usr\servers\
<server_name> directory. Here is an example:
<?xml version="1.0" encoding="UTF-8"?>
<Config ASDisableNagle="false"

AcceptAllContent="false"
AppServerPortPreference="HostHeader"
ChunkedResponse="false"
FIPSEnable="false"
IISDisableNagle="false"
IISPluginPriority="High"
IgnoreDNSFailures="false"
RefreshInterval="60"
ResponseChunkSize="64"
SSLConsolidate="false"
SSLPKCSDriver="REPLACE"
SSLPKCSPassword="REPLACE"
TrustedProxyEnable="false"
VHostMatchingCompat="false">
<Log LogLevel="Error" Name="String\logs\String\http_plugin.log"/>
<Property Name="ESIEnable" Value="true"/>
<Property Name="ESIMaxCacheSize" Value="1024"/>
<Property Name="ESIInvalidationMonitor" Value="false"/>
<Property Name="ESIEnableToPassCookies" Value="false"/>
<Property Name="PluginInstallRoot" Value="String"/>
<VirtualHostGroup Name="default_host">

<VirtualHost Name="*:443"/>
<VirtualHost Name="*:80"/>
<VirtualHost Name="*:9080"/>

</VirtualHostGroup>
<ServerCluster CloneSeparatorChange="false"

GetDWLMTable="false"
IgnoreAffinityRequests="true"
LoadBalance="Round Robin"
Name="String_default_node_Cluster"
PostBufferSize="64"
PostSizeLimit="-1"
RemoveSpecialHeaders="true"
RetryInterval="60">
<Server CloneID="s56"

ConnectTimeout="0"
ExtendedHandshake="false"

Chapter 6. Installing and configuring 197

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

MaxConnections="-1"
Name="default_node_String0"
ServerIOTimeout="900"
WaitForContinue="false">

<Transport Hostname="wasvm56" Port="9080" Protocol="http"/>
</Server>
<PrimaryServers>

<Server Name="default_node_String0"/>
</PrimaryServers>

</ServerCluster>
<UriGroup Name="default_host_String_default_node_Cluster_URIs">

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/tri-web/*"/>
</UriGroup>
<Route ServerCluster="String_default_node_Cluster"

UriGroup="default_host_String_default_node_Cluster_URIs"
VirtualHostGroup="default_host"/>

</Config>

v Eclipse:
1) Make sure your Liberty server is started.
2) In Eclipse, in the servers panel, right-click the Liberty server, and

then click Utilities > Generate Plugin Config.
c. Copy the plugin-cfg.xml file to the machine that hosts the IBM HTTP

Server web server, and then restart the web server to activate the settings
in the file. Typically, you must enable the plug-in within the httpd.conf
file of the web server by using the LoadModule phrase, and you must
specify the location of the plugin-cfg.xml file using the
WebSpherePluginConfig phrase.

On Windows:
LoadModule was_ap22_module "path\to\mod_was_ap22_http.dll"
WebSpherePluginConfig "path\to\plugin-cfg.xml"

On other distributed systems:
LoadModule was_ap22_module "path\to\mod_was_ap22_http.so"
WebSpherePluginConfig "path\to\plugin-cfg.xml"

11. Use one of the following methods to merge the plugin-cfg.xml files for all the
Liberty servers in the cluster.
v Manually merge the files using a text editor.
v Use the job manager to submit a Generate merged plugin configuration for

Liberty servers job.
For more information about the job manager, see http://pic.dhe.ibm.com/
infocenter/wasinfo/v8r5/index.jsp?topic=
%2Fcom.ibm.websphere.nd.multiplatform.doc%2Fae
%2Ftagt_jobmgr_liberty_plugin_merge.html.

12. Verify that workloads are distributed to multiple Liberty servers via the IBM
HTTP Server and Web Server Plugins.
a. Ensure that session affinity is enabled. To do so, check that a CloneID

attribute is included for each server in the plugin-cfg.xml file of the IBM
HTTP Server and Web Server Plugins. Note that you can generate CloneID
values automatically or specify particular strings. The following example
shows CloneID attributes specified for three servers:
<ServerCluster CloneSeparatorChange="false"

GetDWLMTable="false"
IgnoreAffinityRequests="true"
LoadBalance="Round Robin"
Name="String_default_node_Cluster1"
PostBufferSize="64"
PostSizeLimit="-1"
RemoveSpecialHeaders="true"

198 IBM Worklight V6.1.0

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.nd.multiplatform.doc%2Fae%2Ftagt_jobmgr_liberty_plugin_merge.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.nd.multiplatform.doc%2Fae%2Ftagt_jobmgr_liberty_plugin_merge.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.nd.multiplatform.doc%2Fae%2Ftagt_jobmgr_liberty_plugin_merge.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.nd.multiplatform.doc%2Fae%2Ftagt_jobmgr_liberty_plugin_merge.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

RetryInterval="60">
<Server CloneID="s59"

ConnectTimeout="0"
ExtendedHandshake="false"
MaxConnections="-1"
Name="default_node_String1"
ServerIOTimeout="900"
WaitForContinue="false">
<Transport Hostname="wasvm59.example.com" Port="9080" Protocol="http"/>

</Server>
<Server CloneID="s56"

ConnectTimeout="0"
ExtendedHandshake="false"
MaxConnections="-1"
Name="default_node_String2"
ServerIOTimeout="900"
WaitForContinue="false">
<Transport Hostname="wasvm56.example.com" Port="9080" Protocol="http"/>

</Server>
<Server CloneID="vm28"

ConnectTimeout="0"
ExtendedHandshake="false"
MaxConnections="-1"
Name="default_node_String3"
ServerIOTimeout="900"
WaitForContinue="false">
<Transport Hostname="wasvm28.example.com" Port="9080" Protocol="http"/>

</Server>
<PrimaryServers>

<Server Name="default_node_String1"/>
<Server Name="default_node_String2"/>
<Server Name="default_node_String3"/>

</PrimaryServers>
</ServerCluster>

b. Ensure that each Liberty server is started.
c. Verify that round-robin load-balancing is successfully routing application

requests to each of the backend Liberty servers.

Troubleshooting IBM HTTP Server startup
Problems starting the IBM HTTP Server during deployment of a Worklight Server
on a WebSphere Application Server Liberty Profile farm might be caused by an
exception in the runtime library.

About this task

While setting up IBM Worklight on a WebSphere Application Server Liberty Profile
farm, you are instructed to start the IBM HTTP Server by running the following
command:
/opt/HTTPServer/bin/httpd -d /opt/HTTPServer -k start -f /opt/HTTPServer/conf/httpd.conf

If the attempt fails with the following message, the problem might be due to
attempting to start IBM HTTP Server outside a WebSphere Application Server
environment in which certain libraries cannot be found.
/opt/HTTPServer/bin/httpd: error while loading shared libraries: libexpat.so.0: cannot open shared object file: No such file or directory

If a message similar to this is displayed, use the following procedure to make the
required libraries available.

Chapter 6. Installing and configuring 199

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Check the IBM HTTP Server libraries:

ldd /opt/HTTPServer/bin/httpd

The output shows that libexpat.so.0 cannot be found:
linux-vdso.so.1 => (0x00007fff8c9d3000)
libm.so.6 => /lib64/libm.so.6 (0x00000039fb000000)
libaprutil-1.so.0 => /usr/lib64/libaprutil-1.so.0 (0x00007fc371a7d000)
librt.so.1 => /lib64/librt.so.1 (0x00000039fac00000)
libcrypt.so.1 => /lib64/libcrypt.so.1 (0x0000003a07c00000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00000039fa800000)
libdl.so.2 => /lib64/libdl.so.2 (0x00000039fa000000)
libexpat.so.0 => not found
libapr-1.so.0 => /usr/lib64/libapr-1.so.0 (0x00007fc37184f000)
libc.so.6 => /lib64/libc.so.6 (0x00000039fa400000)
libuuid.so.1 => /lib64/libuuid.so.1 (0x0000003a04c00000)
libexpat.so.1 => /lib64/libexpat.so.1 (0x00000039ff400000)
libdb-4.7.so => /lib64/libdb-4.7.so (0x00000039fd800000)
/lib64/ld-linux-x86-64.so.2 (0x00000039f9c00000)
libfreebl3.so => /lib64/libfreebl3.so (0x0000003a08000000)

2. Find the library on the file system.
ls -l `locate libexpat.so.0`

3. Check /etc/ld.so.conf.
cat /etc/ld.so.conf

The output shows it includes all conf files under /etc/ld.so.conf.d/.
include ld.so.conf.d/*.conf

4. Add the IBM HTTP Server library to the configuration.
a. cd /etc/ld.so.conf.d/

b. Add the http library to the system configuration. The location of the IBM
HTTP Server lib has been previously shown.
echo /opt/HTTPServer/lib > httpd-lib.conf

c. Remove the ldd cache.
rm /etc/ld.so.cache

d. Reload the ldd configuration.
/sbin/ldconfig

5. Check the IBM HTTP Server libraries again:
ldd /opt/HTTPServer/bin/httpd

The output shows libexpat.so.0 is available:
linux-vdso.so.1 => (0x00007fffd594a000)
libm.so.6 => /lib64/libm.so.6 (0x00000039fb000000)
libaprutil-1.so.0 => /opt/HTTPServer/lib/libaprutil-1.so.0 (0x00007f20474bf000)
librt.so.1 => /lib64/librt.so.1 (0x00000039fac00000)
libcrypt.so.1 => /lib64/libcrypt.so.1 (0x0000003a07c00000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00000039fa800000)
libdl.so.2 => /lib64/libdl.so.2 (0x00000039fa000000)
libexpat.so.0 => /opt/HTTPServer/lib/libexpat.so.0 (0x00007f204739c000)
libapr-1.so.0 => /opt/HTTPServer/lib/libapr-1.so.0 (0x00007f2047271000)

200 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

libc.so.6 => /lib64/libc.so.6 (0x00000039fa400000)
/lib64/ld-linux-x86-64.so.2 (0x00000039f9c00000)
libfreebl3.so => /lib64/libfreebl3.so (0x0000003a08000000)

6. Start the IBM HTTP Server.

Integrating IBM WebSphere DataPower with a cluster of
Worklight Servers

You can use IBM WebSphere DataPower as a gateway for all incoming connections
for IBM Worklight and Application Center, and IBM HTTP Server (IHS) for
load-balancing IBM Worklight Servers that are deployed on an IBM WebSphere
Application Server 8.5 cluster or a Liberty Profile server farm.

Before you begin

Ensure that the following environments are available:
v Worklight Server is deployed on an IBM WebSphere Application Server ND

cluster or on a Liberty Profile server farm and is configured to use DB2 or any
compatible database. For more information, see “Typical topologies of an IBM
Worklight instance” on page 178.

v Application Center is set up on an IBM WebSphere Application Server ND
cluster. For more information, see “Installing the Application Center” on page
138.

v IBM WebSphere DataPower XI52.
v IBM HTTP Server.
v Any LDAP server with SSL enabled.

About this task

This procedure explains how to set up IBM Worklight in the topology similar to
the one shown in Figure 15 on page 202.

Chapter 6. Installing and configuring 201

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

.

DataPower XI52 acts as the gateway for all IBM Worklight and Application Center
requests. DataPower validates all incoming user credentials against an LDAP
registry. If the validation is successful, DataPower generates an LTPA token, which
is present as part of a session cookie. This cookie is only valid for one session and
is used for all further requests during that session. The cookies themselves contain
information about the user that has been authenticated, the realm for which the
user was authenticated (such as an LDAP server) and a timestamp. A request with
a valid LTPA cookie can access a server that is a member of the same
authentication domain as the first server. The request is automatically
authenticated, thereby enabling single-sign-on (SSO).

All requests that reach the Worklight cluster or the backend application validate
only the LTPA token. If the LTPA token is valid, the request is authenticated
according to the rules that are set. The LTPA token guarantees that as long as the
token is valid, all requests have SSO capability into all backend servers, including
IBM Worklight and Application center.

Figure 15. IBM Worklight integration with an IBM WebSphere Application Server 8.5 Cluster or a Liberty Profile Server
Farm

202 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The following sequence of events takes place when a mobile application makes a
request (see Figure 16):
1. The mobile application makes a request to the DataPower gateway.
2. DataPower checks for an LTPA token in the incoming request.
3. If a valid LTPA token is present, the request is sent to the IBM Worklight

cluster.
v If an LTPA token is not present or if the token is not valid, DataPower

throws an authentication challenge. The mobile application handles the
challenge and then prompts for user credentials.

4. The Worklight cluster validates the LTPA token and sends the request to the
backend application server along with the LTPA token.

5. The backend application server validates the LTPA token and sends the
response back to IBM Worklight.

6. IBM Worklight forwards the request to DataPower, and DataPower forwards it
to the requesting mobile application.

The Application Center request-response flow takes a similar route to the mobile
application flow, except that requests are routed to the Application Center server
instead of to the Worklight cluster (see Figure 17 on page 204).

Figure 16. Mobile application request-response flow

Chapter 6. Installing and configuring 203

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Configure server security.

v On a WebSphere Application Server cluster:
a. Login to the WebSphere Application Server integrated solutions console.
b. Enable and configure application security.

1) Navigate to Security > Global security, and then click Security
Configuration Wizard.

2) In the "Specify extent of protection" pane, select Enable application
security.

3) In the "Select user repository" pane, click Federated repositories to
integrate with the LDAP server. Several different repositories, both
LDAP and non-LDAP, can be configured in the federated repository.
Enter the LDAP server details. Refer to the WebSphere Application
Server documentation for detailed instructions.

4) Complete the configuration steps and save your changes.
5) On the "Global security" page, confirm that the following settings

apply:
– The Enable administrative security is selected.
– The user account repository is set to LDAP.

c. Enable WebSphere Application Server LTPA SSO between the Worklight
Server cluster and backend servers. To support SSO across multiple
WebSphere Application Server domains or cells, you must share the LTPA
keys and the password among the domains. You need to export the LTPA

Figure 17. Application Center request-response flow

204 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

keys from one of the domains and import them into all other domains in
which you want to enable SSO. For detailed instructions, see Configuring
LTPA and working with keys.

d. Stop and restart the WebSphere Application Server cluster for the
application security changes to take effect.

v On a Liberty Profile server farm:
a. Integrate the LDAP server with Liberty Profile, For detailed instructions,

see Configuring LDAP user registries with the Liberty profile. You must
configure LDAP user registries on each member of the liberty server
farm. The following file is a sample LDAP configuration for Liberty
server:
<!-- LDAP configuration Start -->
<ldapRegistry id="IBMDirectoryServerLDAP" realm="WASLTPARealm"

host="9.186.9.169" port="389" ignoreCase="true"
baseDN="dc=worklight,dc=com"
bindDN="cn=admin,dc=worklight,dc=com"
bindPassword="passw0rd"
ldapType="IBM Tivoli Directory Server">

<idsFilters userFilter="(&(uid=%v)(objectclass=posixAccount))"
groupFilter="(&(cn=%v)(objectclass=posixGroup))"
userIdMap="*:uid"
groupIdMap="*:cn"
groupMemberIdMap="ibm-allGroups:member;ibm-allGroups:uniqueMember;groupOfNames:member;groupOfUniqueNames:uniqueMember" />

</ldapRegistry>

b. Configure SSO for the Liberty server farm. To enable SSO on Liberty, you
must configure an LTPA key file for each Liberty server in the Liberty
farm. See Configuring LTPA on the Liberty profile. The following file is a
sample LTPA configuration for Liberty server:
<ltpa keysFileName="${server.config.dir}/resources/security/ltpa.keystore" keysPassword="passw0rd" expiration="120" />

2. Configure Worklight Server.
You can secure IBM Worklight in a typical WebSphere Application Server
runtime environment in two ways:

Option 1
Securing WebSphere Application Server using application security and
securing the IBM Worklight WAR file.

Option 2
Securing WebSphere Application Server using application security but
not securing the IBM Worklight WAR file.

Option 1 provides greater authentication security. The application server, such
as the IBM WebSphere Application Server Liberty Profile (Liberty) protects all
resources and forces users to log in before any other authentication mechanism.
The behavior occurs regardless of the expected authentication order for a
security test. See “Supported configurations for LTPA” on page 807 for more
information.
Once the user has been successfully authenticated, an LTPA token is returned.
This LTPA token needs to be present as part of all future requests from the
mobile application, including adapter invocations. On the Worklight Server
side, the call to the backend application should be modified to carry this LTPA
token.
For the purpose of explaining how this is done, assume that authentication
configuration has a security test that uses a realm called WASLTPARealm which is
of type WebSphere LTPA, and that there is an HTTP adapter defined on the
server called SecureAdapter with a procedure getAccountInfo.

Chapter 6. Installing and configuring 205

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.nd.multiplatform.doc/ae/tsec_ltpa_and_keys.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.nd.multiplatform.doc/ae/tsec_ltpa_and_keys.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_sec_ldap.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.wlp.core.doc/ae/twlp_sec_ltpa.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The following code snippet shows how to pass the LTPA token when invoking
an adapter procedure from the mobile application.
function getAccountInfo(){

var ltpaToken
if(WL.Client.isUserAuthenticated(’WASLTPARealm’)){

var attrs = WL.Client.getUserInfo(’WASLTPARealm’, ’attributes’);
if(attrs){

ltpaToken = attrs.LtpaToken;
console.log(’Set ltpaToken again: ’+ltpaToken);

}
}

var token = {’LtpaToken2’ : ltpaToken};
var invocationData = {

adapter: "SecureAdapter",
procedure: "getAccountInfo",
parameters: [token]

};

WL.Client.invokeProcedure(invocationData, {
onSuccess: <on success callback>,
onFailure: <on failure callback>

});
}

On the server side, the adapter procedure needs to get the token, which is
passed as a parameter. This parameter holds the LTPA token information that is
used by the adapter to contact the backend service.
function getAccountInfo(token) {

WL.Logger.info(token);

var input = {
method : ’get’,
returnedContentType : ’xml’,
cookies: token,
path : ’<path to the backend service>’

};

return WL.Server.invokeHttp(input);
}

Once this IBM Worklight WAR file has been deployed on the cluster, you need
to map the users against the roles. In the WebSphere Application Server
console, open the application configuration tab of the deployed Worklight
Server and click Security role to user/group mapping to map the LDAP user to
the IBM Worklight roles.

206 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Select your role name and click Map users to map the LDAP user to this
application.
For IBM Worklight V6.0 and earlier, you must edit the web.xml file and add the
user roles. For IBM Worklight V6.1.0 and later, the roles can be added as part of
the WASLTPAModule login module. See “WASLTPAModule login module” on
page 618.

3. Configure Application Center.
a. Complete the following configuration tasks depending on the server being

used:
v “Configuring WebSphere Application Server full profile” on page 139
v “Configuring WebSphere Application Server Liberty Profile” on page 140

b. Manage users with LDAP.
Application Center uses two security roles: appcenteradmin and
appcenteruser. The LDAP users need to be mapped against the security
roles.
Depending on the server that you are using, refer to the "Configuring LDAP
authentication" section under one of the following documentation links:
v “LDAP with WebSphere Application Server V7” on page 145
v “LDAP with WebSphere Application Server V8.x” on page 150
v “LDAP with Liberty Profile” on page 155

c. Define the endpoint of the application resources.
In this configuration, Application Center is behind DataPower, which is
acting as a secure reverse proxy. To manage the applications on your device,
the Application Center console must be able to locate the Application Center
REST services and generate the required number of URI that enable the
mobile client to find the Application Center REST services.
By default, the URI protocol, host name, and port are the same as those
defined in the web application server used to access the Application Center
console; the context root of the Application Center REST services is
applicationcenter. When the context root of the Application Center REST
services is changed or when the internal URI of the web application server

Figure 18. Mapping the LDAP user to WebSphere Application Server

Chapter 6. Installing and configuring 207

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

is different from the external URI that can be used by the mobile client, the
externally accessible endpoint (protocol, host name, and port) of the
application resources must be defined by configuring the web application
server. (Reasons for separating internal and external URI could be, for
example, a firewall or a secured reverse proxy that uses HTTP redirection.)
The following Application Center JNDI properties must reference the
DataPower gateway's details:
v ibm.appcenter.services.endpoint

v ibm.appcenter.proxy.protocol

v ibm.appcenter.proxy.host

v ibm.appcenter.proxy.port

Depending on the server type, set the Application Center JNDI properties
by completing one of the following procedures:
v “Configuring the endpoint of the application resources (Full Profile)” on

page 166
v “Configuring the endpoint of the application resources (Liberty profile)”

on page 167
4. Configure DataPower. DataPower XI52 acts as the gateway for all IBM

Worklight and Application Center requests. DataPower validates all incoming
user credentials against an LDAP registry. The following sections show how to
configure DataPower.
a. Create a new multi-protocol gateway. Complete the following steps:

1) From the DataPower XI52 control panel, click the Multi-Protocol
Gateway icon to open the Multi-Protocol Gateway main page.

2) Click Add to add a new gateway.
3) Provide a name for the gateway and set Type to dynamic-backend.
4) Make sure that Request Type and Response Type are set to Non-XML.
5) On the Advanced tab page, select Follow Redirects and Process

Backend Errors.
6) On the Stylesheet Params tab page, add the parameters listed in

Table 43 on page 209:

Figure 19. Accessing the Multi-Protocol Gateway main page

208 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 43. Stylesheet parameters

Parameter name Value

{http://www.datapower.com/param/
config}applicationcenterBackend

http://<appcenterHostName>:<port>

{http://www.datapower.com/param/
config}worklightBackend

http://<worklightIHSHostName>:<port>

7) On the General tab page, add an HTTPS (SSL) Front Side Handler with
reverse SSL Proxy Profile. Ensure that the following methods and
versions are selected:
v HTTP 1.0
v HTTP 1.1
v POST method
v GET method
v PUT method
v HEAD method
v OPTIONS
v DELETE method
v URL with Query Strings
v URL with Fragment Identifiers

8) Click the plus sign (+) to add a new multi-protocol gateway policy.
9) Provide a name for the policy, click Apply Policy, and then click Close

Window. The policy is added to the gateway.
10) Apply your configuration.

b. Edit the multi-protocol gateway policy. Add the following rules to provide
form-based authentication, generate an LTPA token and verify the LTPA
token. All the rules are described in the following tables. You must list them
in the same order.
1) worklight-ssl-policy_skipFavicon: see Table 44
2) worklight-ssl-policy_verifyLTPA: see Table 45
3) worklight-ssl-policy_allowSSLLoginPage: see Table 46 on page 210
4) worklight-ssl-policy_worklightSSLLogin: see Table 47 on page 211

Table 44. Properties of worklight-ssl-policy_skipFavicon

Property Value

Direction Client to Server.

Match v Type = URL

v Pattern = /favicon.ico

Advanced "Set Variable" -> var://service/mpgw/skip-
backside = 1

Result Not applicable.

Table 45. Properties of worklight-ssl-policy_verifyLTPA

Property Value

Direction Client to Server.

Chapter 6. Installing and configuring 209

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 45. Properties of worklight-ssl-policy_verifyLTPA (continued)

Property Value

Match v Type = HTTP

v HTTP tag = Cookie

v Pattern = *LtpaToken*

AAA v Input: INPUT

v Output: NULL

Add a new AAA Policy named VerifyLTPA
with the following configuration:

v Extract Identity: LTPA token

v Method: Accept LTPA Token.

v Acceptable LTPA versions: WebSphere
version 1 and WebSphere version 2

v LTPA key file: upload the LTPA keyfile.

v LTPA key file password: specify the
password for the LTPA keyfile.

v Extract Resource: URL Sent by Client

v Authorization: Allow any authenticated
client.

Transform Upload route.xsl. See “Sample dynamic
routing stylesheet” on page 212.

v Input: INPUT

v Output: auth

Result Not applicable.

Table 46. Properties of worklight-ssl-policy_allowSSLLoginPage

Property Value

Direction Client to Server.

Match v Type = URL

v Pattern = /(Login|Error)Page\.htm(l)?(\
?originalUrl=.*)?

AAA v Input: INPUT

v Output: NULL

Add a new AAA Policy named
AllowSSLLoginPage with the following
configuration:

v Method: HTML Form-based
Authentication

v HTML Form Policy: Create one with the
default values, but edit these values:

– Use SSL For Login: enabled

– SSL Port: port on which the
multi-protocol gateway is listening.

v Authentication: Pass identity token to
authorization phase

v Resource extraction: URL sent by client

v Authorization: Always allow

210 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 46. Properties of worklight-ssl-policy_allowSSLLoginPage (continued)

Property Value

Result Not applicable.

Table 47. Properties of worklight-ssl-policy_worklightSSLLogin

Property Value

Direction Client to Server.

Match v Boolean Or Combinations: On

v Type = URL

v Pattern: /worklight/*

v Type = URL

v Pattern: /j_security_check

v Type = URL

v Pattern: /applicationcenter/*

v Type = URL

v Pattern: /appcenterconsole/*

Advanced “Convert Query Params to XML Action”

AAA Create a new AAA Policy named
worklightSSLFormLogin with the following
configuration:

v Extract Identity:

– Method: HTML Form-based
Authentication

– HTML Form Policy: Select the same
policy created in the previous step.

v Authentication:

– Method: Bind to LDAP server

– Enter the HostName, Port(636)

– Create an SSL Forward proxy profile
with the LDAP server's SSL certificate.

– LDAP Bind DN, in this case would be:
cn=admin,dc=worklight,dc=com

– Enter the LDAP Bind Password.

– LDAP Prefix : uid=

– LDAP Suffix :
ou=people,dc=worklight,dc=com

v Resource extraction: URL sent by client

v Authorization: Allow any authenticated
client.

v Post Processing: Generate LTPA Token ->
on.

– LTPA Token Version: WebSphere
version 2

– LTPA Key File: Select the ltpa key file

– LTPA key file password: Specify the
password for the ltpa keyfile.

Chapter 6. Installing and configuring 211

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 47. Properties of worklight-ssl-policy_worklightSSLLogin (continued)

Property Value

Transform Upload route.xsl file. See “Sample dynamic
routing stylesheet.”

v Input: INPUT

v Output: auto

Result Not applicable.

Results

The different pieces of the topology are now configured and provide a seamless
SSO experience for mobile applications as well as for Application Center.

Sample dynamic routing stylesheet
You can use this sample stylesheet to handle the dynamic routing of requests
between IBM Worklight and Application Center. You refer to the stylesheet when
you create rules to define a form-based authentication policy that generates and
verifies LTPA tokens.

You provide a custom dynamic routing stylesheet when you define rule
worklight-ssl-policy_verifyLTPA (see “Integrating IBM WebSphere DataPower
with a cluster of Worklight Servers” on page 201, Table 45 on page 209), and when
you define rule worklight-ssl-policy_worklightSSLLogin (see “Integrating IBM
WebSphere DataPower with a cluster of Worklight Servers” on page 201, Table 47
on page 211).
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:dp="http://www.datapower.com/extensions"
xmlns:dpconfig="http://www.datapower.com/param/config"
xmlns:re="http://exslt.org/regular-expressions"
extension-element-prefixes="dp re dpconfig"
exclude-result-prefixes="dp">

<xsl:param name="dpconfig:worklightBackend"/>
<xsl:param name="dpconfig:applicationcenterBackend"/>
<xsl:template match="/">

<xsl:variable name="worklight" select="’worklight’"/>
<xsl:variable name="applicationcenter" select="’applicationcenter’"/>
<xsl:variable name="appcenterconsole" select="’appcenterconsole’"/>

<xsl:variable name="worklightBackend" select="$dpconfig:worklightBackend"/>
<xsl:variable name="applicationcenterBackend" select="$dpconfig:applicationcenterBackend"/>

<xsl:variable name="incomingURI" select="dp:variable(’var://service/URI’)"/>
<xsl:variable name="httpContentType" select="dp:http-request-header(’Content-Type’)"/>
<xsl:variable name="accessControlRequestHeaders" select="dp:http-request-header(’Access-Control-Request-Headers’)"/>
<xsl:variable name="accessControlRequestMethod" select="dp:http-request-header(’Access-Control-Request-Method’)"/>

<xsl:choose>
<!-- set the backend server if the url is /worklight -->
<xsl:when test="contains(dp:variable(’var://service/URI’), $worklight)">

<dp:set-http-request-header name="’Content-Type’" value="$httpContentType"/>
<dp:set-variable name="’var://service/routing-url’" value="$worklightBackend"/>
<dp:set-variable name="’var://service/URI’" value="$incomingURI"/>

</xsl:when>

<xsl:when test="contains(dp:variable(’var://service/URI’), $applicationcenter) or contains(dp:variable(’var://service/URI’), $appcenterconsole)">

212 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<dp:set-http-request-header name="’Content-Type’" value="$httpContentType"/>
<dp:set-http-request-header name="’Access-Control-Request-Headers’" value="$accessControlRequestHeaders"/>
<dp:set-http-request-header name="’Access-Control-Request-Method’" value="$accessControlRequestMethod"/>
<dp:set-variable name="’var://service/routing-url’" value="$applicationcenterBackend"/>
<dp:set-variable name="’var://service/URI’" value="$incomingURI"/>

</xsl:when>

<xsl:when test="contains(dp:variable(’var://service/URI’), ’j_security_check’)">
<dp:set-http-request-header name="’Content-Type’" value="$httpContentType"/>
<dp:set-variable name="’var://service/routing-url’" value="$applicationcenterBackend"/>
<dp:set-variable name="’var://service/URI’" value="’/appcenterconsole/login/j_security_check’"/>

</xsl:when>

<xsl:otherwise>
<xsl:message dp:type="all" dp:priority="error"> No matching url found. </xsl:message>

</xsl:otherwise>
</xsl:choose>

<xsl:value-of select="."/>
</xsl:template>

</xsl:stylesheet>

Installing and configuring IBM SmartCloud Analytics Embedded
To run the analytics features, you must install IBM SmartCloud Analytics
Embedded.

About this task

The operational analytics feature requires installation of IBM SmartCloud Analytics
Embedded, which is included in the IBM Worklight server installation. The best
practice is to install this component on a separate system than your IBM Worklight
server and IBM Application Center server to offload the necessary storage and
analytics workload from these critical IBM Worklight production systems.
Installation requires extracting a file and running an interactive shell script that is
provided in the compressed file.

System Requirements:
v Supported operating systems:

– AIX V6.1 and V7.1 on ppc 64-bit
– Red Hat Enterprise Linux (RHEL) 6 Server editions on x86-64
– Red Hat Enterprise Linux (RHEL) 5 Update 6 Advanced Platform on v86-64
– SUSE Linux Enterprise Server (SLES) 10 and 11 on x86-64

v 200 MB of disk space is required for the installation.
v 8 GB of RAM is required.
v Local file system with at least 100 GB of disk space.
v Python 2.7.x-2.8.x.
v Root access for installation.
v Ability to open firewall ports.

Find the compressed file that contains the Analytics Engine at:
v For UNIX systems: /opt/IBM/Worklight/Analytics/analytics_[OS].zip (or your

installation location, if different)
v For Windows systems: c:\Program Files (x86)\IBM\Worklight\Analytics\

analytics_[OS].zip (or your installation location, if different)

Chapter 6. Installing and configuring 213

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Copy the analytics_[OS].zip file to the system that you designated as the host

for IBM SmartCloud Analytics Embedded.
2. Extract the analytics_[OS].zip file.
3. Run the interactive shell script, which prompts for input such as installation

paths.
a. Run ./setup.sh -t For instructions on how to use the script, use -h option
b. The first prompt asks the user to specify the mode of installation of IBM

SmartCloud Analytics Embedded. Specify the mode of installation and press
ENTER. There are three different modes supported:

Stand-alone
A stand-alone installation installs and configures the Analytics
features and a search node in which data is stored and indexed. The
search node is configured to be a master search node. Each search
cluster has a single master node and more search nodes can be
added to the cluster by specifying the same cluster name during the
installation. One or more stand-alone and search installations with
the same cluster name form a cluster of search nodes.

Search
A search installation installs and configures a search node (master).

Console
A console mode installation installs and configures the Analytics
feature and a search node that is configured as a client. By
configuring as a client, the node does not store any data locally. The
node becomes part of the cluster (the name of the cluster is
provided during installation) and the operations are redirected to
the search node in the cluster that contains the relevant data.

c. Specify a cluster name for the search node. If none is specified, the default
name of WLCLUSTER is used.

d. Specify the location to install the analytics. If none is specified, the default
location of /opt/IBM/analytics is used.

e. Specify the location to store data. If none is specified, the default location
<INSTALL_LOCATION>/data is used. The console installation does not ask for
the location to store data.

f. Specify the location to store logs. If none is specified, the default location of
<INSTALL_LOCATION>/logs is used. The console installation does not ask for
the location to store logs.

g. Specify an available port for analytics. If none is specified, the default port
80 is used. The search installation does not ask for port information.

4. Note the installation summary (Analytics page URL, Instructions to start / stop
/ restart / uninstall analytics).

5. Open firewall ports if necessary.
a. The port that you designated for analytics during installation.
b. 9500: For HTTP communication between search nodes in a cluster.
c. 9600: For discovery of search nodes in a cluster / unicast.

6. Start the analytics feature by running <INSTALL_LOCATION>/iwap.sh start.

214 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Results

You have installed IBM SmartCloud Analytics Embedded. During the installation
this summary appears, providing instructions about how to start, stop, or uninstall
IBM SmartCloud Analytics Embedded:
IBM Worklight Analytics Installation Summary
--

Worklight analytics console can be accessed using URL:
http://localhost:80/iwap/worklight/v1/index.html

Use the below to start / stop / restart analytics.
<INSTALL_LOCATION>/iwap.sh start
<INSTALL_LOCATION>/iwap.sh stop
<INSTALL_LOCATION>/iwap.sh restart

Note: The port 9300 should be open for communication
between search nodes. The ports 9500 & 9600 should always be
reserved for use by analytics

Uninstall: To uninstall analytics,
use /usr/sbin/analyticsuninstall.sh

What to do next

Configure the Worklight Server to use analytics by following the steps in
“Configuring Worklight Server for analytics.”
Related concepts:
Operational analytics
The operational analytics feature enables searching across apps, services, devices,
and other sources to collect data about usage or detect problems.

Configuring Worklight Server for analytics
To use the analytics feature, you must configure Worklight Server to forward
analytics data to the IBM SmartCloud Analytics Embedded.

Before you begin

To follow these instructions you must know how to create an IBM Worklight
project, generate a WAR file from this project, and install it in Worklight Server.
For more information, see the Getting Started module Creating your first Worklight
application under category 2, Hello Worklight, in Chapter 3, “Tutorials and samples,”
on page 27.

About this task

To enable the Worklight Server WAR to forward data to IBM SmartCloud Analytics
Embedded, you must specify properties in the JNDI configuration for the WAR file
that you deploy to the server. Starting with the URL that you noted during
installation of IBM SmartCloud Analytics Embedded, modify the JNDI
configuration by completing these steps.

Procedure
1. Find and modify the URL that you noted during the IBM SmartCloud Analytics

Embedded installation. For example, if the URL that you noted is
http://localhost:80/iwap/worklight/v1/index.html, you must enter
http://<IP>:80/iwap/v1/events/_bulk as the wl.analytics.url property.

Chapter 6. Installing and configuring 215

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The URL that is used for IBM SmartCloud Analytics Embedded must have the
same connectivity (public Internet or internal intranet) and use the same
protocol (HTTP or HTTPS) as the Worklight Server.

2. Add the following value to the JNDI configuration: wl.analytics.url=[the
modified URL that you noted during installation of IBM SmartCloud
Analytics Embedded]. For more information about JNDI properties, see
“Configuring an IBM Worklight project in production by using JNDI
environment entries” on page 784.
When this WAR is installed and the JNDI properties are properly configured,
data flows to IBM SmartCloud Analytics Embedded. When the
wl.analytics.url property is set, a tab in the IBM Worklight Console displays
the Analytics Dashboard view. The presence of the Analytics tab confirms that
you properly configured your Worklight Server to forward analytics data to
IBM SmartCloud Analytics Embedded. The user interface for the Worklight
Console Analytics tab is rendered within an IFRAME that communicates
directly with IBM SmartCloud Analytics Embedded. The browser from which
the analytics information is accessed must have direct connectivity to IBM
SmartCloud Analytics Embedded, just as it does with the Worklight Server.

Note: When wl.analytics.* JNDI properties are changed, you must restart
the server for the changes to take effect.

What to do next

Enable the Analytics optional feature by following the steps in “Enabling analytics”
on page 950. For more information about operational analytics, see “Analytics” on
page 938.

Troubleshooting Worklight Server
You can troubleshoot to locate the server and databases on Windows 8, Windows
7, and Windows XP, or to find the cause of installation or database creation failure.
Related concepts:
Troubleshooting analytics
Find solutions to problems with IBM Worklight analytics features.

Troubleshooting to find the cause of installation failure
You can troubleshoot to find the cause of installation failure.

About this task

If installation failed but the cause is not obvious, you can troubleshoot by
completing the following procedure:

Procedure

See the failed-install.log file in the installation directory or, if this file does not
exist, the install.log file in the installation directory. On Windows systems, if the
default installation location was chosen, the directory is C:\Program
Files\IBM\Worklight\. This file contains details about the installation process.

216 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

What to do next

If you still cannot determine the cause of the installation failure, you can use the
manual installation instructions to investigate the problem more thoroughly. See
“Deploying a project WAR file and configuring the application server manually”
on page 767.

Troubleshooting failure to create the DB2 database
An incompatible database connection mode might result in failure to create the
DB2 database.

About this task

Use this procedure if the following message is displayed when you attempt to
create a DB2 database:

"Creating database <WL_DB> (this may take 5 minutes) ... failed: Cannot
connect to database <WL_DB> after it was created:
com.ibm.db2.jcc.am.SqlException: DB2 SQL Error: SQLCODE=-1035,
SQLSTATE=57019, SQLERRMC=null, DRIVER=<driver_version>"

Procedure
1. Wait a few minutes for the current DB2 database connections to close, and then

click Back followed by Next to check if the issue is solved.
2. If the problem persists, contact your database administrator to solve the

database connection issue that is documented on the following web page:
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=
%2Fcom.ibm.db2.luw.messages.sql.doc%2Fdoc%2Fmsql01035n.html

Troubleshooting an installation blocked by DB2 connection
errors

An incorrect DB2 JDBC driver can prevent connection to the database, and block
the Worklight Server installation.

About this task

During installation, the Worklight Server installer attempts to ensure that the
specified databases exist. If the database is present but attempting to access it
produces an error, the Worklight Server installer blocks the Next button, and
prevents the user from moving forward to complete the installation. An error
similar to the following appears:

Chapter 6. Installing and configuring 217

http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.messages.sql.doc%2Fdoc%2Fmsql01035n.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.messages.sql.doc%2Fdoc%2Fmsql01035n.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

This error may be caused by an incorrect version of the DB2 JDBC driver. For
example, you may have chosen the DB2 JDBC server that is included in a DB2
release:

Procedure
1. If you receive this error, verify the current DB2 JBDC driver.
2. Newer fix packs of the DB2 JDBC driver may solve the issue. These fix pack

drivers are available from DB2 JDBC Driver Versions.

Troubleshooting a Worklight Server upgrade with Derby as the
database

If Application Center is installed and uses Apache Derby as a database, stop the
application server that runs the application before you run IBM Installation
Manager to upgrade a Worklight Server installation.

218 IBM Worklight V6.1.0

http://www.ibm.com/support/docview.wss?uid=swg21363866

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

During an upgrade of Worklight Server, if Application Center is installed, the
installer migrates the database that is used by Application Center. When Apache
Derby is the database, this operation can fail if the application server that runs
Application Center is not stopped.

The symptom of this problem is that the upgrade fails and the log file contains the
error message Another instance of Derby may have already booted the
database.

Procedure

Before you run IBM Installation Manager to upgrade an installation of Worklight
Server and Application Center, stop the application server that runs the
Application Center application.

Troubleshooting failure to authenticate to Application Center
and applications that use the basic registry element

Authentication fails when attempting to log in to the Application Center and other
applications that run on WebSphere Application Server Liberty profile and use the
basicRegistry element.

About this task

When IBM Worklight is installed with Application Center on WebSphere
Application Server Liberty profile, it adds a basicRegistry element in the
server.xml file of the Liberty server instance, with demo users, even if a
basicRegistry element already exists. Authentication into the Application Center
and other applications that use users from the basic registry no longer works. For
example, after an attempt to log in to the Application Center, the following error
message is displayed:
Error 404: java.io.FileNotFoundException: SRVE0190E: File not found: /j_security_check

The liberty server log file contains the following error message:
[ERROR] CWWKS3006E: A configuration exception has occurred. There are multiple available UserRegistry implementation services; the system cannot dete

When IBM Worklight is uninstalled, the basic registry that was created during the
installation by the Worklight Server installer is removed from the server.xml file,
even if other users have been added to that basic registry. If other applications
than Application Center use the basic registry, authentication on these applications
is no longer possible.

Procedure
1. Move the content of the basic registry that was created by IBM Installation

Manager in the initial basic registry element. For an installation that is not for
test purposes only, do not copy the users demo and appcenteradmin, and remove
them from the appcentergroup. Remove the following code from the
server.xml file:
<!-- Declare the user registry for the Application Center. -->
<basicRegistry id="applicationcenter-registry" realm="ApplicationCenter">

<!-- The users defined here are members of group "appcentergroup", thus have role "appcenteradmin", and can therefore perform administrative tas
<user name="appcenteradmin" password="admin"/>
<user name="demo" password="demo"/>
<group name="appcentergroup">

Chapter 6. Installing and configuring 219

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<member name="appcenteradmin"/>
<member name="demo"/>

</group>
</basicRegistry>

2. When you uninstall IBM Worklight, the uninstaller of Worklight Server creates
a backup of the server.xml file under the name server.xml.saved2. Open the
server.xml.saved2 file, and copy the basicRegistry element back in the
server.xml file. Remove the users and groups that were only needed by the
Application Center.

220 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.Mobile testing for IBM Worklight

���

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

ii Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Contents

Testing with IBM Worklight 1
Creating a Test Workbench project from the IBM
Worklight project creation wizard 4
Initiating mobile testing from Android, iPad, and
iPhone environments in Worklight Studio. 5
Using the Application Center and the Mobile Test
Workbench to share applications. 8
Publishing test-ready iOS applications to the
Application Center 9
Creating a Test Workbench project 10
Getting started with mobile testing 11

Android testing overview. 11
iOS testing overview 12
Getting started with Android testing 15
Getting started with testing on iOS devices . . . 17
Getting started with testing on the iOS Simulator 20

Managing mobile applications 22
Importing applications to test in the workbench 23
Adding web applications to test workbench . . 25
Uploading Android applications from the mobile
test client 25
Instrumenting Android applications in a
shell-sharing environment 27
Instrumenting iOS applications on an iOS device 27
Instrumenting iOS applications on the iOS
Simulator 29
Installing instrumented iOS applications on an
iOS device 30
Increasing memory allocation to upload
applications 30

Creating mobile tests 31
Recording tests from the Android mobile test
client 31
Recording tests from the iOS mobile test client . 32
Recording tests from the test workbench. . . . 34

Editing Mobile tests 34

Creating verification points in a test 35
Adding user actions in a test 36
Creating application stubs in tests 36
Defining a variable to run a test with a selected
mobile device. 37
Defining a variable in a test to run the latest
version of an application 39
Assigning a test variable to an object’s property 39
Adding hardware actions in a test 40
Splitting a test 41
Activating web UI actions 41
Actions from the Mobile data view 42

Running mobile tests 44
Running tests from an Android mobile test client 44
Running tests from the iOS mobile test client . . 45
Running tests from the test workbench 46
Running Worklight hybrid tests on either
Android or iOS mobile test client 47
Running a test with different localized strings . . 48

Evaluating results 50
Viewing mobile reports 51
Managing logs for Android mobile test client . . 52

Compound tests 53
Creating a compound test 53
Viewing compound tests 54
Adding tests into a compound test 55
Modifying a compound test 56
Running compound tests 56
Generating compound test result reports . . . 56
Adding a compound test to a Test Workbench
project 58
Adding compound tests to schedule 59

Extending Rational Test Workbench Eclipse Client 60
Extending test execution with custom code . . . 60

Index 85

iii

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

iv Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Testing with IBM Worklight

The mobile testing capabilities of IBM® Mobile Test Workbench for Worklight®

automate the creation, execution, and analysis of functional tests for IBM Worklight
native and hybrid applications on Android and iOS devices.

IBM Worklight includes IBM Mobile Test Workbench for Worklight for testing
mobile applications. You can only test IBM Worklight applications. To test mobile
applications that are not developed with IBM Worklight, consider purchasing IBM
Rational® Test Workbench.

Note: Testing web applications is not supported in IBM Mobile Test Workbench for
Worklight. Some topics in this section mention support for web apps, but that
support does not apply to IBM Mobile Test Workbench for Worklight.

You can test Android and iOS applications with IBM Mobile Test Workbench for
Worklight. You cannot currently use it to test BlackBerry applications.

The tool chain for preparing and testing mobile applications in IBM Worklight
includes:
v Worklight Studio for developing your application, preparing it for test, and

uploading it to the mobile test workbench for testing by the developer.
v Application Center for sharing applications when the person who develops the

application is different from the person who tests the application.
v IBM Mobile Test Workbench for Worklight for testing the application.

The mobile testing component provided within IBM Worklight is also available in
Rational Test Workbench. Therefore, it is sometimes referred to as “Rational Test
Workbench” in this documentation, and in particular when it concerns the mobile
test client.

Note: The mobile test client runs on the mobile device, and the test workbench
runs on a Windows, Linux, or a Macintosh computer. The two work together.

Note: The test workbench is a component that can be added to Worklight Studio
to test Worklight mobile applications, but it can also be used independently to test
mobile applications created outside of IBM Worklight, as well as Selenium, HTTP,
SAP, Citrix, and other types of applications, as is the case for the Rational Test
Workbench product.

Installation

To use the test workbench, you must install it as an extra component in Worklight
Studio. To know how to install the test workbench within Worklight Studio, see
Installing IBM Mobile Test Workbench for Worklight.

Note: Testing Android applications with the test workbench requires a JDK. Make
sure to also add the path to the JDK in Window > Preferences > Java > Installed
JREs, and to set it as the default JRE by selecting its corresponding check box.

1

 ../../com.ibm.worklight.installconfig.doc/install_config/t_install_imtww.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Stages in the testing process

The goal of mobile testing is to ensure that your mobile application meets the
requirements that guided its design and development. To help you meet this goal,
IBM Mobile Test Workbench for Worklight implements the following stages in the
testing process:
v Configuration: Set up your test environment with IBM Mobile Test Workbench

for Worklight and the SDKs for the mobile operating systems. Install the mobile
test client on one or several mobile devices. Ensure that the mobile devices have
connectivity through WiFi, 3G, or 4G, and add those devices to the test
workbench.

v Application preparation: Import the application that you want to test into the
test workbench, or use the device to upload the application under test to the test
workbench.

v Test recording: Run the app from the mobile test client to start a recording. The
recorder records all user interactions, sensor inputs, and application behavior,
and uploads the recorded data to the test workbench, where it can be converted
into a mobile test.

v Test editing: After recording, you can edit the test in the natural language editor.
You can use the mobile data view to display and select UI elements from the
recorded applications. You can replace recorded test values with variable test
data, or add dynamic data to the test.

v Testing: You can deploy and run automated tests on multiple devices to ensure
that the app matches the expected behavior that is defined in verification points.
During the run, each verification point is checked and receives a pass, fail, or
inconclusive status and functional data is recorded.

v Evaluation of results: After the test, the device uploads the test data to the test
workbench. You evaluate the test results through the performance and
verification point reports that are generated with the uploaded data. You can
also design custom reports by manipulating a wide range of counters.
Functional reports provide a comprehensive view of the behavior of the app
under test. Reports can be exported and archived for validation.

When the tester is the same person as the developer, this person can develop and
test the application in the same Eclipse environment.

When the person who develops the application is different from the person who
tests it, the application must be shared between the developer and the tester by
using the Application Center. In this case, the testing process includes the
following extra stages:
v Publication: You can publish Android applications to the Application Center

from Worklight Studio by right-clicking an Android project and clicking IBM
Application Center > Publish on IBM Application Center. For iOS, the
application must first be instrumented for testing. You right-click an iOS project,
and click IBM Application Center > Publish Test-Ready Application. The iOS
application is then instrumented and published.

v Import of the application: When the application is published in the Application
Center, the tester imports this app into the list of managed applications into the
test workbench.

Mobile testing tools

The following main components are designed specifically to help you test mobile
apps:

2 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v A mobile test client is available on the Android and iOS platforms. This client is
used to upload apps to the test workbench, to record, to run tests, and to view
reports.

v A test navigator lists test projects, tests, mobile devices, and the mobile incoming
recordings that are used to generate tests.

v A device editor lists the devices that are connected to the test workbench. This
editor displays detailed specifications of each device, therefore you can select the
hardware platforms on which you can deploy and run your tests.

v An application editor lists the managed apps that are uploaded and prepared for
testing.

v A test editor enables you to edit test scripts in natural language, and add
actions, verification points, data pools, test variables, or stubs in your script
steps.

v A mobile data view displays the screen captures that were uploaded from the
mobile device during the recording. Use this view to display and select user
interface elements, and optionally to add verification points to the test script.

Support for testing native and hybrid applications

You can use IBM Mobile Test Workbench for Worklight to test both native and
hybrid applications that were created with Worklight Studio.

A native Android or iOS application is built using a native SDK, whose services are
defined according to each platform architecture. Android applications are typically
created with Java™ or C++, whereas iOS applications are created with Objective-C.

A hybrid application is an application that combines native and web technologies.
The web part relies on HTML 5, CSS3, and javascript.

Note: To test applications that are not created with IBM Worklight, you must use
IBM Rational Test Workbench.

Testing with IBM Worklight 3

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Related information:
Android testing overview
iOS testing overview

Creating a Test Workbench project from the IBM Worklight project
creation wizard

The test scripts that you create for your mobile applications are located in a test
project.

About this task

You can easily create a test project by selecting File > New > Test Workbench
Project within Eclipse as described in Creating a Test Workbench project, or you
can create a test project at the same time as you create your IBM Worklight project.

4 Mobile testing for IBM Worklight

 ../../com.ibm.rational.test.lt.mob.wl.ditaval.doc/topics/tcreateproj.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To create a test project while you create your IBM Worklight project, complete the
following procedure.

Note: The IBM Mobile Test Workbench for Worklight allows testing only the
mobile applications that are created with IBM Worklight. To test applications that
are not created with IBM Worklight, or if you need more tools for extra testing
scenarios, you must use the IBM Rational Test Workbench product.

Procedure
1. In Worklight Studio, select File > New > Worklight Project and follow the

steps to create an IBM Worklight project (see Creating IBM Worklight projects).
2. On the last page of the project creation wizard, click IBM Mobile Test

Workbench, select Create a Test Project and enter the name of the test project.

3. Click Finish.

What to do next

To start the testing, you must also create your Android or iOS application.

Initiating mobile testing from Android, iPad, and iPhone environments
in Worklight Studio

With Worklight Studio, you can easily add iOS or Android applications to IBM
Mobile Test Workbench for Worklight, and make them available for the recording
and playback of test scripts.

Before you begin

You must prepare your application for testing by building the environment, and by
running your app on the Worklight Development Server. To do so, complete the
following steps:
1.

v For Android apps:
a. Create the native Android project in Worklight Studio by right-clicking

your application, and clicking Run As > Build Android Environment.
b. Create the application binary file (the APK file) by using the Android

tools.

Figure 1. Creating a Test Project from the wizard

Testing with IBM Worklight 5

 ../../com.ibm.worklight.dev.doc/devref/t_creating_projects_and_apps.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v For iOS apps: Create the Xcode project in Worklight Studio by right-clicking
your application, and clicking Run As > Build IPhone Environment. The
appropriate certificate is specified in the Xcode project, in case you want to
test your app on a real device.

2. Perform a build and deployment action on your project by right-clicking the
project name, and clicking Run As > Run on Worklight Development Server
to make the iOS .ipa file or the Android .apk file available, and to update the
Android project.

3. (For Android only) Compile the APK by right-clicking the name of the
automatically generated Android project, and clicking Run As > Android
Studio project.

About this task

If you developed an iOS or an Android hybrid application with Worklight Studio,
you can add it to the test workbench in either of these two ways:
v By following the instructions from the section Adding applications in the

workbench.
v Or, more easily, by completing the following steps.

Note: The following procedure applies only to IBM Worklight hybrid applications.
To test native applications that you created with an IBM Worklight native project,
you can also use the test workbench, but you must follow the steps that are
described in Adding applications in the workbench.

Procedure
1. Right-click the iPad, iPhone, or Android environment of your IBM Worklight

application.
2. Click Run As > Test with IBM Mobile Test Workbench.

6 Mobile testing for IBM Worklight

 ../../com.ibm.rational.test.lt.mob.wl.ditaval.doc/topics/tmobprepwb.html
 ../../com.ibm.rational.test.lt.mob.wl.ditaval.doc/topics/tmobprepwb.html
 ../../com.ibm.rational.test.lt.mob.wl.ditaval.doc/topics/tmobprepwb.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v For Android applications, this action places the .apk file in the test
workbench. The application is ready for testing.

v iOS applications must be first instrumented for testing. For iOS
environments, the application is first instrumented and the resulting
instrumented application is then added to the test workbench. This operation
is only applicable on Mac OS.

Note: On iOS, this action performs the necessary instrumentation, as an
alternative to manually instrumenting your application, by using the
provided script as described in Instrumenting iOS applications on the iOS
Simulator.

Figure 2. Testing with IBM Mobile Test Workbench from Worklight Studio

Testing with IBM Worklight 7

 ../../com.ibm.rational.test.lt.mob.wl.ditaval.doc/topics/tinstall_iosapp_sim.html
 ../../com.ibm.rational.test.lt.mob.wl.ditaval.doc/topics/tinstall_iosapp_sim.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: You can also use the Application Center to share applications among
team members. To know how to share applications between developers and
testers, see “Using the Application Center and the Mobile Test Workbench to
share applications.”

Using the Application Center and the Mobile Test Workbench to share
applications

Share applications ready for testing with Worklight Studio. Simplify
communication between development and test teams by using the Application
Center in conjunction with IBM Mobile Test Workbench for Worklight.

In the mobile application development lifecycle, the development and testing of a
mobile application can be done by the same person or by different teams. When
the person who develops the application is different from the person who tests the
application, the application must be shared between the developer and the tester.
The Application Center and IBM Mobile Test Workbench for Worklight can
simplify the communication between the development team and the test team.

The Application Center is a private application store that can be used to streamline
the distribution of applications among an extended development team. The
Application Center is similar to public application stores such as Google Play or
Apple App Store, but you use it to distribute applications within an enterprise.

With the Application Center, you can create a catalog of mobile applications. Every
authorized user can then install mobile applications on their mobile device through
the Application Center client.

Worklight Studio and IBM Mobile Test Workbench for Worklight provide an easy
way to share applications for test purposes. A developer can upload an Android or
iOS application to the Application Center to make this application available to all
the members of the test team.

Sharing Android applications for testing

To share an Android application for mobile testing through the Application Center,
you must first prepare your application by building the APK file from the IBM
Worklight Android environment in your application. See Publishing Worklight
applications to the Application Center for more information.

To publish the APK file to the Application Center, choose IBM Application Center
> Publish on IBM Application Center.

No specific instrumentation is required for Android applications. You can use any
Android application that is available in the Application Center for testing.

Sharing iOS applications for testing

Testing iOs applications requires that each application is instrumented before you
can record tests on it with IBM Mobile Test Workbench for Worklight. Applications
must be instrumented before they are published in the Application Center catalog.

To instrument and publish an iOS application to the Application Center in a single
operation, choose IBM Application Center > Publish test-ready application. This
operation is only available when you run Worklight Studio on MacOS.

8 Mobile testing for IBM Worklight

 ../../com.ibm.worklight.appadmin.doc/appcenter/t_publishing_worklight_applicati.html
 ../../com.ibm.worklight.appadmin.doc/appcenter/t_publishing_worklight_applicati.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The instrumentation of the application uses the Xcode project to do the
instrumentation. See Publishing test-ready iOS applications to the Application
Center for more information.

Alternatively, you can use a script to instrument an iOS application. See Command
line to launch the rtwBuildXcode.sh script for the command line and parameters to
use to instrument an iOS application manually. This script produces an archive file
that you can manually upload to the Application Center console.

An instrumented iOS application appears with a special test icon in the
Application Center catalog. The icon for IBM Mobile Test Workbench for Worklight
overlays the application icon.

Importing applications into the mobile test workbench

When an application is published for test purposes in the Application Center, a
tester can import the application into the list of managed applications in IBM
Mobile Test Workbench for Worklight.

In the Perspectives toolbar of IBM Mobile Test Workbench for Worklight, click this
icon to open the editor for mobile applications. In this editor, you can browse
the applications available for testing in the Application Center. You can select the
applications that you want to import into IBM Mobile Test Workbench for
Worklight. See Adding applications in the workbench for more information.

Publishing test-ready iOS applications to the Application Center
Deploy iOS applications that are ready to be tested with the Mobile Test
Workbench to the Application Center directly from the Worklight Studio IDE.

About this task

Worklight Studio provides an easy way to publish test-ready iOS applications to
the Application Center. In Worklight Studio, you can instrument a Worklight
application for mobile testing and publish it to the Application Center. When an
application is available in the Application Center, a member of another team can
easily import it into the Mobile Test Workbench for testing.

Procedure
1. Specify the publication preferences for the Application Center.

a. In the main menu, click Window > Preferences.
b. In the tree on the left, expand IBM Application Center and select Publish

Preferences.
c. Enter the user credentials and server URL for publishing a Worklight

application to the Application Center

Figure 3. Instrumented application in the Application Center console

Testing with IBM Worklight 9

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

See this table for a description of the required publication preferences.

Table 1. Publication preferences for deploying an application to the Application Center

Preference Description

Credentials Login name and password for accessing the
repository of the Application Center.

Server URL URL of the Application Center server to use
for publishing applications.

2. Publish an iOS application to the Application Center.
a. Right-click the iPad or iPhone environment of the IBM Worklight project, or

the Xcode project directory, and select IBM Application Center > Publish
Test-Ready Application. The instrumentation of the project starts.

b. When instrumentation is complete, click Publish to publish the application
with the current preferences or click Preferences to change any of the
preferences before publishing.

If the application already exists, publication will fail.

c. Option for existing published applications: Select Yes to overwrite the
existing version of the application and to publish the new version.

Creating a Test Workbench project
The tests that you create, and the assets associated with the test, reside in a test
project. You can create the project separately, or you can simply record a test,
which automatically creates a project named testproj.

Figure 4. User credentials and server URL for deploying applications to the Application Center

Figure 5. Options to publish the application or change the publication preferences

Figure 6. Failed publication of an existing published application

10 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Select File > New > Test Workbench Project. The Create a Test Workbench

Project window opens.
2. In the Project Name field, type a name for the project. If you plan to collect

response time breakdown data, do not use a project name that contains spaces.
3. Select Use default location.
4. Optional: Click Next and select the folders to create in the new project. These

folders organize your files by asset (Tests, , Results, and so on).
5. Click Finish.

After you click finish, you are prompted to record a test. You can create a test
from a new recording or from an existing recording, or just click Cancel to
create a test project without recording a test.

Getting started with mobile testing
Look here to find an overview of the steps to start testing Android and iOS
applications.

Android testing overview
With the mobile test client for Android you can test native Android applications,
web applications, and hybrid applications from your Android device and from
Android emulators.

The mobile test client for Android works in conjunction with the test workbench.
From any of the clients you can connect to the test workbench, record and run
tests, and view reports. From the Android client, you can also upload applications
to the test workbench, where the applications are instrumented and recompiled
into two new apps: a recording-ready application and a playback-ready
application.

The following figure shows the native Android mobile test client:

How the test workbench tests Android applications

The mobile test client for Android is a native Android application that runs on
Android devices and emulators. Each Android application is packaged into a
single .apk file that includes the applications code and other resource files. The
.apk file is in a compressed format, similar to a zip file or a war file.

For Android, the build and compile process takes place in the test workbench on a
Windows or Linux computer.

Testing with IBM Worklight 11

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Android app Recording-ready app

Playback-ready app

.apk file

Windows or Linux computer

Build chain integrated

in test workbench

Before you can test a mobile application, the application must first be instrumented.
An instrumented application contains the application under test augmented with
code that allows you to record or play back a test.

When you record a test, the Android application (the .apk file) is recompiled into a
recording-ready app that has been heavily instrumented to capture user actions.
Because Android does not allow two versions of an application to be installed at
the same time, the test workbench uninstalls the original application and replaces
it with the recording-ready app. When you play back a test, the test workbench
uninstalls the recording-ready app and replaces it with a playback-ready app, a
version of the original application that has been signed with a test workbench
certificate.

Note: There is also another version of the app, the Tester app. This app contains the
runtime code that is needed to replay a test. This app will not be noticeable if you
run in silent mode. When the application under test is modified, only the
recording-ready app and the playback-ready app are generated.

You can simplify this process of installing and uninstalling versions of the Android
app by choosing Playback on instrumented from the Settings page on your
Android device or emulator. This lets you play back a test using the more heavily
instrumented recording version of the app, rather than the lighter weight playback
version of the app. This is at the expense, however, of slower playback speed and
greater memory consumption.

Passive mode

When you are ready to run your tests, you can run them on the device or in the
test workbench. To give control to the test workbench, simply tap Enter Passive
Mode from the mobile test client.

iOS testing overview
With the mobile test client for iOS you can test native iOS applications, web
applications, and hybrid applications. From your iOS device and from the iOS
Simulator you can connect to the test workbench, record and run tests, and view
reports.

Testing on an iOS device

You can test native, hybrid, and web applications on an iOS device using the
browser-based client for iOS. This client is a web application that runs in the Safari

12 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

or Chrome browser on your device. To run the client, simply type the Workbench
URL in the following format in a browser on your device:

Format: http://Workbench_URL:port/mobile

Example: http://9.11.22.333:7878/mobile

The following figure shows the mobile test client in a browser on an iOS device:

Here are some important details about the browser-based client:
v The browser-based client can detect API information, device orientation, locale,

and device type from the device.
v The browser-based client does not detect that a native application is installed on

the device. If the user starts a recording or playback before installing the native
application, it will result in an Invalid URL message. This means that the
instrumented native application cannot be found on the device. All native
applications are identified by their URLScheme.

v Whenever an application under test is started. it opens as a URL in a new
browser tab. The blank screen that is shown is actually a new tab and is shown
temporarily before the launch.

Note: When using the browser-based client, be sure to clear the browser cache
before connecting to another test workbench.

Testing with the iOS Simulator

You can also do your testing using the Safari browser in the iOS Simulator, or you
can use the native mobile test client in the Simulator after following the installation
instructions at Installing the mobile test client on the iOS Simulator. Chrome is not
currently available on the iOS Simulator.

Enabling pop-up windows

When using the mobile test client on an iOS device, be sure to enable pop-up
windows. Pop-up windows must be allowed for the Workbench IP address. Safari
silently disables pop-up windows, while Google Chrome prompts you to allow
pop up windows. For every device-specific operation (install, record, playback),
Safari prompts with a pop-up confirmation. There are fewer messages with
Chrome.

Passive mode

When you are ready to run your tests, you can run them on the device or in the
test workbench. To give control to the test workbench, simply tap Enter Passive
Mode on the mobile test client.

Passive mode behavior is browser-specific. While Chrome operates in passive
mode as expected. Safari is more restrictive and displays multiple passive mode
confirmation dialog boxes.

Testing with IBM Worklight 13

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Differentiating among multiple devices

When you connect a particular device, such as an iPhone, to the test workbench,
you can view the connection in the Mobile Devices editor in the test workbench.

To differentiate among multiple iPhones that are connected to the test workbench,
you can change the Device Description.
1. On the device, open Safari or Chrome and browse to the Workbench URL.

This opens the mobile test client.
2. Tap About .
3. Type the new label in the Device Description field.
4. Click Register.

You can see the result in the figures below.

Table 2.

Before After

IBM Rational Test Workbench Mobile Web Recorder

The mobile web recorder is an iOS application that is required to record and play
back user actions of a web application under test. It is invoked automatically
during the recording and playback process. You can download the mobile web
recorder from the Apple App Store. When you are done testing, you can stop the
mobile web recorder using the standard Apple Activity Monitor.

How the test workbench tests iOS applications

Before you can test a mobile application, the application must first be instrumented.
An instrumented application contains the application under test augmented with
code that allows you to record or play back a test.

A native iOS application is a complete iOS project in Xcode. The build and compile
process to instrument the application takes place entirely in Xcode on a Macintosh
computer. One, single application is created for both recording and playback.

The following figure shows the build chain for a native iOS app on a Macintosh
computer:

iOS app Single instrumented app

Complete iOS

project in Xcode

Macintosh computer

Build chain

(.sh) on

Mac OS

Related reference:
Software and hardware requirements
Before you install the mobile test client and start working with the test workbench,
be sure to understand the following requirements.

14 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Getting started with Android testing
Use this topic to help you get started with your testing of applications that run on
Android devices.

About this task

The following diagram shows is a high-level overview of mobile testing for
Android:

Click a box for more information.

Shift-click to open a new browser.

Install test

workbench

Edit and enhance

test script

Install Android

SDK

Install mobile client

on mobile devices

Upload app to

test workbench
or

Add app to

test workbench

Evaluate

results

Record user actions and

generate test

Add mobile devices

to test workbench

Legend
Desktop

Mobile device

Deploy and

run test

For testing web appsFor testing native apps

Procedure
1. Set up your mobile test environment.

a. Install IBM Mobile Test Workbench for Worklight and ensure that IBM
Mobile Test Workbench for Worklight and Rational Test Workbench
Extension for Mobile are selected.

b. Install the Android SDK on the same computer that the test workbench is
installed on.
You do not need to install the full Android Developer Tools (ADT) bundle,
but be sure to install Android SDK Tools, Android SDK Platform-tools, and
Android SDK Build-tools, if these are not already installed. The current
download page of the Android SDK is at Get the Android SDK but the
location could change in the future.

Note: Running the Android SDK Manager and using the Android
emulators requires the Oracle Java Developer Kit (JDK). Be sure to also add
the path to the Oracle JDK to your system's PATH environment variable.

c. Run the SDK manager at least once before running the test workbench to
get the API-level components.

d. Set the preferences in the mobile application builder path so that they point
to the directory where the Android SDK is installed. See Mobile application
builders.

e. Install the mobile test client on one or more Android devices or on an
emulator. Ensure that the mobile devices can connect to the test workbench
over WiFi or a cellular plan.

Testing with IBM Worklight 15

http://developer.android.com/sdk/index.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

f. Add your mobile devices to the test workbench.
2. Prepare your mobile application for testing. You can do this in one of the

following two ways:
v From your mobile device, upload the native or hybrid mobile application to

the test workbench.
v From the test workbench, add the application to the test workbench.

3. From the test workbench, create a test project by clicking File > New > Test
Workbench Project.

4. Verify that the application is visible in the Test Navigator view in the test
workbench.

5. Create a test by recording gestures and user interactions on the mobile device.
You can initiate the recording on the device or from the Eclipse client. Actions
are represented in natural language, which allows you to document and
reproduce the test manually.

6. Examine and enhance the test script recording as needed. Here are some of the
things you can do:
v Explore controls and context menus to customize the script to your needs.
v Add application stubs to simulate the behavior of actual objects that interact

with the application under test.
v Add verification points to verify that an expected value or behavior is

returned during a test run.
v Add variables to the test script.

7. Deploy and run the test, either from the mobile device or from the test
workbench.

8. Evaluate the test results.
Related concepts:
Installing Rational Test Workbench
The information in this file applies to IBM Rational Test Workbench, version 8.5.
Rational Test Workbench delivers end-to-end functional, regression, load, and
integration testing to address the quality challenges of highly complex and
integrated applications.
Installing the mobile test client
This section contains instructions for installing the IBM Rational Test Workbench
Mobile Client.
“Editing Mobile tests” on page 34
With the test editor, you can view and customize a mobile test imported in the test
workbench or uploaded from a mobile device or simulator after recording.
Related tasks:
Configuring the mobile test client for Android
To use an Android mobile device for uploading mobile apps and recording or
running tests, you must configure the mobile test client to connect to the test
workbench.
“Creating a Test Workbench project” on page 10
The tests that you create, and the assets associated with the test, reside in a test
project. You can create the project separately, or you can simply record a test,
which automatically creates a project named testproj.

16 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

“Recording tests from the Android mobile test client” on page 31
Mobile tests are typically created by recording a session on the mobile device or
simulator that runs the app being tested. At the end of the recording session, you
close the app and the IBM Rational Test Workbench Mobile Client uploads the
recorded session to the IBM Mobile Test Workbench for Worklight, where it is used
to generate a test.
“Recording tests from the test workbench” on page 34
When you initiate the recording from the IBM Mobile Test Workbench for
Worklight, the recording does not start until you open an app in the mobile client.
“Running tests from an Android mobile test client” on page 44
You can run a test from an Android mobile device or emulator. After the run, the
report is automatically uploaded to the test workbench. You can also view the
report on the Rational Test Workbench Mobile Client.
“Running tests from the test workbench” on page 46
After generating the test from a recording, you can edit a test according to your
requirements and play it back from the workbench on your mobile
device/simulator. This means that the playback is controlled from the workbench
and not from the simulator or mobile device. The result of the tests can be viewed
from both the test workbench and the mobile test client.
“Evaluating results” on page 50
To check whether or not the mobile test ran successfully, you can open the test
report. You can also view each recorded functional action in the report.

Getting started with testing on iOS devices
You can test native, hybrid, and web applications on an iOS device using the
browser-based client for iOS. This client is a web application that runs in the Safari
or Chrome browser on your device.

Before you begin

Note the following requirements:
v You will need an Apple Developer or Enterprise License with a provisioning

profile for each mobile device.
v To record and play back tests of a native or hybrid iOS application, you will

need a managed version of the application under test (AUT). If this is not
available, you will need to instrument the AUT on a Macintosh computer that
contains the Xcode source project for the AUT. A Macintosh computer is not
required for testing web applications.

Note: Xcode is the Apple integrated development environment (IDE) used for
developing Macintosh and iOS applications. You can download Apple Xcode from
the Xcode Dowloads and Resources web site or from the Apple App Store on a
Macintosh computer.

About this task

The following diagram shows a high-level overview of mobile testing for iOS
applications:

Testing with IBM Worklight 17

https://developer.apple.com/xcode/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Click a box for more information.

Shift-click to open a new browser.

Native applications Web applications

Run tests

Evaluate results

Install test workbench

Run build script

Accept AUT to workbench

as managed application

Install test workbench

Download mobile web

recorder from App Store

Record user actions and generate test

Legend
Windows/Linux

desktop

Mac desktop

Mobile device

Edit and enhance test script

Browse to mobile test client

on device

Browse to mobile test client

and install AUT on device

Note: With IBM Mobile Test Workbench for Worklight you can also perform any of
the desktop steps on a Macintosh computer.

Procedure
1. Install IBM Mobile Test Workbench for Worklight on a Windows or Linux

computer and ensure that IBM Mobile Test Workbench for Worklight and
Extension for Mobile are selected. For details, see Installing the product
software.

2. From the test workbench, create a test project by clicking File > New > Test
Workbench Project.

3. If you need to build and instrument a native or hybrid iOS app for testing,
proceed as follows:
a. Download the build archive on to a Macintosh computer.
b. Run rtwBuildXcode.sh to instrument the AUT and send it to the test

workbench as an incoming application.
For details, see “Instrumenting iOS applications on an iOS device” on page 27.

18 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

4. If you are testing web applications, download the IBM Rational Test
Workbench Mobile Web Recorder from the Apple App Store on to your mobile
device.
The mobile web recorder is required to record and play back user actions of a
web application under test. It is invoked automatically during the recording
and playback process.

5. In the test workbench add the application under test as a managed,
instrumented application. For details, see “Importing applications to test in
the workbench” on page 23 and “Adding web applications to test workbench”
on page 25.

6. For testing native and hybrid applications, open the mobile test client in a
browser on your device and add the managed, instrumented AUT on the
device.

7. Create a test by recording gestures and interactions on the device. Actions are
represented in natural language, which allows you to document and
reproduce the test manually.

8. Examine and enhance the test script recording as needed. Here is a partial list
of what you can do:
v Explore controls and context menus to customize the script to your needs.
v Add stubs to simulate the behavior of actual objects that interact with the

AUT.
v Add verification points to verify that an expected value or behavior is

returned during a test run.
v Add variables to the test script.

9. Run the test on the iOS device or in the test workbench.
10. Evaluate the test results.
Related concepts:
“Editing Mobile tests” on page 34
With the test editor, you can view and customize a mobile test imported in the test
workbench or uploaded from a mobile device or simulator after recording.
Related tasks:
“Creating a Test Workbench project” on page 10
The tests that you create, and the assets associated with the test, reside in a test
project. You can create the project separately, or you can simply record a test,
which automatically creates a project named testproj.
“Recording tests from the iOS mobile test client” on page 32
Mobile tests are typically created by recording a session on the mobile device or
simulator that runs the app being tested. At the end of the recording session, you
close the app and the IBM Rational Test Workbench Mobile Client uploads the
recorded session to the IBM Mobile Test Workbench for Worklight, where it is used
to generate a test.
“Recording tests from the test workbench” on page 34
When you initiate the recording from the IBM Mobile Test Workbench for
Worklight, the recording does not start until you open an app in the mobile client.
“Running tests from the iOS mobile test client” on page 45
You can run a mobile test from an iOS simulator or device, and this will generate a
report that is automatically uploaded to IBM Mobile Test Workbench for Worklight.
You can also view the report in the IBM Rational Test Workbench Mobile Client.

Testing with IBM Worklight 19

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

“Running tests from the test workbench” on page 46
After generating the test from a recording, you can edit a test according to your
requirements and play it back from the workbench on your mobile
device/simulator. This means that the playback is controlled from the workbench
and not from the simulator or mobile device. The result of the tests can be viewed
from both the test workbench and the mobile test client.
“Evaluating results” on page 50
To check whether or not the mobile test ran successfully, you can open the test
report. You can also view each recorded functional action in the report.
Related reference:
Software and hardware requirements
Before you install the mobile test client and start working with the test workbench,
be sure to understand the following requirements.

Getting started with testing on the iOS Simulator
Use this topic to help you get started with your testing of native, hybrid, and web
applications on the iOS Simulator.

Before you begin

Note:

Note the following requirements:
v Testing with the iOS Simulator requires a Macintosh computer and Xcode.
v To record and play back tests of a native or hybrid iOS application, you will

need a managed version of the application under test (AUT). If this is not
available, you will need to instrument the AUT on a Macintosh computer that
contains the Xcode source project for the AUT.

v To test with the native mobile test client in the iOS Simulator, you will first need
to install the client. For details, see Installing the mobile test client on the iOS
Simulator.

Note: Xcode is the Apple integrated development environment (IDE) used for
developing Macintosh and iOS applications. You can download Apple Xcode from
the Xcode Dowloads and Resources web site or from the Apple App Store on a
Macintosh computer.

About this task

The following diagram shows a high-level overview of mobile testing for iOS
applications using the iOS Simulator:

20 Mobile testing for IBM Worklight

https://developer.apple.com/xcode/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Click a box for more information.

Shift-click to open a new browser.

Install test workbench

Legend
Windows/Linux desktop

Mac desktop

Mobile device

Record user actions

and generate test

Edit and enhance

test script

Deploy and

run test

Evaluate

results

Run build script

Note: With IBM Mobile Test Workbench for Worklight you can also perform any of
the desktop steps on a Macintosh computer.

Procedure
1. Install IBM Mobile Test Workbench for Worklight on a Windows or Linux

computer and ensure that Eclipse ClientIBM Mobile Test Workbench for
Worklight and Extension for Mobile are selected. For details, see Installing the
product software.

2. From the test workbench, create a test project by clicking File > New > Test
Workbench Project.

3. If you need to build and instrument a native iOS app for testing, proceed as
follows:
a. Download the build archive on to a Macintosh computer.
b. Run rtwBuildXcode.sh to instrument the AUT and send it to the test

workbench.
For details, see “Instrumenting iOS applications on the iOS Simulator” on page
29.

4. In the test workbench add the application under test as a managed,
instrumented application. For details, see “Importing applications to test in the
workbench” on page 23.

5. For testing native applications, open the mobile test client in the iOS Simulator.
To run the browser-based client, simply type the Workbench URL in the
following format in a browser on your device:
Format: http://Workbench_URL:port/mobile
Example: http://192.0.2.24:7878/mobile

6. Create a test by recording gestures and interactions. Actions are represented in
natural language, which allows you to document and reproduce the test
manually.

7. Examine and enhance the test script recording as needed. Here are some of the
things you can do:

Testing with IBM Worklight 21

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Explore controls and context menus to customize the script to your needs.
v Add application stubs to simulate the behavior of actual objects that interact

with the application under test.
v Add verification points to verify that an expected value or behavior is

returned during a test run.
v Add variables to the test script.

8. Run the test in the iOS Simulator or in the test workbench.
9. Evaluate the test results.
Related concepts:
“Editing Mobile tests” on page 34
With the test editor, you can view and customize a mobile test imported in the test
workbench or uploaded from a mobile device or simulator after recording.
Related tasks:
“Instrumenting iOS applications on the iOS Simulator” on page 29
Once the mobile test client is installed on the iOS Simulator, you must run a
supplied build script on an OS Xsystem to be able to instrument the iOS
application under test. The instrumented app can be optionally pushed to the test
workbench and installed on the iOS Simulator.
“Creating a Test Workbench project” on page 10
The tests that you create, and the assets associated with the test, reside in a test
project. You can create the project separately, or you can simply record a test,
which automatically creates a project named testproj.
“Recording tests from the iOS mobile test client” on page 32
Mobile tests are typically created by recording a session on the mobile device or
simulator that runs the app being tested. At the end of the recording session, you
close the app and the IBM Rational Test Workbench Mobile Client uploads the
recorded session to the IBM Mobile Test Workbench for Worklight, where it is used
to generate a test.
“Recording tests from the test workbench” on page 34
When you initiate the recording from the IBM Mobile Test Workbench for
Worklight, the recording does not start until you open an app in the mobile client.
“Running tests from the iOS mobile test client” on page 45
You can run a mobile test from an iOS simulator or device, and this will generate a
report that is automatically uploaded to IBM Mobile Test Workbench for Worklight.
You can also view the report in the IBM Rational Test Workbench Mobile Client.
“Running tests from the test workbench” on page 46
After generating the test from a recording, you can edit a test according to your
requirements and play it back from the workbench on your mobile
device/simulator. This means that the playback is controlled from the workbench
and not from the simulator or mobile device. The result of the tests can be viewed
from both the test workbench and the mobile test client.
“Evaluating results” on page 50
To check whether or not the mobile test ran successfully, you can open the test
report. You can also view each recorded functional action in the report.

Managing mobile applications
Before being able to record a test from an Android or iOS application, you must
use a mobile device to upload the application that you want to test or you can
import the application to the test workbench. The application is instrumented to
make possible the recording and testing processes. You can see the list of the

22 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

applications available in the workspace and the information that is related to the
mobile applications in the Mobile application editor.

With the Mobile application editor, you can manage your applications in IBM
Mobile Test Workbench for Worklight. There are two main areas in the Mobile
application editor view. The area on the left displays the list of Android and iOS
apps uploaded in the test workbench or uploaded from a mobile device or an
emulator. The area on the right, displays the information on the selected app(s):
name, description, version, API level, state, available packages (for Android apps
only), resource path, test suites and localized strings. For iOS apps only, you can
see the date and time when the application was created. An application with a
status of available can be tested.

From the editor, you can add apps in the workbench from different locations or
generate managed apps, replace the current application by another one in a set of
test suites, or import a test suite from a new version of an app, refactoring changes
will be applied to the test suite.

You must add web applications in this editor to be able to test them on a device.

Importing applications to test in the workbench
To test an application, you can either use the device to upload the application
under test to the Eclipse Client or import the application into the test workbench
using the Mobile applications editor.

Before you begin

If you are testing Android applications, the Android SDK must be installed on the
same computer that the test workbench is installed on. You must set the
preferences in the mobile application builder path so that they point to the
directory where the Android SDK is installed. For more details, see Mobile
application builders. To add an application from a mobile device or an emulator,
ensure that the device is connected to the test workbench.

About this task

This task applies to Android and iOS applications.

Procedure
1. In the Test navigator view, right-click on the Mobile incoming applications

node and then click Available mobile applications. Or, in the Test workbench
perspective’s toolbar, click the Display available mobile applications icon .
The Mobile applications editor opens.

2. In the editor, click the Add applications to list icon to add an application to
the test workbench.

3. Complete one of the following tasks in the Add application window:
a. To add an application from your local computer, in from local storage, click

the Android app icon or the iOS app icon to browse for the application.
b. To add an application from a workspace, click from workspace, click the

Android or iOS icons and select the application.
c. To add an application from a mobile device, click from mobile device, click

Next and follow the steps in “Uploading Android applications from the
mobile test client” on page 25.

Testing with IBM Worklight 23

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

d. To add an application from a web site, click from web site and type the
web site URL or click the button to paste a copied URL.

e. To add a resource that contains an original mobile application package, click
From existing managed App resource. Click the .ma file to regenerate a
managed application. Note that the window displays only application files
that are not imported.

4. Optional: In Application description, type a brief description of the application
that you are adding.

5. Click Next and select a project.
6. Click Finish. Based on the size of the application, Rational Test Workbench

might take some time to prepare the application for test. As a result, a .ma file
is created, and the application added to the list of available applications, ready
for all the test stages.

Note: If you import a new version of an application in the Mobile application
editor, for which test suites had been created from former versions of the app, a
dialog box opens and indicates that test suites referencing other versions of the
same application have been found. Click Preview, this opens a refactoring
wizard that displays changes. You can ignore and click Cancel, or click Finish
to start refactoring. Once refactored, the test suites can be used with the new
version of the application. If you clicked Cancel, you can perform the
refactoring process later, using Import test suite from other version of
application in the Available test tab. This button is enabled only if another
version of the app is detected in the editor, but is not available for incoming
apps, nor for web apps.

What to do next

You can now record the application from the mobile device. In the mobile test
client, go to Managed Apps, tap the application that you added in the test
workbench, and tap Record.
Related concepts:
“Android testing overview” on page 11
With the mobile test client for Android you can test native Android applications,
web applications, and hybrid applications from your Android device and from
Android emulators.
“iOS testing overview” on page 12
With the mobile test client for iOS you can test native iOS applications, web
applications, and hybrid applications. From your iOS device and from the iOS
Simulator you can connect to the test workbench, record and run tests, and view
reports.
Related tasks:
“Getting started with Android testing” on page 15
Use this topic to help you get started with your testing of applications that run on
Android devices.
“Getting started with testing on iOS devices” on page 17
You can test native, hybrid, and web applications on an iOS device using the
browser-based client for iOS. This client is a web application that runs in the Safari
or Chrome browser on your device.

24 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Adding web applications to test workbench
To test web applications from your Android or iOS devices or emulators, you must
first add them to the Rational Test Workbench. When you add the web application
to the test workbench, it shows up in the Rational Test Workbench Mobile test
client.

Before you begin

The mobile test clients must be connected to test workbench. See Configuring the
mobile test client.

Procedure
1. To open the Mobile Applications editor, click the Display available mobile

applications icon or open an existing application from the Test Navigator
view.

2. On the Mobile Applications editor toolbar, click the Add web application to
list icon .

3. Choose to add a new or an existing application:
v To add a new web application, complete the following steps:

– In the Address field, type the URL of the web application.
– In the App Context field, type the context root of the web application.

v To add an existing managed application, complete the following steps:
– Click From existing Managed App resource and click the Browse button.
– Select a managed application and click OK. You must have created a

managed application and added it to your project workspace.
4. Optional: In Application description, type a description of the web application.
5. Click Next. Ensure that the file name is correct and it is associated with an

appropriate project.
6. Click Finish.
7. Verify that the web application is available on your mobile device.

a. Open the mobile test client in a browser by typing the workbench URL.
b. Tap Manage Web Applications.

The web app that you added should now be listed.

What to do next

You can now record a test for the web applications. To record a test on an iOS
device, you must first install IBM Rational Test Workbench Mobile Web Recorder
from the Apple Store.

Uploading Android applications from the mobile test client
To test mobile apps, you must import them or upload them to . An original
package must be uploaded for each application to test and saved in the
workbench. The application are also instrumented and recompiled into two new
apps: a recording-ready application and a playback-ready application as soon as
they are imported or uploaded in the test workbench. The recording version
contains the application under test, augmented with code and the playback version
is the original version with a test workbench certificate. They allow you to either
record a test or run a test.

Testing with IBM Worklight 25

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Before you begin

To upload apps from a mobile device, the mobile device must be running the
mobile test client and be connected to test workbench. For more information on
configuring the mobile device, see Configuring the mobile client if you are testing
native or hybrid applications using the mobile test client on Android/devices or
iOS simulators.

The Android SDK must be installed on the workbench computer. You must install
the Android SDK mentioned in the Download For Other Platforms > SDK Tools
Only section of http://developer.android.com/sdk/index.html.

Note: This web site is not maintained by IBM and the location of SDK might
change in the future.

The app must be installed on the mobile device.

About this task

When you upload your application from a device or simulator and it is being
instrumented, depending on the size of the application, this might take a few
seconds to several minutes. If you are testing complex applications, in some cases,
you might receive an out-of-memory error. The solution could be to increase the
memory allocation on the computer where is installed. For more details, see
Increasing memory allocation to upload applications

Procedure

To upload an app from a mobile device:
1. In the mobile test client, tap Upload app.
2. Select an installed app from the list and tap Upload. The Mobile application

editor opens in Rational Test Workbench and displays the app with a
Processing tag until the app is fully uploaded and instrumented for testing.
The Test Navigator displays the application in Incoming applications. An
original package is created and copied in your workspace to be used in the test.

3. Right-click the incoming application and select Generate managed application.
In the wizard that opens up, select or create a project or folder to save the .ma
resource that contains your original mobile application package. You can
change the .ma file name.

4. Click Finish. The application is displayed in the Mobile application editor and
in the Test Navigator under Mobile applications. The application is ready for
all the test stages and it is identified as a managed application on the mobile
device.

What to do next

When the application is ready, you can record your test. For more information, see
“Recording tests from the Android mobile test client” on page 31
Related tasks:
“Getting started with Android testing” on page 15
Use this topic to help you get started with your testing of applications that run on
Android devices.

26 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Instrumenting Android applications in a shell-sharing
environment

If you are working in an environment in which IBM Mobile Test Workbench for
Worklight & Android Development Toolkit (ADT) are shell-shared, you can
automatically import Android applications in the test workbench, launch the
instrumentation of the applications, and make them ready for recording and
running tests.

Before you begin

You must modify the configuration file in your Eclipse installation directory and
replace your Java virtual machine (JVM) with Oracle Java Development Kit (JDK)
to be able to run the Android Development Toolkit. For more information, see the
eclipse.ini web page. In addition, you must have compiled the Android application
package file (APK) for your application before starting the task.

About this task

You can add Android native or hybrid applications to the test workbench by
following the instructions in Adding applications in the workbench, or by
completing the following steps.

Procedure
1. In the Navigator view of the test workbench, right-click on an Android project

or in the bin directory and click Run As > Test with IBM Mobile Test
Workbench for Worklight.

2. In the wizard that opens, enter or select the name of the folder that will embed
your application and the name of the APK file. Click Finish.

3. The application is instrumented and placed in the test workbench. Now, it is
ready for testing. For more information, see Recording tests from the Android
mobile test client

Instrumenting iOS applications on an iOS device
This topic describes the steps for preparing a native iOS application for testing on
an iOS device. You will need to perform steps in the test workbench, on a
Macintosh computer, and on an iOS device.

Before you begin
v Install IBM Mobile Test Workbench for Worklight and ensure that IBM Mobile

Test Workbench for Worklight and Extension for Mobile are selected. For details,
see Installing the product software.

v Install Xcode 4.6 or newer on a Macintosh computer running OS X v10.8
Mountain Lion or newer. Then, create an Xcode project that contains the source
code of the application under test. Moreover, the rtwBuildXcode.sh script must
be locally downloaded. It can be found in the build-script directory.

Procedure
1. In IBM Mobile Test Workbench for Worklight find the Workbench URL by

clicking File > New > Other > Test > Add Device.
You will need the Workbench URL to connect your Macintosh computer and
your mobile device to the test workbench.

Testing with IBM Worklight 27

http://wiki.eclipse.org/Eclipse.ini

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. Connect your Macintosh computer to the test workbench, and then download
the RTW-iOS-Build-Archive.zip build archive.
The build archive contains scripts that are needed to prepare the app for
testing.
a. Open a browser window on your Macintosh computer and enter the

Workbench URL in the following format:
http://Workbench_URL:port/mobile

For example, http://192.0.2.24:7878/mobile
b. In the Rational Test Workbench - Mac OS Welcome page, click Click here to

start archive download.
c. When the download has completed, unpack the build archive.

The following folders are included in the build archive: browser,
build-script, client, runtime, runtime-bundle

3. Instrument the application under test by running the rtwBuildXcode.sh script.
Instrumentation augments the AUT with code that allows you to record and
play back a test.

Note: The current user must have the appropriate permissions to run the
script. If necessary, run the chmod command to change permissions.
a. On your Macintosh computer, open the Macintosh Terminal application and

change to the build-script folder.
b. Type the following command to instrument the AUT and send it to the test

workbench as an incoming application.
<unpack_dir>/build-script/rtwBuildXcode.sh <.xcodeproj file> <Workbench URL>

where
v unpack_dir is the directory where you extracted the downloaded archive.
v .xcodeproj file is the absolute or relative path to the .xcodeproj project

created for the application under test. If the name or path to the
Xcodeproj file contains spaces, enclose the full path with double
quotation marks (" "), or prefix all spaces with backslashes (\).

v Workbench URL indicates the Workbench URL copied from the Mobile
Device editor. Including the Workbench URL is highly recommended,
because this is the easiest way to register an application to the test
workbench. The test workbench needs to know the application when it
receives the recording log in order to produce a complete test. In a
context in which the Workbench URL is used from the rtwBuildXcode.sh
shell-script, do not include mobile at the end of the Workbench URL. As
an example, indicate http://<ip-address>:7878 only.

4. Add the instrumented version of the AUT to a project in the test workbench.
Incoming applications must be managed to be used in a test. After you run the
rtwBuildXcode.sh shell-script, do one of the following to manage the
application:
v Click the incoming application button in the test workbench.
v In the Test Navigator, right-click an incoming application under Mobile

Incoming Applications and click Generate Managed Application.

Note: If you do not add the AUT as a managed app at this time, it will be
done for you automatically when you generate a test at the end of the
recording process for the AUT.
For details, see “Importing applications to test in the workbench” on page 23.

28 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

5. Add the instrumented version of the application under test to your mobile
device.
a. On your mobile device, open the mobile test client in a browser by typing

the full Workbench URL (http://ip_address:port/mobile), for example,
http://192.0.2.24:7878/mobile:7878/mobile.

b. From the mobile test client, tap Manage Applications.
c. Select the application under test from the list.
d. Click Install.

Results

After you complete these steps, you can start recording a test.

Instrumenting iOS applications on the iOS Simulator
Once the mobile test client is installed on the iOS Simulator, you must run a
supplied build script on an OS Xsystem to be able to instrument the iOS
application under test. The instrumented app can be optionally pushed to the test
workbench and installed on the iOS Simulator.

Before you begin

You must have Xcode installed on your Macintosh computer running OS X v.10.8
(Mountain Lion) or newer, and an Xcode project created. The project must contain
the source code of the application to be tested. Moreover, the rtwBuildXcode.sh
script must be locally downloaded. It can be found in the build-script directory.

Procedure
1. In IBM Mobile Test Workbench for Worklight click the Display Workbench

URL icon and copy the Workbench URL.
2. On the Macintosh computer, open the web browser, paste in the Workbench

URL and click the download link. This task downloads the
RTW-iOS-Build-Archive.zip. Extract the zip file that contains the build-script
folder with the rtwBuildXcode.sh shell script file.

3. Open the Macintosh terminal application, point to the build-script folder, and
enter the required command line to launch the rtwBuildXcode.sh script with
the appropriate parameters. For details, see the Command line to launch the
rtwBuildXcode.sh script topic. The script is used to automatically run
compilations and links in Xcode from an Xcode project file and create an
instrumented application.

4. Run the script. This results in an instrumented application, and it is optionally
pushed to the test workbench and to the iOS Simulator if you have indicated
the required parameters on the command line. Otherwise, an instrumented .zip
file is generated locally when the script is launched. In that case, you must
manually import the instrumented file into the test workbench using the add
application menu in the Mobile Application editor. Then, you must run another
script to install the app into the iOS Simulator. Alternatively, you can push the
application to an iOS device. To do so, see Installing an instrumented iOS
application on devices.

Testing with IBM Worklight 29

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Results

The incoming mobile application is displayed in the test workbench Eclipse client,
in the navigation view. You must save the incoming application file in a Test
Workbench project. Then, when the instrumented application is pushed to a
simulator or to a mobile device, you can start recording a test.

Installing instrumented iOS applications on an iOS device
You can install an instrumented iOS application on a mobile device.

Before you begin

To push an instrumented iOS application to an iOS device, the application must
first be added to the test workbench.

Procedure

You are prompted to install the application under test when you launch a
recording or playback on your device.
1. In the mobile test client, tap Manage applications.
2. Tap the application you want to use for your test.
3. Tap Record if you want to record a test or tap Playback if you want to run a

test, then you will be redirected to the installation steps. A web page opens in
the web browser on the device.

4. Click the link to install the instrumented application.
At the end of the installation, the instrumented application is installed on the
device, ready for recording and testing. For more information, see Recording
tests from the iOS mobile test client.

Increasing memory allocation to upload applications
Uploading and instrumenting an application from a device or simulator to the test
workbench requires memory. If you are testing complex applications, in some
cases, the instrumentation might fail and you might receive an out-of-memory
error. The solution is to increase the available memory that is allocated to Eclipse
Java processes for the computer on which the test workbench is installed.

Procedure

To increase the memory allocation:
1. Edit the configuration file eclipse.ini located in your Eclipse installation

directory on which the is installed. Find the line where the available amount of
memory is specified. It is defined with the -Xmxnnnnm parameter, where -Xmx is
the command name, and nnnn is the amount of memory, in megabytes.

2. Replace the default value by another one, note that you can change a value that
is specified in megabytes by a value in gigabytes: -Xmx<memory size in Mo>m or
-Xmx<memory size in Go>g. On a Windows 32-bit system, the maximum value
is 4 gigabytes. Example:-Xmx4000m or -Xmx4g.

3. Save the eclipse.ini file, relaunch the test workbench and try to upload your
application again.

30 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Creating mobile tests
You can record a test from an Android or iOS application on a mobile device, a
simulator on which the mobile client is installed, or from the test workbench.

Recording tests from the Android mobile test client
Mobile tests are typically created by recording a session on the mobile device or
simulator that runs the app being tested. At the end of the recording session, you
close the app and the IBM Rational Test Workbench Mobile Client uploads the
recorded session to the IBM Mobile Test Workbench for Worklight, where it is used
to generate a test.

Before you begin

To record tests on a mobile device, the mobile device must be running the mobile
test client and be connected to the test workbench. For more information on
configuring the mobile device for Android, see Configuring the mobile test client
for Android.

You must have either added the Android application under test to the test
workbench directly or uploaded the application from the mobile test client to the
test workbench. For information about adding apps to the test workbench, see
“Importing applications to test in the workbench” on page 23 for native or hybrid
applications and “Adding web applications to test workbench” on page 25 for web
applications. For information about uploading apps to the test workbench, see
“Uploading Android applications from the mobile test client” on page 25.

About this task

This task applies to Android native applications, hybrid applications and web
applications.

With the mobile test client for Android, you can record all actions on the user
interface (UI), plus some actions on the phone itself: GPS locations, volume up and
down, mute, headphones plug, and all media actions (play, pause, and so on), call,
and end call. Camera and microphone functions are not supported.

Procedure

To record a session on the mobile device:
1. In the mobile test client, tap Managed applications for a native application or

Managed web applications for a web application.
2. Tap an app in the list and tap Record.

Note: If your device or emulator does not have silent mode, the mobile test
client uninstalls the original version of the application under test and replaces it
with the recording-ready app (instrumented version of your application).
During this process, tap the Uninstall, OK, and Install buttons accordingly. If
your device or emulator has silent mode, this process happens in the
background.

To make the silent mode option available on a device, you must connect the
device with a computer that has the Android SDK installed. Use an USB cable

Testing with IBM Worklight 31

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

and enable USB debugging. Ensure that you installed the appropriate USB
driver. Next, open the command prompt on the computer and run the
following commands:
v adb devices: Lists the devices connected to the computer by the USB cable.
v adb tcpip 5555: Makes the silent mode option available on the device.

You must follow these steps every time you reboot your device.

Silent mode is not available on devices and emulators with API level 17 and
above (Android 4.2 +) due to a known limitation

3. When the app starts, interact with the device. All your actions on the device
and responses from the app are recorded.

4. To end the recording, close the app, switch to another app, or tap the Home
button. The recording is uploaded to the test workbench. Depending on the
size of the recording, the upload might take a few seconds to several minutes.
Recordings are displayed in the test navigator under Mobile Incoming
Recordings with a name and a timestamp.

Note: If your session involves switching between apps, including multiple
apps, a new recording is uploaded each time you switch apps. This action
produces multiple recording logs in the Mobile Incoming Recordings folder.
You can combine these multiple recordings to generate a single test.

5. In the test workbench Test Navigator, expand Mobile Incoming Recordings,
right-click a recording, and select Generate Test. Alternatively, click the link in
the message that warns you that there is a new incoming recording. The New
Test from Incoming Recordings window opens.

6. Select a project folder and a name for the new test. If necessary, you can click
New > Test Workbench Project to create a new project folder.

7. Optional: If you want to generate a test with multiple recordings (for example,
if your session involves switching between multiple apps), click Next and select
the recordings that you want to use to generate the test.

8. Click Finish and Open test. The test editor opens in the test workbench and
displays the generated test.

What to do next

When the test is generated, you can edit the test in the test editor. For more
information, see “Editing Mobile tests” on page 34.
Related tasks:
“Getting started with Android testing” on page 15
Use this topic to help you get started with your testing of applications that run on
Android devices.

Recording tests from the iOS mobile test client
Mobile tests are typically created by recording a session on the mobile device or
simulator that runs the app being tested. At the end of the recording session, you
close the app and the IBM Rational Test Workbench Mobile Client uploads the
recorded session to the IBM Mobile Test Workbench for Worklight, where it is used
to generate a test.

Before you begin

To record tests:

32 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v The mobile test client must be running on an iOS device or simulator and be
connected to IBM Mobile Test Workbench for Worklight. For more information,
see Configuring the iOS mobile test client on the iOS Simulator if you do your
testing in the iOS simulator using the native mobile test client. If you do your
testing on a simulator or device using the browser-based client, you must type
the Workbench URL in the Safari or Chrome browser on your device, or in the
Safari browser on your simulator to run the client:
http://Workbench_URL:port/mobileCarefully read the “iOS testing overview” on
page 12 for more details.

v Native applications under test must be instrumented, and then pushed to the
test workbench and simulator or installed on a device. For more details, see
“Instrumenting iOS applications on the iOS Simulator” on page 29 and
“Instrumenting iOS applications on an iOS device” on page 27 for each use case.

v If you are testing web applications, the IBM Rational Test Workbench Mobile
Web Recorder is required to record user actions. You must download it from the
Apple App Store on to your mobile device.

About this task

This task applies to testing iOS native applications, hybrid applications or web
applications.

With the mobile test client for iOS, GPS hardware actions are supported.

Procedure

To record a session on the mobile device or simulator from an iOS app:
1. In the IBM Rational Test Workbench Mobile Client, tap Manage applications to

record a test for a native application, or tap Manage web applications to
record a test for a web application.

2. Tap the application for which a test must be recorded. You might have to
refresh the list to see the application. Then tap Record.

3. When the app starts, you can interact with the device using the iOS device or
simulator. All your actions on the device and responses from the app are
recorded.

4. To end the recording, tap Home. The recording is uploaded to the test
workbench. Depending on the size of the recording, the upload might take a
few seconds to several minutes. Recordings are displayed in the test navigator
under Mobile Incoming Recordings with a name and a timestamp.

Note: If your session involves switching between apps, including multiple
apps, a new recording is uploaded each time you switch apps. This action
produces multiple recording logs in the Mobile Incoming Recordings folder.
You can combine these multiple recordings to generate a single test.

5. In the test workbench Test Navigator, expand Mobile Incoming Recordings,
right-click a recording, and select Generate Test. Alternatively, click the link in
the message that warns you that there is a new incoming recording. The New
Test from Incoming Recordings window opens.

6. Select a project folder and a name for the new test. If necessary, you can click
New > Test Workbench Project to create a new project folder.

7. Optional: If you want to generate a test with multiple recordings (for example,
if your session involves switching between multiple apps), click Next and select
the recordings that you want to use to generate the test.

Testing with IBM Worklight 33

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

8. Click Finish and Open test. The test editor opens in Rational Test Workbench
and displays the generated test.

Related concepts:
“iOS testing overview” on page 12
With the mobile test client for iOS you can test native iOS applications, web
applications, and hybrid applications. From your iOS device and from the iOS
Simulator you can connect to the test workbench, record and run tests, and view
reports.
Related tasks:
“Getting started with testing on the iOS Simulator” on page 20
Use this topic to help you get started with your testing of native, hybrid, and web
applications on the iOS Simulator.

Recording tests from the test workbench
When you initiate the recording from the IBM Mobile Test Workbench for
Worklight, the recording does not start until you open an app in the mobile client.

Before you begin

The workbench must be connected to the mobile client. For information about
configuring the connection, see Configuring the mobile test client for Android for
the Android mobile client or Configuring the iOS mobile test client on the iOS
Simulator for the iOS mobile client.

Procedure
1. In the test workbench, click File > New > Test From Recording. Alternatively

on the toolbar, click the Test From Recording icon .
2. Click Create a test from an existing recording and select a recording session

and select Mobile Test or click Create a test from a new recording and click
Next.

3. Optional: If a test project is not created, click the Create the parent folder icon
to create a test project and click Finish.

4. Type a name for the test and click Finish.
5. On the mobile device, tap mobile client > Managed Applications or Managed

web applications.
6. Tap the app you want to record and tap Record. Now, you can interact with

the app.
7. To stop the recording, close the apps on the mobile device and click the Stop

client icon in the workbench. The test is generated and available in the test
project in the Test Navigator view.

Editing Mobile tests
With the test editor, you can view and customize a mobile test imported in the test
workbench or uploaded from a mobile device or simulator after recording.

The mobile test editor displays the test scripts. The edited test displays the list of
actions and UI elements uploaded from a mobile device during the recording
phase. Actions are represented in natural language, which allows you to modify
the test manually.

34 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

There are two main areas in the test editor window. The area on the left, Test
Contents, displays the chronological sequence of events in the test. The area on the
right, Test Element Details, displays details about the currently selected action in
the test script. In this area you can select a graphic object, an action related to the
object, and its location. You can also define a time out and user’s think time to
execute your test.

Note: Note that the maximum think time preference is ignored in mobile tests.

When actions are selected in the Test Contents list, the Mobile Data view is
automatically synchronized to display the screen captures of the user interface of
the app during the recording. You can use the Mobile Data view to select user
interface (UI) elements and add some verification points, or variables and modify
steps in the test with simplified scripts. Or you can create or modify a set of steps
manually directly in the test script.

You can add datapools, test variables, verification points, or stubs in your script.

CAUTION: The mobile client does not support data substitution. When a test is
run from the mobile client, the values displayed are those entered during the
recording, references and substitutions are not generated in the test. You must run
the test from the workbench to verify substitutions.

Creating verification points in a test
You can create verification points for any object properties, such as label, color, and
count, and you can verify that an object property is enabled, that it has focus,
whether it is clickable, and so on. You can create verification points while
recording a script or afterwards.

Before you begin

You can create verification points in the tests that are created from native or
web-based apps if the Web UI actions and elements for hybrid apps are activated.
For more information, see “Activating web UI actions” on page 41.

About this task

Verification points verify that an expected behavior occurred during a run, or
verify the state of a control or an object. When you create a verification point, you
capture information about a control or an object in the application to establish this
as baseline information for comparison during playback. When you run a test, the
property is compared to see whether any changes have occurred in the application,
either intentionally or unintentionally. This is useful for identifying possible defects
when an application has been upgraded for example. An error is reported if the
expected behavior did not occur.

Procedure

To create verification points:
1. In IBM Mobile Test Workbench for Worklight, open the test script and in the

Test Contents area, click an action item for which you want to create a
verification point.

Figure 7. Mobile test editor

Testing with IBM Worklight 35

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. Click the insert button and select Verification point for Android or Web UI,
depending on the target application. Alternatively, right-click the selection or
click Options and insert in the test editor to select the menu item.

3. In the Test Element Details section select a value for the Graphic object and
Verify attribute artifacts identified as required for the action selected. Some
artifacts are dependent on others, so when you select an attribute, you must
select the values required for the options related to the selected attribute. To
combine several attributes for the selected object, select the choice all of and

select the object’s attribute. Click the add attribute line button to add a

new attribute. You can click the remove attribute line button to remove an
attribute.

4. Optionally select the Retry verification point until attribute is verified or time
out expires and enter a value for the time out. The values in the graphic object
and attributes lists are different for web UI apps and Android apps.

5. Save the test.

Adding user actions in a test
You can add user actions in a test script from the test editor for Android or iOS
apps.

Before you begin

Create a test from a recording and open the test script in the test editor. You can
create user actions in the tests which are created from mobile or Web-based apps if
the Web UI actions and elements for hybrid apps is activated, see “Activating web
UI actions” on page 41.

Procedure
1. In the IBM Mobile Test Workbench for Worklight, open the test script; and in

the Test Contents area, click an action item where you want to add a user
action.

2. Click the insert button and select Add user action for Android or WebUI,
depending on the target application. Another way is to right-click the selection
or click Options and insert in the test editor to select the menu item.

3. In the Test Element Details section select a value for the artifacts identified as
required for the action selected. To create a user action, you must specify an
object and an action. The content of the Graphic object field is not the same for
Android and iOS apps. The choices available in the object’s action list are
dependent from the object selected. Other artifacts are optional. The values
available in the mandatory fields are different for Web UI apps and Android
apps.

4. A user action is added to the test script just before the node selected.
5. Save the test.

Creating application stubs in tests
You can use the test editor to add application stubs manually in your test.

About this task

An application stub is a program or a piece of code used as a placeholder to
simulate the behavior of software components such as a procedure on a remote
machine. Use of this application stub will depend on the application being tested.

36 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The stub application replaces and simulates the behavior of the real object. The
source code is temporarily replaced with a simple statement that returns a specific
value to the application under test. You can manually create a stub without using a
template, but consider using the stub created automatically in the recording
application as a template for your application stub.

You can create stubs for Android, hybrid or iOS applications.

Example: To illustrate the use of stubs in a mobile application: When you tap a
phone number from a mobile device, you call this number, or if you tap an email
address, you launch your mailer to send an email to this address. During the test
recording, IBM Mobile Test Workbench for Worklight is able to detect this action
(call or email) and to replace it by a stub instruction in the script so that there is no
need to perform the action during the playback.

Procedure

To manually create application stubs for Android apps
1. In the IBM Mobile Test Workbench for Worklight, open the test script and in

the Test Contents area, click in the launch node where you want a stub to be
added.

2. Click the insert button and select Application stubs. Alternatively, right-click
the selection or click Options and insert in the test editor to select the menu
item.

3. In the Test element details area, enter the name of the stub application that
will simulate a service or a process. The name should contain key and scheme
values.

4. In the Input values section, click Add parameters and enter a name for the
operation element that describes the call that the stub expects to receive
(scheme, data, and flag, for example), select the format (string, array, or other)
of the call in the list items and a value retrieved from the recording app.

5. You can optionally enter values for the Result code and return values. The
return value is the content that is returned by the stub service, simulating the
response of the original service. This is the simulated value or canned value.
There is one response element associated with each case element. Click Add
parameters to enter a name for the response element, and then select a format
and a value. If you want to delete all parameters, click the Remove all button.

6. The stub action is added to the test script with the name of the application stub
before the item initially selected.

7. Save the test.

Defining a variable to run a test with a selected mobile device
To be able to launch subsequent tests in the same logical flow (session) from the
same devices, you must define a variable including a reserved variable name and
selection criteria related to one or multiple devices.

Procedure
1. In the Test Navigator, browse to the test and double-click it. The test opens.
2. To create a container for the test variables that you create in a test:

a. Open the test, and in the Test Contents area, click Test Variables, at the top
of the test.

b. Select Add > Test Variable Container. A container named Test Variables is
created for the user-defined variables.

Testing with IBM Worklight 37

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

c. Select the container to rename it. The Test Element Details area opens for
you to type a new name in the Name field.

3. To define a variable in a test:
a. Open a test and select the test variable node.
b. Click Insert > Variable Declaration

c. Enter the name of the variable, which is a reserved name for this selection
variable: RTW_Mobile_Device_Properties or RTW_Mobile_Selected_Device

d. Click OK. The variable is added as the last element in the container and the
Test Element Details area opens.

e. In the Visible in section, select This test only to restrict data to the current
test only. Even if another test has a variable with the same name, that
variable will not change. Select All tests for this user to share the value of
this variable when the test runs in a compound test. For the variable to be
shared, both tests must have a variable with the same name and must have
this option enabled.

4. Assign a specific value to the variable and initialize the variable:
a. Select Text

b. Enter a selection sentence to assign a variable value to a text string. Enter
selection strings including a device’s property, followed by an operator
value, property’s value and a comma separating each string. For more
details on the main device properties you can use and on the syntactic
rules, see the Variable selection values topic.

Results

The variable can then be initialized from some external source (a datapool, tests
from an IBM Rational Quality Manager test suite, or tests from the same user in
compound tests containing one or more mobile tests. It can also be set within a
test’s execution with a variable assignment action from any data source, including
a data correlation reference, custom code, built-in function, datapool, or string
constant. As a result, successive tests in the same session will then be sure to run
on the same actual devices.

Note: When a test launches an application:
v The RTW_Mobile_Selected_Device variable content is checked to get the device ID
v The device is reused if it is still applicable to the app that must be launched.

Conditions:
– The device operating system must be the same as the operating system of the

application to be launched.
– The tester app is installed or can be installed without user intervention.

v If the conditions are not matched, the content of the
RTW_Mobile_Device_Properties variable is checked

v If this variable is set, the first device matching all the valid property expressions
of the variable is selected

v If the variable is not set, the first applicable device ready for test is used.
Conditions:
– The device operating system must be the same as the operating system of the

application to be launched.
– The tester app is installed or can be installed without user intervention.

38 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Defining a variable in a test to run the latest version of an
application

When you import or upload two versions of the same application to your
workspace, by default the preferred version of the application to replay a test will
be the earlier version, if this earlier version is used to record the test. This
preference is specified in the launch application action of the test, and you can
change the preference so that the latest version of the application available in your
workspace is used to replay your test. To modify the behavior, define a variable
with a mobile reserved name in your test and set the variable to a specific value.
This ensures that, for a test launched in an automated test environment such as
IBM Rational Quality Manager or from a command-line, the latest imported
version of the application is selected without modifying the linked application in
the test.

Before you begin

Open a test in the workbench from the Test Navigator view.

About this task

You must define a variable whose name is RTW_Mobile_App_Selection in your test
and assign the AlwaysUseLatestVersion value to the test variable. If you do not
have any container for your variables in your test, learn how to create one based
on the procedure described in Defining a variable in a test to select a mobile
device.

Procedure
1. To define the RTW_Mobile_App_Selection variable:

a. In the test script, select the test variable node.
b. Click Insert > Variable Declaration.
c. Enter the name of the variable RTW_Mobile_App_Selection and click OK. The

variable is added to the test variable container.
d. In the Visible in section, select This test only to restrict data to the current

test. Optionally select All tests for this user to share the value of this
variable when the test runs in a compound test. For the variable to be
shared, both tests must have a variable with the same name and must have
this option enabled.

2. Assign the AlwaysUseLatestVersion value to the variable:
a. Click Initialize value to and enter the value AlwaysUseLatestVersion in the

Text field. This will select the latest imported application version, not the
one the test is linked to or defined as the preferred application.

b. Save the test.

Assigning a test variable to an object’s property
You can assign a new value to a test variable and set it to a Mobile object’s
property.

Testing with IBM Worklight 39

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Before you begin

To be able to create a variable assignment, you must first declare a variable. This
task is explained in the Declaring and assigning test variables page. Then you can
set a value for the object’s property, it will be used when the variable will be
executed in the test.

You can create variable assignments in the tests which are created from mobile or
Web-based apps if the Web UI actions and elements for hybrid apps is activated,
see “Activating web UI actions” on page 41.

Procedure

To create a variable assignment and set it the value to a Mobile object’s property:
1. Open the test, and in the Test Contents area, select a test element.
2. Select Insert > Variable Assignment, which inserts the assignment before the

selected element. The Test Editor window opens and lists the variables
available to the test.

3. Select the variable that you are assigning a value to, and, in the Set to box in
the Test Element Details area, select Mobile/Web object’s property, set the
value for the variable to Mobile object’s property. Select a graphic object and
the object’s property. The values of the properties are different for Web UI apps
and Android apps.

4. Save the test. A set statement is added to the test, with the value you chose.
The other way is to assign a variable to an object select in the Data Mobile view
but the variable must be created before:
5. In the Mobile Data view, from the Screen Capture tab or the Elements tab,

right-click an object and select Create variable assignment from the element
selected. In the wizard that opens, select a variable and click OK. The variable
is added to the test suite.

Adding hardware actions in a test
You can add hardware actions to your test. It consists in creating an action using a
physical widget.

Before you begin

You must have created a test from a recording and have the test script open in the
test editor. You can add hardware actions in the tests which are created from
mobile or Web-based apps if the Web UI actions and elements for hybrid apps is
activated, see Activating Web Ui actions.

About this task

This action applies only to tests created from Android apps.

Procedure
1. In the IBM Mobile Test Workbench for Worklight, open a test script and in the

Test Contents area, click in the launch app node where you want the action to
be added.

2. Click the insert button and select Hardware action. Another way is to
right-click the selection or click Options and insert in the test editor to select
the menu item. The values are different for Web UI apps and Android apps.

40 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. In the Test Element Details section, select an item in the list of object’s actions.
You can enter a value for the timeout too. The new action is added before the
script item you had initially selected in the launch node.

4. Save the test.

Splitting a test
After you record a test, you can split the test actions into multiple test segments
with different nodes. With the test-splitting capability, you can record a relatively
long scenario with many functional steps against an application and then, in the
editor, modify the target apps. Then you can generate multiple tests from a single
recording that you can replay in a different order with a schedule.

Procedure

To split a mobile test:
1. In the Test Navigator, browse to the test and double-click it. The test opens.
2. In the test editor, select one or more actions in the test script for splitting into

one or more application nodes. You can select elements, except for variable
containers, that are immediate children of the root node of the test.

3. Right-click the selected elements, and then select Split Mobile actions.
4. In the refactoring test dialog box that opens, examine the changes to be

performed as a result of the split. You can leave or clear the options if you do
not want certain data to be correlated.

5. Click OK. One or more app nodes In application: AppName are created in the
test script from the selected test element.

6. Optionally: you can change the target app to be tested for a selected app node.
To do so, select an app node, click the Change application button and in the
list of mobile apps available, select a new app. Then select the Starts a new
instance of application selected below. To apply the change of app to the all
the test nodes, that is to the whole test suite, click the . The test nodes turns
from In application: AppName to Launch application: AppName.

7. Save the test.

Activating web UI actions
You can configure an app under test to be able to perform web UI actions and
support web UI elements.

About this task

Procedure

To activate web UI actions:
1. Complete one of the following steps:

a. Open the application editor, click an app in the list of available apps and, in
the right area, select the Allow web UI actions and elements for this
hybrid app option.

a. From the test editor, open a test, click the launch app node and, in the right
area, select the option Allow web UI actions and elements for this hybrid
app.

Testing with IBM Worklight 41

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Then, new menu items are available from the Add button. You can add user
actions, verification points and create variable assignments for these web UI
enabled apps.

To deactivate the web UI actions:
2. Right-click the launch app node and select Disallow Web UI actions and

elements.

Actions from the Mobile data view
A mobile data view displays the screen captures that were uploaded from the
mobile device during the recording. Use this view to display and select user
interface (UI) elements and optionally add verification points to the test script.

Adding user actions in a test from the Mobile data view
The Mobile Data view offers graphical and hierarchical views of the current step in
a test. It also displays a table of properties associated with a selected object. You
can also use this view to quickly create user actions, adding steps to the test using
the selected graphical elements.

Before you begin

You must have created a test from a recording and have the test script open in the
test editor.

About this task

You can add actions for any of the widgets in the Mobile Data view.

Procedure

To add a user action in a test from the Mobile Data view:
1. In the Test Contents area of the test editor, click an action item.
2. In the Screen capture view, select a graphical object or the corresponding

element in the hierarchical list Elements, and then right-click and select Add
user action for this element In the test editor, a step is added just before the
current selected node.

3. In the Test Element Details section, select a value for the action of the object.
4. Save the test.

Modifying a step in a test from the Mobile data view
You can modify the step targets in a test from the Mobile Data view. Two options
are available from the menu items. One is used to modify an action in a test script
and assign a new object as target of the action. The other option is used to define
execution variables for the selected object and give a new value to the property
associated with the object.

Before you begin

You must have created a test from a recording and have the test script open in the
test editor. In the IBM Mobile Test Workbench for Worklight, in the Test Contents
area, you must have selected the action item for which you want to modify the
step.

42 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

You can modify a step target in a test by either assigning an object as the step
target or create a variable assignment from a propertyName.

Procedure

To assign a new object as step target:
1. In the Screen capture view, select a graphical object or the corresponding

element in the hierarchical list Elements, and then right-click and select Use
this element as step target. In the test editor, the current step target is replaced
by the selected graphical object.

2. In the Test Element Details section, you can change the action or location
initially specified to fit the new target.

To assign a variable and set a new value for the object’s property:
3. Select an object in the Screen capture or Elements view, and then right-click

and select Create variable assignment from propertyName.

4. In the dialog box, search for a variable that was created in your test. To do so,
enter a name to filter the list of available variables and click the one matching
the name. Click OK.

5. Save the test.

Creating verification points from a Mobile Data view
You can create some verification points in a test with simplified scripts by using
the Mobile Data view. A verification point can be added for an object or created for
the properties of the object.

Before you begin

To be able to create verification points, you must create variables in the test editor.
See Declaring and assigning test variables.

About this task

You can create verification points for any of the widgets or widget properties.

Procedure

To create verification points:
1. In the IBM Mobile Test Workbench for Worklight, open the test script, and in

the Test Contents area, click an action item for which you want to create a
verification point.

2. In the Mobile Data view, select an object in the Screen capture view, an item in
the hierarchical list of Elements, or a property in the table.

3. Right-click and click Create Verification Point for propertyName. Note that the
properties displayed will be limited to those available for the selected object. A
new step is added to the test script for the verification point.

4. Select a value in Graphic object and a value for the object’s property in Verify
attribute.

5. Save the test.

Testing with IBM Worklight 43

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Running mobile tests
After generating a test from a recording, you can run the test on multiple mobile
devices and simulators on which the mobile test client is installed. Tests created for
native or hybrid applications must be run on the Android mobile test client if
recorded on Android platform, and on the iOS mobile test client if recorded on iOS
platform. But there is no such restriction for tests of IBM Worklight hybrid
applications, as they can be recorded on Android and played back on iOS
platform, or recorded on iOS and played back on Android mobile test client. If you
test web applications, the IBM Rational Test Workbench Mobile Web Recorder is
used to record and run your tests on Android and iOS mobile test client. Note that
all tests can be run from the test workbench.

Before you begin

CAUTION:
The mobile client does not support data substitution. When a test is run from
the mobile client, the values displayed are those entered during the recording,
references and substitutions are not generated in the test. You must run the test
from the workbench to verify data substitution.

Running tests from an Android mobile test client
You can run a test from an Android mobile device or emulator. After the run, the
report is automatically uploaded to the test workbench. You can also view the
report on the Rational Test Workbench Mobile Client.

Before you begin
v You must have recorded and generated a test as mentioned in Recording

Android tests.

About this task

This task applies to native, hybrid and web applications recorded on an Android
mobile test client that you run on a simulator or mobile device. You can play back
tests for web applications on the Android or iOS platform.

CAUTION:
You can record a test on a device such as a phone and play back the test on
another type of device (for example, on a tablet) only if the application tested
has the same behavior on both types of devices.

With the mobile test client for Android, you can play back GPS locations and
hardware actions such as the use of volume up and down, mute, the use of
headphones, and all media actions (play, pause, and so on), making calls, and
ending calls. Camera and microphone functions are not supported.

Procedure
1. In the mobile test client, tap Managed Applications for a native application or

Managed web applications for a web application, and then tap the application
under test.

2. To view the list of tests available for the app, tap Test.
3. Tap the test script, and then tap Run Test. If your device or emulator does not

have silent mode, the recording-ready app is uninstalled and replaced with a
playback-ready app. During this process, tap the Uninstall, OK, and Install

44 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

buttons accordingly. If your device or emulator has silent mode, this process
happens in the background. Silent mode is not available on devices and
emulators with API level 17 and above (Android 4.2 +) due to a known
limitation.
You can simplify this process of installing and uninstalling versions of the
Android app by choosing Playback on instrumented from the Settings page on
your Android device or emulator. This lets you play back a test using the more
heavily instrumented recording version of the app, rather than the lighter
weight playback version of the app. This is at the expense, however, of slower
playback speed and greater memory consumption. The test is played back in
the mobile device. Do not interact with the mobile device until the test is
complete.

What to do next

You can now evaluate the test results. See Evaluate results.
Related concepts:
“Android testing overview” on page 11
With the mobile test client for Android you can test native Android applications,
web applications, and hybrid applications from your Android device and from
Android emulators.
Related tasks:
“Getting started with Android testing” on page 15
Use this topic to help you get started with your testing of applications that run on
Android devices.

Running tests from the iOS mobile test client
You can run a mobile test from an iOS simulator or device, and this will generate a
report that is automatically uploaded to IBM Mobile Test Workbench for Worklight.
You can also view the report in the IBM Rational Test Workbench Mobile Client.

Before you begin
v You must have recorded and generated a test as described in Recording tests

from the iOS mobile test client .
v The mobile test client must be running on an iOS device or simulator and be

connected to IBM Mobile Test Workbench for Worklight. For more information,
see Configuring the iOS mobile test client on the iOS Simulator if you do your
testing in the iOS simulator using the native mobile test client. If you do your
testing on a simulator or device using the browser-based client, you must type
the Workbench URL in the Safari or Chrome browser on your device, or in the
Safari browser on your simulator to run the client:
http://Workbench_URL:port/mobileRead carefully the “iOS testing overview” on
page 12 for more details.

v IBM Rational Test Workbench Mobile Web Recorder must be installed on the
device or simulator prior to recording web applications.

About this task

This task applies to testing iOS native applications, hybrid applications or web
applications.

With the mobile test client for iOS, you can play back all actions on the user
interface and GPS locations.

Testing with IBM Worklight 45

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Restriction: You can record a test on a device, for example on a iPhone and run
the test on another type of device, for example on an iPad, only if the application
under test is the same for both type of devices.

Procedure

To run a test from the iOS device or simulator:
1. On your device or simulator, tap Manage Applications to test a native or

hybrid application or tap Manage web applications for testing a web
application. Then, tap the application under test.

2. You can see the list of tests available for the app that shows up, tap the test
name.

3. The device or simulator displays details on the recording and the test suite. Tap
Run Test. The test is run on the device or simulator. Do not interact with the
simulator or device until the test is complete.

4. When playback is complete, the mobile test client is launched.

What to do next

You can now evaluate the test results. For more information, see Evaluate results.
Related tasks:
“Getting started with testing on the iOS Simulator” on page 20
Use this topic to help you get started with your testing of native, hybrid, and web
applications on the iOS Simulator.

Running tests from the test workbench
After generating the test from a recording, you can edit a test according to your
requirements and play it back from the workbench on your mobile
device/simulator. This means that the playback is controlled from the workbench
and not from the simulator or mobile device. The result of the tests can be viewed
from both the test workbench and the mobile test client.

Before you begin
v You must have recorded and generated a test as mentioned in “Recording tests

from the test workbench” on page 34.
v Ensure that you give control to the test workbench to run tests by tapping Enter

passive mode. After you tap it, on the mobile client, a message tells you to press
Back to end this mode or wait until a playback scenario starts. On iPads, you
must select any other page on the left to end the passive mode.

Note: If your test contains datapools, it will be controlled by the workbench.

About this task

This procedure applies to Android and iOS applications. You can play back a test
of web application on either platform. You can also run the same test recorded for
an Android or iOS IBM Worklight hybrid application and run it from the test
workbench on either platform.

Procedure
1. From the test workbench, you can initiate the running of a mobile test by using

any of the following steps in the Test Workbench perspective:
v In the Test Navigator view, right-click a test and click Run As > Test.

46 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v From the Test Navigator view, open the test and, in the test editor, click the
Run button.

v Add the mobile test to the Compound Test editor.
2. A wizard displays the list of available devices. Select the device on which the

test will be run.
3. The first time you run a test, you will be prompted to run the test from the Test

Execution perspective. Select the Remember my decision check box to avoid
receiving the message again and click Yes. The test is played back in the mobile
device.

Note:

Do not interact with the mobile device till the test is complete.

If you need to stop the test run, click the Stop test button in the toolbar of the
test workbench.

What to do next

You can now evaluate the test results. See Evaluate results.
Related tasks:
“Getting started with Android testing” on page 15
Use this topic to help you get started with your testing of applications that run on
Android devices.
“Getting started with testing on iOS devices” on page 17
You can test native, hybrid, and web applications on an iOS device using the
browser-based client for iOS. This client is a web application that runs in the Safari
or Chrome browser on your device.
“Getting started with testing on the iOS Simulator” on page 20
Use this topic to help you get started with your testing of native, hybrid, and web
applications on the iOS Simulator.

Running Worklight hybrid tests on either Android or iOS
mobile test client

To test Worklight hybrid applications, you can record a test on a mobile device or
simulator where the native Android or iOS mobile test client is installed and run
the same test on either platform.

Before you begin

You must import the application that you want to test into the test workbench for
both platforms Android and iOS. The same version is required. You must record
and generate a test. For more details, see “Recording tests from the Android
mobile test client” on page 31 or “Recording tests from the iOS mobile test client”
on page 32.

Procedure

To run the test:
1. Tap Manage Applications and tap the application under test.
2. Tap refresh so that the test shows up in the list of tests.
3. Open the test. The device displays details on the test. Tap Run Test. Do not

interact with device until the test is complete.

Testing with IBM Worklight 47

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

What to do next

When the test is complete, you can see the report on the device. For more
information, see Evaluate results for details. Buttons, labels, button clicks, and their
associated text properties are supported on both platforms. When a native step
cannot be translated and run on the other platform, as is the case for the Android
back button, for example, a yellow warning advises you in the report that this
Android step cannot be translated and run on iOS because this may cause a test
failure.

Running a test with different localized strings
When you record a test on a mobile device, the test is always generated in the
default language of the application. However, it is possible that the language
defined for the device running the test is different from the default language of the
application. This language difference between the mobile device and the
application means that to replay the test on the mobile device, you must convert
the mobile strings in your test script into the localized strings of the application.
You can do this only if the application has been localized.

Before you begin

You must have created and recorded a test. To be able to convert the standard
strings in your test script into localized strings, you must verify first that the
application under test contains translation strings.

About this task

This task applies to Android and iOS applications under test.

The words mobile strings define the name of graphic objects such as buttons or
objects identified by texts in the test script recording. Note that you can convert all
the mobile strings into localized strings in your tests at one time, or convert them
one by one.

Procedure
1. Verify that the application has been localized:

a. In the mobile application node of the Test Navigator view, double-click your
application file or click the display available mobile applications icon on
the toolbar. In the Mobile Applications editor that opens, select an
application from the list.

b. In the right pane of the editor, click on the Localized Strings tab. A table
displays the translation keys that are found in the application for the mobile
strings.

c. Click on the Locale column heading to see the languages handled by the
application. You can apply filters to sort the data items in the table. The
filter applies to the key by default but you can filter strings or locales. To do
so, enter a value in the filter field and click one of the following icons: Filter
using key to filter the keys, Filter using key to filter the strings, Filter
using locale to filter the locales.

d. Check that you find the appropriate translated strings in the target language
of the mobile device that will be used to run the test.

2. Choose how you want to convert the mobile strings in your test script into
localized strings of the application.
v Convert the full set of mobile strings:

48 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

– In the Test Navigator view, double-click on your test file or right-click and
click on Test editor to edit the test.

– In the test script, right-click on the root node and click on Convert mobile
strings into localized strings. The Localize mobile strings in test wizard
opens:

– Click on the Locale column heading in the table and select the correct
locale for the translation of the strings. This must be the local string used
on the device during the test recording.

Note: You can have device specific Locales in the list, for iOS devices. For
example, if you recorded a test on a device set to English Locale, there
could be other choices of locales other than just En for English: en_iPhone
(this should be selected if recording was done on iPhone) and en_iPad
(this should be selected if the recording was done on iPad).
As a result, the table displays the translated strings available in the
application. The rows containing translated strings are checked. If several
keys are available for a string, you must select a key.

– In the next cell, click select key and choose the appropriate key in the list.
Click Finish.

– Now, in the test script, you can see that the localized strings are
underlined. If you click on a localized string in the test script that
corresponds to a graphic object identified by text, you can see in the right
pane that the Text field contains multiple choices for the current string.

v Convert a single mobile string in your test script into a localized string of the
application:
– In the test script, select the launch application node. In the right pane,

click Used locale for localized strings and select a language the local
string used to record the test script. If your test contains instances of other
applications or several nodes, click the Apply selected locale to icon and
select one of the choices Apply locale to the same application node or
Apply locale to all application nodes.

– Select the node containing the mobile strings converted to localized strings
and right-click on the text edit in the right pane, then choose "Convert
string to localized string". In the test script, now you can see that the
localized strings are underlined. If you click on a localized string in the
test script that corresponds to a graphic object identified by text, you can
see in the right pane that the Text field contains multiple choices for the
current string.

3. Convert the localized strings in your test into standard strings. If you want to
have the localized strings or the localization keys as standard values in your
test script, you must convert the mobile strings into standard strings in the test
script.
a. Click a mobile element in the test containing a localized string. In the right

pane, right-click on the Text field. A list containing multiple choices for the
selected string is displayed. You can filter the list.

b. Double-click on the string of your choice in the list and click Convert into
standard string using localized string as value to have the selected
localized string in the test or Convert into standard string using
localization key as value to have the associated key in the test.

4. Save and replay your test. You can run the test in different language
environments.

Testing with IBM Worklight 49

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

5. In the test report, you can see that the object names and the text are displayed
in the new target language.

Related tasks:
“Recording tests from the Android mobile test client” on page 31
Mobile tests are typically created by recording a session on the mobile device or
simulator that runs the app being tested. At the end of the recording session, you
close the app and the IBM Rational Test Workbench Mobile Client uploads the
recorded session to the IBM Mobile Test Workbench for Worklight, where it is used
to generate a test.
“Recording tests from the iOS mobile test client” on page 32
Mobile tests are typically created by recording a session on the mobile device or
simulator that runs the app being tested. At the end of the recording session, you
close the app and the IBM Rational Test Workbench Mobile Client uploads the
recorded session to the IBM Mobile Test Workbench for Worklight, where it is used
to generate a test.
“Recording tests from the test workbench” on page 34
When you initiate the recording from the IBM Mobile Test Workbench for
Worklight, the recording does not start until you open an app in the mobile client.
“Running tests from an Android mobile test client” on page 44
You can run a test from an Android mobile device or emulator. After the run, the
report is automatically uploaded to the test workbench. You can also view the
report on the Rational Test Workbench Mobile Client.
“Running tests from the iOS mobile test client” on page 45
You can run a mobile test from an iOS simulator or device, and this will generate a
report that is automatically uploaded to IBM Mobile Test Workbench for Worklight.
You can also view the report in the IBM Rational Test Workbench Mobile Client.
“Running tests from the test workbench” on page 46
After generating the test from a recording, you can edit a test according to your
requirements and play it back from the workbench on your mobile
device/simulator. This means that the playback is controlled from the workbench
and not from the simulator or mobile device. The result of the tests can be viewed
from both the test workbench and the mobile test client.
“Viewing mobile reports” on page 51
You can choose to view the test reports on the mobile device, on an emulator, or
on the test workbench.
“Getting started with Android testing” on page 15
Use this topic to help you get started with your testing of applications that run on
Android devices.
“Getting started with testing on iOS devices” on page 17
You can test native, hybrid, and web applications on an iOS device using the
browser-based client for iOS. This client is a web application that runs in the Safari
or Chrome browser on your device.
“Getting started with testing on the iOS Simulator” on page 20
Use this topic to help you get started with your testing of native, hybrid, and web
applications on the iOS Simulator.

Evaluating results
To check whether or not the mobile test ran successfully, you can open the test
report. You can also view each recorded functional action in the report.

50 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

When you run a test from the IBM Mobile Test Workbench for Worklight, you can
view both the mobile web report and the statistical report in the test workbench.
By default, the mobile web report is displayed after the run. You can also view this
report on the mobile device.

To open the mobile web report and statistical report, from the Test Navigator view
double-click a result from the Results folder.

When you run a test from the mobile device or emulator, at the end of play back,
the report opens up automatically on the device or emulator. After the run, the
report is uploaded to the test workbench automatically. There is no statistical
report for the test that is run from the device or emulator.

The report is in a tabular format and displays the application that was tested, its
execution status, and duration of the test. Each action is displayed in a row with
the screen capture of the action highlighted and the time taken for that action from
the beginning of the test.

If you added verification points to the test, you can also view the verification
points entries in the report. The Execution Status of the report displays Failure, if
the verification points fail.

Viewing mobile reports
You can choose to view the test reports on the mobile device, on an emulator, or
on the test workbench.

About this task

This procedure applies to tests generated from Android or iOS applications, for
native applications, hybrid applications and web applications under test.

Procedure

Choose one of the following steps:
1. To view the test reports from the IBM Rational Test Workbench Mobile Client

device, emulator, or simulator:
a. Open the mobile test client and tap Manage Applications for a test from a

native app and Manage Web Applications for a test from a web app.
b. Select the app for which you want to view the results.
c. Tap a test suite name and then tap Reports tab button.

2. To view the test reports from the test workbench:
a. From the Test Navigator, expand the project folder and double-click the test

reports. Each report begins with the name of the test, and ends with the
timestamp of the run in brackets. Depending on how you executed a test,
the results are stored in the appropriate folder. When running the test from
the mobile device or emulator, the results are in the Mobile Results folder.
When tests are run from the workbench, the results are in the Results
folder. Note that these are two separate folders within the logical view of
the Test Navigator. Click to open the logical view.

Testing with IBM Worklight 51

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Managing logs for Android mobile test client
To debug issues that occur in the IBM Rational Test Workbench Mobile Client, the
logs store all type of messages in the mobile test client. By default, the error and
warning messages are stored. You can also set the log level to store the information
messages.

About this task

The logs are stored in the mobile device or on an emulator. By default, the log data
is stored until the mobile test client is running at a particular session. You can
manage the logs in the following ways:
v Set the number of messages to be logged
v Set the type of messages to be logged
v Store all the logs
v Capture the recording actions

You can also upload the logs to the test workbench. For more information about
uploading logs, see Uploading logs to workbench.

Procedure

To manage logs:
1. In the Rational Test Workbench Mobile Client, tap the dropdown arrow menu

and tap Settings.
2. In the settings, complete any of the following steps:

v To set the number of messages to be logged, in Log Size, drag the slider.
v To select the type of messages to be logged, in Filter log messages, drag the

slider. By default, Fatal, Error, and Warning messages are logged. You can log
Information, Debug, and Trace messages as well.

v To store the logs, tap the Persist log check box. If this check box is selected,
logs of the mobile test client are stored in the disk of the mobile device.

Note: Consumption of the large amount of disk space might reduce the
speed of the device.

v To capture the recording trace, tap the Trace recording check box. If this
check box is selected, the mobile test client logs all the recording events.
Typically, you use this option only when requested to do so by IBM®

Software Support.

Uploading logs to test workbench
To share the device logs with other users or Support, you can upload the logs from
IBM Rational Test Workbench Mobile Client to the test workbench, if you are using
Android mobile test client only. After the upload, you can export the logs to a text
file and share the file.

Before you begin

The mobile test client must be connected to the test workbench.

About this task

When you upload the logs to the test workbench, the logs remain in the device
until the mobile test client is running. In the test workbench, the logs show up in
the Error Log view.

52 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. In the mobile test client, open the menu and tap Logs.

Note: On some devices, the menu is in the form of a dropdown icon placed in
the upper-right corner of the screen.

2. Tap Upload. In the test workbench, click Window > Show View > Error Log to
view the uploaded logs.

3. Optional: To clear the logs, tap Clear. This action removes the logs from the
display, but the logs remain available in the test workbench.

4. Optional: To delete the logs, tap Delete and tap Yes.

Compound tests
You can create compound tests to help you organize smaller tests into scenarios
that can then be run end-to-end. Each of the smaller tests in a compound test can
run on a different domain if required, such as a mobile device, or a web browser,
and so on.

If you need to combine various tests into a single workflow or end-to-end scenario,
you can organize the tests into a compound test. Each of the tests may perform
parts of the scenario. Each of the tests may also run in a different domain if
required, for example, a web browser or a mobile device, or others. A typical
example of a compound test is an online buying workflow. You may have built
smaller tests for each part of an online purchase transaction, such as "log on", "log
out", "view item", "add to cart", and "check out". You can combine these tests into a
single flow in a compound test. When the compound test is run, its individual
tests are run in sequence.

The types of tests you can combine into a compound test depend on the testing
capabilities you have purchased. If you have purchased only mobile testing
capabilities, you can combine tests on mobile applications into a compound test. If
you have purchased additional testing capabilities along with mobile testing, you
can also combine tests built using Selenium, HTTP tests, Socket tests, Citrix tests or
SAP tests into a compound test.

To build the scenario you require in a compound test, you can also add the
following annotations:
v Comments
v Synchronization points
v Loops
v Delays
v Transaction folders
v Tests that are mandatory, using the Finally blocks
v Tests to be run in random order, using the Random Selector

Creating a compound test
You can create compound tests to help you organize smaller tests into scenarios
that can then be run end-to-end. Each of the smaller tests in a compound test can
run on a different domain if required, such as a mobile device, or a web browser,
and so on.

Testing with IBM Worklight 53

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Create a test workbench project.
2. In the Test Workbench perspective, in the Test Navigator, right-click the test

workbench project and click New, and then click Compound Test.
3. In the New Compound Test dialog box, specify the name of the compound test

and the location where it must be stored. By default, the test is stored in the
workspace of the test workbench project you selected. You can select a different
project location if desired. The file extension testsuite is added to the file
name, and the new compound test is added to the Compound Tests folder of
the test workbench project, visible in the Logical View. The new test is also
visible in the Resource View, under the test workbench project. The contents
and test element details are displayed in the compound test editor in the right
panel.

4. In the compound test editor, add the components of the compound test. The
types of tests you can combine into a compound test depend on the testing
capabilities you have purchased. If you have purchased only mobile testing
capabilities, you can combine tests on mobile applications into a compound
test. If you have purchased additional testing capabilities along with mobile
testing, you can also combine tests built using Selenium, HTTP tests, Socket
tests, Citrix tests or SAP tests into a compound test.

5. To build the scenario you require in a compound test, you can also add the
following annotations by clicking Add and selecting the appropriate option:
v Comments
v Synchronization points
v Loops
v Delays
v Transaction folders
v Tests that are mandatory, using the Finally blocks
v Tests to be run in random order, using the Random Selector

6. Save your changes.

Viewing compound tests
You can view a compound test in the Compound Test Editor.

About this task

When you open a workspace, the tests and projects that reside in the workspace
are listed in the Test Navigator.

You can view compound tests in the Logical and Resource Views in the Test
Navigator. From any of these views, you can open the test in the Compound Test
Editor.

Procedure
v In the Logical View of the Test Navigator, compound tests are listed in the

Compound Tests folder under the project into which they were imported.
Double-click the compound test under the Compound Tests folder to open it in
the Compound Test Editor. In the Resource View, all tests under a project are
shown in the project folder. Double click the compound test under the project
folder to open it in the Compound Test Editor.

54 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v In the Java perspective, compound tests under a project are shown under the
root project folder. Double click the compound test under the project folder to
open it in the Compound Test Editor.

v The Compound Test Editor contains two panels - the Compound Test Elements
panel, where the elements of the workflow are listed. Click one of the elements,
and its details are displayed int the far right portion of the right panel, which is
the Compound Test Element Details panel. Double-click any of the test or the
test elements to view its details. The name of the test, test path, source type and
execution mode are displayed.

Adding tests into a compound test
After creating a compound test, you can add the smaller test pieces that contribute
to the larger workflow you are constructing with the compound test. When you
run a compound test, each of the tests added to it are invoked in the sequence
defined.

You can add many tests of the same type, or different types, to a compound test,
depending on the testing capabilities you have purchased. If you have purchased
only mobile testing capabilities, you can combine tests on mobile applications into
a compound test. If you have purchased additional testing capabilities along with
mobile testing, you can also combine tests built using Selenium, HTTP tests, Socket
tests, Citrix tests or SAP tests into a compound test.

To add tests to a compound test, complete these steps:
1. In the Test Navigator, double-click the compound test to which you want to

add a test. The contents of the compound test are shown in the Compound
Test Contents panel in the Compound Test editor.

2. Do one of the following:
v Click Add to add a test as the first element in the compound test.
v To insert a test before a specific element in the compound test, select the

element and click Insert.

The Select Tests dialog box is opened, and the tests found in the Eclipse Client
workspace are displayed.

3. Select the test you want to add to the Compound test, and click OK. The test is
added to the compound test, and is displayed as part of the elements of the
compound test in the Compound Test Contents panel. When you click the test
you added, its details are displayed in the Compound Test Element Details
panel in the Compound Test editor.

4. Save your changes.

In addition to the tests that you can add to a compound test, you can also add the
following elements to construct the workflow you need:
v Comments to document the test
v Delays in the test
v Synchronization points
v Loops
v Transaction folders
v Parts of the test that are mandatory
v Tests to be run in random order

Testing with IBM Worklight 55

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Modifying a compound test
You can modify a compound test in the Compound Test Editor.

About this task

A compound test is a testing workflow comprising smaller tests and other test
elements in a certain sequence. You might want to order the tests and test elements
to suit your workflow requirement, or add further tests and elements.

Procedure
1. In the Test Navigator, double-click the compound test that you want to modify.

Its elements are shown in the Compound Test Contents right panel in the
Eclipse Client.

2. To add a test or test element at the beginning of the compound test elements
list, select the compound test in the Compound Test Contents panel, click Add,
and then click Test. To insert a test or test element into the test, select the test
element before which the insertion must be made, and click Insert.

3. Add or insert the test or test element you need, and click OK. The modified
compound test displays its updated elements in the Compound Test Contents
right panel.

4. Save your changes.

Running compound tests
When you run a compound test, its test elements are run in the order defined in
the compound test.

About this task

When you run a compound test, you are prompted to open the Test Execution
perspective, in which details of the test run are displayed. When the test run is
complete, the Test Log displays the run results.

Procedure
1. In the Test Navigator, select the compound test you want to run.
2. Click the Run As icon on the toolbar. The test runs. To run a launch

configuration option, click the arrow beside the Run As icon and select Run
Configuration. Select the desired configuration option and run the test. The
Confirm Perspective Switch dialog box is opened, prompting you to switch to
the Test Execution perspective. Click Yes.

3. Select the desired option to run the test. The Test Execution perspective is
opened and the test runs. On completion, the test log is displayed.

Results

You can work with the test log by exporting it into a flat file.

Generating compound test result reports
When a compound test run is completed, a Test Log is shown in the Test Execution
perspective. You can work with the information in the test log and also generate
test result reports.

56 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Exporting the Test Log
When a compound test run is completed, a Test Log is displayed in the Test
Execution perspective.

About this task

The Test Log displays the following details:
v The General Information tab displays the name of the compound test and its

description. The location of the test log file is also shown.
v The Common Properties tab shows the verdict of the test results.
v The Verdict Summary and Verdict List tabs provide a pie chart of verdicts for

different components of the test, and a list of the first 20 verdicts. You can view
details about the verdicts by clicking the links in the Verdict List tab.

You can export the contents of the test log to a full-text file.

Procedure
1. To export the contents of the test log to a full-text file, right-click the test run

result under the Results folder of the compound test, and click Export Test Log.
2. In the Export Test Log dialog box, specify where the test log should be

exported to, in the Location field.
3. Select the format in which the log must be exported, from the list in the Export

Format field. You can select either Flat Text - Default Encoding or Flat Text -
Unicode Encoding.

4. Click Finish. The test log is exported as a full-text file, with the test results run
name, to the location you specified.

Generating a functional test report
You can generate a functional test report from the test run results as a HTML file.

About this task

When you generate a functional test report as a HTML file, the following details
are displayed in the report:
v A global summary, which lists the number of tests run, verification points,

defects
v A test summary which displays the name of each test, the start and end times

and the verdicts.

Procedure
1. In the Test Workbench perspective, test run results are displayed under the

Results folder of a project. Right-click the test run result you want to view and
click Generate Functional Test Report. The Generate Functional Test Report
dialog box is opened.

2. Select the parent folder in which the report must be stored.
3. By default, the name of the compound test and the date and time stamp is

displayed as the name of the report in the Name field. You can change the
name.

4. Click Next.

Testing with IBM Worklight 57

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

5. Select the report template to be used. If you select the Common Functional Test
Report (XSL) format, the report is generated as a HTML file. If you select the
Common Test Functional Report format, you can select either the HTML or
PDF output format.

6. Click Finish. The report is generated and displayed. The report is listed under
the Functional Reports folder under the compound test in the Test Navigator.

Creating an executive summary
You can create an executive summary or test statistics report from the test run
results. Executive summaries are generated according to the type of test.

About this task

An executive summary displays the tests and methods that were run, and their
success or failure information. This information is shown in summary charts as
well as in bar graphs.

Procedure
1. Under the Results folder of the project, right-click the test run result you want

to view and click Create Executive Summary. The Generate Functional Test
Report dialog box is opened.

2. Select the type of test report you want to generate.
3. Click Finish. The report is generated and displayed. The report is listed under

the Functional Reports folder under the compound test in the Test Navigator.

Adding a compound test to a Test Workbench project
You can create a compound test in a test workbench project. If you have an
existing compound test, you can import the test to a test workbench project.

Creating a compound test in a test workbench project
You can create a compound test in a test workbench project.

Procedure
1. Create a test workbench project.
2. In the Test Workbench perspective, in the Test Navigator, right-click the test

workbench project and click New, and then click Compound Test.
3. In the New Compound Test dialog box, specify the name of the compound test

and the location where it must be stored. By default, the test is stored in the
workspace of the test workbench project you selected. You can select a different
project location if desired. The file extension testsuite is added to the file
name, and the new compound test is added to the Compound Tests folder of
the test workbench project, visible in the Logical View. The new test is also
visible in the Resource View, under the test workbench project. The contents
and test element details are displayed in the compound test editor in the right
panel.

4. In the compound test editor, add the components of the compound test. The
types of tests you can combine into a compound test depend on the testing
capabilities you have purchased. If you have purchased only mobile testing
capabilities, you can combine tests on mobile applications into a compound
test. If you have purchased additional testing capabilities along with mobile
testing, you can also combine tests built using Selenium, HTTP tests, Socket
tests, Citrix tests or SAP tests into a compound test.

58 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

5. To build the scenario you require in a compound test, you can also add the
following annotations by clicking Add and selecting the appropriate option:
v Comments
v Synchronization points
v Loops
v Delays
v Transaction folders
v Tests that are mandatory, using the Finally blocks
v Tests to be run in random order, using the Random Selector

6. Save your changes.

Importing a compound test into a Test Workbench project:

You can import a compound test into a test workbench project.

Procedure

1. In the Test Workbench perspective, in the Test Navigator, right-click the test
workbench project into which you want to import the compound test and click
Import.

2. In the Import dialog box, expand General in the source list, select Import test
assets with dependencies and then click Next.

3. Specify the directory in which the compound test resides. Click Browse. By
default, the compound test is imported into the test workbench project folder.

4. The compound test assets in the folder you selected are displayed. Select the
components you want to import.

5. Click Finish. The imported compound test is displayed in the Compound Test
Elements panel in the Compound Test editor.

Adding compound tests to schedule
This topic is applicable for IBM Rational Performance Tester version 8.5.1. To
test the performance of multiple tests, you can add all the tests to a compound test
and add the compound test to a user group. When you run a schedule, all the tests
in the compound test are run in a sequential order.

About this task

A user group can be defined locally, which means the parameters to run the user
group are defined in the schedule. A user group can be associated with a
compound test, which means that the parameters to run that user group are
defined in the compound test.

Procedure

To add a compound test:
1. In the schedule editor, add a user group.
2. Click the user group and in Behavior, click Use compound test.
3. Select a compound test and click OK. If there are no compound tests in the

project, click Create, specify a name for the compound test, and click Finish. If
there are test variables associated with a compound test and also defined in the
schedule, the variables with the compound test take precedence while running
the user group.

Testing with IBM Worklight 59

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

4. Save the test.
Related concepts:
Schedule overview

Extending Rational Test Workbench Eclipse Client
You can extend the capabilities of test workbench by creating custom Java code.

Extending test execution with custom code
You can extend how you run your tests by writing custom Java code and calling
the code from the test. You can also specify that results from the tests that are
affected by your custom code be included in reports.

Creating custom Java code
Custom code uses references in the test as input and returns modified values to the
test. Use the ICustomCode2 interface to create custom code and the
ITestExecutionServices interface to extend test execution. These interfaces are
contained in the com.ibm.rational.test.lt.kernel.services package.

About this task

Note: When you use the ITestExecutionServices interface in your custom code to
report test results, the results for the custom code are displayed in the test log. If
you log custom verification point verdicts, these are reflected in the overall
schedule verdict.

Custom code input values can be located in references or field references. You can
also pass a text string as an argument to custom code. References that are used as
input to custom code must be included in the same test as the custom code. In the
test, the reference must precede the code that it affects. Verify that the test contains
the references that are required for customized inputs to your code. For details
about creating references and field references, see Creating a reference or field
reference.

If your custom code uses external JAR files, you might need to change the Java
build path. In some cases, you can avoid changing the build path manually by
running the test before adding your custom code to it. The first time a test runs,
classes and libraries that are required for compilation are added to the build path.
For example, you can import Test and Performance Tools Platform (TPTP) classes
that are required to create custom events in the test log if the test, to which you
have added your custom code, has run previously. However, if the test has never
been run, import errors occur because the classes are not named in the build path
for the project until the test has run.

If your code uses external resources, for example, an SQL database or a product
that manages customer relationships, you must configure the custom code to work
on every computer on which your test runs.

Custom code is saved in the src folder of the project that contains the test that
calls the code. By default, custom code is located in a package named test in the
src folder.

You can reuse a custom code package for tests that are located in multiple projects.
The projects must be in one workspace. To reuse custom code across projects, use
the project name before the custom code package. For example, .

60 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The following example shows the standard Navigator view of two custom code
classes. (The Test Navigator does not display Java source files.)

When you add the ReplaceCC.java and VerifyYUserID.java custom code classes to
the test and return a value to the test, Substitute lists these two classes.

The test package also contains the generated Java code for tests in the project.

You can put custom code in a different package (for example, custom). Separate
custom code from generated code, especially if you use a source-control system.

Procedure

To add custom code:
1. Open the test, and select a test element.
2. Click Add or Insert, and select Custom Code. Add appends the custom code

to the bottom of the selected test element. Insert adds the custom code above
the selected test element.

Note: After you add or insert custom code, the Problems view displays an
error stating that the new custom code element has no Java file. This error
message remains until you click View Code or Generate Code, to remind you
that the custom code test element is not yet associated with any Java code.

3. Inspect the Class name field, and complete one of these steps:
v If the code to call already exists, change the class name to match its name.

Click View Code to open the code in the Java editor.
v If the code does not exist, change the class name to describe the purpose of

the code. Click Generate Code to generate a template class for logging
results and to open it in the Java editor. If a class with this name exists, you
are warned that it will be overwritten.

4. In the Arguments field, click Add.
5. In the Custom Code window, select all inputs that your code requires. The

Custom Code window lists all values in the test that can be used as inputs to
your code (references or field references in the test that precede the code).

6. Click OK. The window closes, the selected references are added to the
Arguments field.

7. Optional: To add text strings as inputs to your custom code, click Text, and
then type the text string to use.

8. In the test, after your custom code, locate a value that your code returns to
the test.

9. Highlight the value.
10. Right-click the highlighted value, click Substitute, and select the class name of

your custom code. The custom code classes that you have added are listed.
After you have made your selection, the value to be returned to the test is
highlighted in orange, and the Used by table is updated with this
information.

Testing with IBM Worklight 61

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

What to do next

Custom code is not displayed in the Test Navigator view. To view custom code,
open the Package Explorer view and use the Java tools to identify the custom code
that you added.

Test execution services interfaces and classes
You use the test execution services interfaces and classes to customize how you run
tests. These interfaces and classes are located in the com.ibm.rational.test.lt.kernel
package. Each interface and class is described briefly in this topic and in detail in
the Javadoc information.

The custom code does not run on the mobile device, but from the generated Java
code that is available in the test workbench. So, if you initiate the test run from the
mobile device and the test script includes custom code, the custom code is not
executed. To execute the custom code that is available in a mobile test scrip, you
must initiate the run from test workbench. If you want to integrate custom code
between two mobile instructions, you must split the test script. See Splitting a test.

The Javadoc for the test execution services interfaces and classes are in this
reference topic.

Test execution services interfaces

Interface Description

ICustomCode2 Defines customized Java code for test
execution services. Use this interface to
create all custom code.

ITestExecutionServices Provides information for adding custom test
execution features to tests. Replaces the
IKLog interface. All the methods that were
available in IKLog are contained in
ITestExecutionServices, along with several
newly exposed objects and interfaces. This
interface is the primary interface for
execution services. ITestExecutionServices
contains the following interfaces: IDataArea,
IARM, ILoopControl, IPDLogManager,
IStatisticsManager, ITestLogManager, ITime,
and ITransaction.

IDataArea Defines methods for storing and accessing
objects in data areas. A data area is a
container that holds objects. The elements of
a data area are similar to program variables
and are scoped to the owning container. To
use objects specific to a protocol, you should
use objects provided by that protocol that
are stored in the protocol-specific data area.

IARM Provides information about defining ARM
(Application Response Measurement)
specifications. You use this interface if your
virtual users are being sampled for ARM
processing.

62 Mobile testing for IBM Worklight

http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.moeb.doc/topics/tsplit_test.html
http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/overview-summary.html
http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/custom/ICustomCode2.html
http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/services/ITestExecutionServices.html
http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/IDataArea.html
http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/services/IARM.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Test execution services interfaces

Interface Description

ILoopControl Provides control over loops in a test or
schedule. For example, you can use this
interface to break loops at specific points in
a test. The loop that is affected is the nearest
containing loop found in either the test or
the schedule.

IPDLogManager Provides logging information such as
problem severity, location levels, and error
messages.

IStatisticsManager Provides access to performance counters in
the ICustomCode2 interface (used for
defining custom code). Performance counters
are stored in a hierarchy of counters.
Periodically, all the counter values in the
hierarchy are reported to the testing
workbench and collected into test run
results, where they are available for use in
reports and graphs. Each counter in the
hierarchy has a type (defined in class
StatType). The operations that are available
on a counter depend on the counter's type.

ITestLogManager Logs messages and verification points to the
test log. Use this interface for handling error
conditions, anomalies in expected data or
other abstract conditions that need to be
reported to users, or for comparisons or
verifications whose outcome is reported to
the test log. ITestLogManager can also
convey informational or status messages
after the completion of a test.

ITime Defines basic time services, such as the
current system time in milliseconds
(adjusted so that all systems are
synchronized with the schedule controller),
the time the test begins, and the elapsed
time from the beginning of the test.

ITransaction Provides support for transactions. A
collection of named transactions is
maintained for each virtual user.
Transactions created in custom code can be
started and stopped wherever custom code
can be used. These transactions can span
several tests. Performance counters are kept
for custom code transactions and appear in
reports. An example of how you could use
ITransaction is to create transactions for one
virtual user but not another, to help verify
responses from tests.

Testing with IBM Worklight 63

http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/services/ILoopControl.html
http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/services/IPDLogManager.html
http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/services/IStatisticsManager.html
http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/services/ITestLogManager.html
http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/ITime.html
http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/services/ITransaction.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Test execution services interfaces

Interface Description

IEngineInfo Provides information about the testing
execution engine; for example, the number
of virtual users running in this engine, the
number of virtual users that have
completed, the local directory in which test
assets are deployed, and the host name of
the computer on which the engine runs.

ITestInfo Provides information about the test that is
running; for example, the test name and
information about the current problem
determination log level for this test.

IVirtualUserInfo Provides information about virtual users; for
example, the virtual user's name, problem
determination log level, TestLog level,
globally unique ID, and user group name.

IScalar Provides methods for simple integer
performance counters. It is used for counters
of SCALAR and STATIC types. Use this
interface to decrement and increment
counters.

IStat Defines observational performance counters.
It defines the method for submitting a data
point to performance counters of type RATE,
AVERAGE, and RANGE.

IStatistics Retrieves the performance counter tree
associated with the current statistics
processor. Stops the delivery of performance
counters. Changes the priority of the
statistics delivery thread.

IStatTree Provides methods that can retrieve child
counters, create the XML fragments that
define counters, and set the description field
of counters.

IText Contains text-based performance counters.
Performance counters that do not fit any of
the other counter types can be created as
type TEXT. TEXT counters are not assigned
definitions, but they are collected in the test
results.

Test execution services classes

Class Description

DataAreaLockException Throws an exception whenever an attempt is
made to modify a locked DataArea key.

OutOfScopeException Indicates that an object created by
ITestExecutionServices has been referenced
outside of its intended scope.

64 Mobile testing for IBM Worklight

http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/services/IEngineInfo.html
http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/services/ITestInfo.html
http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/services/IVirtualUserInfo.html
http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/statistics/IScalar.html
http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/statistics/IStat.html
http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.sdk.doc.isv/reference/api/IBM_RPT_SDK/com/ibm/rational/test/lt/kernel/statistics/IStatistics.html
http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/statistics/IStatTree.html
http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/statistics/IText.html
http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/DataAreaLockException.html
http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/services/OutOfScopeException.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Test execution services classes

Class Description

TransactionException Throws an exception when a transaction is
misused. The following conditions lead to a
TransactionException exception: attempting
to start a transaction that has already been
started, attempting to stop a transaction that
has not been started, and getting the start
time or the elapsed time of a transaction that
has not been started. Any operation (except
abort()) on a transaction that has been
aborted will throw a TransactionException
exception.

StatType Provides a list of valid performance counter
types. The performance counter types are:
AVERAGE, iAVERAGE, iRANGE, iRATE,
iSCALAR, iSTATIC, iSTRUCTURE, iTEXT,
RANGE, RATE, SCALAR, STATIC, STRUCTURE,
and TEXT.

Related information:
API references

Reducing the performance impact of custom code
If custom code runs inside a page, it can affect that page's response time.

HTTP pages are containers of HTTP requests. On a given HTTP page, requests run
in parallel across all of the connections between the agent computer and the
system under test.

Page response time is the interval between page start and page end, which are defined
as follows: Page start is the first timestamp associated with the client-server
interaction. This interaction is either the first byte sent or the first connect of the
first HTTP request. Page end is the last timestamp associated with the client-server
interaction. This interaction is the last byte received of the last HTTP request to
complete. Because of parallelism, the last HTTP request to complete might not be
the last one listed for the page.

Typically, you should not insert custom code inside a page. While custom code that
runs for only a few milliseconds should have little effect on page response time,
the best practice is to place custom code outside a page. Custom code placed
outside a page has no effect on page response time, and its execution time can
overlap with think time delays.

Do not use custom code for data correlation if you can instead use the data
correlation features built into the product. The built-in data correlation code takes
advantage of requests running in parallel, whereas custom code actions do not
begin until all earlier actions are completed.

You might need to place custom code inside a page to correlate a string from the
response of a request inside that page to another request inside the same page.
Even in this case, if you split the page into two pages, you can use the built-in
data correlation features instead of custom code.

Testing with IBM Worklight 65

http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/services/TransactionException.html
http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/com/ibm/rational/test/lt/kernel/statistics/impl/StatType.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

If you still want to run tests with custom code inside HTTP pages, use the Page
Element report to evaluate performance. The Page Element report shows the
response time and throughput for individual HTTP requests. Custom code does
not affect the response time measurement of individual HTTP requests.
Related concepts:
Performance testing tips

Custom code examples
Custom code enables you to perform such tasks as managing loops, retrieving
virtual user information, running external programs from tests, and customizing
data correlation.

Controlling loops:

This example demonstrates extending test execution by using custom code to
control loops. It provides sample code that shows how you can manipulate the
behavior of loops within a test to better analyze and verify test results.

This example uses a recording of a stock purchase transaction using IBM's Trade
application. The concepts shown here can be used in tests of other applications.

The test begins with a recording of a stock purchase transaction, using datapool
substitution for the login IDs.

The pages are wrapped in a five-iteration loop, as shown in the following figure:

Notice that among the various pages of the test, three items of custom code exist
(indicated by the green circles with "C"s in them). This example explores these
items of custom code.

The first piece of custom code, InitializeBuyTest, is mentioned here:
package customcode;

import java.util.Random;

import com.ibm.rational.test.lt.kernel.IDataArea;
import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.kernel.services.IVirtualUserInfo;

/**
* @author unknown
*/
public class InitializeBuyTest implements

com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

/**
* Instances of this will be created using the no-arg constructor.
*/
public InitializeBuyTest() {
}

/**
* For description of ICustomCode2 and ITestExecutionServices interfaces,
* see the Javadoc information. */
public String exec(ITestExecutionServices tes, String[] args) {
// Get the test’s data area and set a flag indicating that nothing
// has failed yet. This flag will be used later to break out
// of the schedule loop as soon as a failure is encountered.

66 Mobile testing for IBM Worklight

http://pic.dhe.ibm.com/infocenter/rtwhelp/v8r5m0/topic/com.ibm.rational.test.lt.tes.doc.isv/reference/api/IBM_RPT_TES/overview-summary.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

IDataArea dataArea = tes.findDataArea(IDataArea.TEST);
dataArea.put("failedYet", "false");

// Get the virtual users’s data area
IDataArea vda = tes.findDataArea(IDataArea.VIRTUALUSER);

// Randomly select a stock to purchase from the set of s:0 to s:499.
IVirtualUserInfo vuInfo = (IVirtualUserInfo) vda.get(IVirtualUserInfo.KEY);
Random rand = vuInfo.getRandom();

String stock = "s:" + Integer.toString(rand.nextInt(499));

// Persist the name of the stock in the virtual user’s data area.
vda.put("myStock", stock);

return stock;
}

This custom code is located in the method exec().

First, the data area for the test is acquired to store a flag value, in this case a string
of text, to be used later to stop the test loop when an error is discovered. Data
stored in this way can be persisted across tests.

Then a randomly generated stock string is created. The value is stored as the
variable stock, and is passed back as the return value for the method. This return
value is used as a substitute in a request later, as shown in the following figure:

The highlighted item uses a substitution (s%3A716), which is the value returned by
the InitializeBuyTest custom code item. We are using custom code to drive the
direction of our test.

The next lines of code in InitializeBuyTest use the Virtual User data area to store
the name of the stock for later reference. Again, data stored in this way can persist
across tests.

The second piece of custom code is called CheckStock. Its contents are as follows
(listing only the exec() method this time):
public String exec(ITestExecutionServices tes, String[] args) {

// Get the actual and requested stock purchased.
String actualStock = args[0].replaceAll("", "");
actualStock = actualStock.substring(0, actualStock.indexOf("<"));
String requestedStock = args[1];

// Set the log level to ALL.
IDataArea dataArea = tes.findDataArea(IDataArea.TEST);
ITestInfo testInfo = (ITestInfo)dataArea.get(ITestInfo.KEY);
testInfo.setTestLogLevel(ITestLogManager.ALL);

// If the log level is set to ALL, report the actual and requested stock
// purchased.
ITestLogManager testLogManager = tes.getTestLogManager();
if (testLogManager.wouldReport(ITestLogManager.ALL)) {

testLogManager.reportMessage("Actual stock purchased: "
+ actualStock + ". Requested stock: " + requestedStock
+ ".");

}

// If the actual and requested stock don’t match, submit a FAIL verdict.
if (testLogManager.wouldReport(ITestLogManager.ALL)) {

Testing with IBM Worklight 67

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

if (!actualStock.equalsIgnoreCase(requestedStock)) {
testLogManager.reportVerdict(
"Actual and requested purchase stock do not match.",
VerdictEvent.VERDICT_FAIL);

// Use the test’s data area to record the fact that an error has
// occurred.
dataArea.put("failedYet", "true");
}

}
return null;

}

This code begins by extracting two arguments that have been passed to the code.
A part of the response in the original recording is highlighted and used as a
reference, as shown in the following figure.

Some string manipulation is needed to acquire the text of interest; in this case, the
name of the stock that was actually purchased. This newly created reference is then
passed into CheckStock as an argument, as shown in the following figure:

Note that the return value of InitializeBuyTest is passed in as an argument as
well.

The CheckStock custom code item uses these values to verify that the randomly
chosen stock generated by InitializeBuyTest is actually purchased during the
execution of the test.

CheckStock then sets the test log level, reports the actual and requested stock
purchase, and raises a FAIL verdict if they do not match. CheckStock also stores a
true value associated with the tag failedYet in the test's data area.

The third piece of custom code (exec() method only) is mentioned here:
public String exec(ITestExecutionServices tes, String[] args) {

// Get the test log manager.
ITestLogManager testLogManager = tes.getTestLogManager();

// Get the test’s data area and get a flag indicating to
// see if anything has failed yet. If so, stop the loop.
IDataArea dataArea = tes.findDataArea(IDataArea.TEST);
String failedYet = (String) dataArea.get("failedYet");

// Break out of the loop if an error has been encountered.
if (failedYet.equalsIgnoreCase("true")) {
tes.getLoopControl().breakLoop();

if (testLogManager.wouldReport(ITestLogManager.ALL)) {
testLogManager.reportMessage("Loop stopped.");
}
}

return null;
}

68 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

This code uses the test's data area to determine the user-defined value associated
with the tag failedYet. If failedYet is true, StopLoopCheck breaks out of the test
loop.

Retrieving the IP address of a virtual user:

This example shows how to retrieve the local IP address of a virtual user.
Retrieving IP addresses is particularly useful when virtual users are using IP
aliases.

The following custom code retrieves the IP address that was assigned to a virtual
user:
import java.net.InetAddress;
import com.ibm.rational.test.lt.kernel.IDataArea;
import com.ibm.rational.test.lt.kernel.services.ITestLogManager;
import com.ibm.rational.test.lt.kernel.services.IVirtualUserInfo;

public String exec(ITestExecutionServices tes, String[] args) {
IVirtualUserInfo vui = (IVirtualUserInfo) tes.findDataArea(IDataArea.VIRTUALUSER).get(IVirtualUserInfo.KEY);
ITestLogManager tlm = tes.getTestLogManager();

if (vui != null) {
String localAddr = null;
InetAddress ipAddr = vui.getIPAddress();
if (ipAddr != null)
localAddr = ipAddr.toString();
tlm.reportMessage("IPAlias address is " + (localAddr != null ? localAddr : "not set"));
return localAddr;
}
else

return ("Virtual User Info not found");
}

Printing input arguments to a file:

The PrintArgs class prints its input arguments to the file C:\arguments.out. This
class could be used, for example, to print a response returned by the server.
package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

import java.io.*;

/**
* The PrintArgs class prints its input arguments to the file
* C:\arguments.out. This example could be used to print a response
* returned by the server.
*/

/**
* @author IBM Custom Code Samples
*/

public class PrintArgs implements
com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

/**
* Instances of this will be created using the no-arg constructor.
*/
public PrintArgs() {
}

public String exec(ITestExecutionServices tes, String[] args) {

Testing with IBM Worklight 69

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

try {
FileWriter outFile = new FileWriter("C:\\arguments.out");
for (int i = 0; i < args.length; i++)

outFile.write("Argument " + i + " is: " + args[i] + "\n");
outFile.close();

} catch (IOException e) {
tes.getTestLogManager().reportMessage(

"Unable to write to C:\\arguments.out");
}
return null;

}
}

Counting the number of times that code is executed:

The CountAllIterations class counts the number of times code is executed by all
virtual users. The CountUserIterations class counts the number of times code is
executed by an individual virtual user.

The CountAllIterations class counts the number of times it is executed by all
virtual users running in a particular JVM and returns this count as a string.
package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

/**
* The CountAllIterations class counts the number of times it is executed
* by all virtual users running in a particular JVM and returns this count
* as a string. If all virtual users on an agent are running in the same
* JVM (as would typically be the case), this class will count the number of
* times it is run on the agent.
*/

/**
* @author IBM Custom Code Samples
*/

public class CountAllIterations implements
com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

private static int numJVMLoops = 0;

/**
* Instances of this will be created using the no-arg constructor.
*/
public CountAllIterations() {
}

public String exec(ITestExecutionServices tes, String[] args) {
return Integer.toString(++numJVMLoops);

}
}

The CountUserIterations class counts the number of times code is executed by an
individual virtual user.
package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.kernel.IDataArea;

/**
* The CountUserIterations class counts the number of times it is executed
* by an individual virtual user and returns this count as a string.
*/

70 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

/**
* @author IBM Custom Code Samples
*/

public class CountUserIterations implements
com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

/**
* Instances of this will be created using the no-arg constructor.
*/
public CountUserIterations() {
}

public String exec(ITestExecutionServices tes, String[] args) {
IDataArea userDataArea = tes.findDataArea(IDataArea.VIRTUALUSER);
final String KEY = "NumberIterationsPerUser";

Number numPerUser = (Number)userDataArea.get(KEY);
if (numPerUser == null) {

numPerUser = new Number();
userDataArea.put(KEY, numPerUser);

}

numPerUser.value++;
return Integer.toString(numPerUser.value);

}

private class Number {
public int value = 0;

}
}

Setting and clearing cookies for a virtual user:

The SetCookieFixedValue class sets a Cookie for a virtual user, and the
ClearCookies class clears all cookies for a virtual user.

The SetCookieFixedValue class sets a Cookie, defined in the newCookie variable,
for a virtual user just as if the server had returned a Set-Cookie.
package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.execution.http.cookie.IHTTPVirtualUserInfo;
import com.ibm.rational.test.lt.kernel.IDataArea;

import java.text.ParseException;

/**
* The SetCookieFixedValue class sets a Cookie, defined in the newCookie
* variable, for a virtual user just as if the server had returned a Set-Cookie.
*/

/**
* @author IBM Custom Code Samples
*/

public class SetCookieFixedValue implements
com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

/**
* Instances of this will be created using the no-arg constructor.
*/
public SetCookieFixedValue() {
}

Testing with IBM Worklight 71

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

public String exec(ITestExecutionServices tes, String[] args) {
String newCookie = "MyCookie=CookieValue;path=/;domain=.ibm.com";
IDataArea dataArea = tes.findDataArea(IDataArea.VIRTUALUSER);
IHTTPVirtualUserInfo httpInfo =

(IHTTPVirtualUserInfo)dataArea.get(IHTTPVirtualUserInfo.KEY);

try {
httpInfo.getCookieCache().setCookie(newCookie);

} catch (ParseException e) {
tes.getTestLogManager().reportMessage("Unable to parse Cookie " +

newCookie);
}

return null;
}

}

The ClearCookies class clears all Cookies for a virtual user. For information on
how cookies are treated in tests and schedules, seeHow loops affect the state of
virtual users.
package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.execution.http.util.CookieCacheUtil;

/**
* The ClearCookies class clears all Cookies for a virtual user.
*/

/**
* @author IBM Custom Code Samples
*/

public class ClearCookies implements
com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

/**
* Instances of this will be created using the no-arg constructor.
*/
public ClearCookies() {
}

public String exec(ITestExecutionServices tes, String[] args) {
CookieCacheUtil.clearCookieCache(tes);
return null;

}
}

Determining where a test is running:

The ComputerSpecific class determines where a test is running
package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

import java.net.InetAddress;
import java.net.UnknownHostException;

/**
* The ComputerSpecific class determined the hostname on which the test is
* running, prints the hostname and IP address as a message in the test log,
* and returns different strings based on the hostname.
*/

/**

72 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

* @author IBM Custom Code Samples
*/

public class ComputerSpecific implements
com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

/**
* Instances of this will be created using the no-arg constructor.
*/
public ComputerSpecific() {
}

public String exec(ITestExecutionServices tes, String[] args) {
String hostName = "Unknown";
String hostAddress = "Unknown";

try {
hostName = InetAddress.getLocalHost().getHostName();
hostAddress = InetAddress.getLocalHost().getHostAddress();

} catch (UnknownHostException e) {
tes.getTestLogManager().reportMessage(

"Not able to obtain host information");
return null;

}
tes.getTestLogManager().reportMessage("The hostname is " + hostName +

"; IP address is " + hostAddress);
if (hostName.equals("host-1234"))

return "Special";
else

return "Normal";
}

}

Storing and retrieving variable values:

You can use the getValue() and setValue() methods to store and retrieve values in
variables. Depending on the storage location that you specify, variables can be
shared among tests, or stored locally in the current test.

You can use the getValue() and setValue() methods to store multiple values in
variables in one custom code call. You can then create substitutions from variables
instead of from multiple custom code elements.

For example, assume that a response contains three values: id, book title, and price.
You can read all three values from the response, and then use custom code to set
the variables id, title, and price. You can then substitute the values from the three
variables as needed in the test, instead of having to write custom code for each
variable.

Note: The storage location passed to the method must match the storage location
used when declaring the variable.
package customcode;

import com.ibm.rational.test.lt.kernel.IDataArea;
import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

/**
* For Javadoc information on the ICustomCode2 and ITestExecutionServices interfaces,
* see the ’Extending test execution with custom code’ help topic.
*/

/**
* @author IBM Custom Code Samples

Testing with IBM Worklight 73

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

*/

public String exec(ITestExecutionServices tes, String[] args) {

tes.getValue("myVar", tes.STORAGE_USER); // This retrieves a value from a test for the variable called myVar. The storage area is shared betwee
tes.getValue("myLocalVar", tes.STORAGE_LOCAL); // This variable is stored locally, per test.

tes.setValue("myVar", tes.STORAGE_USER, "myNewValue"); // Change the value of the variable myVar, which is shared between tests, to myNewValue.
tes.setValue("myLocalVar", tes.STORAGE_LOCAL, "myLocalNewVar"); // Change the value of the local variable to myLocalNewVar.
return null;

}

Extracting a string or token from its input argument:

The ParseResponse class extracts a string from its input argument. The
ExtractToken class extracts a particular token (string) from its input argument. Both
classes can be useful for handling certain types of dynamic data correlation.

The ParseResponse class extracts a string from its input argument, using a regular
expression for pattern matching.
package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

import java.util.regex.*;

/**
* The ParseResponse class demonstrates using Custom Code to extract a
* string from its input argument using a regular expression for pattern
* matching.
*
* In this sample, the args[0] input string is assumed to be the full
response from a previous request. This response contains the day’s
headlines in a format such as:
*
* In the News<small class=m>
* </small></h2>
* <div class=ct>
* • Cooler weather moving into eastern
U.S. *
• Digital camera shipments
up
 *
* Given the above response, the extracted string would be:
* Cooler weather moving into eastern U.S.
*/

/**
* @author IBM Custom Code Samples
*/

public class ParseResponse implements
com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

/**
* Instances of this will be created using the no-arg constructor.
*/
public ParseResponse() {}

public String exec(ITestExecutionServices tes, String[] args) {
String HeadlineStr = "No Headline Available";
String RegExpStr = ".*In the News[^;]*;[^;]*;[^;]*;]*)>([^<]*)<"; Pattern pattern =
Pattern.compile(RegExpStr, Pattern.DOTALL); Matcher matcher =
pattern.matcher(args[0]);

if (matcher.lookingAt())
HeadlineStr = matcher.group(2);

74 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

else
tes.getTestLogManager().reportMessage("Input does not match

pattern.");
return HeadlineStr;

}

The ExtractToken class extracts a particular string from its input argument.
package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

/**
* The ExtractToken class demonstrates using Custom Code to extract a particular
* token (string) from its input argument. This can be useful for handling
* certain types of dynamic data correlation.
*
* In this sample, the args[0] input string is assumed to be comma-delimited
* and the token of interest is the next-to-last token. For example, if
* args[0] is:
* javascript:parent.selectItem(’1010’,’[Negative]1010’,’1010’,’’,’IBM’,
* ’30181’,’Rational’,’1’,’null’,’1’,’1’,’6fd8e261’,’RPT’)
* the class will return the string 6fd8e261.
*/

/**
* @author IBM Custom Code Samples
*/

public class ExtractToken implements
com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

public ExtractToken() {
}

public String exec(ITestExecutionServices tes, String[] args) {
String ArgStr;
String NextToLastStr;
String[] Tokens = args[0].split(",");

if (Tokens.length > 2) {
ArgStr = Tokens[Tokens.length - 2]; // Extract next-to-last token

// Remove enclosing ’’
NextToLastStr = ArgStr.substring(1, ArgStr.length() - 1);

} else {
tes.getTestLogManager().reportMessage("Could not extract value");
NextToLastStr = null;

}
return NextToLastStr;

}
}

Retrieving the maximum JVM heap size:

The JVM_Info class retrieves the maximum heap size of the JVM.
package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

import java.net.*;

/**
* The JVM_Info class retrieves the maximum heap size of the JVM.
* It writes a message in the test log with the hostname where the
* JVM is running and the JVM’s maximum heap size in megabytes.

Testing with IBM Worklight 75

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

*/

/**
* @author IBM Custom Code Samples
*/

public class JVM_Info implements
com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

public JVM_Info() {
}

public String exec(ITestExecutionServices tes, String[] args) {
Runtime rt = Runtime.getRuntime();
long maxMB = rt.maxMemory()/(1024*1024); // maxMemory() size is in bytes
String hostName = "Unknown";

try {
hostName = InetAddress.getLocalHost().getHostName();

} catch (UnknownHostException e1) {
tes.getTestLogManager().reportMessage("Can’t get hostname");
return null;

}

tes.getTestLogManager().reportMessage("JVM maximum heap size for host "
+ hostName + " is " + maxMB + " MB");

return null;
}

}

Running an external program from a test:

The ExecTest class runs a program, defined in the execName variable, on the
system where the test is running.
package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.kernel.services.ITestLogManager;
import org.eclipse.hyades.test.common.event.VerdictEvent;

import java.io.IOException;

/**
* The ExecTest class runs a program, defined in the execName variable,
* on the system where the test is running.
* The test verdict is set to PASS if the program return code is 0.
* The test verdict is set to FAIL if the program doesn’t execute or
* if the program return code is non-zero
* In this sample, the program is perl.exe.
*/

/**
* @author IBM Custom Code Samples
*/

public class ExecTest implements
com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

/**
* Instances of this will be created using the no-arg constructor.
*/
public ExecTest() {
}

public String exec(ITestExecutionServices tes, String[] args) {
ITestLogManager logger = tes.getTestLogManager();

76 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

int rtnval = 1;
Process p = null;
String execName = "C:/Windows/System32/perl.exe C:/Perl/true.pl";

Runtime rt = Runtime.getRuntime();
// Execute test
try {

p = rt.exec(execName);
} catch (IOException e) {

logger.reportMessage("Unable to run = " + execName);
logger.reportVerdict("Execution of " + execName + " failed",

VerdictEvent.VERDICT_FAIL);
return null;

}

// Wait for the test to complete
try {

rtnval = p.waitFor();
logger.reportMessage("Process return value is " +

String.valueOf(rtnval));
} catch (InterruptedException e1) {

logger.reportMessage("Unable to wait for " + execName);
logger.reportVerdict("WaitFor on " + execName + " failed",

VerdictEvent.VERDICT_FAIL);
return null;

}

// Check the test return code and set the test verdict appropriately
if (rtnval != 0)
{

logger.reportVerdict("Execution failed", VerdictEvent.VERDICT_FAIL);
} else {

logger.reportVerdict("Execution passed", VerdictEvent.VERDICT_PASS);
}

return null;
}

}

Adding custom counters to reports:

You can add custom counters to performance reports by using custom code. After
running tests, the results from the custom counters are automatically aggregated in
the same way that the default performance testing counters are (for example, byte
and page counters). The aggregate for the custom counters is combined from all
agent computers.

Note: Unless you place the custom counters under Run, Pages, or another root
element, the Add/Remove Run Statistics Counters window will not contain
information for the custom counters.

With the following code, you can add a custom counter. After running tests, you
can display the custom counter on the report by dragging the custom counter from
the results onto the report or by using the Add/Remove wizard.
package CustomCounter;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

/**
* @author unknown
*/
public class Class implements

com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

Testing with IBM Worklight 77

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

/**
* Instances of this will be created using the no-arg constructor.
*/
public Class() {
}

/**
* For javadoc of ICustomCode2 and ITestExecutionServices interfaces, select ’Help Contents’ in the
* Help menu and select ’Extending Rational Performance Tester functionality’ -> ’Extending test execution with custom code’
*/
public String exec(ITestExecutionServices tes, String[] args) {tes.getStatisticsManager().getStatTree().getDistribution(new String[]{"Custom Counter","
.submitDataPoint(Double.valueOf(Math.random()*100.).longValue());

return null;
}

}

Related tasks:
“Creating custom Java code” on page 60
Custom code uses references in the test as input and returns modified values to the
test. Use the ICustomCode2 interface to create custom code and the
ITestExecutionServices interface to extend test execution. These interfaces are
contained in the com.ibm.rational.test.lt.kernel.services package.

Using transactions and statistics:

You can use custom code to start transactions, gather additional statistics during a
transaction, and stop a transaction.

The following code shows how to start a transaction. Transactions that are
generated by test execution services automatically create and manage statistics.
package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.kernel.services.ITransaction;

/**
* @author IBM Custom Code Samples
*/
public class BeginTransaction implements

com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

/**
* Instances of this will be created using the no-arg constructor.
*/
public BeginTransaction() {
}

/**
* For Javadoc information on the ICustomCode2 and ITestExecutionServices interfaces,
* see the ’Test execution services interfaces and classes’ help topic.
*/
public String exec(ITestExecutionServices tes, String[] args) {
// the name of the transaction could have been passed in via data correlation mechanism.
ITransaction foo = tes.getTransaction("foo");
foo.start();
return null;
}
}

The following code shows how to gather additional statistics during a transaction.

78 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

package customcode;

import com.ibm.rational.test.lt.kernel.ITime;
import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.kernel.statistics.IScalar;
import com.ibm.rational.test.lt.kernel.statistics.IStat;
import com.ibm.rational.test.lt.kernel.statistics.IStatTree;
import com.ibm.rational.test.lt.kernel.statistics.impl.StatType;

/**
* @author IBM Custom Code Samples
*/
public class BodyTransaction implements

com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

/**
* Instances of this will be created using the no-arg constructor.
*/
public BodyTransaction() {
}

/**
* For Javadoc information on the ICustomCode2 and ITestExecutionServices interfaces,
* see the ’Test execution services interfaces and classes’ help topic.
*/
public String exec(ITestExecutionServices tes, String[] args) {
IStatTree tranStat;
IStatTree timeStat;
IStatTree countStat;

IStat timeDataStat = null; // counter for the time RANGE
IScalar countDataStat = null; // counter for the count SCALAR

ITime timer = tes.getTime();

IStatTree rootStat = tes.getStatisticsManager().getStatTree();
if (rootStat != null) {
// these counters set up the hierarchy
tranStat = rootStat.getStat("Transactions", StatType.STRUCTURE);
timeStat = tranStat.getStat("Body Time", StatType.STRUCTURE);
countStat = tranStat.getStat("Bocy Count", StatType.STRUCTURE);

// the name of the counters could have been passed in via data correlation mechanism
timeDataStat = (IStat) timeStat.getStat("foo", StatType.RANGE);
countDataStat = (IScalar) countStat.getStat("foo", StatType.SCALAR);
}

// get the start time
long startTime = timer.timeInTest();

// do the work
// whatever that work might be

// get the end time
long endTime = timer.timeInTest();

// update timeDataStat with the elapsed time
if (timeDataStat != null)
timeDataStat.submitDataPoint(endTime - startTime);

// update the countDataStat
if (countDataStat != null)
countDataStat.increment();

Testing with IBM Worklight 79

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

return null;
}

}

The following code shows how to stop a transaction.
package customcode;

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;
import com.ibm.rational.test.lt.kernel.services.ITransaction;

/**
* @author IBM Custom Code Samples
*/
public class EndTransaction implements

com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

/**
* Instances of this will be created using the no-arg constructor.
*/
public EndTransaction() {
}

/**
* For Javadoc information on the ICustomCode2 and ITestExecutionServices interfaces,
* see the ’Test execution services interfaces and classes’ help topic.
*/
public String exec(ITestExecutionServices tes, String[] args) {
// the name of the transaction could have been passed in via data correlation mechanism.
ITransaction foo = tes.getTransaction("foo");
foo.stop();
return null;
}

}

Reporting custom verification point failures:

You can use custom code to report a custom verification point failure.

The following code shows how to report a custom verification point failure.
package customcode;

import org.eclipse.hyades.test.common.event.VerdictEvent;
import org.eclipse.hyades.test.common.runner.model.util.Verdict;

import com.ibm.rational.test.lt.execution.core.IVerificationPoint;
import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

/**
* @author IBM Custom Code Samples
*/
public class Class implements

com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

/**
* Instances of this will be created using the no-arg constructor.
*/
public Class() {
}

/**
* For javadoc of ICustomCode2 and ITestExecutionServices interfaces, select ’Help Contents’ in the
* Help menu and select ’Extending Rational Performance Tester functionality’ -> ’Extending test execution with custom code’
*/

80 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

public String exec(ITestExecutionServices tes, String[] args) {
tes.getTestLogManager().reportVerificationPoint("CustomVP", VerdictEvent.VERDICT_FAIL);
return null;
}

}

Debugging custom code:

This example demonstrates debugging custom code by adding a breakpoint. It
provides sample code to add a breakpoint. This way of debugging custom code is
applicable only for a schedule.

Procedure

1. Start IBM Rational Performance Tester and create a performance test project
MyProject.

2. Create an HTTP test, MyTest, by recording a visit to http://
<hostname>:7080/.

Note: Before accessing the URL, ensure that Rational Performance Tester is
running. The URL returns an HTTP 404 error, which is expected.

3. Expand the first request and click the response element.
4. In the Test Element Details section, right-click in the Content field and click

Create Field Reference.
5. Type the reference name and click OK.
6. Click the first page, and then click Add > Custom Code.
7. In the Arguments section of Test Element Details, click Add.
8. Expand the data source for the search results page, select the reference name

that you created in step 5, and click Select.
9. Click Generate Code. A new tab with the generated code is displayed.

10. Insert the following the code into the exec() method:
ITestLogManager history = tes.getTestLogManager();
if (args.length > 0) {

if (args[0].indexOf("Invester Relations") != -1) {
history.reportMessage("First page failed. Bail loop!");
tes.getLoopControl().continueLoop();

}
}

Important:

v Fix the double quotation marks, if any, so they are straight and the compiler
no longer gives warning.

v To resolve complier warnings related to importing a class, press Ctrl + Shift
+ O.

The code will look like this:

11. To set a breakpoint, click anywhere on the args[0].indexOf line. Move the
pointer to the left-most portion of the text editor window and double-click
with the pointer horizontally on the same line. A blue button is displayed in
this left-most portion of the window indicating the breakpoint is set.

12. Save the custom code and then the test.

Testing with IBM Worklight 81

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

13. Create a new schedule, Schtest.
a. In Schtest, set the number of users to run to 1.
b. Click User Group 1 and click Add > Test. Select the MyTest test and click

OK.
c. Click User Group 1 and click the Run this group on the following

locations button.
d. Click Add > Add New.
e. In the New Location window, type the following information:

1) In Host name, type localhost.
2) In Name, type debuglocation.
3) In Deployment directory, type C:\mydeploy.
4) Click Finish.

f. Save the schedule.
14. In the Test Navigator, right-click debuglocation and click Open.
15. Click the General Properties tab and click Add.
16. In the Property name field, type RPT_VMARGS and in the Property value field,

add the following values each separated by a space.
-Xdebug
-Xnoagent
-Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=8000

17. Save the location.
18. Attach the debugger to the schedule execution process.

a. Run the schedule. Because the schedule is using debuglocation, it will
pause at the beginning to let you attach the debugger to the execute
process.

b. Click Window > Open Perspective > Other > Debug.
c. Click Run > Debug Configurations.
d. In the Debug Configurations window, right-click Remote Java Application

and click New.
e. Click Debug. A list of running threads are displayed in the Debug window

and the schedule execution pauses at the debug breakpoint.
f. If you are doing it for the first time, you might need to provide the source

location to see the custom Java code. You do this by taking the following
steps:
1) Click Edit Source Lookup Path and click Add.
2) Click Workspace Folder > OK.
3) Now, expand MyProject, select the src folder, and click OK. The

schedule run stops at the specified breakpoint.

Migrating custom code from previous versions
You can run scripts that contain custom code from previous releases and edit tests
to make new calls to old or new custom code classes.

82 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

You can perform the following tasks without any additional steps:
v Run a script that contains custom code that was created in a previous release.
v Edit a test to make a new call to an old custom code class.
v Add new custom code to a test that contains old custom code.

To edit a class in existing custom code so that it can call new TestExecutionServices
methods, type cast the IKlog argument in the old custom code to the
ITestExecutionServices interface.

Testing with IBM Worklight 83

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

84 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Index

A
add user action 36
Add user action for this element 42
Add user action in the test editor 36
android application 27
application

preparing
Mobile 23

C
ClearCookies class 71
Compound tests

adding tests 55
adding to Test Workbench

projects 58
creating 54
modifying 56
overview 53
running 56
viewing 54

ComputerSpecific class 72
cookies

setting and clearing for virtual
users 71

CountAllIterations class 70
CountUserIterations class 70
Custom code

debug 81
custom counters

test execution services 77
custom Java code

code execution counts 70
controlling loops 66
creating 60
custom counters 77
determining where a test is

running 72
extracting strings 74
interfaces and classes 62
migrating 83
overview 60
performance 65
printing input arguments to a file 69
retrieving the maximum JVM heap

size 75
retrieving virtual user IP address 69
running a program with a test 76
setting and clearing cookies for virtual

users 71
statistics 78
transactions 78
using strings 73
verification points 80

D
data correlation

custom code example 74

DataAreaLockException (test execution
services) 62

Debug custom code 81

E
ExecTest class 76

F
files

printing input arguments to 69

I
IARM (test execution services) 62
ICustomCode2 (test execution

services) 62
IDataArea (test execution services) 62
IEngineInfo (test execution services) 62
ILoopControl (test execution services) 62
instrument 27
IP addresses

retrieving from virtual user 69
IPDLogManager (test execution

services) 62
IScalar (test execution services) 62
IStat (test execution services) 62
IStatistics (test execution services) 62
IStatisticsManager (test execution

services) 62
IStatTree (test execution services) 62
ITestExecutionServices (test execution

services) 62
ITestInfo (test execution services) 62
ITestLogManager (test execution

services) 62
IText (test execution services) 62
ITime (test execution services) 62
ITransaction (test execution services) 62
IVirtualUserInfo (test execution

services) 62

J
Java

test execution services 60
JVM heap size

retrieving maximum 75
JVM_Info class 75

L
loops

controlling 66

M
migration

custom Java code 83
mobile

testing 1
Mobile

application editor overview 23
test editor overview 34

mobile data 42
modify step target 42

O
OutOfScopeException (test execution

services) 62

P
ParseResponse class 74
PrintArgs class 69
projects

creating 11

S
SetCookieFixedValue class 71
StatType (test execution services) 62
strings

extracting from input arguments 74
managing 73

T
test execution services

code execution counts 70
custom counters 77
determining where a test is

running 72
extracting strings 74
interfaces and classes 62
migrating Java code 83
overview 60
printing input arguments to a file 69
retrieving the maximum JVM heap

size 75
retrieving virtual user IP address 69
running a program with a test 76
setting and clearing cookies for virtual

users 71
statistics 78
transactions 78
using strings 73
verification points 80

testing
mobile 27

overview 1
shell-sharing 27

tests
adding custom Java code 60

85

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

tests (continued)
customizing 62
declaring variables 40
editing

Mobile 34
extending

controlling loops 66
custom Java code 60

migrating custom Java code 83
test execution services

code execution counts 70
custom counters 77
determining where a test is

running 72
extracting strings 74

tests (continued)
test execution services (continued)

printing input arguments to a
file 69

retrieving the maximum JVM heap
size 75

retrieving virtual user IP
address 69

running a program with a test 76
setting and clearing cookies for

virtual users 71
statistics 78
transactions 78
using strings 73

tokens
extracting from input arguments 74

TransactionException
test execution services 62

V
variables

assigning 40
Mobile/web object property 40

virtual users
counting code runs 70
retrieving IP addresses 69
setting and clearing cookies 71

86 Mobile testing for IBM Worklight

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 7. Upgrading from one version of IBM Worklight to
another

You must take several actions when you upgrade from one version of IBM
Worklight to another.

About this task

Upgrading from one version of IBM Worklight to another involves upgrading the
software, upgrading your database, if needed, and sometimes upgrading your
apps. Most of this upgrade is automatically done for you when you use the
installer. However, the upgrade might also involve some manual operations, such
as setting various properties, using special command facilities, and running
supplied Ant tasks. The complete upgrade procedures are detailed in the following
topics.

Migrating from IBM Worklight V5.0.6 or later to V6.1.0
This section contains the procedures for upgrading from IBM Worklight V5.0.6 or
later to V6.1.0 and migrating your Worklight applications to work with IBM
Worklight V6.1.0.

The topics in this section of the documentation focus on the migration process
from IBM Worklight V5.0.6 or later to IBM Worklight V6.1.0.

They cover how to upgrade your IBM Worklight Studio and IBM Worklight Server
software to V6.1.0, and how to migrate your applications for V6.1.0.
v For information about how to upgrade your current installation of Worklight

Studio to V6.1.0, see “Upgrading to Worklight Studio V6.1.0” on page 222.
v For information about how to upgrade your current installation of Worklight

Server to V6.1.0, see “Upgrading to Worklight Server V6.1.0 in a production
environment” on page 226.

If you are upgrading from versions of IBM Worklight earlier than V5.0.6, or to an
IBM Worklight version other than V6.1.0, see the following sections, as appropriate:
v “Migrating from IBM Worklight V5.0.6 to V6.0.0” on page 259
v “Migrating from IBM Worklight V5.0.5 to V5.0.6” on page 303
v “Migrating from IBM Worklight V5.0.0.3 to V5.0.5” on page 308

Separation of lifecycle between Worklight Server and
Worklight Studio

Since IBM Worklight V6.1.0, there is a separation of the Worklight Studio and the
Worklight Server upgrade lifecycles, which provides benefits to both developers
and IT staff.

In version 6.1.0, IBM Worklight allows a separation between the Worklight Server
and Worklight Studio lifecycles. This separation means:
v It is possible to upgrade an instance of Worklight Server to version 6.1.0 without

upgrading your existing applications to Worklight Studio version 6.1.0.

221

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v It is possible to deploy project WAR files, apps, and adapters that are developed
with any supported version of Worklight Studio (V5.0.6.x, V6.0.0.x, and V6.1.0)
to an instance of Worklight Server V6.1.0. But the apps that are deployed must
be built with the same version of Worklight Studio as the project WAR file that
was previously deployed. As an example, consider a Worklight project that was
developed on Worklight Studio V5.0.6, and this project's WAR file is later
deployed on Worklight Server V6.1.0. This WAR file is deployed as a V5.0.6
project, without having been opened in Worklight Studio V6.1.0. You can later
deploy to this Worklight project only applications and adapters that were
developed using Worklight Studio V5.0.6 (and not V6.1.0 or any other version).

Some limitations of this lifecycle separation are as follows:
v Only application environments that are supported by Worklight Server V6.1.0

can be migrated. Older application environments that are not supported by
Worklight Server V6.1.0 (for example, iGoogle, Windows Phone 7.5, or Facebook)
will no longer be available after the server upgrade.

v To deploy a project WAR file, you must use the tools that are provided with the
target Worklight Server version you are deploying to. That is, to deploy with an
Ant task to Worklight Server, you must use the worklight-ant-deployer.jar file
that is located in the WorklightServer directory of the Worklight Server
installation directory.

Terminology

In the topics that deal with migration and updating, the following definitions of
several important terms are used:
v Upgrade – Moving from one version of software to the next. For example, you

upgrade an installation of Worklight Server V6.0.0 to Worklight Server V6.1.0.
v Migrate – Updating, either automatically or manually, a piece of software so that

it is able to use the next level of the software. For example, you migrate a
Worklight project's database schema to use the next version level of Worklight
Server. Or you migrate a Worklight application to use the next version level of
Worklight Studio.

v Deploy – Installing an application on a server. For example, you deploy a
Worklight application to a production instance of Worklight Server running on
an application server.

Upgrade paths

The topics under this section apply to the following types of upgrade and
migration paths:
v Major version change – For example, upgrading from V5.0.6.x to V6.1.0.
v Minor version change – For example, upgrading from V6.0.0 to V6.1.0.
v Fix pack upgrades – For example, upgrading from V6.1.0 to V6.1.0.x.
v Interim fix – For example, upgrading from V6.1.0 to an interim fix identified by a

build number.

Upgrading to Worklight Studio V6.1.0
How to upgrade your current version of Worklight Studio to the latest version.

222 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

The upgrade to Worklight Studio V6.1.0 is performed as an Eclipse P2 update
operation. After Worklight Studio V6.1.0 is installed, you can then point to your
earlier workspace and work with your existing projects.

Procedure
1. Start your Eclipse IDE workbench and verify your version of Eclipse.

v Worklight Studio V6.1.0 must be installed into Eclipse V4.2.2 (Juno) or
Eclipse V4.3.1 (Kepler) as a new installation. It cannot be installed in earlier
versions of Eclipse (prior to Juno).

v If you have an older version of Eclipse, update it to Juno or Kepler before
continuing this procedure.

2. Click Help > Install new software.
3. In the Add Repository window, click Archive.
4. Browse to the update site directory on the installation disk or to your

downloaded installation files.
5. Select the update site .zip file and then click OK.
6. On the Available Software page, select IBM Worklight Studio Development

Tools, and click Next. If you want to see the components to be installed,
expand IBM Worklight Studio Development Tools, and select the components
you want:
v Always select IBM Worklight Studio.
v Select IBM Dojo Mobile Tools if you anticipate using that JavaScript library.
v Select IBM jQuery Mobile Tools if you anticipate using that JavaScript

library.
7. On the Install Details page, review the features of Worklight Studio to be

installed.
a. You may see one or more messages in the lower part of the page similar to

Your original request has been modified. "IBM Dojo Mobile Tools" is
already installed, so an update will be performed instead. This is
expected, and indicates that an update is being performed.

b. Click Next.
8. On the Review Licenses page, review the license text. If you agree to the terms,

select I accept the terms of the license agreement and then click Finish.
9. The installation process starts. Follow the prompts (during which you may be

asked to restart Eclipse) to complete the installation.

Results

Worklight Studio is now updated.

Note:
If the update appears to hang, it might be because you are using a bad mirror site.
Add this line to your eclipse.ini file to solve the problem:
-Declipse.p2.mirrors=false

The following topic contains information about how to migrate and work with
your existing projects.

Chapter 7. Upgrading from one version of IBM Worklight to another 223

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Migrating Worklight projects to Worklight Studio V6.1.0
How to migrate your existing projects (including those created in Worklight Studio
V5.0.6.x or V6.0.0.x) to Worklight Studio V6.1.0.

Migrating older Worklight projects to Worklight Studio V6.1.0

Open your existing projects (that is, projects originally created in Worklight Studio
V5.0.5, V5.0.6.x or V6.0.0.x) as you would normally. This action triggers a migration
process that updates them to work with V6.1.0.

Note: To migrate projects that were created in versions of Worklight Studio older
than V5.0.5, you must first migrate these projects to an intermediate level such as
V5.0.5, V5.0.6, or V6.0. For example, if you have a V5.0.0.3 project:
1. Migrate the V5.0.0.3 project to Worklight Studio V5.0.5.x, using the procedures

listed in “Migrating from IBM Worklight V5.0.0.3 to V5.0.5” on page 308.
2. Open the project (now migrated to V5.0.5) in Worklight Studio V6.1.0 to

complete the migration process.

If for any reason you need to access the pre-migrated versions of your Worklight
projects, a compressed file backup is made of those files. The location of this file is
displayed in the second step of the migration procedure.

If any of your existing target environments are removed in the newest version of
Worklight Studio, a message notifies you, and those folders are marked as plain
source folders in your Worklight file hierarchy.

If any applications in your existing projects use the obsolete database login module
for user authentication, modify them to use adapter-based authentication with the
SQL adapter instead.

Important: In IBM Worklight V6.1.0, the following elements of the JavaScript
client-side API, which were deprecated in previous versions of IBM Worklight, are
now removed:
v WL.Page: Removed
v WL.Fragment: Removed

As a replacement to build your multi-page applications, consider using the
equivalent implementation in JavaScript frameworks such as jQuery Mobile,
Sencha Touch, and Dojo Mobile. You might also use embedded jQuery APIs to
load page fragments (see http://api.jquery.com/load/). For more information
about how to build a multi-page application, see the module Building a multi-page
application under category 3, Worklight client-side development basics, in Chapter 3,
“Tutorials and samples,” on page 27.

Migrating Worklight Native API projects

Projects of type Worklight Native API that were created in earlier versions of
Worklight Studio have the JAR files containing their native code rebuilt when they
are migrated to Worklight Studio V6.1.0. As a result, after you migrate your
existing Native API project, you must recopy the library and the client property
files of your Native API application into your Worklight project.
v For iOS Native API projects, follow the instructions in “Copying files of Native

API applications for iOS” on page 471.
v For Android Native API projects, follow the instructions in “Copying files of

Native API applications for Android” on page 474.

224 IBM Worklight V6.1.0

http://api.jquery.com/load/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v For JavaME Native API projects, follow the instructions in “Copying files of
Native API applications for Java Platform, Micro Edition (Java ME)” on page
478.

Working with Android projects

In IBM Worklight V6.1.0, developers are encouraged to use the latest Android SDK
API level that is supported by the Worklight Studio – Android 4.3 (API Level
18). Using the latest Android SDK allows the Android system to disable
compatibility behaviors that slow the mobile application and to use the latest
capabilities and features it includes.

When a new Android project is created, an attribute named
android:targetSdkVersion is added in the androidManifest.xml file under the
<uses-sdk> element, with a default value of 18. This value specifies that the API
Level of the application targets is Android 4.3. In previous releases of Worklight
Studio, this value was not specified, and the API level 8 was targeted by default.

The default Android SDK API level is not changed for existing projects that are
opened in Worklight Studio V6.1.0.

Note: The Cordova libraries are updated during the installation of Worklight
Studio V6.1.0. Therefore, for Android applications, if you have any user/custom
plug-in that refers to the org.apache.cordova.api package, you must replace
org.apache.cordova.api with org.apache.cordova.

Impact of migrating to a new version of Worklight Studio for
applications already in production

In order for Direct Update to work, both the client application and the server-side
artifacts must be generated from the same version of Worklight Studio.

In the following cases, if you migrate your Worklight project to a new version of
Worklight Studio, and even if you do not change the code of the application, you
must still increment the version number of the application. After you make your
new application available to the Worklight production server, you must ask your
users to download a new version of the application from the application store.
v Applications that were created with a version of Worklight Studio older than

V5.0.0.3. The communication protocol of Worklight Server V6.1.0 supports the
protocols of client applications that are built with IBM Worklight V5.0.0.3 or
later. Device users who use apps that were built with IBM Worklight V5.0.0.3 or
later, and whose server-side artifacts have been successfully deployed to
Worklight V6.1.0 and tested on a test server should continue to work without
requiring the device user to download a new version of the application.
Device users who use applications that were built with IBM Worklight V5.0.0.3
or later, whose server-side artifacts were regenerated using the newer version of
Worklight Studio, and that are successfully deployed to Worklight Server V6.1.0
and tested on a test server should continue to work without requiring the device
user to download a new version of the application. However, Direct Update is
not available for these applications.

v Applications that use the Direct Update feature. The Direct Update feature
(“Direct updates of app versions to mobile devices” on page 833) to
automatically update application versions stops working after some migration
paths. Worklight Studio V6.1.0 displays a warning when such situations are
detected when migrating apps created in older versions.

Chapter 7. Upgrading from one version of IBM Worklight to another 225

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To notify your users that a new version of the application is available, you can
use the startup display notification feature that is documented at “Displaying a
notification message on application startup” on page 840. If the application
update is mandatory, another alternative is to deny access to the old application
version with the feature that is documented at “Remotely disabling application
connectivity” on page 837.
If you need to upload a new version of your application to a public application
store such as the Apple Store or Google Play, you must in some cases resubmit
the app for approval by the store.

Upgrading to Worklight Server V6.1.0 in a production
environment

Upgrading Worklight Server in a production environment is a more exacting
process than in your development environment because you must back up your
data and prepare for the upgrade carefully to minimize production downtime. This
section provides a series of steps to upgrade your production server or servers
efficiently and in the shortest time possible.

When you upgrade from Worklight Server V5.0.6.x or V6.0.0.x to V6.1.0 in a
production environment, the process can be more complicated than upgrading to a
new version in your development environment. The upgrade procedure can also
take longer if you have existing IBM Worklight applications that run in a
production Worklight Server environment. For step-by-step instructions on how to
upgrade your production Worklight Server to V6.0.x, see the following topics.

Note: The documentation in the topics that follow assumes that:
v Your database type is IBM DB2, MySQL, or Oracle (not Apache Derby).
v Your application server type is WebSphere Application Server Full Profile,

WebSphere Application Server Liberty Profile, or Apache Tomcat.

Important: The topics are in a specific order, and must be completed in the order
shown.

The upgrade procedure can take some time, several hours in fact, and so these
activities must be scheduled to create the least disruption and downtime to
production servers and the applications that run on them.

The topics provide essential information about backing up any existing databases
or application server data, migrating your existing IBM Worklight projects and
applications to the new version, and performing other preparation tasks that must
be completed before you install the new version of Worklight Server. These
preparatory steps are followed by post-installation, verification, and configuration
tasks that must be completed before you restart the new Worklight Server and
finish migrating your IBM Worklight applications.

In the following topics, you can also find specific instructions for upgrading from
Worklight Server V6.1.0 to V6.1.0.1 (fix pack), or to an interim fix.

Read through the entire set of topics before you begin the actual upgrade process
to become familiar with the tasks ahead of you, what must be done, and in what
order.

Start with “Overview of the upgrade to Worklight Server V6.1.0 process” on page
227, and then read through the steps under each of the major topics that follow.

226 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Overview of the upgrade to Worklight Server V6.1.0 process
An overview of the Worklight Server V6.1.0 upgrade process, including what is
updated and what is not.

A typical instance of Worklight Server includes the following elements:
v A Database Management System (DBMS) that runs databases for the IBM

Worklight Application Center and for Worklight Server.
v One or more application servers. These application servers host and run:

– The IBM Worklight Application Center application (if Application Center is
installed on that server).

– One or more Worklight Server applications. Each Worklight Server
application:
- Is defined by a WAR file that contains a Worklight Console, default values

for server-specific configuration settings, and other resources that are
required to run the Worklight applications and adapters.

- Is connected to two databases, one for Worklight and one for Worklight
Reports.

- Can run on one or more physical servers (for both workload and service
availability considerations).

– An installation of the IBM Worklight Server programs, usually on the same
computer as the Application Server.

Other items can belong to a Worklight configuration, for example, an IBM HTTP
Server, IBM DataPower, or an LDAP system.

But the topics in this section are only focused on the task of upgrading and
configuring the following entities:
v The IBM Worklight Server programs.
v The databases.
v The Worklight Server and Application Center applications that are deployed in

the Application Server.

The actual steps that you must complete for the upgrade can change, depending
on the particular upgrade path you are pursuing. Your upgrade path is determined
by whether you are upgrading:
v From a previous version of IBM Worklight to Worklight Server V6.1.0 (for

example, from V5.0.6.x to V6.1.0 or from V6.0.0.x to V6.1.0).
v From Worklight Server V6.1.0 to a fix pack release (for example, from V6.1.0 to

V6.1.0.x).
v From Worklight Server V6.1.0 to an interim fix release (for example, from V6.1.0

to a designated interim fix).

The spreadsheet at the following link lists the individual steps for each of these
upgrade paths, and helps you to determine:
v Whether the step is required or not required, depending on your IBM Worklight

upgrade path.
v Whether your Application Center and Worklight Server is running (old version),

uninstalled, stopped, or upgraded (and running) during this step as the result of
actions in the current step or previous steps.

The spreadsheet can be downloaded here: Worklight_Server_V610_Upgrade_Steps
spreadsheet

Chapter 7. Upgrading from one version of IBM Worklight to another 227

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/Worklight_Server_Upgrade_Steps.xls
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/Worklight_Server_Upgrade_Steps.xls

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To provide further assistance, at the beginning of each topic a shorter version of
this spreadsheet is provided for that step.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes/No Yes/No Yes/No Yes/No Running/
Stopped/

Uninstalled/
Upgraded

Running/
Stopped/

Uninstalled/
Upgraded

Preparing for the upgrade to Worklight Server 6.1.0
Several preparation tasks must be completed before you begin the actual
installation of Worklight Server V6.1.0.

Migrating to a new version of Worklight Server in a development environment is
quick and easy because in most cases no critical data must be preserved in the IBM
Worklight databases. In a production environment, however, more time and effort
are required for the upgrade, to minimize production downtime and inconvenience
to users of existing applications.

The following topics cover preparation tasks to be completed before you begin the
installation of the new Worklight Server version. These tasks can be performed at
any time before the upgrade, but must be completed before you move to the next
major step, “Starting the Worklight Server V6.1.0 upgrade process” on page 238.

Gathering the information you need for the Worklight Server V6.1.0 update:

To avoid having to stop the upgrade process to look up required information,
gather it in advance and have it handy.

About this task

One of the purposes of these instructions is to minimize the time that is required
for the Worklight Server upgrade. You do not want to start the procedure and then
discover that you are missing some piece of information that is required by the
installer.

To avoid this situation, prepare a list of information you are likely to be asked for,
and keep it handy during the actual installation procedure.

In addition, it is often necessary to pre-plan certain aspects of the upgrade and
clear them with your application server administrator and database administrator.
For example, you must know which user name to use when you install the
Worklight Server upgrade. Similarly, you must either have sufficient permissions to
create or update databases, or have your database administrator do it for you.

228 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes Yes Yes Yes Running Running

Procedure

Go through the following checklist to make sure that you have all of the necessary
information to begin the upgrade:
v Verify that your operating system, application server, and database meet the

system requirements for Worklight Server V6.1.0 at Detailed System
Requirements for IBM Worklight and IBM Mobile Foundation.

v Make a list of the host names and IP addresses of all servers that must be
upgraded.

v Make a similar list of all database names and locations.
v Ensure that the correct JDBC drivers for the target databases are available on

your computer. Access to them is needed for IBM Installation Manager to
redeploy the Application Center application, and for the Ant scripts to redeploy
the Worklight Console.

v The upgrade procedure requires the credentials of the Worklight, Worklight
reports, and Application Center databases. Therefore, you must either know the
correct schemas, user names, and passwords, or have your database
administrator assist you.

v The upgrade procedure requires you to stop and restart the application server
and verify its configuration. Therefore, you must be familiar enough with your
application server to complete these tasks, or have a system administrator do
them.

v Identify all systems that you must update if the URL to access the Application
Center or the Worklight Server application or their console changes. If you
upgrade from V 5.0.6 to V 6.1,0, the URL changes. It can also change if you plan
to perform a rolling upgrade.

Identify the Worklight WAR file and prepare the Ant deployment script:

In this task, you identify the IBM Worklight WAR file that contains numerous
resources and configuration settings for Worklight Server, and prepare the Ant
script that is used to deploy it.

About this task

The Worklight WAR file is a web application archive that contains a Worklight
Console, default values for server-specific configuration settings, and other
resources that can be required to run the Worklight applications and adapters.

Chapter 7. Upgrading from one version of IBM Worklight to another 229

http://www.ibm.com/support/docview.wss?uid=swg27024838
http://www.ibm.com/support/docview.wss?uid=swg27024838

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes Yes Yes Yes Running Running

Procedure

In the upgrade process, the Worklight project WAR file must be redeployed to the
application server. It is important to deploy the same WAR file. To ensure this, you
must complete the following steps:
v Find the WAR file that was previously deployed to the application server.
v If you are upgrading from Worklight Server V6.0.0.x, find the JNDI properties

that were set for the deployed Worklight project to override the default
worklight.properties. If you used an Ant script with the task
configureapplicationserver to deploy the WAR file, you can find the JNDI
properties that were set at installation time in this script. For more information,
see “Configuration of IBM Worklight applications on the server” on page 772.

For upgrading from Worklight Server V6.0.0.x, the procedure to deploy the WAR
file is defined at “Deploying the project WAR file” on page 714

When you upgrade from Worklight Server V5.0.6.x, a Worklight WAR file is
installed by the installer. If you have not modified this WAR file on your
production server, you must create a modified file by following the instructions at
“Building a project WAR file with Ant” on page 714.
v When you modifying the WAR file, use Worklight Studio V5.0.6.x or the Ant

tasks (worklight-ant.jar) from an installation of Worklight Studio V 5.0.6.x that
was used to build the apps previously deployed to the server. The version of
Worklight Studio used to build the project WAR file must match exactly the
version of Worklight Studio used to build the apps previously deployed to the
server.

v The WAR file is automatically migrated to V6.1.0 format during the deployment
procedure that is defined in later steps.

You must also prepare the Ant deployment script that is used to migrate this war
file to version 6.1.0, and to deploy it to the application server, with the upgraded
Worklight Runtime Library.

When you upgrade from Worklight Server V6.0.0.x, you can reuse the script that
you used for the initial deployment. Make a copy of this file and apply to it the
following modifications:
v In the Ant file, create a target named minimal-update, with the following

content:
<target name="minimal-update">

<updateapplicationserver>
-----> (Copy here the same content as in task <configureapplicationserver>)

</updateapplicationserver>
</target>

230 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The minimal-update target can be used in some upgrade paths. When this target
can be used, the configuration of the application server is not changed and it is
not necessary to review the configurations of the deployed application or
datasources. See Worklight_Server_V610_Upgrade_Steps spreadsheet to
determine the upgrade paths in which this scenario can be used.

v In the Ant file, replace the reference to the JAR file that defines the IBM
Worklight tasks. In Worklight Server V6.0.0, the JAR file is named
worklight-ant.jar. In Worklight V6.1.0, it is named worklight-ant-
deployer.jar. For example, if the V6.0.0 script looks like this:

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<fileset dir="${worklight.server.install.dir}/WorklightServer">
<include name="worklight-ant.jar"/>

</fileset>
</classpath>

</taskdef>

replace the reference to the JAR file, as highlighted below:
<taskdef resource="com/worklight/ant/defaults.properties">

<classpath>
<fileset dir="${worklight.server.install.dir}/WorklightServer">

<include name="worklight-ant-deployer.jar"/>
</fileset>

</classpath>
</taskdef>

When you upgrade from Worklight Server V5.0.6.x:
v Install Worklight Server V6.1.0 on your computer, but without installing

Application Center.
v Navigate to directory <WorklightInstallDir>/WorklightServer/configuration-

samples.
v Select the file that corresponds to your combination of application server and

database (the files are named with the convention redeploy506-<appserver>-
<db>.xml).

v Make a copy of this file.
v Edit the copied file and change the values of the properties to match your

installation configuration.

Alternatively, you can create an Ant file using the Server Configuration Tool and
export the resulting Ant file to run it on the command line.

The Server Configuration Tool does not separate calls to the individual Ant targets
as this is required in the upgrade procedure. If you create an Ant file with the
Server Configuration Tool, review the database settings carefully. If you enter
different database settings than those that were used at install time, the deployed
apps will not be visible to the Worklight Server.

Review and note the Application Server configuration for Worklight Server and
Application Center:

In this task, if it is required for your upgrade path, you prepare for the
undeployment and redeployment of applications to the application server to
correct information that can potentially be modified or deleted by IBM Installation
Manager.

Chapter 7. Upgrading from one version of IBM Worklight to another 231

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/Worklight_Server_Upgrade_Steps.xls

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

In some upgrade scenarios, the applications that are deployed to the application
server must be undeployed, and then redeployed. As a consequence, the
configurations that were previously made to these applications are erased and
must be reconfigured after the application is deployed again to the application
server.

The applications to review are as follows:
v For Application Center:

– The Application Center database
– The Application Center Console and Application Center Services

v For Worklight:
– The Worklight Console (or, in WebSphere Application Server Full Profile,

Worklight Console <id> if you specified an id at deployment time)

The JDBC data sources to review are as follows:
v For Application Center: the Application Center database
v For Worklight:

– The Worklight Database (or, in WebSphere Application Server Full Profile,
Worklight database <id> if you specified an id at deployment time)

– The Worklight Reports Database (or, in WebSphere Application Server Full
Profile, Worklight reports database <id> if you specified an id at
deployment time)

If these items were previously configured, note the configuration details so you can
reconfigure them after the applications are reinstalled and redeployed. The
configurations affected can include security settings, lists of users authorized to use
the application, startup behaviors, connection pool settings, JNDI properties, and
other items.

The upgrade paths in which this step is not mandatory are listed in the following
table.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes No (for
Worklight

Server), Yes
(for

Application
Center)

See fix pack
installation
instructions

See interim
fix

installation
instructions

Running Running

Procedure

To review the configuration of the data sources and applications:
v For WebSphere Application Server Full Profile, use the console.
v For WebSphere Application Server Liberty Profile:

232 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

– Open the server.xml file. The settings that can be modified or removed by
IBM Installation Manager are between the marker comments, as shown in the
following sample:
<!-- Begin of configuration added by IBM Worklight installer. -->
...
<!-- End of configuration added by IBM Worklight installer. -->

v For Apache Tomcat:
– Open the server.xml and the tomcat-users.xml files. The settings that can be

modified or removed by IBM Installation Manager are between the marker
comments, as shown in the following sample:
<!-- Begin of Context and Realm configuration added by IBM Worklight installer. -->
...
<!-- End of Context and Realm configuration added by IBM Worklight installer. -->

Verify environments of deployed apps:

Before you upgrade to Worklight Server V6.1.0, verify that all of the environments
that are targeted in your Worklight applications are still supported.

About this task

After the migration is completed, your Worklight applications will contain only the
environments that are supported by the current version of Worklight Server.

For example, IBM Worklight Server V6.1.0 no longer supports some of the
Worklight environments such as iGoogle, Facebook, Apple OS X Dashboard, Vista
that were supported in IBM Worklight V5.0.6. If a target mobile device has an
application that is installed on it which requires an environment that is no longer
supported by Worklight Server V6.1.0, the application on this device will stop
working after an upgrade of Worklight Server to version V6.1.0.

However, if your Worklight Server contains applications that have support for a
mobile OS version that was released after the release of Worklight Server V6.1.0
(for example, because your development team applies a fix pack to Worklight
Studio that provides support for this new mobile OS), these applications will work
after the server is upgraded to V6.1.0. However, make sure that you deploy a
Project's WAR file built with the exact same version of Worklight Studio as the
version used to build the apps.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes Yes Yes Yes Running Running

Procedure

If your current version of Worklight Server includes existing applications that
target environments that are no longer supported by Worklight Server V6.1.0:
v For old, no-longer-supported environments, your application developers must

update the Worklight application to run with an environment supported by
Worklight Server V6.1.0 before you can run it.

Chapter 7. Upgrading from one version of IBM Worklight to another 233

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v For new environments for which support is added after the release of Worklight
Server V6.1.0, check for the availability of a fix pack release that provides
support for this environment.

The following table can help to determine the IBM Worklight versions in which
support for older environments was discontinued, and to suggest possible
replacement environments for those environments.

Environment Support removed in Suggested replacement path

Facebook IBM Worklight V6.0 Desktop web app

iGoogle IBM Worklight V6.0 Review environments
supported by IBM Worklight
V6.1.0

Apple OS X Dashboard IBM Worklight V6.0 Review environments
supported by IBM Worklight
V6.1.0

Windows 7 and Vista IBM Worklight V6.0 Review environments
supported by IBM Worklight
V6.1.0

Windows Phone 7.5 IBM Worklight V6.1.0 Review environments
supported by IBM Worklight
V6.1.0

Deciding between in-place upgrade to Worklight Server V6.1.0 and rolling
upgrade:

There are two ways to perform an upgrade: in-place upgrade or rolling upgrade.

About this task

v An in-place upgrade is an upgrade by which the old version of Worklight Server
is no longer installed after the new version of Worklight Server has been
installed.

v A rolling upgrade is an upgrade that installs the new version of IBM Worklight
such that it runs side-by-side with the old version of Worklight Server in the
same application server or in a different application server.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes Yes Yes Yes Running Running

Procedure

The in-place upgrade is the normal way to upgrade. Its advantage is that it is
simpler to perform.

The rolling upgrade has the advantage that it minimizes the downtime of the
application server, in case an unexpected problem with the upgrade occurs. If there

234 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

is a problem, you can restart the application server with the old configuration and
a backup of the databases while investigating the problem.

Important: This release supports the rolling upgrade for Worklight Server and
Worklight projects. However, a rolling upgrade of Application Center is not
supported.

This chapter focuses on the in-place upgrade. It mentions some specific
instructions for rolling upgrade, but the rolling upgrade is complex and is not yet
fully explained in this documentation.

Packaging change of WebSphere Application Server Liberty Profile in IBM
Worklight V6.x:

Important information about how WebSphere Application Server Liberty Profile is
delivered since IBM Worklight V6.0.0, and how it can impact the upgrade of your
production Worklight Server.

About this task

Important: The information on this page applies to you if you previously installed
Worklight Server version V5.x with the embedded WebSphere Application Server
Liberty Profile option.

In Worklight Server V6.1.0, WebSphere Application Server Liberty Core is not
embedded in the IBM Installation Manager wizard of Worklight Server. Instead, it
is provided as a separate IBM Installation Manager wizard.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes No No No Running Running

Procedure

As a result of this packaging, the Worklight Server upgrade process does not
upgrade your installed version of WebSphere Application Server Liberty Profile,
and will not apply fix packs to it in the future. At the end of the upgrade process,
your Liberty server remains installed in <WorklightServerInstallationDirectory>/
server/wlp, but is considered as an external file from the perspective of upgrades,
uninstall, and updates from the IBM Installation Manager wizard of Worklight
Server.

To prevent this existing server from being uninstalled during the upgrade process,
the IBM Installation Manager wizard temporarily renames its directory during the
upgrade process. It is critical to apply the steps that are defined in section “Special
steps for WebSphere Application Server Liberty Profile” on page 279 before you
start the upgrade process. The result of not completing these steps can be a
non-functional server.

Chapter 7. Upgrading from one version of IBM Worklight to another 235

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Alternate Method: Move your Worklight apps and data to a new Liberty server

This alternate upgrade method migrates your Worklight Console and Application
Center to a new WebSphere Application Server Liberty Profile server installed by
IBM Installation Manager. This server can be updated by IBM Installation Manager
when new updates for Liberty are made available.
1. Stop the Liberty server that was installed with the previous version of IBM

Worklight.
2. Install WebSphere Application Server Liberty Core with IBM Installation

Manager. The installer for IBM WebSphere Application Server Liberty Core is
part of the IBM Worklight package.

3. Create a server in this new WebSphere Application Server Liberty Profile
installation. If you are not familiar with the creation of a server for Liberty, see
the “Worklight Server installation process walkthrough” on page 53.

4. Configure the Liberty server for your production environment.
5. Modify the Ant files created in section “Identify the Worklight WAR file and

prepare the Ant deployment script” on page 229 to point to the newly installed
WebSphere Application Server Liberty Core.

6. When you reach the step “Running IBM Installation Manager and completing
the Application Center upgrade” on page 243, follow the instructions for
“Upgrading from Worklight Server V5.0.6.x (changing the Liberty server)” on
page 245.

Become familiar with IBM Installation Manager before you start:

Before you start the actual installation, verify that you have all the products that
you want to install and that you are familiar with IBM Installation Manager
procedures.

About this task

You use IBM Installation Manager to complete the actual upgrade. Before you start,
verify that you have all of the necessary installation components, and that you
understand the installation procedure.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes Yes Yes Yes Running Running

Procedure

Before you use IBM Installation Manager to upgrade your production server,
familiarize (or re-familiarize) yourself with how it works:
1. Make sure that you have the appropriate version of IBM Installation Manager

installed on the installation workstation.

Note: IBM Installation Manager is sometimes referred to on the eXtreme
Leverage and Passport Advantage sites and on the distribution disks as IBM

236 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Rational Enterprise Deployment. The filenames for the images take the form IBM
Rational Enterprise Deployment <version number><hardware platform>
<language>; for example, IBM Rational Enterprise Deployment
V1.6.3.1Windows Multilingual.
Use IBM Installation Manager V1.6.3.1 or later, especially on Windows. For
more information about IBM Installation Manager procedures, see the IBM
Installation Manager user documentation.

Important: If you are performing an in-place upgrade, and you have IBM
Installation Manager installed on your computer in several different modes, for
example, administrator mode and nonadministrator (single user) mode, you
must use the same mode used to install the previous version of Worklight
Server.

2. Download the repositories that are required for the update from Passport
Advantage, or have them available if they are on physical media.
For more information about the types of upgrade repositories available, see
“Information about the repositories.”

3. Verify that the products that you want to update are contained in the IBM
Installation Manager repositories.

4. If you do not plan to use IBM Installation Manager in graphical mode but in
silent install mode, review the procedures for a silent install as documented in
“Silent installation” on page 65 and “Working with sample response files for
IBM Installation Manager” on page 66 and prepare your response file.
To prepare your response file from sample response files, create a response file
based on the following:

Table 48. Sample upgrade response files in the Silent_Install_Sample_Files.zip

Initial version of Worklight Server Sample file

V5.x upgrade-initially-v5.xml

V6.x upgrade-initially-v6.xml

In the <offering> element in the <install> element, set the version attribute to
match the release you want to upgrade to, or remove the version attribute if
you want to upgrade to the newest version available in the repositories.

Information about the repositories

There are three types of repositories: base repositories, delta repositories, and
interim fix repositories:
v A base repository is an installation package that is available on Passport

Advantage or on physical media. It is self-contained.
v A delta repository is an installation package that is available from FixCentral and

is labeled as an update pack. It requires a base repository of the previous release
version to be functional.

v An interim fix repository is an installation package that is available from
FixCentral and is labeled as an interim fix, and that is only versioned by a build
number. It requires the repositories of the previous release version to be
functional: either a base repository, or both a base repository and a delta
repository.

To install a major release (for example, Worklight Server V6.1.0), you need only:

Chapter 7. Upgrading from one version of IBM Worklight to another 237

http://pic.dhe.ibm.com/infocenter/install/v1r6/index.jsp
http://pic.dhe.ibm.com/infocenter/install/v1r6/index.jsp

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v The base repository V6.1.0 installation package from Passport Advantage or
physical media.

To install a fix pack release (for example, Worklight Server V6.1.0.1), you need:
v The corresponding base repository (such as Worklight Server V6.1.0) installation

package from Passport Advantage or physical media. The corresponding base
repository for V6.1.0.x fixpacks is the V6.1.0 release.

v The appropriate V6.1.0.x installation package from FixCentral.

For a fix pack installation, you must add both repositories to the list known to IBM
Installation Manager. Then, in the example given, IBM Installation Manager
recognizes the V6.1.0 release as an Install choice and the V6.1.0.x release (or
interim fix) as an Update choice.

To install an interim fix release, you can need up to three repositories:
v The repositories for the release to which the fix applies.
v The repository for the fix.

For installing an interim fix, you must add all these repositories to the list known
to IBM Installation Manager. Then IBM Installation Manager recognizes the interim
fix as an Update choice.

Review of the basic IBM Installation Manager steps

CAUTION:
The following steps are not the actual installation. They are preparatory tasks to
help you ensure that you have everything that is required for the upgrade. Be
sure to click Cancel in the last step.

1. Start IBM Installation Manager.
2. Click File > Preferences > Repositories to add references to the repositories

that you downloaded and extracted on a local disk, or that you can access
through the internet.
See Repository preferences for details.

3. Click Install.
4. Verify that the products list contains everything that you need.
5. Click Cancel. Do not proceed with the installation.

Starting the Worklight Server V6.1.0 upgrade process
In this phase of the upgrade process, you shut down and back up the application
server and IBM Worklight databases and perform other pre-installation tasks.

When you finish the tasks that are listed in “Preparing for the upgrade to
Worklight Server 6.1.0” on page 228, you can begin the actual upgrade process.

Note: After you complete this phase of the upgrade process, your Worklight
Server, Application Center, database, and application server are (or can be) offline.
They are no longer available to support existing apps or provide service to existing
users of those apps. The upgrade process itself can take several hours. Therefore,
you must plan the timing of this process for non-critical hours to have minimal
impact on users.

The following topics present the steps, in the order in which they must be
completed.

238 IBM Worklight V6.1.0

http://pic.dhe.ibm.com/infocenter/install/v1r6/index.jsp?topic=/com.ibm.cic.agent.ui.doc/topics/t_specifying_repository_locations.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Verify the ownership of your Worklight Server files:

Before you begin the actual installation, check the ownership of all Worklight
Server files.

About this task

The upcoming step “Running IBM Installation Manager and completing the
Application Center upgrade” on page 243 attempts to remove and replace many
files in the Worklight Server installation directory. This step can fail if the
single-user mode of IBM Installation Manager is used and some of the files or
directories are not owned by that user. Therefore, it is useful to guard against this
case.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes Yes Yes Yes Running Running

Procedure

If you previously installed Worklight Server with the nonadministrator
(single-user) mode of IBM Installation Manager, check whether all files and
directories in WL_INSTALL_DIR are owned by the current user.

For more information about Installation Manager's administrator and
nonadministrator modes, see Administrator, nonadministrator, and group mode.
Note that group mode is not supported for Worklight Server installation.

On UNIX, you can list the files and directories that do not fulfill this condition
with the following command:

cd WL_INSTALL_DIR
find . ’!’ -user “$USER” -print

This command should produce no output.

Back up your application server:

Back up the directory that contains the application server and its configuration.

About this task

Back up your application server so that you can recover in case of an unsuccessful
server upgrade. This strategy covers the rare cases in which the new application
server version fails to work correctly if errors occur in the forthcoming
configuration changes.

Chapter 7. Upgrading from one version of IBM Worklight to another 239

http://pic.dhe.ibm.com/infocenter/install/v1r6/index.jsp?topic=%2Fcom.ibm.cic.agent.ui.doc%2Ftopics%2Fc_admin_nonadmin_group.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes Yes Yes Yes Running Running

Procedure

Back up all the application servers (or network deployment nodes) where the
Application Center application or a Worklight project's WAR file is installed.

For WebSphere Application Server Liberty Profile:
v Back up the usr directory. By default this directory is located in

<LibertyInstallDir>/usr, but its location can be redefined by the WLP_USER_DIR
variable in <LibertyInstallDir>/env/server.env.

For WebSphere Application Server Full Profile:
v If your original installation was to one or more servers under the control of a

deployment manager, and not a single stand-alone server:
– Either use the WebSphere backupConfig command to back up the

deployment manager node.
– Or back up the config directory inside the deployment manager profile

directory.
v If your original installation was to a stand-alone server:

– Either use the WebSphere backupConfig command to back up the entire node.
– Or back up the application server profile directory.

See the documentation for Apache Tomcat to determine the directories to back up
for this application server.

Shutting down the application server:

If you use WebSphere Application Server Liberty Profile or Apache Tomcat, you
must shut the application server down during this step.

About this task

You must shut down the application server before running IBM Installation
Manager in the following three cases:
v If your application server is Apache Tomcat.
v If your application server is WebSphere Application Server Liberty Core.
v If your application server is the embedded version of WebSphere Application

Server Liberty Profile installed by the Worklight Server V5.0.6 or earlier installer.
– In this case, you must also shut down all processes that have either their

current working directory inside or opened files inside the Worklight
installation directory hierarchy.

– On Windows, you must also shut down all such processes inside the Liberty
Worklight Server directory hierarchy, located in C:\ProgramData\IBM\
Worklight\WAS85liberty-server.

240 IBM Worklight V6.1.0

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.nd.multiplatform.doc%2Fae%2Frxml_backupconfig.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.nd.multiplatform.doc%2Fae%2Frxml_backupconfig.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Otherwise, if the application server is running when IBM Installation Manager
starts the upgrade, some upgrade operations may fail, leaving the Worklight Server
installation in an inconsistent state.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes Yes Yes Yes Stopped
(Liberty and

Tomcat)
Running
(others)

Stopped
(Liberty and

Tomcat)
Running
(others)

Procedure

For Apache Tomcat and WebSphere Application Server Liberty Core, use the
administration commands to shut down the application server as you would
normally.

For the embedded version of WebSphere Application Server Liberty Server, you
can use the following procedure:
1. Ensure that the JAVA_HOME environment variable points to the installation

directory of a Java 6 or 7 implementation (JRE or JDK), or that the PATH
environment variable contains a java program from a Java 6 or 7
implementation.

2. Shut down the server.
a. On UNIX, enter the following commands, changing the installation location

if necessary:
cd /opt/IBM/Worklight
cd server/wlp/bin
./server stop worklightServer

b. On Windows, enter the following commands, changing the installation
location if necessary:
cd C:\Program Files (x86)\IBM\Worklight
cd server\wlp\bin
server.bat stop worklightServer

3. Verify that no other runaway Liberty server processes are running in the same
directory. On Linux and AIX, you can list such processes with the following
command:
ps auxww | grep java | grep /wlp/

Stop all instances of the Application Center applications:

Stop the applications currently running on Application Center.

About this task

If you have installed Application Center on multiple servers, networked or not,
then all instances of the IBM Application Center Console and IBM Application

Chapter 7. Upgrading from one version of IBM Worklight to another 241

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Center Services must be stopped before you run IBM Installation Manager to
upgrade the Worklight Server Installation.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes (if
installed on

multiple
servers)

Yes (if
installed on

multiple
servers)

See fix pack
installation
instructions

See interim
fix

installation
instructions

Stopped (all
instances)

Stopped
(Liberty and

Tomcat)
Running
(others)

Procedure

The reason this step is required is that IBM Installation Manager migrates the
schema of the database so that it can be used with Worklight Server V6.1.0. No
instance of Application Center can be running while this operation is performed.

After the database is migrated, only migrated Application Center applications
should be run, because only migrated applications are able to read and write to the
new databases. Otherwise, the Application Center database may be corrupted.

If you have installed Application Center only once, this operation will be done
automatically by IBM Installation Manager.

Back up the Application Center database:

Before you run IBM Installation Manager to install Worklight Server V6.1.0, back
up your Application Center database.

About this task

In the upgrade process, the Application Center database is updated and migrated
to a schema compatible with Worklight Server V6.1.0. This operation can not be
undone. If, for any reason, you decide to rollback the upgrade of Worklight Server,
you will need this backup.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes Yes See fix pack
installation
instructions

See interim
fix

installation
instructions

Stopped (all
instances)

Stopped
(Liberty and

Tomcat)
Running
(others)

242 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

Use the standard procedures for your DBMS (IBM DB2, Oracle, or MySQL) to back
up the Application Center database. The default name for the Application Center
database, unless you modified it at install time, is as follows:
v For IBM DB2, MySQL, and Oracle, if you installed Worklight V5.0.6: APPCNTR
v For IBM DB2 and MySQL if you installed Worklight V6.0.0 or later: APPCNTR
v For Oracle, if you installed Worklight V6.0.0 or later: ORCL

.

The Worklight and Worklight Reports databases are backed up as well, but in a
later step of this procedure. For more information, see step “Back up the Worklight
and Worklight Reports databases” on page 249 of this upgrade procedure.

Running IBM Installation Manager and completing the
Application Center upgrade
Use IBM Installation Manager to install the new Worklight Server version.

In this step, you use IBM Installation Manager to upgrade your Worklight Server
instance.

Note: Before you continue, make sure that you completed all of the steps in the
“Preparing for the upgrade to Worklight Server 6.1.0” on page 228 and “Starting
the Worklight Server V6.1.0 upgrade process” on page 238 sections that preceded
this step.

It is also possible to run IBM Installation Manager in silent install mode, using
response files either generated by using it in wizard mode on a machine where a
GUI is available, or by working with sample response files supplied with IBM
Worklight. For more information, see “Silent installation” on page 65 and “Working
with sample response files for IBM Installation Manager” on page 66.

Upgrading from Worklight Server V6.x:

In this step, you run IBM Installation Manager to perform the actual upgrade from
Worklight Server V6.x to Worklight Server V6.1.0.

About this task

IBM Installation Manager completes the following tasks:
v It installs on your disk the files and tools that are required to deploy IBM

Worklight on your application server.
v If Application Center was installed in the previous version of Worklight Server,

the installer also:
– Undeploys the previous version of the Application Center from the

application server.
– Upgrades the databases of Application Center to the format used by IBM

Worklight V6.1.0. To see a copy of the upgrade scripts, you can install
Worklight Server in a new package group and review a copy of the upgrade
scripts in <WorklightInstallDir>/ApplicationCenter/databases.

– Deploys the new version of Application Center to the application server and
connects it to the upgraded database.

– Configures the application server for running the Application Center.

Chapter 7. Upgrading from one version of IBM Worklight to another 243

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

No Yes Yes Yes Stopped (all
instances)

Stopped
(Liberty and

Tomcat)
Running
(others)

Procedure

Having prepared for this step by becoming familiar with IBM Installation Manager
and ensuring that you have all the proper repositories for the upgrade, start the
actual installation using the following steps:
1. Start IBM Installation Manager.
2. Click Update.
3. Step through the installation wizard, following the onscreen prompts to

complete the upgrade.

Upgrading from Worklight Server V5.0.6.x:

Use this procedure to upgrade from Worklight Server V5.0.6.x to Worklight Server
V6.1.0 in a stand-alone WebSphere Application Server or Apache Tomcat
environment.

About this task

If you originally installed Worklight Server on:
v A stand-alone WebSphere Application Server Liberty Profile server,
v A stand-alone WebSphere Application Server Full Profile server, or
v A stand-alone Apache Tomcat server,

use the following procedure, with the IBM Installation Manager Update function.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes (unless
Liberty server
was installed
by Worklight
Server V5.0.6)

No No No Stopped (all
instances)

Uninstalled

Procedure

1. Start IBM Installation Manager.

244 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. Click Install. The package name for IBM Worklight Server has changed
between Worklight Server V5.x and V6.1.0, so the upgrade must be done with
the 'Install' process.

3. If you are doing an in-place upgrade (see “Deciding between in-place upgrade
to Worklight Server V6.1.0 and rolling upgrade” on page 234), select the
package group that contains your Worklight Server installation. If you are
doing a rolling upgrade, select Create a new package group.

4. Step through the installation wizard. If you are doing an in-place upgrade,
most choices are disabled (displayed in gray). But you can change the
passwords for the database or for WebSphere Application Server access if they
are different from the original installation.

5. IBM Installation Manager completes the following tasks:
v It installs on your disk the files and tools that are required to deploy

Worklight in your application server.
v It undeploys the previous version of Worklight from the Application Server.
v It removes the application server configurations that were set by the previous

installer of IBM Worklight Server.
v If Application Center was installed in the previous version of Worklight

Server, the installer also:
– Undeploys the previous version of the Application Center from the

application server.
– Upgrades the databases of Application Center to the format used bythe

current version of Worklight Server. To see a copy of the upgrade scripts,
you can install IBM Worklight Server in a new package group and review
a copy of the upgrade scripts in <WorklIghtInstallDir>/
ApplicationCenter/databases.

– Deploys the new version of Application Center to the application server
and connects it to the upgraded database.

– Configure the application server for running the Application Center.

Upgrading from Worklight Server V5.0.6.x (changing the Liberty server):

This step contains special instructions if you are migrating to a new instance of
WebSphere Application Server Liberty Profile.

About this task

This task is part of the “Alternate Method: Move your Worklight apps and data to
a new Liberty server” on page 236 section of the “Packaging change of WebSphere
Application Server Liberty Profile in IBM Worklight V6.x” on page 235 step.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes (if Liberty
server was
installed by
Worklight

Server V5.0.6)

No No No Stopped (all
instances)

Uninistalled

Chapter 7. Upgrading from one version of IBM Worklight to another 245

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

Having prepared for this step by becoming familiar with IBM Installation Manager
and ensuring that you have all the proper repositories for the upgrade, start the
actual installation using the following steps:
1. Start IBM Installation Manager.
2. Click Install.
3. Select a new package group.
4. Step through the installation wizard. Enter the database settings used to install

Application Center for version V5.0.6.
5. For the Application Server choice, select the newly installed WebSphere

Application Server Liberty Core.

Restore the Application Center configurations and restart the application server:

In this step you restore the required configurations of Application Center that you
made note of in a previous step.

About this task

Restore the configurations that you previously identified in step “Review and note
the Application Server configuration for Worklight Server and Application Center”
on page 231.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes Yes See fix pack
installation
instructions

See interim
fix

installation
instructions

Upgraded Running (if
upgrading

from V6.0.x),
Stopped (if
upgrading

from V5.0.6.x)

Procedure

1. The applications to restore are as follows:
v For the applications:

– The Application Center Console
– The Application Center Services

2. The JDBC data sources to restore are as follows:
v The Application Center database

3. When you have restored these configurations, restart the application server that
was upgraded.

Results

At the end of this step, Application Center is upgraded. All applications previously
loaded in Application Center should be available.

246 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

However, if this Application Center is running on the same application server as a
Worklight Console, that application server is shut down again in a later step, and
is only restarted in subsequent steps.

Upgrading the Worklight Console for Worklight Server 6.1.0
In these post-installation steps, you set or restore configurations for Worklight
Server, its databases, and Worklight Console, and restart the application server.

Since IBM Worklight V6.0.0, it is possible to deploy several project WAR files to an
application server. You must perform these steps for each Worklight project WAR
file that you deployed and that you want to upgrade to V6.1.0. If you migrated a
project WAR file and deployed it on multiple application servers, all instances
must be upgraded.

Complete each of the following steps, as required for your particular upgrade path.

Stop all Worklight Server instances:

Before you complete the next upgrade steps, you must shut down all instances of
Worklight Console. You must also disable the auto start mode of the Worklight
Console if you upgrade from IBM Worklight V6.0.0.x on WebSphere Application
Server full profile.

About this task

If you installed Worklight Server on multiple servers, networked or not, you must
stop all instances of the Worklight Console before you perform the next steps.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes Yes See fix pack
installation
instructions

See interim
fix

installation
instructions

Upgraded Stopped (all
instances)

Procedure

The reason this step is required is that in the next steps you migrate the schema of
the database so that it can be used with Worklight Server V6.1.0. No instance of
Worklight Console can be running while this operation is performed.

After the database is migrated, only migrated Worklight Console applications
should be run, because only migrated applications are able to read and write to the
new databases. Otherwise, the Worklight Console database might be corrupted.

You must perform this operation even if you installed Worklight Console only
once.

Important: In addition to stopping the Worklight Console, if you upgrade from
IBM Worklight V6.0.0.x on WebSphere Application Server full profile, you must

Chapter 7. Upgrading from one version of IBM Worklight to another 247

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

disable the auto start mode of the Worklight Console application during the
upgrade, before you shut down the Worklight Server. If the auto start mode is not
disabled, the Worklight Console modifies the database when the server is started
in step “Upgrading the Worklight Console for Worklight Server 6.1.0” on page 247
and prevents the new project WAR file from starting.

To disable the auto start mode:
1. Log in to the WebSphere Console.
2. Go to the menu Applications > Application Types > WebSphere enterprise

applications, and list the applications.
3. In the table, select the Worklight Console application, whose default name is

IBM_Worklight_Console.
4. In Detail Properties click on Target Specific Application Status.
5. Select all the target servers, or the cluster where the application is installed.
6. Click Disable Auto Start.
7. Click Save to save the configuration.
8. Verify that the Auto Start property in the table is set to No.

Shutting down the application server to be upgraded:

For certain configurations, in this step you shut down the application server prior
to completing subsequent steps.

About this task

For certain types of application servers (see the table and “Procedure” on page 249
section below), you must shut down the application server before proceeding to
subsequent steps.

Figure 20.

248 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes Yes Yes Yes Stopped
(embedded

Liberty,
Liberty on
Windows,
Tomcat on
Windows),
Upgraded

(other cases)

Stopped (all
instances)

Procedure

In the following cases, you must shut down the application server before you
undeploy applications from the Worklight Console application:
v If the application server is WebSphere Application Server Liberty Profile and the

OS is Windows.
v If the application server is Apache Tomcat, and the OS is Windows or the

database type is Apache Derby.

If these application servers are not shut down, the undeploy operations may fail.

Back up the Worklight and Worklight Reports databases:

Back up the contents of your IBM Worklight project databases.

About this task

Important: Before performing this step, verify that you have completed step “Stop
all Worklight Server instances” on page 247, and that no instance of Worklight
Server is still running, and thus still using these databases.

During the upgrade process in the next step, the Worklight and the Worklight
Reports databases are migrated to a schema compatible with Worklight Server
V6.1.0. This operation can not be undone.

If, for some reason, you decide to rollback the upgrade of Worklight Server, you
will need this backup.

Chapter 7. Upgrading from one version of IBM Worklight to another 249

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes Yes See fix pack
installation
instructions

See interim
fix

installation
instructions

Stopped
(embedded

Liberty,
Liberty on
Windows,
Tomcat on
Windows),
Upgraded

(other cases)

Stopped (all
instances)

Procedure

The default names for the databases, unless you modified them at install time, are
as follows:
v For IBM DB2, Derby, MySQL, and Oracle, if you installed IBM Worklight

V5.0.6.x: WRKLGHT and WLREPORT

v For IBM DB2, Derby, and MySQL, if you installed IBM Worklight V6.x: WRKLGHT
and WLREPORT

v For Oracle, if you installed IBM Worklight V6.x, for Oracle: ORCL

Upgrade the Worklight and Worklight Reports databases:

In this step you upgrade the schemas of your IBM Worklight project databases.

About this task

Important: Before performing this step, verify that you have completed step “Stop
all Worklight Server instances” on page 247, and that no instance of Worklight
Server is still running, and thus still using these databases.

In this step, you run the Ant scripts to upgrade the schemas of your Worklight and
Worklight Reports databases.

250 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes Yes See fix pack
installation
instructions

See interim
fix

installation
instructions

Stopped
(embedded

Liberty,
Liberty on
Windows,
Tomcat on
Windows),
Upgraded

(other cases)

Stopped (all
instances)

Procedure

1. If you upgrade from IBM Worklight V6.0.0.x, and the application server is
WebSphere Application Server full profile, make sure you disabled the auto
start mode for all instances of the Worklight Console application, as specified in
“Stop all Worklight Server instances” on page 247.

2. Locate the Ant file that you created in section “Identify the Worklight WAR file
and prepare the Ant deployment script” on page 229.

3. Verify that the taskdeffor the worklight-ant-deployer.jar uses the correct
directory containing the upgraded installation of Worklight Server V6.1.0.
In the example shown below, you need to check the value of the property
worklight.server.install.dir because this property is used to define the
directory of the worklight-ant-deployer.jar in the taskdef tag:
<property name="worklight.server.install.dir" value="c:/Program File/IBM/Worklight"/>

[...]

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<fileset dir="${worklight.server.install.dir}/WorklightServer">
<include name="worklight-ant-deployer.jar"/>

</fileset>
</classpath>

</taskdef>

This verification step is extremely important. It defines the version of IBM
Worklight that you use to migrate the databases, to deploy the WAR file, and to
install the Worklight runtime library for the Worklight Console.

4. Set the environment variable ANT_HOME to <WORKLIGHT_INSTALL_DIR>/tools/
apache-ant-1.8.4/.
This is the version of Apache Ant for which the Worklight deployment scripts
have been tested. If you do not set this environment variable before running
the script, and have another installation of Ant on your computer, that
installation may be used.

5. Launch the databases target of the Ant file with this command:
<WORKLIGHT_INSTALL_DIR>/tools/apache-ant-1.8.4/bin/ant -f <your file> databases

Note: If you created an Ant file with your own target names, the Ant task to
launch is configuredatabase.

Chapter 7. Upgrading from one version of IBM Worklight to another 251

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

This procedure upgrades the database schemas for the Worklight and Worklight
Reports databases to version V6.1.0.

Upgrade the Worklight Server console:

In this step you run the Ant script to upgrade Worklight Console to version 6.1.0.

About this task

In this step, you run the same Ant script as in the previous step, but with a
different parameter to indicate the Ant target and the nature of the upgrade.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes Yes Yes Yes Stopped
(embedded

Liberty,
Liberty on
Windows,
Tomcat on
Windows),
Upgraded

(other cases)

Stopped
(embedded

Liberty,
Liberty on
Windows,
Tomcat on
Windows),

Partially
Upgraded

(other cases)

Procedure

1. Locate the Ant file that you created in section “Identify the Worklight WAR file
and prepare the Ant deployment script” on page 229.

2. Verify that the taskdef for the worklight-ant-deployer.jar uses the correct
directory containing the upgraded installation of Worklight Server V6.1.0.
In the example shown below, you need to check the value of the property
worklight.server.install.dir because this property is used to define the
directory of the worklight-ant-deployer.jar in the taskdef tag:
<property name="Worklight.server.install.dir" value="c:/Program File/IBM/Worklight"/>

[...]

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<fileset dir="${worklight.server.install.dir}/WorklightServer">
<include name="worklight-ant-deployer.jar"/>

</fileset>
</classpath>

</taskdef>

This verification step is extremely important. It defines the version of IBM
Worklight that you use to migrate the databases, to deploy the WAR file, and to
install the Worklight runtime library for the Worklight Console.

3. Set the environment variable ANT_HOME to <WORKLIGHT_INSTALL_DIR>/tools/
apache-ant-1.8.4/.

252 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

This is the version of Apache Ant for which the Worklight deployment scripts
have been tested. If you do not set this environment variable before running
the script, and have another installation of Ant on your computer, that
installation may be used.

4. Select the Ant target to use:
v To upgrade from V5.0.6.x, use: install
v To upgrade from V6.0.0.x, use: minimal-update
v To upgrade from V6.1.0 to a fix pack or interim fix release, use:

– Either uninstall, then install or minimal-update

– Or minimal-update

This choice depends on the nature of the changes in the fix. For more
information, see the fix pack or interim fix installation instructions.

5. If you upgrade from IBM Worklight V6.0.0.x, and the application server is
WebSphere Application Server full profile, enable the auto start mode for the
Worklight Console, which was disabled in “Stop all Worklight Server instances”
on page 247. If you do not enable it, the application needs to be started
explicitly after the server starts.

6. Run Ant with the selected target:
<WORKLIGHT_INSTALL_DIR>/tools/apache-ant-1.8.4/bin/ant -f <your file> <target defined in step 4>

This script:
v Migrates the WAR file to match the runtime of the Worklight Server

installation.
v Installs the Worklight Console and its runtime to the application server, with

the root context defined in the Ant file (or /worklight by default).
v Connects the new console to the database containing the applications (.wlapp

files) and adapters deployed to the Worklight Console of the previous
version (V5.0.6.x or V6.0.0.x).

Restore the Worklight Server Configuration:

In this step you restore the required configurations of Worklight Server that you
made note of in a previous step.

About this task

Restore the configurations that you previously identified in step “Review and note
the Application Server configuration for Worklight Server and Application Center”
on page 231.

Chapter 7. Upgrading from one version of IBM Worklight to another 253

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes No See fix pack
installation
instructions

See interim
fix

installation
instructions

Stopped
(embedded

Liberty,
Liberty on
Windows,
Tomcat on
Windows),
Upgraded

(other cases)

Stopped
(embedded

Liberty,
Liberty on
Windows,
Tomcat on
Windows),
Upgraded

(other cases)

Procedure

1. The applications to restore are as follows:
v For the applications:

– The Worklight Console
v For the JDBC data source:

– The Worklight database

Restart the application server:

In this final step, you restart the application server.

About this task

Now that the upgrade of Worklight Server is completed, restart your application
server.

Is this step required for your upgrade path? System status after this step,
if both Application Center

and Worklight Server are on
the same application server

V5.0.6.x to
V6.1.0

V6.0.0.x to
V6.1.0

V6.1.0 to
V6.1.0.x (Fix

Pack)

V6.1.0 to
interim fix

Application
Center Status

Worklight
Server Status

Yes Yes Yes Yes Upgraded Upgraded

Procedure

1. Use your standard procedures to start the application server, or restart the
application server if it was running in this step, so that all changes are taken
into account.

At the end of this step, the Worklight Console is upgraded. All applications that
you previously deployed should be available, along with their environments (those
that are supported by Worklight Server V6.1.0).

254 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

If you upgraded from Worklight V5.0.6.x, the URL of the Worklight Console has
changed. If you did not specify a context root in the Ant file, its context root is
/worklight.

Additional Worklight Server V6.1.0 upgrade information
This section contains additional information that may be of use if you have
additional test or pre-production databases that must be updated, if you need to
update HTTP redirections on networked servers, if you are manually upgrading
the application server, or in the event of a failed upgrade.

Recovering from an unsuccessful Worklight Server V6.1.0 upgrade:

Instructions for how to recover from a failed installation or to revert to the
previous version of Worklight Server.

About this task

If the Worklight Server upgrade fails for any reason, use the following procedure
to restore the previous Worklight Server version.

Procedure

The Roll Back button of IBM Installation Manager is not supported for Worklight
Server. Therefore, to return to the previous version:
1. Uninstall Worklight Server, with IBM Installation Manager.
2. Install the old version of Worklight Server with IBM Installation Manager,

specifying the same installation parameters that you used previously.
3. Restore the databases. For more information, see “Back up the Worklight and

Worklight Reports databases” on page 249
4. Restore the application server. For more information, see “Back up your

application server” on page 239.
5. If the server fails to start and load the applications, delete the server's workarea

before starting it again. For example, for a WebSphere Application Server
Liberty Profile backup, the workarea is the directory <LibertyInstallDir>/usr/
servers/<serverName>/workarea.

Manually upgrading the Worklight Server V6.1.0 databases:

Follow these instructions to manually update the Worklight project databases.

If you prefer to update databases manually instead of using the Ant tasks, you
must update their sets of tables and columns manually. For example, if you have
test or pre-production databases as part of your production environment, each
served by a different Worklight database or schema, you can use this procedure to
update their schemas.

Updating these alternative databases is done by running a sequence of database
scripts. The upgrade scripts are contained in the just-installed (version 6.1.0)
Worklight Server directory.

Scripts for DB2

For an upgrade from Worklight Server V5.0.6.x to V6.0.0:
v WorklightServer/databases/upgrade-worklight-506-60-db2.sql (for

WRKLGHT)

Chapter 7. Upgrading from one version of IBM Worklight to another 255

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v WorklightServer/databases/upgrade-worklightreports-506-60-db2.sql (for
REPORTS)

v ApplicationCenter/databases/upgrade-appcenter-506-60-db2.sql (for
APPCNTR)

For an upgrade from Worklight Server V6.0.0.x to V6.1.0:
v WorklightServer/databases/upgrade-worklight-60-61-db2.sql (for WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-60-61-db2.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-60-61-db2.sql (for

APPCNTR)

These scripts are applied similarly to steps 4 and 6 in “Setting up your DB2
databases manually” on page 732

Note: If you are using Application Center, the size limit for applications stored on
Application Center with IBM DB2 is 1 GB. If you have applications larger than 1
GB in the Application Center, remove them before starting the upgrade process.

Scripts for MySQL

For an upgrade from Worklight Server V5.0.6 to V6.0.0:
v WorklightServer/databases/upgrade-worklight-506-60-mysql.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-506-60-mysql.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-506-60-mysql.sql (for

APPCNTR)

For an upgrade from Worklight Server V6.0.0.x to V6.1.0:
v WorklightServer/databases/upgrade-worklight-60-61-mysql.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-60-61-mysql.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-60-61-mysql.sql (for

APPCNTR)

These scripts are applied similarly to step 1.b in “Setting up your MySQL
databases manually” on page 741.

Scripts for Oracle

For an upgrade from Worklight Server V5.0.6 to V6.0.0:
v WorklightServer/databases/upgrade-worklight-506-60-oracle.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-506-60-oracle.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-506-60-oracle.sql (for

APPCNTR)

For an upgrade from Worklight Server V6.0.0.x to V6.1.0:

256 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v WorklightServer/databases/upgrade-worklight-60-61-oracle.sql (for
WRKLGHT)

v WorklightServer/databases/upgrade-worklightreports-60-61-oracle.sql (for
REPORTS)

v ApplicationCenter/databases/upgrade-appcenter-60-61-oracle.sql (for
APPCNTR)

These scripts are applied similarly to step 3 in “Setting up your Oracle databases
manually” on page 744.

Manually upgrading the application server:

Follow these instructions to manually upgrade the application server.

The recommended way to upgrade Worklight Server is to use IBM Installation
Manager, either in its graphical mode or in silent mode with a response file, and
the Ant tasks, as described previously.

However, if this is not applicable to your installation and you must update your
application server manually, use a different series of steps.

Instead of completing the tasks “Running IBM Installation Manager and
completing the Application Center upgrade” on page 243 and “Upgrade the
Worklight Server console” on page 252, use the following procedure:
v Upgrade the databases manually as specified in section “Manually upgrading

the Worklight Server V6.1.0 databases” on page 255.
v Review the manual installation procedures at:

– “Manually installing Application Center” on page 82
– “Deploying a project WAR file and configuring the application server

manually” on page 767
v Update the items manually. This includes, at a minimum:

– The WAR file for the Application Center console, Application Center services,
and the Worklight Console.

– The Worklight library worklight-jee-library.jar.
– The Worklight project's WAR file, which must be migrated to the current

version of the server using the migrate Ant task described at “Migrating a
project WAR file for use with a new Worklight Server” on page 767.

Verifying and updating the HTTP redirections for Worklight Server V6.1.0:

If you are upgrading Worklight Server on a clustered application server
environment, you should also update IBM HTTP Server after you install IBM
Worklight V6.1.0.

If your Worklight Server upgrade is to be installed on a WebSphere Application
Server Network Deployment clustered environment or a WebSphere Application
Server Liberty Profile farm, you may need to update IHS after you install
Worklight Server V6.1.0. For general information about installing these types of
application server, see:
v “Setting up IBM Worklight in an IBM WebSphere Application Server Network

Deployment V8.5 cluster environment” on page 180
v “Setting up IBM Worklight in an IBM WebSphere Application Server Liberty

Profile farm” on page 191

Chapter 7. Upgrading from one version of IBM Worklight to another 257

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

If your application server receives HTTP requests forwarded by an HTTP server,
the HTTP server configuration may require updating.

For IBM HTTP Server, in the IHS plugin file the context root of the applications
must be updated especially for the session affinity configuration section. The
following example is a configuration for Application Center that is deployed with
its default settings, and a project that is deployed with a root context of
/worklight.
<UriGroup Name="default_host_defaultServer_default_node_Cluster_URIs">

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/worklight/*"/>

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/applicationcenter/*"/>

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/appcenterconsole/*"/>

</UriGroup>

Upgrading from Worklight Server V6.1.0 to V6.1.0.x in a
production environment
Some upgrade steps are optional when you upgrade to a fix pack. You must follow
specific instructions when you upgrade from Worklight Server V6.1.0 to V6.1.0.x.

To upgrade from Worklight Server V6.1.0 to V6.1.0.x (fix pack) in a production
environment, you must follow the steps that are listed in the topic “Upgrading to
Worklight Server V6.1.0 in a production environment” on page 226, but some of
these steps are optional for a fix pack. You can see in Table 1 the status of these
optional steps for the upgrade to Worklight Server V6.1.0.x.

Table 49. Status of the optional steps for upgrading to the V6.1.0.x fix pack

Upgrade step Is this step required for V6.1.0.x fix pack?

“Review and note the Application Server
configuration for Worklight Server and
Application Center” on page 231

Not required

“Stop all instances of the Application Center
applications” on page 241

Required

“Back up the Application Center database”
on page 242

Not required

“Restore the Application Center
configurations and restart the application
server” on page 246

Only restart is required

“Stop all Worklight Server instances” on
page 247

Required

“Back up the Worklight and Worklight
Reports databases” on page 249

Not required

“Upgrade the Worklight and Worklight
Reports databases” on page 250

Not required

“Upgrade the Worklight Server console” on
page 252

Use the Ant target minimal-update (step 4).

“Restore the Worklight Server
Configuration” on page 253

Not required

258 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Upgrading from Worklight Server V6.1.0 to an interim fix in a
production environment
Some upgrade steps are optional when you upgrade to an interim fix. You must
follow specific instructions when you upgrade from Worklight Server V6.1.0 to an
interim fix.

To upgrade from Worklight Server V6.1.0 to an interim fix in a production
environment, you must follow the steps that are listed in the topic “Upgrading to
Worklight Server V6.1.0 in a production environment” on page 226, but some of
these steps are optional for an interim fix. You can see in Table 1 the status of these
optional steps for the upgrade to Worklight Server interim fix.

Table 50. Status of the optional steps for upgrading to an interim fix

Upgrade step Is this step required for an interim fix?

“Review and note the Application Server
configuration for Worklight Server and
Application Center” on page 231

Required

“Stop all instances of the Application Center
applications” on page 241

Required

“Back up the Application Center database”
on page 242

Not required

“Restore the Application Center
configurations and restart the application
server” on page 246

Required

“Stop all Worklight Server instances” on
page 247

Required

“Back up the Worklight and Worklight
Reports databases” on page 249

Not required

“Upgrade the Worklight and Worklight
Reports databases” on page 250

Not required

“Upgrade the Worklight Server console” on
page 252

Use the Ant target minimal-update (step 4).

“Restore the Worklight Server
Configuration” on page 253

Not required

Migrating from IBM Worklight V5.0.6 to V6.0.0
When you open your IBM Worklight project with Worklight Studio V6.0.0, your
project is automatically updated to this new version. However, some parts of your
application require manual updates that are related to new versions of some
software and to some changes in the IBM Worklight environment. Be aware of
some modifications, such as changes in file names and structure.

This topic focuses on the migration process from IBM Worklight V5.0.6 to V6.0.0. If
you upgrade from earlier versions, see also “Migrating from IBM Worklight V5.0.5
to V5.0.6” on page 303, and “Migrating from IBM Worklight V5.0.0.3 to V5.0.5” on
page 308.

Note: You can migrate a workspace and its associated projects, but the upgrade of
Worklight Studio to V6.0.0 requires a new installation (see the following section,
“Worklight Studio” on page 260).

Chapter 7. Upgrading from one version of IBM Worklight to another 259

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Worklight Studio

Depending on the state of your current development environment, the instructions
vary for how to migrate to Worklight Studio V6.0.0:
v To migrate an existing Worklight Studio instance and its associated projects to

V6.0.0, see “Migrating Worklight Studio to V6.0.0” on page 268.
v To migrate existing projects to a new instance of Worklight Studio, see

“Migrating projects to a new Worklight Studio instance” on page 269.

Worklight Server

Within Worklight Studio, when Worklight Server restarts after an upgrade, it
checks database table WORKLIGHT_VERSION to verify that the database schema is
consistent with the new version of Worklight Server. If the IBM Worklight database
schema changed in the new release, and the schema is found to be inconsistent
with the new version, or empty, the existing schema is dropped. It is then
re-created to be consistent with the new release, updating the WORKLIGHT_VERSION
table appropriately.

This action deletes all data in your existing IBM Worklight development database.
This deletion does not cause problems because only the tables that are related to
IBM Worklight and its reports are dropped and re-created.

Important: If you upgrade Worklight Server to V6.0.0 in a production
environment, the process can be longer and more complicated, especially if you
have existing IBM Worklight applications that run in a Worklight Server
environment. For instructions on how to upgrade your production Worklight
Server, see “Upgrading Worklight Server in a production environment” on page
270.

Usage of existing applications
v Usage of existing applications with a new server version: if you want to use

existing applications with a new server version, see “Migrating your Worklight
projects” on page 271.

v Migration of projects that use Tealeaf libraries: If you added Tealeaf libraries to
iOS or Android projects that use IBM Worklight V5.0.6 or earlier, then those
projects cannot be migrated automatically. Therefore, those applications must be
manually upgraded into a new Worklight V6.0.0 project.
– You must manually remove the Tealeaf library and the configuration files

from your application before you import your project into an IBM Worklight
V6.0.0 workspace.

– You must add the following lines of code manually to the
/common/js/initOptions.js file:
logger : {

enabled: true,
level: ’debug’,
stringify: true,
tag: {

level: false,
pkg: true

},
whitelist: [],
blacklist: []

},

260 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

analytics : {
enabled: true
//url : //

}

Note: You must also update the JNDI configuration for your WAR to set the
other required properties, as explained in “Configuring Worklight Server for
analytics” on page 215.

v Usage of WL.App.close: Starting with IBM Worklight V6.0.0, the WL.App.close
API is deprecated to reflect a change in the iOS Human Interface Guidelines.
Consider no longer using WL.App.close API in your apps. For more
information, see the WL.App.close API description under “JavaScript client-side
API” on page 696.

Third-party libraries

Cordova: IBM Worklight V6.0.0 is now based on Cordova 2.6. Compared to the
earlier version, Cordova 2.6 includes new, modified, deprecated, and removed
items. The upgrade process for the Cordova 2.6 configuration is automated when
the IBM Worklight project is built in Worklight Studio or with the Ant tasks.
v New items (for iOS only)

– The AssetLibrary.frameworks is added as a project resource.
– In the config.xml file, the following attributes are added to the <preference>

element:
- DisallowOverscroll

- FadeSplashScreen

- FadeSplashScreenDuration

- HideKeyboardFormAccessoryBar

- KeyboardShrinksView

v Modified item

– For iOS, the config.xml root element is now <widget> instead of <cordova>.
v Deprecated items

– For iOS, the cellular network connection return of Connection.CELL_2G is
deprecated in Cordova 2.6. It may change and return Connection.CELL in a
future release.

– The EnableLocation preference in config.xml is deprecated in Cordova 2.6.
Instead, use the onload attribute of the element.

To know more about deprecation in Cordova, see http://wiki.apache.org/
cordova/DeprecationPolicy.

v Removed items For iOS, the following attributes were removed from the
<preference> element in the config.xml file:
– UIWebViewBounce

– OpenAllWhitelistURLsInWebView

Worklight Dojo Library Project Setup: Worklight V6.0.0 project setup changed for
Worklight Dojo projects. A Worklight project that uses Dojo is now paired with a
Dojo library project. Projects that were created with an earlier version of IBM
Worklight had a mobile version of Dojo that was directly placed in the project.
Worklight projects that are created with IBM Worklight V6.0.0 now have a small
subset of Dojo resources inside the Worklight project, and a separate Dojo library
project. To know how to migrate an earlier project to use the Dojo library, see
“Migrating an IBM Worklight project to use the Dojo library” on page 262.

Chapter 7. Upgrading from one version of IBM Worklight to another 261

http://wiki.apache.org/cordova/DeprecationPolicy
http://wiki.apache.org/cordova/DeprecationPolicy

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Changes in projects

Removed environments: IBM Worklight no longer supports the following
environments:
v iGoogle
v Facebook
v Apple OS X Dashboard
v Vista

For more information about these environments, see IBM Worklight V5.0.6
Information Center. If you use IBM Worklight applications that include the
Facebook environment, you can migrate these apps to the Desktop Browser
environment. For more information, see “Manually migrating Facebook apps” on
page 267.

Custom Cordova plug-ins for Windows Phone 8 applications: if you wrote your
own Cordova plug-ins in a Windows Phone 8 application, you must declare them
in the config.xml file under the <plugin> element as follows:
<widget>
<plugins>
<!--Cordova Plugins-->
<!--Worklight Plugins-->
<plugin name=your plugin/>
</plugins>
</widget>

Migrating an IBM Worklight project to use the Dojo library
You can migrate a Dojo project that was created with an earlier version of IBM
Worklight to use the new Dojo library project.

About this task

A project that was created with an earlier version of Worklight Studio had a mobile
distribution and a build-dojo.xml file that controlled which pieces of Dojo were
built into the IBM Worklight application, as shown in Figure 21 on page 263.

262 IBM Worklight V6.1.0

http://pic.dhe.ibm.com/infocenter/wrklight/v5r0m6/index.jsp
http://pic.dhe.ibm.com/infocenter/wrklight/v5r0m6/index.jsp

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Starting in Worklight Studio V6.0.0, projects that require Dojo are set up using a
Dojo library project (see “Working with the Dojo Library Project that serves Dojo
resources” on page 358). To convert your existing Worklight Dojo project to a
Worklight Dojo Library project, complete the following procedure.

Procedure
1. Back up the project you want to migrate in case you want to roll back the

migration.
2. Right-click your IBM Worklight project, and click Properties.
3. In the Properties window, click Project Facets.
4. Clear the Dojo Toolkit check box.

Figure 21. Structure of a Dojo project made with IBM Worklight V5.0.6 or earlier

Chapter 7. Upgrading from one version of IBM Worklight to another 263

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

5. Click OK.
Nothing is removed from your project. You must now create a placeholder
application in your existing project to reinstall Dojo.

6. To create a placeholder application, go to File > New > Worklight Hybrid
Application.

7. In the field Application name, set the name of your application, and select
Add Dojo Toolkit.

Figure 22. Project Facets window

264 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

8. Name and configure the Dojo Library. For more information, see “Working
with the Dojo Library Project that serves Dojo resources” on page 358.

9. Click Finish.
Now, there is a new Dojo Library Project in your workspace. There is also a
new www folder, and your placeholder application is created. You must now
migrate each existing application. Figure 24 on page 266 shows:
v The new Dojo library project
v The newly created placeholder application
v The mobile Dojo distribution of the earlier application (the dojo folder)
v The new Dojo layers (the www folder)

Figure 23. Adding Dojo toolkit to an application

Chapter 7. Upgrading from one version of IBM Worklight to another 265

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

10. Copy the build-dojo.xml and build-dojo.properties files from the
placeholder application to the application you want to migrate.

Figure 24. New application in an existing Dojo project

266 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The build of Worklight Studio then picks up the new Dojo files.
11. If you did not add custom Dojo code to the folder Worklight Project

Name/dojo, you can delete it. Otherwise, copy the Dojo code that you want to
keep to the www folder.

What to do next

Repeat this procedure for every application you want to migrate.

When the build-dojo.xml and the build-dojo.properties files are copied to every
application you want to migrate, and when the custom Dojo code (if needed) is
copied from the dojo folder to the www folder, the migration process is complete.
You can delete the placeholder application.

Manually migrating Facebook apps
You can migrate from a Facebook environment to a Desktop Browser environment
by copying your Facebook files and folders to the Desktop Browser folder.

Procedure
1. Create a Desktop Browser web page environment for your app.
2. Delete all the files and folders under this new environment.
3. Copy all the files and folders from the facebook environment folder to the

desktopbrowser environment folder.
4. In the Facebook dashboard, change the field entry for the canvas URL from

http://host:port/apps/services/www/application_name/facebook/ to
http://host:port/apps/services/www/application_name/desktopbrowser/.

5. Change the field entry for the secure canvas URL from https://host:port/
apps/services/www/application_name/facebook/ to https://host:port/apps/
services/www/application_name/desktopbrowser/.

Figure 25. Copy of the build-dojo.xml and build-dojo.properties files

Chapter 7. Upgrading from one version of IBM Worklight to another 267

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

6. In the .html and .js files of the desktopbrowser environment folder, search for
any occurrence of the string http://host:port/apps/services/www/
application_name/facebook/ and replace it with http://host:port/apps/
services/www/application_name/desktopbrowser/.

7. Rebuild and deploy the new environment.

Migrating Worklight Studio to V6.0.0
Worklight Studio V6.0.0 must be installed into Eclipse V4.2.2 (Juno) as a new
installation. It cannot be upgraded or installed on top of an earlier version of
Eclipse.

About this task

Worklight Studio cannot be directly upgraded to V6.0.0 from earlier versions in a
single update installation. If you want to install Worklight Studio V6.0.0 into the
Eclipse instance where your current version of Worklight Studio is installed, you

Figure 26. Facebook dashboard

268 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

must first uninstall your current version of Worklight Studio, and then upgrade
Eclipse to the supported version. When Worklight Studio V6.0.0 is installed, you
can then point to your earlier workspace and work with your existing projects.

Procedure
1. Uninstall your existing instance of Worklight Studio (only if you install

Worklight Studio V6.0.0 into the same Eclipse as the one where you have your
current version of Worklight Studio).
a. Open the Help menu and click About Eclipse.
b. Click Installation Details.
c. Select all of the following if they are installed: IBM Dojo Mobile Tools,

IBM jQuery Mobile Tools, IBM Worklight Studio.
d. Click Uninstall and follow the instructions to complete the uninstallation.

2. Upgrade Eclipse to the minimum supported versions (V4.2.2, also referred to as
Juno). If you already have one of these versions of Eclipse, move to the next
step.
a. Open the Window menu and click Preferences.
b. In the left panel, click Install/Update to display more options.
c. Click Available Software Sites, and click Add.
d. In the Add Site window, enter a value in the Name field (for example,

Eclipse Update).
e. Enter http://www.eclipse.org/downloads/ into the Location field and click

OK.
f. Click OK to exit the Preferences window.
g. Open the Help menu and click Check for Updates.
h. In the Available Updates window, select the items that you want to install

or update.
i. Click Next and follow the instructions to complete the installation.

3. Install Worklight Studio V6.0.0. For instructions on Worklight Studio
installation, see “Installing Worklight Studio” on page 46.

Results

Worklight Studio is now updated.

Note:
If the update appears to hang, it might be because you are using a bad mirror.
Add this line to your eclipse.ini file to solve the problem:
-Declipse.p2.mirrors=false

Migrating projects to a new Worklight Studio instance
Follow these instructions if you want to migrate projects that were created with
IBM Worklight V5.0.6 or earlier to Worklight Studio V6.0.0.

Procedure
1. Export your projects from your current instance of Worklight Studio.

a. Open the File menu and click Export....
b. Expand the General menu, click Archive File and click Next.
c. Browse to the destination for the archive file and click Finish.

Chapter 7. Upgrading from one version of IBM Worklight to another 269

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. Install Worklight Studio V6.0.0. For instructions on Worklight Studio
installation, see “Installing Worklight Studio” on page 46.

3. Import the projects that you exported in Step 1.
a. In Eclipse, open the File menu and click Import....
b. In the Import window, click General to expand more options.
c. Click Archive File, and click Next.
d. Browse to each project archive file and click Finish.

Results

You can now find your existing projects in your new instance of Worklight Studio.

Note:
If the update appears to hang, it might be because you are using a bad mirror.
Add this line to your eclipse.ini file to solve the problem:

-Declipse.p2.mirrors=false

Upgrading Worklight Server in a production environment
Upgrading Worklight Server in a production environment is a more exacting
process than in your development environment because you must back up your
data and prepare for the upgrade carefully to minimize production downtime.

When you upgrade from Worklight Server V5.0.x to V6.0.x in a production
environment, the process can be more complicated than upgrading to a new
version in your development environment. The upgrade procedure can also take
longer if you have existing IBM Worklight applications that run in a production
Worklight Server environment. For step-by-step instructions on how to upgrade
your production Worklight Server to V6.0.x, see the following topics.

Note: The documentation in these topics assumes that:
v Your database type is IBM DB2, MySQL, or Oracle (not Apache Derby).
v Your application server type is WebSphere Application Server Full Profile,

WebSphere Application Server Liberty Profile, or Apache Tomcat.

Important: The topics are in a specific order, and must be completed in the order
shown.

The tasks under the “Preparing for the upgrade process” on page 271 topic can be
completed before the actual installation of the new Worklight Server. The following
topics, after “Starting the upgrade process” on page 276, must be completed
sequentially and in one session until you complete the full procedure. Naturally,
the final topic, “Recovering from an unsuccessful upgrade” on page 303, must be
performed only if the upgrade was not successful.

The upgrade procedure can take some time, several hours in fact, and so these
activities must be scheduled to create the least disruption and downtime to
production servers and the applications that run on them.

The topics provide essential information about migrating your existing IBM
Worklight projects and applications to the new version, backing up any existing
databases or application server data, and performing other preparation tasks that
must be completed before you install the new version of Worklight Server. These
preparatory steps are followed by post-installation, verification, and configuration

270 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

tasks that must be completed before you restart the new Worklight Server and
finish migrating your IBM Worklight applications.

Read through the entire set of topics before you begin the actual upgrade process
to become familiar with the tasks ahead of you, what must be done, and in what
order.

Preparing for the upgrade process
Several preparation tasks must be completed before you begin the actual
installation of the new Worklight Server version.

Migrating to a new version of Worklight Server in a development environment is
quick and easy, because in most cases no critical data must be preserved in the
IBM Worklight databases. In a production environment, however, more time and
effort is required for the upgrade, to minimize production downtime and
inconvenience to users of existing applications.

The following topics cover preparation tasks to be performed before you begin the
installation of the new Worklight Server version. These tasks can be performed at
any time prior to the upgrade, but must be completed before you move to the next
step, “Starting the upgrade process” on page 276.

Migrating your Worklight projects:

Before you upgrade your production Worklight Server, complete these steps to
upgrade your development environment and migrate your existing IBM Worklight
projects and apps.

About this task

Your projects in Worklight Studio (with their respective apps and adapters) must
be migrated to the same version of Worklight Studio you want to install. This task
is performed by the development team. It can take some time, and is therefore best
started ahead of time, before you begin the next step, “Starting the upgrade
process” on page 276.

This task is necessary because the project configuration, which is encoded in the
project WAR file, must match the IBM Worklight runtime library code
(worklight-jee-library.jar). If you were to use the project WAR file you created
with a previous release of Worklight Studio, the Worklight console code and
project configuration would be from a previous version and would not be correct
for the new worklight-jee-library.jar.

The existing project WAR file (from the previous release) must be replaced with a
new project WAR file generated from the new release of Worklight Studio. The
new project WAR contains the correct Worklight console code and the correct
project configuration.

Important: Impact for Client Applications

The communication protocol of Worklight Server V6.0.0 supports the protocols of
client applications that are built with IBM Worklight V5.0.0.3 or later. Device users
who are using apps that were built with IBM Worklight V5.0.0.3 or later, and
whose server-side artifacts are successfully ported to Worklight V6.0.0 and tested
on a test server, should continue to work without requiring the device users to
upload a new version of the application.

Chapter 7. Upgrading from one version of IBM Worklight to another 271

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

However, the Direct Update feature “Direct updates of app versions to mobile
devices” on page 833 stops working on those versions. The Direct Update feature
works if the server-side artifacts (in this case, the .wlapp file) are built with the
same version of Worklight Studio used to generate the mobile application. To
deliver an update and activate Direct Update, you create an application with an
incremented version number and publish it on its application store. To notify your
users that a new version of the application is available, you can use the startup
display notification feature “Displaying a notification message on application
startup” on page 840. If the application update is mandatory, another alternative is
to deny access to the old application version “Remotely disabling application
connectivity” on page 837.

Procedure

1. Back up the Worklight Studio workspace that contains the IBM Worklight
project.
When a new version of Worklight Studio is pointed to an older Worklight
Studio project, it updates (modifies) some of the metadata files. Therefore, it is
a good idea to keep a backup of the previous workspace.

2. Install the new version of Worklight Studio (the version corresponding to the
new version of Worklight Server).
See “Installing Worklight Studio” on page 46 for details.

3. Start Worklight Studio.
See “Starting Worklight Studio” on page 48 for details.

4. Create a copy of your existing workspace, and then start with a fresh
workspace:
v First, in the old version of Worklight Studio, select the existing Worklight

project and click File > Export > General > Archive to create an archive of it.
v Then, in the new version of Worklight Studio, create a new empty

workspace, click File > Import > General > Existing Projects into
Workspace, and select the archive that you created. This also migrates the
project to the new version.

5. Rebuild a project WAR file and deploy it to a test environment that contains
the new version of Worklight Server.
See “Deploying IBM Worklight applications to test and production
environments” on page 711 for details.

6. Recompile the apps and adapters and deploy them to the same test
environment.
See “Deploying IBM Worklight applications to test and production
environments” on page 711 for details.

7. Test the apps and their compatibilities with the client-side artifacts that have
not been upgraded.

8. Repeat this process for each of the Worklight Studio projects you want to
migrate to the new Worklight Server version.

What to do next

Prepare the migration of the Application Center.

If you are using Application Center, the size limit for applications that are stored
on Application Center with IBM DB2 is 1 GB. If you have applications larger than
1 GB in the Application Center, remove them before you start the upgrade process.

272 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

New packaging of WebSphere Application Server Liberty Profile and its impact
on the Worklight Server upgrade:

WebSphere Application Server Liberty Profile is delivered in a different way since
IBM Worklight V6.0.0, and this has an impact on the upgrade of your production
server.

Important: The information on this page applies to you if you previously installed
Worklight Server version V5.x with the embedded WebSphere Application Server
Liberty Profile option.

Since Worklight Server V6.0.0, WebSphere Application Server Liberty Core is not
embedded in the IBM Installation Manager wizard of Worklight Server. Instead, it
is provided as a separate IBM Installation Manager wizard.

As a result, the upgrade process that follows does not upgrade your installed
version of WebSphere Application Server Liberty Profile, and will not apply fix
packs to it in the future. At the end of the upgrade process, your Liberty server
remains installed in <WorklightServerInstallationDirectory>/server/wlp, but is
considered as an external file from the perspective of upgrades, uninstall, and
updates from the IBM Installation Manager wizard of Worklight Server.

To prevent this existing server from being uninstalled during the upgrade process,
the IBM Installation Manager wizard temporarily renames its directory during the
upgrade process. It is critical to apply the steps that are defined in section “Special
steps for WebSphere Application Server Liberty Profile” on page 279 before you
start the upgrade process. The result of not completing these steps can be a
non-functional server.

Alternate Method: Migrate the Worklight apps and data to a new Liberty Server

This alternate upgrade method migrates your Worklight applications and data to a
new WebSphere Application Server Liberty Profile server installed by IBM
Installation Manager. This server can be updated by IBM Installation Manager
when new updates for Liberty are made available.
1. Stop the Liberty server that was installed with the previous version of IBM

Worklight.
2. Install WebSphere Application Server Liberty Core with IBM Installation

Manager. The installer for IBM WebSphere Application Server Liberty Core is
part of the IBM Worklight package.

3. Create a server in this new WebSphere Application Server Liberty Profile
installation. If you are not familiar with the creation of a server for Liberty, see
the “Worklight Server installation process walkthrough” on page 53.

4. Configure the Liberty server for your production environment.
5. Install IBM Worklight with IBM Installation Manager. In this step, if you

request IBM Installation Manager to install Application Center, and if you
specify the Application Center databases of the previous version, the
Application Center is migrated.

6. Continue to step “Upgrading the databases and deploying the upgraded IBM
Worklight project” on page 282.

Deciding between in-place upgrade and rolling upgrade:

There are two ways to perform an upgrade: in-place upgrade or rolling upgrade.

Chapter 7. Upgrading from one version of IBM Worklight to another 273

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v An in-place upgrade is an upgrade by which the old version of IBM Worklight
is no longer installed after the new version of IBM Worklight has been installed.

v A rolling upgrade is an upgrade that installs the new version of IBM Worklight
such that it runs side-by-side with the old version of IBM Worklight in the same
application server or in a different application server.

The in-place upgrade is the normal way to upgrade. It has the advantage that it is
simpler to perform.

The rolling upgrade has the advantage that it minimizes the downtime of the
application server, in case an unexpected problem with the upgrade occurs. If there
is a problem, you can restart the application server in the old configuration while
investigating the problem.

Important: This release supports the rolling upgrade for IBM Worklight projects.
However, the rolling upgrade of Application Center is not supported.

This chapter focuses on the in-place upgrade. It mentions specific instructions for
rolling upgrade. But the rolling upgrade is complex and not yet fully explained in
this documentation.

Familiarizing yourself with IBM Installation Manager:

Before you start the actual installation, verify that you have all the products that
you want to install and that you are familiar with IBM Installation Manager
procedures.

About this task

You use IBM Installation Manager to complete the actual upgrade. Before you start,
verify that you have all of the necessary installation components, and that you
understand the installation procedure.

Procedure

1. Verify that your hardware and software meet the installation requirements:
“Installation prerequisites” on page 52.

2. Make sure that you have the appropriate version of IBM Installation Manager
installed on the installation workstation.
Use IBM Installation Manager V1.6.3.1 or later, especially on Windows. For
more information about IBM Installation Manager procedures, see the IBM
Installation Manager user documentation.

3. Download the repositories that are required for the update from Passport
Advantage, or have them available if they are on physical media.
For more information about the types of upgrade repositories available, see
“Information about the repositories” on page 275.

4. Verify that the products that you want to update are contained in the IBM
Installation Manager repositories.
CAUTION:
The following steps are not the actual installation. They are preparatory tasks
to ensure that you have everything that is required for the upgrade, so be
sure to click Cancel in the last step.

a. Start IBM Installation Manager.

274 IBM Worklight V6.1.0

http://pic.dhe.ibm.com/infocenter/install/v1r6/index.jsp
http://pic.dhe.ibm.com/infocenter/install/v1r6/index.jsp

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

b. Click File > Preferences > Repositories to add references to the repositories
that you downloaded and extracted on a local disk, or that you can access
through the internet. See Repository preferences for details.

c. Click Install.
d. Verify that the products list contains everything that you need.
e. Click Cancel. Do not proceed with the installation.

Information about the repositories:

Information about the types of repositories that are used by IBM Installation
Manager.

About this task

There are two types of repositories: base repositories and delta repositories.
v A base repository is an installation package that is available on Passport

Advantage or on physical media. It is self-contained.
v A delta repository is an installation package that is available from FixCentral and

is labeled as an update pack. It requires a base repository to be functional.

To install a major release (for example, Worklight Server V6.0.0), you need only:
v The base repository V6.0.0 installation package from Passport Advantage or

physical media.

To install a fix pack release (for example, Worklight Server V6.0.0.1), you need:
v The corresponding base repository (such as Worklight Server V6.0.0) installation

package from Passport Advantage or physical media.
v The appropriate V6.0.0.x installation package from FixCentral.

For a fix pack installation, you must add both repositories to the list known to IBM
Installation Manager. Then, in the example given, IBM Installation Manager
recognizes the V6.0.0 release as an Install choice and the V6.0.0.x release (or
interim fix) as an Update choice.

To install an interim fix release, you can need up to three repositories:
v The repositories for the release to which the fix applies.
v The repository for the fix.

For installing an interim fix, you must add all these repositories to the list known
to IBM Installation Manager. Then IBM Installation Manager recognizes the interim
fix as an Update choice.

Gathering the information you need for the update:

To avoid having to stop the upgrade process to look up required information,
gather it in advance and have it handy.

About this task

One of the purposes of these instructions is to minimize the time that is required
for the Worklight Server upgrade. You do not want to start the procedure and then
discover that you are missing some piece of information that is required by the
installer.

Chapter 7. Upgrading from one version of IBM Worklight to another 275

http://pic.dhe.ibm.com/infocenter/install/v1r6/index.jsp?topic=/com.ibm.cic.agent.ui.doc/topics/t_specifying_repository_locations.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To avoid this situation, prepare a list of information you are likely to be asked for,
and keep it handy during the actual installation procedure.

In addition, it is often necessary to pre-plan certain aspects of the upgrade and
clear them with your application server administrator and database administrator.
For example, you must know which user name to use when you install the
Worklight Server upgrade. Similarly, you must either have sufficient permissions to
create or update databases, or have your database administrator do it for you.

Procedure

Go through the following checklist to make sure that you have all of the necessary
information to begin the upgrade:
v Make a list of the host names and IP addresses of all servers that must be

upgraded.
v Make a similar list of all database names and locations.
v Ensure that the correct JDBC drivers are installed for your target databases.
v The upgrade procedure requires the credentials of the Worklight, Worklight

reports, and Application Center databases. Therefore, you must either know the
correct schemas, user names, and passwords, or have your database
administrator assist you.

v The upgrade procedure requires you to stop and restart the application server
and verify its configuration. Therefore, you must be familiar enough with your
application server to complete these tasks, or have a system administrator do
them.

v For IBM Installation Manager, consult your system administrators and decide
whether to run it in administrator mode or in single-user mode. See “Single-user
versus multi-user installations” on page 62. This choice can influence how IBM
Installation Manager works, and the success or failure of the installation. For
example, if you install Worklight Server as root but then try to run it as a
different user, problems can arise.

Starting the upgrade process
In this phase of the upgrade process, you shut down and back up the application
server and IBM Worklight databases and complete other pre-installation tasks.

When you finish the tasks that are listed in “Preparing for the upgrade process” on
page 271, you can begin the actual upgrade process.

Note: Once you begin this phase of the upgrade process, your Worklight Server,
database, and application server are offline. They are no longer available to
support existing apps or provide service to existing users of those apps. The
upgrade process itself can take several hours. Therefore, you must plan the timing
of this process for non-critical hours to have minimal impact on users.

The following topics present the steps, in the order in which they must be
completed:

Shutting down the Liberty Application Server:

If you use the embedded WebSphere Application Server Liberty Profile that can be
installed with Worklight Server, you must shut it down.

276 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

If you installed Worklight Server in your production environment with the
embedded WebSphere Application Server Liberty Profile option, you begin the
actual upgrade process by shutting down this server. During your original
Worklight Server installation, the panel of IBM Installation Manager on which this
decision is made looks like the following screen capture:

If you use this embedded server, you must ensure that the Liberty application
server is not running before you continue with the upgrade. Specific instructions
are shown in the following procedure.

Procedure

1. Ensure that the JAVA_HOME environment variable points to the installation
directory of a Java 6 or 7 implementation (JRE or JDK), or that the PATH
environment variable contains a java program from a Java 6 or 7
implementation.

2. Shut down the server.
a. On UNIX, enter the following commands, changing the installation location

if necessary:
cd /opt/IBM/Worklight
cd server/wlp/bin
./server stop worklightServer

b. On Windows, enter the following commands, changing the installation
location if necessary:
cd C:\Program Files (x86)\IBM\Worklight
cd server\wlp\bin
server.bat stop worklightServer

3. Verify that no other runaway Liberty server processes are running in the same
directory. On Linux and AIX, you can list such processes with the following
command:
ps auxww | grep java | grep /wlp/

Chapter 7. Upgrading from one version of IBM Worklight to another 277

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Backing up the databases:

Back up the contents of your project databases.

As a safety measure, and to provide a fallback strategy in the case of an
unsuccessful upgrade, back up your Worklight Server project databases.

This strategy covers the rare cases in which the new version fails to work correctly
in your environment. In this case, you must roll back the upgrade, and return to
the previous version of Worklight Server. You must then restore the contents of the
databases from the backup.

The reason for this precaution is that the new server version can store its data in a
slightly different way than the previous version. There is no assurance that the old
server version can operate after the new server version stores data in the
databases.

Consult the documentation for your database management system for backup and
restore procedures.

Backing up the application server:

Back up the directory that contains the application server and its configuration.

As an extra safety measure, back up the directory that contains the application
server and its configuration. This strategy covers the rare cases in which the new
application server version fails to work correctly if errors occur in the forthcoming
configuration changes.

If the application server is the embedded Liberty server included with a previous
release of Worklight Server, the directories to back up are as follows:
v WL_INSTALL_DIR/server/wlp

v On Windows, also back up C:\ProgramData\IBM\Worklight\WAS85liberty-
server\wlp.

To back up WebSphere Application Server Full Profile:
v If your original installation was to one or more servers under the control of a

deployment manager, and not a single stand-alone server:
– Either use the WebSphere backupConfig command to backup the deployment

manager node.
– Or back up the config directory inside the deployment manager profile

directory.
v If your original installation was to a stand-alone server:

– Either use the WebSphere backupConfig command to backup the entire node.
– Or back up the application server profile directory.

To back up Apache Tomcat, see its documentation to determine the directories to
back up for those application servers.

If you later must roll back the upgrade, and return to the previous version of
Worklight Server, you must restore the application server. This means, for each of
the directories you backed up:
1. Remove or rename the directory or directories to be replaced on disk.

278 IBM Worklight V6.1.0

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.nd.multiplatform.doc%2Fae%2Frxml_backupconfig.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.nd.multiplatform.doc%2Fae%2Frxml_backupconfig.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. Restore the previous contents of the directory or directories, from its respective
backup.

Test the application server backup

It is a good idea to test your backup of the application server to make sure you
can restart it. For example, for a WebSphere Application Server Liberty Profile
backup:
1. Unpack the backup directory.
2. Start the server.

If the server fails to start and load the applications, delete the server's workarea
before starting it again. The workarea is the directory <LibertyInstallDir>/usr/
servers/<serverName>/workarea.

Applying configuration changes for a rolling upgrade:

When you perform a rolling upgrade and you want to reuse the same application
server, and the application server is WebSphere Application Server Liberty Profile
or Apache Tomcat, you need to make some specific configuration changes.

Before you begin

For information about in-place and rolling upgrades, see “Deciding between
in-place upgrade and rolling upgrade” on page 273.

Procedure

1. Shut down the application server.
2. Edit the server.xml configuration file by hand to make sure that the old

configuration of the IBM Worklight project is preserved. During the next steps,
the Worklight Server installer removes from this configuration file the contents
between the marker comments:
v <!-- Begin of configuration added by IBM Worklight installer. -->

...
<!-- End of configuration added by IBM Worklight installer. -->

v For Apache Tomcat:
<!-- Begin of Context and Realm configuration added by IBM Worklight installer. -->
...
<!-- End of Context and Realm configuration added by IBM Worklight installer. -->

and replaces it with contents specific to the new Worklight version. Since you
want to preserve the configuration of the Worklight project, you need to move
this part of the configuration outside these marker comments.
The declarations that you need to move are:
v The declaration of the Worklight console application.
v The declaration of the data sources named jdbc/WorklightDS and

jdbc/WorklightReportsDS.
v For WebSphere Application Server Liberty Profile, the <webContainer

invokeFlushAfterService="false"/> element.

Special steps for WebSphere Application Server Liberty Profile:

If you use WebSphere Application Server Liberty Profile, you must complete these
tasks before you continue with the upgrade process.

Chapter 7. Upgrading from one version of IBM Worklight to another 279

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

If you installed Worklight Server with the embedded WebSphere Application
Server Liberty Profile option, you must stop all servers that were created with this
installation of Liberty before you start the upgrade process.

Procedure

1. Stop the Worklight Server that was created by the IBM Installation Manager
wizard of Worklight Server V5.x. In the <Worklight Installation
Directory>/server/wlp/bin directory, issue the appropriate command:
v On Windows: server.bat stop worklightServer

v On UNIX or Linux: server stop worklightServer

2. If you created other server instances, stop them as well by issuing the same
commands:
v On Windows: server.bat stop <nameOfServer>

v On UNIX or Linux: server stop <nameOfServer>

3. Exit from the <Worklight Installation Directory>/server directory. For
example, by issuing the command cd ../../../.

4. Stop any other process that uses a file or that can write to files in directory
<Worklight Installation Directory>/server.

Verifying the ownership of files:

Before you begin the actual installation, check the ownership of all Worklight
Server files.

The upcoming “Running IBM Installation Manager to perform the upgrade” on
page 281 step attempts to remove and replace many files in the Worklight Server
installation directory. This step can fail if the single-user mode of IBM Installation
Manager is used and some of the files or directories are not owned by that user.
Therefore, it is useful to guard against this case.

If you installed Worklight Server with the single-user mode of IBM Installation
Manager, check whether all files and directories in WL_INSTALL_DIR are owned by
the current user. For more information about Installation Manager's administrator
mode, see Administrator, nonadministrator, and group mode.

On UNIX, you can list the files and directories that do not fulfill this condition
with the following commands:

cd WL_INSTALL_DIR
find . ’!’ -user “$USER” -print

This command should produce no output.

Shutting down conflicting processes:

Before you start the actual upgrade in the next step, shut down any conflicting
Windows processes.

On Windows only, shut down all processes that have their current working
directory inside the WL_INSTALL_DIR or the C:\ProgramData\IBM\Worklight\
WAS85liberty-server directory hierarchy. These processes include:
v Console windows
v Windows Explorer windows

280 IBM Worklight V6.1.0

http://pic.dhe.ibm.com/infocenter/install/v1r6/index.jsp?topic=%2Fcom.ibm.cic.agent.ui.doc%2Ftopics%2Fc_admin_nonadmin_group.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

You can check for these processes with the Microsoft Sysinternals Process Explorer.
For more information, see Process Explorer.

Running IBM Installation Manager to perform the upgrade
Use IBM Installation Manager to install the new Worklight Server version.

In this step, you use IBM Installation Manager to upgrade your Worklight Server
instance.

Note: Before you continue, make sure that you completed all of the steps in the
“Preparing for the upgrade process” on page 271 and “Starting the upgrade
process” on page 276 sections that preceded this step.

Upgrading on WebSphere Application Server Network Deployment servers:

Use this procedure to upgrade Worklight Server in a WebSphere Application Server
Network Deployment environment.

About this task

Follow this procedure if you originally installed Worklight Server on an application
server of type WebSphere Application Server Network Deployment.

That is, if your original installation was to one or more servers under the control of
a deployment manager, and not a single stand-alone server, use the following
procedure.

To upgrade stand-alone servers, see “Upgrading on a stand-alone WebSphere
Application Server or Apache Tomcat server.”

Procedure

1. Uninstall Worklight Server on all server nodes that you want to upgrade.
2. Install the new version of Worklight Server. If you want to install the

Application Center with IBM Installation Manager, choose:
v WebSphere Application Server as your application server.
v A deployment manager profile (such as Dmgr01) as your profile.
v Either a cluster, a node, or the entire cell as your scope.
For details of this step, see “Installing Worklight Server into WebSphere
Application Server Network Deployment” on page 64.

3. Step through the installation wizard.
4. IBM Installation Manager installs on your disk the files and tools that are

required to deploy Worklight in your application server. If you requested IBM
Installation Manager to install Application Center, it upgrades the existing
databases and then deploys Application Center to your application server.

5. When the installation completes, close IBM Installation Manager. Then,
complete the steps that are described in “Upgrading the databases and
deploying the upgraded IBM Worklight project” on page 282.

Upgrading on a stand-alone WebSphere Application Server or Apache Tomcat
server:

Use this procedure to upgrade Worklight Server in a stand-alone WebSphere
Application Server or Apache Tomcat environment.

Chapter 7. Upgrading from one version of IBM Worklight to another 281

http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

If you originally installed Worklight Server on:
v A stand-alone WebSphere Application Server Liberty Profile server,
v A stand-alone WebSphere Application Server Full Profile server, or
v A stand-alone Apache Tomcat server,

use the following procedure, with the IBM Installation Manager Update function.

Procedure

1. Start IBM Installation Manager.
2. Click Install. The package name for IBM Worklight Server has changed

between Worklight Server V5.x and V6.0.0, so the upgrade must be done with
the 'Install' process.

3. If you are doing an in-place upgrade (see “Deciding between in-place upgrade
and rolling upgrade” on page 273), select the package group that contains your
Worklight Server installation. If you are doing a rolling upgrade, select Create a
new package group.

4. Step through the installation wizard. If you are doing an in-place upgrade,
most choices are disabled (displayed in gray). But you can change the
passwords for the database or for WebSphere Application Server access if they
are different from the original installation.

5. IBM Installation Manager completes the following tasks:
v It installs on your disk the files and tools that are required to deploy

Worklight in your application server.
v It undeploys the previous version of Worklight from the Application Server.
v It removes the application server configurations that were set by the previous

installer of IBM Worklight Server.
v If Application Center was installed in the previous version of Worklight

Server, the installer also:
– Undeploys the previous version of the Application Center from the

application server.
– Upgrades the databases of Application Center to the format used by IBM

Worklight V6.0.0. To see a copy of the upgrade scripts, you can install IBM
Worklight Server in a new package group and review a copy of the
upgrade scripts in <WorklIghtInstallDir>/ApplicationCenter/databases.

– Deploys the new version of Application Center to the application server
and connects it to the upgraded database.

– Configure the application server for running the Application Center.
6. When the installation completes, close IBM Installation Manager. Then,

complete the steps that are described in “Upgrading the databases and
deploying the upgraded IBM Worklight project.”

Upgrading the databases and deploying the upgraded IBM Worklight project:

After you run IBM Installation Manager, follow these instructions to deploy your
IBM Worklight projects.

282 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Upgrading the databases and deploying the upgraded IBM Worklight project
with Ant tasks

After you install IBM Worklight Server with IBM Installation Manager, you must
upgrade the databases.

Note: This operation cannot be undone. If the upgrade process fails, you must
restore the databases from your backup of them to return to a version of the
databases compatible with your previous version of Worklight. To then upgrade
the restored databases to this new version of Worklight, use the Ant tasks that are
described in “Creating and configuring the databases with Ant tasks” on page 722.

After you upgrade the database, you must deploy the upgraded Worklight project
that you create in step “Migrating your Worklight projects” on page 271. Review
the configuration of the upgraded Worklight project and the properties that are
defined in worklight.properties.

Finally, to deploy the upgraded Worklight project, use the Ant tasks that are
described in “Deploying a project WAR file and configuring the application server
with Ant tasks” on page 748. It is possible to override properties of the
worklight.properties file with this Ant task. The new property values are
specified through <property> elements in the <configureapplicationserver> Ant
task invocation.

When these steps are completed, the Worklight Console is available in the
application server. In most cases, you must restart the application server before
you open the Worklight Console.

Upgrading the databases and deploying the upgraded IBM Worklight project
manually

To upgrade the databases manually, follow the steps that are described in
“Manually updating the databases.”

To manually deploy the Worklight project that you create in step “Migrating your
Worklight projects” on page 271, follow the steps that are defined in “Deploying a
project WAR file and configuring the application server with Ant tasks” on page
748.

Manually updating the databases:

Follow these instructions to manually update the Worklight databases.

If you prefer to update databases manually instead of using the Ant tasks, you
must update their sets of tables and columns manually. For example, you can have
test or pre-production databases as part of your production environment, each
served by a different Worklight database or schema.

Updating these alternative databases is done by running a sequence of database
scripts. The upgrade scripts are contained in the just-installed Worklight Server
directory.

Scripts for DB2

For an upgrade from Worklight Server V5.0.0, first upgrade to V5.0.5:

Chapter 7. Upgrading from one version of IBM Worklight to another 283

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v WorklightServer/databases/upgrade-worklightreports-50-505-db2.sql (for
WLREPORT)

For an upgrade from Worklight Server V5.0.5 to V5.0.6:
v WorklightServer/databases/upgrade-worklight-505-506-db2.sql (for

WRKLGHT)
v ApplicationCenter/databases/upgrade-appcenter-505-506-db2.sql (for

APPCNTR).

For an upgrade from Worklight Server V5.0.6 to V6.0.0:
v WorklightServer/databases/upgrade-worklight-506-60-db2.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-506-60-db2.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-506-60-db2.sql (for

APPCNTR)

These scripts are applied similarly to steps 4 and 6 in “Setting up your DB2
databases manually” on page 732

Note: If you are using Application Center, the size limit for applications stored on
Application Center with IBM DB2 is 1 GB. If you have applications larger than 1
GB in the Application Center, remove them before starting the upgrade process.

Scripts for MySQL

For an upgrade from Worklight Server V5.0.0, first upgrade to V5.0.5:
v WorklightServer/databases/upgrade-worklightreports-50-505-mysql.sql (for

WLREPORT)

For an upgrade from Worklight Server V5.0.5 to V5.0.6:
v WorklightServer/databases/upgrade-worklight-505-506-mysql.sql (for

WRKLGHT)
v ApplicationCenter/databases/upgrade-appcenter-505-506-mysql.sql (for

APPCNTR)

For an upgrade from Worklight Server V5.0.6 to V6.0.0:
v WorklightServer/databases/upgrade-worklight-506-60-mysql.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-506-60-mysql.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-506-60-mysql.sql (for

APPCNTR)

These scripts are applied similarly to step 1.b in “Setting up your MySQL
databases manually” on page 741.

Scripts for Oracle

For an upgrade from Worklight Server V5.0.0, first upgrade to V5.0.5:
v WorklightServer/databases/upgrade-worklightreports-50-505-oracle.sql (for

WLREPORT)

284 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For an upgrade from Worklight Server V5.0.5 to V5.0.6:
v WorklightServer/databases/upgrade-worklight-505-506-oracle.sql (for

WRKLGHT)
v ApplicationCenter/databases/upgrade-appcenter-505-506-oracle.sql (for

APPCNTR)

For an upgrade from Worklight Server V5.0.6 to V6.0.0:
v WorklightServer/databases/upgrade-worklight-506-60-oracle.sql (for

WRKLGHT)
v WorklightServer/databases/upgrade-worklightreports-506-60-oracle.sql (for

REPORTS)
v ApplicationCenter/databases/upgrade-appcenter-506-60-oracle.sql (for

APPCNTR)

These scripts are applied similarly to step 3 in “Setting up your Oracle databases
manually” on page 744.

Verifying the Worklight Server
Installation of the new IBM Worklight version modifies the Worklight Server
configuration. Verify that the new configuration meets your expectations.

The Worklight Server installation modified the application server's configuration to
match the new Worklight Server version. It is a good idea to verify that the results
meet your expectations.

The following procedures give instructions for how to complete these verifications
for your server type.

Expected server configuration for WebSphere Application Server Liberty
Profile:

Procedures to help you verify your Liberty server configuration after the upgrade.

The file to be verified is server.xml of the particular WebSphere Application Server
Liberty Profile instance. If you are using the Liberty server that is embedded in
Worklight Server, it is the file wlp/usr/servers/worklightServer/server.xml inside
the directory:
v WL_INSTALL_DIR/server on UNIX
v C:\ProgramData\IBM\Worklight\WAS85liberty-server on Windows

This file still contains modifications that you added outside the blocks that are
delimited by comments such as:
<!-- Begin of features added by IBM Worklight installer. -->
...
<!-- End of features added by IBM Worklight installer. -->

and
<!-- Begin of configuration added by IBM Worklight installer. -->
...
<!-- End of configuration added by IBM Worklight installer. -->

However, the contents inside these blocks have been replaced with code that is
suitable for the new Worklight Server version. If you made changes inside these

Chapter 7. Upgrading from one version of IBM Worklight to another 285

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

blocks, the upgrade has removed them. You must adapt and reinstall them, as
appropriate. Among these blocks, you should see code similar to the following
examples:

In the <featureManager> element:
<feature>ssl-1.0</feature>
<feature>servlet-3.0</feature>
<feature>jdbc-4.0</feature>
<feature>security-1.0</feature>
<feature>appSecurity-1.0</feature>

In the <server> element, for the Worklight run time and the Worklight Console:
<!-- Declare the Worklight Server application. -->
<application id="worklight" name="worklight" location="worklight.war" type="war">

<classloader delegation="parentLast">
<commonLibrary>

<fileset dir="${shared.resource.dir}/lib" includes=
"worklight-jee-library.jar"/>

</commonLibrary>
</classloader>

</application>

<!-- Declare web container custom properties for the Worklight Server application. -->
<webContainer invokeFlushAfterService="false"/>

Similarly, for the Application Center:
<!-- Declare the IBM Application Center Console application. -->
<application id="appcenterconsole" name="appcenterconsole" location="appcenterconsole.war" type="war">

<application-bnd>
<security-role name="appcenteradmin">

<group name="appcentergroup"/>
</security-role>

</application-bnd>
</application>

<!-- Declare the IBM Application Center Services application. -->
<application id="applicationcenter" name="applicationcenter" location="applicationcenter.war" type="war">

<application-bnd>
<security-role name="appcenteradmin">

<group name="appcentergroup"/> </security-role> </application-bnd>
</application>

<!-- Declare the user registry for the IBM Application Center. -->
<basicRegistry id="applicationcenter-registry" realm="ApplicationCenter">

<!-- The users defined here are members of group "appcentergroup",
thus have role "appcenteradmin", and can therefore perform
administrative tasks through the Application Center Console. -->

<user name="appcenteradmin" password="admin"/>
<user name="demo" password="demo"/>
<group name="appcentergroup">

<member name="appcenteradmin"/>
<member name="demo"/> </group>

</basicRegistry>

Expected server configuration for WebSphere Application Server Full Profile:

Procedures to help you verify your WebSphere Application Server Full Profile
server configuration after the upgrade.

To check the server configuration, use the WebSphere Application Server
administration console. The common location of this console is
https://localhost:9043/ibm/console. (The following screen captures use a
different port.)

286 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

When you check the custom properties of the web container of the server, you
should see that property com.ibm.ws.webcontainer.invokeFlushAfterService has
the value false.

When you check the Shared Libraries, you should find one that is named
Worklight_Platform_Library.

Chapter 7. Upgrading from one version of IBM Worklight to another 287

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The detail configuration of this shared library should show a classpath that
consists of the worklight-jee-library.jar:

When you check the JDBC providers, you should see three of them:

288 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Application Center JDBC Provider

v Worklight JDBC provider

v Worklight reports JDBC Provider

.

The details of the JDBC provider can look similar to the following screen capture,
if the database type is DB2:

Chapter 7. Upgrading from one version of IBM Worklight to another 289

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

When you check the data sources, you should see three of them:
v Worklight database

v Worklight reports database

v Application Center database

290 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

When you look at the configuration of each database, you should see the following
JNDI names:
v jdbc/WorklightDS

v jdbc/WorklightReportsDS

v jdbc/AppCenterDS

Note: The Test connection button does not work in a WebSphere Application
Server Network Deployment configuration because the scope of the data source
definition normally does not include the deployment manager server.

Chapter 7. Upgrading from one version of IBM Worklight to another 291

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For a DB2 data source, the configuration should refer to a JAAS authentication
alias, called WorklightDb2DatabaseCredentials (possibly with a suffix). For other
types of databases, the credentials are part of the custom properties of the data
source.

292 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The JAAS authentication alias for DB2 can look like the following screen captures.

Chapter 7. Upgrading from one version of IBM Worklight to another 293

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

When you look at the installed applications list of the server, you should see:
v IBM_Worklight_Console

v IBM_Application_Center_Console

v IBM_Application_Center_Services

These entries can appear differently from the following screen capture, possibly
displaying a numeric suffix for uniqueness (in case of WebSphere Application
Server Network Deployment).

294 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The configuration of each of the web applications should have classloader
settings of parent last and Class loader for each WAR file in application, as
shown in the following screen captures.

Chapter 7. Upgrading from one version of IBM Worklight to another 295

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

296 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

When you look at the shared library references of the application
IBM_Worklight_Console, you should see a reference to the
Worklight_Platform_Library.

Chapter 7. Upgrading from one version of IBM Worklight to another 297

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The IBM_Worklight_Console application has a single module, Worklight,
corresponding to the project WAR file.

The module settings for each module among the Worklight Server applications
should contain a class loader order of parent last.

298 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The class loader viewer for module worklight.war in the IBM Worklight Console
should mention the Worklight_Platform_Library.

Expected server configuration for Apache Tomcat:

Procedures to help you verify your Apache Tomcat application server configuration
after the upgrade.

Chapter 7. Upgrading from one version of IBM Worklight to another 299

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The main file to be verified is conf/server.xml of the particular Apache Tomcat
server.

This file still contains modifications that you added outside the block that is
delimited by comments such as:
<!-- Begin of Context and Realm configuration added by IBM Worklight installer. -->
...
<!-- End of Context and Realm configuration added by IBM Worklight installer. -->

However, the contents inside these blocks have been replaced with code that is
suitable for the new Worklight Server version. If you made changes inside this
block, the upgrade has removed them. You must adapt and reinstall them, as
appropriate.

In this block, you should see code similar to the following examples:
<!-- Declare the IBM Worklight Console application. -->
<Context path="/worklight" docBase="worklight">

<!-- Declare the IBM Worklight Console database. Used through property
wl.db.jndi.name.
If you change this declaration to refer to a different kind of data
base, you have to update the property wl.db.type in the file
worklight.properties inside the file worklight.war. -->

<Resource name="jdbc/WorklightDS" type="javax.sql.DataSource"
driverClassName="com.ibm.db2.jcc.DB2Driver"
url="jdbc:db2:// db2server:50000/WRKLGHT" username=" db2username"
password=" password" auth="Container" maxActive="8" maxIdle="4"
maxWait="5000"/>

<!-- Declare the IBM Worklight Console Reports database. Used through
property wl.reports.db.jndi.name. If you change this declaration
to refer to a different kind of data base, you have to update the
property wl.reports.db.type in the file worklight.properties
inside the file worklight.war. -->

<Resource name="jdbc/WorklightReportsDS" type="javax.sql.DataSource"
driverClassName="com.ibm.db2.jcc.DB2Driver" url="jdbc:db2://
db2server:50000/WLREPORT" username=" db2username"
password=" password" auth="Container" maxActive="8" maxIdle="4"
maxWait="5000"/>

</Context>

<!-- Declare the IBM Application Center applications. -->

<!-- Declare the IBM Application Center Console application. -->
<Context path="/appcenterconsole" docBase="appcenterconsole"/>

<!-- Declare the IBM Application Center Services application. -->
<Context path="/applicationcenter" docBase="applicationcenter">

<!-- Declare the IBM Application Center Services database. -->
<Resource name="jdbc/AppCenterDS" type="javax.sql.DataSource"

driverClassName="com.ibm.db2.jcc.DB2Driver" url="jdbc:db2://
db2server:50000/APPCNTR" username=" db2username"
password=" password" auth="Container" maxActive="8"
maxIdle="4" maxWait="5000"/>

</Context>

<!-- Declare the user registry for the IBM Application Center.

The MemoryRealm recognizes the users defined in conf/tomcat-users.xml.
For other choices, see Apache Tomcat’s "Realm Configuration HOW-TO"
http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html. -->

<Realm className="org.apache.catalina.realm.MemoryRealm"/>

300 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Similarly, the file conf/tomcat-users.xml should contain a block that is delimited
by comments such as:
<!-- Begin of configuration added by IBM Worklight installer. -->
...
<!-- End of configuration added by IBM Worklight installer. -->

This file still contains modifications that you added outside this block. However,
the contents inside these blocks have been replaced with a definition for the role
appcenteradmin, similar to the following example:
<!-- Define roles and users for the IBM Application Center. -->
<role name="appcenteradmin"/>
<user name="appcenteradmin" password="admin" roles="appcenteradmin"/>
<user name="demo" password="demo" roles="appcenteradmin"/>
<user name="guest" password="guest" roles="appcenteradmin"/>

Finally, the file conf/catalina.properties should contain property definitions
similar to the following example:
Added by the IBM Worklight installer.
The directory with binary files of the ’aapt’ program, from the Android SDK’s
platform-tools package.
android.aapt.dir= WL_INSTALL_DIR/ApplicationCenter/tools/android-sdk

Added by the IBM Worklight installer.
Define the AppCenter services endpoint in order for the AppCenter
console to be able to invoke the REST service.
You need to enable this property only if the server is behind a
reverse proxy.
#ibm.appcenter.services.endpoint=http://<proxy>/applicationcenter

Verifying and updating the HTTP redirections:

If you are upgrading Worklight Server on a clustered application server
environment, you should also update IBM HTTP Server after you install IBM
Worklight V6.0.0.

If your Worklight Server upgrade is to be installed on a WebSphere Application
Server Network Deployment clustered environment or a WebSphere Application
Server Liberty Profile farm, you may need to update IHS after you install
Worklight Server V6.0.0. For general information about installing these types of
application server, see:
v “Setting up IBM Worklight in an IBM WebSphere Application Server Network

Deployment V8.5 cluster environment” on page 180
v “Setting up IBM Worklight in an IBM WebSphere Application Server Liberty

Profile farm” on page 191

If your application server receives HTTP requests forwarded by an HTTP server,
the HTTP server configuration may require updating.

For IBM HTTP Server, in the IHS plugin file the context root of the applications
must be updated especially for the session affinity configuration section. The
following example is a configuration for Application Center that is deployed with
its default settings, and a project that is deployed with a root context of
/worklight.
<UriGroup Name="default_host_defaultServer_default_node_Cluster_URIs">

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/worklight/*"/>

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"

Chapter 7. Upgrading from one version of IBM Worklight to another 301

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Name="/applicationcenter/*"/>
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"

Name="/appcenterconsole/*"/>
</UriGroup>

Configuring the Application Center
Set configuration options for the Worklight Application Center.

Since Worklight Server V5.0.6.x, the Application Center supports new configuration
options.

The Application Center security should be configured as documented in
“Configuring the Application Center after installation” on page 138 and in:
v For WebSphere Application Server Liberty Profile: “Configuring WebSphere

Application Server Liberty Profile” on page 140
v For WebSphere Application Server Full Profile: “Configuring WebSphere

Application Server full profile” on page 139
v For Apache Tomcat: “Configuring Apache Tomcat” on page 141

The endpoint URI should be configured as documented in “Defining the endpoint
of the application resources” on page 165 and in:
v For WebSphere Application Server Liberty Profile: “Configuring the endpoint of

the application resources (Liberty profile)” on page 167
v For WebSphere Application Server Full Profile: “Configuring the endpoint of the

application resources (Full Profile)” on page 166
v For Apache Tomcat: “Configuring the endpoint of the application resources

(Apache Tomcat)” on page 168

Final configuration tasks

Complete the topics that follow to set security options for the new version of the
Worklight Application Center and to restart the Application Center.

Other configuration (security):

Update the configuration of the Worklight Application Center to use new security
features in this release.

Consider updating the security configuration to use the new features of Worklight
V5.0.6. For more information, see Improved security and user experience.

Starting the application server:

Restart the Worklight Application Center.

If all previous tasks are completed, now you can start the application server.

Finishing the migration of the IBM Worklight projects
Complete the migration of your IBM Worklight projects and applications by
updating the Worklight Server WAR file.

Using the Worklight Console, deploy the upgraded server-side application artifacts
(the .wlapp file and adapters) that you create in step “Migrating your Worklight
projects” on page 271.

302 IBM Worklight V6.1.0

http://pic.dhe.ibm.com/infocenter/wrklight/v5r0m6/index.jsp?topic=%2Fcom.ibm.worklight.help.doc%2Fwhat_s_new%2Fc_what_s_improved_security_and_user_exp.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Applications that are built with IBM Worklight V5.0.0.3 or later, and whose
server-side artifacts are successfully ported to Worklight V6.0.0 and tested on a test
server, should continue to work without requiring the device users to upload a
new version of the application. However, the Direct Update feature (“Direct
updates of app versions to mobile devices” on page 833) stops working on those
versions. For instructions about how to re-enable direct update for those
applications, see “Migrating your Worklight projects” on page 271.

Recovering from an unsuccessful upgrade
Instructions for how to recover from a failed installation or to revert to the
previous version of Worklight Server.

About this task

If the Worklight Server upgrade fails for any reason, use the following procedure
to restore the previous Worklight Server version.

Procedure

The Roll Back button of IBM Installation Manager is not supported for Worklight
Server. Therefore, to return to the previous version:
1. Uninstall Worklight Server, with IBM Installation Manager.
2. Install the old version of Worklight Server with IBM Installation Manager,

specifying the same installation parameters that you used previously.
3. Restore the databases. For more information, see “Backing up the databases” on

page 278.
4. Restore the application server. For more information, see “Backing up the

application server” on page 278.
5. If the server fails to start and load the applications, delete the server's workarea

before starting it again. For example, for a WebSphere Application Server
Liberty Profile backup, the workarea is the directory <LibertyInstallDir>/usr/
servers/<serverName>/workarea.

Migrating from IBM Worklight V5.0.5 to V5.0.6
When you open your IBM Worklight project with Worklight Studio V5.0.6, your
project is automatically updated to this new version. However, some parts of your
application require manual updates that are related to new versions of some
software and to some changes in the IBM Worklight environment. There are also
some modifications that you must be aware of, such as changes in file names and
structure.

This topic focuses on the migration process from IBM Worklight V5.0.5 to V5.0.6.
To know about the migration process from IBM Worklight V5.0.0.3 to V5.0.5, see
“Migrating from IBM Worklight V5.0.0.3 to V5.0.5” on page 308.

Worklight Server

For instructions on how to upgrade Worklight Server in your development
environment, see Installing Fix Packs for IBM Worklight V5.0.

When Worklight Server restarts after an upgrade, it checks database table
WORKLIGHT_VERSION to verify that the database schema is consistent with the new
version of Worklight Server. If the IBM Worklight database schema changed in the
new release, and the schema is found to be inconsistent or empty, the existing

Chapter 7. Upgrading from one version of IBM Worklight to another 303

http://www.ibm.com/support/docview.wss?uid=swg27028172

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

schema is dropped. It is then re-created to be consistent with the new release,
updating the WORKLIGHT_VERSION table appropriately.

This action deletes all data in your existing IBM Worklight development database.
In most cases, this deletion does not cause problems because only the tables that
are related to IBM Worklight and its reports are dropped and re-created.

Important: If you are upgrading Worklight Server to V6.0.x in a production
environment, the process can be longer and more complicated, especially if you
have existing IBM Worklight applications that run in a Worklight Server
environment. For instructions on how to upgrade your production Worklight
Server, see “Upgrading Worklight Server in a production environment” on page
270.

Usage of existing applications

Using applications that were built with an earlier version of IBM Worklight
requires extra actions for each application.
v Upgrading to a newer version of IBM Worklight involves upgrading all the

studio instances and the development environments, including the production
environment.

v You must uninstall and reinstall IBM Worklight Server (for more information,
see the “Installing Worklight Server” on page 52 topics). When you do so, the
existing data in the server's project database (such as subscriptions to
notifications) is saved.

v You must rebuild all the existing applications using the new version of IBM
Worklight, and redeploy the project .war, .wlapp, and .adapter files to the new
server.

Third-party libraries:

Cordova: For Android, iOS, Windows Phone 8, BlackBerry 10 and Windows 8, IBM
Worklight V5.0.6 is now based on Cordova 2.3. Cordova 2.3 includes deprecated
and modified items compared to the earlier version. The upgrade process for the
Cordova 2.3 configuration is automated when the IBM Worklight project is built in
Worklight Studio or with the Ant tasks. To view the Cordova change log, go to
https://issues.apache.org/jira/browse/CB# and click Change Log. To know more
about the migration steps in Cordova, see http://cordova.apache.org/docs/en/
2.3.0/ and click Upgrading Guides.
v Deprecated item

Cordova 2.3 deprecates the device.name property for all platforms. This property
returned both the name of the user and of the device model (for example,
Jane's iPhone 5). Now it returns the name of the device (for example, iPhone).
For all platforms, the new property device.model returns the specific device
model name (for example, iPhone 5).
To know more about deprecation in Cordova, see http://wiki.apache.org/
cordova/DeprecationPolicy.

v Modified items

– The iOS configuration Cordova.plist file was changed to the config.xml file.
It now comes in the same format as the Android config.xml file.
The following Cordova.plist configuration elements are automatically
migrated into the config.xml file by the IBM Worklight upgrader:
- The Cordova built-in plug-ins, now under the <!--Cordova--> section

304 IBM Worklight V6.1.0

https://issues.apache.org/jira/browse/CB#
http://cordova.apache.org/docs/en/2.3.0/
http://cordova.apache.org/docs/en/2.3.0/
http://wiki.apache.org/cordova/DeprecationPolicy
http://wiki.apache.org/cordova/DeprecationPolicy

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

- The IBM Worklight plug-ins, now under the <!--Worklight--> section
- The user/custom plug-ins, now under the <!--User--> section
- All the State of Cordova preferences
You must manually update the following Cordova.plist configuration
elements because they are not migrated automatically:
- Changes to the <access origin> element from the default setting
- Custom preferences

– For Windows Phone 7.5 applications, the namespace of the Cordova classes
changed from WP7CordovaClassLib to WPCordovaClassLib. If you wrote a
custom plug-in that relies on this namespace (for example, using
WP7CordovaClassLib), you must change this C# code to address the new
namespace (for example, using WPCordovaClassLib).

– The optional callback parameter is added to the WL.App.copyToClipboard
method as a new way of invocation.

Dojo: Worklight Studio now ships with Dojo V1.8.3, which has a number of iOS
fixes. There is no automated upgrade process available, so you must make these
updates manually.

For more information about upgrading to Dojo V1.8.3, see “Dojo iOS fixes” on
page 307.

If you created your current project with an earlier version of Worklight Studio,
consider migrating the code to the new Dojo module loading technique in addition
to upgrading the Dojo toolkit. It ensures that the code performs more reliably and
that the page continues to work when it makes further changes in RPE.

Specifically, the Dojo layers are no longer loaded from HTML elements, but instead
they are loaded by require() calls inside the wlCommonInit() method. The
individual modules are loaded from require() calls inside the dojoInit() method.

For more information about migrating your code to Dojo 1.8.3, see “Dojo 1.8.3 code
migration” on page 307.

Changes in projects

Native SDK:
v For iOS: manually upgrade your native iOS project to use IBM Worklight V5.0.6

iOS Native Runtime libraries (WorklightAPI folder), which supports push
notifications.

v For Android: manually upgrade your native Android project to use IBM
Worklight V5.0.6 Android Native Runtime libraries (worklight-android.jar),
which supports push notifications.
For more information, see “Development guidelines for using native API” on
page 467.

Custom code for Android app: the onCreate method to add custom code to your
Android app is deprecated. It is now replaced with the onWLInitCompleted method.
To know more about custom code for an Android app, see “Adding custom code
to an Android app” on page 453.

iOS apps: add the following piece of code to your main iOS project m file,
${projectName}.m:

Chapter 7. Upgrading from one version of IBM Worklight to another 305

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

-(void) didFinishWLNativeInit:(NSNotification *)notification {
}

Java ME: manually upgrade your native Java ME project to use IBM Worklight
V5.0.6 Java ME Native Runtime libraries (worklight-javame.jar and
json4javame.jar), which support authentication and application management. To
see the messages from the admin console, the application must update its
WLClient.createInstance() API. See “Java client-side API for Java ME apps” on
page 700 and the module Using Worklight API in Native Java ME applications, under
category 7, Developing native applications with Worklight, in the Chapter 3, “Tutorials
and samples,” on page 27.

Windows Phone 8 applicationBar folder: when you migrate a Windows Phone 8
project to IBM Worklight V5.0.6, the images/applicationBar folder under the root
of the IBM Worklight project becomes the nativeResources/applicationBar folder
and stays under the root of the IBM Worklight project. See the addItem method, as
defined in the WL.OptionsMenu class.

Changes in features

Push notifications: the notificationOptions parameter has a new JSON structure
for push notifications. The old JSON block is now deprecated. When this
deprecated JSON block is used:
v The Worklight Studio console displays a deprecation warning message.
v All the previously supported environments (iOS, Android, SMS) receive a

notification message. The Windows Phone 8 environment receives two
notifications: a tile message, which contains the badge and the alert, and a raw
message, which contains the payload.

Changes in API

JavaScript client-side API: the WL.OptionsMenu.isEnabled and
WL.OptionsMenu.isVisible methods now take a callback function as a parameter.
The callback is called by Cordova after the request is processed, and it receives the
current enabled or visible state.

Interface WorkLightLoginModule: the interface WorkLightLoginModule is now
deprecated and is replaced with the interface WorkLightAuthLoginModule, where
the new createIdentity method replaces the previous createIdenity method.

Changes in sessions configuration

Default sessions settings: the default value of serverSessionTimeout, after which
the IBM Worklight session is invalidated, changed from 30 to 10 minutes.

The default value of heartBeatIntervalInSecs sent by WLClient to Worklight
Server changed from 1200 (20 minutes) to 420 (7 minutes).

New SSL properties: the worklight.properties file contains new common SSL
properties: ssl.keystore. Now the properties of ws-security are deprecated and
they are linked by default to the common SSL properties.

Changes in Application Center

Application Center console: the URL of the Application Center console changed.
You can now start the Application Center console by entering this address in your

306 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.OptionsMenu.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

browser: http://localhost:9080/appcenterconsole/.

Dojo iOS fixes
IBM Worklight Studio V5.0.5 ships with Dojo V1.8.1 and Worklight Studio V5.0.6
ships with Dojo V1.8.3. These versions have a number of iOS fixes. There is no
automated upgrade process available, so you must make these updates manually.

About this task

Complete the following procedure to manually implement the iOS fixes shipped
with Dojo.

Procedure
1. Open your workspace using IBM Worklight Studio.
2. Right-click the project you want to migrate and click Properties.
3. Click Project Facets.
4. Uncheck Web 2.0-> Dojo Toolkit to uninstall the tooling for Dojo. It does not

uninstall Dojo.
5. Click OK to close the project Properties page.
6. Find the folder {PROJECT_NAME} > dojo and delete all the children under

this folder. Do not delete the {PROJECT_NAME} > dojo folder. It must be
empty.

7. Right-click the project again and go to the Properties page again.
8. Click Project Facets.
9. Check Web 2.0-> Dojo Toolkit to install the tooling for Dojo. You have now

upgraded to a new Dojo version.
10. You might have to upgrade some application content to work with Dojo. Run

and test your application to make sure things work with this version.

Dojo 1.8.3 code migration
The Dojo layers are now loaded by require() calls inside the wlCommonInit()
method, so you must modify the existing code in the HTML file that loads the
layers and the modules.

About this task

Make the following changes to migrate your existing code.

Procedure
1. Remove the <script> elements from the HTML file that loads the layers and

replace them with a require() call in the wlCommonInit() method (see the code
snippet later in this section).

2. If you have the require() call in the HTML file that loads the individual
modules, move it into the dojoInit() method (see the code snippet later in this
section).

3. If you use the deviceTheme module (dojox/mobile/theme), remove it from the
require() call and instead use a <script> element to load it from inside the
HTML file. Make sure this element comes before the <script> element for
dojo.js.

Chapter 7. Upgrading from one version of IBM Worklight to another 307

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Example

The following code snippet shows the new technique:
function wlCommonInit(){

require(["dojo/core-web-layer", "dojo/mobile-ui-layer"], dojoInit);
// Common initialization code goes here

}

function dojoInit() {
require(["dojo", "dojo/parser", "dojox/mobile", "dojox/mobile/ScrollableView"],

function(dojo, dijit) {
dojo.ready(function() {

});
});

}

Migrating from IBM Worklight V5.0.0.3 to V5.0.5
When you open your IBM Worklight project with a newer version of Worklight
Studio, your project is automatically updated to this new version. However, there
are some parts of your application that require manual updates.

Updates in IBM Worklight V5.0.5 include modifications related to new versions of
some software, and some changes to the IBM Worklight environments. If you are
using the IBM Worklight Application Center, there are also some configuration
changes. Some environments and files were deprecated.

IBM Worklight Core Development

In IBM Worklight V5.0.5, the Embedded environment is now called the Desktop
Web App environment. Everything is upgraded automatically. However, the
application URL contains the name of the environment, and therefore:
v For new environments, the URL is .../desktopbrowser/... and NOT

.../embedded/....
v For old environments, both URLs are supported.

Deprecated environments

With IBM Worklight V5.0.5, the following environments are now deprecated:
v Facebook
v iGoogle
v Windows 7 Gadgets
v Mac OS dashboard widgets

Changed default behavior for connection on startup

The connectOnStartup property in the initOptions.js file now defaults to false,
rather than true as in earlier versions. Applications that do not have to connect to
the server when they start might now start more quickly. However, if your
application must connect to the server when it starts, you must change the value of
connectOnStartup. For more information, see “Connecting to Worklight Server” on
page 414.

308 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

IBM Worklight Application Center

When you migrate from V5.0.0.3 to V5.0.5, the Derby database for the Application
Center is migrated to the new format as part of the installation.

When you migrate from V5.0.0.3 to V5.0.5, you must adapt the security roles and
configuration, because the application center in V5.0.5 has a new Java Platform,
Enterprise Edition security role named appcenteruser, which consists of the group
of users that are authorized to use the mobile client. See “Configuring the
Application Center after installation” on page 138 to learn how to set up these
security roles.

Cordova

IBM Worklight V5.0.5 is based on Cordova 2.2.

Since Cordova 2.0, Cordova deprecates the cordova.xml and plugins.xml files.
Cordova replaces these two files with a single config.xml file, which combines the
two deprecated files. You can find the new config.xml file in the same
native/res/xml folder as the deprecated cordova.xml and plugins.xml files.

For example, if you develop a native application for the Android environment, you
can find the config.xml file in the android/native/res/xml folder of your
application folder.

The upgrade process for Cordova configuration is automated. However, if you
have applicative code that is calling Cordova API, consider checking for changes in
the new Cordova API and manually fix your code. IBM Worklight V5.0.0.3 was
bundled with Cordova 1.6.1. For information about Cordova changes, review the
release notes in the Apache Cordova Change Log site: The Apache Software
Foundation.

jQuery

A new release of the IBM Worklight internal tool jQuery version 1.8.1 means that
you must manually upgrade your JavaScript UI libraries, for example jQuery
Mobile.

Dojo

Worklight Studio V5.0.5 ships with Dojo V1.8.1, which has a number of iOS fixes.
There is no automated upgrade process available, so you must make these updates
manually.

For more information about upgrading to Dojo V1.8.1, see “Dojo iOS fixes” on
page 307.

If you have existing IBM Worklight Dojo projects created with a previous version,
consider migrating the code to the new architecture. This action ensures that the
code performs more reliably and that the page continues to work when it makes
further changes in Rational Publishing Engine, as the new tools insert require()
calls into a method called dojoInit().

The layers are no longer loaded from HTML elements, but instead they are loaded
by require() calls inside the wlCommonInit() method. The individual modules are

Chapter 7. Upgrading from one version of IBM Worklight to another 309

https://issues.apache.org/jira/browse/CB#selectedTab=com.atlassian.jira.plugin.system.project%3Achangelog-panel
https://issues.apache.org/jira/browse/CB#selectedTab=com.atlassian.jira.plugin.system.project%3Achangelog-panel

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

not loaded from require() calls inside the HTML page, but from require() calls
inside the dojoInit() method.

310 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 8. Developing IBM Worklight applications

You use Worklight Studio, the IBM Worklight client, and the server-side API to
develop cross-platform mobile applications, desktop applications, or web
applications.

About this task

This information is designed to help users develop applications for various
channels by using the IBM Worklight. It is intended for developers who are
familiar with web, or native application development.

This section covers client-side development and server-side development topics,
such as the integration with back-end services, and push notifications.

IBM Worklight provides a framework that enables the development, optimization,
integration, and management of secure apps. This framework provides the
following features:
v Guidelines and design patterns that promote compatibility across multiple

consumer environments.
v Automatic packaging and provisioning of application resources to multiple

consumer environments.
v A flexible UI optimization and globalization scheme.
v Tools that provide uniform access to back-end enterprise data, processes, and

transactions.
v Uniform persistence.
v A uniform personalization model.
v A flexible authentication model and automatic application protection from web

attacks.

IBM Worklight does not introduce a proprietary programming language or model
that users must learn. You can develop apps by using HTML5, CSS3, and
JavaScript. You can optionally write native code (Java or Objective-C), and IBM
Worklight provides an SDK that includes libraries that you can access from native
code.

Worklight Studio overview
Worklight Studio is an Eclipse-based integrated development environment (IDE).
You can use Worklight Studio to create mobile applications for various mobile
operating systems, and to integrate applications with existing services.

With Worklight Studio, you can add custom plug-ins to Eclipse. For instance, you
can use a Rational Team Concert plug-in to control your source code, track
changes, and create daily builds without installing an extra development
application. You can also build server applications, and applications for different
mobile device operating systems, from a single IDE.

Note: If you use non-Latin characters in your application, you must make sure
that your Eclipse editor uses UTF-8 encoding. To set the Eclipse text file encoding
to UTF-8:

311

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

1. In Worklight Studio, go to Window > Preferences > General > Workspace.
2. In Text file encoding, select Other, and select UTF-8 from the list.

Native and web development technologies

Worklight Studio supports native and web development technologies such as
HTML5, Apache Cordova, and Java. With these development technologies, you can
use the following capabilities:
v Develop mobile applications with pure HTML5.
v Use a compatible JavaScript framework, such as jQuery Mobile, Dojo Mobile, or

Sencha Touch. You can use the user interface widgets and functions that are
provided by these frameworks.

v Use Apache Cordova so that your mobile application can access native device
functionality. To access a special device module, such as one for near field
communication (NFC), you can develop a native extension that you expose to
JavaScript through an Apache Cordova plug-in, which is a small
native-to-JavaScript wrapper.

Shell development

For hybrid mobile applications, Worklight Studio uses a default hybrid shell that
provides you with capabilities to use web and native technologies. With shell
development, you can use the following capabilities:
v Separate native-component implementation from web-based implementation,

and split this work between different developers. For example, you can create a
custom shell, and add third-party native libraries, implement custom security, or
provide extended features that are specific to your company.

v Use shells to restrict or enforce specific corporate guidelines, such as design or
security rules. For example, you can use a shell to add a default style to your
mobile application, or to disable the camera of the device.

Runtime skinning

With Worklight Studio, you use a common environment as a basic development
point and all environments can share base code. You can then create a version of
this environment that is specific to a device, for example an iPad, by creating a
variant of the base and implementing only the required changes. At run time, an
extra function that is called runtime skinning makes your mobile application
switch between different sets of customization.

Integration of device-specific SDKs

Each vendor of mobile devices supplies its own development environment as part
of a software development kit (SDK). Worklight Studio generates a project for each
supported SDK, such as Xcode for iOS development. Some vendors require that
you use their SDK for specific tasks, such as building the binary application. The
integration of device-specific SDKs within Worklight Studio links your Worklight
Studio project with the native development environment (such as Xcode). You can
then switch between a native development environment and Worklight Studio.
Any change in the native development environment is reflected to your Worklight
Studio project, which reduces manual copying steps.

312 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Third-party library integration

Depending on your programming approach, your mobile application can include
several JavaScript frameworks, such as Sencha Touch, jQuery Mobile, or Dojo
Mobile. This third-party library integration facilitates code reuse and reduces
implementation times. If you have a shell project, several types of compatible
native code or libraries can be included.

Integrated build engine

The build chain of Worklight Studio combines common implementation code,
which is used on all target platforms, with platform-unique implementation code,
which is used on a specific target platform. At build-time, the integrated build
engine combines these implementations into a complete mobile application. You
can then use a single, common implementation for as much of the mobile
application function as possible, instead of a unique implementation for every
supported platform.

Integrated development tools

You can extend the Eclipse IDE with custom plug-ins, and use Worklight Studio to
develop all components of your application from within the same development
environment. These components include the mobile application and the integration
code, which is called IBM Worklight adapters. With integrated development tools,
you can develop and test these adapters within Worklight Studio.

Mobile browser simulator

Worklight Studio includes a mobile browser simulator that you can use during the
development cycle. You can use the mobile browser simulator to test mobile web
and hybrid applications that are displayed in a desktop browser. This mobile
browser simulator support cross-platform browser testing for mobile devices.

Many desktop browsers and mobile browsers use the WebKit engine as their
underlying core technology, which provides a common platform for developing
applications that support HTML5, CSS3, and JavaScript. If you use a desktop
browser that is based on WebKit, such as Chrome or Safari, to host the mobile
browser simulator, you can validate the behavior of the application in the browser
before you deploy it on the device. When you test your application on the device
or mobile emulator, you can verify that the core WebKit engine provides the same
consistent user experience that you verify when you test with the browser.

The mobile browser simulator also provides default implementations of the various
Apache Cordova APIs. You can then use these default implementations to test
hybrid applications that leverage the device features, without having to run the
applications on the actual device.

Ant tasks

Worklight Studio provides a set of Ant tasks that you can use to run a mobile
application build for various platforms. For example, you can distribute build tasks
to various build machines that run Apple OS X (for an Apple iOS binary file), or
Microsoft Windows (for a Microsoft Windows Phone 8 binary file). If you use this
mechanism, you do not need to access multiple build machines to create several
builds for specific mobile platforms.

Chapter 8. Developing IBM Worklight applications 313

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Artifacts produced during development cycle
When you use Worklight Studio within the IBM Worklight framework to develop a
mobile application, you produce client and server artifacts.

Client artifacts
A mobile binary file ready for deployment on a mobile device. For
example, an Android .apk file, or an iPhone .ipa file. These are usually
uploaded to an “App Store” such as the Apple Store or Google Play.

Application metadata and resources (.wlapp)
A .wlapp file. Metadata and web resources of an IBM Worklight
application deployed on the Worklight Server. Used by the Worklight
Server to identify and service mobile applications.

Adapter files (.adapter)
An adapter file (.adapter) contains server-side code written by the IBM
Worklight developer (for example, retrieve data from a remote database).
Adapter code is accessed by IBM Worklight applications via a simple
invocation API.

.wlapp and .adapter files are referred to in this topic as content. These are
typically identical between the organization’s development, testing, and
production environments.

A project web archive (WAR) file to be deployed on your application server
This file contains the default server-specific configurations such as security
profiles, server properties, and more. .wlapp and .adapter files use these
properties at various stages. Typically, the project WAR file is adapted to
the test and production environment, when you deploy the file to your
application server. For more information, see “Deploying the project WAR
file” on page 714.

IBM Worklight projects, environments, and skins
With Worklight Studio, you can develop mobile applications within projects, build
your applications for different environments, and create skins for specific devices.

IBM Worklight projects

To develop your mobile applications with IBM Worklight, you must first create a
project in IBM Worklight Studio.

A project in Worklight Studio is a place for you to develop one or several mobile
applications, which you can build for different environments.

In your project, when you create an application, you have a main application
folder, in which you can find several subfolders and files:
v A common folder, for you to store the code that is shared between all

environments, such as HTML, CSS, or JavaScript code.
v One folder for each environment that is supported by the application, and where

you store the code that is specific to this environment, such as Java code for
Android or Objective-C code for iOS.

v A legal folder, for you to store all the license-related documents.
v An application-descriptor.xml file that contains the application metadata. For

more information about this file, see “The application descriptor” on page 331.

314 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v A build-settings.xml file, for you to prepare minification and concatenation
configurations for each environment. For more information about this file, see
“IBM Worklight application build settings” on page 516.

Within your project, you can create the graphical user interface of your mobile
application by using the Rich Page Editor. The Rich Page Editor is a WYSIWYG
editor in Worklight Studio.

When the application is finished, you can test it with the mobile browser simulator
in Worklight Studio. However, you cannot test native code with Worklight Studio.
To test native code, you must test it with a real device or with the development kit
of the appropriate environment. To test your application:
1. Build and deploy your application: Worklight Studio creates the project with

your native code that you can then view and update.
2. Test it with the mobile browser simulator, which emulates the target device, or

with a real device.

IBM Worklight environments

You can build your mobile applications for different environments, such as:
v Mobile environments, which include iPhone, iPad, Android phones and tablets,

BlackBerry 6 and 7, BlackBerry 10, and Windows Phone 8.
v Desktop environments, which include Adobe AIR and Windows 8.
v Web environments, which include Mobile web app and Desktop Browser web

page.

There is a difference between the Mobile web app environment and the Desktop
Browser web page environment.
v Mobile web apps are only used in a mobile device browser. Choose the Mobile

web app environment when you want your users to surf to your application by
using their mobile device.

v Desktop browser web pages are used only in a desktop web browser. With the
Desktop Browser web page environment, you can develop an application that
you then embed inside your website, but this application is not meant for use in
a mobile device.
– For example, since Facebook uses iframes as containers to its apps, you can

use the Desktop Browser web page environment to create Facebook apps by
setting https://host:port/apps/services/www/application_name/
desktopbrowser/ as the canvas URL in the Facebook dashboard.

If your web application is not based on Worklight, you must first port it to
Worklight. If your web application is based on Worklight, you can add the Desktop
Browser web page environment to your existing project.

IBM Worklight skins

Different types of devices exist for a same environment. If you want to write a
piece of code that is specific to a certain device, you must create a skin. Skins are
subvariants of an environment and they provide support for multiple form factors
in a single executable file for devices of the same OS family. Skins are packaged
together in one app. At run time, only the skin that corresponds to the target
device is applied.

Chapter 8. Developing IBM Worklight applications 315

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Creating IBM Worklight projects
You use Worklight Studio to create an IBM Worklight project.

About this task

With Worklight Studio, you create an IBM Worklight project as a place where you
develop your apps. When you create an IBM Worklight project, you create a first
app in it. This first app can be of the following types:
v Hybrid application: A Hybrid application can target multiple environments. You

can write it primarily in HTML5, CSS, and JavaScript. It can access device
capabilities by using the IBM Worklight JavaScript API. You can also extend it
with native code.

v Inner application: An Inner application contains the HTML, CSS, and JavaScript
parts that run within a Shell component. Before you can deploy this application,
you must package it within a shell component to create a full hybrid application.

v Shell component: A Shell component provides custom native capabilities and
security features that an Inner application can use.

v Native application: A Native application targets a specific environment, and can
use the IBM Worklight API for integration, security, and application
management.

After you created an IBM Worklight project, you can later add further apps to it.

Procedure

To create an IBM Worklight project and a first app in it:
1. Select File > New > Worklight Project.
2. In the Project Name field, enter a name for your new project.
3. From the list of project templates, select the template that applies to the first

application in your Worklight project:

Option Description

Hybrid Application To create a Worklight project with an initial
hybrid application
Note: You can choose to use IBM Worklight
Application Framework (Beta code) to help
you rapidly create your application,
including the UI, and manage
communication with back-end services. For
more information about how to use this
framework, see “Developing hybrid
applications with IBM Worklight Application
Framework” on page 425.

Inner Application To create a Worklight project with an initial
inner application and point to a built shell
component

Shell Component To create a Worklight project with an initial
shell component application

Native Application To create a Worklight project with an initial
Native application

4. Optional: Click Configure Framework Library to set your IBM Worklight
Application Framework library preferences.

316 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

5. Optional: Click Configure JavaScript Libraries, and select any of the following
options to add the corresponding support to the application:

Option Description

Add jQuery Mobile To add jQuery Mobile support to the
application. You must identify the directory
where the required files for jQuery Mobile
are located.

Add Sencha Touch To add Sencha Touch support to the
application. You must identify the directory
where the required files for Sencha Touch
are located.

Add Dojo Toolkit To add the Dojo facet and Dojo support to
the application. When you build a mobile
web application, Dojo is included to create
the native application, such as an iPhone or
Android application.
Note: If you chose to use IBM Worklight
Application Framework for your application,
Dojo Mobile is automatically selected. Dojo
Mobile cannot be cleared because Dojo
Mobile is required for every application
created with IBM Worklight Application
Framework.

Creating an application in an IBM Worklight project
With Worklight Studio, you can create different types of applications within an
existing IBM Worklight project.

About this task

With Worklight Studio, you can create and develop an IBM Worklight application
in an existing IBM Worklight project.

Procedure
1. From the Worklight menu, select the type of application you want to create:

v Worklight Hybrid Application

v Worklight Inner Application

v Worklight Native API

v Worklight Shell Component

A dialog opens, based on the type of application that you selected.
2. Depending on the selected type of application, set the properties of your

application, as described in the following sections.
v Hybrid application:

a. In the field Project name, select your existing project.
b. In the field Application name, set the name of your application.
c. Optional: If you want to use IBM Worklight Application Framework (Beta

code) for your application, select Use Worklight Application Framework
(beta). To know more about how to use IBM Worklight Application
Framework , see “Developing hybrid applications with IBM Worklight
Application Framework” on page 425.

Chapter 8. Developing IBM Worklight applications 317

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

d. Optional: To change the settings for the IBM Worklight Application
Framework library, click Configure Framework Library.

e. Optional: To add JavaScript libraries to your application, click Configure
JavaScript Libraries, and select the check boxes that correspond to the
layers that you need: jQuery Mobile, Sencha Touch, Dojo Mobile.

Note: If you add jQuery Mobile to your application, and you are using
Windows Phone 8, you must ensure that the following conditions are
met:
– The $.mobile.allowCrossDomainPages option is set to true (in jQuery

Mobile).
– An absolute URL is used for file, for example x-wmapp0:/www/default/

app-pages/myPage.html.

Note: If you selected Use Worklight Application Framework (beta) in
step c, Dojo Mobile is automatically selected. Dojo Mobile cannot be
cleared because the Dojo Mobile is required for every app created with
IBM Worklight Application Framework.

v Inner application:
a. In the field Project name, select your existing project.
b. In the field Application name, set the name of your application.
c. In the field Shell archive name, set the path of your Shell archive file.

The path can be either absolute or relative, if a Shell archive exists within
your project.

v Native API:
a. In the field Project name, select your existing project.
b. In the field Application name, set the name of your application.
c. In the field Environment, select the environment that you need: Android,

iOS, or Java ME.
v Shell component:

a. In the field Project name, select your existing project.
b. In the field Component name, set the name of your component.
c. Select the check boxes that correspond to the layers that you need:

jQuery Mobile, Sencha Touch, Dojo Mobile.
3. Click Finish to save your choices.

Results

An application of the type that you selected is now visible in your IBM Worklight
project, and the application descriptor opens.

Note: In case you chose to use IBM Worklight Application Framework for your
new hybrid application, the IBM Worklight Application Framework editor opens,
instead of the application descriptor.

Creating the client-side of an IBM Worklight application
You use Worklight Studio to create the client-side of an IBM Worklight application.

In Worklight Studio, you have two methods to create the client-side of an IBM
Worklight application:

318 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Use an existing IBM Worklight project, and create your application in it, as
described in “Creating an application in an IBM Worklight project” on page 317.

v Create an IBM Worklight project, and your application in it as its first
application, as described in “Creating IBM Worklight projects” on page 316

You can build your IBM Worklight application for specific mobile, desktop, and
web environments that you can select in Worklight Studio.
v To learn about the available environments, see “IBM Worklight environments”

on page 315
v To learn how to set up environments for your IBM Worklight application, see

“Setting up a new IBM Worklight environment for your application” on page
338

After you create your IBM Worklight application, you can develop its code by
using different APIs:
v “JavaScript client-side API for hybrid apps”
v “Objective-C client-side API for native iOS apps”
v “Java client-side API for native Android apps”
v “Java client-side API for Java ME apps” on page 320

You can also use your own custom libraries or third-party libraries when you
create mobile applications in Worklight Studio.

For more information about how to develop your applications, see “Developing
hybrid and web applications” on page 322 and “Developing native applications”
on page 467.

JavaScript client-side API for hybrid apps

With the JavaScript client-side API, you can develop hybrid applications that target
all environments. You can use the capabilities of the IBM Worklight runtime client
API for mobile applications, desktop, and web to develop your applications.

For more information, see “JavaScript client-side API” on page 696.

Objective-C client-side API for native iOS apps

IBM Worklight provides the IBM Worklight Objective-C client-side API that you
can use to develop native iOS applications. This API provides three main
capabilities:
v Calling back-end services for retrieving data and performing back-end

transactions.
v Writing custom log lines for reporting and auditing purposes.
v Writing custom challenge handlers to enable user authentication.

For more information, see “Objective-C client-side API for native iOS apps” on
page 699.

Java client-side API for native Android apps

IBM Worklight provides the IBM Worklight Java client-side API that you can use to
develop native Android applications. This API provides four main capabilities:
v Calling back-end services for retrieving data and performing back-end

transactions.

Chapter 8. Developing IBM Worklight applications 319

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Writing custom log lines for reporting and auditing purposes.
v Authenticating users before they access sensitive data or perform privileged

actions.
v Implementing custom Challenge Handlers to allow for a customized

authentication process.

For more information, see “Java client-side API for native Android apps” on page
699.

Java client-side API for Java ME apps

IBM Worklight provides the IBM Worklight Java client-side API that you can use to
develop native Java ME applications. This API provides two main capabilities:
v Calling back-end services for retrieving data and performing back-end

transactions.
v Writing custom log lines for reporting and auditing purposes.

For more information, see “Java client-side API for Java ME apps” on page 700.

Integrating with source control systems
Some source code files should be held in a version control system: others should
not.

There are two types of files and folders in a standard IBM Worklight project
hierarchy:
v Your own source code files and some source code files that are provided in the

IBM Worklight device runtime libraries.
You should commit these files to a version control system.

v Files that are generated from your web source code and some JavaScript files
that are provided with IBM Worklight (such as wlclient.js).
These files and folders are added to the file system every build.
You should not commit them to a version control system.
In the next figure, these files and folders are marked with a star (*) after their
names.

320 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Project Name
|
+---Java Resources
+---JavaScript Resources
+---adapters
+---apps
| \---Application Name
| | application-descriptor.xml
| | build-settings.xml
| |
| +---android
| | +---css
| | +---images
| | +---js
| | +---native
| | | | Application Name.iml
| | | | AndroidManifest.xml
| | | | project.properties
| | | |
| | | +---assets
| | | | | wlclient.properties
| | | | |
| | | | +---featurelibs
| | | | +---www (*)
| | | +---gen (*)
| | | +---libs
| | | +---res
| | | +---src
| | +---nativeResources
| |
| +---blackberry
| | +---css
| | +---images
| | +---js
| | +---native
| | | config.xml
| | | icon.png
| | | splash.png
| | | .wldata
| | |
| | +---ext
| | | WLExtension.jar
| | |
| | +---www (*)
| |
| +---blackberry10
| | +---css
| | +---images
| | +---js
| | +---nativeResources
| | | |
| | | +---www (*)
| +---common
| | | index.html
| | |
| | +---css
| | +---images
| | +---js
| |
| +---ipad
| | +---css
| | +---images
| | +---js
| | +---native
| | | | buildtime.sh
| | | | config.xml
| | | | Entitlements-Debug.plist
| | | | Entitlements-Release.plist
| | | | main.m
| | | | Project Name Application Name-Info.plist
| | | | Project Name Application Name_Prefix.pch
| | | | README.txt
| | | | worklight.plist

Chapter 8. Developing IBM Worklight applications 321

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To ensure that your source code is always synchronized with your source control
system, add the (*) files and folders to the ignore list in your source control
system. For Subversion, for example, perform the following steps:
v Step 1: Using the Tortoise extension for Subversion, right-click each file or folder

that is to be ignored and add it to the ignore list.
v Step 2: Go up one level in the file system and commit the change to the SVN

repository. The changes take effect from now on for every developer who
updates the code.

For more information about the folders that are shown in the figure, see “Anatomy
of an IBM Worklight application” on page 323.

Developing hybrid and web applications
Develop hybrid and web applications as detailed here.

Anatomy of an IBM Worklight project
The file structure of an IBM Worklight project helps you organize the code that is
required for your apps.

When you develop mobile apps with IBM Worklight, all development assets
including source code, libraries, and resources are placed in an IBM Worklight
project folder.

Table 51. An IBM Worklight project has the following structure:

<project-name> Root project folder

adapters Source code for all
adapters belonging to
the project

apps Source code for all
applications
belonging to the
project

bin Artifacts resulting
from building
adapters, apps, and
server-side
configuration and
libraries

components Source code for all
shell components
belonging to the
project

www Source code of the
Dojo JavaScript
framework, if
installed as part of
Worklight Studio

server

322 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 51. An IBM Worklight project has the following structure: (continued)

<project-name> Root project folder

conf Worklight Server
configuration files,
such as
worklight.properties
and
authenticationConfig.xml

java Java code that must
be compiled and
packaged into jar
files deployable to
the Worklight Server

lib Pre-compiled
libraries that must be
deployed to the
Worklight Server

services Description, at
development stage,
of back-end services
discovered for
consumption by the
applications in the
project

Initialization options

The initOptions.js file is included in the project template. It is used to initialize
the Worklight JavaScript framework. It contains a number of tailoring options,
which you can use to change the behaviour of the JavaScript framework. These
options are commented out in the supplied file. To use them, uncomment and
modify the appropriate lines.

The initOptions.js file calls WL.Client.init, passing an options object that
includes any values you have overridden.

Content of the www folder

If you installed the Dojo JavaScript framework, the www folder contains a minified
version of Dojo Mobile libraries. This minified version contains all the Dojo mobile
components. If you need to add more Dojo components or Dojo features to your
application, see the topic “Creating Dojo-enabled Worklight projects” on page 356.

Anatomy of an IBM Worklight application
This collection of topics describes the files within an IBM Worklight application

With IBM Worklight, you can write applications by using web technologies or
native technologies, or combine both types of technology in a single app. All
client-side application resources, both web and native, must be located under a
common file folder with a predefined structure. Worklight Studio builds these
resources into various targets, depending on the environments supported by the
application.

Chapter 8. Developing IBM Worklight applications 323

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The application folder
The application folder contains all application resources.

Table 52. The folder has the following structure:

<app-name>
Main application
folder

common Application resources
common to all
environments

css Style sheets to define
the application view

images Thumbnail image
and default icon

js JavaScript files

index.html An HTML5 file that
contains the
application skeleton

android Web and native
resources specific to
Android

blackberry10 Web and native
resources specific to
BlackBerry 10

blackberry Web and native
resources specific to
BlackBerry 6 and 7

ipad Web and native
resources specific to
iPad

iphone Web and native
resources specific to
iPhone

windowsphone8 Web and native
resources specific to
Windows Phone 8

air Resources specific to
Air

desktopbrowser Resources specific to
desktop browsers

mobilewebapp Web resources
specific to mobile
web applications

windows8 Resources specific to
Windows 8

legal License documents
for the application or
third-party software
used in the
application

application-descriptor.xml

build-settings.xml

324 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Application resources
You must provide various types of resources if you are to create applications that
can run in multiple environments.

You must provide the following resources to create applications that can run in
multiple environments. IBM Worklight automatically generates any missing
resources that are not supplied. However, for production quality, you must provide
all resources that are required by the environments in which the application runs.

Application descriptor

The application descriptor is a mandatory XML file that contains application
metadata, and is stored in the root directory of the app. The file is automatically
generated by Worklight Studio when you create an application, and can then be
manually edited to add custom properties.

Main file

The main file is an HTML5 file that contains the application skeleton. This file
loads all the web resources (scripts and style sheets) necessary to define the
general components of the application, and to hook to required document events.
This file is in the \common folder of the app directory and optionally in the
optimization and skin folders.

The main file contains a <body> tag. This tag must have an id attribute that is set
to content. If you change this value, the application environment does not
initialize correctly.

Style sheets

The app code can include CSS files to define the application view. Style sheets are
placed under the \common folder (normally under \common\css) and optionally in
the optimization and skin folders.

Scripts

The app code can include JavaScript files that implement interactive user interface
components, business logic and back-end query integration, and a message
dictionary for globalization purposes. Scripts are placed under the \common folder
(normally under \common\js) and optionally in the optimization and skin folders.

Thumbnail image

The thumbnail image provides a graphical identification for the application. It
must be a square image, preferably of size 128 by 128 pixels. It is used to identify
the app in the IBM Worklight catalog.

Worklight Studio creates a default thumbnail image when the app is created. You
can override this default image (using the same file name) with a replacement
image that matches your application. The file is in the \common\images folder of the
app.

Chapter 8. Developing IBM Worklight applications 325

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Splash image

The splash image applies for mobile environments and Windows 8 apps. The
splash image (or splash screen) is displayed while the application is being
initialized. It must be in the exact dimensions of the app.

Worklight Studio creates a default splash image when you create an application
environment. These default images are stored in the following locations:
v For Apple iOS platforms, the default splash images are stored as follows:

– For iPhone, under iphone\native\Resources

– For iPad, under ipad\native\Resources

The file names of the default splash images are as follows, and vary according to
iOS version and target device:
– For iPhone Non-Retina display (iOS6.1 and earlier): Default~iphone.png 320

by 480 pixels
– For iPhone Retina display (iOS6.1 and earlier): Default@2x~iphone.png 640 by

960 pixels
– For iPhone 4-inch Retina display (iOS6.1 and earlier):

Default568h@2x~iphone.png 640 by 1136 pixels
– For iPhone Retina display (iOS7): Default@2x~iphone.png 640 by 960 pixels
– For iPhone 4-inch Retina display (iOS7): Default568h@2x~iphone.png 640 by

1136 pixels
– For iPad (iOS6.1 and earlier): Default-Portrait~ipad.png 768 by 1004 pixels
– For iPad Retina display (iOS6.1 and earlier): Default-Portrait@2x~ipad.png

1536 by 2008 pixels
– For iPad (iOS6.1 and earlier): Default-Landscape~ipad.png 1024 by 748 pixels
– For iPad Retina display (iOS6.1 and earlier): Default-Landscape@2x~ipad.png

2048 by 1496 pixels
– For iPad (iOS7): Default-Portrait~ipad.png 768 by 1004 pixels
– For iPad Retina display (iOS7): Default-Portrait@2x~ipad.png 1536 by 2008

pixels
– For iPad (iOS7): Default-Landscape~ipad.png 1024 by 748 pixels
– For iPad Retina display (iOS7): Default-Landscape@2x~ipad.png 2048 by 1496

pixels
v For Android platforms, the file name of the default splash image is

splash.9.png; it is stored:
– For all resolutions, under android\native\res\drawable

v For BlackBerry 10, under blackberry10\native\www. The file must be in .png
format and there are four different splash screen sizes:
– splash 1024 pixels width by 600 pixels height: splash-1024x600.png
– splash 1280 pixels width by 768 pixels height: splash-1280x768.png
– splash 600 pixels width by 1024 pixels height: splash-600x1024.png
– splash 768 pixels width by 1280 pixels height: splash-768x1280.png

v For BlackBerry 6 and 7, the file name of the splash image is splash.png, stored
under blackberry\native.

v For Windows Phone 8, the file name of the splash image is
SplashScreenImage.jpg, stored under windowsphone8\native. This file must be in
.jpg format, with a width of 768 pixels and height of 1280 pixels.

326 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v For Windows 8, the file name of the splash image is splashscreen.png, stored
under windows8\native\images. This file must be in .png format, with a width of
620 pixels and height of 300 pixels.

Adding a custom splash image

You can override the default images that are created by Worklight Studio with a
splash image that matches your application.

The procedures for doing this differ, depending on the target platform. But in all
cases, your custom splash image must match the size of the default splash image
you are replacing, and must use the same file name.
v For Apple iOS platforms:

– There are two ways of creating a custom splash image:
1. Replace the default image in ipad\native\Resources (or

iphone\native\Resources), OR

2. Add the new (replacement) image to ipad\nativeResources\Resources (or
iphone\nativeResources\Resources).

3. Rebuild the application by clicking Run As > Run on Worklight
Development Server or Run As > Build....

The second method (step 2) is preferable because it does not delete any files
from the native directory, which is often not backed up in a source code
control system. When you add your image to the nativeResources directory,
it is copied to the native directory during the build. The replacement splash
image must not be placed in any folder other than Resources.

v For Android:
– There are two ways of creating a custom splash image:

1. Replace the default image in android\native\res\drawable, OR

2. Add the new (replacement) image to android\nativeResources\res\
drawable.

3. Rebuild the application by clicking Run As > Run on Worklight
Development Server or Run As > Build....

The second method (step 2) is preferable because it does not delete any files
from the native directory, which is often not backed up in a source code
control system. When you add your image to the nativeResources directory,
it is copied to the native directory during the build. The replacement splash
image must not be placed in any folder inside the res folder other than
drawable.

v For BlackBerry 10:
– There are two ways of creating a custom splash image:

1. Replace the default image in blackberry10\native\www, OR

2. Add the new (replacement) image to blackberry10\nativeResources\www.
3. Rebuild the application by clicking Run As > Run on Worklight

Development Server or Run As > Build....
The second method (step 2) is preferable because it does not delete any files
from the native directory, which is often not backed up in a source code
control system. When you add your image to the nativeResources directory,
it is copied to the native directory during the build.

v For BlackBerry 6 and 7:

Chapter 8. Developing IBM Worklight applications 327

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

1. Replace the default image in blackberry\native. If the original splash image
is not backed up in a source code control system, it is advisable to rename or
back up the original image first.

2. Rebuild the application by clicking Run As > Run on Worklight
Development Server or Run As > Build....

v For Windows Phone 8:
– There are two ways of creating a custom splash image:

1. Replace the default image in windowsphone8\native, OR

2. Add the new (replacement) image to windowsphone8\nativeResouces.
3. Rebuild the application by clicking Run As > Run on Worklight

Development Server or Run As > Build....
The second method (step 2) is preferable because it does not delete any files
from the native directory, which is often not backed up in a source code
control system. When you add your image to the nativeResources directory,
it is copied to the native directory during the build.

v For Windows 8:
1. Replace the default image in windows8\native\images. If the original splash

image is not backed up in a source code control system, it is advisable to
rename or back up the original image first.

2. Rebuild the application by clicking Run As > Run on Worklight
Development Server or Run As > Build....

Application icons

Worklight Studio creates default application icons when you create the app. You
can override them with images that match your application. For Android, iPad,
and iPhone, put your replacement icons (using the same file names, except as
noted with an asterisk * below) in the location indicated by the Location of
overriding icon column in the following table.

The following table summarizes the sizes and location of each application icon.

Table 53. Application icons

Environment File name Description
Location of
default icon

Location of
overriding icon

Adobe AIR icon16x16.png
icon32x32.png
icon48x48.png
icon128x128.png

Application
icons of various
sizes that are
attached to the
AIR version of
the application.

The dimensions
of each icon are
specified in its
name.

air\images

328 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 53. Application icons (continued)

Environment File name Description
Location of
default icon

Location of
overriding icon

Android icon.png An icon that is
displayed on the
device
springboard. You
can provide a
different icon for
each device
density that you
want to support.

android\native\
res\drawable

�\android\
nativeResources\res\drawable
or
android\
nativeResources\res\drawable-ldpi
-hdpi or other
options.

BlackBerry 10 icon.png An icon that is
displayed on the
device.

Its dimensions
are 114 by 114
pixels.

For best
practices on
creating
application
icons, see
https://
developer.blackberry.com/devzone/design/application_icons.html.

blackberry10\
native\www

blackberry10\
nativeResources\www

BlackBerry 6 and
7

icon.png An icon that is
displayed on the
device.

Its dimensions
are 80 by 80
pixels.

blackberry\
native

iPad icon-xxxx.png

* Filename
varies by size
and target
device. Exact file
name can
change as long
as it is listed in
the plist file.

An icon that is
displayed on the
device
springboard.
Size depends on
iOS version and
target device.

iOS6.1 and
earlier:

v Non-Retina
display: 72 by
72 pixels

v Retina
display: 144
by 144 pixels

iOS7:

v Non-Retina
display: 76 by
76 pixels

v Retina
display: 152
by 152 pixels

ipad\native\
resources

\ipad\
nativeResources\Resources

Chapter 8. Developing IBM Worklight applications 329

https://developer.blackberry.com/devzone/design/application_icons.html
https://developer.blackberry.com/devzone/design/application_icons.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 53. Application icons (continued)

Environment File name Description
Location of
default icon

Location of
overriding icon

iPhone icon-xxxx.png

* Filename
varies by size
and target
device. Exact file
name can
change as long
as it is listed in
the plist file.

An icon that is
displayed on the
device
springboard.
Size depends on
iOS version and
target device.

iOS6.1 and
earlier:

v Non-retina
display: 57 by
57 pixels

v Retina
display: 114
by 114 pixels

iOS7:

v 120 by 120
pixels

iphone\native\
resources

\iphone\
nativeResources\Resources

Windows Phone
8

Background.png

ApplicationIcon.png

Both icons are
used to identify
the application.

Background.png
is displayed on
the device home
screen, and must
be 300 by 300
pixels.

ApplicationIcon.png
is displayed in
the list of
applications, and
must be 100 by
100 pixels.

windowsphone8\
native

330 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 53. Application icons (continued)

Environment File name Description
Location of
default icon

Location of
overriding icon

Windows 8 storelogo.png

logo.png

smalllogo.png

All icons are
used to identify
the application.

storelogo.png is
the image the
Windows Store
uses when it
displays the app
listing in search
results and with
the app
description in
the listing page.
The image must
be 50 by 50
pixels.

logo.png
represents the
square tile image
of the app in the
Start screen. The
image must be
150 by 150
pixels.

smalllogo.png is
displayed with
the app display
name in search
results on the
Start screen.
smalllogo.png is
also used in the
list of searchable
apps and when
the Start page is
zoomed out. The
image must be
30 by 30 pixels.

windows8\
native\images

The application descriptor
The application descriptor is a metadata file that is used to define various aspects
of the application. It is in the application root directory.

General structure

The application descriptor is a metadata file that is used to define various aspects
of the application. It is in the application root directory and has the name
application-descriptor.xml.

The following example shows the format of the file:

Chapter 8. Developing IBM Worklight applications 331

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<?xml version="1.0" encoding="UTF-8"?>
<application id="fcb" platformVersion="6.1.0.00.20140126-0630">
xmlns="http://www.example.com/application-descriptor" xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation="http://www.example.com/application-descriptor
../../../../../gadgets/application-descriptor/src/main/resources/schema/application-descriptor.xsd">

The <application> element is the root element of the descriptor. It has two
mandatory attributes:

id Contains the ID of the application. The ID must be identical to the
application folder name. It must be an alphanumeric string that starts with
a letter. It can also contain underscore ("_") characters. It must not be a
reserved word in JavaScript.

platformVersion
Contains the version of IBM Worklight on which the app was developed.

<displayName>First Bank</displayName>
<description>Conveniently and securely manage your checking, savings, and credit card accounts using FCB’s banking widget.</description>

The <displayName> and <description> elements contain the name and description
of the application. They are displayed in the IBM Worklight Console and are
copied to the descriptor files of various web and desktop environments.
<author>
<name>ACME</name>
<email> info@acme.com </email>
<homepage> acme.com </homepage>
<copyright> (C) ACME 2014 </copyright>
</author>

You can use the <author> element and its subelements to provide information
about the application author. This data is copied to the descriptor files of the web
and desktop environments that require it.
<mainFile>index.html</mainFile>
<thumbnailImage>common/images/thumbnail.png</thumbnailImage>

The <mainFile> element contains the name of the main HTML file of the
application.

The <thumbnailImage> element contains the path to and the name of the thumbnail
image for the application. The path is relative to the main application folder.
<smsGateway id=”kannelgw”/>

The <smsGateway> element defines the SMS gateway to be used for SMS Push
Notifications. It has one mandatory attribute:

id Contains the ID of the SMS gateway. The ID must match one of the
gateway IDs defined in the SMSConfig.xml file.

<iphone version="1.0" />
<android version="1.0" />
<blackberry10 version="1.0" />
<blackberry version="1.0" />
<windowsPhone8 version="1.0">

<uuid>87e096eb-6882-4cef-9f66-e68769de3926</uuid>
</windowsPhone8>
<windows8 version="1.0">

<certificate PFXFilePath="Path to certificate file" password="certificate password"/>
<uuid>556a98a3-63fb-4602-827c-0b6bd9d00490</uuid>

</windows8>
<ipad version="1.0" />
<mobileWebApp />
<air version="1.0" />

332 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Each environment on which the application can run must be declared with a
dedicated XML element. Each such element has one mandatory attribute, version
(except for web apps). The value of this version is a string of the form x.y, where x
and y are digits (0-9).
v For mobile apps, the version is exposed to users who download the app from

the app store or market.
v For desktop apps, the version determines whether the Worklight Server

automatically downloads a new version of the app to the user's desktop
<iphone version="1.0" bundleId="com.mycompany.myapp"> (or <ipad>)
<pushSender password="${push.apns.senderPassword}"/>
<worklightSettings include="true"/>
<security> ... </security>
</iphone>

In the <iphone> and <ipad> elements, you must provide the bundle ID of the
application in the bundleId attribute. Each time the IBM Worklight builder builds
your application, it copies the value of this attribute to the appropriate native
configuration file in the Xcode project of the application. Do not modify this value
directly in the native configuration file as it is overridden by the builder with the
value you indicate in this attribute.

For iOS apps that use the Apple Push Notification Service (APNS), use the
<pushSender> element to define the password to the SSL certificate that encrypts
the communication link with APNS. The password attribute can refer to a property
in the worklight.properties file and can thus be encrypted.

The app user can use the IBM Worklight settings screen to change the address of
the Worklight Server with which the app communicates. To enable it for the app,
specify the <worklightSettings> element. When enabled, the settings screen is
accessible by using the settings app on the iOS device.

See “The <security> element” on page 335 for details of this element.
<android version="1.0" sharedUserId="com.mycompany">
<pushSender key="AIzaSyDcSz7OvxQwr7XKg_0UdOaNJz0pYXuaS_c" senderId="54385266031"/>
<worklightSettings include="true"/>
<security> ... </security>
</android>

The sharedUserId attribute is optional; it is required only when device
provisioning is activated on the application by specifying the <authentication>
element. sharedUserId allows multiple applications with the same value for this
attribute to access the same keystore item on the device. The applications can thus
use the same secure device ID assigned to the device by the IBM Worklight app.

Note: : Android apps that have the same sharedUserId but are signed with a
different certificate cannot be installed on the same device.

For Android apps that use Google Cloud Messaging (GCM), use the <pushSender>
element to define the connectivity details to GCM. The key is the GCM API key,
and the senderId is the GCM Project Number. For more information about GCM
API key and GCM Project Number, see http://developer.android.com/google/
gcm/gs.html#gcm-service.

The app user can use the IBM Worklight settings screen to change the address of
the Worklight Server with which the app communicates. To include it in the app,

Chapter 8. Developing IBM Worklight applications 333

http://developer.android.com/google/gcm/gs.html#gcm-service
http://developer.android.com/google/gcm/gs.html#gcm-service

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

specify the <worklightSettings> element. When the screen is included in the app,
a menu item is automatically appended to the options menu of the app. Users can
tap this menu item to reach the screen.

See “The <security> element” on page 335 for details of this element.
<windowsPhone8 version="1.0">
<uuid>87e096eb-6882-4cef-9f66-e68769de3926</uuid>
<pushSender/>
<allowedDomainsForRemoteImages>

<domain>http://icons.aniboom.com</domain>
<domain>http://media-cache-ec2.pinterest.com</domain>

</allowedDomainsForRemoteImages>
</windowsPhone8>

The <windowsPhone8> element has three subelements:
v The <uuid> subelement is used to uniquely identify a Windows Phone 8

application on the device. It is automatically generated by the Worklight Studio
when you create the Windows Phone 8 environment for the application.

v For Windows Phone 8 apps that use the Microsoft Push Notification Service
(MPNS), use the <pushSender> subelement to indicate that the app is a
"pushable" application, that is, it subscribes to event sources and receives push
notifications. You also use the <pushsender> subelement to set attributes for
authenticated push. For more information, see “Setting up push notifications for
Windows Phone 8” on page 590.

v The <allowedDomainsForRemoteImages> subelement is used to enable the
application tile to access remote resources. Use subelement <domain> within
<allowedDomainsForRemoteImages> to define the list of allowed remote domains
from which to access remote images. Each domain in the list is limited to 256
characters.

Note: The <allowedDomainsForRemoteImages> subelement cannot be added to the
application descriptor by using the Design editor. You must use the Source
editor instead.

<windows8 version="1.0">
<certificate PFXFilePath="Path to certificate file" password="certificate password"/>
<uuid>556a98a3-63fb-4602-827c-0b6bd9d00490</uuid>
</windows8>

The <windows8> element contains the following subelements:

<certificate>
Use the <certificate> subelement to sign the Windows 8 application
before you publish it. See “Signing Windows 8 apps” on page 466 for more
details.

<uuid> Use the <uuid> subelement to uniquely identify a Windows 8 application.
It is automatically generated by the Worklight Studio when you create the
Windows 8 environment for the application.

<mobileDeviceSSO join="true" />

When this element is specified, device SSO is enabled for the application. Thus,
when a session requires authentication in a realm and there is already an active
session from the same device authenticated in that realm, the authentication details
from the existing session are copied to the new session. The user experience
implications are that the user does not have to reauthenticate when starting the
new session.

334 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<air version="1.0" showOnTaskbar="always">
<certificate password="password" PFXFilePath="path-to-pfx"/>
<height>410</height>
<width>264</width></air>

The optional <air> element has the following structure:
v The showOnTaskbar attribute determines behavior of the AIR application on the

taskbar. See “Specifying the application taskbar for Adobe AIR applications” on
page 464 for more details.

v Use the <certificate> element to sign the AIR application before you publish it.
See “Signing Adobe AIR applications” on page 465 for more details.

v The <height> element is used to determine the height of the application on
desktop environments.

v The <width> element is used to set the width of the application on desktop
environments.

<loginPopupHeight> Height in pixels </loginPopupHeight>
<loginPopupWidth> Width in pixels </loginPopupWidth>

When login is configured as popup, you must provide the dimensions of the login
window.
</application>

The closing tag.

The <security> element

The <security> element occurs under the <iphone>, <ipad>, and <android>
elements. It is used to configure security mechanisms for protecting your iOS and
Android apps against various malware and repackaging attacks. The element has
the following structure:
<security>
<encryptWebResources enabled="false"/>
<testWebResourcesChecksum enabled="false" ignoreFileExtensions="png, jpg, jpeg, gif, mp4, mp3"/>
<publicSigningKey> value </publicSigningKey>
</security>

The element <encryptWebResources> controls whether the web resources associated
with the application are packaged and encrypted within the application binary file
(a file with the extension .apk or .app). If its enabled attribute is set to true, the
IBM Worklight builder encrypts the resources. They are then decrypted by the
application when it first runs on the device.

The element <testWebResourcesChecksum> controls whether the application verifies
the integrity of its web resources each time it starts running on the mobile device.
If its enabled attribute is set to true, the application calculates the checksum of its
web resources and compares it with a value stored when it was first run.
Checksum calculation can take a few seconds, depending on the size of the web
resources. To make it faster, you can provide a list of file extensions to be ignored
in this calculation.

The element <publicSigningKey> is valid only in the Android environment, under
<android>/<security>. This element contains the public key of the developer
certificate that is used to sign the Android app. For instructions on how to extract
this value, see “Extracting a public signing key” on page 454

Chapter 8. Developing IBM Worklight applications 335

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The <features> element

Since Worklight V6.0.0, you can control the features included in your application.
This ability gives you a finer degree of control over the size of your application,
and thus its ability to download and start quickly.

In the application-descriptor.xml file, the <features> element is added
automatically when the application is first created, but with no contents. If you
later add JSONStore features and want to include these resources in the application
build, you can edit the <features> element. You can do this using the Application
Descriptor Editor or in XML, as shown in the following example:
<application xmlns="http://www.worklight.com/application-descriptor" id="MyProj" platformVersion="6.0.0">

...
<features>

<JSONStore/>
</features>

</application>

If you do not include JSONStore in the build but use it in your code, an error is
raised when you run the app, and you can add it to the <features> element with a
QuickFix.

If you find during testing that your application does not actually use the
JSONStore resources, you can reduce the size of your Android app by removing
the JSONStore argument from the <features> element. (The JSONStore resources
are still included in your iOS application builds.) When a feature is added or
removed, the application must be built again before the change takes effect.

For more information about the <features> element, see “Including and excluding
application features” on page 507.

The <cacheManifest> element

A new element now exists in the Application Descriptor (application-
descriptor.xml) named <cacheManifest>. Using this element, you can manage and
edit the contents of the application cache for Desktop Browser and Mobile Web
applications. and thus control which resources are fetched when the application
starts. Unused resources such as large images or unneeded files included in the
Cache Manifest file slow startup time for these applications. By editing this file,
you can remove these unnecessary resources.

The cacheManifest element accepts three values, as shown in the following table.

336 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 54. cacheManifest properties

Property Description

generated In this mode, the Worklight Studio builder
generates a default Cache Manifest and
includes it in the application's HTML files.
The default Cache Manifest is generated
depending on the environment:

v For Desktop Browser environments – all
resources are under NETWORK, which
means: no cache at all.

v For Mobile Web environments – all
resources are under CACHE, which
means: cache everything.

In generated mode, in addition to creating
the Cache Manifest, the builder creates a
backup of the previous Cache Manifest,
called worklight.manifest.bak. This file is
overwritten in every build.

no-use In this mode (which is the default), the
Cache Manifest is not included in the
application's HTML files. This setting means
that there is no Cache Manifest and that
decisions about which resources are cached
are up to the browser.

user In this mode, the Worklight Studio builder
does not generate the Cache Manifest, but it
does include it in the application's HTML
files. This setting means that the user must
maintain the Cache Manifest manually.

If you open the Application Descriptor in Design view, you can view and set the
current mode of the <cacheManifest> attribute with the DDE editor:

In this view, each of these attribute options is given a description:
v Not Included in the application (default) corresponds to no-use mode
v Managed by Worklight corresponds to generated mode

Chapter 8. Developing IBM Worklight applications 337

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Managed by user corresponds to user mode

You can also edit the value in the <cacheManifest> element of the
application-descriptor.xml file itself, as shown in the following code sample:
<application platformVersion="6.1.0.00.20140126-0630" id="MyProj" xmlns="http://www.worklight.com/application-descriptor">

...
<mobileWebApp cacheManifest="generated"/>
<desktopBrowser cacheManifest="generated"/>

</application>

For more information about the Cache Manifest, see “Application cache
management in Desktop Browser and Mobile Web apps” on page 511.

Deprecated elements

The following elements are deprecated since IBM Worklight V4.1.3:
<provisioning>
<viralDistribution>
<adapters>
<mobile>

The following elements are deprecated since IBM Worklight V5.0:
<worklightRootURL>

The following elements are deprecated since IBM Worklight V5.0.0.3:
<usage>

The following element (a replacement for <worklightRootURL>) was removed in
IBM Worklight V6.0.0:
<worklightServerRootURL>

Login form and authenticator
Your application might need a login form. A default is provided, which you can
change as necessary.

Applications that require user authentication might have to display a login form as
part of the authentication process. In web widgets, the login form is not part of the
widget resources. It can be triggered by the authentication infrastructure used by
the organization or by the IBM Worklight Server. For more information about
authentication, see the module Authentication concepts, and the following modules
under category 8, Authentication and security, in Chapter 3, “Tutorials and samples,”
on page 27.

Setting up a new IBM Worklight environment for your
application

With Worklight Studio, you can build applications for different mobile, desktop, or
web environments within your IBM Worklight project.

Before you begin

Note: Starting IBM Worklight V6.1.0, the structure of Project Explorer is simplified
and focuses on three main components that the user is interested in: adapters,
apps, and services. The following figure shows the directory structure.

338 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

With Worklight Studio, you can add environments to your IBM Worklight
application, and write code that is specific to one or several mobile, desktop, or
web environments. If you want to create a version of your IBM Worklight
application for a specific platform, you must add the environment that corresponds
to that platform to your application. For example, if you want to create an iPhone
version of your IBM Worklight application, you must add an iPhone environment.
When you add an environment to your application, a new folder for that
environment is created. This folder contains the resources of the new environment:

images: This folder contains images that override the images in the common
environment that have the same name.

css: This folder contains files that extend or override the CSS files in the common
environment.

js: This folder contains JavaScript files that extend the common application
instance JavaScript object. The class that is defined in this environment folder
extends the common app class.

HTML: This HTML file overrides the HTML file in the common environment that
has the same name.

Note: The common folder in your IBM Worklight application folder contains the
code and resources that are common to several environments.

Procedure
1. Go to your application in Worklight Studio, which is in your IBM Worklight

project. To learn how to create a project, see “Creating IBM Worklight projects”
on page 316. To learn how to create an application, see “Creating an application
in an IBM Worklight project” on page 317
You can see your new application within your IBM Worklight project in the
Project Explorer.

Figure 28. Project Explorer showing simplified structure

Chapter 8. Developing IBM Worklight applications 339

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. From the menu on top of the screen, click File > New > Worklight
Environment.
A window opens where you can select the environment that you want to add.

Figure 29. Your IBM Worklight application folder

340 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. In the Project name list, select your IBM Worklight project.
4. In the Application/Component list, select your IBM Worklight application.
5. Select the environments that you want to add.

Figure 30. New Worklight Environment window

Chapter 8. Developing IBM Worklight applications 341

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

You can see the folders corresponding to the environments you added in your
application folder.

Figure 31. Selecting the mobile, desktop, and web environments that you want to add to your application

342 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The Worklight Development Server and the Worklight Console
Information about the Worklight Development Server, how it is viewed in the
Worklight Console, and how to access it for Java remote debugging.

Since IBM Worklight V6.0.0, the Jetty server was replaced with an embedded
instance of WebSphere Application Server Liberty Profile. This Liberty profile
server is installed with Worklight Studio, and becomes the default test server.

As a result, you see a Worklight Development Server element in your Eclipse
Project Explorer view, even before you begin creating new projects and working
with them.

Viewing the Worklight Development Server in the Worklight
Console

A menu item in Worklight Studio allows you to open this console even more
easily. Right-click the project name, and choose Open Worklight Console from the
menu.

Choosing this menu option opens the Worklight Console for the selected project
(context root) in your default browser. You can change the browser in Eclipse by
selecting Window > Preferences > General > Web Browser.

Figure 32. IBM Worklight application folder that contains folders for the environments you selected

Chapter 8. Developing IBM Worklight applications 343

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: It is possible to work with additional instances of Worklight Server other
than the embedded Worklight Development Server. For example, if you have an
additional instance of WebSphere Application Server Liberty Profile or Apache
Tomcat that is installed in your development environment, you can change the
context root to the correct server when building, deploying, or viewing its actions
in the console. To do this, you use the Changing the Worklight Server associated with a
project procedure described in “Working with multiple Worklight Servers in
Worklight Studio” on page 345.

Creating a URL to access the Worklight Console directly

In previous releases of Worklight Studio, the Worklight Console URL used to view
the development test server in a browser had the following syntax:
http://localhost:<port>/console

The default <port> used was usually 8080, although that was often changed
according to developers' needs.

Since Worklight Studio V6.0.0, the syntax for the Worklight Console URL uses the
following format, which now includes the Worklight project name to provide a
context root:
http://localhost:<port>/<projectName>/console

The default <port> after Worklight Studio installation is now 10080. So the
Worklight Console URL for a project named myProject becomes:
http://localhost:10080/myProject/console

Note: The Open Worklight Console menu command in Worklight Studio can only
point to one instance of Worklight Server at a time. It displays the console for the
server instance for which the context root was set using the Run As > Build
Settings and Deploy Target command. If you need to work with several different
servers for test purposes (for example, one instance of Liberty profile and another
of Apache Tomcat), you should save the URLs for these servers' Worklight
Consoles as bookmarks in your default browser.

Java remote debug and the Worklight Development Server

Since IBM Worklight V6.1.0, the Liberty profile instance used as the Worklight
Development Server has Java remote debug enabled. The default port is 10777, and
can be viewed in the Console view of Worklight Studio when the server is started:

This default port can be changed by editing the jvm.options file in the Worklight
Studio Servers view:

344 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Working with multiple Worklight Servers in Worklight Studio
Information about how to work in Worklight Studio in a development environment
with multiple instances of Worklight Server.

As noted in “The Worklight Development Server and the Worklight Console” on
page 343, in IBM Worklight V6.0.0 the embedded Jetty test server was replaced
with an instance of WebSphere Application Server Liberty Profile. This server is
referred to as the Worklight Development Server, and is associated with Worklight
projects as the default development server. A new Open Worklight Console menu
item enables you to view it in the Worklight Console. You can think of this
instance of Liberty profile as the embedded or internal development server.

Worklight Studio can, however, also work with additional external Worklight
Servers, for example, an instance of Liberty profile or Apache Tomcat that are
installed on your development computer. These external servers are defined in
Eclipse's Servers view. This topic covers the information that you need to know to
work with these external servers.

Starting and stopping Worklight Server

Because Worklight Server V6.0.0 can support multiple Worklight projects, there are
no longer Start Server and Stop Server menu options that are associated directly
to the Worklight project. Instead, the server that is associated with a Worklight
project is started automatically (if the server is not already running) when you
perform an action against that server or adapter. For example, the target server
starts when you use the Worklight Studio command Run As > Run on Worklight
Development Server.

Chapter 8. Developing IBM Worklight applications 345

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Path to the Worklight Development Server and its console

As previously noted, the default server that is associated with Worklight projects is
the embedded Worklight Development Server. The default path for this server is:
http://localhost:10080/PROJECT_NAME. The path to the Worklight Console for this
embedded server is: http://localhost:10080/PROJECT_NAME/console.

There are two consoles now. The first is the Worklight Console, which contains the
builder and plugin logs. The second is the Worklight Development Server
Console, which contains the Worklight Server logs and Liberty profile logs. For
more information about setting logging levels for these consoles, see “Configuring
logging in the development server” on page 936.

Working with multiple development servers

You can create and run multiple Worklight projects against the same Worklight
Server. Therefore, if you have an additional instance of Liberty profile or Apache
Tomcat that is installed in your development environment, you must ensure that
the project you are working with is pointing to the correct server when building,
deploying, or viewing it in the console.

Every change that is made to the project source that is related to the project WAR
(under the /server folder) is automatically built and deployed to the current target
server. The database connector JAR files and Worklight JAR file are also
automatically deployed to this target server when you deploy the WAR file. That
means that the project WAR (not applications or adapters) is always updated on
the target server. Every time that the project WAR is built, it also gets deployed to
the server associated with that project.

Note: The status of the server and its projects as it appears in the Eclipse Servers
view does not always reflect its current status. This is a known issue.

Changing the Worklight Server associated with a project

You can change the target test server or change the Worklight project context
root (which Worklight Server it is associated with) by right-clicking the application
and selecting Run As > Build Settings and Deploy Target.

This action displays the following window:

346 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

If the Worklight Server instance you want to associate with this project is visible in
the Server drop-down list, select it, update the Context path if necessary, and click
OK. The outcome of this action is:
1. The project's WAR file is automatically updated with the new context root

value the next time you build.
2. After rebuilding and deploying the application, the new context root is also

saved in the client-side files.

The selected server now becomes your default test t Worklight Server. This action
also changes the URL under the Open Worklight Console menu command, so that
it now points to the new server.

Note: If the Worklight Server instance you want is not displayed in the list on this
Worklight Target Server window, use the following procedure to add it.

Adding a new Worklight Server

If the Worklight Server instance you want to select is not visible in the Server
dropdown list, you can add a new Worklight Server using the following procedure.
In this example, the user is creating a new server entry for an instance of
WebSphere Application Server Liberty Profile that is installed on his development
computer.
1. First, on the Configure Worklight Build and Deploy Target window, click Add

Server to display the following window:

Chapter 8. Developing IBM Worklight applications 347

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. Select the server type that you want (in this example, WebSphere Application
Server V8.5 Liberty Profile), and click Add (highlighted in the following screen
capture):

348 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. On the resulting screen, set Path to point to the directory containing the new
external Liberty profile server.

Chapter 8. Developing IBM Worklight applications 349

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

4. After you add the new server, it displays under Server runtime environment.

350 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

5. The new external server now is displayed in the Server field of the Configure
Worklight Build and Deploy Target window. If you select the new server on the
Configure Worklight Build and Deploy Target window, it becomes the default
target test server, and all builds, deployments, and updates of the project WAR
files made using the Run As > Run on Worklight Development Server
command will go there.

An alternate method of reaching this New Server window is to right-click the entry
for an existing server in the Eclipse Servers view and select New > Server from the
menu, as shown in the following screen capture:

Chapter 8. Developing IBM Worklight applications 351

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

On the New Server window, select the type of server you want to add and click
Next. Continue with the remaining screens of the New Server wizard to define
your new server.

Setting the port for new Worklight Servers

When your new server is added, you can see it in the Eclipse Servers view. When
you double-click it, you can view an Overview page on which you can change the
Server Name, change the Host name, and other settings.

For WebSphere Application Server Liberty Profile:

352 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

When you connect a project in Worklight Studio to an existing Liberty profile
server (not the Worklight Development Server), you must check one thing before
you attempt to build and deploy Worklight applications:
v In the target server's server.xml file, inside the httpEndpoint element, make sure

that the Liberty server listens on an external network interface host. Either use a
wildcard symbol (for example, host="*") or use a true public listening IP. Do not
use localhost.

Any change that is done directly on the Liberty server.xml and related to the
Liberty configuration causes a server restart.

For Apache Tomcat:

1. To change the port that Tomcat runs on, go to Eclipse Servers view,
double-click the Tomcat server, and edit the HTTP port. Any change that is
done directly in this screen requires a restart of Tomcat.

2. To change the host name that Tomcat runs on, go to Eclipse Servers view,
double-click the Tomcat server, and edit the Host name.

Both changes require a restart of Tomcat.

Writing server-side Java code in a Worklight project

Server-side Java code can be added to a Worklight project under the
<project>/server/java folder. If that code uses specific server runtime classes, be
sure to add the Server Runtime Library to the Project Build Path:
1. Right-click the project and select Build Path > Configure Build Path.
2. Then, on the Libraries tab, click Add Library.
3. On the Add Library window, select Server Runtime and click Next.
4. On the next screen, select a server runtime library to add to the path and click

Finish.

Otherwise, compilation markers can appear in the Java code.

Developing user interface of hybrid applications
Develop the user interface of hybrid applications as detailed here.

Chapter 8. Developing IBM Worklight applications 353

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Using common UI controls
You can use a JavaScript API to invoke common user-interface controls, regardless
of the environment.

With IBM Worklight, you can use a JavaScript API to invoke user-interface controls
that are common to most environments, such as modal pop-up windows, loading
screens, or tab bars.

You can use the following API to automatically renders these controls in a native
way for each mobile platform:

WL.BusyIndicator

WL.BusyIndicator implements a common API to display a modal activity indicator.
This method uses native implementation on Android, iPhone, and Windows Phone
platforms.

For more information about the functions of this API, see WL.BusyIndicator.

WL.OptionsMenu

WL.OptionsMenu implements a common API to display a menu of options for
Android and Windows Phone.

For more information about the functions of this API, see WL.OptionsMenu.

WL.SimpleDialog

WL.SimpleDialog implements a common API for showing a modal dialog window
with buttons. This method uses native implementation on mobile platforms. The
dialog closes when the user presses any of the buttons.

For more information about the functions of this API, see WL.SimpleDialog.

WL.TabBar

WL.TabBar implements a common API to support tabbed application navigation
with a tab bar component for Android and iOS environments.

For more information about the functions of this API, see “Fixing the Tab Bar on
the screen – Android 2.2 and higher” and WL.TabBar.

Note: For more information about common UI controls, see the module Common
UI controls, under category 5, Advanced client side development, in Chapter 3,
“Tutorials and samples,” on page 27.

Fixing the Tab Bar on the screen – Android 2.2 and higher:

Fix the position of the tab bar by updating HTML and CSS.

About this task

To fix the tab bar in one location on the screen on Android 2.2 and higher, perform
the following steps:

354 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.BusyIndicator.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.OptionsMenu.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.SimpleDialog.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.TabBar.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

1. Add the following meta tag to the HTML HEAD section:
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, minimum-scale=1.0, user-scalable=no" />

2. Update the Android CSS BODY tag to also apply to the HTML tag, as follows:
html, body {

height: auto;
overflow: auto;

}

Using JavaScript toolkits
Learn how to use javascript toolkits such as JQuery, Dojo Mobile, Sencha Touch.

During the development process, you must design and implement the user
interface of your application. You can achieve a high level of customization by
writing entirely your own CSS style for each component. However, doing so
requires a large amount of resources. You can also use existing JavaScript UI
frameworks such as jQuery Mobile, Sencha Touch, or Dojo Mobile to optimize
your development process.

Dojo Mobile

IBM Worklight supports Dojo Mobile for building the user interface of your hybrid
mobile application. Dojo Mobile is a world class HTML5 open Source mobile
JavaScript framework that you can use to develop mobile web and hybrid
applications. Dojo Mobile is part of the Dojo Toolkit, which is developed and
maintained by the Dojo Foundation. You can find information about Dojo Mobile,
including its documentation, at http://dojotoolkit.org/.

You can use Dojo Mobile to develop mobile web applications that have the
appearance of the native device on iPhone, iPod Touch, iPad, Android, and
BlackBerry touch devices.

The version that is supported by IBM Worklight is the Dojo 1.9 version, which is
embedded in Worklight Studio. When you create an IBM Worklight hybrid
application, you can select Dojo Mobile among several JavaScript toolkit choices. If
you select this option, a copy of Dojo Mobile is added in your project, and a Dojo
library project is created in your workspace to support advances usages of Dojo
Mobile.

With Worklight Studio you can do the following tasks:
v Create a hybrid application that uses Dojo Mobile. For more information, see

“Creating Dojo-enabled Worklight projects” on page 356.
v Create the user interface of your Dojo Mobile application with the Rich Page

Editor, which is a WYSIWYG editor that Worklight Studio provides. The Rich
Page Editor supports HTML, Dojo Mobile, and JQuery Mobile. For more
information, see “Rich Page Editor” on page 383.

v Use predefined application templates to speed up the development of your
application. For more information, see “Mobile patterns” on page 394.

v Use all the power of Dojo Mobile through the Dojo library project. For more
information, see “Working with the Dojo Library Project that serves Dojo
resources” on page 358.

v For information about how to use Dojo to create a globalized IBM Worklight
application, and how to achieve this process by using Dojo Mobile, see
“Developing globalized hybrid applications” on page 635.

Chapter 8. Developing IBM Worklight applications 355

http://dojotoolkit.org/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v For information about how to change Dojo versions that are used by your
Worklight projects, see “Changing the Dojo version for Worklight projects” on
page 371.

Sencha Touch

With Sencha Touch, developers can build mobile web applications that have the
appearance of the native device on iPhone, Android, and BlackBerry touch devices.
Sencha Touch is developed and maintained by Sencha Inc. To download the
Sencha Touch package, see http://www.sencha.com/products/touch/. To begin
the development of your application, you need the sencha-touch.js, and
sencha-touch.css files.

jQuery Mobile

jQuery Mobile is a touch-optimized web framework for smartphones and tablets.
You need jQuery to run jQuery Mobile.

Note: jQuery Core is provided in the Worklight Library.

You can download the required jQuery Mobile components, which are in the .js
and .css files, at http://jquerymobile.com/download/. Download the zip file,
which has a version number as part of the file name, for example
jquery.mobile-1.3.2.zip. New versions of jQuery are released frequently.

Note: The tools require the non-minified version of the scripts (if necessary, replace
anything with a “min” segment in the file name with the corresponding “full” file).
1. Create a Worklight project.
2. Right-click the project and select Hybrid Application.
3. Name the application and configure.
4. Browse for the folder where you downloaded the jquery.mobile-Version.zip.

From the populated selection, choose the required jQuery Mobile components, as
follows:
v jquery.mobile-Version.css, contains all the styling for the mobile widgets and

framework
v jquery.mobile-Version.js, the jQuery mobile framework
v images, which is the whole folder of images that are used by the style sheet for

jQuery's built-in icons

If your project is already created, go ahead and create an application.

Note: Worklight Studio also provides a WYSIWYG editor that supports HTML,
Dojo Mobile, and JQuery Mobile. You can use this editor to create the JQuery
Mobile user interface of your application. For more information, see “Rich Page
Editor” on page 383.

Creating Dojo-enabled Worklight projects:

You can create Dojo-enabled Worklight projects that hold all of the resources that
are created and used when you develop a Dojo mobile application.

Procedure

1. In the main menu, click File > New > Worklight Project to open the New
Worklight Project wizard.

356 IBM Worklight V6.1.0

http://www.sencha.com/products/touch/
http://jquerymobile.com/download/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. In the Name field, enter a name for your new project.
3. From the list of project templates, click one of the following templates to

generate an application for your Worklight project, and then click Next.

Template Description

Hybrid Application To create a Worklight project with an initial
hybrid application.

Inner Application To create a Worklight project with an initial
inner application and point to a built shell
component.

Native API To create a Worklight project with a Native
API.

Shell Component To create a Worklight project with an initial
shell component application.

4. In the Application name field, enter a name for your new application.
5. Click Configure javaScript Libraries.
6. In the Dojo installation section, select Add Dojo Toolkit to add the Dojo facet

and Dojo support to the application. When you build a mobile web application,
Dojo is included to create the native application, such as an iPhone or Android
application.

7. Specify the Dojo library project that you want to use in your new Worklight
project:

Option Description

Select an existing Dojo library project From the list of available Dojo library
projects, select the library that you want to
use in your Worklight project. For example,
dojoLib.

Chapter 8. Developing IBM Worklight applications 357

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Option Description

Create a Dojo library project 1. Click New Dojo Library to open the
Dojo Library Setup wizard.

2. In the Name field, enter a name for your
new Dojo library project.

3. Specify the version of Dojo that you
want to install.

4. Configure how your Dojo library project
accesses the Dojo Toolkit and which
version of the toolkit to use:

v Click Provided to select a Dojo
Toolkit that is provided with the
product.

v Click On Disk and then choose one of
the following options:

– Click Archive File to select an
archive file of a compressed Dojo
distribution. When you click Finish,
the contents of the archive file are
automatically extracted into your
project.

– Click Folder to browse to the root
Dojo folder in another project in
your workspace.

5. Expand the Select the Dojo components
to be included in the project section and
select the Dojo components that you
want to include in your project.

6. Click Finish. The new project is now
displayed as an option in the list of
available Dojo library projects.

8. Click Finish. Both the Worklight project and the Dojo library project are
created.

Working with the Dojo Library Project that serves Dojo resources:

IBM Worklight projects that use Dojo contain a small subset of Dojo resources. This
subset of Dojo resources is supplemented with resources (that might not be typical
within mobile applications) from a separate Dojo library project.

The Dojo library project contains a full distribution of Dojo. This version of Dojo
includes both mobile and desktop Dojo resources. You can test your application by
using any of the widgets from the Dojo library. The Dojo library project contains a
full Dojo that you can use in a Dojo application. It is provided on an internal
server, separate from your IBM Worklight application.

An IBM Worklight project is initialized with only a minimal set of mobile layers
and themes. It contains the Dojo resources that are deployed as part of the
Worklight application. The Dojo that is contained in the Worklight project is
optimized for size and includes only the features that are required for a basic
mobile application.

The Dojo library project provides only the resources that are requested directly by
the Dojo loader, such as the JavaScript modules, their template HTML fragments,

358 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

and associated images. The Dojo library project, running separately on an internal
server, provides faster builds, smaller projects, and accurate lists of the Dojo files
that your application is requesting. Here is a view of the improved Dojo workflow
for application size and development speed:

To demonstrate, here are illustrations that show the start of a new Worklight
project. After you click Configure JavaScript Libraries, a wizard opens where you
must click Add Dojo Toolkit. An extra field in the template is displayed called
New Dojo Library.

Chapter 8. Developing IBM Worklight applications 359

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

360 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: You can create multiple libraries each for a different version of Dojo. A
Worklight project is linked to one library.
The New Dojo Library feature is where access to the full distribution of Dojo is
initiated by linking to the internal server. When you develop your application and
test it, this feature supplies your Dojo Library Requests view with all the Dojo
files requested during execution of your application. Select the files and move
them to your project.

The minimum set of Dojo files that are provided in a Worklight project, are in a
www folder in the navigation. It includes these files:
v Nano AMD loader (Dojo.js)
v Two layers for mobile widgets
v en-us NLS bundles for the two layers
v deviceTheme.js and mobile themes

Chapter 8. Developing IBM Worklight applications 361

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

With this formation, you can develop mobile pages by using Dojox mobile
widgets.

You can manually set up more themes. First copy a theme into the www folder, and
then set up the project css settings. Dijit widgets require a theme, Dojox widgets
each bundle their own theme css.

362 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

You can start coding your application. Use any Dojo modules (you no longer need
to consider what files to import into the project). In this example, the
“DateTextBox” comes from dijit/form but this module and its dependencies are

Chapter 8. Developing IBM Worklight applications 363

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

not in the project yet.

The Dojo loader is redirected to an internal server for modules in these packages:
Dojo, dijit and Dojox.
<script scr="worklight/cordova.js"></script>
<script scr="worklight/wljq.js"></script>
<script scr="worklight.js"></script>
<script scr="worklight/checksum.js"></script>
<script scr="worklight/plugins/org.apache.cordova.core.camera/www/ios/CameraPopoverHandle.js"></script>
<script scr="worklight/plugins/org.apache.cordova.core.contacts/www/ios/Contact.js"></script>
<script scr="worklight/plugins/org.apache.cordova.core.contacts/www/ios/contacts.js"></script>
<script scr="worklight/plugins/org.apache.cordova.core.file/www/ios/Entry.js"></script>
<script>windows.$ = window.jQuery = WLJQ;</script>
<script scr="http://192.168.0.100:9988/dojoLib/factory/inventory/iphone/dojo/dojo.js"> type="text/javascript" data-dojo-config=...></script>

Turn on the Provide Missing Dojo Resources function first, this action injects code
to redirect the Dojo Loader to the server during the Worklight build.

364 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To do this open Dojo Library Requests view and then click Provide Missing Dojo
Resources, as illustrated here:

The special view output gives an accurate list of the Dojo files that are requested
by the application. You can use this output as a guide to use the Copy to Project
or Copy to application actions to copy files from the library into the project.

You must turn off the library and verify all the Dojo files are present in the
application. Turn off the server

Chapter 8. Developing IBM Worklight applications 365

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

then, rebuild the environment and deploy (so that the injected Dojo loader config
is removed) and then run the application again.

You can build the layers that are based on the code that is imported into the
project (which is optional).

The IBM Worklight Studio tools use the Dojo that is contained in the Worklight
project and the associated Dojo Library project. The following Worklight Studio
tools use the Dojo library content:

Rich Page Editor
The Rich Page Editor displays all of the widgets that are available in the
Dojo library.

366 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

You can explore and test various Dojo artifacts. You could run and test
your application outside of the Dojo library project. If you test on an
external device or emulator, IDE must be running and must have Internet
connectivity.

Worklight Studio provides the Dojo Library Requests view which shows
what resources were requested from the Dojo library project. For example,
if you add the dijit.Calendar Dojo widget (that is not part of the mobile
layers) to the Worklight application HTML page, Rich Page Editor uses the
Dojo library to display this widget.

Note: If you run and test your application on a mobile device or use a
device emulator, Eclipse must be running to provide Dojo Library
resources. To shut down Eclipse and test your application in an
environment that is similar to a production environment, you must remove
Dojo Library instrumentation. See “Removing Dojo library
instrumentation” on page 371.

Chapter 8. Developing IBM Worklight applications 367

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

JavaScript source validation and content assist
Content assist suggests all of the Dojo widgets that are contained in the
Dojo library, or contained within the Worklight project, and new widgets
that you have added to either of these. For example, if you have added
your own Dojo widgets in either project, these new widgets will show up
on the palette and in content assist.

Mobile Browser Simulator
The Mobile Browser Simulator can run with or without the Dojo library
resources. You can use the Dojo Library Requests view to turn on and off
the Dojo library resources.

Select the Provide Library Resources option to specify that you want the
Mobile Browser Simulator to use the Dojo library project when it runs. For
example, when this option is selected the dijit.Calendar widget is
displayed correctly.

368 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

While the Mobile Browser Simulator is running, the Dojo Library
Requests view shows which resources are served from the Dojo library
project, which indicates the particular resources that are requested by the
application but are not included as part of the application.

Chapter 8. Developing IBM Worklight applications 369

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

If the missing resources are required by the final Worklight application,
you must add all of the missing resources to the Worklight project. The
resources that are logged in the Dojo Library Requests are not available
outside of the Worklight Studio development environment.

To add the missing resources to your application, the view provides two
copy actions.

The Copy to Project action copies selected resources into the project's
www folder. Resources here are built into all Dojo-enabled applications in the
project, which is useful when your applications use a common module or

resource. The Copy to application action copies selected resources into
the requesting application's common folder, which is useful when an
application uses resources that are unique to that application.

If you disable the Provide Library resources option , the Mobile
Browser Simulator does not use the Dojo library project when it runs. The

370 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Mobile Browser Simulator uses only the resources that are contained in the
Worklight project. For example, when this option is selected, the
dijit.Calendar widget is not displayed. When the Mobile Browser
Simulator runs in this mode, the preview emulates the mobile device. The
preview provides only the resources that are available to the application
when it is deployed to a mobile device. No entries are shown in the Dojo
Library Requests view.

Removing Dojo library instrumentation:

If you run and test your application outside of the Dojo library project, you must
remove the Dojo library instrumentation.

Procedure

1. Copy all resources that are provided by the Dojo library project and are
required by the application into the www folder of the IBM Worklight project.
The Dojo Console view helps you determine which resources were provided by
the Dojo library project. Only the resources in thewww folder are available when
an application is running on a native platform.

2. In the Dojo Library Requests console view, ensure that Provide Library
Resources is cleared. When Provide Library Resources is cleared, the
dojoConfig mapping that points to the Dojo library project is removed.

3. Run Preview. You can complete debugging actions in the Preview window.
4. Build and deploy the application. All required Dojo resources are in the

Worklight project www folder.
Related concepts:
“Working with the Dojo Library Project that serves Dojo resources” on page 358
IBM Worklight projects that use Dojo contain a small subset of Dojo resources. This
subset of Dojo resources is supplemented with resources (that might not be typical
within mobile applications) from a separate Dojo library project.

Changing the Dojo version for Worklight projects:

You can change the version of Dojo that is used by an existing IBM Worklight
project.

Before you begin

Note: A “pre-built” folder for versions of the Dojo toolkit is provided by IBM
Worklight and is officially supported. If you download Dojo from the Dojo website
http://dojotoolkit.org/ and use that for the Dojo library, Step 5 in the following
procedure does not happen.

The procedure explains how to upgrade from Dojo that is included with IBM
Worklight to a new version of Dojo that is included with IBM Worklight. If you
want to take advantage of a version of Dojo in open source that is not yet in IBM
Worklight, extra steps are required, see Alternate Procedure.

Procedure

1. In the Project Explorer view, locate the Worklight project that you want to
change the Dojo version for.

2. Right-click the Worklight project and select Properties to open the Properties
dialog.

Chapter 8. Developing IBM Worklight applications 371

http://dojotoolkit.org/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. In the left pane, click Dojo Toolkit to open the properties page for the Dojo
Toolkit that is used by the selected Worklight project.

4. Choose one of the following options to change the Dojo version that is used by
the Worklight project:
v From the Dojo Library Project list, select an existing Dojo library project that

you want to use in your Worklight project.
v Click New Dojo Library to create a Dojo library project for use in your

Worklight project.
5. Click OK. A dialog box opens prompting you to confirm whether you want to

overwrite the existing Dojo layer files with the new Dojo layer files.

Note: To avoid unpredictable behavior, use Dojo layer files that match the Dojo
library. For example, by using Dojo 1.8 layer files with a Dojo 1.9 library, may
cause unpredictable behavior. If you choose not to overwrite the Dojo layer
files now, you can manually overwrite them later using the pre-built files that
are contained within the Dojo library project. In the Project Explorer view,
expand Dojo library project > toolkit > pre-built.

Alternate Procedure

6. Follow the Procedure steps 1-4. Then continue with the following steps:
a. Ensure the resources that are being used by the application are copied into

the application. Follow the documentation that is outlined for the Dojo
Library Requests view or Console (depending on Studio version).

b. One suitable method involves building new layers from the new version of
Dojo so that the same core and mobile UI layers are created from the
updates. Manually copy them into the project's www folder.

c. The alternative way is to remove the references to the core and mobile UI
layers (“layers/core-web-layer” and “layers/mobile-ui-layer”) from the
application's JavaScript file, and use the Dojo Library Requests view or
Console to find out what's used and then start copying them into the
project.

Implementing a different version of the Dojo Toolkit:

If you need to use a different Dojo Toolkit version, a special procedure is required.

Worklight Studio facilitates the integration of Dojo Toolkit into hybrid mobile
applications. However, this Dojo Toolkit and its corresponding optimized resources
(called Dojo layers) are tied to a fixed version per release, which is bundled within
Worklight Studio.

Worklight Studio has a set of tools to facilitate the integration of latest available
Dojo toolkit into a hybrid application. It also supplies a pre-built set of Dojo files
(called Dojo layers) that bundle the Dojo Mobile modules in a few optimized
resources. These files are copied by default into your Hybrid Dojo project under
the www folder.

Note: Having these custom built layers is required for production deployments,
not just for performance improvements but for a known limitation in Android
environments. For more information, see the Dojo Toolkit website..

Even though Worklight Studio provides all the necessary resources to work with
the most updated Dojo Toolkit, there is a chance that you might need to move to a
different Dojo version or even modify the contents of the pre-defined layers. You
also need to optimize your resources for production deployment.

372 IBM Worklight V6.1.0

http://dojotoolkit.org/reference-guide/1.9/dojox/mobile/faq.html#i-can-t-seem-to-run-dojo-mobile-pages-on-android-devices-when-using-libraries-like-phonegap-what-am-i-doing-wrong

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Here is described how those layers are built and the necessary changes that need
to be done in order to have a fully working application with a modified or
updated Dojo toolkit.

Building standard Dojo layers:

Here are the steps for how to build the standard Dojo layers.

Procedure

1. Download the latest version of the Dojo-Build-Factory build tool.
a. Go to https://github.com/pruzand/Dojo-Build-Factory
b. Select the branch for the Dojo version you are using in your project.
c. Download the compresed repository from the website, which is usually a

file with a name similar to Dojo-Build-Factory-Dojo-Version.zip

d. Extract the file to a known location on your system.

Alternatively, if you Git is installed on your system, you can clone the
Dojo-Build-Factory branch for the Dojo version you need, entering the
following command from your system's command line: git clone -b
<Dojo-Version-Branch> https://github.com/pruzand/Dojo-Build-Factory.git
After you have the Dojo-Build-Factory build tool, a directory structure is
created that contains the following files and folders:
v build
v releases
v LICENSE
v README

2. Open Worklight Studio and create a simple project:
a. File → New → Other → General → Project

b. Give project a valid name, such as DojoBuildFactoryProject.
c. Click finish.

3. Copy and paste the contents of the Dojo-Build-Factory/build folder to your
new project root.

4. Add the Dojo source from which you want to generate your optimized version
to the src folder of the project. The Dojo source must be a full, decompressed
source release of the Dojo Toolkit. Therefore, it must contain the util folder,
since it is used for the layers generation. The project now has the following
structure and files:

Chapter 8. Developing IBM Worklight applications 373

https://github.com/pruzand/Dojo-Build-Factory

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

5. Open profiles/env-config.js and change the localeList to specify the
relevant locales you want to include. By default, Dojo Build Factory includes
only US English as the default language, so you see the following entry:
“localeList”: “en-us”. If you want to specify additional locales, you can set
this variable to something like: "localeList" : "en-
us,ar,az,ca,cs,da,de,el,es,fi,fr,he,hr,hu,it,ja,kk,ko,nb,nl,pl,pt,pt-
pt,ro,ru,sk,sl,sv,th,tr,zh,zh-tw"

Note: If the language setting for the target mobile phone is expected to not be
US English, then you must specify that language in this localeList. Otherwise,
it is highly possible that your application will not work.

6. Run the Dojo Mobile build.
a. From within Worklight Studio, navigate to Run → External Tools → External

Tools Configuration.
b. Select Ant Build and click New launch configuration.
c. Set the Buildfile field to point to the build.xml in the root of your Dojo

build factory project.
d. Set the Base Directory to your Dojo build factory project root. Here is an

example of what your configuration could look like.:

374 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

e. Go to the Properties tab and confirm that Use global properties as
specified in the Ant runtime preferences is cleared.

f. Add a new property with Name set to profileFile and value set to the
name of the profile file that is located in your project/profiles folder
without the .js extension. For example, profile-1.9

g. After you set up the configuration, click Run. The build takes about 6-15
minutes and can be monitored in the console view.

Results

After completion, the generated Dojo layer files are located inside your project in
the result/compressed/dojo directory, following the *-layer.js naming
convention. If you cannot see those files, do a refresh (F5) on your project root.
There are several different layer files available there, which is much more than just
the mobile-ui-layer.js. You can find the details on what every layer contains on
the Github website.. These instructions can only guide you through the process of
replicating the structure that Worklight Studio provides. Depending on your

Chapter 8. Developing IBM Worklight applications 375

https://github.com/pruzand/Dojo-Build-Factory/wiki#standard-layer-files
https://github.com/pruzand/Dojo-Build-Factory/wiki#standard-layer-files

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Worklight Hybrid application requirements, you might want to append extra layers
to your project to make additional optimized Dojo resources available.

Note: There can be problems when you produce the Dojo 1.9 custom build. You
might see errors such as: error(303) Missing include module for layer.
missing: gridx/allModules; layer: dojo/gridx-desktop-layer To resolve these
errors, navigate to project/profiles, open theprofile-version.js file, then look
for the failing layer(s) (in this case gridx-desktop-layer, but also gridx-mobile-layer
fails) and comment out the corresponding layer(s) definition to pull it out from the
custom build:

What to do next

Repeat build execution until it finishes successfully.

Switching an existing project to a new Dojo library:

Here are the steps for moving to a different Dojo Library with the resources you
created previously.

Before you begin

If you already have a Hybrid Dojo Project with a Hybrid app that points to an
existing dojoLib project, which is the default, here is the process to move to a
different Dojo Library.

Procedure

1. Switch the current Dojo project to a different Dojo Library.
a. In Worklight Studio, right click DojoProject, then select Properties menu

item.

376 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

b. Go to Dojo Toolkit properties page
c. Click New Dojo Library

d. Give the library a valid name. For example, NewDojoLib
e. Select On Disk and then fill it with the archive file or folder that contains

the Dojo source. For example, dojo-release-1.9.2-src.tar.gz Use the same
you previously used to create the Dojo Custom build. For the archive file,
specify the Create internal selected folder only under the Import options
section if available.

f. Click Finish to close this dialog. Confirm that the properties page indicates
it uses the new Dojo Library, then click OK.

Chapter 8. Developing IBM Worklight applications 377

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

A new Dojo Library project must be created, but it is still incomplete because it
lacks the optimized layers you created previously, so there are still few steps to
complete.

2. Go to the newly created Dojo Library project and create a new folder that is
called pre-built under the existing toolkit one.

3. Populate the pre-built folder by creating the following directory structure.

378 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Copy the files from the result/compressed folder in the Dojo Build Factory
project.

Updating the optimized resources in the Dojo project:

Follow these steps to update the optimized resources currently hosted in your Dojo
Project.

Chapter 8. Developing IBM Worklight applications 379

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Before you begin

Verify that you switched your project to use the new Dojo Library project to get
the Worklight Studio tooling from it. However, the project still contains all the old
resources that were previously copied from the old Dojo Library into the project,
which needs to be updated as well.

Procedure

1. Back up any customization you did to the www folder before you start. It is
unlikely that you did any customization, but if so you must have a backup to
be able to restore it later.

2. Copy the content from the pre-built folder of the Dojo Library project into the
www folder of your current Dojo project.

3. Rebuild the Dojo applications in your Dojo Project to update the resources in
the environments to the new ones.

4. Restart Worklight Studio to make sure that the entire tooling suite refreshes any
session-specific resources.

5. Exercise your application as described in “Working with the Dojo Library
Project that serves Dojo resources” on page 358.

6. Use the Worklight Studio tooling to copy the additional missing Dojo resources
into your project

7. Merge the customizations you did in the first step, if applicable.

Changing the jQuery version for Worklight applications:

When you develop an application in Worklight Studio, the bundled version of
jQuery might not be sufficient for development needs. This procedure provides
instructions about how to use a different version of jQuery.

About this task

jQuery is bundled as a library within IBM Worklight. By default, every new
application includes a main HTML file, which contains the following code that is
required to use the embedded jQuery:
<script>window.$ = window.jQuery = WLJQ;</script>

To use a different version of the jQuery library, complete the following steps:

Procedure

1. Remove the <script>window.$ = window.jQuery = WLJQ;</script> code from
the main HTML file of your application.

2. Add jQuery files to your project.
3. Add the <script> tag that refers to the files that you added in step 2.

Results

The updated version of jQuery will be used for all environments.

Locate Dojo API:

The Locate Dojo API dialog can be found under the Navigate menu and is enabled
when a Dojo project resource is open in the active editor. It is enabled if a Dojo
project resource is selected in a project explorer view.

380 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The dialog locates the Asynchronous Module Definition (AMD) modules that
contain the API that you need. Enter the characters of the API you need, and the
locator finds the AMD modules that define that API. For example, if you were to
type “push” into the search box it finds all the modules that contain types,
methods, and field names that begin with “push”.

Two actions are always provided once a module is selected. The Open action
opens the JavaScript file that contains the selected module. The Copy action
computes the selected module’s path and copies it to the clipboard.

A third action that is called Add is provided if a JavaScript file that contains either
a require() or define() function is open in the active editor. When Add is
selected, the module’s path is automatically inserted into the appropriate
require() or define() function.

Application skins
An application skin is a set of web resources that govern the appearance and
behavior of the application. Skins are used to adjust the application to different
devices of the same family. You can package multiple skins in your application and
decide at run time, on application startup, which skin to apply to the application.

Note: Only the following environments support application skins: Android,
iPhone, iPad, BlackBerry 6, 7 and 10.

When you define a skin in the IBM Worklight Studio, the studio generates a folder
for the skin resources and adds a <skin> element in the application descriptor. The
<skin> element includes the name of the skin and a list of resource folders. When
the studio builds the application, it applies the optimization rules on the resource
folders in the order they occur within the <skin> element.

Chapter 8. Developing IBM Worklight applications 381

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

In the following example, two skins are packaged with the Android application:
the default skin and another skin called android.tablet. Resources for the
android.tablet skin are in the android.tablet folder.
<android>
<skins>
<skin name="default">
<folder name="common" />
<folder name="android" />
</skin>
<skin name="android.tablet">
<folder name="common" />
<folder name="android" />
<folder name="android.tablet" />
</skin>
</skins>
</android>

You can also create custom skin hierarchies, by creating resource folders under the
application folder and manually defining the skin hierarchy in the application
descriptor. For example, you can define a phone folder to include resources that are
related to rendering the app on a phone, and a tablet folder to include resources
for rendering the app on a tablet. Then you can create four skins by using these
resources in the following way:
v android.phone: common > android > phone
v android.tablet: common > android > tablet
v ios.phone: common > iphone > phone
v ios.tablet: common > iphone > tablet

Applying skins at run time

To set which skin to apply at run time, implement the function getSkinName() in
the file skinLoader.js. This file is located under the environment/js folder of the
application.

Deleting a skin

To delete a skin, remove the element that defines the skin from the app descriptor,
delete the skin directory, and delete or modify the skinLoader.js file.

Settings page to change the server URL
With IBM Worklight, you can create a settings page to change the URL of the
Worklight Server.

Figure 33. The skinLoader.js file

382 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

With IBM Worklight, you can create a settings page that allows the following
changes:
1. Directs the application to connect to a different Worklight Server by changing

the <protocolca>://<hostname>:<port>/<contextRoot> values.
2. Loads web resources belonging to a different application or version of the

application.

Note: This technique works only if the different Worklight Server already exists
and these resources or applications are already deployed. This feature is meant
only for use in the development environment and not in production.

The settings page is available for the following environments: Android, iPhone,
and iPad.

To create the settings page for the supported environments, <worklightSettings> is
set to true in the relevant environment element in the application-descriptor.xml
file. For example:
<iphone version="1.0" bundleId="com.mycompany.myapp">

<worklightSettings include="true"/>
<security>
...
</security>

</iphone>

Rich Page Editor
Use Rich Page Editor to easily edit HTML files, add Dojo widgets to HTML pages,
and create and edit web pages for mobile devices. Rich Page Editor is a
multi-tabbed editor that provides multiple views to show different representations
of your page.

Views

You can use the Source, Design, and Split views in Rich Page Editor to view and
work with your files or pages. Each view in Rich Page Editor works with several
other views and tools that are included in the web perspective, including the
following interface elements:
v Mobile Navigation, Outline, and Properties views
v Toolbar buttons
v Menu bar options
v Pop-up (right-click) menus
v Palette components

Note: Since IBM Worklight V6.0, the jQuery Mobile widget of Worklight Studio
might be not visible in the palette of the Rich Page Editor if you are using jQuery
V1.3.2. To resolve this issue, use jQuery Mobile V1.3.1 instead of jQuery Mobile
V1.3.2.

Table 55. Rich Page Editor views

Editor view Description

Source The Source view helps you to view and work directly with the source
code of a file. The Mobile Navigation, Palette, Outline, Page Data, and
Properties views have features that supplement the Source view.

Chapter 8. Developing IBM Worklight applications 383

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 55. Rich Page Editor views (continued)

Editor view Description

Split The Split view combines the Source and Design views in a split screen
view. Changes that you make in one part of the split screen are
automatically updated in the other part. You can split the view
horizontally or vertically.

Design The Design view is a WYSIWYG environment. This view helps you to
create and work with a file while viewing how your web page and
dynamic content might look on a mobile device. You can use this view to
visually edit files. For example, the Design view includes features that
you can use to complete the following tasks:

v Drag items from the Palette and Enterprise Explorer views.

v Rotate the screen orientation when you use a mobile device profile to
view your mobile web page in either portrait or landscape mode.

v Scale the mobile device to fit the size of the current Design view. Using
this feature, you can see the entire visual canvas without the need to
scroll.

v View how your page is displayed on different devices by selecting a
device from the device list. The selected device specifies the size of the
mobile device that you want to view and affects the size of the Design
view area.

v View how your mobile web page is displayed in different styles. For
example, Android, iPhone, or BlackBerry. By choosing a particular
skin, you can switch to another device-specific style to view the layout
and appearance of your page as it would appear on this specific
device.
Note: The Skin list is available only for Worklight application pages.

Design Mode editing

You can use the Design Mode editing features of Rich Page Editor to add and edit
widgets in the Design view. To enable the Design Mode editing features, click the
Design Mode icon.

The following screen capture shows what a table looks like in the Design view of
Rich Page Editor when Design Mode is enabled.

The following screen capture shows what the same table looks like in the Design
view of Rich Page Editor when Design Mode is not enabled.

384 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The Design Mode editing features guide the placement of code when you drop a
widget on a container widget. Visual cues highlight the possible drop locations and
pop-up cues indicate the editing function that is available for the selected widget.
Design Mode also adds dashed borders to empty table cells. For example, dragging
a tag from the Palette to a table provides a visual cue for placement:

Selecting a cell in a table opens a pop-up cue that you can use to add a column or
row:

Browser requirements for Rich Page Editor:

Rich Page Editor uses embedded browsers to produce a visual representation of a
web page in the Design view. The browsers that are available in Rich Page Editor
and their installation requirements vary according to the platform.

Procedure

The following table lists and describes the supported browsers in Rich Page Editor,
by platform:

Chapter 8. Developing IBM Worklight applications 385

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Platform Supported browsers

Windows
Internet Explorer

Available for all installations; uses
the native browser code in
Windows.

Firefox Firefox support for Windows is
embedded in the product and is
functionally equivalent to a Firefox
version 3.6 installation. Firefox is
available only on 32-bit installations
of the product.

Safari Safari for Windows can be installed
separately. After installation Rich
Page Editor can be used in Safari.
Safari support is only available on
32-bit installations of the product.

Linux
Firefox or WebKit

The product attempts to locate and
use browser code:

v WebKitGTK+libraries

v XULRunner installation

The editor operates with a
compatible XULRunner installation
that is in the range of Firefox
version 3.0 to version 3.6. You can
also use WebKitGTK+ libraries with
some additional setup. The Firefox
indicators are still used in the
editor even if you create a
webkit-based browser. For more
information about setting up the
Linux browser, see “Embedded
browsers for Linux.”

Mac
Safari The native Safari browser is

automatically used for products
that are available on the Mac
platform.

The supported browsers are available from the editor toolbar in both the design
and split views.

On the toolbar, click the icon for the browser you want to use. For example, in the
following screen capture, Firefox, Internet Explorer, and Safari are supported.

Embedded browsers for Linux:

On Linux systems, to ensure that product features, such as the Rich Page Editor
use an appropriate embedded web browser, additional steps to configure the
browser are necessary.

Product features that use an embedded web browser might not work correctly if
an inappropriate browser is used. Using an inappropriate browser can cause

386 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

problems such as: scenarios that fail, error messages, or an unexpected output.
Product features that use an embedded browser include:
v Rich Page Editor
v Web Browser component
v Welcome page

The Eclipse Standard Widget Toolkit (SWT) supports the following browser types
for Linux systems:
v Mozilla (Firefox) through the XULRunner package
v WebKit through WebKitGTK+ shared libraries

The version of Eclipse included in the product determines the default browser type
used by SWT. However, you can explicitly configure the default browser type.
Only one browser type is available at a time within the product.
v For Eclipse versions 3.7 and later, the WebKit browser is the default browser on

Linux. If suitable WebKit libraries are not found, the XULRunner browser is
used.

Configuring for the WebKit embedded browser:

A WebKit embedded browser is supplied as a separate installation of the
WebKitGTK+ shared libraries, however; these libraries are included in many of the
supported Linux distributions.

Procedure

If necessary, install the WebKitGTK+ package onto the system and ensure that it is
included on the default library path.

Configuring for the XULRunner embedded browser:

The XULRunner package enables Mozilla as the embedded browser. If several
XULRunner packages are installed on the same system, version mismatches can
occur even if a specific XULRunner installation is registered as the default version.
To clearly define the XULRunner browser and level to be used in your
configuration, you must set up an explicit pointer to a XULRunner version.

About this task

The supported XULRunner versions are:
v 1.8.x
v 1.9.2
v 3.6.x

Note: The XULRunner package must match the architecture (32-bit or 64-bit) of the
product installation.
To download the XULRunner 1.9.2, click one of the following links:
v XULRunner 32-bit download
v XULRunner 64-bit download

Procedure

To set up an explicit pointer to a XULRunner version, complete the following
steps.

Chapter 8. Developing IBM Worklight applications 387

http://ftp.mozilla.org/pub/mozilla.org/xulrunner/releases/1.9.2.19/runtimes/xulrunner-1.9.2.19.en-US.linux-i686.tar.bz2
http://ftp.mozilla.org/pub/mozilla.org/xulrunner/nightly/2010/12/2010-12-01-03-mozilla-1.9.2/xulrunner-1.9.2.13.en-US.linux-x86_64.tar.bz2

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

1. In the eclipse.ini file included in the product installation, locate the -vmargs
section.

Note:

For users of IBM Worklight only:
v If a Worklight.sh file is present in the same product directory as the

eclipse.ini file, add your updates to the -vmargs sections of both files.
v Some IBM Worklight Studio installations use JRE arguments from the

Worklight.sh script instead of from the eclipse.ini file.
2. In the -vmargs section, add the following JVM system variable where

/home/myuser/xulrunner is the path to the root of an uncompressed XULRunner
package.
-Dorg.eclipse.swt.browser.XULRunnerPath=/home/myuser/xulrunner

Complete the following step to use the XULRunner browser instead of the WebKit
browser.
3. Add the following JVM parameter to the -vmargs section at the end of the

eclipse.ini file.

Note:

For users of IBM Worklight only: If the Worklight.sh file is present, add the
same code to the end of this file.
-Dorg.eclipse.swt.browser.DefaultType=mozilla

Setting the Rich Page Editor preferences:

You can customize the display of Rich Page Editor by setting the preferences for
view shortcuts, pane visibility and layout, design mode, and web browser.

Procedure

1. In the main menu, click Window > Preferences.
2. Expand Web > Rich Page Editor.
3. Specify the default preference settings for Rich Page Editor.

Editor preference Description

View shortcuts Specify whether to show or hide the
shortcut toolbar buttons in Rich Page Editor
for these views: Palette, Properties, Outline,
and Mobile Views.

Visible pane Select which view to show when you open a
file with Rich Page Editor. You can choose
from these views: Design, Source, and Split.

Pane layout Set the Split view layout, which is a
combination of the Source view and Design
view, to split the editor view either
horizontally or vertically.

388 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Editor preference Description

Design mode Specify whether to enable or disable Design
Mode.

When Design Mode is available, the editing
features help you to add and edit widgets in
the Design view of the editor. For example,
the editing features guide the placement of
code when you drop a widget on a
container widget. Visual cues highlight the
possible drop locations and pop-up cues
indicate the editing function that is available
for the selected widget. Design Mode also
adds dashed borders to empty table cells.

When Design Mode is unavailable, elements
in the Design view are displayed exactly as
they are shown in the web browser, without
any visual aids for editing.

Web browser Select the web browser in which to show the
page that is being edited.
Note: The list of available web browsers is
dependent on the platform and web
browsers that are installed on your
computer.

Tip: When you are working with Rich Page Editor, you can change these
settings from the editor window. To change the view shortcuts, pane layout,
design mode, and web browser settings, use the toolbar in the upper-right
corner of the editor window. To change the visible pane, use the tabs in the
lower-left corner.

4. Optional: To specify that you want to remember these preference settings for
each resource, selectRemember settings for each individual resource.

5. Specify the Smart Highlight settings for Rich Page Editor.

Smart Highlight preference Description

jQuery Specify whether to highlight nodes in the
Design and Outline views that are matched
by jQuery expression selectors in the Source
view or Javascript editors.
Tip: By default, matched nodes are
highlighted in yellow. To change the
highlight color, click Change Highlight
Color.

6. Click Apply and then save your changes by clicking OK.

Opening web pages in Rich Page Editor:

You can open web pages in Rich Page Editor to edit HTML files, add Dojo widgets
to HTML pages, and edit web pages for mobile devices.

Before you begin

You must complete the following tasks before you can open a web page in Rich
Page Editor:

Chapter 8. Developing IBM Worklight applications 389

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

1. Create a project.
2. Create a web page.

Procedure

In the Enterprise Explorer view, use one of the following methods to open a web
page in Rich Page Editor:
v Double-click your web page.
v Right-click your web page and select Open.

Working in the Design and Split views:

You can use the Design and Split views in Rich Page Editor to edit HTML files in
WYSIWYG mode.

When you edit in the Design view, your work reflects the layout and style of the
web pages that you build. The Design view removes the added complexity of
source tag syntax, navigation, and debugging.

Use the Split view to show both the Design view and the Source view in a split
screen view. Changes that you make in one part of the split screen are
automatically updated in the other part. You can split the view horizontally or
vertically.

About this task

The design and split views provide full access to the following features:
v Editor menu options
v Pop-up menu actions
v User interface options, such as those in the Styles view
v Drag-and-drop behavior

The Design and Split views also provide support for absolute positioning. You can
see the immediate impact of design decisions more quickly than in a text editor.
Using these views, you can efficiently and precisely change the composition and
attributes of pages, tags, images, and effects.

Many actions available through the editor menus are also available from design
element pop-up menus. To access the design element pop-up menus, select a page
object, and then right-click the object.

Working in the Source view:

You can use the Source view in Rich Page Editor to edit HTML and other markup
text, such as embedded JavaScript. Any changes you make in the source view are
also reflected in the Design and Split views.

About this task

You can also show the Source view by opening the Split view. The Split view
shows both the Design and Source views, split vertically or horizontally. If you add
or update an attribute value in the Source view while the Properties view is
visible, the properties are also refreshed.

390 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 56. Source view features

Feature Description

Syntax highlighting Each tag type uses different highlighting to
make it easy to find a specific type of tag for
editing. For example, you cannot edit
read-only regions of the page which are
highlighted in gray.

Unlimited undo and redo You can incrementally undo and redo every
change made to a file for the entire editing
session. For text, changes are incremented
one character or set of selected characters at
a time.

Content assist Content assist helps you to finish tags or
lines of code, and insert macros. The
available options in the content assist list are
based on the tags that are defined by the
tagging standard specified for the file being
edited. If content assist does not
automatically open, press Ctrl + Space. The
content assist text is displayed in a yellow
box as you type.

User-defined macros You can access user-defined templates,
which are chunks of predefined code, with
content assist to help you add the tagging
combinations that are used often.

Element selection The element selection indicator is located
within the vertical border in the left area of
the Source view. Based on the location of
your cursor, the element selection indicator
highlights the line numbers that contain the
elements being edited.

Pop-up menu options You can right-click at a specific position in
the editor to open the editor pop-up menu.
This menu contains many of the same
editing options that are available in the
workbench Edit menu.

Drag-and-drop You can drag objects from the Palette view
to the position of the cursor in the Source
view.

Copy and paste You can press Ctrl + C and Ctrl + V to copy
and paste a selected tag in the Source view.

Validation You can configure an option on the
preferences page to validate your code as
you type:

1. From the main menu, select Window >
Preferences > General > Editors >
Structured Text Editor.

2. On the Structured Text Editor preferences
page, select Report problems as you
type.

Chapter 8. Developing IBM Worklight applications 391

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 56. Source view features (continued)

Feature Description

Customization You can customize the appearance of the
editor on either of the following preferences
pages:

v Window > Preferences > General >
Editors > Editors (or Structured Text
Editors)

v Window > Preferences > Web > HTML
Files > Editor

The HTML 5 specification is supported only in the Source view. For example, you
can use content assist to insert the <canvas> tag.

You can use any of the following methods to enter, insert, or delete tags and text in
the Source view:
v Type the tags directly.
v Use content assist to receive prompts for valid tags.
v Select the menu items.
v Select the toolbar buttons.
v Use the Properties view to change tags.

Procedure

To edit an HTML file in the Source view:
1. Open the HTML file that you want to work with in the editor.
2. In the Source tab, use the available features to edit the code, as required.

Tip: You can select attribute values, attribute-value pairs, and entire tag sets by
using the double-click feature available in the editor. Use this feature to quickly
update, copy, or remove content.

3. At intervals, to see the nesting hierarchies more clearly in the file, format
individual elements or the entire document to restore element and attribute
indentation. Right-click the editor window and select Source > Format.

4. Save the file.

Creating web pages in Rich Page Editor:

You can create interactive web pages in Rich Page Editor.

Before you begin

Before you can create a web page in Rich Page Editor, you must create a project.

Procedure

1. Click File > New > Web Page to open the New Web Page wizard.
2. Specify a file name and template for the new web page, and then click Finish.

Your new web page opens in Rich Page Editor.

Creating web pages for mobile devices:

You can create interactive web pages that are optimized for mobile devices.

392 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Before you begin

Ensure that you complete the following tasks before you create a web page for a
mobile device in Rich Page Editor:
1. Create a project.
2. Set the target device for your project.
3. Set Rich Page Editor as the default web page editor.

Procedure

1. Click File > New > Web Page to open the New Web Page wizard.
2. Specify a file name and choose one of the following mobile templates for the

new web page:

Dojo Mobile HTML template
Sets up the web page for Dojo. Generates content into the web page to
prepare the web page for use with Dojo libraries. This content can
include:
v JavaScript and CSS includes.
v Basic widgets that are typically required for Dojo Mobile web pages,

such as a mobile View widget.

jQuery Mobile HTML template
Sets up the web page for jQuery. Generates content into the web page
to prepare the web page for use with its libraries. This content can
include:
v JavaScript and CSS includes.
v Basic widgets that are typically required for jQuery Mobile web

pages, such as a Page widget.
3. Optional: To open the New Web Page Options page and add more options to

your mobile web page, click Options.

Option Description

Set the document type declaration to
HTML 5 and cache the page

1. From the list of options, click Document
Markup.

2. From the Document Type list, select
HTML 5 to show more options.

3. Specify the icon that is used by mobile
devices when users add bookmarks. To
select an icon from your workspace, click
Browse next to the File href field.

4. Enable browser application caching. In
the Manifest Section field, select
CACHE and then specify a manifest file.
For example, WebContent/META-INF/
cache.mf.

HTML 5 application caching ensures
performance and availability when the
mobile device is offline. For more
information about cache manifest files,
see the latest HTML5 specification at:
http://dev.w3.org/html5/spec, and
search for "cache manifest".

Chapter 8. Developing IBM Worklight applications 393

http://dev.w3.org/html5/spec

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Option Description

Set the device detection and stylesheet
options

1. From the list of options, click Mobile
Web Page.

2. Select one of the following options:

Detect device
The web page detects the device
that shows the content and
loads the appropriate CSS by
including the script
dojox/mobile/deviceTheme.js.

Select dojox.mobile stylesheet
The selected style sheet is
loaded by using the <link> tag.
You can select one of the
following style sheets:

v blackberry.css

v android.css

v ipad.css

v iphone.css

No CSS
Use a style sheet other than the
ones that are available when
you select the dojox.mobile style
sheet option. When you specify
the No CSS option, you can
select Stylesheets from the list
of options and add the style
sheets that you want to use.

4. Click Finish. Your web page opens in Rich Page Editor.

Mobile patterns:

Mobile patterns provide templates that you can use to develop pages that are
associated with a jQuery or Dojo mobile application. Using mobile patterns
accelerates development of your mobile application by providing views common to
many mobile applications.

You can choose from many mobile patterns available in the Default Mobile Pattern
Set, or you can create your own Mobile Pattern Sets. See Adding a UI pattern to a
Pattern Project.

All the available Pattern Sets in your workspace and the Default Mobile Pattern Set
appear grouped in the Pattern Set combination box. You can select any Mobile
Pattern Set and see its content on the Add Mobile Page window.

Each Pattern Set contains categories and each category groups a list of patterns, for
example: The Default Mobile Pattern Set are grouped into four categories.

Selecting a category on the Add Mobile Page window displays a list of available
patterns that are associated with the category.

Lists Choose from a number of different list formats from simple to complex.
You can choose unordered lists patterns or ordered list patterns.

394 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Authentications
Choose the type of login page for your application that contains only a
User ID and password fields. Or, select a template that contains more input
areas or buttons, such as forgot password and register.

Navigation and search
Choose from various navigation patterns, which include toolbars,
navigation lists, or lists with searchable content.

Configuration
Choose from blank configuration pages to pages that contain predefined
configuration items, such as language.

Some mobile patterns are sets where mobile views within the set are appropriately
linked. For example, selecting a login page with Reset password, the Reset
password template page is also created. When you select a mobile pattern that is a
set, you see all pages in the preview.

Choosing a mobile pattern adds the appropriate code into your application after
which you can alter it as required.
Related tasks:
“Adding a mobile pattern to an application”
Use mobile patterns to accelerate development of mobile applications. Select from
a predefined list of mobile patterns to quickly add code to your application.

Adding a mobile pattern to an application:

Use mobile patterns to accelerate development of mobile applications. Select from
a predefined list of mobile patterns to quickly add code to your application.

Before you begin

If the Mobile Navigation View is not shown, go to Window > Show View > Other
> Web > Mobile Navigation to display it.

Procedure

1. In the Mobile Navigation View, click the plus sign icon.
2. In the add window, select a category and click Create view from UI pattern.

The available patterns that are associated with the category are loaded in the
view.

3. Required: Select the mobile pattern and click Finish to insert into your
application.

Related concepts:
“Mobile patterns” on page 394
Mobile patterns provide templates that you can use to develop pages that are
associated with a jQuery or Dojo mobile application. Using mobile patterns
accelerates development of your mobile application by providing views common to
many mobile applications.

Adding a UI pattern to a Pattern Project:

The UI Pattern is a container for mobile patterns. Mobile patterns can be added to
either a Dojo or jquery Worklight app. Users can add their own mobile patterns
into the tool.

Chapter 8. Developing IBM Worklight applications 395

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

1. Use the UI Pattern Project to create your own pattern project.
2. Over WebContent folder, open menu and choose UI Pattern wizard.
3. Define the name of your pattern and click Finish to insert into your Pattern

Project.
4. A folder is added to the WebContent directory project structure, which contains

your new pattern. The pattern resources are created in the Dojo and jquery
subdirectories.
Inside the folder, there is an HTML file named pattern. Here you can start
creating your pattern.
You can edit the pattern.html files, use RPE (Rich Page Editor). Click add to
see that your new Pattern Project was added as a New Pattern Set in the
combination box. Select the Pattern Set and your new UI Pattern is displayed
in the browser.

Related concepts:
“Mobile patterns” on page 394
Mobile patterns provide templates that you can use to develop pages that are
associated with a jQuery or Dojo mobile application. Using mobile patterns
accelerates development of your mobile application by providing views common to
many mobile applications.

Adding elements to web pages from the palette:

You can populate a web page with content by dragging elements from the Palette
view to the web page in Rich Page Editor.

Before you begin

You must complete the following tasks before you can add elements to a web page
in Rich Page Editor:
1. Create a project.
2. Create a web page.

Procedure

1. In the Enterprise Explorer view, double-click your web page to open it in Rich
Page Editor.

2. Add various elements to your web page by dragging objects from the different
drawers in the Palette view, such as radio buttons, check boxes, and submit
buttons.

Tip: In the Web perspective, the Palette view is located by default on the right
side of the workbench, underneath the Outline and Snippets views.

3. You can select multiple elements by pressing Ctrl and then performing actions
on the selected elements from the menu, such as copy, paste, or delete.

4. When you finish adding elements to your web page, save your changes by
pressing Ctrl + S.

Properties view associated with Rich Page Editor:

The Properties view that is associated with Rich Page Editor displays specific
information for the currently selected tag in a web page. You can use the
Properties view to edit properties that are related to the appearance of tags in a

396 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

web browser. For example, you can change CSS style information, default attribute
values, Dojo properties, and jQuery properties, as required.

You can use the Properties view to edit JavaScript, HTML, or JSP tags when the
Design, Source, or Split view is open in Rich Page Editor. Changes in the
Properties view are displayed in Rich Page Editor when you change the cursor
focus or press Enter. If you update tags in the Source view of Rich Page Editor,
your changes take effect immediately in the Properties view.

Breadcrumb navigation

When you select a node in Rich Page Editor, the Properties view uses a
breadcrumb trail to provide context for the selected node:

You can scroll through the breadcrumb trail without losing the position of your
cursor in Rich Page Editor. Using this feature, you can quickly update the
properties of ancestor elements.

Categorized property pages

The Properties view organizes properties into various categories, including:

Styles Use to manipulate basic CSS style information (such as an attribute or the
class that is associated with it) or various font, color, and alignment
properties.

Layout
Use to configure properties that control the layout of the element within
the presentation of the page.

All Use to view all of the attributes for an element, in a tabbed list.

Dojo Use to configure Dojo-specific properties on certain widgets.

Note: This category applies only to Dojo-enabled projects.

jQuery
Use to configure jQuery-specific properties on certain widgets.

Note: This category applies only to jQuery-enabled projects.

Mobile Navigation view:

You can use the Mobile Navigation view to manage Dojo mobile view widgets and
jQuery mobile web page widgets.

For example, by using the Mobile Navigation view, you can:
v Add or remove mobile views and pages.
v Switch visibility from one mobile view or page to another.
v Rename mobile views and pages.
v Set the default mobile view or page that is shown the first time that a web page

opens.
v Link mobile views or pages.

Chapter 8. Developing IBM Worklight applications 397

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The Mobile Navigation view is available from both the Web perspective and Rich
Page Editor:
v To open the view from the Web perspective, select Window > Show view >

Other > Web > Mobile Navigation.
v To open the view from Rich Page Editor, on the toolbar click Show/Hide Mobile

Navigation:

A mobile web page can contain multiple views or pages. You can create these
views and pages inline or in external files.

Inline mobile view or page
A mobile view or page that is written within the source code of the mobile
web page.

External mobile view or page
A mobile view or page that is written in a separate file or fragment.
Creating mobile views or pages in separate files or fragments makes source
code shorter and easier to manage.

When you open a mobile web page in Rich Page Editor, the mobile views or pages
that are contained within that web page are displayed in the Mobile Navigation
view. The icon to the left of each of the mobile views and pages indicates which
one is visible in Rich Page Editor. If the mobile web page references external
mobile views or pages, they are displayed in the Mobile Navigation view with a
decorated icon. To open a new instance of Rich Page Editor for an external mobile
view or page, double-click the mobile view or page.

The following table lists and describes the features available for mobile web pages in the
Mobile Navigation view.

What you can do in the Mobile Navigation
view Description

Create mobile views or pages You can create the following types of Dojo
widgets:

View A container that represents the
entire mobile device screen.

ScrollableView
A view widget with touch scrolling
capability that you can use to
provide fixed position header and
footer bars.

SwapView
A view widget that you can swipe
horizontally to show adjacent
SwapView widgets.

You can create the following types of jQuery
widgets:

Page A container that represents the
entire mobile device screen.

Dialog page
A container that is shown in the
form of a dialog box.

398 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The following table lists and describes the features available for mobile web pages in the
Mobile Navigation view.

What you can do in the Mobile Navigation
view Description

Switch between mobile views or pages You can switch visibility between views or
pages to specify which view or page is
available in Rich Page Editor. In the
following screen capture, the home view is
visible in Rich Page Editor; the calendar,
messages, and contacts views are not visible.

To switch to the calendar view, click the icon
to the left of calendar.

Rename mobile views or pages Right-click the view or page that you want
to rename and then click Rename. For
example, to rename the calendar view to
internet:

1. Right-click calendar and then click
Rename.

2. In the Mobile View id field, specify
internet.

Set the default mobile view or page Right-click the view or page that you want
to set as the default and click Set as default.

Remove mobile views or pages Right-click the view or page that you want
to remove and click Remove.

Chapter 8. Developing IBM Worklight applications 399

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The following table lists and describes the features available for mobile web pages in the
Mobile Navigation view.

What you can do in the Mobile Navigation
view Description

Link mobile views or pages You can link widgets, such as buttons or list
view items, to mobile views or pages. You
can drag a widget from the Design view in
Rich Page Editor to a mobile view or page
in the Mobile Navigation view. You can also
drag mobile views or pages from the Mobile
Navigation view to widgets in the Design
view within Rich Page Editor.
Tip: You can link Dojo mobile widgets to
mobile views by using the Link to Mobile
View action.

1. In the Design view within Rich Page
Editor, click the Dojo mobile widget that
you want to link to a mobile view to
open the toolbar.

2. To open the Link to Mobile View dialog,
on the toolbar click Link to Mobile
View:

3. Select one of the following options.

v Click Inline Mobile View; from the
list, select the mobile view that you
want to link to the widget.

v Click Page Fragment, and then click
Browse to browse to the mobile page
file that you want to link to the mobile
view.

4. Click Finish.

Testing mobile applications
You can use the mobile browser simulator to emulate various mobile devices and
test your mobile applications without the need to install device vendor native SDK.

Before you begin
1. Create a Worklight project.
2. Add Worklight Environments.
3. Add HTML Tags and UI widgets to your index.html page.

About this task

Important: The mobile browser simulator supports the following web browsers:
v Firefox version 3.6 and later.
v Chrome 17 and later.
v Safari 5 and later.

Procedure
1. In Eclipse select Window > Preferences > Web Browser. Then, select Use

external web browser.

400 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. Right-click your environment folder (Android for instance) or Application
folder name and select Run As > Preview.

What to do next

After your web page is running in the mobile browser simulator, you can view
how your page renders in different devices.

Switching devices:
Before you begin

To view your web application in the simulated devices by using the appropriate
style sheets, ensure that these tasks are completed:
1. “Creating web pages for mobile devices” on page 392
2. Enable user agent switching.

Procedure

In the simulator, click the device list and then select the device that you want to
simulate.

Adding devices:
Before you begin

To view your web application in the simulated devices by using the appropriate
style sheets, ensure that these tasks are completed:
1. “Creating web pages for mobile devices” on page 392
2. Enable user agent switching.

Chapter 8. Developing IBM Worklight applications 401

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

In the simulator, click Add Device and then select the device that you want to
simulate.

Tip: You can customize the list of device options that are available in the mobile
browser simulator.
1. In Worklight Studio, select Window > Preferences > Web > Target Devices.
2. Add your custom device to the current list of target devices, and then start the

simulator again.

The custom device that you added is now available as an option from the Add
Device list in the simulator.

Mobile browser simulator:

The mobile browser simulator is a web application that helps you test mobile web
applications without having to install device vendor native SDK.

Important: The mobile browser simulator supports the following web browsers:
v Firefox version 3.6 and later
v Chrome 17 and later
v Safari 5 and later

You can use the mobile browser simulator to preview Worklight applications on
Android, iPhone, iPad, BlackBerry 6 and 7, Windows Phone 8, and mobile web
application environments.

Tip: When you preview a Worklight application on an Android, iPhone, iPad,
BlackBerry 6 and 7, or Windows Phone 8 environment, only the devices for the
created environments are available. For example, if you preview a Worklight
application on an Android environment, you can select from the list of available
Android devices and also the device lists from any other environments added to
your application.
You can also use the Ripple emulator to simulate the WebWorks API in your
BlackBerry application. Using Chrome as your web browser, click Open Simple
Preview in the simulator. A new tab opens in Chrome with your application
loaded; you can open the Ripple emulator from this tab.

All environments can be previewed from the application folder. Each
environment-specific preview allows for the addition of devices from available
environments.

Skins can be tested per device in the mobile browser simulator. Only skins
available for that platform is shown. A file can be saved in Worklight Rich Page
Editor and then instantly previewed by clicking Go/Refresh

The link icon on the device toolbar can be selected to debug an application in a
separate, simple preview.

Whenever a new environment or skin is added to a Worklight app, the mobile
browser simulator must be restarted from Eclipse, Run As > Preview. Only from
the Eclipse Studio Run As > Preview supports the changing of skins. The console
preview does not support the changing of Worklight skins.

402 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The Quick Response (QR) code icon on the device toolbar can be selected to show
a QR code specific to the environment's URL. This QR code generator therefore
allows for quick testing on a physical device.

The mobile browser simulator contains a frame that emulates a target device. It
shows you what your page looks like inside the mobile device browser. You can
switch the frame to emulate different screen resolutions and form factors, including
BlackBerry 6 and 7, Android, iPad, iPhone, and Windows Phone 8 mobile devices.
You can also rotate the frame to mimic orientation change (portrait or landscape).
You can add multiple devices to the frame to view the various displays
simultaneously. If a device detection servlet is configured for your web project, the
simulator emulates requests from different device-specific agents.

Calibrating the mobile browser simulator:

Since browsers cannot accurately paint physical dimensions, you must calibrate the
mobile browser simulator.

Before you begin

Test your application using the mobile browser simulator.

Procedure

1. From the Scale All Devices list, select Physical device size.
2. Click Calibrate Physical Size to open the Physical Size Calibration dialog.
3. Follow the instructions in the dialog to calibrate your mobile browser

simulator. After you complete all of the steps in the dialog, close the dialog.

Chapter 8. Developing IBM Worklight applications 403

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Enabling user agent switching:

You can use the mobile browser simulator to render your web applications on
different mobile devices. To render your web applications with the appropriate
style sheets and theme, you must enable user agent switching.

Before you begin

v Enable the detect device option when you create your web page.
v Test your application by using the mobile browser simulator.

About this task

The Useragent Switcher Extension is a browser extension that provides the user
agent switching feature. The mobile browser simulator supports implementations
of this browser extension for the following web browsers:
v Mozilla Firefox.
v Chrome 17 and later, with limitations.

Useragent Switcher Extension for Chrome
The Useragent Switcher Extension emulates requests from different
device-specific agents. When a web application checks the user agent on
the server to create content, it is correctly simulated.

The Useragent Switcher Extension includes support for Dojo Mobile 1.7
and later. If you enabled the detect device option when you created your
Dojo Mobile page, the Useragent Switcher Extension uses the automatic
device detection and theme loading for Dojo Mobile to select the
appropriate theme.

Procedure

1. Click Enable Useragent Switching.
2. If the latest version of the Useragent Switcher Extension is not installed, the

Install Useragent Switcher Extension dialog opens. Click Install Browser
Extension.

404 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Results

You can now view your web application with the appropriate style sheets and
theme in the simulated mobile devices.

Preview web resource changes on an emulator or mobile device
During development, you can build and deploy a hybrid application to an
emulator or to an actual native device to test its function.

If the web resources are still being changed frequently, some additional setup to
the deployed test application can speed up the preview process between revisions.
With the modified configuration, the native app can update itself to use the latest
web artifacts in your Worklight Studio workspace without the need to rebuild and
redeploy the application after each change.

To enable the faster preview and refresh cycle, replace the name of the
application's main page with the full URL of the application that is running on the
preview server. To find the correct preview URL, follow these steps:
1. Under the hybrid application's root folder in the Worklight Studio workspace,

find the environment folder that you plan to test on a native device, for
example Android, iPad. Right-click the folder and start Run As > Preview to
open the mobile browser simulator with the page. This action starts the
Worklight Development Server if necessary.

2. When the page opens in the mobile browser simulator, find and click the “link”
icon in the toolbar above the preview page:

Chapter 8. Developing IBM Worklight applications 405

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. This action opens a new page in the browser that points directly to the specific
environment's preview page. Copy the URL of the preview page, as exampled
here: http://[servername]:10080/[project name]/apps/services/preview/[app
name]/[environment]/1.0/default/index.html

Next, you need to paste this URL into the relevant configuration file within the
native application resources:
1. To begin, select the application's folder in the navigator and perform Run As >

Build Only (All Environments) . This action builds the native resources from
the current project source.

2. Underneath the environment folder that you plan to test natively, find the
“native” folder. The configuration file is located under this folder.
v For Android environments, edit /native/assets/wlclient.properties
v For iPhone and iPad environments, edit /native/worklight.plist

3. Find the value of the wlMainFilePath or wlMainFile configuration parameter
(whichever is present). The default page name is index.html.

4. Replace the page name with the full URL you previously copied from the
mobile browser simulator page.

Note: As soon as you change these files, a prompt appears to change the file from
a read-only state. Press Yes to commit your changes, then save the file.

After you save the configuration file, start the application on the native emulator
or mobile device by using the normal process for the environment you are
previewing.

As you continue to develop your web resources, you can update the native
application in one of two ways:
v If the device or emulator supports accelerometer events, shake the device

vigorously for a short time until a prompt dialog appears. Click Refresh in the
dialog to update to the latest web resources.

v For scenarios where shake-detection is unavailable, simply close the application
and relaunch it within the emulator or native device. When the application
restarts, it retrieves the latest web resources from the Worklight Development
Server.

Note: The shake preview feature is for web resource preview, and does not use
the native device features.

Note: The Worklight Development Server must be running for the application to
function correctly under this modified configuration. An error message indicates
whether the application cannot connect to the preview server.

Note: The Build Only (All Environments) action overwrites the configuration files
that you changed in the previous process. Generally you can continue to develop
and preview the web resources in your hybrid application without doing any
rebuilds, and then run the build action again after application development is

406 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

complete to generate the final native applications. If it is necessary to rebuild
frequently, optionally re-execute the previous steps to restore the faster preview
function.

Previewing your Worklight applications
You can use the mobile browser simulator to preview Worklight applications on
iPhone, iPad, Android phones and tablets, BlackBerry 6 and 7, BlackBerry 10,
Windows Phone 8, Windows 8 desktop and tablets, and Mobile web app
environments. You can simulate several mobile devices simultaneously.

Tip: This preview is only available when the com.ibm.imp.worklight.simulation.ui
plug-in is enabled.

The Apache Cordova API simulation user interface is packaged with the mobile
browser simulator. When the mobile browser simulator opens, the various data
types and values that are used by Cordova are displayed in the left side. The
Cordova simulation is available on the following environments:
v Android
v BlackBerry 10
v iPhone
v iPad
v Windows Phone 8
v Windows 8 desktop and tablets environments

Tip: If you do not want to use the Cordova simulation to preview your Worklight
applications, clear Cordova to disable the Cordova simulation.

Chapter 8. Developing IBM Worklight applications 407

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Device
Shows the property values for the window.device object of each simulated
device. This data is read-only. To show the values for other devices, click
Previous or Next.

Events
Triggers any of the following Cordova events:
v pause
v resume
v online
v offline
v backbutton
v menubutton
v searchbutton
v startcallbutton
v endcallbutton
v volumedownbutton
v volumeupbutton

To trigger a Cordova event, click the corresponding button:

Accelerometer
Defines the Accelerometer values returned by the Cordova API when
querying Accelerometer data. To generate a new set of values, click Next.

408 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To generate the values periodically, click Start.

Battery
Defines battery-related data, such as the battery level. You can use the
slider to change the battery level and trigger a batterystatus event. The
following battery levels trigger events:
v Twenty percent triggers the batterylow event
v Five percent triggers the batterycritical event

To define the plugged in status of your mobile device, select or clear
Plugged In.

Camera
Specifies which image to use for the camera and for the album:
v Simulate a photo taken with the camera (Camera.sourceType ==

Camera.PictureSourceType.CAMERA)
v Photo from the device photo album or library (Camera.sourceType ==

Camera.PictureSourceType.PHOTOLIBRARY or Camera.sourceType ==
Camera.PictureSourceType.SAVEDPHOTOALBUM)

To change the size of the selected photos, click XS, S, M, L, or XL.

Chapter 8. Developing IBM Worklight applications 409

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Capture
Simulates the Cordova capture API by using the following methods:
v capture.captureAudio
v capture.captureVideo

You can select the audio and video recordings that you want to use, and
play these recordings by using the HTML5 players.

410 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: The Capture section is available on both Mozilla Firefox and Google
Chrome. For improved support of the HTML 5 players, upgrade these
browsers to the latest version.

Compass
Defines the values returned by the Cordova API when querying Compass
data. To generate a new set of values, click Next. To generate the values
periodically, click Start. You can also set the compass values by directly
interacting with the compass widget.

Contacts
Shows the available contacts for the mobile device. You can delete contacts
and refresh the list of available contacts.

Chapter 8. Developing IBM Worklight applications 411

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To create new contacts for the mobile device, use the Cordova Contacts
API from your simulated mobile web page. The contacts are stored in the
Web SQL Database which is supported by default by Google Chrome and
Safari. To simulate the Contacts API with Firefox, you must install an
Add-on in your browser that adds basic WebSQL support to Firefox.

File Simulates the Cordova File API by running an applet. To update the
display of the file system that you can access through the Cordova API,
click Refresh. Use the Cordova API to access this file system to read and
write.

Geolocation
Generates the Geolocation values returned by the Cordova API when
querying Geolocation data. To generate a new set of values, click Next. To
generate the values periodically, click Start.

412 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Network
Defines the active connection of the device.

The Cordova API also contains media simulation. Media simulation is available
only for audio playback; audio recording is not supported. The media simulation
uses an HTML audio player and audio playback is supported on Mozilla Firefox
and Google Chrome. Since some browsers might not support all audio file formats,
use OGG audio files.

The Cordova Notification API is simulated but does not require any user interface
in the mobile browser simulator.

Chapter 8. Developing IBM Worklight applications 413

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Using the IBM Worklight client API
IBM Worklight defines a series of client APIs that you can use in your apps.

You can use the client APIs to perform various actions, including the following
ones:
v Initialize and reload the application
v Manage authenticated sessions
v Obtain general application information
v Retrieve and update data from corporate information systems
v Store and retrieve user preferences across sessions
v Internationalize application texts
v Specify environment-specific user interface behavior
v Store custom log lines for auditing and reporting purposes in special database

tables
v Write debug lines to a logger window
v Use functions specific to iPhone, iPad, Android, BlackBerry 6, 7, and 10, and

Windows Phone 8 devices
v Work offline
v Use encrypted cache

For more information about these client APIs, see “IBM Worklight client-side API”
on page 695.

Connecting to Worklight Server
By default, an application starts in offline mode. You can make it start in online
mode, or can connect to Worklight Server later. You are responsible for maintaining
the offline or online state within your application, and ensuring that your
application can recover from failed attempts to connect to the server. For example,
before the application logs in a new user or accesses the server under a new user,
the application must ensure that a successful logout was received by the server.

About this task

By default, an application is started in offline mode. It is likely that you will want
your application to connect to the Worklight Server, either when it starts or at
some appropriate point in its processing. Methods for connecting are detailed in
the following steps.

Procedure
v To make your application begin communicating with Worklight Server as soon

as it starts, change the connectOnStartup property in the initOptions.js file to
true. The Worklight framework automatically attempts to connect to Worklight
Server as part of application startup. This approach might increase the time it
takes for the application to start.

v To make your application communicate with the server at a later stage, call the
WL.Client.connect method, as defined in the WL.Client class. Call this method
only once, before any other WL.Client methods that communicate with the
server. Remember to implement onSuccess and onFailure callback functions, for
example:

414 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WL.Client.connect({
onSuccess: onConnectSuccess,
onFailure: onConnectFailure

});

Configuring the Worklight Logger
You can configure how the IBM Worklight Logger runs on a range of client
operating systems by modifying WL.Logger methods.

Enable Logger output
Enable IBM Worklight Logger output to the client console.

Enable log output to the console:
WL.Logger.on();

Explicitly send configuration parameters:
var options = {

whitelist: [],
blacklist: []

};

WL.Logger.on(options);

Turn off logging:
WL.Logger.off();

Start Logger when IBM Worklight starts
You can set the logger to start when IBM Worklight starts.

You can set IBM Worklight options to enable the logger when IBM Worklight
starts.
var wlInitOptions = {

//... other options not related to the logger

logger : {enabled: true, level: ’debug’, stringify: true,
tag: {level: false, pkg: true}, whitelist: [], blacklist: []}

}

WL.Client.init(wlInitOptions);

The only parameters required for wlInitOptions to enable the logger are logger
{enable: true} or enableLogger: true. All of the other Logger parameters are
explicitly set to the default values.

Select log levels
You can select from among various log levels.

Debug
Add a debug message.
WL.Logger.debug(’Loop finished’);

//Loop finished

Log
Add a log message.
WL.Logger.log(’Got’, response.statusCode, ’from server.’);

//Got 200 from the server.

Chapter 8. Developing IBM Worklight applications 415

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Info
Add an informative message.
WL.Logger.info(’Public IP address is’, getIpAddress());

//Public IP address is 192.168.1.102

Warn
Add a warning message.

if (!window.indexedDB) {
WL.Logger.warn(’IndexedDB not supported, falling back to LocalStorage.’);
//IndexedDB not supported, falling back to LocalStorage.

}

Error
Add an error message.
try {

//code that may throw new Error(’Something failed here.’)
} catch (e) {

WL.Logger.error(’Caught an exception’, e);
//Caught an exception Error: Something failed here.

}

Log different data types
You can log a range of data types including numbers, strings, and arrays

Strings

WL.Logger.info(’Hello’, ’world.’);
//Hello World.

Booleans

WL.Logger.info(true, false);
//true false

Numbers

WL.Logger.info(1,2,3.14,4,5,6,7);
//1 2 3.14 4 5 6 7

Arrays

WL.Logger.info([1,2,3], [[1,2,3], [1,2,3]])
//[1,2,3] [[1,2,3], [1,2,3]]

Objects

WL.Logger.info({hello: ’world’}, {hey: {test: [1,2,3, {hello: ’world’}]}});
//{"hello" : "world"} {"hey" : {"test": [1,2,3, {"hello": "world"}]}}

Exceptions

var e = new Error(’Something failed’);
var te = new TypeError(’Wrong type’);
WL.Logger.info(e, te);
//Error: Something failed TypeError: Wrong type

undefined

var undef;
WL.Logger.info(undefined, undef);
//undefined undefined

null

var n = null;
WL.Logger.info(null, n);
//null null

Any Combination

416 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WL.Logger.info(’Hey’, 1, 2, true, false, [1,2,3], {hey: ’world’}, new Error(’Uh oh’), undefined, null);
//Hey 1 2 true false [1,2,3] {"hey": "world"} Error: Uh oh undefined null

Set Logger priority
You can configure the Logger to display only warning and error log messages.

To display only warning and error log messages, set the priority of the logger to
'warn' or 200.
WL.Logger.on({level: ’warn’});

var WARN = 200;
WL.Logger.on({level: WARN})

Possible string values:
’log’,
’info’,
’warn’,
’error’

Note: These values are not case-sensitive, for example LOG and Log are also
possible values.

Possible int values:
100 (error)
200 (warn)
300 (info)
400 (log)
500 (debug)

Filter log levels
You can filter logs to display only logs of one level.

Show only info-level logs:
WL.Logger.on({level: [’info’]});

Show only info-level and error-level logs:
WL.Logger.on({level: [’warn’, ’error’]});

By default, display logs of all levels:
WL.Logger.on(); //same as: WL.Logger.on({level: []})

Log package whitelist and blacklist
You can associate a set of log messages with a specific part of the application.

Add packages to the whitelist to include the packages in logging:
WL.Logger.on({whitelist: [’wl.jsonstore’]});

Associate a log message with a package, and log a message:
var JSONSTORE_PKG = ’wl.jsonstore’;

WL.Logger.ctx({pkg: JSONSTORE_PKG}).info(’JSONStore started’);
//JSONStore started

WL.Logger.info(’Hey!’); //Ignored

WL.Logger.ctx({pkg: JSONSTORE_PKG}).warn(’JSONStore finished executing find.’);

Chapter 8. Developing IBM Worklight applications 417

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

//JSONStore finished executing find.

WL.Logger.ctx({pkg: ’wl.analytics’}).warn(’Hello.’); //Ignored

To exclude packages from logging, add them to the blacklist.
WL.Logger.on({blacklist: [’wl.jsonstore’, ’wl.analytics’]});

WL.Logger.ctx({pkg: ’wl.jsonstore’}).info(’Hello world’); //Ignored
WL.Logger.info(’Hey!’); //Not ignored.
WL.Logger.ctx({pkg: ’wl.analytics’}).info(’Hey world’); //Ignored
WL.Logger.ctx({pkg: ’wl.adapter’}).info(’Hola’); //Not ignored

You can list the packages that are on the whitelist or the blacklist:
WL.Logger.status();
//{ enabled : true, stringify: true, whitelist : [], blacklist : [], level : [], pkg : ’’, tag: {level: false, pkg: true}, android: false }

The list of keys returned match the options that you can pass to WL.Logger.on.

Create log for package
You can create a logger for a specific package.

To avoid writing a package name every time a log message is written, you can
create a logger for a specific package.
var JSONStoreLogger = new WL.Logger.create({pkg: ’wl.jsonstore’});

JSONStoreLogger.info(’Hello’, ’world.’);
//Hello world.

JSONStoreLogger.warn(1,2,3,4);
//1 2 3 4

var AnalyticsLogger = new WL.Logger.create({pkg: ’wl.analytics’});

AnalyticsLogger.error(new Error(’BOOM.’);
//Error: BOOM.

Stringify
You can convert arguments to strings using the stringify function.

Some environments, for example the Xcode console, can print the arguments
passed to the logger only if the arguments are converted to strings and
concatenated first. Other environments, for example Google Chrome, can provide
better visualization of arguments if the arguments are not turned into strings and
concatenated.

Turn on the stringify function:
var obj = {name: ’carlos’, age: 100};

WL.Logger.on({stringify: true}); //default

WL.Logger.on({stringify: false});

418 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Callback
You can pass a callback function to WL.Logger.on that will be called after every log
message.

The callback takes these arguments:
v message (string or array)
v priority (string)
v package (string)

If stringify : true is set, the message is a string. Otherwise it is an array. If the
package is not defined, the message is an empty string.

Send all log messages to a backend using jQuery.ajax:
var ajaxSender = function (message, priority, pkg) {

$.ajax({
url: ’http://localhost:3000/logs’
type: ’POST’,
data: {

message: message,
priority: priority,
pkg: pkg

}
});

};

WL.Logger.on({callback: ajaxSender});

Sends all log messages to a backend using a invokeProcedure method as defined in
the WL.Client class.
var adapterSender = function (message, priority, pkg) {

var invocationData = {
adapter: ’Logger’,
procedure: ’sendLogs’,
parameters: [message, priority, pkg]

}

WL.Client.InvokeProcedure(invocationData);
};

WL.Logger.on({callback: adapterSender});

Log JavaScript errors for a specific package using the logActivity method as
defined in the WL.Client class.
var activitySender = function (message, priority, pkg) {

if (priority === ’ERROR’ && pkg === ’my.app.db’) {
WL.Client.logActivity(message);

}

Chapter 8. Developing IBM Worklight applications 419

http://api.jquery.com/jQuery.ajax/
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

};

WL.Logger.on({callback: activitySender});

Log message tags
You can add context to a log message by appending the level tag, the package tag,
or both.

Add level and error tags to a defined package:
WL.Logger.on({tag: {level: true, pkg: true} });

WL.Logger.info(’Hello’);
// [INFO] Hello

WL.Logger.ctx({pkg: ’wl.jsonstore’}).error(’Hey’);
// [ERROR] [wl.jsonstore] Hey

Turn off the tags:
WL.Logger.on({tag: {level: false, pkg: false} });

WL.Logger.info(’Hello’);
// Hello

WL.Logger.ctx({pkg: ’MYPKG’}).error(’Hey’);
// Hey

Method chaining
You can invoke multiple method calls by chaining logger methods.

You can chain these logger methods:
WL.Logger.on
WL.Logger.off
WL.Logger.ctx

This example carries out these steps:
v Turns the logger off
v Turns the logger on
v Sets the package context to com.my.app

v Logs Hello.
WL.Logger.off().on().ctx({pkg: ’com.my.app’}).log(’Hello’)
//’[com.my.app] Hello’

Pretty-print JSON objects
You can format JSON objects by enabling stringify.

By enabling “Stringify” on page 418 (stringify: true) you can display JSON
objects in a more readable format.
var obj = {name: ’carlos’, age: 100};
WL.Logger.on({stringify: true, pretty: true});

420 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WL.Logger.on({pretty: false});

Print stack traces
You can print stack traces for certain objects.

You can print stack traces for an object if the object is an instance of Error (if
(object instance of Error) evaluates true) and “Stringify” on page 418 is enabled
(stringify: true).
var object = new Error(’Boom’);
WL.Logger.on({stringify: true, stacktrace: true});
WL.Logger.error(object);

WL.Logger.on({stacktrace: false});
WL.Logger.error(object);

Logger Android check and override
Logger checks the operating system on which it is running to determine whether
to use the Android logger. You can override this behavior.

By default, WL.Logger checks the operating system at run time, and if it is running
on Android it attempts to use the cordova plug-in. If the plug-in fails, it falls back
to console.log. There are several differences between the cordova plug-in logger
and console log:

Cordova plugin logger
Asynchronous

Provides better output in LogCat

Requires that the deviceready event previously fired.

Console log
Synchronous

Chapter 8. Developing IBM Worklight applications 421

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Native logger + LogCat:

console.log + LogCat:

To override the Android check, do one of the these:
v Pass android: false to WL.Logger.on

v Add android: false to the logger key for wlInitOptions

Note: Logs with WL.Logger.log are treated as verbose by LogCat.

Environment-specific settings
You can specify that logger options are selected according to the client
environment.

Use initOptions.js to select options for each environment:
//General init options
var wlInitOptions = {connectOnStartup : false};

//General logger options
wlInitOptions.logger = {enabled: true, stringify: false};

//Environment specific logger options
if (WL.Client.getEnvironment() === WL.Environment.IPHONE) {

wlInitOptions.logger.stringify = true;
}

WL.Client.init(wlInitOptions);

For other options that can take advantage of environment-specific settings, see
“Logger Android check and override” on page 421 “Callback” on page 419,“Log
message tags” on page 420, “Log package whitelist and blacklist” on page 417, and
“Select log levels” on page 415.

As examples, you can use environment-specific options settings to specify no logs
in production, selected logs for development, and only error logs for testing:
//Change accordingly
var CURRENT_ENV = ’production’;

//General init options
var wlInitOptions = {connectOnStartup : false};

//General logger options
wlInitOptions.logger = {enabled: true};

422 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

//Give your application a small speed boost by not logging in production
if (CURRENT_ENV === ’production’) {

wlInitOptions.logger.enabled = false;
}

WL.Client.init(wlInitOptions);

JavaScript module example
View an example of how to use WL.Logger to add log messages to a JavaScript
module.

This example demonstrates how to use WL.Logger to add log messages to a
JavaScript module by using these methods:
v myApp.Greeter.start() Initializes the module.
v myApp.Greeter.sayHello(name) Alerts a greeting to the name that is passed.

The example uses the default initOptions.js file for IBM Worklight V6.0. This list
contains some of the principles that are demonstrated by the example:
v The module, myApp.Greeter.js, uses the JavaScript Revealing Module Pattern,

however the concepts in the example apply no matter how you structure your
JavaScript code.

v By using WL.Logger.create({pkg: ’[package-name]’}) you can create a
LogInstance linked to a package.

v Using a short variable name such as 1for the LogInstance makes it easier to
write logs, for example: (l.log(msg), l.info(msg)

v You can log errors by using the JavaScript try/catch block (synchronous code)
and failure callbacks (asynchronous code).

v You can avoid problems by using correct log levels, precise package names, and
by filtering as necessary.

myApp.Greeter.js

var myApp = myApp || {};
myApp.Greeter = (function (WL) {

//ECMAScript 5 strict mode
’use strict’;

//Dependencies
var WL_LOGGER = WL.Logger;
//... other dependencies

//Constants
var PKG_NAME = ’myApp.Greeter’;
var DEFAULT_NAME = ’Stranger’;
//... other constants

//LogInstance local to this module
var l = WL_LOGGER.create({pkg: PKG_NAME});

//Private function to the module that does validation and alerts a name
var __alertName = function (name) {

l.debug(’Calling __alertName with name =’, name);

if (typeof name !== ’string’ || name.length < 1) {
l.warn(’Name was not a string or empty string, setting name to’, DEFAULT_NAME);
name = DEFAULT_NAME;

}

Chapter 8. Developing IBM Worklight applications 423

https://www.google.com/search?q=JavaScript+Revealing+Module+Pattern

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

else if (name === ’*’) {
throw new Error(’Name can not be *’);

}

//Assume ’alert’ is always a global function that exists
alert(’Hello ’ + name);

l.debug(’Done calling __alertName’);
};

//Public API function that does initialization
var _start = function () {

l.info(’Started’, PKG_NAME ,’module’);

//... init code
};

//Public API function that alerts ’Hello [name]’
var _sayHello = function (name) {

l.debug(’Starting _sayHello’);

try {
__alertName(name);

} catch (e) {
//Log any errors
l.error(e);

}

l.debug(’End _sayHello’);
};

//Public API
return {

start : _start,
sayHello: _sayHello

};

}(WL)); //Pass global variables to the module

main.js

function wlCommonInit () {
myApp.Greeter.start(); //Start our application’s greeter module
myApp.Greeter.sayHello(’Carlos’); //should alert ’Hello Carlos’
myApp.Greeter.sayHello(); //should alert ’Hello Stranger’
myApp.Greeter.sayHello(’*’); //should log an error

}

index.html

<!-- ... other html tags -->
<body id="content" style="display: none;">

<!-- ... application UI -->

<script src="js/initOptions.js"></script>
<script src="js/myApp.Greeter.js"></script>
<script src="js/main.js"></script>

<!-- ... other script tags -->
</body>

424 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Developing hybrid applications with IBM Worklight Application
Framework

This collection of topics describes the various stages of application development
when using IBM Worklight Application Framework (Beta code).

Overview of IBM Worklight Application Framework

By providing a single editor, the IBM Worklight Application Framework helps you
create hybrid applications that are designed to interact with back-end services.
When you choose to build an application with IBM Worklight Application
Framework, the IBM Worklight Application Framework library and the Dojo
library are automatically loaded into your workspace. Those libraries are then used
by the application at run time.

The IBM Worklight Application Framework editor is a multi-tabbed editor which
helps you configure interactions between services, data objects, and views.

In the context of IBM Worklight Application Framework, a service is a remote
information source from which you can retrieve data when you invoke the service.
IBM Worklight Application Framework supports SOAP-based web services or
services from the SAP NetWeaver Gateway.

The data that you access from a specified service is composed of data objects. You
can choose to execute various operations (such as Create, Retrieve, Update, Delete,
or Query) on data objects. Operations are connection types that are used to model
the relation between a data object and a service. For example, you can choose to
retrieve data from a service, or to update it.

Data objects contain key attributes that are used within the UI of your application.
You can configure the different views in which these attributes are displayed. A
view defines how the data in your app is presented to the user. For example, a
view can be a screen that displays the contact details of a customer.

Workflow of the development process

When you start the wizard to create an IBM Worklight application, you choose to
create a hybrid app, and select Use Worklight Application Framework (beta).
When the application creation wizard closes, the Application tab of the IBM
Worklight Application Framework editor opens (instead of the index.html file for

Figure 34. Log output

Chapter 8. Developing IBM Worklight applications 425

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

other hybrid apps). You use this editor to edit the application.json and the
view.html files of your app, which are automatically added to your application
folder.

You use the Application tab to specify a set of general configurations for your app.

In a first stage, you start the services discovery wizard to create back-end service
representations, select data objects and their attributes, and choose the operations
that are required by the run time.

Figure 35. The Application tab

426 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: Alternatively, you can also choose to add services to your project and define
data objects in two separate processes:
v You can add back-end services and generate the related adapters for any IBM

Worklight app by following the procedure described in “Generating adapters
with the services discovery wizard” on page 547.

v Then, you can define data objects for apps that are created with IBM Worklight
Application Framework from the Data Object tab of the editor.

The Data Object tab then generates data object definitions based on the service
interface, and mappings between the data object attributes and the service
parameters for a selected operation. You can further configure those definitions
and mappings in the Data Object tab of the editor, and customize how your app
interacts with those elements.

You can also set event handlers for different levels of your application. For
example, you can configure event handlers for each operation by specifying which
JavaScript function to execute on events like onBeforeInvocation or on
AfterInvocation.

Figure 36. The services discovery wizard

Chapter 8. Developing IBM Worklight applications 427

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

You then go to the Views tab of the editor, and create the different UI views based
on the data binding that you specified, and define some transitions between those
views.

Figure 37. The Data Objects tab

Figure 38. The Views tabs

428 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To review the general structure of the generated views, reorganize fields, and
rename their labels, you can edit the views.html file in Rich Page Editor.

The IBM Worklight Application Framework editor
Use the editor of IBM Worklight Application Framework (Beta code) in Worklight
Studio to manage the interactions of your app with back-end systems and data
sources, and to define how data is displayed through the UI views of your
application.

General structure

The multi-tabbed editor of IBM Worklight Application Framework comprises:
v An Application tab: for the general configuration of your application.
v A Data Objects tab: to define various data objects.
v A Views tab: to define the different views of your application and their

transitions.

You use the IBM Worklight Application Framework editor to edit the
application.json and the view.html files that are used at run time.

The application.json file contains:
v The definitions of the data objects included in the application
v The configuration of the data that is transmitted between the data objects and

the back-end services
v The connections between views and data objects
v The definition of the transitions that are made between views

Figure 39. Preview of the new views in Rich Page Editor

Chapter 8. Developing IBM Worklight applications 429

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The view.html file contains the definitions of the various views of the applications.

These files are located under the common folder of your application.

The Application tab of the IBM Worklight Application Framework editor:

Go to the Application tab of the IBM Worklight Application Framework editor
(Beta code) to start developing your application.

Content of the Application tab

When the project creation wizard closes after you selected Use Worklight
Application Framework (beta), the application.json file automatically opens with
the default IBM Worklight Application Framework editor, and displays the
Application tab.

You can start the services discovery wizard from the Application tab, and add
services and data objects to your app. In this tab, you can also specify a set of
general configurations, such as an extra theme for your app, security parameters,
and event handlers.

Figure 40. The Application tab of the IBM Worklight Application Framework editor

430 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 57. Sections of the Application tab

Sections Description

Getting Started with Worklight Application
Framework

v If you click Create Data Object from
Service, the services discovery wizard
opens. With this wizard, you define the
back-end services that you want to use in
your application, and the data operations
that are required by IBM Worklight
Application Framework at run time. For
more information about the services
discovery wizard, see the topic “Adding
services and data objects with the services
discovery wizard” on page 432.

v If you click Create a View, an "Add View"
wizard opens, and you can create a view
for your application. To know how to use
this wizard, see “Adding a view to your
application” on page 443.

Basic Settings You configure the general appearance of
your application by adding an extra theme
that supplements the main.css file of your
app.
Note: The extra .css file that you define in
the Theme field overwrites the main.css file
of your app only in case of conflicting
properties.

Authentication You set the security parameters of your
application.

First, you specify whether your application
requires login.

If you select Use IBM Worklight
Application Framework authentication, you
can choose the login parameters based on
the realms that are available, depending on
your Worklight Server configuration. For
more information about realms and
authentication, see “Authentication realms”
on page 607.

Application Level Events You configure custom event handlers by
binding events to JavaScript functions.

To specify an event and a function from
your JavaScript code:

1. Click Add, select the event, and choose
the .js file

2. Type the function, or click Browse to
select a function from a list of the
functions present within the chosen .js
file.

Chapter 8. Developing IBM Worklight applications 431

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Adding services and data objects with the services discovery wizard:

You use the services discovery wizard to specify the back-end services that you
want to invoke from your IBM Worklight project. You also generate data objects
that are used by the app created with IBM Worklight Application Framework (Beta
code).

About this task

The services discovery wizard supports the following types of services:
v Web Services, as described by Web Services Description Language (WSDL) files.

These services are procedural in nature, with inputs and outputs that are
explicit. For example, when a web service calls a remote procedure, it gets a
result.

v Services that are exposed by an SAP Netweaver Gateway. These services are
resource-based, which means that they expose a collection of resources that you
can manipulate. Like web services, they can also have custom procedural
operations, and generate inputs and outputs.

To create data objects associated with the service discovered, you specify which
type of operations you want to implement on the data, such as Create, Read,
Update, Delete, or Query.

The adapters that communicate with the chosen service are automatically
generated, and placed in the adapters folder of your project.

Note: If you manually modify an adapter file, first create a copy of this file, and
make sure to modify only the copied file. The services discovery wizard might
regenerate the original file each time you add a service. The exact adapter that is
regenerated depends on the type of service that is involved.

Procedure

1. Double-click the application.json file of your app to open the IBM Worklight
Application Framework editor, and click Create Data Object from Service in
the Application tab.

2. Select the type of service that you want to invoke from your application.
3. Depending on the selected type, define the service that you want to use, as

described in the following sections:
v WSDL service type:

432 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

a. Enter a URL or select one from the URL drop-down list, and click Go; or
browse to a file in your workspace or in your system.

Note: If you enter a secure URL (https), the system fetches the certificate
from the specified server, and stores it into a private key storage area that
is created in your workspace.

b. Optional. If you are prompted to, enter your credentials.
You can now see the list of available services. Different types of
information are displayed in the Details pane, depending on the level
you select:
– The first level corresponds to the binding configuration details. When

this level is selected, the Details pane shows the SOAP version.
– The second level corresponds to the data operation details. When this

level is selected, the Details pane shows the input and the output of
the remote invoked procedure.

c. Select the data operation that you want to enable.
v SAP Netweaver Gateway Services service type:

Figure 41. Adding a web service

Chapter 8. Developing IBM Worklight applications 433

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

a. Set up a connection to an SAP Netweaver Gateway server by either:
– Clicking Add to create an SAP connection.
– Clicking the Manage SAP Connections link to edit existing

connections.
– Selecting an existing SAP connection from the Connection drop-down

list.
b. Proceed with the connection configuration by entering your server URL,

client ID, user name, and password.
You can now see the list of SAP services that are available on the server
you specified in the Select Service pane.

c. Expand the services nodes to select the collection or procedure that you
want to use in your project. You can further expand the nodes to see
what fields and operations are available for each service.

4. Click Next.
5. On the page that lists the supported operations, choose the type of operation

available with the service you specified.
v For procedural types of services, such as SOAP, you can define only one

operation for each service discovered.

Figure 42. Adding a service exposed by SAP

434 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v For resource-oriented services, such as services exposed by an SAP
Netweaver Gateway, you can define multiple operations at once.

Figure 43. Data operations page for WSDL.

Chapter 8. Developing IBM Worklight applications 435

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

6. Click Next to select the inputs and outputs (for WSDL), or the resource fields
(for SAP) to import.

7. Click Finish.

Results

The wizard closes, and one of the generated data objects and the first used
operation in the list are selected in the Data Objects tab of the IBM Worklight
Application Framework editor. You can now use this tab to customize the mapping
between the generated data objects and services.

An .xml service description file is generated under the services folder of your
project. This .xml file is used by IBM Worklight Application Framework to create
data object definitions and operation mappings. An adapter is also generated in the
adapters folder. You can use this adapter to invoke services with JavaScript calls.

The Data Object tab of the IBM Worklight Application Framework editor:

Go to the Data Object tab of the IBM Worklight Application Framework editor
(Beta code) to create data objects, and configure data object definitions and
operation mappings, as detailed in the following topics.

Before you can map data object attributes and service parameters for specific
operations (such as Create, Retrieve, Update, Delete, or Query), you must first add
back-end services to your project, and create data objects definitions. For more
information about adding services and data objects, see “Adding services and data
objects with the services discovery wizard” on page 432).

Note: You can also add data objects to your application from the Data Object tab
(see “Adding data objects to your application from the Data Object tab” on page
437).

You then configure the data object definitions and you specify how to bind them to
services for each selected data operation.

Figure 44. Data operations page for SAP

436 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Adding data objects to your application from the Data Object tab:

If you develop your app with IBM Worklight Application Framework (Beta code),
you can create data object definitions from the Data Object tab of the IBM
Worklight Application Framework editor.

About this task

You can define data objects for your application in two different ways: either as
part of the services discovery process, as indicated in “Adding services and data
objects with the services discovery wizard” on page 432, or by completing the
following procedure.

Procedure

1. Double-click the application.json file in the common folder of your application
to open the IBM Worklight Application Framework editor, and go to the Data
Object tab of the editor.

2. In the Data Object Definitions section, select a data object entry, and click the
icon . A wizard opens.

3. Enter a name for the new data object, and choose whether you want to import
its attributes from a service.

Figure 45. The Data Object tab

Chapter 8. Developing IBM Worklight applications 437

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

4. If in step 3 you selected:
v Do not import, click Finish.

The wizard closes, and you can see that an empty definition is added to your
list of data objects. You can then add attributes manually to your new object
by right-clicking its name, and clicking New.

v Import from a service:
a. Click Next.
b. Choose a service from the list, and click Next.

Note: The list is populated only if you previously added services to your
project.

c. Select the inputs and outputs (for WSDL), or the resource fields (for
SAP) to import, and click Next.

Figure 46. "Add Data Object" wizard

438 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

d. On the page that lists the supported data operations, select one or several
types of operation available with the specified service.

Note: For WSDL-based services, you can define only one operation for
each back-end service discovered.

e. Click Finish.
The wizard closes, and one of the generated data objects and operations
are selected in the Data Objects tab of the IBM Worklight Application
Framework editor.

Configuring data object definitions and customizing operation mapping:

After you add back-end services to your project, and define data objects and
operations, you can manipulate those elements in the IBM Worklight Application
Framework editor (Beta code) to customize the interactions between services and
data objects.

Configuring data object definitions

The data objects that you defined are listed in the Data Object Definitions section
of the Data Object tab.

Figure 47. Example of inputs and outputs to choose for a web service

Chapter 8. Developing IBM Worklight applications 439

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The Global entry lists available fields that you can use globally for all your
operation mappings. There are three predefined global fields (DATE, USER_ID,
USER_NAME), and more can be added during the process of mapping data
objects to services, and views to data objects.

When you expand a data object entry, you can review its attributes.
v To delete a data object or an attribute, select the data object or attribute, and

click the icon .
v To rename a data object or an attribute, right-click the element that you want to

rename, and select Rename.
v To add a data object to the Data Object Definitions list, select any entry, and

click the icon . For more information about how to create data objects from
the Data Objects tab, see “Adding data objects to your application from the
Data Object tab” on page 437).

v To add an attribute to a data object, right-click the data object, and click New.
v When you select an attribute, in the Attribute Details section, you can:

– Rename an attribute, or modify its type, by entering a new name, or a new
type, in the Name or Type fields.

– Configure an event handler for the onChange event, by clicking the icon,
and specifying a function from your JavaScript code.

v To configure event handlers for data objects:

Figure 48. Data Object Definitions

440 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

1. Select a data object and go to the Events tab. Here, you can configure event
handlers for the onInit and onChange events.

2. For either of these events, click the icon , and specify a function from your
JavaScript code.

Customizing operation mapping

For each data object and each operation that you want to use, you can customize
the mapping between the data object attributes and the service parameters in the
Operations tab.

1. Select a data object, and an operation from the list.

Note: To delete operations, or add new ones, click the icon , or double-click
click to select service, respectively, in the row of the operation you want to
modify.

Figure 49. The Operations tab

Chapter 8. Developing IBM Worklight applications 441

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v For procedural types of services, such as SOAP, only one operation is defined
for each service discovered. So for this specified operation, you map a data
object for the input and the output of the service.

v For resource-based services, such as the ones exposed by SAP Netweaver
Gateway, you can do the mapping for all pre-defined operations at once.

The operation mapping is displayed in the Operation Details section.
2. Drag the attributes from the Data column to the parameters of the Service

column, or vice versa.

Note: To delete a link between two elements, select the green line that binds
the elements, and press the Delete key.

3. Optional. In the Operation events section, you can configure event handlers for
each operation: onBeforeInvocation and onAfterInvocation, by clicking the
icon and by specifying a function from your JavaScript code.

The Views tab of the IBM Worklight Application Framework editor:

Go to the Views tab of the IBM Worklight Application Framework editor (Beta
code) to manage the UI views of your application.

After you discover services, create data objects, and specify related operation
mappings (as described in “Adding services and data objects with the services
discovery wizard” on page 432 and in “Configuring data object definitions and
customizing operation mapping” on page 439), you build and configure view
definitions based on the data objects that you created. You can also define the flow
between the screens you create.

Views are representations of the screens of your app, and of how those screens
display specific data.

442 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The following topics describe how to create and configure views for your
application.

Adding a view to your application:

To create a view for your application, you must choose the data object, the
operation to invoke on the data object, and the data object attributes to display in
your view.

Procedure

1. In the Views tab of the IBM Worklight Application Framework editor (Beta
code), double-click the rectangle with the dashed borders, or right-click
anywhere in the Views tab and click Add View.

Figure 50. The Views tab of the IBM Worklight Application Framework editor

Chapter 8. Developing IBM Worklight applications 443

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

An Add View wizard opens.

Note: You can also access this wizard from the Application tab, by clicking
Create a View.

2. Define your new view by giving it a Name and a Heading, and by specifying
the data object and the operation to use.

Figure 51. Create a new view

444 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. Click Next, and select the data object attributes to display in the new view.

Figure 52. Defining your new view

Chapter 8. Developing IBM Worklight applications 445

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

4. Click Finish.

Results

The wizard closes, and you can see your new view displayed in the Views tab of
the IBM Worklight Application Framework editor.

Figure 53. List of data objects attributes to import

446 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Configuring the views of your application:

After you create views with the IBM Worklight Application Framework editor
(Beta code), you can further configure these views and define the flow between the
screens of your app.

Modifying views

When you hover your mouse over a view, a set of icons is displayed on top of the
view.

To map an event handler to a view, click the icon , and specify a function from
your JavaScript code.

To add a first view element to a view, click the icon , and select either Section
or Table (you can add other types of view elements only inside an existing field

Figure 54. Result of the view creation process

Figure 55. A view and its set of icons

Chapter 8. Developing IBM Worklight applications 447

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

section). You can then add other view elements in a field section by right-clicking
the section and clicking Add View Element.

You can also further configure properties of the view element such as name, label,
operations, and event handlers. To do so, you can either right-click on it and click
Configure View Element..., or you can double-click the element.

To delete a view element and its related transition, if there is one, either select the
view element and press the Delete key, or right-click the view element and click
Delete View Element.

To modify the current view and configure its data objects, click the icon . In the
wizard that opens, you can modify the name or the heading of the view, define
operations to execute, and configure the mapping between data object attributes
and views.

To delete the current view, click the icon .

Defining an initial view

The initial view is the view that is displayed when your application starts. In the
Views tab, the initial view is distinguishable by its black outlines. Only one view
in your application can be set as the initial view.

To define a view as an initial view, right-click on the view, and click Set as initial
view.

Creating and configuring transitions between views

After you create different views, you can create the transitions that define the
navigation between those views. For example, you can specify which view comes
after clicking a button. The transitions also contain information about the data
objects that are transmitted from one view to another, and how this data is
mapped to data objects in the target view.

To define transitions, click the circle that corresponds to the view element that you
want to set as the trigger of a view transition, on the border of the view
representation, and drag your mouse to the view that you want to display after the
transition.

To configure an existing transition, right-click on it and click Configure Transition;
or double-click the transition. In the new wizard that opens, you can decide
whether to reuse some elements from one view to another, and map data from the
source view to the target view.

To delete a transition, you can either click the transition and press the Delete key,
or right-click on the transition and click Delete Transition.

Organizing the views layout

To tidy up the display of your existing views, right-click anywhere in the Views
tab, and click Organize Layout.

448 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Web and native code in iPhone, iPad, and Android
Using IBM Worklight, you can include, in your applications, pages that are
developed in the native operating system language.

The natively developed pages can be invoked from your web-based pages and can
then return control to the web view. You can pass data from the web page to the
native page, and return data in the opposite direction. You can also animate the
transition between the pages in both directions.

Switching the display from the web view to a native page
You can include in your applications pages developed in the native operating
system language and can switch between them and the web view.

About this task

In iPhone, iPad, and Android applications, natively developed pages can be
invoked from your web-based pages and can then return control to the web view.
You can pass data from the web page to the native page, and return data in the
opposite direction. You can also animate the transition between the pages in both
directions.

Procedure

To switch the display from the web view to a native page, use the
WL.NativePage.show method.

Receiving data from the web view in an Objective-C page
To receive data from the calling web view, follow these instructions.

Before you begin

The native page must be implemented as an Objective-C class that inherits from
UIViewController. This UIViewController class must be able to initialize through
the init method alone. The initWithNibName:bundle: method is never called on
this class instance.

Procedure

Write a UIViewController class that implements the method setDataFromWebView:.
-(void) setDataFromWebView:(NSDictionary *)data{

NSString = (NSString *) [data valueForKey:@"key"];
}

Related information:

http://developer.apple.com/library/ios/#documentation/UIKit/Reference/
UIViewController_Class/Reference/Reference.html#/apple_ref/occ/cl/
UIViewController

Returning control to the web view from an Objective-C page
To switch back to the web view, follow these instructions.

Before you begin

The native page must be implemented as an Objective-C class that inherits from
UIViewController. This UIViewController class must be able to initialize through

Chapter 8. Developing IBM Worklight applications 449

http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIViewController_Class/Reference/Reference.html#/apple_ref/occ/cl/UIViewController
http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIViewController_Class/Reference/Reference.html#/apple_ref/occ/cl/UIViewController
http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIViewController_Class/Reference/Reference.html#/apple_ref/occ/cl/UIViewController

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

the init method alone. The initWithNibName:bundle: method is never called on
this class instance.

Procedure

In the native page, call the [NativePage showWebView:] method and pass it an
NSDictionary object (the object can be empty). This NSDictionary can be structured
with any hierarchy. The IBM Worklight runtime framework encodes it in JSON
format, and then sends it as the first argument to the JavaScript callback function.
// The NSDictionary object will be sent as a JSON object to the JavaScript layer in the webview
[NativePage showWebView:[NSDictionary dictionaryWithObject:@"value" forKey:@"key"]]

Related information:

http://developer.apple.com/library/ios/#documentation/UIKit/Reference/
UIViewController_Class/Reference/Reference.html#/apple_ref/occ/cl/
UIViewController

Animating the transition from an Objective-C page to a web view
To implement a transition animation when switching the display from the native
page to the web view, follow these instructions.

Procedure

Within your animation code, call the [NativePage showWebView] method.
-(IBAction)returnClicked:(id)sender{
NSString *phone = [phoneNumber text];
NSDictionary *returnedData = [NSDictionary dictionaryWithObject:phone forKey:@"phoneNumber"];

// Animate transition with a flip effect
CDVAppDelegate *cordovaAppDelegate = (CDVAppDelegate *)[[UIApplication sharedApplication] delegate];

[UIView beginAnimations:nil context:NULL];
[UIView setAnimationDuration:0.5];
[UIView setAnimationTransition:UIViewAnimationTransitionFlipFromRight
forView:[cordovaAppDelegate window] cache:YES];

[UIView commitAnimations];

// Return to WebView
[NativePage showWebView:returnedData];
}

Animating the transition from a web view to an Objective-C page
To implement a transition animation when switching the display from the web
view to the native page, follow these instructions.

Procedure

Implement the methods: onBeforeShow and onAfterShow. These methods are
called before the display switches from the web view to the native page, and after
the transition.
-(void)onBeforeShow{
CDVAppDelegate *cordovaAppDelegate = (CDVAppDelegate *)[[UIApplication sharedApplication] delegate];
[UIView beginAnimations:nil context:NULL];
[UIView setAnimationDuration:0.5];
[UIView setAnimationTransition:UIViewAnimationTransitionFlipFromRight forView:[cordovaAppDelegate window] cache:YES];
}
-(void)onAfterShow{
[UIView commitAnimations];
}

450 IBM Worklight V6.1.0

http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIViewController_Class/Reference/Reference.html#/apple_ref/occ/cl/UIViewController
http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIViewController_Class/Reference/Reference.html#/apple_ref/occ/cl/UIViewController
http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIViewController_Class/Reference/Reference.html#/apple_ref/occ/cl/UIViewController

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Receiving data from the web view in a Java page
To receive data from the calling web view, follow these instructions.

Before you begin

The page must be implemented as an Activity object or extend an Activity. As
with any other activity, you must declare this activity in the AndroidManifest.xml
file.

Procedure

To receive data from the calling web view, use the Intent object defined on the
native Activity. The IBM Worklight client framework makes the data available to
the Activity in a Bundle.

Example

Sending data from web view to the native Activity:
WL.NativePage.show(’com.example.android.tictactoe.library.GameActivity’, this.callback, {"gameLevel":1,"playerName":"john",isKeyboardEnable:false});

Receiving the data in the native Activity:
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

//Read int value, default = 0
Integer gameLevel = getIntent().getIntExtra("gameLevel", 0);

//Read String value
String playerName = getIntent().getStringExtra("playerName");

//Read boolean value, default = false
Boolean isKeyboardEnable = getIntent().getBooleanExtra("isKeyboardEnable", false);

}

Related information:

http://developer.android.com/reference/android/content/Intent.html

http://developer.android.com/reference/android/app/Activity.html

http://developer.android.com/reference/android/os/Bundle.html

Returning control to the web view from a Java page
To switch back to the web view, follow these instructions

Before you begin

The page must be implemented as an Activity object or extend an Activity. As
with any other activity, you must declare this activity in the AndroidManifest.xml
file.

Procedure

In the native page, call the finish() function of the Activity. You can pass data
back to the web view by creating an Intent object.

Chapter 8. Developing IBM Worklight applications 451

http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/os/Bundle.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Example

Passing data and control to the web view:
Intent gameInfo = new Intent ();
gameInfo.putExtra("winnerScore", winnerScore);
gameInfo.putExtra("winnerName", winnerName);
setResult(RESULT_OK, gameInfo);
finish();

Receiving the data in the web view:
this.callback = function(data){$(’resultDiv’).update(’The winner is: ’ + data.winnerName + " with score: " + data.winnerScore);};

Related information:

http://developer.android.com/reference/android/app/Activity.html

Animating the transitions from and to a Java page
To animate the transitions between a web view and a native page, follow these
instructions.

Procedure

To add transition animation, use the Activity function
OverridePendingTransition(int, int).

Example
// Transition animation from the web view to the native page
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
overridePendingTransition(android.R.anim.fade_in, android.R.anim.fade_out);
}

// Transition animation from the native page to the web view
@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
//your code goes here....
finish();
overridePendingTransition(android.R.anim.fade_in, android.R.anim.fade_out);
}

Related information:

http://developer.android.com/reference/android/app/
Activity.html#overridePendingTransition(int, int)

Developing hybrid applications for iOS
Develop hybrid applications for iOS as detailed here.

Specifying the icon for an iPhone application
Put the icon in your application's /iphone/nativeResources/Resources folder. It is
copied from there at build time.

About this task

You want to use a particular icon for your application in the iPhone environment.

452 IBM Worklight V6.1.0

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html#overridePendingTransition(int, int)
http://developer.android.com/reference/android/app/Activity.html#overridePendingTransition(int, int)

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Place the icon that you want to use in the project/apps/application/iphone/

nativeResources/Resources folder.
2. Build and deploy your application.

Results

The icon is copied to the project/apps/application/iphone/native/Resources
folder.

Though you can place the icon directly into the project/apps/application/iphone/
native/Resources folder, you risk losing the icon if that folder is deleted for any
reason.

Developing hybrid applications for Android
Develop hybrid applications for Android as detailed here.

Note: By default, IBM Worklight sets the Android application in debuggable mode
in the application’s manifest file. When Android runs in debuggable mode,
unintended consequences can occur. One consequence is that SSL errors are not
displayed by Cordova, such as when the server certificate is not trusted.

Important: When building an Android application for deployment to a production
environment, do not build it to run in debuggable mode. Ensure that the
AndroidManifest.xml file does not include an android:debuggable attribute, or set
its value to false. For more information, see Configuring Your Application for
Release.

Specifying the icon for an Android application
Put the icon in your application's /android/nativeResources/res folder. It is
copied from there at build time.

About this task

You want to use a particular icon for your application in the Android environment.

Procedure
1. Place the icon that you want to use in the project/apps/application/android/

nativeResources/res folder.
2. Build and deploy your application.

Results

The icon is copied to the project/apps/application/android/native/res folder.

Though you can place the icon directly into the project/apps/application/
android/native/res folder, you risk losing the icon if that folder is deleted for any
reason.

Adding custom code to an Android app
Adding custom code to your Android app in the onCreate method is deprecated.
To add custom code to your Android app, use the onWLInitCompleted method.

Chapter 8. Developing IBM Worklight applications 453

http://developer.android.com/tools/publishing/preparing.html#publishing-configure
http://developer.android.com/tools/publishing/preparing.html#publishing-configure

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Since IBM Worklight V5.0.6, add custom code to the onWLInitCompleted method.
The onWLInitCompleted method is invoked when the IBM Worklight initialization
process is complete and the client is ready.

In IBM Worklight V5.0.5 and earlier, custom code was added to the onCreate
method. However, since IBM Worklight V5.0.6, adding custom code to the
onCreate method is deprecated. Support might be removed in any future version.

If you migrate an existing Android app to IBM Worklight V5.0.6, any custom code
in the onCreate method is automatically moved to the onWLInitCompleted method
during the migration process. A comment is also added to indicate that the code
was moved.

The following code snippet is an example of a new application:

The following code snippet is an example of a migrated application:

Extracting a public signing key
Copy the public signing key from the keystore to the application descriptor.

Procedure
1. In the Eclipse project explorer, in the android folder for the application, click

the Extract public signing key menu item.

public class b extends WLDroidGap {

@Override
public void onCreate(Bundle savedInstanceState){

super.onCreate(savedInstanceState);
}

/**
* onWLInitCompleted is called when the Worklight runtime framework initialization is complete.
*/

@Override
public void onWLInitCompleted(Bundle savedInstanceState){

super.loadUrl(getWebMainFilePath());
// Add custom initialization code after this line

}
}

Figure 56. Custom code in a new application

@Override
public void onWLInitCompleted(Bundle savedInstanceState) {

//Additional initialization code from onCreate() was moved here
super.loadUrl(getWebMainFilePath());

}

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
//Additional initialization code was moved to onWLInitCompleted().

}

Figure 57. Custom code in a migrated application

454 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

A wizard window opens.

Figure 58. Extracting the public signing key

Chapter 8. Developing IBM Worklight applications 455

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. In this window, enter the path to your keystore. The keystore is usually in one
of the following directories, according to operating system:

Option Description

Windows XP C:\Documents and Settings\user_name\
.android\

OS X and Linux ~/.android/

3. Enter the password to your keystore and click Load Keystore.
4. When the keystore is loaded, select an alias from the Key alias menu and click

Next. For more information about the Android keystore, see
http://developer.android.com/guide/publishing/app-signing.html.

5. In the window, click Finish to copy the public signing key directly into the
application descriptor.

Figure 59. Adding the Android public signing key

456 IBM Worklight V6.1.0

http://developer.android.com/guide/publishing/app-signing.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Results

The public key is copied to the application descriptor. See the following code
example:
<android version="1.0">

<worklightSettings include="true"/>
<security>

<testAppAuthenticity enabled="false"/>
<encryptWebResources enabled="false"/>
<testWebResourcesChecksum enabled="false" ignoreFileExtensions="png, jpg, jpeg, gif, mp4, mp3"/>
<publicSigningKey>MIGfMA0CSqGSIb3DQEBAQUAA4GNADCBiQKBgQCE+TiHbDxPx0HA6rARXoJWC071hLLBytTDSdNe/>

</security>
</android>

Managing device orientation
When you develop Android applications that target an API level equal or higher
than 13, you must include the screenSize value to the android:configChanges
attribute in the AndroidManifest.xml file. Otherwise, the application fails to run
properly when the device orientation changes.

Assuming that IBM Worklight is the first main activity in the AndroidManifest.xml
file of your application:
v If your target API is equal or higher than 13, you must add the screenSize value

to the android:configChanges attribute of the <activity> element, as shown in
the following example:
<activity android:name=".worklightStarter" android:label="@string/app_name" android:configChanges="orientation|keyboardHidden|screenSize" android:l

Figure 60. Android public signing key

Chapter 8. Developing IBM Worklight applications 457

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v If your target API is smaller than 13, your activity always handles this
configuration change itself, and you do not need to add the screenSize value to
the <activity> element.

Building Android applications with Android Studio
From Worklight Studio, point to your Android Studio installation, and run your
Android application as an Android Studio project.

About this task

You want to use Android Studio as the IDE to customize and build your Android
application.

Procedure
1. In Worklight Studio, click Window > Preferences > Worklight (or Eclipse >

Preferences > Worklight on Mac OS), and specify the location of your Android
Studio installation.

2. Right-click the Android environment folder of your project, and click Run As >
Android Studio project to start Android Studio.

Developing hybrid applications for BlackBerry
Develop hybrid applications for BlackBerry as detailed here.

IBM Worklight supports development of BlackBerry 6, 7, and 10 hybrid mobile
applications.

Important: Blackberry 6 and 7 hybrid mobile application performance might not
be on par with the latest BlackBerry 10 operating system due to older embedded
browser technologies and hardware. It is best to use prototypes to validate that
applications meet your performance targets on Blackberry 6 and 7. When advanced
performance is needed, native development should be preferred.

Creating an IBM Worklight BlackBerry 10 environment
Follow these instructions to create an IBM Worklight BlackBerry 10 environment.

About this task

The BlackBerry 10 environment uses the latest version of Cordova, version 3.1.
However, not all of the Cordova application programming interface (API) is
supported yet, for example the Cordova contacts object. Some code can work
across platforms if written in Cordova, but some must be written by using the
WebWorks API. Use either Ripple or Cordova Ant scripts, and to ensure that your
program runs correctly, follow these steps.

Note: BlackBerry OS 10 is not supported by the current version of the Application
Center.

Procedure
1. Follow all instructions to install WebWorks SDK, described at HTML5

WebWorks.
2. Install Ant Version 1.8 (or later) if it is not already installed. You can obtain Ant

Version 1.8 from http://ant.apache.org/.

458 IBM Worklight V6.1.0

https://developer.blackberry.com/html5/documentation/
https://developer.blackberry.com/html5/documentation/
http://ant.apache.org/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. Download the ant-contrib-1.03b.jar file from http://central.maven.org/
maven2/ant-contrib/ant-contrib/1.0b3/ant-contrib-1.0b3.jar, and save the .jar
file in the lib folder of the Ant installation folder, ANT_HOME.

4. If you use Ant scripts, manually modify the project.properties file. Provide
values for the following variables in project.properties. This step is not
relevant if you are using Ripple.
BB10 Code Signing Password
qnx.sigtool.password=

For simulator:
QNX Simulator IP
#
If you leave this field blank, then
you cannot deploy to simulator
#
qnx.sim.ip=

QNX Simulator Password
#
If you leave this field blank, then
you cannot deploy to simulator
#
qnx.sim.password=

for device:

The initial device ip is 169.254.0.1, that is, the one that is usually given when connected via USB to the computer; you can change if setup on d
QNX Device IP
#
If you leave this field blank, then
you cannot deploy to device
#
qnx.device.ip=169.254.0.1

You also must change
QNX Device Password
#
If you leave this field blank, then
you cannot deploy to device
#
qnx.device.password=

QNX Device PIN
#
Fill this value in to use debug tokens when debuging on the device
qnx.device.pin=

5. Do �not� delete or change the following elements in config.xml:
<!-- start_worklight_host_server do not change this line-->

<access subdomains="true" uri="http://9.148.225.82" />
<!-- end_worklight_host_server do not change this line-->

The correct server TCP/IP address is automatically put in the <access> element
on each Worklight build. If this element is deleted or changed, the TCP/IP
address cannot be automatically updated.

6. BlackBerry 10 supports Ripple. If you intend to use Ripple, specify {project
name}/apps/{app name}/blackberry10/native/www as the root folder in Ripple.

Note: Before you package or start the application with Ripple, perform the
following steps:
a. Install Ant if it is not already installed.

Chapter 8. Developing IBM Worklight applications 459

http://central.maven.org/maven2/ant-contrib/ant-contrib/1.0b3/ant-contrib-1.0b3.jar
http://central.maven.org/maven2/ant-contrib/ant-contrib/1.0b3/ant-contrib-1.0b3.jar

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

b. Open a command window, and navigate to the {project name}/apps/{app
name}/blackberry10/native folder.

c. In the {project name}/apps/{app name}/blackberry10/native folder, run
the ant qnx copy-extensions command.

Note: If you uninstall and install back the WebWorks SDK, make sure to run
the ant qnx copy-extensions command again.

7. BlackBerry 10 is based on QNX. To run the application on the phone by using
Cordova Ant scripts, use ant qnx <command>, where <command> is one of the
commands that are defined in the native/qnx.xml file. For example, use ant
qnx debug-device to build, deploy, and run the app on the device.

Worklight BlackBerry 10 project with WebWorks SDK 2.0
Follow these instructions to make a Worklight BlackBerry 10 project works with
BlackBerry WebWorks SDK 2.0.

With WebWorks SDK 2.0, BlackBerry inverts their model. Instead of Cordova being
the facade on top of WebWorks, WebWorks is now the facade on top of Cordova.
The specific function of WebWork is implemented as Cordova plug-ins.

Note: WebWorks SDK 2.0 is built upon Apache Cordova 3.4 and the platform
aligns with the Apache Cordova open source project now.

According to the documentation of WebWorks SDK 2.0, it basically describes how
to create a new WebWorks 2.0 project and move all the assets over. For more
information, see Upgrading to WebWorks 2.0.

However, there are implications on Worklight projects. The webworks.js file is no
longer available in WebWorks 2.0. It is replaced with cordova.js file (BlackBerry
version). There is also a difference in the project folder structure between
WebWorks 1.x and WebWorks 2.0. As a result, the existing instructions in IBM
Worklight do not work as-is with WebWorks 2.0. Perform the following
instructions to make Worklight works with WebWorks 2.0.

Add an environment

1. Define a WEBWORKS_HOME environment variable. The value of this
variable must be the path to your WebWorks SDK.

2. Create your Worklight BlackBerry 10 application.
3. Click the Worklight icon, and select Worklight Environment to add an

environment to your application.

460 IBM Worklight V6.1.0

http://developer.blackberry.com/html5/documentation/v2_0/upgrading_to_webworks_20.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

4. Select BlackBerry 10, and click Finish.

5. A blackberry10 environment folder is automatically added. This
environment folder includes the following subfolders:
v css – The properties that are specified here override the CSS files

from the common folder.
v images – The specific images of BlackBerry can be added here. If an

image with the same file name exists in the common folder, it is
overwritten in the BlackBerry application.

v js – The JavaScript that can extend and, if required, overrides
JavaScript from the common folder.

Chapter 8. Developing IBM Worklight applications 461

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Upgrade Worklight BlackBerry 10 Project

1. Install Ant. Ignore this step if Ant is installed.
2. Open a command window. Browse to the project_name/apps/app_name/

blackberry10/native folder.
3. In the project_name/apps/app_name/blackberry10/native folder, run

the ant qnx upgrade-webworks-SDK-2.x command.

Creating a project with WebWorks SDK 2.0

1. Setup BlackBerry 10 WebWorks SDK 2.0. For more information, see
WebWorks: Setting up your tools.

2. Create a WebWorks SDK 2.0 project by using the following WebWorks
command: webworks create project_name

3. Remove contents from project_name/www folder of the project.
4. Copy the webresources folder and the images under www folder of the

Worklight BlackBerry 10 environment folder.

5. Paste the copied files under project_name/www folder of the WebWorks
SDK 2.0 project.

462 IBM Worklight V6.1.0

https://developer.blackberry.com/html5/documentation/v2_0/setting_up_your_tools.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

6. Copy the config.xml file of the Worklight BlackBerry 10 environment
folder, and paste it under the root folder of WebWorks SDK 2.0 project.
Replace the existing one.

Add Device and Globalization Cordova plug-ins

Add Device and Globalization Cordova plug-ins to WebWorks project, as
they are used in Worklight JavaScript files. Use the following command to
add these two plug-ins:
v webworks plugin add org.apache.cordova.device

v webworks plugin add org.apache.cordova.globalization

Note: These two plug-ins must be added before you run your application,
otherwise the app would not connect to Worklight Server. Add other
plug-ins based on your requirement.

Basic commands to Build and Deploy

v Add plug-ins, if required.
– webworks plugin add plugin_id

–
v Build and deploy on the device.

– Connected through USB.
webworks run –-devicepass device_password –-keystorepass
keystore_password

– Connected through wireless.
Create target:
- target add target_id ip-address -t device -p password --pin

device_pin

Then, run:
- webworks run --devicepass device_password --target=target_id

--keystorepass keystore_password

– Interactive mode.

Chapter 8. Developing IBM Worklight applications 463

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Developer is asked to provide input for the device password, the
keystore password, and so on.
Run the command:
- webworks run

v Help
– Run the WebWorks command to get help.

Development guidelines for desktop and web environments
This collection of topics gives instructions for implementing various functions in
desktop and web applications.

Specifying the application taskbar for Adobe AIR applications
How to display or suppress a taskbar button for a widget.

About this task

Adobe AIR applications can be displayed on the system taskbar. Widgets that are
opened for a short time (for example, to perform a specific task) and are then
closed should normally have a taskbar button. Conversely, widgets that remain
constantly open on the desktop should not have a taskbar button, to save the
space required by the button. Instead, such widgets have a tray icon that allows
access to the widget.

If the taskbar button is not displayed, IBM Worklight adds a tray icon for the
widget. You can use the tray icon to minimize the application, restore it, and close
it.

Procedure
v To control whether your desktop widget is displayed on the taskbar, specify the

<air> element in the application descriptor. If the <air> element is not specified,
the taskbar button is displayed.

v To display a taskbar button for the widget, specify: <air
showInTaskbar="always" />.

v To avoid displaying a taskbar button for the widget, specify: <air
showInTaskbar="never" />

Configuring the authentication for web widgets
Add a realm to the authenticationConfig.xml file.

About this task

The authenticationConfig.xml file, in the Worklight Project Name/server/conf
folder, is used to configure how widgets and web applications authenticate users.

For more information about configuring realms, see “IBM Worklight security
framework” on page 600.

Procedure

In the authenticationConfig.xml file, add a realm that uses the login forms, as
follows:

464 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<realm name="realm-name" loginModule="login-module-name">
<className>com.worklight.core.auth.ext.FormBasedAuthenticator</className>
<parameter name="login-page" value="/apps/services/login-file-name" />
</realm>

Writing login form files for web widgets
Write two files, in HTML or JSP, with the ability to carry out a security check.

Procedure
1. Create two files, one displaying the login form and another one displaying the

form after a login error occurred. The files can be HTML or JSP. Both login
page and login error page must be able to submit a form with the action
j_security_check and have j_username and j_password parameters. This
technique is shown in the following code example:
<form method="post" action="j_security_check">
<input type="text" name="j_username"/>
<input type="password" name="j_password"/>
</form>

2. Save both files in the Worklight_Project_Name/server/webapps/gadgets-
serving folder.

Setting the size of the login screen for web widgets
If your login page is displayed in a separate browser window, configure its height
and width.

Procedure

If your login page is displayed in a separate browser window, configure its height
and width in the application descriptor, by using the <loginPopupHeight> and
<loginPopupWidth> elements.

Signing Adobe AIR applications
Worklight provides a default certificate for development and test purposes. For
production, obtain a certificate from a certificate authority and install it.

About this task

Adobe AIR applications must be digitally signed in order for users to install them.
IBM Worklight provides a default certificate for signing AIR applications that can
be used for development and test purposes.

To sign an AIR application for production distribution, using your own certificate,
follow these instructions:

Procedure
1. Obtain a PKCS12 certificate from a certificate authority, and export it as a PFX

file.
2. Place this certificate on your hard disk.
3. Set the <certificate> element under the <air> element in the application

descriptor. The structure of the <certificate> element is:
<certificate password="password" PFXFilePath="path-to-pfx"/>

where password is the password for the PFX certificate, and path-to-pfx can
either be relative to the root of the application, or an absolute path.

Chapter 8. Developing IBM Worklight applications 465

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Signing Windows 8 apps
Worklight provides a default certificate for development and test purposes. For
production, obtain a certificate from a certificate authority and install it.

About this task

Windows 8 apps should be digitally signed before users install them. IBM
Worklight provides a default certificate for signing Windows 8 apps that can be
used for development and test purposes.

To sign a Windows 8 app for production distribution, using your own certificate,
follow these instructions:

Note: : You can sign Windows 8 apps only on Windows systems.

Procedure
1. See http://msdn.microsoft.com/en-us/library/windows/apps/br230260.aspx

for details on obtaining a PKCS12 certificate.
2. Export the PKCS12 certificate as a PFX file.
3. Place this certificate on your hard disk.
4. Set the <certificate> subelement under the <windows8> element in the

application descriptor. The structure of the <certificate> subelement
is:<certificate PFXFilePath="Path to certificate file"
password="certificate password"/>, where Path to certificate file can either be
relative to the root of the application, or an absolute path, and password is the
password for the PFX certificate.

Embedding widgets in predefined web pages
Follow these instructions to incorporate widgets into web pages.

Before you begin

If your Worklight Studio internal application server does not run on the default
port 10080, make sure that you also set this port as the value of the configuration
publicWorkLightPort. Otherwise, the action Embed in Web Page does not provide
you with the correct URL. For descriptions of publicWorkLightPort and other IBM
Worklight configuration properties, see “Configuring an IBM Worklight project in
production by using JNDI environment entries” on page 784. For information
about how to specify IBM Worklight configuration properties, see “Configuration
of IBM Worklight applications on the server” on page 772.

About this task

IBM Worklight widgets can be embedded in predefined web pages, such as
corporate websites or intranet portals.

Procedure

To embed a widget in a predefined web page:
1. In the Worklight Console, on the Catalog tab page, locate the widget, and then

click Embed in web page. A window is displayed, which contains the URL of
the application to which you point in your website to embed the widget. The
following figure shows the window:

466 IBM Worklight V6.1.0

http://msdn.microsoft.com/en-us/library/windows/apps/br230260.aspx

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. Paste the URL in an HTML snippet in the web page where you want to embed
the widget.
<iframe src="URL_to_embed" width="widget_width" height="widget_height" style="border:none;"> </iframe>

Developing native applications
This collection of topics gives instructions for developing native applications.

Development guidelines for using native API
This collection of topics gives instructions for developing native mobile
applications by using the IBM Worklight native API.

Similar to other types of mobile applications with IBM Worklight, you start the
development of your native app in Worklight Studio by creating a Worklight
application. To develop a native app, you must create an Worklight application of
type Native API. Your native application requires the content of such a Native API
application. This content depends on the selected mobile environment, and your
native application requires it to use the corresponding IBM Worklight native API:
v The IBM Worklight Objective-C client-side API, if your Native API application is

for the iOS environment
v The IBM Worklight Java client-side API, if your Native API application is for the

Android environment
v The IBM Worklight Java client-side API, if your Native API application is for the

Java Platform, Micro Edition (Java ME)

To create a Native API application, you have several options:
v If you already have a Worklight project, you can create and add your Native API

application in it:
1. Click New > Worklight Native API.
2. Select the existing project.
3. Set the application name.
4. Specify the environment that you need: Android, iOS, or Java ME.
5. Click Finish.

You created a Native API application in your Worklight project in Worklight
Studio.

v If you do not have a Worklight project, you can create a Worklight project of
type Native API, and request to create a Native API application as its first
application in it:
1. Click New > Worklight Project, and then select the Native API template.

Figure 61. Embedding a widget in a predefined web page

Chapter 8. Developing IBM Worklight applications 467

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. Set the application name.
3. Specify the environment that you need: Android, iOS, or Java ME.
4. Click Finish.

You created a Worklight project in Worklight Studio, with a first Native API
application in it.

In both cases, you created the required Native API application in Worklight Studio.
This application contains:
v The application descriptor file: This file is the application-descriptor.xml file

that is in the application root directory.
v The IBM Worklight native library and the client property file: The name and the

format of this content depend on the environment.
– for iOS:

- The WorklightAPI folder defines the IBM Worklight native library.
- The worklight.plist file is the client property file.

– for Android:
- The worklight-android.jar file defines the IBM Worklight native library.
- The wlclient.properties file is the client property file.

– for Java ME:
- The worklight-javame.jar file and the json4javame.jar file together define

the IBM Worklight native library.
- The wlclient.properties file is the client property file.

As a difference from a hybrid app, which you can develop entirely within
Worklight Studio, you also generally need another project to develop your native
app. For example:
v A project in the Xcode IDE, to develop a native application with Objective-C for

iOS environment
v A project in the Eclipse IDE, to develop a native application with Java, for

Android environment or for Java ME

After the Native API application is created, you must:
1. Define the various aspects of your application by setting the appropriate values

in the application descriptor file.
2. Update the client property file, as needed.
3. Copy the client property file and the native library into the appropriate location

of your native project. You must also create references from your native app
project to this content to use the IBM Worklight native API.

v For iOS:
1. To update the application descriptor file, see “Application Descriptor of

Native API applications for iOS” on page 469.
2. To update the client property file, see “Client property file for iOS” on page

470.
3. To copy the client property file and the native library into the appropriate

location of your native project, and create appropriate references, see
“Copying files of Native API applications for iOS” on page 471.

v For Android:
1. To update the application descriptor file, see “Application Descriptor of

Native API application for Android” on page 472.

468 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. To update the client property file, see “Client property file for Android” on
page 474.

3. To copy the client property file and the native library into the appropriate
location of your native project, and create appropriate references, see
“Copying files of Native API applications for Android” on page 474.

v For Java ME:
1. To update the application descriptor file, see “Application Descriptor of

Native API application for Java Platform, Micro Edition (Java ME)” on page
476.

2. To update the client property file, see “Client property file for Java Platform,
Micro Edition (Java ME)” on page 477.

3. To copy the client property file and the native library into the appropriate
location of your native project, and create appropriate references, see
“Copying files of Native API applications for Java Platform, Micro Edition
(Java ME)” on page 478.

You build and deploy Native API applications by following the same procedure as
for hybrid applications, by creating the .wlapp file and uploading it to the
Worklight Console. For more information about deployment, see “Deploying
applications and adapters to Worklight Server” on page 795.

Developing native applications for iOS
This collection of topics gives instructions for developing native applications for
iOS

Application Descriptor of Native API applications for iOS
The application descriptor is a metadata file that is used to define various aspects
of the Native API application for iOS.

The application descriptor is a metadata file that is used to define various aspects
of the application. It is in the application root directory, and its name is
application-descriptor.xml.

The following example shows the format of the application descriptor file of
Native API applications for iOS:
<?xml version="1.0" encoding="UTF-8"?>
<nativeIOSApp

id="ios"
platformVersion="6.0.0"
version="1.0"
securityTest="security test name"
bundleId="com.ios"
xmlns="http://www.worklight.com/native-ios-descriptor">
<displayName>application display name</displayName>
<description>application description</description>
<pushSender password="${push.apns.senderpassword}"/>

</nativeIOSApp>

The content of the application descriptor file is as follows.
<?xml version="1.0" encoding="UTF-8"?>
<nativeIOSApp

id="ios"
platformVersion="6.0.0"
version="1.0"
securityTest="security test name"
bundleId="com.ios"
xmlns="http://www.worklight.com/native-ios-descriptor">

Chapter 8. Developing IBM Worklight applications 469

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The <nativeIOSApp> element is the root element of the descriptor. It has three
mandatory attributes and two optional attributes:

id This attribute specifies the ID of the application. The ID must be identical
to the application folder name. It must be an alphanumeric string that
starts with a letter. It can contain underscore ("_") characters. It must not be
a reserved word in JavaScript.

platformVersion
Contains the version of IBM Worklight on which the app was developed.

version
This attribute specifies the version of the application. This version is a
string of the form x.y, where x and y are numbers. It is visible to users
who download the app from the app store or market.

securityTest
This attribute specifies a security configuration that is defined in the
authenticationConfig.xml file. When a client attempts to access a
protected resource, IBM Worklight checks whether the client is already
authenticated according to the security test. If the client is not yet
authenticated, IBM Worklight starts the process to obtain the client
credentials and to verify them.

This attribute is optional.

bundleId
This attribute specifies the bundle ID of the application.

This attribute is optional.
<displayName>application display name</displayName>

<displayName>
This element contains the application name. This name is visible in the
IBM Worklight Console and is copied to the descriptor files of various web
and desktop environments.

<description>application description</description>

<description>
This element contains the application description. This description is
visible in the IBM Worklight Console and is copied to the descriptor files
of various web and desktop environments.

<pushSender password="${push.apns.senderpassword}"/>

<pushSender>
This element defines the password to the SSL certificate that encrypts the
communication link with the Apple Push Notification Service (APNS).

</nativeIOSApp>

</nativeIOSApp>
This tag closes the content of the application descriptor file.

Client property file for iOS
This file defines the properties that your native app for iOS requires to use the IBM
Worklight native API for iOS.

The worklight.plist client property file contains the necessary information for
initializing WLClient.

You must define the properties of this client property file before using it in your
native app for iOS.

470 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The following table lists the properties of the worklight.plist file, their
descriptions, and possible examples for their values.

Table 58. Properties of the worklight.plist file

Property Description Example values

protocol The communication protocol with
the Worklight Server.

http or https

host The host name of the Worklight
Server.

localhost

port The port of the Worklight Server. If
this value is left blank, the default
port is used. If the protocol
property value is https, you must
leave this value blank.

10080

wlServerContextThe server URL context. /
Note: If you use IBM Worklight
Developer Edition, you must set the
value of this property to the name
of your Worklight project.

application
id

The application ID, as defined in
the application-descriptor.xml
file.

myApp

application
version

The application version, as defined
in the application-descriptor.xml
file.

1.0

environment This property defines the IBM
Worklight environment. The value
of this property must be iOSnative.
You must not modify the value of
this property value.

iOSnative

Copying files of Native API applications for iOS
To copy the files in the Native API application for iOS into the project that defines
the native app for iOS

About this task

To use the IBM Worklight Native API for iOS in your native app, you must copy
the library and the client property file of your Native API application into your
native app for iOS project.

Procedure

In Worklight Studio:
1. Select the WorklightAPI folder and the worklight.plist file of your Native API

application, and copy them in a location that you can access from your native
iOS project

In your project for the native app for iOS (for example, in Xcode IDE):
2. Add the WorklightAPI folder and the worklight.plist file of your Native API

application to your project.
a. In the Choose options for adding these fileswindow, select Copy items

into destination group’s folder (if needed) and Create groups for any
added folders.

Chapter 8. Developing IBM Worklight applications 471

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. In the Build Phases tab, link the following frameworks and libraries to your
project:
v CFNetwork.framework

v SystemConfiguration.framework

v MobileCoreServices.framework

v CoreData.framework

v CoreLocation.framework

v Security.framework

v sqlcipher.framework

v libz.dylib

v libstdc++.6.dylib

Note: The framework sqlcipher.framework might already be linked.
4. Select the project name and the target for your application.
5. Click the Build Phases tab.
6. In the Build Phases tab:

a. Open the list in the Link Binary with Libraries section, and make sure that
libWorklightStaticLibProjectNative.a is visible in the list.

b. Open the list in the Copy Bundle Resources section, and make sure that the
files from your resources folder are added to that section.

7. Click the Build Settings tab.
8. On the Build Settings page:

a. Click All (in the upper left corner) to show all settings.
b. Add the following entry: $(SRCROOT)/WorklightSDK/include for

HEADER_SEARCH_PATH

c. In the Other Linker Flags field, enter the following value: -ObjC
d. In the Deployment section, select a value for the iOS Deployment Target

field that is greater than or equal to 5.0.

Developing native applications for Android
This collection of topics gives instructions for developing native applications for
Android

Application Descriptor of Native API application for Android
The application descriptor is a metadata file that is used to define various aspects
of the Native API application for Android.

The application descriptor is a metadata file that is used to define various aspects
of the application. It is in the application root directory, and its name is
application-descriptor.xml.

The following example shows the format of the application descriptor file of
Native API applications for Android:
<?xml version="1.0" encoding="UTF-8"?>
<nativeAndroidApp

id="android"
platformVersion="6.0.0"
securityTest="security test name"
version="1.0"
xmlns="http://www.worklight.com/native-android-descriptor">
<displayName>application display name</displayName>

472 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<description>application description</description>
<pushSender key="gcm api key" senderId="gcm project number"/>
<publicSigningKey>application public signing key</publicSigningKey>

</nativeAndroidApp>

The content of the application descriptor file is as follows.
<?xml version="1.0" encoding="UTF-8"?>
<nativeAndroidApp

id="android"
platformVersion="6.0.0"
securityTest="security test name"
version="1.0"
xmlns="http://www.worklight.com/native-android-descriptor">

The <nativeAndroidApp> element is the root element of the descriptor. It has three
mandatory attributes and one optional attribute:

id This attribute specifies the ID of the application. The ID must be identical
to the application folder name. It must be an alphanumeric string that
starts with a letter. It can contain underscore ("_") characters. It must not be
a reserved word in JavaScript.

platformVersion
Contains the version of IBM Worklight on which the app was developed.

version
This attribute specifies the version of the application. This version is a
string of the form x.y, where x and y are numbers. It is visible to users
who download the app from the app store or market.

securityTest
This attribute specifies a security configuration that is defined in the
authenticationConfig.xml file. When a client attempts to access a
protected resource, IBM Worklight checks whether the client is already
authenticated according to the security test. If the client is not yet
authenticated, IBM Worklight starts the process to obtain the client
credentials and to verify them.

This attribute is optional.
<displayName>application display name</displayName>

<displayName>
This element contains the application name. This name is visible in the
IBM Worklight Console and is copied to the descriptor files of various web
and desktop environments.

<description>application description</description>

<description>
This element contains the application description. This description is
visible in the IBM Worklight Console and is copied to the descriptor files
of various web and desktop environments.

<pushSender key="gcm api key" senderId="gcm project number"/>

<pushSender>
This element contains the connectivity details to Google GCM (Android
push notification service). The key is the GCM API key, and the senderId is
the GCM Project Number.

<publicSigningKey>application public signing key</publicSigningKey>

<publicSigningKey>
This element contains the public key of the developer certificate that is

Chapter 8. Developing IBM Worklight applications 473

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

used to sign the Android app. For instructions on how to extract this
value, see “Extracting a public signing key” on page 454.

</nativeAndroidApp>

</nativeAndroidApp>
This tag closes the content of the application descriptor file.

Client property file for Android
This file defines the properties that your native app for Android requires to use the
IBM Worklight native API for Android.

The wlclient.properties client property file contains the necessary data to use the
IBM Worklight API for Android.

You must define the properties of this client property file before you use it in your
native app for Android.

The following table lists the properties of the wlclient.properties file, their
descriptions, and possible examples for their values.

Table 59. Properties and values of the wlclient.properties file

Property Description Example values

wlServerProtocol The communication protocol with the
Worklight Server.

http or https

wlServerHost The host name of the Worklight Server. localhost

wlServerPort The port of the Worklight Server. If you
leave this value blank, the default port is
used. If the wlServerProtocol property
value is https, you must leave this value
blank.

10080

wlServerContext The server context. /
Note: If you use IBM
Worklight Developer
Edition, you must set the
value of this property to
the name of your
Worklight project.

wlAppId The application id, as defined in the
application-descriptor.xml file.

myApp

wlAppVersion The application version, as defined in the
application-descriptor.xml file.

1.0

wlEnvironment This property defines the IBM Worklight
environment. The value of this property
must be Androidnative. You must not
modify the value of this property value.

Androidnative

GCMSenderID This property defines the GCM Sender ID
that you must use for push notifications.
By default, this property is commented.

Copying files of Native API applications for Android
To copy the files in the Native API application for Android into the project that
defines the native app for Android

474 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

To use the IBM Worklight Native API for Android in your native app, you must
copy the library and the client property file of your Native API application into
your native app for Android project.

Procedure

In your project for the native app for Android:
1. Copy the worklight-android.jar file, the android-async-http.jar file, and the

uicandroid.jar file from the Native API application, and paste them into the
libs folder of your native app for Android.

2. Copy the wlclient.properties client property file from the Native API
application into the assets folder of your native app for Android.

3. If the push notification support is required:
a. Copy the gcm.jar file from the Native API application.
b. Paste the gcm.jar into the libs folder of your native app for Android.
c. Copy the push.png file from the Native API application.
d. In the res folder of your native app for Android, identify the folders with a

name that starts with drawable (such as res/drawable or
res/drawable-ldpi), and then paste the push.png file into each of these
folders.

4. Add the following lines to the AndroidManifest.xml file of your native app for
Android:
a. <activity android:name="com.worklight.wlclient.ui.UIActivity"/> With

this line, a designated IBM Worklight UI activity can run in the user
application.

b. <uses-permission android:name="android.permission.INTERNET"/> This
line adds Internet access permissions to the user application.

c. <uses-permission android:name="android.permission.GET_TASKS"/> This
line adds the permission to get a list of running tasks that are required for
the heartbeat functionality.

d. <uses-permission
android:name="android.permission.ACCESS_WIFI_STATE"/>

5. If push notification support is required, add the following permissions to the
AndroidManifest.xml file of your native app for Android:
a. <uses-permission

android:name="com.worklight.androidnativepush.permission.C2D_MESSAGE"/>

b. <uses-permission
android:name="com.google.android.c2dm.permission.RECEIVE"/>

c. <uses-permission android:name="android.permission.WAKE_LOCK"/>

d. <uses-permission android:name="android.permission.GET_ACCOUNTS"/>

e. <uses-permission android:name="android.permission.USE_CREDENTIALS"/>

f. <uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

6. Manage your splash screens: In the res folder of your native app for Android,
identify the folders with a name that starts with drawable (such as
res/drawable or res/drawable-ldpi), and then:
a. If you want to use a splash screen in your app, ensure that the required

splash.png file or splash.9.png file is present in each of these folders.

Chapter 8. Developing IBM Worklight applications 475

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

b. If you do not want to use a splash screen in your app, ensure that no
splash.png file or splash.9.png file is present in these folders.

Developing native applications for Java Platform, Micro
Edition

This collection of topics gives instructions for developing native applications for
Java Platform, Micro Edition

Application Descriptor of Native API application for Java
Platform, Micro Edition (Java ME)
The application descriptor is a metadata file that is used to define various aspects
of the Native API application for Java ME.

The application descriptor is a metadata file that is used to define various aspects
of the application. It is in the application root directory, and its name is
application-descriptor.xml.

The following example shows the format of the application descriptor file of
Native API applications for Java ME:
<?xml version="1.0" encoding="UTF-8"?>
<nativeJavaMEApp

id="JavaME"
platformVersion="6.0.0"
version="1.0"
securityTest="security test name"
xmlns="http://www.worklight.com/native-javame-descriptor">
<displayName>application display name</displayName>
<description>application description</description>

</nativeJavaMEApp>

The content of the application descriptor file is as follows.
<?xml version="1.0" encoding="UTF-8"?>
<nativeJavaMEApp MEApp

id="JavaME"
platformVersion="6.0.0"
version="1.0"
securityTest="security test name"
xmlns="http://www.worklight.com/native-javame-descriptor">

The <nativeJavaMEApp> element is the root element of the descriptor. It has three
mandatory attributes and one optional attribute:

id This attribute specifies the ID of the application. The ID must be identical
to the application folder name. It must be an alphanumeric string that
starts with a letter. It can contain underscore ("_") characters. It must not be
a reserved word in JavaScript.

platformVersion
Contains the version of IBM Worklight on which the app was developed.

version
This attribute specifies the version of the application. This version is a
string of the form x.y, where x and y are numbers. It is visible to users
who download the app from the app store or market.

securityTest
This attribute specifies a security configuration that is defined in the
authenticationConfig.xml file. When a client attempts to access a
protected resource, IBM Worklight checks whether the client is already

476 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

authenticated according to the security test. If the client is not yet
authenticated, IBM Worklight starts the process to obtain the client
credentials and to verify them.

This attribute is optional.
<displayName>application display name</displayName>

<displayName>
This element contains the application name. This name is visible in the
IBM Worklight Console and is copied to the descriptor files of various web
and desktop environments.

<description>application description</description>

<description>
This element contains the application description. This description is
visible in the IBM Worklight Console and is copied to the descriptor files
of various web and desktop environments.

</nativeJavaMEApp>

</nativeJavaMEApp>
This tag closes the content of the application descriptor file.

Client property file for Java Platform, Micro Edition (Java ME)
This file defines the properties that your native app for Java Platform, Micro
Edition (Java ME) requires to use the IBM Worklight native API for Java ME.

The wlclient.properties client property file contains the necessary data to use the
IBM Worklight API for Java ME.

You must define the properties of this client property file before using it in your
native app for Java ME.

The following table lists the properties of the wlclient.properties file, their
descriptions, and possible examples for their values.

Table 60. Properties and values of the wlclient.properties file

Property Description Example values

wlServerProtocol The communication protocol with the
Worklight Server.

http or https

wlServerHost The host name of the Worklight Server. localhost

wlServerPort The port of the Worklight Server. 10080

wlServerContext The server context. /
Note: If you use IBM
Worklight Developer
Edition, you must set the
value of this property to
the name of your
Worklight project.

wlAppId The application ID, as defined in the
application-descriptor.xml file.

myApp

wlAppVersion The application version, as defined in the
application-descriptor.xml file.

1.0

wlEnvironment This property defines the IBM Worklight
environment. The value of this property
must be JavaMEnative. You must not
modify the value of this property value.

JavaMEnative

Chapter 8. Developing IBM Worklight applications 477

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Copying files of Native API applications for Java Platform, Micro
Edition (Java ME)
To copy the files in the Native API application for Java ME into the project that
defines the app for Java ME.

About this task

To use the IBM Worklight Native API for Java ME in your native app, you must
copy the library and the client property file of your Native API application into
your native app for Java ME project.

Procedure
1. Create a lib folder in your native Java ME application.

Note: You can name this folder differently. If you select a folder name other
than lib, ensure that you use this folder name instead of lib in the following
steps.

2. Make sure that the build path of your native Java ME application includes this
lib folder.

3. Copy the worklight-javame.jar file of your Native API application into this
lib folder of your native Java ME application.

4. Copy the json4javame.jar file of your Native API application into this lib
folder of your native Java ME application.

5. Copy the wlclient.properties file of your Native API application into the res
folder of your native Java ME application.

Accelerating application development by reusing resources
Use application components, IBM Worklight project templates, and mobile patterns
to accelerate the development of applications by reusing resources.

This section describes application components and Worklight project templates. For
information about mobile patterns, see “Mobile patterns” on page 394.

Configuring application component and template preferences
You can configure the location of your local download folder. The download folder
is the place where IBM Worklight searches for IBM Worklight project templates
and application components whenever you add an application component to an
IBM Worklight project or create a Worklight project from a template.

About this task

You can use the default folder <USER_HOME>/IBM/templates, or you can specify an
alternative folder. If you want to use an alternative folder, you must specify it
before you create application components and templates.

Procedure
1. In Worklight Studio, click Window > Preferences.
2. In the left panel, click Worklight > Templates and Components.
3. In the right panel, click Browse, and then select the folder that you want to use

as your download folder.

478 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Application components
Application components are reusable libraries that you can add to the applications
you develop. An application component can be a client-side library or a server
runtime block. Typical libraries might handle basic functions such as login or
payments. They can also contain various elements such as non-visual runtime
objects, visual components, integration adapters, and user interface screen
packages.

Consider the example of a banking application. The application might require an
image-processing library for processing checks, a non-visual runtime object, and an
integration adapter to connect to the banking system for verification. A developer
might consider assembling these reusable building blocks into application
components, and then add them to multiple IBM Worklight projects to accelerate
the development of applications for a range of different devices.

An application component can help simplify and speed up the delivery of high
quality mobile applications across multiple devices. An application component can
also help developers in their interactions with customers, can provide value-added
services, and can help developers understand how consumers use their mobile
applications.

Creating application components from IBM Worklight projects
You can create an application component based on a Worklight project. You define
metadata information such as the name of the component and its version number,
and you select the project resources that you want to include in the application
component.

Procedure
1. From the Explorer view in Worklight Studio, right-click the Worklight project

and click Create Application Component.
2. Provide metadata information in the fields listed in the following table:

Table 61. Application component metadata

Field Description

Name Name of the application component. Spaces
are allowed in this field.

ID Unique identifier for the application
component. This is a read-only field. The
identifier is the combination of information
specified in the Name field (using upper
case characters and without spaces) together
with unique identifiers.

Author Author or provider of the application
component.

Version Version of the application component
expressed in VRM (version, release,
modification) format; for example, 1.0.1.

Description Short description of the application
component.

Image Thumbnail image that represents the
application component. Supported
resolution: 15x12 pixels.

Chapter 8. Developing IBM Worklight applications 479

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: If you enter metadata information using certain non-Western character
sets, the information might be displayed in XML encoded format in the
component.wcp file. This does not affect the usability of the application
component in any way. The characters are interpreted correctly by XML
processors; for example, when you view the file using a web browser such as
Firefox, it will display the correct character set.

3. From the Application list, select the application that you want to use as a basis
for the application component, and then click Next.

4. In the panel that displays the project resources, select the check box next to
each resource that you want to include in the application component. Consider
including the files that you think would be useful as a component. Do not try
to include the files that are in any case generated by default by a Worklight
project.

5. Click Browse and specify the location and filename of the application
component, and then click Finish. The file extension must be .wlc or .zip.

Results

The application component is created with the location and filename you specified.

What to do next

You can now view the contents of the application component and add hooks to
facilitate automation.

Viewing the contents of an application component
You can open an application component to view its contents by using a file
compression tool.

The application component contains folders based on the IBM Worklight project
resources that were selected when the application component was created, as well
as a mandatory COMPONENT-DATA folder.

The COMPONENT-DATA folder contains the following files:
v The thumbnail image file that was selected when the application component was

created.

Figure 62. File structure of a typical application component

480 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v An IBM Worklight Component Processor file named component.wcp, which
contains the metadata information that was specified when the application
component was created.

The following contents are present in the component.wcp file:
v Component ID
v Component name
v Component author name
v Component description
v Component version
v Component thumbnail
v IBM Worklight version number

The following example shows the contents of a typical component.wcp file:
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description>
<Version>1.0.0</Version>
<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>

</ComponentData>

Note: Do not modify the contents of the COMPONENT-DATA folder except to add
additional hooks to the component.wcp file according to the schema described in
“Adding hooks to an application component.”

Adding hooks to an application component
You add hooks to an application component to facilitate automation when the
component is added to an IBM Worklight project. These additional hooks are
optional.

To add hooks, you need to edit the component.wcp file by adding XML inner
elements. If you do this directly within Worklight Studio, the edited component.wcp
file is included in the next version of the application component. If you edit the
component.wcp file outside Worklight Studio, you must copy the edited file
manually into the Worklight Studio workspace location and then run the Create
Application Component command again so that the application component is
updated with the latest version of the component.wcp file.

Before you add hooks, you need to add the appropriate environment element
according to the environment that the application component supports. The
following table lists the element that you add for each supported environment:

Table 62. Elements for supported environments

Environment Element

Android <Android>

iPhone <IPhone>

iPad <IPad>

The following example component.wcp file includes the Android environment tag:
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>

Chapter 8. Developing IBM Worklight applications 481

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description>
<Version>1.0.0</Version>
<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>
<Android></Android>

</ComponentData>

Table 63 lists the inner elements that are supported on Android and the order in
which they must appear in the schema.

Table 63. Order of inner elements for the Android environment

Order Inner element

1 CordovaPlugin

2 Activities

3 UserPermissions

4 Receivers

5 Strings

6 ExternalLibraries

7 Libraries

Table 64 lists the inner elements that are supported on iOS and the order in which
they must appear in the schema.

Table 64. Order of inner elements for the iPhone and iPad environments

Order Inner element

1 CordovaPlugin

2 Files

3 Libraries

Note: Some hooks result in the insertion of properties in the config.xml file or the
AndroidManifest.xml file when the associated application component is added to a
Worklight project. Every insertion is enclosed in comments that mention the
element and application component unique name. For example:
<!--BEGIN ANDROID CORDAVA-PLUGIN AUTOINSERTION FOR BarCodeScannerUniqueID -->

<!--END ANDROID CORDAVA-PLUGIN AUTOINSERTION FOR BarCodeScannerUniqueID -->

Adding and removing Android library projects

Additional Android projects can be packaged as part of the component.wlc file.

Additional projects are packaged in the COMPONENT-DATA folder under the
folder ExternalProjects. Any zip file under that folder is considered to be an
“external project” and will be automatically added.

When the component is added to a Worklight project, the following things happen:
v Any additional projects are added to the Workspace.
v The additional projects are referenced from the Worklight project.
v If the external projects use a higher Android API level than is used by the

Worklight Android project, the developer is prompted to upgrade to the higher
API level.

482 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

When the component is removed, the following things happen:
v The additional projects are deleted from the Workspace (and from the file

system).
v References to those external projects are removed from the Worklight project.

CordovaPlugin element:

This element integrates the Cordova plug-in into the application component by
capturing the class name and its fully qualified name. When you add the
application component to an IBM Worklight project, the CordovaPlugin properties
are automatically inserted into the config.xml file.

Element name

<CordovaPlugin>

Parameters

Table 65. CordovaPlugin elements

Element Description Occurrences

Name Name of the plug-in that
uses the Cordova plug-in.

1

ClassName Qualified class name of the
plug-in implementation that
uses the Cordova plug-in.

1

Environments supported

v Android
v iPhone
v iPad

Example
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description >
<Version>1.0.0</Version>
<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>
<Android>

<CordovaPlugin>
<Name>BarcodeScanner</Name>
<ClassName>com.phonegap.plugins.barcodescanner.BarcodeScanner</ClassName>

</CordovaPlugin>
</Android>

</ComponentData>

Automation

When an application component that includes this element is added to a Worklight
project, the config.xml file of the Worklight project is automatically updated to
reflect the CordovaPlugin properties. The following example shows an updated
config.xml file:

Chapter 8. Developing IBM Worklight applications 483

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<feature name="InAppBrowser">
<param name="android-package" value="org.apache.cordova.inappbrowser.InAppBrowser"/>

</feature>
<feature name="Vibration">

<param name="android-package" value="org.apache.cordova.vibration.Vibration"/>
</feature>
<!--BEGIN ANDROID CORDOVA-PLUGIN AUTOINSERTION FOR BarCodeScannerUniqueID -->
<feature name="BarcodeScanner">

<param name="android-package" value="com.phonegap.plugins.barcodescanner.BarcodeScanner"/>
</feature>
<!--END ANDROID CORDOVA-PLUGIN AUTOINSERTION FOR BarCodeScannerUniqueID -->

</widget>

Activities element:

This element enables you to add activities information to the application
component. The information is declared in the Android manifest file in any IBM
Worklight project that imports the component. The activities specified in the
XMLContent element get appended in the Android manifest under the application
element.

Element name

<Activities>

Parameters

Table 66. Activities elements

Element Description Occurrences

XmlContent The XML content of the
activities information that
needs to be placed in the
Android manifest file. You
can specify one or more
activity elements within the
XMLContent element to be
appended.

1

Environments supported

v Android

Example
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description >
<Version>1.0.0</Version>
<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>
<Android>

<CordovaPlugin>
<Name>BarcodeScanner</Name>
<ClassName>com.phonegap.plugins.barcodescanner.BarcodeScanner</ClassName>

</CordovaPlugin>
<Activities>

<XmlContent>
<![CDATA[
<!-- ZXing activities -->
<activity

484 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

android:name="com.google.zxing.client.android.CaptureActivity"
android:screenOrientation="landscape"
android:clearTaskOnLaunch="true"
android:configChanges="orientation|keyboardHidden"
android:theme="@android:style/Theme.NoTitleBar.Fullscreen"
android:windowSoftInputMode="stateAlwaysHidden"
android:exported="false">
<intent-filter>

<action android:name="com.phonegap.plugins.barcodescanner.SCAN"/>
<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>
</activity>
<activity

android:name="com.google.zxing.client.android.encode.EncodeActivity"
android:label="@string/share_name">
<intent-filter>

<action android:name="com.phonegap.plugins.barcodescanner.ENCODE"/>
<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>
</activity>
<activity

android:name="com.google.zxing.client.android.HelpActivity"
android:label="@string/share_name">
<intent-filter>

<action android:name="android.intent.action.VIEW"/>
<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>
</activity>
]]>

</XmlContent>
</Activities>

</Android>
</ComponentData>

Automation

When a component that includes this element is added to a Worklight project, the
AndroidManifest.xml file of the Worklight project is automatically updated to
reflect the activities information. The following example shows an updated
AndroidManifest.xml file:
<!--BEGIN ANDROID AUTOINSERTION FOR BarCodeScannerUniqueID -->

<!--ZXing activities -->
<activity android:clearTaskOnLaunch="true" android:configChanges="orientation/keyboard+hidden" ...>

<intent-filter>
<action android:name="com.phonegap.plugins.barcodescanner.SCAN"/>
<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>
</activity>
<activity android:label="@string/share_name" android:name="com.google.zxing.client.android.encode ...>

<intent-filter>
<action android:name="com.phonegap.plugins.barcodescanner.ENCODE"/>
<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>
</activity>
<activity android:label="@string/share_name android:name="..." ...>

<intent-filter>
<action android:name="android.intent.action.VIEW"/>
<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>
</activity>

<!--END ANDROID ACTIVITY AUTOINSERTION FOR BarCodeScannerUniqueID -->

Chapter 8. Developing IBM Worklight applications 485

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

UserPermissions element:

This element enables you to add information about user permissions to the
application component. The information controls end-user access to the native
functions of a device, such as its camera or GPS functions.

Element name

<UserPermissions>

Parameters

Table 67. UserPermissions elements

Element Description Occurrences

permission Android-specific permission
constant.

1..∞

Environments supported

v Android

Example
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description >
<Version>1.0.0</Version>
<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>
<Android>

<UserPermissions>
<permission>android.permission.CAMERA</permission>
<permission>android.permission.FLASHLIGHT</permission>

</UserPermissions>
</Android>

</ComponentData>

Automation

When an application component that includes this element is added to an IBM
Worklight project, the AndroidManifest.xml file of the Worklight project is
automatically updated to reflect the user permission information. The following
example shows an AndroidManifest.xml file that is updated with user permission
information:

<!--BEGIN ANDROID USER-PERMISSION AUTOINSERTION FOR BarCodeScannerUniqueID -->
<uses-permission android:name="android.permission.CAMERA"/>

<uses-permission android:name="android.permission.FLASHLIGHT"/>
<!--END ANDROID USER-PERMISSION AUTOINSERTION FOR BarCodeScannerUniqueID -->

Receivers element:

This element enables you to add information about broadcast receivers to the
application component. The information is declared in the Android manifest file in
any IBM Worklight project that imports the component.

486 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Element name

<Receivers>

Parameters

Table 68. Receivers elements

Element Description Occurrences

XmlContent XML content of the broadcast
receiver information that
must be placed in the
Android manifest file. You
can specify one or more
receiver elements within the
XmlContent element to be
appended.

1

Environments supported

v Android

Example
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description >
<Version>1.0.0</Version>
<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>
<Android>

<Receivers>
<XmlContent>

<![CDATA[
<receiver android:name="com.phonegap.plugin.localnotification.AlarmReceiver">
</receiver>
<receiver android:name="com.phonegap.plugin.localnotification.AlarmRestoreOnBoot" >

<intent-filter>
<action android:name="android.intent.action.BOOT_COMPLETED" />

</intent-filter>
</receiver>
]]>

</XmlContent>
</Receivers>

</Android>
</ComponentData>

Automation

When an application component that includes this element is added to a Worklight
project, the AndroidManifest.xml file of the Worklight project is automatically
updated to reflect the broadcast receiver information. The following example
shows an AndroidManifest.xml file that is updated with broadcast receivers
information:
<--!BEGIN ANDROID RECEIVER AUTOINSERTION FOR BarCodeScannerUniqueID -->

<receiver android:name="com.phonegap.plugin.localnotification.AlarmReceiver">
</receiver>
<receiver android:name="com.phonegap.plugin.localnotifisation.AlarmRestoreOnBoot">

<intent-filter>
<action android:name="android.intent.action.BOOT_COMPLETED"/>

Chapter 8. Developing IBM Worklight applications 487

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

</intent-filter>
</receiver>

<--!END ANDROID RECEIVER AUTOINSERTION FOR BarCodeScannerUniqueID -->

Strings element:

This element enables you to add information about strings to the application
component. The information is declared in the android/native/res/values/
strings.xml file in any IBM Worklight project that adds the application
component.

Element name

<Strings>

Parameters

Table 69. Strings inner elements

Element Description Occurrences

XmlContent The XML content of the
string information that needs
to be placed in the
android/native/res/values/
strings.xml file. You can
specify one or more string
elements within the
XmlContent element to be
appended.

1

Environments supported

v Android

Example
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description >
<Version>1.0.0</Version>
<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>
<Android>

<Strings>
<XmlContent>

<![CDATA[
<string name="app_picker_name">Applications</string>
<string name="bookmark_picker_name">Bookmarks</string>
<string name="button_add_calendar">Add to calendar</string>
]]>

</XmlContent>
</Strings>

</Android>
</ComponentData>

488 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Automation

When a component that includes this element is added to a Worklight project, the
android/native/res/values/strings.xml file of the Worklight project is
automatically updated to reflect the strings information. The following example
shows an updated strings.xml file:
<!--BEGIN ANDROID STRING AUTOINSERTION FOR BarCodeScannerUniqueID -->

<string name="app_picker_name">Applications</string>
<string name="bookmark_picker_name>Bookmarks</string>
<string name="button_add_calendar">Add to calendar</string>

<!--END ANDROID STRING AUTOINSERTION FOR BarCodeScannerUniqueID -->

Libraries element (Android):

This element enables you to add required libraries to the application component.
The libraries are added to the android\native\libs folder in any IBM Worklight
project that imports the component.

Element name

<Libraries>

Parameters

Table 70. Libraries elements

Element Description Occurrences

Path Path to the archive file
relative to the root location
of the application
component. The libraries
should be kept only in the
COMPONENT_DATA folder.

1..∞

Note: Do not copy libraries to the ExternalProject folder.

Environments supported

v Android

Example
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description >
<Version>1.0.0</Version>
<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>
<Android>

<Libraries>
<Path>zxing.jar</Path>

</Libraries>
</Android>

</ComponentData>

Automation

When an application component that includes this element is added to a Worklight
project, the android\native\libs folder of the Worklight project is automatically

Chapter 8. Developing IBM Worklight applications 489

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

updated to reflect the dependent libraries information. Figure 63 shows an updated
android\native\libs folder based on the example <Libraries> element.

ExternalLibraries element:

This element enables you to add information about external libraries to the
application component. The information provides pointers to external libraries that
are to be downloaded by the developer who adds the application component to an
IBM Worklight project. Typically, these libraries are additional libraries that are not
packaged as part of the application component.

Element name

<ExternalLibraries>

Parameters

Table 71. ExternalLibraries elements

Element Description Occurrences

URL URL from where the external
library can be retrieved.

1

Message Instructional message about
addition of external libraries
that need to be displayed to
the developer after importing
the component.

1

Environments supported

v Android

Example
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description >
<Version>1.0.0</Version>
<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>
<Android>

<ExternalLibraries>
<URL>http://get-library-here.com</URL >
<Message>Please download VeryUsefulLibrary and copy into the native folder of your project</Message>

</ExternalLibraries>
</Android>

</ComponentData>

Figure 63. Example of updated libs folder

490 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Automation

When an application component that includes this element is added to a Worklight
project, a dialog box displays the specified message.

Files element:

This element enables you to add information about files that are required for the
application component to work. These files are required by the native project of
iPhone or iPad. The information specifies files that need to be added to the Xcode
project in an IBM Worklight project. The information is displayed as a list in a
dialog box whenever a developer adds the application component to a Worklight
project. The files are not actually copied; instead, the developer is prompted to
copy them.

Element name

<Files>

Parameters

Table 72. Files elements

Element Description Occurrences

file Name of each file. 1..∞

Note: The dialog box only displays the list of files to be added to the XCode
project. These files must be added manually to the XCode project. The files must
be included as part of the application component.

Environments supported

v iPhone
v iPad

Example
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description >
<Version>1.0.0</Version>
<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>
<IPhone>

<Files>
<file>CDVBarcodeScanner.mm</file>
<file>zxing-all-in-one.cpp</file>

</Files>
</IPhone>

</ComponentData>

Automation

When a component that includes this element is added to a Worklight project, a
dialog box displays a message prompting the developer to add the listed files to
the Xcode project manually.

Chapter 8. Developing IBM Worklight applications 491

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: Automatic modification of Xcode projects after adding components is
currently not supported.

Libraries element (iPhone and iPad):

This element enables you to add information about libraries to be added to the
application component. The information specifies libraries that need to be added to
the Xcode project in an IBM Worklight project. The information is displayed as a
list in a dialog box whenever a developer imports the application component into
a Worklight project.

Element name

<Libraries>

Parameters

Table 73. Libraries elements

Element Description Occurrences

library Name of each library. 1..∞

Note: The dialog box only displays the list of libraries to be added to the XCode
project. These libraries must be added manually to the XCode project.

Environments supported

v iPhone
v iPad

Example
<ComponentData>

<ID>BarCodeScannerUniqueID</ID>
<Name>Barcode Scanner Android</Name>
<Author>IBM</Author>
<Description>Barcode Scanner for Android by IBM</Description >
<Version>1.0.0</Version>
<Image>barcodeIcons.jpg</Image>
<WLVersion>6.1.0</WLVersion>
<IPhone>

<Libraries>
<library>CoreVideo.framework</library>
<library>AVFoundation.framework</library>

</Libraries>
</IPhone>

</ComponentData>

Automation

When a component that includes this element is added to a Worklight project, a
dialog box displays a message prompting the developer to add the listed libraries
to the Xcode project manually.

Note: Automatic modification of Xcode projects after adding components is
currently not supported.

Validating application components
After creating an application component and adding hooks, you must validate the
component.wcp file to ensure that it conforms to the correct syntax.

492 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

Follow this procedure to validate the component.wcp file.

Procedure
1. Import the application component into an IBM Worklight project. The

component.wcp file is validated during import.
2. Look for error messages in the Worklight Console. The following example error

message indicates that the ClassName parameter is not specified in the
CordovaPlugin element:
Component = BarcodeScannerIOS.wlc
Found component.wcp
In component.wcp, one or more property values(s) are empty/invalid. For details, see below:
Reason:cvc-complex-type.2.4.b: the content of element ’CordovaPlugin’ is not complete. One of ’{ClassName}’ is expected.

3. Correct the errors by using information in the message text and by referring to
the topics under “Adding hooks to an application component” on page 481 that
describe the syntax.

Adding application components to IBM Worklight projects
After you have created and validated application components, you can add them
to your Worklight projects.

Before you begin

Before you add application components, you need to complete the following tasks:
1. Create a Worklight project with an initial hybrid application. You can only add

application components to Worklight projects that have been created with an
initial hybrid application (See “Creating IBM Worklight projects” on page 316.)

2. Set up new IBM Worklight environments that the application components
require. If you do not add all the required environments, error messages are
displayed when you add application components. (See “Setting up a new IBM
Worklight environment for your application” on page 338.)

Note: Adding an environment takes some time before it is deployed. Ensure
that the environments you add are deployed before you proceed to the next
step.

3. Copy the application component files to your download folder. (For
information about specifying a download folder, see “Configuring application
component and template preferences” on page 478.)

About this task

Automatic modification of Xcode projects after adding components is currently not
supported.

Procedure
1. In the Explorer view in Worklight Studio, right-click the application and click

Add/Remove Application Component(s). The Add/Remove Application
Component(s) window opens.

2. From the Application list, select the relevant application.
3. Select the check box for each application component you want to add, and then

click Finish.

Chapter 8. Developing IBM Worklight applications 493

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Results

The selected application components are added to the Worklight project. Each
application component file is marked with the application component identifier.

Removing application components from IBM Worklight projects
You can remove application components from a Worklight project if they are no
longer required.

About this task

Automatic modification of Xcode projects after removing components is currently
not supported.

Procedure
1. In the Explorer view in Worklight Studio, right-click the application and click

Add/Remove Application Component(s). The Add/Remove Application
Component(s) window opens.

2. From the Application list, select the relevant application.
3. Clear In Use for each application component you want to remove, and then

click Finish. In some cases, an information message might be displayed, or you
might be prompted to confirm that you want to remove an application
component.

Results

The application component files are removed from the Worklight project, and the
project is restored to its former state.

Troubleshooting adding and removing application components
Whenever you add or remove an application component, the existing Worklight
project files are backed up.

The backup of each original file is named <orig filename>.backup_<add/
remove>_<component id>_<date and time>, where:
v <orig filename> is the full name of the file being modified (for example,

AndroidManifest.xml).
v <add/remove> is the word “add” or the word “remove” according to the

operation being performed.
v <component id> is the ID of the component being added or removed.
v <date and time> is the timestamp of the operation in the format YYYYMMDD_HHMMSS.

For example, when adding the barcode scanner for the Android component, the
file config.xml is backed up to
config.xml.backup_add_BarCodeScannerUniqueID_20131015_190032.

IBM Worklight project templates
Worklight project templates enable you to accelerate the development of
applications by not having to start from scratch. You can use Worklight project
templates to provide value added services and you can add elements that are
consistent with the look and feel of your brand.

494 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Creating IBM Worklight project templates
You can create Worklight project templates by exporting IBM Worklight projects.
You define metadata information such as the name of the template, and you select
the Worklight project that you want to use as the basis for the template.

Before you begin

If you want to identify the source code that can be configured by developers who
use the Worklight project template, add FIX Me task tags in the configurable
source code before you create a template.

About this task

The following limitations apply:
v Only hybrid Worklight projects can be used as a basis for Worklight project

templates.
v You can create Worklight project templates only from Worklight projects that

contain single applications.

Procedure
1. From the Explorer view In Worklight Studio, right-click the required Worklight

project, and then click Export.
2. Expand IBM Worklight, select Worklight Project Template, and then click

Next.
3. Provide information in the fields listed in the following table, and then click

Finish:

Table 74. Worklight project template metadata

Field Description

Template Name Name of the Worklight project template.
Spaces are allowed.

Author Author or provider of the Worklight project
template.

Description Brief description of the Worklight project
template.

Thumbnail Thumbnail image to identify the Worklight
project template. Valid file formats: .jpg,
.jpeg, .png, .gif. Maximum size: 40x40
pixels.

Template Archive Location and filename of the template. Valid
filename extensions: .wlt and .zip.

Results

The Worklight project template is created with the location and filename you
specified.

Viewing IBM Worklight project templates
You can open a Worklight project template to view its contents by using a file
compression tool.

The Worklight project template contains folders taken from the Worklight project
on which it is based, as well as a mandatory TEMPLATE-DATA folder.

Chapter 8. Developing IBM Worklight applications 495

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: Do not modify the contents of the TEMPLATE-DATA folder.

The TEMPLATE-DATA folder contains the following files:
v The thumbnail image file that was selected when the Worklight project template

was created.
v A template properties file named template.properties, which contains the

metadata information that was specified when the Worklight project template
was created.

The following contents are present in the template.properties file:
v Template title
v IBM Worklight version used to create the template
v Template ID
v Template author
v Template description
v Template thumbnail
v IBM Worklight version number

The following example shows the contents of a typical template.properties file:
title-Simple RSS Reader
wl_version=6.1.0.
id=RSS-09e1ac62-5c34-432e-8597-c6349eade74c
author=IBM
description=Displays entries from an RSS feed (www.example.com). The user can click an entry to read the contents without leaving the app.
image=rss_reader3.png

Creating IBM Worklight projects from IBM Worklight project
templates
You can use Worklight project templates to create Worklight projects. You can select
templates that are available in your download folder.

Before you begin

If the owner of a Worklight project template has provided FIXME tasks, they are
displayed in the Tasks tab. To view them, you need to enable the FIXME tasks
view:
1. In Worklight Studio, click Project > Properties > General > Editors >

Structured Text Editors > Task Tags.
2. Click Enable searching for Task Tags.
3. Click Apply > OK. The Task tab is displayed. When you create an IBM

Worklight project from an IBM Worklight project template, the Task tab lists
any FIX Me tasks to be completed.

Procedure
1. In Worklight Studio, click File > New > Worklight Project. The New Worklight

Project window opens.
2. In the Name field, enter a name for the Worklight project.
3. From the Project Templates pane, click Shared Templates, and then click Next.

For information about the Hybrid Application, Inner Application, Native API,
and Shell Component options, see “Creating IBM Worklight projects” on page
316.

4. In the Application name field, enter a name for your application, and then
click one of the templates available from the list. The list displays templates

496 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

available in the download folder. (For information about configuring the
download folder, see “Configuring application component and template
preferences” on page 478.)

5. To complete the creation of the Worklight project from the highlighted
Worklight project template, click Finish. The Design perspective is opened. The
Tasks view shows the FIX Me tasks available (if any) within the template
content. Links are provided to positions within the template, and
accompanying descriptions explain what is configurable.

6. Optional: Review the list of FIX Me tasks available in the Tasks view, and apply
any appropriate fixes.

Results

The new Worklight project is added to the Explorer view in Worklight Studio. The
project includes all resources that are included in the selected template.

Building and deploying in Worklight Studio
After you create your IBM Worklight project, you must build the application and
deploy it to Worklight Server to run and test it.

Previous sections (“Developing hybrid and web applications” on page 322 and
“Developing native applications” on page 467) covered the basics of creating and
working with your projects in Worklight Studio. This topic provides an overview
of the process that is used to build these projects, deploy them to an instance of
Worklight Server, and run them.

During development, you usually perform this action by right-clicking your
application or an environment in the Project Explorer view of Worklight Studio,
selecting Run As from the menu, and selecting one of its options.

Each of these menu options is covered in the topics that follow the overview of the
build process below.

The IBM Worklight build process

Building a Worklight application for a specific environment (for example, iOS or
Android) is the process that transforms the JavaScript, HTML and CSS code that
you have created for your application into a mobile application for the specified
target. The build process produces several elements:
v A native project for the target platform that is stored in the native folder of the

environment.
v A Worklight application file (.wlapp) that contains the application metadata and

Web resources that are used by Worklight Server to identify and service the
mobile application.

The native project that is generated depends on the target environment:
v For the iPhone and iPad environments, the build operation creates a native

Xcode (the native IDE for building iOS applications) project, which is placed
under the native folder of the environment. You can then use Xcode to build the
final iOS application. If you are working in Worklight Studio on a Mac, you can
also right-click the iphone or ipad environment and use the Run As > Xcode
project option to build the environment and open Xcode for that project. For

Chapter 8. Developing IBM Worklight applications 497

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

more information about the iOS development environment, see the module
Previewing your application on iOS, under category 2, Hello Worklight, in Chapter 3,
“Tutorials and samples,” on page 27.

v For the Android environment, the native folder under the android folder
contains automatically-generated Android application code that is imported into
the Eclipse workspace as an Android project. You use the ADT plugin (Android
Development Tools for Eclipse) to build the final Android application. If you are
working in Worklight Studio on a computer with ADT installed, you can also
right-click the android environment and use the Run As > Android Studio
project option to open that project. For more information about the Android
development environment, see the module Previewing your application on Android,
under category 2, Hello Worklight, in Chapter 3, “Tutorials and samples,” on page
27.

v For BlackBerry applications, the native folder contains BlackBerry code that you
can compile using the Ripple development environment. For more information
about the BlackBerry development environment, see the modules Previewing your
application on BlackBerry 6 and 7 and Previewing your application on BlackBerry 10,
under category 2, Hello Worklight, in Chapter 3, “Tutorials and samples,” on page
27.

v For Windows Phone, the native folder contains a Visual Studio project that you
compile to build the final Windows Phone application. For more information
about the Windows Phone development environment, see the module Previewing
your application on Windows Phone 8, under category 2, Hello Worklight, in
Chapter 3, “Tutorials and samples,” on page 27.

The resulting files from the build are stored in the Worklight Studio project
hierarchy in the <project_name>\bin directory, using the following naming
conventions:
v <project_name>.war – the WAR file for the project.
v <project_name>-app.all.wlapp – a WLAPP file containing all environments for

the project.
v <project_name>-app-common.wlapp – a WLAPP file containing all common

resources for the project.
v <project_name>-app.<environment_name>.wlapp – a WLAPP file for each

environment in the project; for example: MyProject-app-android.wlapp.

Note: Only the latest build is contained in the <project_name>\bin directory at any
time. If you create multiple builds for different target servers for deployment with
the Worklight Console, with the supplied Ant tasks, or using the Worklight Server
Configuration Tool, you must deploy them after each build operation, because the
next build will overwrite the existing files.

You can modify the generated native projects if, for example, you want to add
native code or Cordova plugins to the application. If you modify the HTML,
JavaScript, CSS, the application descriptor file, or any application resources, you
must rebuild the environment using the appropriate Run As > Build ... command
to update the Worklight application file (.wlapp) and the native project.

Once the build of the application completes, it is deployed or not deployed
depending on the Run As command used:
v The Run As > Run on Worklight Development Server option deploys the

application metadata and Web resources (the .wlapp file) to the internal
Worklight Development Server. If you have defined an alternative test server
using the Run As > Build Settings and Deploy Target option, you can also

498 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

deploy directly to that instance of Worklight Server. In this case, the command
name changes to include the name of the target server; for example, Run As >
Run on Tomcat Test Server.

v The Run As > Build ... options (the exact command name may change
depending on context) builds the application or environment but does not
deploy it. Deployment is done through the Worklight Console, through supplied
Ant scripts, or using the Worklight Server Configuration Tool. For more
information on deploying Worklight apps to remote servers, see Chapter 10,
“Deploying IBM Worklight projects,” on page 711.

The following topics go into more detail on each of the Run As menu options.

The Run on Worklight Development Server command
Information about the menu command that is used to build and run an application
or environment on your designated test server.

About this task

You use this menu option when you want to build your project in Worklight
Studio and run it on the internal Worklight Development Server. This instance of
Worklight Server is created automatically when you install Worklight Studio, and
is described in “The Worklight Development Server and the Worklight Console” on
page 343.

Note: This command name is context-sensitive in that it does not always display
the name Run on Worklight Development Server. If you use the Configure
Worklight Build and Deploy Target dialog to choose a different test server, the
name of the server that is selected in the Worklight server to test applications area
is displayed in the command name instead. For example, if you add a local
instance of Worklight Server running on Apache Tomcat, name it "Tomcat Test
Server" and designate it as your default test server, this command appears as Run
As > Run on Tomcat Test Server. For consistency, when referring to this menu
command in this IBM Worklight user documentation, the default name of this
command (Run on Worklight Development Server) is used throughout.

Procedure

When you choose the Run As > Run on Worklight Development Server option,
Worklight Studio performs the following actions:
v It starts the Worklight Development Server, if it is not already running.
v It builds your app and all of its included environments.
v It deploys the app to the Worklight Development Server (or designated test

server), reporting success, failure, and any error messages in the Console view of
Worklight Studio.

v When you open the Worklight Console that is associated with the Worklight
Development Server (or designated test server), that console displays the
successfully deployed app and all of its environments. The console also displays
detailed build and deployment messages, if required.

Note: If your Worklight Console is secured, an Authentication Required dialog
appears, prompting you to enter the User Name and Password:

Chapter 8. Developing IBM Worklight applications 499

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

If you enter the correct credentials, the deployment continues when you click OK.

The dialog also contains a Save user credentials check box. If you select it before
you click OK, the credentials are stored in Eclipse secure storage. This information
can be edited in Eclipse by selecting Preferences > General > Security > Secure
Storage. If you enter incorrect credentials, the deployment fails and the credentials
are not saved.

You can also use this menu command to run and test individual Worklight
environments by right-clicking on the environment in the Project Explorer and
clicking Run As > Run on Worklight Development Server. This option runs and
tests the selected environment on the designated test server.

Important: This menu command always uses as its target server the Worklight
Server instance currently selected in the Worklight server to test applications area
of the Configure Worklight Build and Deploy Target dialog. It ignores any server
information that is entered in the Build the application to work with a different
Worklight server area of the Configure Worklight Build and Deploy Target dialog.

Troubleshooting Worklight Development Server startup
If the Worklight Development Server fails to start and sends a timeout error
message, consider increasing the default timeout value or remove all applications
that you do not intend to work on.

Symptom

When you try to start or run an application on a Worklight Development Server, it
sometimes fails to start and sends the following message:
Server Worklight Development Server was unable to start within 60 seconds. If the server requires more time, try increasing the timeout in the server ed

Cause

IBM Worklight Studio sets a 60-second timeout for the Worklight Development
Server startup. Because the server must start itself and all the applications during
this startup period, this default timeout period might not always be long enough
when the number of deployed projects is medium to large.

500 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Resolving the problem

To resolve this problem, you can apply one or both of the following workarounds:
v Complete the following steps to increase the default timeout value:

1. In Worklight Studio, open the Servers view.
2. Double-click Worklight Development Server to open the Overview page.
3. Expand the Timeouts section.
4. In the Start (in seconds) field, increase the value. Consider doubling the

default value; that is, set it to 120 seconds.
v Complete the following steps to remove the unnecessary applications from the

project:
1. In Worklight Studio, open the Servers view.
2. Right-click Worklight Development Server, and then click Add and

Remove.
3. In the Configured field, click all the applications that you do not intend to

work on, and then click Remove.

After you have applied one or both of the workarounds, restart the server.

The Build All Environments command
Information about the menu command that is used to build or rebuild an
application or an environment, without deploying and running it to a server.

About this task

You use this menu option when you want to build or rebuild your application or
environments in Worklight Studio, but not deploy them to the test server. This
feature is useful when you are preparing to deploy for QA or Production
environments.

Note: This command name is context-sensitive in that it does not always display
the name Build All Environments. If you right-click the name of one of your
environments, the name of that environment is displayed in the command name
instead. For example, if you right-click the android folder in your project hierarchy,
this command appears as Run As > Build Android Environment. For consistency,
when referring to this menu command in this IBM Worklight user documentation,
the default name of this command (Build All Environments) is used throughout.

Procedure

When you choose this command, Worklight Studio performs the following actions,
depending on the project element that is selected:
v If you right-click the main application node and choose Run As > Build All

Environments, Worklight Studio builds your application and all of its included
environments.

v If you right-click on only a single environment and choose (for example) Run As
> Build iPhone Environment, Worklight Studio builds only the selected
environment.

v No deployment takes place, either to the designated test server or to a different
Worklight Server.

Important:

Chapter 8. Developing IBM Worklight applications 501

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

If you checked the Build the application to work with a different Worklight
server option in the Configure Worklight Build and Deploy Target dialog, then this
menu option triggers a build using that Worklight Server information, and
recognizes it over the test server setting. If this option is cleared, the build occurs
using the build settings for the designated test server.

Any command that triggers the deployment of an application to the Worklight
Development Server uses the Worklight Development Server settings to rebuild the
application; the configuration settings for the target server are ignored. This is true
for the following commands:
v Run As > Run on Worklight Development Server.
v Run As > Deploy Worklight Adapter (to deploy the selected adapter).
v Run As > Xcode project (to build the selected iphone or ipad environment when

working in Worklight Studio on a Mac).

The command Run As > Build All Environments should be the last command
you run before you deploy the project WAR file and other artifacts.

The Preview command
Information about the menu command that is used to preview an application or an
environment.

About this task

You use this menu option when you want to preview an application or one of its
environments, without triggering a rebuild and redeployment of it to the
designated test server.

Note: The Preview feature requires that your designated test server is running and
that the application was built at least once for current test server configuration.

Procedure

When you select Run As > Preview, Worklight Studio displays an instant preview,
depending on the project element that is selected:
v Common preview – If you right-click the common folder in your project hierarchy

and choose this command, Worklight Studio previews all common resources.
This action opens a browser with a simple preview of your application,
independent of any development environment you might have installed.

v Single environment preview – If you right-click an environment folder in your
project hierarchy and choose this command, Worklight Studio previews that
environment with the Mobile Browser Simulator.

v All environments preview – If you right-click the main application node in your
project hierarchy and choose this command, Worklight Studio previews that
environment with the Mobile Browser Simulator, displaying a preview for every
environment you added to your application.

Important: If you use an IBM Worklight Shell Component in your inner
application, you might see incorrect results with a browser-based preview of the
application.

In Worklight Studio V6.1.0, the preview feature that you can start by selecting Run
As > Preview or from the Worklight Console, changed. As an unintended
side-effect, the preview of an inner application that references a shell component

502 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

might not render as expected. Specifically, the fragments that normally get injected
into the HTML page for the inner application are missing. As a result, any
additional links, such as scripts, or CSS, are omitted during the preview. Also, if an
extra user interface is defined in the shell, it is omitted as well.

To see a correct preview for an inner application that uses a shell, build the
application and start it by using either a device emulator (Android or iOS) or an
actual native device.

The Build Settings and Deploy Target command
Information about the menu command that is used to create build and deploy
settings for Worklight applications.

In previous versions of IBM Worklight Studio, you accessed the build and deploy
settings for a given Worklight project through a number of different dialogs. Since
IBM Worklight 6.1.0, those settings are consolidated in a single dialog. As a result,
configuring a project to build and deploy to a local test server or to build for a
remote server are available through the same dialog, along with other build
settings options.

This new dialog, which is accessed by choosing the Run As > Build Settings and
Deploy Target menu command, takes the place of several commands or dialogs in
previous versions of Worklight Studio. It replaces:
v The Run As > Build for Remote Server menu command and its associated

dialog.
v The Run As > Apply Build Settings menu command and its associated dialog.
v The Change Target Server menu command and its associated dialog.

The Build Settings and Deploy Target dialog

When you right-click on an application or an environment and select Run As >
Build Settings and Deploy Target, the following dialog is displayed:

Chapter 8. Developing IBM Worklight applications 503

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Important: This dialog is used only to specify configurations and settings; clicking
OK does not trigger a build. Any time that you make a modification with this
dialog, you must rebuild your application and environments for your changes to
take effect, by using the Run As > Build All Environments menu command.

The dialog contains three main areas, used to perform different actions. Each of
these areas is covered in the sections that follow.

Apply build optimization settings

Build optimizations are useful to reduce the size of an application, improve its
performance, or reduce its load time. The available optimizations, minification and
concatenation, are disabled by default for every project, but you can enable them
by checking the appropriate option in the following screen capture.

You use this area of the dialog if you want to change the build settings for Desktop
Browser and Mobile Web environments for the currently selected server, and want
to apply these new minification and concatenation settings to future builds.

Important: The build optimization settings that you choose apply to the Worklight
Server selected in the rest of the dialog. That is, if Build the application to work
with a different server is selected, these optimization settings apply to that server
when you click OK. If Build the application to work with a different server is not
selected, they apply to the test server selected in the Server field of the Worklight
server to test applications area.

504 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For more information about build settings, see “IBM Worklight application build
settings” on page 516.

For more information about minification, see “Minification of JS and CSS files” on
page 519.

For more information about concatenation, see “Concatenation of JS and CSS files”
on page 521.

Worklight Server to test applications

In this area of the dialog, you can set the Worklight Server that you want to use to
test your applications and environments. The default setting is Worklight
Development Server. This name refers to the embedded instance of WebSphere
Application Server Liberty Profile and Worklight Server that is created when you
install Worklight Studio.

But you can have other test servers that you want to use. For example, you can
have a local or shared instance of Worklight Server running on WebSphere
Application Server Liberty Profile or Apache Tomcat. Using this area of the dialog,
you can choose which of these servers you want to use as a default for testing
during development.

The Server field enables you to select from a list of configured test servers in your
Worklight Studio development environment. You can also add a test server by
clicking Add Server.

The Context path field enables you to specify the web application context path to
be used when you deploy and run on the selected test server. By default this field
is set to /<your_project_name>.

Note: If you use this area of the Configure Worklight Build and Deploy Target
dialog to choose a different test server than the internal Worklight Development
Server, the name of the server that is selected in the Server field is displayed in the
command name instead. For example, if you add a local instance of Worklight
Server running on Apache Tomcat, name it "Tomcat Test Server" and designate it as
your default test server, this command appears in the menus as Run As > Run on
Tomcat Test Server.

Important: When you change your designated test server, the new server remains
the default for the Run As > Run on <name of test server> command until you
change it again. All subsequent builds created with this command are deployed to
and run on the test server you selected.

Build the application to work with a different Worklight Server

You use this option when you want to build your project in Worklight Studio and
run it on another instance of Worklight Server that is running externally to your
Eclipse development environment. For example, after you test locally, you use this
area of the dialog to build your application for deployment to a production server.

Chapter 8. Developing IBM Worklight applications 505

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: Both Worklight Studio Consumer Edition and Worklight Studio Enterprise
Edition provide the capability to deploy to the internal Worklight Development
Server, and, using this area of the dialog, to a remote server. The Worklight Studio
Developer Edition is provided for evaluation purposes, and you can deploy only
to the internal Worklight Development Server.

This area of the Configure Worklight Build and Deploy Target dialog becomes
active when you select Build the application to work with a different server:

The Server field is required, and contains the URL for the remote target server. The
entry must use the format: http(s)://<hostname>:<port>.

The Context path field specifies the web application context path to be used when
deploying to this server.

To deploy the resulting WAR file and other artifacts, you must use the Worklight
Console, the supplied Ant tasks, or the Worklight Server Configuration Tool,
following the procedures that are listed in “Deploying the project WAR file” on
page 714.

Additional Run As menu options
Information about additional menu commands that can appear in your Run As
menus, depending on platform and the external development environments you
have installed.

There are a number of commands that can appear on the Run As menus,
depending on context-sensitivity, the computer platform you are working on, and
which external development environments you have installed on your computer.
v If you are working in Worklight Studio on a Mac, you can right-click the iphone

or ipad environment and use the Run As > Xcode project option to build the
environment and open the Xcode development environment for that project.

For more information about the iOS development environment, see the module
Previewing your application on iOS, under category 2, Hello Worklight, in Chapter 3,
“Tutorials and samples,” on page 27.

v If you are working in Worklight Studio on a computer with the ADT plugin
(Android Development Tools for Eclipse) installed, you can right-click the
android environment and use the Run As > Android Studio project option to
open that project in the Android development environment.

506 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For more information about the Android development environment, see the
module Previewing your application on Android, under category 2, Hello Worklight,
in Chapter 3, “Tutorials and samples,” on page 27.

v If you are working in Worklight Studio on a computer running Windows 8, with
Microsoft Visual Studio installed, you can right-click the windowsphone8 or
windows8 environment and use the Run As > Visual Studio project option to
open that project in the Visual Studio development environment.

For more information about the Windows Phone 8 development environment,
see the module Previewing your application on Windows Phone 8, under category 2,
Hello Worklight, in Chapter 3, “Tutorials and samples,” on page 27.

Optimizing IBM Worklight applications
Worklight Studio has several features that you can use to reduce the size of your
application or otherwise improve its performance or reduce its load time.

During development, the applications you develop can perform well. But when
these apps are used by mobile devices, performance can be impacted by a number
of factors.

The large size of applications can make initial download times from the
Application Center too long for users. Inclusion of multiple JavaScript files in
Desktop Browser and Mobile Web applications can require multiple requests to
retrieve them when the app is started, increasing start time. Unused resources such
as large images or unneeded files included in the generated Cache Manifest file
can further slow start time for these types of applications.

Worklight Studio includes a number of features that can reduce the size of your
Worklight web applications, such as minification or removing unused features such
as JSONStore. It also includes features that can improve performance and user
satisfaction by enabling them to start faster, such as concatenation and editing the
Cache Manifest. These features are described in the following topics.

Including and excluding application features
If features such as JSONStore are not used in your application or in certain
environments, you can reduce the application size by excluding them.

With IBM Worklight, you can include or exclude features from the application
build if those features are not required. For example, JSONStore offers many
benefits, if code that references it is actually used in the application. If it is not
used, the JSONStore resources greatly increase the application size, and thus slow
both initial app download time and app start time.

Chapter 8. Developing IBM Worklight applications 507

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

There is a new <features> element in the Application Descriptor that controls the
inclusion or exclusion of resources. In the application-descriptor.xml file itself,
this element appears similar to the following example, which shows JSONStore
resources being included in the build:
<application platformVersion="6.1.0.00.20131126-0630" id="myApp" xmlns="http://www.worklight.com/application-descriptor">

...
<features>

<JSONStore/>
</features>
...

</application>

For more information about Application Descriptor attributes, see “The application
descriptor” on page 331.

When you first create an IBM Worklight application, the <features> tag is
automatically created in the application-descriptor.xml file, with no contents.
What this means is that if you use JSONStore in your code, it is not automatically
added to the builds. When you run the application, you receive an error, as shown
in the following screen capture:

You can resolve this situation by using an Eclipse QuickFix:

But you can also choose which features to include in the build with the Worklight
Studio editor, as shown in the following procedure.

To include or exclude features in Worklight Studio
1. In Worklight Studio, open the application-descriptor.xml file for your

application with the Application Descriptor Editor:

508 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

If the Optional Features element is empty (as in the screen capture), no
features such as JSONStore are included in the build.

2. To add features, click Add to display the Add Item window:

Chapter 8. Developing IBM Worklight applications 509

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. Choose the feature that you want to add to the build (in this example,
JSONStore), and click OK.

4. The Application Description Editor now displays JSONStore as an attribute of
Optional Features, along with Details about the feature in the right panel:

510 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

5. To remove a feature, select it in the left panel and click Remove.

Application cache management in Desktop Browser and
Mobile Web apps

Worklight Studio provides mechanisms by which you can control the contents of
the application cache for Desktop Browser and Mobile Web environments.

The application cache

Ideally, you want mobile and desktop web applications to be able to work when
the user is offline. Older browsers had their own caching mechanisms, but they
were not always reliable. The release of HTML5 addressed this need with the
introduction of the application cache, which provides users three advantages:
v Offline browsing – users can work with the application when they are offline.
v Speed – cached resources are local, and thus load faster.
v Reduced server load – the browser only downloads resources that are updated

or changed from the server.

For more information, see HTML5 Application Cache.

The application cache manifest

The Cache Manifest is a simple text file that lists the resources that the browser is to
cache for offline access. It contains a list of resources that are explicitly cached after
the first time they are downloaded. The Cache Manifest can contain three sections:
v CACHE – Files and resources that are listed under this heading (or immediately

after the CACHE MANIFEST heading if no sections are present) will be explicitly
cached after the first time they are downloaded.

v NETWORK – Files listed under this heading are white-listed resources that require a
connection to the server. All requests to these resources bypass the cache, even if
the user is offline.

Chapter 8. Developing IBM Worklight applications 511

http://www.w3schools.com/html/html5_app_cache.asp

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v FALLBACK – An optional section that specifies fallback pages if a resource is
inaccessible. The first URI listed is the primary resource, and the second URI is
the fallback. Both URIs must be relative and from the same origin as the
manifest file.

When the browser opens a document that includes the manifest attribute, the
browser loads the document and then fetches all the entries that are listed in the
Cache Manifest file. If no application cache exists, the browser creates the first
version of the application cache.

If unnecessary or redundant files are included, they must all be fetched before the
application can start, which can create a poor user experience. The procedure that
follows documents ways in which you can edit the Cache Manifest to reduce the
start time for your Desktop Browser and Mobile Web applications.

Managing the application Cache Manifest in Worklight Studio
The procedures for managing and editing the contents of the application cache for
Desktop Browser and Mobile Web applications are listed in this section.

With IBM Worklight, you can control the Cache Manifest in web environments
(Desktop Browser and Mobile Web). The name of the Cache Manifest file is
worklight.manifest. This file is located in the folder for each of these types of
environments.

You can now view (and edit) the contents of this file in Worklight Studio, as shown
in the following screen capture:

A new attribute now exists in the Application Descriptor (application-
descriptor.xml) for Desktop Browser and Mobile Web elements. The current
setting of this attribute, called <cacheManifest>, can be easily viewed, as shown in
the following screen capture:

512 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For more information about Application Descriptor attributes, see “The application
descriptor” on page 331.

The <cacheManifest> attribute accepts three values, as shown in the following
table. No matter which value or mode is selected, if the Cache Manifest does not
exist, the Worklight Studio builder generates the default Cache Manifest to give
you something to start with. But after creating this file, the builder leaves the
resulting Cache Manifest file in its default no-use mode unless you explicitly
change the setting.

Table 75. <cacheManifest> properties

Property Description

generated In this mode, the Worklight Studio builder
generates a default Cache Manifest and
includes it in the application's HTML files.
The default Cache Manifest is generated
depending on the environment:

v For Desktop Browser environments – all
resources are under NETWORK, which
means: no cache at all.

v For Mobile Web environments – all
resources are under CACHE, which
means: cache everything.

In generated mode, in addition to creating
the Cache Manifest, the builder creates a
backup of the previous Cache Manifest,
called worklight.manifest.bak. This file is
overwritten in every build.

no-use In this mode (which is the default), the
Cache Manifest is not included in the
application's HTML files. This setting means
that there is no Cache Manifest and that
decisions about which resources are cached
are up to the browser.

user In this mode, the Worklight Studio builder
does not generate the Cache Manifest, but it
does include it in the application's HTML
files. This setting means that the user must
maintain the Cache Manifest manually.

Chapter 8. Developing IBM Worklight applications 513

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Editing the Cache Manifest

If you select the Application Descriptor (application-descriptor.xml file) in
Design view, you can view and set the current mode of the <cacheManifest>
attribute:

In this view, each of these attribute options is given a description:
v Not Included in the application (default) corresponds to no-use mode
v Managed by Worklight corresponds to generated mode
v Managed by user corresponds to user mode

The only <cacheManifest> mode that enables the user to edit the Cache Manifest is
user. If you attempt to edit the file in any other mode, Worklight Studio displays
the following message:

If you click Yes on this window, you can change the <cacheManifest> mode
interactively and then continue to edit the file. You can also change the
<cacheManifest> mode at any time with Worklight Studio's DDE editor.

The default <cacheManifest> setting for new Worklight projects is Not Included in
the application (no-use mode).

If your testing reveals that certain resources can be removed from the generated
Cache Manifest, you can change the setting to Managed by user (user mode).

514 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Then, you can edit the Cache Manifest and conduct more performance tests before
you deploy to the production environment.

For example, you might notice that the Cache Manifest contains large images or
other resources that are not used by the web application but need to remain in the
development environment for other platforms. If you edit the Cache Manifest, you
can remove them so that the web versions of this app load more quickly.

An example of a generated Cache Manifest file for a Desktop Browser environment
is shown in the following sample:
CACHE MANIFEST
Created: 2013-05-13 16:55:34 UTC
Modifying this file is possible only when the Cache Manifest value in
the application descriptor is set to "Managed by user"
common/js/base.js
common/js/busy.js
common/js/sjcl.min.js
common/js/wl_.min.js
common/js/wlcommon.js
common/js/wljq.js
css/tptp.css
images/icon.png
images/icon114x114.png
images/icon57x57.png
images/icon72x72.png
images/thumbnail.png
js/initOptions.js
js/messages.js
js/tptp.js
tptp.html
wlclient/css/wlclient.css
wlclient/images/empty.gif
wlclient/js/analytics/Tealeaf.js
wlclient/js/analytics/analytics.js
wlclient/js/challengeHandlers/antiXSRFChallengeHandler.js
wlclient/js/challengeHandlers/authenticityChallengeHandler.js
wlclient/js/challengeHandlers/deviceAuthAutoProvisioningChallengeHandler.js
wlclient/js/challengeHandlers/deviceAuthNoProvisioningChallengeHandler.js
wlclient/js/challengeHandlers/remoteDisableChallengeHandler.js
wlclient/js/deviceAuthentication.js
wlclient/js/deviceSensors/acquisition.js
wlclient/js/deviceSensors/bind.js
wlclient/js/deviceSensors/geo.js
wlclient/js/deviceSensors/geoUtilities.js
wlclient/js/deviceSensors/triggers.js
wlclient/js/deviceSensors/wifi.js
wlclient/js/diagnosticDialog.js
wlclient/js/encryptedcache/encryptedcache.js
wlclient/js/encryptedcache/externs.js
wlclient/js/events/eventTransmitter.js
wlclient/js/features_stubs/jsonstore_stub.js
wlclient/js/messages.js
wlclient/js/window.js
wlclient/js/wlclient.js
wlclient/js/wlfragments.js
wlclient/js/worklight.js

NETWORK:
*

Chapter 8. Developing IBM Worklight applications 515

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

IBM Worklight application build settings
You can use minification to reduce the size of JavaScript and CSS files in your
Mobile Web or Desktop Browser application. You can also use concatenation to
improve the start time of the application. To do this, you use Worklight build
settings.

Since IBM Worklight V6.0.0, a file named build-settings.xml is created when a
new Worklight application is created, on the same level as application-
descriptor.xml. The purpose of the file is to prepare minification and
concatenation configurations for each environment. These configurations are then
used by the minify and concatenation engines during the build process.

The structure of the build-settings.xml file is as shown in the following example:
<buildSettings xmlns="http://www.ibm.worklight.com/build-settings">

<common>
<minification level="simple" includes="**" excludes="**/css/**"/>
<concatenation includes="**" excludes="**/*.js"/>

</common>
<desktopBrowser>

<minification level="simple" includes="**" excludes="**/css/**"/>
<concatenation includes="**" excludes="**/*.txt"/>

</desktopBrowser>
<mobileWebApp>

<minification level="simple" includes="**" excludes="**/css/**"/>
<concatenation includes="**" excludes="**/*.js"/>

</mobileWebApp>
</buildSettings>

The names of elements are aligned with names of environments. Only Mobile Web
and Desktop Browser environments can be minified or concatenated, so only those
individual environment elements can be configured. The <common> element contains
configurations that are common to all environments.

All three elements – <common>, <desktopBrowser>, and <mobileWebApp> – are
optional.

If any of these three elements are used, the <minification> attribute is mandatory
within each one. Its level attribute specifies the compilation level of minification
process and resources that can or cannot be used. Minification level options are
listed in the following table.

Table 76. Options for the <minification> level attribute

Value Description

none No minification is done on your code by the Worklight Studio
builder.

whitespaces Removes comments from your code and also removes line breaks,
unnecessary spaces, and other white space. The output JavaScript
is functionally identical to the source JavaScript. (In the Worklight
Studio Build Settings Editor, this attribute is called Remove
whitespaces and comments.)

516 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

simple Removes the same white space and comments as whitespaces, but
also optimizes expressions and functions, including renaming local
variables and function parameters to shorter names. Renaming
variables to shorter names makes the code smaller. Because the
simple setting renames only symbols that are local to functions, it
does not interfere with the interaction between the compiled
JavaScript and other JavaScript. Compilation with this setting
always preserves the functionality of syntactically valid JavaScript,
if the code does not access local variables with string names, for
example, by using eval() statements. (In the Worklight Studio
Build Settings Editor, this attribute is called Google Closure
Compiler Simple Optimization.)

The includes and excludes attributes must be followed by a list of file names or
regular expressions as used by Ant, separated by semicolons. Only JavaScript (.js)
and Cascading Style Sheet (.css) files can be listed. Wildcard characters are
allowed, with the following rules:
v ** – includes or excludes all files and folders
v **/foldername/** – includes or excludes all files and folders under foldername

v **/*.css – includes or excludes all files in all folders that have an extension of
.css

The includes and excludes attributes can be used in combination, such as in the
following examples:
v includes="**" and excludes="**/*.css" contains all files except .css files
v includes="**" and excludes="**/css/**" contains all files except files under the

css folder
v includes="**/js/**" contains only files that are found under the js folder
v includes="**/*.js" contains only files that have an extension of .js
v includes="**/*.js" and excludes="**/*.css" contains no files at all

For more information about minification, see “Minification of JS and CSS files” on
page 519.

The <concatenation> element is optional. It contains no level attribute, and its
includes and excludes attributes use the same syntax that is listed for the
<minification> element.

For more information about concatenation,see “Concatenation of JS and CSS files”
on page 521.

To turn on minification or concatenation for an environment

To instruct Worklight Studio to use minification, concatenation, or both when it
builds the application:
1. In Worklight Studio, right-click the desktopbrowser or mobilewebapp element

of your application (or the main application node) and choose Run As > Build
Settings and Deploy Target from the menu.
The Build Settings and Deploy Target window is displayed:

Chapter 8. Developing IBM Worklight applications 517

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. In the Build optimization area of the dialog, select the check box of the feature
or features you want to use when you build this environment.

3. Click OK.

Note: This action does not trigger an automatic build. To build or rebuild using
these new settings, you must use either the Run As > Run on Worklight
Development Server or the Run As > Build... menu commands.

To edit the build-settings.xml file

Similar to the application-descriptor.xml file, the build-settings.xml can be
edited with the Eclipse DDE editor:
1. In Worklight Studio, double-click the build-settings.xml element of your

application to display the Build Settings Editor:

2. To create a configuration for Concatenation:

518 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

a. Enter the list of files to be concatenated or not concatenated in the includes
and excludes fields. Use the Ant syntax that is described earlier.

3. To create a configuration for Minification:
a. Select the wanted minification level from the Level field:

v None (Default) specifies the none attribute in the above table.
v Remove whitespaces and comments specifies the whitespaces attribute

in the above table.
v Google Closure Compiler Simple Optimization specifies the simple

attribute in the above table.
b. Enter the list of files to be minified or not minified in the includes and

excludes fields. Use the Ant syntax that is described earlier.

The build-settings.xml can also be edited with a standard XML editor. If it is not
already present, the <common> element can be added only with an XML editor. See
“IBM Worklight application build settings” on page 516 for examples of the XML
syntax.

Building with the build-settings.xml file

At build time, the Worklight Studio builder minifies or concatenates all the files
that are included and not excluded, as defined in the build-settings.xml file.

During the build process, when either minification or concatenation are specified
for an environment, the builder reads the build-settings.xml file and configures
the compilation level and included and excluded files for that environment. Each
environment is minified or concatenated according to its own configuration, and
according to the following rules:
v The compilation level value of the environment overrides the compilation level

specified in the <common> element.
v The includes attribute of each environment overrides an includes attribute of

<common>.
v The excludes attribute of each environment is concatenated to the excludes

attribute of <common>.

By editing the build-settings.xml file, you can essentially create different
configurations for minification and concatenation, depending on the stage of the
development cycle. For example, you might have one setting that is commonly
used during development, in which the minification level is set to none and the
concatenation feature is disabled. But when you move the application to
production, you can edit the build settings to use a minification level of simple
and to enable concatenation.

Minification of JS and CSS files
Settings within Worklight Studio enable you to minimize the size of JavaScript and
CSS files deployed with your Desktop Browser and Mobile Web applications.

Minification is the process that minifies web resources to make them smaller. The
smaller size of the resources means less traffic between the Worklight application
and Worklight Server. This is true both when the app is being initially downloaded
by users, and at application start time. The feature is a counterpart to another
build optimization, concatenation, and is almost always used in conjunction with it.
Use of these features can either improve the applications' start time
(concatenation), or reduce the size of the application (minification).

Chapter 8. Developing IBM Worklight applications 519

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Minification is done at build time by the Google Closure Compiler. There are three
levels of minification that can be used in an IBM Worklight application, as listed in
the following table:

Table 77. Options for the <minification> level attribute

Value Description

none No minification is done on your code by the Worklight Studio
builder.

whitespaces Removes comments from your code and also removes line breaks,
unnecessary spaces, and other white space. The output JavaScript
is functionally identical to the source JavaScript. (In the Worklight
Studio Build Settings Editor, this attribute is called Remove
whitespaces and comments.)

simple Removes the same white space and comments as whitespaces, but
also optimizes expressions and functions, including renaming local
variables and function parameters to shorter names. Renaming
variables to shorter names makes the code smaller. Because the
simple setting renames only symbols that are local to functions, it
does not interfere with the interaction between the compiled
JavaScript and other JavaScript. Compilation with this setting
always preserves the functionality of syntactically valid JavaScript,
if the code does not access local variables with string names, for
example, by using eval() statements. (In the Worklight Studio
Build Settings Editor, this attribute is called Google Closure
Compiler Simple Optimization.)

To configure minification in Worklight Studio

You create a minification configuration for your Mobile Web or Desktop Browser
application in two steps. First, you edit the Build Settings for the application, and
then you turn on minification for the individual environments.
1. To configure minification, in Worklight Studio, double-click the

build-settings.xml element of your application to display the Build Settings
Editor and Add or select the environment:

2. Select the wanted minification level from the Level field:
v None (Default) specifies the none attribute in the table previously mentioned.

520 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Remove whitespaces and comments specifies the whitespaces attribute in
the table previously mentioned.

v Google Closure Compiler Simple Optimization specifies the simple
attribute in the table previously mentioned.

3. Enter the list of files to be minified or excluded from minification in the
includes and excludes fields. When you save, these settings become part of the
application code.
Use the Ant syntax that is described in “IBM Worklight application build
settings” on page 516.

4. To instruct Worklight Studio to use concatenation during the build, in
Worklight Studio, right-click the desktopbrowser or mobilewebapp element of
your application (or the main application node) and choose Run As > Build
Settings and Deploy Target from the menu.
The Build Settings and Deploy Target window is displayed:

5. In the Build optimization area of the dialog, select Use minification to reduce
the size of JavaScript and CSS files.

6. Click OK.
7. Rebuild your application. No changes take place after an edit of the

minification parameters until after the next build.

The build-settings.xml can also be edited with a standard XML editor, and can
be invoked using Ant scripts. See “IBM Worklight application build settings” on
page 516 for examples of the XML syntax.

Concatenation of JS and CSS files
Worklight Studio allows concatenation of multiple JavaScript and CSS files that are
deployed with your Desktop Browser and Mobile Web applications.

Since IBM Worklight V6.0.0, the concatenation feature allows concatenation of the
multiple web resources that are used by the application (JavaScript and CSS files)
into a smaller number of files. Reducing the total number of files that are

Chapter 8. Developing IBM Worklight applications 521

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

referenced by the application HTML results in fewer browser requests when the
application starts up, which allows the application to start more quickly.

Concatenation is available for Desktop Browser and Mobile Web environments
only. The feature is a counterpart to another build optimization, minification, and is
almost always used in conjunction with it. Use of these features can either reduce
the size of Worklight applications (minification) or improve their start time
(concatenation).

During concatenation, several resources (for example, JavaScript files and inline
scripts) are copied into a new file, which is then referenced by the application
HTML. References to the original resources are removed from the HTML. This
means that less communication between the device and web server is required to
retrieve the application code.

At build time, the concatenation algorithm determines which resources to
concatenate into which files. Concatenation is controlled by a number of different
parameters, such as the structure of the HTML, the type of the resources to be
concatenated, and the attributes of these resources. The order of the resources in
the HTML is preserved. As a result, the concatenation process does not have any
negative effects in terms of code dependencies or functionality.

To configure concatenation in Worklight Studio

You create a concatenation configuration for your Mobile Web or Desktop Browser
application in two steps. First, you edit the Build Settings for the individual
environments, and then you turn on concatenation for the application.
1. To enter the list of files to be concatenated, in Worklight Studio, double-click

the build-settings.xml element of your application to display the Build Settings
Editor and Add or select the environment:

2. Enter the list of files to be concatenated or not concatenated in the includes
and excludes fields. When you save, these settings become part of the
application code.
Use the Ant syntax that is described in the following “Syntax and examples” on
page 523 section and in “IBM Worklight application build settings” on page
516.

3. To instruct Worklight Studio to use concatenation during the build, in
Worklight Studio, right-click the appropriate desktopbrowser or

522 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

mobilewebapp element of your application (or the main application node) and
choose Run As > Build Settings and Deploy Target from the menu.
The Build Settings and Deploy Target window is displayed:

4. In the Build optimization area of the dialog, select Use concatenation to
reduce the number of JavaScript and CSS files.

5. Click OK.
6. Rebuild your application. No changes take place after an edit of the

concatenation parameters until after the next build.

The build-settings.xml can also be edited with a standard XML editor, and can
be invoked using Ant scripts.

Syntax and examples

The includes and excludes attributes must be followed by a list of file names or
regular expressions as used by Ant. Only JavaScript (.js) and Cascading Style
Sheet (.css) files can be listed. Wildcard characters are allowed, with the following
rules:
v ** – includes or excludes all files and folders
v **/foldername/** – includes or excludes all files and folders under foldername

v **/*.css – includes or excludes all files in all folders that have an extension of
.css

v Multiple file names or regular expressions are separated by semicolons.
v Included files are concatenated (all files are included by default).
v Excluded files are not concatenated (no files are excluded by default).
v Files that are excluded or not included are not part of the concatenation process.
v In most cases, setting the included list to ** (the default value – all files) and

modifying only the excluded list is sufficient to achieve the wanted results

Chapter 8. Developing IBM Worklight applications 523

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

In practice, users often create more specific excludes definitions, relying on
wildcards to include the remaining files. For example, JavaScript files with the
async attribute might be good candidates for exclusion, as it might not make sense
to concatenate their content with other files.

The following example shows an IBM Worklight HTML file that contains the
standard resources that are provided by the IBM Worklight, along with other
resources defined by the user:
<html>
<head>
...

<link rel="stylesheet" href="css/main.css">
<link rel="stylesheet" href="css/myStyle.css">
<link rel="stylesheet" href="css/myStyle2.css">
<link rel="stylesheet" href="css/myStyle3.css">

<script>window.$ = window.jQuery = WLJQ;</script>
<script src="js/myJSFile.js"></script>
<script src="js/myJSFile2.js"></script>
<script src="js/myJSFile3.js" async></script>
<script src="js/myJSFile4.js"></script>
<script src="js/myJSFile5.js"></script>

</head>
<body id="content" style="display: none;">

...
<script src="js/initOptions.js"></script>
<script src="js/main.js"></script>
<script src="js/messages.js"></script>

</body>
</html>

After the concatenation process (as part of the build), the resulting HTML file has
the following structure:
<html>

<head>
...

<link href="wlclient/css/wlclient.css" rel="stylesheet">
...
<link href="css/wlconcatenated0.css" rel="stylesheet">

<script>

... WL framework initialization code ...

</script>

<script src="common/js/wljq.js"></script>
<script src="wlconcatenatedhead0.js"></script>
<script src="wlconcatenatedhead1.js"></script>
<script async="" src="js/myJSFile3.js"></script>
<script src="wlconcatenatedhead2.js"></script>

</head>

<body>
...

<script src="wlconcatenatedbody0.js"></script>
</body>

</html>

The following changes were made to the HTML in the concatenation process:

524 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v All of the CSS files under the css folder were concatenated into a single file,
wlconcatenated0.css. Note the file wlclient.css, which is not concatenated,
because it is located under a separate folder.

v All of the Worklight framework files were concatenated into two files – wljq.js
and wlconcatenatedhead0.js.

v The inline script and the files myJSFile.jsand myJSFile2.js were concatenated
into the file wlconcatenatedhead1.js.

v The file myJSFile3.js contains the async attribute, and so it was not
concatenated into another file.

v The files myJSFile4.js and myJSFile5.js were concatenated into the file
wlconcatenatedhead2.js.

v In the body, the files initOptions.js, main.js and messages.js were
concatenated into the file wlconcatenatedbody0.js

In this example, the number of resources that are referenced by the HTML is
greatly reduced. The number of application resources and user-defined resources is
reduced from 12 to 5, and only three files are used for all of the Worklight
framework resources. This reduction results in fewer requests by the browser,
leading to a faster application startup time.

Developing the server side of an IBM Worklight application
This collection of topics relates to various aspects of developing the server-side
components of a Worklight application.

Overview of IBM Worklight adapters
Adapters run on the server and connect to mobile apps.

Adapters are the server-side code of applications that are deployed on and
serviced by IBM Worklight. Adapters connect to enterprise applications (otherwise
referred to as back-end systems), deliver data to and from mobile applications, and
perform any necessary server-side logic on this data.

With IBM Worklight, you can create and configure adapters manually, or you can
also automatically generate SAP Netweaver Gateway or SOAP adapters with the
services discovery wizard. For more information about how to automatically
generate adapters, see “Generating adapters with the services discovery wizard”
on page 547.

Benefits of IBM Worklight adapters

Adapters provide various benefits, as follows:
v Fast Development: Adapters are developed in JavaScript and XSL. Developers

employ flexible and powerful server-side JavaScript to produce succinct and
readable code for integrating with back-end applications and processing data.
Developers can also use XSL to transform hierarchical back-end data to JSON.

v Read-only and Transactional Capabilities: IBM Worklight adapters support
read-only and transactional access modes to back-end systems.

v Security: IBM Worklight adapters use flexible authentication facilities to create
connections with back-end systems. Adapters offer control over the identity of
the user with whom the connection is made. The user can be a system user, or a
user on whose behalf the transaction is made.

Chapter 8. Developing IBM Worklight applications 525

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Transparency: Data retrieved from back-end applications is exposed in a
uniform manner, so that application developers can access data uniformly,
regardless of its source, format, and protocol.

The adapter framework

The adapter framework mediates between the mobile apps and the back-end
services. A typical flow is depicted in the following diagram. The app, the
back-end application, and the JavaScript code and XSLT components in the
Worklight Server are supplied by the adapter or app developer. The procedure and
auto-conversions are part of IBM Worklight.

1. An adapter exposes a set of services, called procedures. Mobile apps invoke
procedures by issuing Ajax requests.

2. The procedure retrieves information from the back-end application.
3. The back-end application then returns data in some format.

v If this format is JSON, the IBM Worklight Server keeps the data intact.
v If this format is not JSON, the IBM Worklight Server automatically converts

it to JSON. Alternatively, the developer can provide an XSL transformation to
convert the data to JSON. In such a case, the IBM Worklight Server first
converts the data to XML (if it is not in XML already) that serves as input for
the XSL transformation.

4. The JavaScript implementation of the procedure receives the JSON data,
performs any additional processing, and returns it to the calling app.

HTTP POST requests are used for client-server communications between the
Worklight application and the Worklight server. Parameters must be supplied in a
plain text or numeric format. To transfer images (or any other type of file data),
they must be converted to base64 first.

Figure 64. The adapter framework

526 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Anatomy of adapters

IBM Worklight adapters are developed by using XML, JavaScript, and XSL. Each
adapter must have the following elements:
v Exactly one XML file, describing the connectivity to the back-end system to

which the adapter connects, and listing the procedures that are exposed by the
adapter to other adapters and to applications.

v Exactly one JavaScript file, containing the implementation of the procedures
declared in the XML file.

v Zero or more XSL files, each containing a transformation from the raw XML data
retrieved by the adapter to JSON returned by adapter procedures.

The files are packaged in a compressed file with a .adapter suffix (such as
myadapter.adapter).

The root element of the XML configuration files is <adapter>. The main
subelements of the <adapter> element are as follows:
v <connectivity>: Defines the connection properties and load constraints of the

back-end system. When the back-end requires user authentication, this element
defines how the credentials are obtained from the user.

v <procedure>: Declares a procedure that is exposed by the adapter.

The structure of the <adapter> element is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<wl:adapter>
<description>
<connectivity>
<connectionPolicy>
<loadConstraints>
</connectivity>

<procedure /> <!-- One or more such elements -->
</wl:adapter>

The HTTP adapter

The IBM Worklight HTTP adapter can be used to invoke RESTful services and
SOAP-based services. It can also be used to perform HTML scraping.

You can use the HTTP adapter to send GET, POST, PUT, and DELETE HTTP requests
and retrieve data from the response body. Data in the response can arrive in XML,
HTML, or JSON formats.

You can use SSL in an HTTP adapter with simple and mutual authentication to
connect to back-end services. Configure the IBM Worklight Server to use SSL in an
HTTP adapter by implementing the following steps:
v Set the URL protocol of the HTTP adapter to https.
v Store SSL certificates in a keystore that is defined by using JNDI environment

entries. The keystore setup process is described in “SSL certificate keystore
setup” on page 778.

v If you use SSL with mutual authentication, the following extra steps must also
be implemented:
– Generate your own private key for the HTTP adapter or use one provided by

a trusted authority.

Chapter 8. Developing IBM Worklight applications 527

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

– If you generated your own private key, export the public certificate of the
generated private key and import it into the back-end truststore.

– Save the private key of the keystore that is defined by using JNDI
environment entries.

– Define an alias and password for the private key in the <connectionPolicy>
element of the HTTP adapter XML file, adaptername.xml. The
<sslCertificateAlias> and <sslCertificatePassword> subelements are
described in “The <connectionPolicy> element of the HTTP adapter” on page
534.

Note however that SSL represents transport level security, which is independent of
basic authentication. It is possible to do basic authentication either over HTTP or
HTTPS.

The SQL adapter

You can use the IBM Worklight SQL adapter to execute parameterized SQL queries
and stored procedures that retrieve or update data in the database.

The Cast Iron adapter

The IBM Worklight Cast Iron adapter initiates orchestrations in Cast Iron to
retrieve and return data to mobile clients.

Cast Iron accesses various enterprise data sources, such as databases, web services,
and JMS, and provides validation, aggregation, and formatting capabilities.

The Cast Iron adapter supports two patterns of connectivity:

Outbound pattern.
The invocation of Cast Iron orchestrations from Worklight.

Inbound pattern.
Cast Iron sends notifications to devices through Worklight.

The Cast Iron adapter supports the invocation of a Cast Iron orchestration over
HTTP only. Cast Iron Template Integration Projects (TIPs) are provided in Cast Iron
as examples of this technique, and for you to use as a basis for your own
orchestrations. For more information, see the Cast Iron documentation.

Cast Iron uses the standard IBM Worklight notification adapter and event sources
to publish notification messages to be delivered to devices by using one of the
many notification providers.

For information about defining event sources, see the createEventSource method
in the WL.Server class.

Cast Iron Template Integration Projects (TIPs) are provided in Cast Iron as
examples of this technique, and for you to use as a basis for your own notification
scenarios. For more information, see the Cast Iron documentation.

To protect the notification adapter, use basic authentication.

528 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The JMS adapter

The IBM Worklight JMS adapter can be used to send and receive messages from a
JMS-enabled messaging provider. It can be used to send and receive the headers
and body of the messages.

Troubleshooting a Cast Iron adapter – connectivity issues

Symptom: The IBM Worklight adapter cannot communicate with the Cast Iron
server.

Causes:
v Cast Iron provides two network interfaces, one for administration and one for

data. Ensure that you are using the correct host name or IP address of the Cast
Iron data interface. You can find this information under the Network menu item
in the Cast Iron administrative interface. This information is stored in the
adapter-name.xml file for your adapter.

v The invocation fails with a message Failed to parse the payload from backend.
This failure is typically caused by a mismatch between the data returned by the
Cast Iron orchestration and the returnedContentType parameter in the
adapter-name.js implementation. For example, the Cast Iron orchestration
returns JSON but the adapter is configured to expect XML.

The adapter XML File
The adapter XML file is used to configure connectivity to the back-end system and
to declare the procedures exposed by the adapters to applications and to other
adapters.

The root element of the document is <adapter>.
v For elements whose content is the same for all types of back-end application,

this section contains complete details of the tag content.
v For elements whose content is different for different types of back-end

applications, this section contains a general description of the content of the
elements. Full details of the content can be found in the topic that describes the
specific adapter.

<adapter> element of the adapter XML file
The <adapter> element is the root element and has various attributes and
subelements.

The <adapter> element is the root element of the adapter configuration file. It has
the following structure:
<wl:adapter
name="adapter-name"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wl="http://www.worklight.com/integration"
xmlns:http="http://www.worklight.com/integration/http"
xmlns:sql="http://www.worklight.com/integration/sql"
xsi:schemaLocation="
http://www.worklight.com/integration integration.xsd
http://www.worklight.com/integration/http http.xsd
http://www.worklight.com/integration/sql sql.xsd
>

IBM Worklight provides two schemas that are used by all adapters, and in
addition, provides a specific schema for each type of adapter. Each schema must be

Chapter 8. Developing IBM Worklight applications 529

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

associated with a different namespace. Namespaces are declared using the xmlns
attribute, and are linked to their schemas by using the xsi:schemaLocation
attribute.

The mandatory schemas are http://www.w3.org/2001/XMLSchema-instance, which
is associated with the xsi namespace, and http://www.worklight.com/integration,
which is associated with the wl namespace.

Because each adapter connects to a single back-end application and uses a single
integration technology, each adapter only requires one back-end-related namespace.
For example, for an HTTP adapter you must declare the xmlns:http namespace
and associate it with the http.xsd schema.

The <adapter> element has the following attributes:

Table 78. <adapter> element attributes

Attribute Description

name Mandatory. The name of the adapter. This
name must be unique within the Worklight
Server. It can contain alphanumeric
characters and underscores, and must start
with a letter.
Note: After an adapter has been defined
and deployed, its name cannot be modified.

xmlns:namespace Mandatory. Defines schema namespaces.

This attribute must appear three times, as
follows:

xmlns:xsi – Defines the namespace
associated with the http://www.w3.org/
2001/XMLSchema-instance schema.

xmlns:wl – Defines the namespace
associated with the http://
www.worklight.com/integration schema.

xmlns:namespace – Defines the
namespace associated with the schema
related to the back-end application, for
example, xmlns:sap or xmlns:sql.

xsi:schemaLocation Optional. Identifies the schema locations, in
the following format:

xsi:schemaLocation="http://www.worklight.com/integration location-of-integration-schema-file URI-of-specific-

If the attribute is missing, auto-complete for
XML elements and attributes defined in the
schema will not be available in Worklight
Studio.

at run time, this attribute has no effect.

The <adapter> element has the following subelements:

530 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 79. <adapter> element subelements

Subelement Description

<displayName> Note: This element is deprecated.

Optional. The name of the adapter to be
displayed in the Worklight Console.

If the <displayName> element is not
specified, the value of the name attribute is
used instead in the Worklight Console.

<description> Optional. Additional information about the
adapter, which is displayed in the Worklight
Console.

<connectivity> Mandatory. Defines the connection
properties and load constraints of the
back-end system.

For more information, see “<connectivity>
element of the adapter XML file.”

<procedure> Mandatory. Defines a process for accessing a
service exposed by a back-end application.
Occurs once for each procedure exposed by
the adapter.

For more information, see “<procedure>
element of the adapter XML file” on page
532.

<connectivity> element of the adapter XML file
The <connectivity> element defines the mechanism by which the adapter connects
to the back-end application.

It has the following subelements:

Table 80. <connectivity> element subelements

Subelement Description

<connectionPolicy> Mandatory. Defines back-end-specific
connection properties.

<loadConstraints> Mandatory. Defines the number of
concurrent connections which the IBM
Worklight Server can open to the back end.

<connectionPolicy> element of the adapter XML file
The <connectionPolicy> element defines connection properties.

The structure of the <connectionPolicy> element depends on the integration
technology of the back-end application. For more information, see the related links.
Related reference:
“The <connectionPolicy> element of the HTTP adapter” on page 534
The structure of the <ConnectionPolicy> element.
“The <connectionPolicy> element of the SQL adapter” on page 537
The <connectionPolicy> element of the SQL adapter configures how the adapter
connects to an SQL database.

Chapter 8. Developing IBM Worklight applications 531

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

“The <connectionPolicy> element of the JMS adapter” on page 540
The structure of the <connectionPolicy> element.

<loadConstraints> element of the adapter XML file
The <loadConstraints> element defines the maximum load that is exerted on a
back-end application by setting the maximum number of concurrent requests that
can be performed on the system.

IBM Worklight queues incoming service requests from IBM Worklight applications.
While the number of concurrent requests is below the maximum, IBM Worklight
forwards the requests to the back-end application according to their order in the
queue. If the number of concurrent requests is above the maximum, IBM Worklight
waits until an already handled request is finished, before it services the next one in
the queue. If a request waits in the queue for longer than the timeout configured in
the procedure, IBM Worklight removes it from the queue, and returns a Request
Timed Out exception to the caller.

The <loadConstraints> element has the following attributes:

Attribute Description

maxConcurrentConnectionsPerNodeMandatory. The maximum number of concurrent requests that can be
performed per server node of the back-end application.

Consider a case where the back-end application must serve about 100 transactions
per second, and where each transaction takes an average response time of 2
seconds. The back-end application defines four server nodes to manage these
requests. Each node must thus be able to manage an average of 50 transactions per
second (100 x 2 / 4). To properly communicate with this back-end application, you
must then set the value of the maxConcurrentConnectionsPerNode attribute to at
least 50.
<loadConstraints maxConcurrentConnectionsPerNode="50" />

Note: If you increase the value of this attribute, the back-end application needs
more memory. Do not set this value too high to avoid memory issues. Instead,
estimate the average and peak number of transactions per second, and evaluate
their average durations. Then, calculate the number of required concurrent
connections as indicated in this example, and add a 5-10 margin to define the
value of this attribute. Then, monitor your server, and adjust this value as
required, to ensure that you back-end application can process all incoming
requests.

When deploying adapters to a cluster, set the value of this attribute to the
maximum required load divided by the number of cluster members.

For more information about how to size your back-end application, see:
v Scalability and Hardware Sizing (PDF)
v Hardware Calculator (XLS)

<procedure> element of the adapter XML file
The <procedure> element defines a process for accessing a service exposed by a
back-end application.

The service can retrieve data from the back end or perform a transaction at the
back end.

532 IBM Worklight V6.1.0

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/Scalability_and_Hardware_Sizing.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/Hardware_Calculator.xls

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The <procedure> element has the following structure:
<procedure
name="unique-name"
connectAs="value"
requestTimeoutInSeconds="value"
audit="value"
securityTest="value"
/>

The <procedure> element has the following attributes:

Table 81. <procedure> element attributes

Attribute Description

name Mandatory. The name of the procedure. This
name must be unique within the adapter. It
can contain alphanumeric characters and
underscores, and must start with a letter.

connectAs Optional. Defines how to create a connection
to the back end for invoking the retrieve
procedure. Valid values are as follows:

server: Default. The connection to the
back end is created according to the
connection policy defined for the adapter.

endUser: The connection to the back end
is created with the user’s identity. Only
valid if a user realm has been identified
in the security tests for this procedure.

requestTimeoutInSeconds Optional. The timeout in seconds for waiting
until receiving a response from the back
end, including the time for opening the
connection. The default is 30 seconds.

audit Optional. Defines whether calls to the
procedure are logged in the audit log. The
log file is Worklight Project
Name/server/log/audit/audit.log.

Valid values are as follows:

true: Calls to the procedure are logged in
the audit log.

false: Default. Calls to the procedure are
not logged in the audit log.

securityTest Optional. The name of the security test that
you want to use to protect the adapter
procedure, as defined in the
authenticationConfig.xml file.

The root element of the HTTP adapter XML file
The structure of the root element.

The root element of the HTTP adapter has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<wl:adapter>
name="adapter-name"
authenticationRealm="realm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wl="http://www.worklight.com/integration"
xmlns:http="http://www.worklight.com/integration/http"

Chapter 8. Developing IBM Worklight applications 533

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

xsi:schemaLocation=
"http://www.worklight.com/integration integration.xsd
http://www.worklight.com/integration/http http.xsd">
...
</wl:adapter>

The <connectionPolicy> element of the HTTP adapter
The structure of the <ConnectionPolicy> element.

The <ConnectionPolicy> element has the following structure:
<connectionPolicy

xsi:type="http:HTTPConnectionPolicyType"
cookiePolicy="cookie-policy"
maxRedirects="int">
<protocol>protocol</protocol>
<domain>host-name</domain>
<port>host-port</port>
<sslCertificateAlias>ssl-certificate-alias</sslCertificateAlias>
<sslCertificatePassword>ssl-certificate-password</sslCertificatePassword>
<authentication> ... </authentication>
<proxy> ... </proxy>

</connectionPolicy>

The <ConnectionPolicy> element has the following attributes:

Table 82. <ConnectionPolicy> element attributes

Attribute Description

xsi:type Mandatory. The value of this attribute must
be set to http:HTTPConnectionPolicyType.

cookiePolicy Optional. This attribute sets how the HTTP
adapter handles cookies that arrive from the
back-end application. Valid values are as
follows:

v RFC_2109 (The default)

v RFC_2965

v NETSCAPE

v IGNORE_COOKIES

maxRedirects Optional. The maximum number of redirects
that the HTTP adapter can follow. This
attribute is useful when the back-end
application sends circular redirects as a
result of some error, such as authentication
failures. In IBM Worklight V6.1.0, starting
with Fix Pack 2, if the attribute is set to 0,
the adapter does not attempt to follow
redirects at all, and the HTTP 302 response
is returned to the user. Moreover, the default
value is 10, instead of 20 previously.

The <ConnectionPolicy> element has the following subelements:

Table 83. <ConnectionPolicy> element subelements

Subelement Description

protocol Optional. The URL protocol to use. Possible
values are http (default) and https.

domain Mandatory. The host address.

534 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 83. <ConnectionPolicy> element subelements (continued)

Subelement Description

port Optional. The port address. The default
value is 80.

sslCertificateAlias The alias of the adapter private SSL key,
which is used by the HTTP adapter key
manager to access the correct SSL certificate
in the keystore.

Optional for regular HTTP authentication
and simple SSL authentication. Mandatory
for mutual SSL authentication.

The keystore setup process is described in
“SSL certificate keystore setup” on page 778

sslCertificatePassword The password of the adapter private SSL
key, which is used by the HTTP adapter key
manager to access the correct SSL certificate
in the keystore.

Optional for regular HTTP authentication
and simple SSL authentication. Mandatory
for mutual SSL authentication.

The keystore setup process is described in
“SSL certificate keystore setup” on page 778

authentication Optional. Authentication configuration of the
HTTP adapter. See “The <authentication>
element of the HTTP adapter.”

proxy Optional. Used when the back-end
application must be accessed through a
proxy. See “The <proxy> element of the
HTTP adapter” on page 536.

The <authentication> element of the HTTP adapter
The HTTP adapter can use one of four protocols, and can also contain a server
identity.

You can configure the HTTP adapter to use one of four authentication protocols by
defining the <authentication> element. You can define this element only within
the <connectionPolicy> element. Depending on the authentication protocol that the
HTTP adapter uses, among the following ones, define the <authentication>
element as follows:
v Basic Authentication

<authentication>
<basic/>

</authentication>

v Digest Authentication
<authentication>

<digest/>
</authentication>

v NTLM Authentication
<authentication>

<ntlm workstation="value"/>
</authentication>

Chapter 8. Developing IBM Worklight applications 535

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The workstation attribute is optional, and denotes the name of the computer on
which the IBM Worklight Server runs. Its default value is ${local.workstation}.

v SPNEGO/Kerberos Authentication
<authentication>

<spnego stripPortOffServiceName="true"/>
</authentication>

The attribute stripPortOffServiceName is optional, and specifies whether the
Kerberos client uses the service name without the port number. The default
value is false.
When you use this option, you must also place the krb5.conf file under
Worklight Project Name/server/conf. The file must contain Kerberos
configuration such as the location of the Kerberos server, and domain names. Its
structure is described in the Kerberos V5 System Administrator's Guide in the
mit.edu website.

Specifying the Server Identity

If the adapter exposes procedures with the attribute connectAs="server", the
connection policy can contain a <serverIdentity> element. This feature applies to
all authentication schemes, for example:
<authentication>

<basic/>
<serverIdentity>

<username> ${DOMAIN\user} </username>
<password> ${password} </password>

</serverIdentity>
</authentication>

The <proxy> element of the HTTP adapter
Use a <proxy> element if you access an application through a proxy.

If the back-end application must be accessed through a proxy, add a <proxy>
element inside the <connectionPolicy> element. If the proxy requires
authentication, add a nested <authentication> element inside <proxy>. This
element has the same structure as the one used to describe the authentication
protocol of the adapter, described in “The <authentication> element of the HTTP
adapter” on page 535.

The following example shows a proxy that requires basic authentication and uses a
server identity:
<connectionPolicy xsi:type="http:HTTPConnectionPolicyType">
<protocol>http</protocol>
<domain>www.bbc.co.uk</domain>
<proxy>
<protocol>http</protocol>
<domain>wl-proxy</domain>
<port>8167</port>
<authentication>
<basic/>
<serverIdentity>
<username>${proxy.user}</username>
<password>${proxy.password}</password>
</serverIdentity>
</authentication>
</proxy>
</connectionPolicy>

536 IBM Worklight V6.1.0

http://mit.edu

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The root element of the SQL adapter XML file
The structure of the root element.

The root element of the SQL adapter has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<wl:adapter>
name="adapter-name"
authenticationRealm="realm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wl="http://www.worklight.com/integration"
xmlns:http="http://www.worklight.com/integration/sql"
xsi:schemaLocation=
"http://www.worklight.com/integration integration.xsd
http://www.worklight.com/integration/sql sql.xsd">
...
</wl:adapter>

The <connectionPolicy> element of the SQL adapter
The <connectionPolicy> element of the SQL adapter configures how the adapter
connects to an SQL database.

The <connectionPolicy> element has two options for connecting:
v Using the <dataSourceDefinition> subelement
v Using the <dataSourceJNDIName> subelement

Connecting by using the <dataSourceDefinition> subelement

When you use this option, you specify the URL of the data source, the user, the
password, and the driver class. Note that this method is primarily intended for
development mode. In production mode, it is better to use the
<dataSourceJNDIName> subelement.

The following example shows the structure of the <connectionPolicy> element
with the <dataSourceDefinition> subelement:
<connectionPolicy xsi:type="sql:SQLConnectionPolicy">

<dataSourceDefinition>
<driverClass>com.mysql.jdbc.Driver</driverClass>

<url>jdbc:mysql://localhost:3306/mysqldbname</url>
<user>mysqluser</user>
<password>mysqlpassword</password>

</dataSourceDefinition>
</connectionPolicy>

Table 84. <connectionPolicy> element attributes

Attribute Description

xsi:type Mandatory. The value of this attribute must
be set to sql:SQLConnectionPolicy.

The <connectionPolicy> element has the following subelement:

Table 85. <ConnectionPolicy> element subelement

Subelement Description

dataSourceDefinition Mandatory. Contains the parameters needed
to connect to a data source.

Chapter 8. Developing IBM Worklight applications 537

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The parameters (url, user, password, and driverClass) can be externalized as
custom Worklight properties, and can then be overridden by environment entries.
For more information, see “Configuring an IBM Worklight project in production by
using JNDI environment entries” on page 784.

The following example illustrates this process:
adapter.xml:
<connectionPolicy xsi:type="sql:SQLConnectionPolicy">

<dataSourceDefinition>
<driverClass>com.mysql.jdbc.Driver</driverClass>
<url>${my-mysql-url}</url>
<user>${my-mysql-user}</user>
<password>${my-mysql-password}</password>

</dataSourceDefinition>
</connectionPolicy>

worklight.properties:
my-mysql-url=jdbc:mysql://localhost:3306/mysqldbname
my-mysql-user=worklight
my-mysql-password=worklight

Connecting by using the <dataSourceJNDIName> subelement

You can also connect to the data source by using the JNDI name of a data source
that is provided by the application server. Application servers provide a way to
configure data sources. For more information, see “Creating and configuring the
databases manually” on page 732.

When you configure a data source that is provided by the application server, the
data source must have a JNDI name. This name can be used by applications that
run inside the container, to get a reference to the data source, and to use it.

The following example shows the structure of the <connectionPolicy> element
with the <dataSourceJNDIName> subelement:
adapter.xml:
<connectionPolicy xsi:type="sql:SQLConnectionPolicy">

<dataSourceJNDIName>jdbc/myAdapterDS</dataSourceJNDIName>
</connectionPolicy>

In this example, a resource with the JNDI name: “jdbc/myAdapterDS” must be
declared inside the container.

The <ConnectionPolicy> element has the following attribute:

Table 86. <ConnectionPolicy> element attribute

Attribute Description

xsi:type Mandatory. The value of this attribute must
be set to sql:SQLConnectionPolicy.

The <ConnectionPolicy> element has the following subelement:

Table 87. <ConnectionPolicy> element subelement

Subelement Description

dataSourceJNDIName Mandatory. The JNDI name of the data
source.

538 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

You also have the option to externalize the data source JNDI name and make it
configurable from the server configuration:
adapter.xml:
<connectionPolicy xsi:type="sql:SQLConnectionPolicy">

<dataSourceJNDIName>${my-adapter-ds}</dataSourceJNDIName>
</connectionPolicy>

worklight.properties:
my-adapter-ds=jdbc/myAdapterDS

For more information, see “Configuring an IBM Worklight project in production by
using JNDI environment entries” on page 784.

The root element of the Cast Iron adapter XML file
Structure of the root element

The root element of the SQL adapter has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<wl:adapter>
name="adapter-name"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wl="http://www.worklight.com/integration"
xmlns:http="http://www.worklight.com/integration/http"
xmlns:http="http://www.worklight.com/integration/ci"

</wl:adapter>

The <connectionPolicy> element of the Cast Iron adapter
Structure of the <connectionPolicy> element

The <ConnectionPolicy> element has the following structure:
<connectionPolicy xsi:type="http:HTTPConnectionPolicyType"
<protocol> protocol </protocol>
<domain> host-name </domain>
<port> host-port </port>
</connectionPolicy>

The <ConnectionPolicy> element has the following attributes:

Table 88. <ConnectionPolicy> element attributes

Attribute Description

xsi:type Mandatory. The value of this attribute must
be set to http:HTTPConnectionPolicyType.

The <ConnectionPolicy> element has the following subelements:

Table 89. <ConnectionPolicy> element subelements

Subelement Description

protocol Optional. The URL protocol to use. Possible
values are http (default) and https.

domain Mandatory. The host address.

port Optional. The port address. The default
value is 80.

Chapter 8. Developing IBM Worklight applications 539

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The root element of the JMS adapter XML file
The structure of the root element of the JMS adapter.

The root element of the JMS adapter has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<wl:adapter>
name="adapter-name"
authenticationRealm="realm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wl="http://www.worklight.com/integration"
xmlns:jms="http://www.worklight.com/integration/jms"
xsi:schemaLocation=
"http://www.worklight.com/integration integration.xsd
http://www.worklight.com/integration/jms jms.xsd">
...
</wl:adapter>

The <connectionPolicy> element of the JMS adapter
The structure of the <connectionPolicy> element.

The <connectionPolicy> element has the following structure:
<connectionPolicy xsi:type="jms:JMSConnectionPolicyType">

<!-- optional jndi repository connection details –->
<namingConnection
url="jndi repository url"
initialContextFactory="JMS provider initial context factory class name"
user="optional jndi repository connection user name"
password="optional jndi repository connection password">
<!-- end of optional jndi repository connection details –->

<jmsConnection
connectionFactory="jndi connection factory name"
user="messaging service connection user name"
password="messaging service connection password">
</connectionPolicy>

The <connectionPolicy> element has the following attributes:

Table 90. <connectionPolicy> element attributes

Attribute Description

xsi:type Mandatory. The value of this attribute must
be set to jms:JMSConnectionPolicyType.

The <connectionPolicy> element has the following subelements:

Table 91. <connectionPolicy> element subelements

Subelement Description

namingConnection Optional. Describes how to connect to an
external JNDI repository. Only used if the
JNDI objects are not stored in the JEE server
that the adapter is deployed in. See “The
<namingConnection> element of the JMS
adapter” on page 541.

540 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 91. <connectionPolicy> element subelements (continued)

Subelement Description

jmsConnection Mandatory. Describes the connection factory
and optional security details used to connect
to the messaging system. See “The
<jmsConnection> element of the JMS
adapter.”

The <namingConnection> element of the JMS adapter
Use the <namingConnection> element to identify how the Worklight Server connects
to an external repository.

The JMS Adapter uses administered objects that must be predefined in a JNDI
repository. The repository can either be defined in the JEE server context or an
external JNDI repository. If you use an external repository, specify the
<namingConnection> element to identify how the Worklight server connects to the
repository.

The <namingConnection> element has the following attributes:

Attribute Description

url Mandatory. The url of the external JNDI
repository. For example: iiop://localhost. The
url syntax is dependent on the JNDI
provider.

initialContextFactory Mandatory. The initialContextFactory class
name of the JNDI provider. For example:
com.ibm.Websphere.naming.WsnInitialContextFactory.
The driver, and any associated files, must be
placed in the /server/lib directory. If you
develop in the Eclipse environment, the
driver and associated files must be placed in
the /lib directory.
Note: If you develop for WebSphere
Application Server with WebSphere MQ, do
not add the WebSphere MQ Java archive
(JAR) files to the /lib directory. If the
WebSphere MQ JAR files are added,
classloading problems will occur because the
files already exist in the WebSphere
Application Server environment.

user Optional. User name of a user with
authority to connect to the JNDI repository.
If user is not specified, the default user
name is guest.

password Optional. Password for the user specified in
the user attribute. If user is not specified,
the default password is guest.

The <jmsConnection> element of the JMS adapter
Use the <jmsConnection> element to identify how the Worklight server connects to
a messaging system.

The <jmsConnection> element has the following attributes:

Chapter 8. Developing IBM Worklight applications 541

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Attribute Description

connectionFactory Mandatory. The name of the connection
factory used when connecting to the
messaging system. This is the name of the
administered object in the JNDI repository.
Note: If you are deploying in WebSphere
Application Server, the connection factory
must be a global JNDI object. The object
must be addressed without the
java:comp/env context. For example:
jms/MyConnFactory and not
java:comp/env/jms/MyConnFactory. However,
if you are deploying in Tomcat, the
connection factory must be addressed
including the java:/comp/env context. For
example: java:comp/env/jms/MyConnFactory.

user Optional. User name of a user with
authority to connect to the messaging
system.

password Optional. Password for the user specified in
the user attribute.

The root element of the SAP Netweaver Gateway adapter XML
file
The structure of the root element of the SAP Netweaver Gateway adapter.

The root element of the SAP Netweaver Gateway adapter has the following
structure:
<?xml version="1.0" encoding="UTF-8"?>
<wl:adapter>

name="adapter-name"
authenticationRealm="realm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wl="http://www.worklight.com/integration"
xmlns:jms="http://www.worklight.com/integration/nwgateway">
...

</wl:adapter>

The <connectionPolicy> element of the SAP Netweaver Gateway
adapter
The structure of the <connectionPolicy> element.

The <connectionPolicy> element has the following structure:
<connectionPolicy xsi:type="nwgateway:NWGatewayHTTPConnectionPolicyType">

<protocol>protocol</protocol>
<domain>host-name</domain>
<port>host-port</port>
<client>sap-client</client>
<username>sap-username</username>
<password>sap-password</password>
<serviceRootUrl>service-root-url</serviceRootUrl>
<authentication>...</authentication>
<sslCertificateAlias>ssl-certificate-alias</sslCertificateAlias>
<sslCertificatePassword>ssl-certificate-password</sslCertificatePassword>
<proxy>...</proxy>

</connectionPolicy>

The <connectionPolicy> element has the following attributes:

542 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 92. <connectionPolicy> element attributes

Attribute Description

xsi:type Mandatory. The value of this attribute must
be set to
nwgateway:NWGatewayHTTPConnectionPolicyType.

The <connectionPolicy> element has the following subelements:

Table 93. <connectionPolicy> element subelements

Subelement Description

protocol Mandatory. The URL protocol to use.
Possible values are http (default) and https.

domain Mandatory. The SAP Netweaver Gateway
server address.

port Mandatory. The SAP Netweaver Gateway
server port address. The default value is 80.

client Mandatory. The SAP-Client to be used to
contact the Netweaver Gateway. The default
value is 1.

username Mandatory. The user name for contacting the
Netweaver Gateway. The default value is
sap-username.

password Mandatory. The password for contacting the
Netweaver Gateway. The default value is
sap-password.

serviceRootUrl Mandatory. The root URL for the SAP
Netweaver gateway service that you are
trying to access.

authentication Mandatory. Authentication configuration for
the SAP Netweaver gateway adapter. A
sample authentication follows:

<authentication>
<basic />
<serverIdentity>

<client>001</client>
<username>mygatewayuser</username>
<password>mygatewaypassword</password>

</serverIdentity>
</authentication>

For more information, see “The
<authentication> element of the HTTP
adapter” on page 535. The SAP Netweaver
Gateway adapter shares the same
authentication configuration stanza with the
HTTP adapter except that <serverIdentity>
requires one additional <client> tag.

Chapter 8. Developing IBM Worklight applications 543

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 93. <connectionPolicy> element subelements (continued)

Subelement Description

sslCertificateAlias The alias of the adapter private SSL key.
Used by the SAP Netweaver gateway
adapter key manager to access the correct
SSL certificate in the keystore.

Optional for regular HTTP authentication
and simple SSL authentication. Mandatory
for mutual SSL authentication.

The keystore setup process is described in
“SSL certificate keystore setup” on page 778.

sslCertificatePassword The password of the adapter private SSL
key. Used by the SAP Netweaver gateway
adapter key manager to access the correct
SSL certificate in the keystore.

Optional for regular HTTP authentication
and simple SSL authentication. Mandatory
for mutual SSL authentication.

The keystore setup process is described in
“SSL certificate keystore setup” on page 778.

proxy Optional. Used when the backend
application must be accessed through a
proxy.

For more information, see “The <proxy>
element of the HTTP adapter” on page 536.
The SAP Netweaver Gateway adapter shares
the same proxy configuration stanza with
the HTTP adapter.

Creating an IBM Worklight adapter
Follow these instructions to create an IBM Worklight project and configure a new
IBM Worklight adapter.

About this task

On initial creation of a new adapter, Worklight Studio automatically generates the
default skeleton for the adapter with all the required properties, based on the type
(HTTP, SQL, or JMS). You need only to modify the default skeleton to configure an
adapter.

Procedure
1. Optional: Perform this step only if you have not already created a Worklight

project. If you set up IBM Worklight shortcuts, right-click the Project Explorer
perspective panel in Eclipse and click New > Worklight Project. Otherwise,
click New > Other, then select Worklight > Worklight Project from the list of
wizards and click Next.

544 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. In the New IBM Worklight Project window, specify a name for the project and
click Finish.

3. If you set up IBM Worklight shortcuts, right-click the IBM Worklight Project to
which you want to add the adapter, and select New > Adapter. Otherwise,
select New > Other, then select Worklight > Adapter from the list of wizards
and click Next.

Figure 65. Creating an IBM Worklight project from the wizard.

Chapter 8. Developing IBM Worklight applications 545

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The New Adapter window is displayed.
4. Select the required adapter type from the Adapter type list and enter a name

for the adapter in the Adapter name field. Click Finish.

Figure 66. Configuring a new IBM Worklight adapter.

546 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Generating adapters with the services discovery wizard
With the services discovery wizard, you specify the back-end services that you
want to invoke from your IBM Worklight project, and generate the adapters that
connect to those services.

About this task

The services discovery wizard supports the following types of back-end services:
v Web Services, as described by Web Services Description Language (WSDL) files.

These services are procedural in nature, with inputs and outputs that are
explicit. For example, when a web service calls a remote procedure, it gets a
result.

v Services that are exposed by an SAP Netweaver Gateway. These services are
resource-based, which means that they expose a collection of resources that you
can manipulate. Like web services, they can also have custom procedural
operations, and generate inputs and outputs.

The adapters that communicate with the chosen back-end service are automatically
generated, and placed in the adapters folder of your project.

Note: If you manually modify an adapter file, first create a copy of this file, and
make sure to modify only the copied file. The services discovery wizard might

Figure 67. Selecting an adapter type.

Chapter 8. Developing IBM Worklight applications 547

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

regenerate the original file each time you add a service. The exact adapter that is
regenerated depends on the type of service that is involved.

Procedure
1. Right-click the services folder of your project in the Project Explorer tab, and

click Discover Back-end Services to start the services discovery wizard.
2. Select the type of service that you want to invoke from your application.
3. Depending on the selected type, define the service you want to use, as

described in the following sections:
v WSDL service type:

a. Enter a URL or select one from the URL drop-down list, and click Go; or
browse to a file in your workspace or in your system.

Note: If you enter a secure URL (https), the system fetches the certificate
from the specified server, and stores it into a private key storage area that
is created in your workspace.

b. Optional. If you are prompted to, enter your credentials.
You can now see the list of available services. Different types of
information are displayed in the Details pane, depending on the level
you select:

Figure 68. Adding a web service

548 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

– The first level corresponds to the binding configuration details. When
this level is selected, the Details pane shows the SOAP version.

– The second level corresponds to the data operation details. When this
level is selected, the Details pane shows the input and the output of
the remote invoked procedure.

c. Select the service that you want invoke from your application.
v SAP Netweaver Gateway Services service type:

a. Set up a connection to an SAP Netweaver Gateway server by either:
– Clicking Add to create an SAP connection.
– Clicking the Manage SAP Connections link to edit existing

connections.
– Selecting an existing SAP connection from the Connection drop-down

list.
b. Proceed with the connection configuration by entering your server URL,

client ID, user name, and password.
In the Select Service pane, you can now see the list of SAP services that
are available on the server you specified.

4. Click Finish.

Figure 69. Adding a service exposed by SAP

Chapter 8. Developing IBM Worklight applications 549

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Results

An adapter is generated under the adapters folder of your project. You can use this
adapter to invoke services with JavaScript calls.

An .xml service description file is also generated under the services folder of your
project. This .xml file is used by IBM Worklight Application Framework (Beta
code) to generate data object definitions and operation mappings (for more
information, see “Developing hybrid applications with IBM Worklight Application
Framework” on page 425). If you do not use IBM Worklight Application
Framework, you can refer to the .xml files under the services folder of your project
to have a summary view of the target adapters.

For more information about:
v invoking the generated SOAP adapters procedure, see “Invocation of generated

SOAP adapters.”
v the content of generated SAP adapters, see “The root element of the SAP

Netweaver Gateway adapter XML file” on page 542 and “The
<connectionPolicy> element of the SAP Netweaver Gateway adapter” on page
542.

Invocation of generated SOAP adapters
The generated SOAP adapters have a procedure that calls the back-end service
operation. You can invoke this procedure from your IBM Worklight application in
the same way as you invoke other IBM Worklight adapter procedures, by
providing the necessary parameters for the invocation.

Figure 70. Files generated from the services discovery

550 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The generated procedure accepts two parameters: the message to the service, and
custom HTTP headers.

The message to send to the service (required)

This mandatory parameter is the message to send to the service in JSON format.

The message parameter is a JSON representation of the XML message to include in
the SOAP body that is sent to the service.

The following examples show JSON representations for sample XML messages.
1. Simple XML message: the adapter converts the provided JSON parameter into

XML body by creating a matching element for each JSON attribute.
The following JSON parameter in the procedure:
{"GetTechnicianVisits": {"TechnicianId": "1"}}

is transformed by the adapter into the following XML fragment in the SOAP
body:
<GetTechnicianVisits>

<TechnicianId>1</TechnicianId>
<GetTechnicianVisits>

2. XML messages with namespaces
The generated adapter implementation (SoapAdapterX-impl.js) has a set of
namespace prefixes imported from the provided WSDL service. To specify
elements with specific namespaces, those prefixes must be used to name the
relevant JSON attributes.
The following JSON parameter in the procedure:
{"tns1:GetTechnicianVisits": {"tns1:TechnicianId": "1"}}

is transformed by the adapter into the following XML fragment in the SOAP
body:
<GetTechnicianVisits xmlns:tns1="http://namespace/sample">

<TechnicianId>1</TechnicianId>
</GetTechnicianVisits>

3. XML messages with attributes
Adding the @ prefix to a JSON attribute name instructs the adapter to create an
attribute instead of creating an element.
The following JSON parameter in the procedure:
{"GetTechnicianVisits": {"@technicianId": "1"}}

is transformed by the adapter into the following XML fragment in the SOAP
body:
<GetTechnicianVisits technicianId="1"/>

A JSON object that holds custom HTTP headers for the invocation
(optional)

This optional parameter is a JSON object that lists custom HTTP headers (key
values). These custom HTTP headers are added to the service call when the POST
request is invoked with the generated SOAP message.
{ ’custom-header-1’: ’value1’, ’custom-header-2’: ’value2’ }

Chapter 8. Developing IBM Worklight applications 551

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Adapter invocation service
Adapter procedures can be invoked by issuing an HTTP request to the IBM
Worklight invocation service: http(s)://<server>:<port>/<Context>/invoke.

The following parameters are required:

Table 94. Parameters for adapter invocation

Property Description

adapter The name of the adapter

procedure The name of the procedure

parameters An array of parameter values

The request can be either GET or POST.

Note: The invocation service uses the same authentication framework as
described in the “IBM Worklight security framework” on page 600 section.

The default security test for adapter procedures contains Anti-XSRF protection, but
this configuration can be overridden by either:
v Implementing your own authentication realm (see “Authenticators and Login

Modules” on page 608 for more details).
v Disabling the authentication requirement for a specific procedure. You can do so

by adding the securityTest="wl_unprotected" property to the <procedure>
element in the adapter XML file.

Note: Disabling authentication requirement on a procedure means that this
procedure becomes completely unprotected and anyone who knows the adapter
and the procedure name can access it. Therefore, consider protecting sensitive
adapter procedures.

Implementing adapter procedures
Implement a procedure in the adapter XML file, using an appropriate signature
and any return value.

Before you begin

You have declared a procedure in the adapter XML file, using a <procedure> tag.

Procedure

Implement the procedure in the adapter JavaScript file. The signature of the
JavaScript function that implements the procedure has the following format:
function funcName (param1, param2, ...),

Where:
v funcName is the name of function which the procedure implements. This name

must be the same as the value specified in the name attribute of the<procedure>
element in the adapter XML file.

v param1 and param2 are the function parameters. The parameters can be scalars
(strings, integers, and so on) or objects.

552 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

In your JavaScript code, you can use the Worklight server-side JavaScript API to
access back-end applications, invoke other procedures, access user properties, and
write log and debug lines.
You can return any value from your function, scalar or object.

The Rhino container
IBM Worklight uses Rhino as the engine for running the JavaScript script used to
implement adapter procedures.

Rhino is an open source JavaScript container developed by Mozilla. In addition to
being part of Java 6, Rhino has two other advantages:
v It compiles the JavaScript code into byte code, which runs faster than interpreted

code.
v It provides access to Java code directly from JavaScript. For example:
var date = new java.util.Date();
var millisec = date.getTime()

Note: Global variables are handled according to the following rules:
v In the same user session (for example, an application loaded in a browser), the

values of global variables persist from one method call of an adapter to another
method call of the same adapter (that is, they are not reset).

v If you create two different user sessions that connect to the same adapter (for
example, by opening the same app in different browsers or devices), every user
session holds its own global variable state.

v If a user session expires, the Rhino session expires, and variables are no longer
defined.

Encoding a SOAP XML envelope
Follow these instructions to encode a SOAP XML envelope within a request body

About this task

When you need to invoke a SOAP-based service in an HTTP adapter, encode the
SOAP XML envelope within the request body.

Procedure

Encode XML within JavaScript by using E4X E4X is officially part of JavaScript 1.6.
This technology can be used to encode any XML document, not necessarily SOAP
envelopes. For more information about E4X, see the related link.

Example
var request =
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<requestMessageObject xmlns="http://acme.com/ws/">
<messageHeader>
<version>1.0</version>
<originatingDevice>{originatingDevice}</originatingDevice>
<originatingIP>
{WL.Server.configuration["local.IPAddress"]}
</originatingIP>
<requestTimestamp>
{new Date().toLocaleString()}
</requestTimestamp>
</messageHeader>

Chapter 8. Developing IBM Worklight applications 553

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<messageData>
<context>
<userkey>{userKey}</userkey>
<sessionid>{sessionid}</sessionid>
</context>
</messageData>
</requestMessageObject>
</S:Body>
</S:Envelope>;

You can use the WL.Server.signSoapMessage() method only inside a procedure
declared within an HTTP adapter. It signs a fragment of the specified envelope
with ID wsId, using the key in the specified keystoreAlias, inserting the digital
signature into the input document.

To use WL.Server.signSoapMessage() API when running IBM Worklight on IBM
WebSphere Application Server you might need to add a JVM argument that
instructs WebSphere to use a specific SOAPMessageFactory implementation instead
of a default one. To do this, you must go to Application servers > {server_name} >
Process definition > Java Virtual Machine and provide the following argument
under Generic JVM arguments, typing in the code phrase exactly as it is
presented here:

-Djavax.xml.soap.MessageFactory=com.sun.xml.internal.messaging.saaj.soap.ver1_1.SOAPMessageFactory1_1Impl

You must then restart the JVM.

Important: This workaround is only for IBM WebSphere.
Related information:

http://www.w3schools.com/xml/xml_e4x.asp

Calling Java code from a JavaScript adapter
Follow these instructions to instantiate Java objects and call their methods from
JavaScript code in your adapter.

Before you begin

Attention: The name of any Java package to which you refer from within an
adapter must start with the domains com, org, or net.

Procedure
1. Instantiate a Java object by using the new keyword and apply the method on

the newly instantiated object.
2. Optional: Assign a JavaScript variable to be used as a reference to the newly

instantiated object.
3. Include the Java classes that are called from the JavaScript adapter in your IBM

Worklight project under Worklight Project Folder/server/java. The Worklight
Studio automatically builds them and deploys them to the Worklight Server,
also placing the result of the build under Worklight Project Folder/bin

Example
var x = new MyJavaClass();
var y = x.myMethod(1, "a");

554 IBM Worklight V6.1.0

http://www.w3schools.com/xml/xml_e4x.asp

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Features of Worklight Studio
Worklight Studio provides the facilities to automatically complete attribute values,
validate adapters on three levels, and to fix errors in adapter configuration.

Auto-complete

The auto-complete feature offers a list of possible values for attribute values. In the
following example, the JavaScript Editor displays a list of values for the possible
field types of a record field. In this way, the auto-complete feature helps correct
configuration of an adapter.

Adapter validation

Worklight Studio provides adapter validation on three levels:

Schema validation
The XML Editor validates the XML file as well-formed and conforming to
the rules defined in the validating schema.

Figure 71. Adapter configuration through the auto-complete feature.

Chapter 8. Developing IBM Worklight applications 555

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Logical validation of the XML
Worklight Studio provides logical validation of the XML, based on IBM
Worklight adapter constraints. For example, if a procedure is a JavaScript
procedure, then field mapping is not permitted.

XML/JavaScript validation
Worklight Studio provides validation between XML and JavaScript. It
verifies that each declared JavaScript procedure has a corresponding
procedure in the adapter JavaScript file with the appropriate signature
(that is, input parameters and return values).

Quick fix

The Worklight Studio provides Quick Fix options for adapter configuration errors.

Whenever an error is detected, the error console displays the offending code. To
activate the Quick Fix window, right-click the error in the console and select Quick
Fix. Alternatively, press Ctrl+1.

556 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Figure 72. Quick Fix options for adapter configuration problems.

Chapter 8. Developing IBM Worklight applications 557

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Specifically, Worklight Studio provides a Quick Fix option for missing JavaScript
functions. The Quick Fix creates the missing function in the corresponding
JavaScript file (also creating the file if one does not exist).

Figure 73. Quick Fix option for missing JavaScript functions.

558 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure invocation
You can test a procedure by running it within the Worklight Studio.

Note: This feature is available only when you are running Worklight Studio. It is
not available when you run an adapter on a stand-alone server based on
WebSphere Application Server or Tomcat.

In Worklight Studio, you can select a procedure, enter a set of parameters, and
invoke the procedure on the Worklight Server. Only procedure invocations are
supported, with results displayed in a browser window. For each invoked
procedure, the Worklight Studio remembers the most recent parameter values, so
you can reinvoke the procedure without re-entering parameter values.

In the dialog box, provide a comma-separated list of procedure parameters.

Figure 74. Invoking IBM Worklight procedures.

Chapter 8. Developing IBM Worklight applications 559

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Invoking a back-end service
You can invoke a back-end service and receive the data retrieved by the service, in
Worklight studio.

About this task

Note: This feature is only available when running within Worklight Studio. It is
not available when running an adapter on a stand-alone server based on
WebSphere Application Server or Tomcat.

In Worklight Studio, you can invoke a back-end service and immediately receive
the data retrieved by the service in XML and JSON formats. You can also define
and test a custom XSL transformation that converts the resulting XML into JSON.

Procedure

To run a back-end service:
1. Right-click an adapter file, and select Run As > Invoke Worklight Back-end

Service.

Figure 75. Launching the procedure.

560 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. In the dialog box, provide the invocation service parameters. You can copy
them from your code and paste them directly into the dialog box.
A browser window opens, displaying the retrieved data in XML and JSON

format, and the XSL transformation (if defined) that was used to convert the
XML to JSON.

3. Optional: Change the XSL transformation by editing it in the edit box, then
click Apply XSL to regenerate the JSON format.

Figure 76. Invoking an IBM Worklight back-end service

Figure 77. Invocation parameters.

Chapter 8. Developing IBM Worklight applications 561

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Deploying an adapter
In Worklight Studio, you can automatically deploy a new or modified adapter to
the IBM Worklight Server.

Procedure

Right-click the adapter folder and select Run As > Deploy Worklight Adapter.

Figure 78. Browser window, showing retrieved data in XML and JSON format.

562 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Results

A message is displayed, indicating whether the deployment action succeeded or
failed.

JMS adapters
Java messaging service (JMS) is the standard messaging Java API for sending
messages between two or more clients. The Worklight JMS adapter allows reading
and writing to messaging providers that implement the JMS API.

The following series of topics contain instructions for configuring a JMS adapter to
work with different messaging providers.

Connecting JMS adapters to a Liberty profile server
Follow these instructions to develop and test Worklight adapters that use Java
Message Service (JMS) on a WebSphere Application Server Liberty Profile ND
server.

Before you begin

If you want to create adapters that use the JMS API, you must understand that the
WebSphere Application Server Liberty Profile included with Worklight Studio does
not contain the built-in Liberty JMS features. Therefore, an embedded Worklight
Development Server or a local external instance of this bundled Liberty profile
server cannot act as a JMS provider.

About this task

JMS is supported by the WebSphere Application Server Liberty Profile V8.5 ND
(Network Deployment) server. If you have a local copy of this application server
that is installed on the same workstation as Worklight Studio, you can use it to
develop and test your JMS applications.

Because WebSphere Application Server Liberty Profile does not support remote
JNDI lookups, it is not possible to make remote connections to the JMS server. The
IBM Worklight adapter must be running on the same local Liberty profile server
that has JMS enabled.

The following procedure shows how to connect to an external Liberty profile
server that supports JMS.

Figure 79. Deploying a Worklight adapter.

Chapter 8. Developing IBM Worklight applications 563

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Enable JMS on your Liberty profile ND server by using the procedures in the

IBM WebSphere user documentation at Configuring point-to-point messaging
for a single Liberty profile server. Make a note of the JNDI connection factory
and queue name (shown in the following code example):
<!-- Enable features -->
<featureManager>

<feature>jsp-2.2</feature>
<feature>wasJmsServer-1.0</feature>
<feature>wasJmsClient-1.1</feature>
<feature>jndi-1.0</feature>

</featureManager>

<messagingEngine id="defaultME">
<queue

id="libertyQ"
forceReliability="ReliablePersistent"
maxQueueDepth="5000">

</queue>
</messagingEngine>

<jmsQueueConnectionFactory jndiName="jms/libertyQCF" connectionManagerRef="ConMgr2">
<properties.wasJms

nonPersistentMapping="ExpressNonPersistent"
persistentMapping="ReliablePersistent"/>

</jmsQueueConnectionFactory>

<connectionManager id="ConMrg2" maxPoolSize="2"/>

<jmsQueue jndiName="jms/libertyQue">
<properties.wasJms

queueName="libertyQ"
deliveryMode="Application"
timeToLive="500000"
priority="1"
readAhead="AsConnection" />

</jmsQueue>

2. Create a Worklight JMS adapter.
3. Because the adapter runs on a JMS-enabled Liberty profile server, the naming

connection section of the adapter.xml file is not necessary. It can remain
commented out.

4. Enter the JNDI name for the connection factory that was created in the
server.xml file.
<connectivity>

<connectionPolicy xsi:type="jms:JMSConnectionPolicyType">

<!-- <namingConnection url="MY_JNDI_URL"
initialContextFactory="providers_initial_context_factory_class_name"
user="JNDIUserName"
password="JNDIPassword"/> -->

<jmsConnection
connectionFactory="jms/libertyQCF"
user="admin"
password="admin"
/>

</connectionPolicy>

<loadConstraints maxConcurrentConnectionsPerNode="10"/>
</connectivity>

5. In the JMS adapter implementation file, enter the JNDI name for the queue as
the destination for both the read and write methods:

564 IBM Worklight V6.1.0

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.wlp.nd.doc/ae/twlp_msg_single_p2p.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.wlp.nd.doc/ae/twlp_msg_single_p2p.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

function readMessage() {
var result = WL.Server.readSingleJMSMessage({

destination:"jms/libertyQue",
timeout: 60

});
if (!result.message) {

WL.Logger.debug(">> JMS adapter >> readNextMessage >> no message in queue");
return {};

} else {
WL.Logger.debug(">> JMS adapter >> readNextMessage >> message received ::");
return result.message;

};
}

6. Change the Worklight Target Server in Worklight Studio to point to your
Liberty ND server. Documentation for this procedure can be found at “Working
with multiple Worklight Servers in Worklight Studio” on page 345.

7. Build and deploy the Worklight adapter to the Liberty profile ND server. You
can test the JMS adapter in your browser by using the following URL syntax:
http://<liberty-hostname>:<port>/<context-root>/invoke?adapterName=
<adapterName>&procedure=<procedureName>¶meters=["<parameters>"]

An example of a URL pointing to an external Liberty profile ND server:
http://localhost:9080/worklight/invoke?adapter=JMSAdapter&procedure=
writeMessage¶meters=[“Hello World”]

Connecting a Worklight JMS adapter to WebSphere MQ
Follow these instructions to connect an IBM Worklight Java Message Service (JMS)
adapter to WebSphere MQ.

Before you begin

Ensure that you have prior knowledge of WebSphere MQ and have a WebSphere
MQ Message Broker setup with the appropriate JMS administered objects. For
more information about setting up WebSphere MQ for JMS, see the IBM
WebSphere MQ user documentation.

About this task

The Worklight JMS adapter does not support connecting to WebSphere MQ
through bindings mode, only client mode. A TCP connection is created for each
JMS request, even if the JMS broker and Worklight adapter are running on the
same computer.

The following procedure shows how to connect a Worklight JMS adapter to
WebSphere MQ.

Procedure

Include the required WebSphere MQ Java libraries
1. Create a new Worklight project.
2. Locate the java/lib directory in your WebSphere MQ directory.

Example:
/opt/mqm/java/lib

3. Copy the following JAR files from the java/lib directory into the server/lib
directory of your Worklight Project:
v CL3Export.jar

v CL3Nonexport.jar

Chapter 8. Developing IBM Worklight applications 565

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v com.ibm.mq.axis2.jar

v com.ibm.mq.commonservices.jar

v com.ibm.mq.defaultconfig.jar

v com.ibm.mq.headers.jar

v com.ibm.mq.jar

v com.ibm.mq.jmqi.jar

v com.ibm.mq.jms.Nojndi.jar

v com.ibm.mq.pcf.jar

v com.ibm.mq.postcard.jar

v com.ibm.mq.soap.jar

v com.ibm.mq.tools.ras.jar

v com.ibm.mqjms.jar

v connector.jar

v dhbcore.jar

v fscontext.jar

v jta.jar

v providerutil.jar

v rmm.jar

Modify the adapter xml file
4. Create a Worklight JMS adapter.
5. Open the adapter.xml file.
6. In the namingConnection element of the xml file, set the URL to the location of

your bindings file that was generated by WebSphere MQ.
Example:
url="file:/home/user/JMS"

7. In the namingConnection element of the xml file, set the
initialContextFactory attribute to
com.sun.jndi.fscontext.RefFSContextFactory.

8. In the jmsConnection element, set the connectionFactory attribute to the name
of the connection factory that was set up in WebSphere MQ.

9. Optional: If you have security that is enabled in WebSphere MQ, include the
credentials as shown in the following code example.
<connectivity>

<connectionPolicy xsi:type="jms:JMSConnectionPolicyType">
<namingConnection

url="file:/home/user/JMS"
initialContextFactory="com.sun.jndi.fscontext.RefFSContextFactory"
user="admin"
password="password"/>

<jmsConnection
connectionFactory="myConnFactory"
user="admin"
password="password"/>

</connectionPolicy>
<loadConstraints maxConcurrentConnectionsPerNode="10"/>

</connectivity>

Modify the adapter implementation file
10. Open the adapter’s implementation file.

566 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

11. In the auto-generated read and write methods, replace the destination
property with the name that was configured in your JMS administered object
in WebSphere MQ.
Example:
function readMessage() {

var result = WL.Server.readSingleJMSMessage({
destination: "JMS1",
timeout: 60

});
WL.Logger.debug(result);
if (result.errors) {

WL.Logger.debug(">> JMS adapter >> readNextMessage >> errors occured");
return result;

} else if (!result.message) {
WL.Logger.debug(">> JMS adapter >> readNextMessage >> no messages in queue");
return result;

} else {
WL.Logger.debug(">> JMS adapter >> readNextMessage >> message received ::");

};
}

Results

The Worklight JMS adapter is now properly configured to connect to WebSphere
MQ. You can test the JMS adapter in your browser by using the following URL:
http://<hostname>:<port>/<context-root>/invoke?adapterName=<adapterName>&procedure=
<procedureName>¶meters=['<parameters>']

Example
http://localhost:10080/worklight/invoke?adapter=JMSAdapter&procedure=
writeMessage¶meters=['Hello World']

JSONStore overview
JSONStore features add the ability to store JSON documents in IBM Worklight
applications. Accessing JSONStore data from native code is not possible. JSONStore
is only available in hybrid environments.

JSONStore is a lightweight, document-oriented storage system included as a
feature of IBM Worklight, and enables persistent storage of JSON documents.
Documents in an application are available in JSONStore even when the device
running the application is offline. This persistent, always-available storage can be
useful for customers, employees, or partners, to give them access to documents
when for example there is no network connection to the device.

For JSONStore API reference information see WL.JSONStore in the API reference
section.

Here is a high-level summary of what JSONStore provides:
v A developer-friendly WL.JSONStore class to interact with JSONStore, giving

developers the ability to populate the local store with documents, and to update,
delete, and search across documents.

v Persistent, file-based storage matches the scope of the application.
v AES 256 encryption of stored data provides security and confidentiality. You can

segment protection by user with password-protection, in the case of more than
one user on a single device.

Chapter 8. Developing IBM Worklight applications 567

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Ability to integrate with IBM Worklight adapters to send changes and refresh
local content in the JSONStore.

A single store can have many collections, and each collection can have many
documents. It is also possible to have a IBM Worklight Application containing
multiple stores. For information see “JSONStore multiple user support” on page
581. For a table summarizing the JSONStore features, see WL.JSONStore.

Note: Because it is familiar to many developers, relational database terminology is
used in this documentation at times to help explain JSONStore. There are many
differences between a relational database and JSONStore however. For example,
the strict schema used to store data in relational databases is different from
JSONStore's approach, in which you can store any JSON content, and index the
content that you need to search.

Figure 80. A basic graphic representation of JSONStore.

Figure 81. Components and their interaction with the server when using JSONStore for data synchronization.

568 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

JSONStore features comparison
Compare JSONStore features to those of other data storage technologies and
formats.

JSONStore is a JavaScript API for storing data inside hybrid Worklight
applications. It is similar to technologies such as LocalStorage, Indexed DB ,
Cordova Storage API, Cordova File API, and IBM Worklight Encrypted Cache. The
table shows how some features provided by JSONStore compare with other
technologies. The JSONStore feature is only available on iOS and Android devices
and simulators.

Table 95. A comparison of data storage technologies.

JSONStore
Encrypted

Cache LocalStorage IndexedDB
Cordova
Storage

Cordova
File

Android
Support

� � � � � �

iOS
Support

� � � � � �

Web Dev Only
(See Note

1)

� � � - -

Data
encryption

� � - - - -

Maximum
Storage

Available
Space

~5 MB ~5 MB >5 MB Available
Space

Available
Space

Reliable
Storage
(See Note
2)

� - - - � �

Adapter
integration

� - - - - -

Multi-user
support

� - - - - -

Indexing � - - � � -

Type of
Storage

JSON
Documents

Key/Value
Pairs

Key/Value
Pairs

JSON
Documents

Relational
(SQL)

Strings

Note: 1. Dev Only means designed only for development, with no security features
and a ~5 MB storage space limit.

Note: 2. Reliable Storage means that your data is not deleted unless one of the
following events occurs:
v The application is removed from the device.
v One of the methods that removes data is called.

Enabling JSONStore
Since IBM Worklight V6.0, JSONStore is an optional feature. To use JSONStore, you
must take steps to enable it.

Chapter 8. Developing IBM Worklight applications 569

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

To use JSONStore you must enable it by modifying the application-
descriptor.xml file.

Procedure
1. Using the Application Descriptor Editor, open the file application-

descriptor.xml

2. Click the Design tab.
3. Under Overview, expand Application [your application's name].
4. Click Optional Features.
5. Click Add.
6. Select JSONStore.
7. Click Ok.
8. Under Worklight Project, right-click the folder titled with your application

name.
9. Select Run As....

10. Click Run on Worklight Development Server.

JSONStore document
A document is the basic building block of JSONStore.

Figure 82. Enabling JSONStore

570 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

A JSONStore document is JavaScript object with an automatically generated
identifier (_id) and JSON data. It is similar to a record or row in database
terminology. The value of _id is always a unique integer inside a specific
collection. Some functions like the add, replace, and remove methods in the
JSONStoreInstance class take an Array of Documents/Objects. This is useful to
perform an operation on various Documents/Objects at a time.

Example

Single document
var doc = { _id: 1, json: {name: ’carlos’, age: 99} };

Example

Array of documents
var docs = [

{ _id: 1, json: {name: ’carlos’, age: 99} },
{ _id: 2, json: {name: ’tim’, age: 100} }

]

JSONStore collection
A named logical grouping of related documents.

A JSONStore collection is similar to a table, in database terminology

Example

Customer collection
[

{ _id: 1, json: {name: ’carlos’, age: 99} },
{ _id: 2, json: {name: ’tim’, age: 100} }

]

This code is not the way that the documents are actually stored on disk, but it is a
good way to visualize what a collection looks like at a high level.

JSONStore store
A store is the persistent JSONStore file that contains one or more collections.

A store is similar to a relational database, in database terminology. This is also
referred to as a JSONStore.

JSONStore search fields
A search field is a JavaScript object with a key and a data type.

Search fields are keys that are indexed for fast lookup times, similar to column
fields or attributes, in database terminology.

Additional search fields are keys that are indexed but that are not part of the JSON
data that is stored. These fields define the key whose values (in a given JSON
collection) are indexed and can be used to search more quickly.

Chapter 8. Developing IBM Worklight applications 571

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Valid data types are: string, boolean, number, and integer. These are only type
hints, there is no type validation. Furthermore, these types determine how
indexable fields are stored. For example, {age: ’number’} will index 1 as 1.0 and
{age: ’integer’} will index 1 as 1.

Examples

Search fields and additional search fields.
var searchField = {name: ’string’, age: ’integer’};
var additionalSearchField = {key: ’string’};

It is only possible to index keys inside a JavaScript object, not the object itself.
Arrays are handled in a pass-through fashion, meaning that you cannot index an
array or a specific index of the array (arr[n]), but you can index objects inside an
array.

Indexing values inside an array.
var searchFields = {

’people.name’ : ’string’, //matches carlos and tim on myObject
’people.age’ : ’integer’ // matches 99 and 100 on myObject

};

var myObject = {
people : [

{name: ’carlos’, age: 99},
{name: ’tim’, age: 100}

]
};

JSONStore queries
Queries are JavaScript objects that use search fields or additional search fields to
look for documents.

The example presumes that name and age are search fields, and that the types are
string and integer, respectively.

Examples

Find documents with name that matches carlos:
var query1 = {name: ’carlos’};

Find documents with name that matches carlos and age matches 99:
var query2 = {name: ’carlos’, age: 99};

Store internals
See an example of how JSONStore data is stored.

The key elements in this simplified example:
v _id is the unique identifier (for example, AUTO INCREMENT PRIMARY KEY).
v json contains an exact representation of the JSON object stored.
v name and age are search fields.
v key is an additional search field.

572 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Example

Table 96. Contents of a store in JSONStore

_id key name age JSON

1 c carlos 99 {name: 'carlos',
age: 99}

2 t time 100 {name: 'tim', age:
100}

When you search using one of the following queries or a combination of them:
{_id : 1}, {name: ’carlos’}, {age: 99}, {key: ’c’}, the returned document is
{_id: 1, json: {name: ’carlos’, age: 99} }.

JSONStore asynchronicity, callbacks, and promises
Most of the operations that can be performed on a collection, such as add and find,
are asynchronous. These asynchronous operations return a jQuery promise that is
resolved when completed successfully and rejected when a failure occurs. These
promises are similar to success and failure callbacks.

A jQuery Deferred is a promise that can be resolved or rejected. The two examples
provided are not specific to JSONStore, but are intended to help readers
understand the usage of then that is used in the JSONStore examples.

Example

Using a promise instead of a callback
var asyncOperation = function () {

var deferred = $.Deferred();
setTimeout(

function () {deferred.resolve(’Hello’);},
1000);

return deferred.promise();
}
// The function passed to .then is executed after 1000 ms.
asyncOperation.then(function (response) {

// response = ’Hello’
});

Using a callback instead of a promise
var asyncOperation = function (callback) {

setTimeout(
function () {callback(’Hello’);},
1000);

}
asyncOperation(function (response) {

// response = ’Hello’
});

Callbacks have been deprecated in the JSONStore API, but they are currently still
supported for backward compatibility. It is possible but not a good practice to pass
an options object to methods like add, find, replace, and remove in the
JSONStoreInstance class, with the failure and success callbacks. The format is an
onSuccess or onFailure key with a function as the value that gets called when the
operation succeeds or fails respectively.
Related reference:

Chapter 8. Developing IBM Worklight applications 573

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The options object
The options object contains properties that are common to all methods. It is used
in all asynchronous calls to the Worklight server

Chain JSONStore functions and concurrency
By using jQuery.when you can chain JSONStore functions and concurrency.

Every JSONStore API function that returns a promise (for example: the find and
remove methods in the JSONStoreInstance class) can take advantage of
jQuery.when, which calls a function after all of the promises that were passed are
resolved. It is also possible to chain various JSONStore functions by using then,
passing either only a success callback or both a success callback and a failure
callback.

Example

Pseudocode
$.when(collection.find(...), collection.remove(...))

.then(function () {
//Called when find and remove finished
return collection.push(...); //push returns a promise

})

.then(function () {
//Called when push finished

})

.fail(function () {
//Called when find, remove or push fail.

});

Because promises are "aware" of whether they have been resolved or rejected, they
can propagate errors, not calling any callback until an error handler is encountered.
In the example the error callback function is at the end of the chain.

JSONStore events
You can listen to JSONStore success and failure events and capture associated calls
from the JSONStore API.

Example
’WL/JSONSTORE/SUCCESS’
’WL/JSONSTORE/FAILURE’

The following example assumes jQuery >1.7 or using WLJQ (jQuery shipped with
IBM Worklight).
$(document.body).on(’WL/JSONSTORE/SUCCESS’, function (evt, data, src, collectionName) {

//evt - Contains information about the event
//data - Data sent after the operation (e.g. add, find, etc.) finished
//src - Name of the operation (e.g. find, push)
//collectionName - Name of the collection

});

JSONStore errors
JSONStore uses an error object to return messages about the cause of failures

574 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Example

When an error occurs during a JSONStore operation (for example the find, and
add methods in the JSONStoreInstance class) an error object is returned. It provides
information about the cause of the failure. Possible JSONStore error codes that are
returned are listed in “JSONStore error codes.”

Error object
var errorObject = {

src: ’find’, //operation that failed
err: -50, //error code
msg: ’PERSISTENT_STORE_FAILURE’, //error message
col: ’people’, //collection name
usr: ’jsonstore’, //username
doc: {_id: 1, {name: ’carlos’, age: 99}}, //document related to the failure
res: {...} //response from the server

}

Not all the key/value pairs are part of every error object. For example, the
response from the server is only available when operations that use the network
(for example the push method in the JSONStoreInstance class) fail.

JSONStore error codes
Definitions of the error codes related to JSONStore.

-100 UNKNOWN_FAILURE
Unrecognized error when building the error object.

-50 PERSISTENT_STORE_NOT_OPEN
JSONStore is closed. Try calling the init method in the WL.JSONStore class
first to enable access to the store.

-40 FIPS_ENABLEMENT_FAILURE
Something is wrong with FIPS, try following the Getting Started module
Adapter framework overview, under category 4, Worklight server-side development,
in Chapter 3, “Tutorials and samples,” on page 27.

-12 INVALID_SEARCH_FIELD_TYPES
Check that the types that you are passing to the searchFields are
stringinteger,number, orboolean.

-11 OPERATION_FAILED_ON_SPECIFIC_DOCUMENT
An operation on an array of documents, for example the replace method in
the JSONStoreInstance class, can fail while working with a specific document.
The document that failed is returned and the transaction is rolled back.

-10 ACCEPT_CONDITION_FAILED
The accept function that the user provided returned "false".

-9 OFFSET_WITHOUT_LIMIT
To use offset, you must also specify a limit.

-8 INVALID_LIMIT_OR_OFFSET
Validation error, must be a positive integer.

-7 INVALID_USERNAME
Validation error (Must be [A-Z] or [a-z] or [0-9] only).

-6 USERNAME_MISMATCH_DETECTED
To log out, a JSONStore user must call the closeAll method in the
WL.JSONStore class first. There can be only one user at a time.

Chapter 8. Developing IBM Worklight applications 575

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

-5 DESTROY_REMOVE_PERSISTENT_STORE_FAILED
A problem with the destroy method in the WL.JSONStore class while trying to
delete the file that holds the contents of the store.

-4 DESTROY_REMOVE_KEYS_FAILED
Problem with the destroy method while trying to clear the keychain (iOS) or
shared user preferences (Android).

-3 INVALID_KEY_ON_PROVISION
Passed the wrong password to an encrypted store.

-2 PROVISION_TABLE_SEARCH_FIELDS_MISMATCH
Search fields are not dynamic. It is not possible to change search fields without
calling the destroy method or the removeCollection method in the
WL.JSONStore class before calling the init method with the new search fields.
This error can occur if you change the name or type of the search field. For
example: {key: ’string’} to {key: ’number’} or {myKey: ’string’} to
{theKey: ’string’}.

-1 PERSISTENT_STORE_FAILURE
Generic Error. A malfunction in native code, most likely calling the init
method.

0 SUCCESS
In some cases, JSONStore native code returns 0 to indicate success.

1 BAD_PARAMETER_EXPECTED_INT
Validation error.

2 BAD_PARAMETER_EXPECTED_STRING
Validation error.

3 BAD_PARAMETER_EXPECTED_FUNCTION
Validation error.

4 BAD_PARAMETER_EXPECTED_ALPHANUMERIC_STRING
Validation error.

5 BAD_PARAMETER_EXPECTED_OBJECT
Validation error.

6 BAD_PARAMETER_EXPECTED_SIMPLE_OBJECT
Validation error.

7 BAD_PARAMETER_EXPECTED_DOCUMENT
Validation error.

8 FAILED_TO_GET_UNPUSHED_DOCUMENTS_FROM_DB
The query that selects all documents that are marked dirty failed. An example
in SQL of the query would be: SELECT * FROM [collection] WHERE _dirty > 0.

9 NO_ADAPTER_LINKED_TO_COLLECTION
To use functions like the push and load methods in the JSONStoreInstance
class, an adapter must be passed to the init method.

10 BAD_PARAMETER_EXPECTED_DOCUMENT_OR_ARRAY_OF_DOCUMENTS
Validation error

11
INVALID_PASSWORD_EXPECTED_ALPHANUMERIC_STRING_WITH_LENGTH_GREATER_THAN_ZERO

Validation error

576 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

12 ADAPTER_FAILURE
Problem calling WL.Client.invokeProcedure, specifically a problem in
connecting to the Worklight server adapter. This error is different from a failure
in the adapter trying to call a backend.

13 BAD_PARAMETER_EXPECTED_DOCUMENT_OR_ID
Validation error

14 CAN_NOT_REPLACE_DEFAULT_FUNCTIONS
Calling the enhance method in the JSONStoreInstance class to replace an
existing function (find and add) is not allowed.

15 COULD_NOT_MARK_DOCUMENT_PUSHED
Push sends the document to an adapter but JSONStore fails to mark the
document as not dirty.

16 COULD_NOT_GET_SECURE_KEY
To initiate a collection with a password there must be connectivity to the
Worklight Server because it returns a 'secure random token'. Worklight 5.0.6
and later allows developers to generate the secure random token locally
passing {localKeyGen: true} to the init method via the options object.

17 FAILED_TO_LOAD_INITIAL_DATA_FROM_ADAPTER
Could not load data because WL.Client.invokeProcedure called the failure
callback.

18 FAILED_TO_LOAD_INITIAL_DATA_FROM_ADAPTER_INVALID_LOAD_OBJ
The load object that was passed to the init method did not pass the
validation.

19 INVALID_KEY_IN_LOAD_OBJECT
There is a problem with the key used in the load object when calling the add
method.

20 UNDEFINED_PUSH_OPERATION
There is no procedure defined for pushing dirty documents to the server. For
example: the init method (new document is dirty, operation = 'add') and the
push method (finds the new document with operation = 'add') were called, but
no add key with the add procedure was found in the adapter that is linked to
the collection. Linking an adapter is done inside the init method.

21 INVALID_ADD_INDEX_KEY
Problem with additional search fields.

22 INVALID_SEARCH_FIELD
One of your search fields is invalid. Verify none of the search fields passed are
_id,json,_deleted, or _operation.

23 ERROR_CLOSING_ALL
Generic Error. An error occurred when native code called the closeAll method.

24 ERROR_CHANGING_PASSWORD
Unable to change the password. The old password passed was wrong, for
example.

25 ERROR_DURING_DESTROY
Generic Error. An error occurred when native code called the destroy method.

26 ERROR_CLEARING_COLLECTION
Generic Error. An error occurred in when native code called the
removeCollection method.

Chapter 8. Developing IBM Worklight applications 577

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

27 INVALID_PARAMETER_FOR_FIND_BY_ID
Validation error.

JSONStore support
How to get support for JSONStore
v Read “JSONStore overview” on page 567 and WL.JSONStore.
v Read the Chapter 3, “Tutorials and samples,” on page 27 and try the sample

code.

Provide information

It is better to provide more information than necessary than to risk providing too
little information. This list is a good starting point for the information that is
required to help with JSONStore issues.
v Operating System and Version (for example Windows XP SP3 Virtual Machine,

Mac OSX 10.8.3)
v Eclipse Version (for example: Eclipse Indigo 3.7 Java EE)
v JDK Version (for example: Java(TM) SE Runtime Environment (build 1.7))
v Worklight Version (for example: Worklight 5.0.6 Developer Edition)
v iOS Version (for example: iOS Simulator 6.1, iPhone 4S iOS 6.0)
v Android Version (for example: Android Emulator 4.1.1, Samsung Galaxy

Android 4.0 API Level 14)
v adb Version (for example: Android Debug Bridge version 1.0.31)

Try to isolate the issue

Follow these steps to isolate the issue to more accurately report a problem.
v Reset the Simulator or Emulator and (or) call the destroy method in the

WL.JSONStore class to start with a clean system.
v Make sure that you are running on a supported production environment:

– Android >= 2.3 ARM/x86 Emulator or Devices
– iOS >= 5.0 Simulator or Device

v Try turning encryption off (do not pass a password to the init method in the
WL.JSONStore class).

v Look at the SQLite database file that is generated by JSONStore. This only works
if encryption is off.
– Android:

$ adb shell
$ cd /data/data/com.[app-name]/databases/wljsonstore
$ sqlite3 jsonstore.sqlite

– iOS
$ cd ~/Library/Application Support/iPhone Simulator/6.1/Applications/[id]/Documents/wljsonstore

$ sqlite3 jsonstore.sqlite

Try looking at the searchFields with .schema and selecting data with SELECT
* FROM [collection-name];. To exit sqlite3 type .exit. If you are passing a
user name to the init method, the file is called [username].sqlite, for
example carlos.sqlite. When no user name is passed, jsonstore is the
default user name.

v (Android Only) Enable verbose JSONStore.

578 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

adb shell setprop log.tag.jsonstore-core VERBOSE
adb shell getprop log.tag.jsonstore-core

v (iOS >=6.0 and Safari >=6.0 Only) Try to use the JavaScript debugger. Set
breakpoints inside jsonstore.js. Here are some helpful lines:
– Bridge to Native code:

cdv.exec(options.onSuccess, options.onFailure, pluginName, nativeFunction, args);

– Success Callbacks returning from Native code:
deferred.resolve(data, more);

– Failure Callbacks returning from Native code:
deferred.reject(new ErrorObject(errorObject));

Common issues

Understanding the following JSONStore characteristics can help in resolving some
of the common issues that you might encounter.
v The only way to store binary data in JSONStore is to first encode it in base64.
v Accessing JSONStore data from native code is not possible, JSONStore is only

available in hybrid environments.
v There is no limit on how much data you can store inside JSONStore, beyond

limits that are imposed by the mobile operating system. It is possible to use the
Cordova File API to check the size of the store on disk before you allow new
data to be added.

v JSONStore provides persistent data storage. It is not only stored in memory.
v The init function fails when the collection name starts with a digit or symbol.

Worklight >5.0.6.1 returns an appropriate error (4
BAD_PARAMETER_EXPECTED_ALPHANUMERIC_STRING).

v There is a difference between number and integer in search fields. Numeric
values like 1 and 2 are stored as 1.0 and 2.0 when the type is number. They are
stored as 1 and 2 when the type is integer.

v If an app is forced to stop or crashes, when the app is started again and
WL.JSONStore.init() is called, it always fails with error code -1. If that happens,
call the closeAll method in the WL.JSONStore class, followed by the init
method.

JSONStore performance
Learn about the factors that can affect JSONStore performance.

Network
v IBM Worklight provides an API for Android and iOS to give developers

information about the network. It can be accessed by calling
WL.Device.getNetworkInfo. Ideally, getting and sending data from and to an
IBM Worklight adapter should be done when networkConnectionType returns
WIFI.

v Since IBM Worklight includes Apache Cordova, it is possible to consult events
such as online and offline to determine when the application has network
connectivity. Using these events is more efficient than polling the network to
check for connectivity.

v The amount of data that is sent over the network to a client heavily affects
performance. Even if the IBM Worklight Server gets all the data from the
backend, clients get only a minimal subset of the data that they need.

Chapter 8. Developing IBM Worklight applications 579

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Memory
v JSONStore documents are serialized and deserialized as Strings between the

Native (Objective-C or Java) Layer and the JavaScript Layer. One way to
mitigate possible memory issues is by using limit and offset when you call the
find method in the JSONStoreInstance class. Instead of trying to get all the
documents from a local storage, get a subset and implement pagination. Using
{exact: true} to avoid fuzzy searching and setting a limit can also help
improve the find method’s performance.

v Instead of using long key names that are eventually serialized and deserialized
as Strings, consider mapping those long key names into smaller ones (for
example:myVeryVeryVerLongKeyName to k or key). Ideally, the developer maps
them to short key names when sending them from the adapter to the client, and
maps them to the original long key names when sending data back to the
backend.

v Consider splitting the data that is stored inside JSONStore into various
collections. Have small documents over various collections instead of monolithic
documents in a single collection. This depends on how closely related the data is
and the use cases for said data.

v When you call the add method in the JSONStoreInstance class with an array of
objects or by using the load method in the JSONStoreInstance class to store an
array of objects from an adapter, it is possible to run into memory issues. To
mitigate this issue, call these methods with fewer documents at a time. For
example, pass an array of 10 documents to the add method instead of an array
with 1000 documents.

v JavaScript engines have a garbage collector. Allow it to work, but do not depend
on it entirely. Try to null references that are no longer used and use profiling
tools to check that memory usage is going down when you expected to go
down.

CPU
v The amount of search fields and additional search fields that are passed to the

init method in the WL.JSONStore class affects performance when you call the
add method, which does the indexing. Only index the values that are used in
queries for the find method.

v Enabling security adds some overhead to init and other operations that work
with documents inside the collection. Consider whether security is genuinely
required.

v JSONStore by default tracks local changes to its documents. This behavior can be
disabled, thus saving a few cycles, by passing the {push: false} flag to the add,
remove, and replace methods in the JSONStoreInstance class.

Encryption and size of the collection
v Turning on encryption affects the performance of several JSONStore operations,

making them take longer. For example, init is slower with encryption, as it
must generate the encryption keys that it uses for encryption and decryption.

v The following functions are affected by both encryption and the size of the
JSONStore collection:
– the count, replace, and remove methods in the JSONStoreInstance class: These

functions depend on the collection size as they must go through the whole
collection to replace and remove all occurrences. Because it must go through
each record, it must decrypt every one of them, which makes it much slower
when encryption is used. This performance degradation is noticeable on large
collections. For the count method, if you want the count of a huge encrypted

580 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

collection, you can keep a related variable that keeps the count for that
collection. Update it every time that you store or remove things from the
collection.

– the find by query and findAll methods in the JSONStoreInstance class: These
functions are affected by encryption, since they must decrypt every document
to see whether it is a match or not. For find by query, if a limit is passed, it is
potentially faster as it stops when it reaches the limit of results. JSONStore
does not need to decrypt the rest of the documents to figure out if any other
search results remain.

Miscellaneous
v Most of the core JSONStore API is asynchronous. Ideally, block sections of the UI

that depend on data from JSONStore, instead of blocking the whole User
Interface with something like a WL.BusyIndicator. One approach is to append
text (that is, 'Loading...') to a DOM element and then replace that text with real
data from a JSONStore collection when, for example, the find method is
finished.

JSONStore multiple user support
With JSONSTore, you can create multiple stores that contain different collections in
a single IBM Worklight application.

The init method in the WL.JSONStore class can take an options object with a user
name. Separate stores are separate files in the file system. These separate stores can
be encrypted with different passwords for security and privacy reasons. Calling the
closeAll method in the WL.JSONStore class removes access to all the collections. It
is also possible to change the password of an encrypted store calling the
changePassword method in the WL.JSONStore class.

An example use case would be various employees sharing the same physical
device (for example an iPad or Android tablet) and IBM Worklight application. In
addition, if the employees work different shifts and handle private data from
different customers while using the IBM Worklight application, multiple user
support is particularly useful.

JSONStore security
You can secure all of the collections in a store by encrypting them.

To encrypt all of the collections in a store, pass a password to the init method in
the WL.JSONStore class. If no password is passed, none of the documents in the
store collections are encrypted.

Some metadata / security artifacts (for example salt) are stored in the keychain
(iOS) or shared preferences (Android). The store is encrypted with a 256-bit
Advanced Encryption Standard (AES) key. All keys are strengthened with
Password-Based Key Derivation Function 2 (PBKDF2).

Data encryption is only available on Android and iOS environments. You can
choose to encrypt collections for an application, but you cannot switch between
encrypted and plain-text formats, or to mix formats within a store.

The key that protects the data in the store is based on the user password that you
provide. The key does not expire, but you can change it by calling the
changePassword method in the WL.JSONStore class.

Chapter 8. Developing IBM Worklight applications 581

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The encrypted data protection key (DPK) is the key that is used to decrypt the
contents of the store. The DPK is kept in the iOS keychain even if the application
is uninstalled. To remove both the key in the keychain and everything else that
JSONStore put in the app, call the destroy method in the WL.JSONStore class. This
process is not applicable to Android because the encrypted DPK is stored in shared
preferences and wiped out when the app is uninstalled.

Worklight adapter integration for JSONStore
You can enable JSONSore data synchronization by linking a collection to an IBM
Worklight Adapter.

This topic assumes that the reader is familiar with IBM Worklight adapters. For
more information, see Adapter framework overview, under category 4, Worklight
server-side development, in Chapter 3, “Tutorials and samples,” on page 27.

Overview

Writing an application that maintains a local copy of its data and, on request,
pushes the local updates to a back-end service can be achieved with JSONStore.
The local copy is a store that holds JSON documents managed by the JSONStore
API on the device.

Most of the operations that are provided in the API for using data synchronization
operate on the local copy of the data that is stored on the device. Functions like the
add method, the replace method, and the remove method in the JSONStoreInstance
class, and most other operations are specific to the local copy of the data.
JSONStore tracks modifications to data made locally. The exceptions are the push
method and the load method in the JSONStoreInstance class, which act on the
local and remote data.

Linking a collection to an adapter allows JSONStore to:
v Send data from a collection to an IBM Worklight Adapter.
v Get data from an IBM Worklight Adapter into a collection.

Note: Those two goals can also be achieved using functions like the
invokeProcedure method as defined in the WL.Client class, jQuery.ajax to
transmit and receive data, and the getPushRequired method in the
JSONStoreInstance to get the changes.

Example Use Case
v A mobile worker, whose job includes customer visits, downloads a large set of

information to a mobile device when network conditions permit this. This can be
for example while in the office, using the corporate WiFi network.

v The downloaded data is securely stored on the device.
v The worker uses the local copy of the data in an application on the mobile

device, with the device either online or offline.
v JSONStore tracks any changes that are made to the local copy of the data.
v At an appropriate time, for example when the worker is back in the office at the

end of the week and again connected to the corporate WiFi network, the worker
synchronizes the updates that were made locally on the device with an IBM
Worklight adapter that pushes the updates into a back-end system.

582 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Adapter integration workflow

The first task is to create an IBM Worklight Adapter, for example HTTP, SQL, JMS,
and define the procedures to get, add, replace and remove data, for example:
getPeople, addPerson, replacePerson, removePerson.

Nest you must implement the procedures to get, add, replace, and remove data.
Here is an example that just returns hardcoded data, and logs for simplicity. Read
the IBM Worklight Adapter Documentation for details on how to contact the
backend.
function getPeople () {

return { peopleList : [{name: ’carlos’, age: 100}, {name: ’tim’, age: 99}] };
}

function addPerson (data) {
return WL.Logger.debug(’Got data from JSONStore to ADD: ’ + data);

}

function replacePerson (data) {
return WL.Logger.debug(’Got data from JSONStore to REPLACE: ’ + data);

}

function removePerson (data) {
return WL.Logger.debug(’Got data from JSONStore to REMOVE: ’ + data);

}

To link a collection to an adapter you must specify the adapter option as part of
the collection creation options when init is called. If an adapter is not specified for
the collection, calls to the push method and the load method in the
JSONStoreInstance class, return an error.

When the load method in the JSONStoreInstance class is called, the adapter name,
load procedure name, and the key are used to determine what to store. In the
example, the key is peopleList because the goal is to store {name: ’carlos’, age:
100} and {name: ’tim’, age: 99} as two separate documents.

Calling the getPushRequired method as defined in the JSONStoreInstance class will
return an array of documents that have local only modifications, these are the
documents will be sent to the IBM Worklight Adapter when push is called.

The push function sends the document that changed to the correct IBM Worklight
Adapter procedure. This is based on the last operation associated with the
document that changed (for example addPerson will be called with a documented
that was added locally).

The option {push: false} can be passed to the add method, the replace method,
and the remove method as defined in the JSONStoreInstance class to stop
JSONStore from marking the documents as dirty (for example tracking local
changes). Dirty means that the document has local modifications that do not exist
on the backend. It's possible to check if a document is dirty by calling the
isPushRequired method as defined in the JSONStoreInstance class. Checking how
many documents are dirty can be achieved with the pushRequiredCount method as
defined in the JSONStoreInstance or counting the documents returned by the
getPushRequired method as defined in the JSONStoreInstance class.

IBM Worklight adapter wizard
The IBM Worklight wizard can help you create a template JavaScript file that is
based on search fields selected from the backend that you provide.

Chapter 8. Developing IBM Worklight applications 583

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

Before using the wizard, see “Worklight adapter integration for JSONStore” on
page 582 for an overview. Using the wizard is optional. You can link a collection to
an adapter by manually writing the procedure names when the init method in the
WL.JSONStore class is called.

Procedure
1. In Worklight Studio, create an application.

a. In the Project Explorer tab, right-click the project name.
b. Click New > Worklight Hybrid Application. The Hybrid Application

window opens.
c. Enter the appropriate information into the fields in this window and click

Finish. A standard application structure is created.
2. In Worklight Studio, create and deploy an adapter.

a. In the Project Explorer tab, right-click the project name.
b. Click New > Worklight Adapter. The New Worklight Adapter window

opens.
c. Select the appropriate adapter type, enter an adapter name, and select the

JSON Data available offline check box.
d. Optional: To change the suggested procedure names, type over them.
e. Click Finish. A standard adapter structure is created.
f. Deploy the adapter.

3. Retrieve a JSON object with the adapter:
a. Right-click the adapter name.
b. Click Run As > Invoke Worklight Procedure. The Edit Configuration

window opens.
c. Select the procedure that is used for retrieving JSON data and click Run.

The JSON object that is returned by the procedure is displayed.
4. Create a local JSONstore:

a. In Worklight Studio, click File > New > Worklight JSONStore and select
the project and app names. The Create JSON Collection wizard starts.

b. Follow the instructions in the wizard to start the adapter, name the
collection, and specify the searchable fields.

c. Optional: To encrypt collections for an application, select the Encrypt
collections check box in the wizard. The wizard creates a JavaScript file
named collection_nameCollection.js in the application's common/js directory,
where collection_name is the name you specified in the wizard.

5. Review the collection_nameCollection.js file and include its content
manually in your application's .js file.

Note: The input data for the JSONStore wizard must be encoded with UTF-8.
Other data encoding is not supported.

Troubleshooting JSONStore and data synchronization
Find information to help resolve issues with JSONStore and data synchronization.

To get help in troubleshooting JSONStore and data synchronization problems:
v Read about common issues.
v Read a list of error codes.

584 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.JSONStore.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About stored data synchronization errors

The push method and the pushSelected method as defined in the
JSONStoreInstance class operate similarly, with several differences. The push
method takes no parameters, and synchronizes all the documents that were
modified locally. The pushSelected method as defined in the JSONStoreInstance
class takes the ID of a specific document or documents to synchronize.

These methods can fail if they are supplied with the wrong data, or if something
goes wrong while native code is running to get the documents, or verifying that
they are unsynchronized.

After the documents are retrieved, an IBM Worklight adapter is called by using the
appropriate option (add, replace, or remove in JSONStoreInstance). The adapter
then tries to contact the back-end server. This attempt can fail if the adapter or
procedure name does not exist or if the IBM Worklight Server or back-end server
cannot be reached.

If the server is contacted, you can check the status code from the synchronization
procedure, and then determine whether to mark that document as synchronized.
This step uses native code and can fail.

All the failure paths are handled, and return status codes to help you to mitigate
failure conditions. Status codes are listed in “JSONStore error codes” on page 575.

Push notification
Push notification is the ability of a mobile device to receive messages that are
pushed from a server. The most common form of notification is SMS (Short
Message Service). Notifications are received regardless of whether the application
is currently running.

Notifications can take several forms, and are platform-dependent:
v Alert: a pop-up text message
v Badge, Tile: a graphical representation that includes a short text or image
v Banner, Toast: a pop-up text message at the top of the device display that

disappears after it has been read
v Audio alert

The IBM Worklight unified push notification mechanism enables the sending of
mobile notifications to mobile phones. Notifications are sent through the vendor
infrastructure. For example, iPhone notifications are sent from the Worklight Server
to specialized Apple servers, and from there to the relevant phones. The unified
push notification mechanism in IBM Worklight makes the entire process of
communicating with the users and devices completely transparent to the
developer.

Chapter 8. Developing IBM Worklight applications 585

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/JSONStoreInstance.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Push notification currently works for iOS, Android, and Windows Phone 8. iOS
apps use the Apple Push Notification Service (APNS), Android apps use Google
Cloud Messaging (GCM), and Windows Phone 8 apps use the authenticated and
non-authenticated Microsoft Push Notification Service (MPNS). SMS push
notifications are supported on iOS, Android, Windows Phone 8, Java ME, and
BlackBerry devices that support SMS functions. For more information about setting
up push notification for each platform, see Setting up push notifications.

Proxy settings

Use the proxy settings to set the optional proxy through which notifications are
sent to APNS and GCM. You can set the proxy by using the push.apns.proxy.*
and push.gcm.proxy.* configuration properties. For more information, see
“Configuration of IBM Worklight applications on the server” on page 772.

Architecture

Unlike other IBM Worklight services, the push server requires outbound
connections to Apple, Google, and Microsoft servers using ports that are defined
by these companies.

When you are running a cluster of application servers, only one node actually
sends push messages to Apple, Google, and Microsoft servers. This server is
selected randomly.

For more information, see “Possible IBM Worklight push notification
architectures.”

Possible IBM Worklight push notification architectures
An explanation of two different methods of implementing push notifications,
which are based on how the enterprise backend provides the messages to
Worklight Server.

There are two common ways to create an IBM Worklight push notification
architecture:

Figure 83. Push notification mechanism

586 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v JMS polling
v The enterprise backend calls a backend procedure

Each of these methods is explained in the following sections.

JMS polling architecture

This architecture relies on the enterprise backend to deliver messages to a single
instance of Worklight Server using a JMS message queue. The developer must
create an IBM Worklight JMS adapter, which pulls messages from the queue and
calls the IBM Worklight server-side push notification API to process the messages.

Using this architecture, the flow is as follows:
v Messages are put into the JMS queue by the enterprise backend.
v Worklight Server polls the JMS adapter, retrieving messages in short batches and

sending them to the push providers.
v Only a single Worklight Server is pulling from the JMS queue and sending the

push notifications.
v The process is implemented using an IBM Worklight JMS adapter, which

functions as follows:
– The server is selected once randomly, using the IBM Worklight cluster-sync

mechanism.
– If the server that pulls from the JMS queue is shut down, another server takes

its place.

This is the standard architecture. Pros of this method are that it involves an
asynchronous queue, into which you can put the messages that you want to send.
These messages are then processed and pulled later by the Worklight Server. Cons
of this method are that only one server is sending the push notifications, so the
maximum messages-per-second throughput is fixed.

Figure 84. JMS polling push notification architecture

Chapter 8. Developing IBM Worklight applications 587

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Enterprise backend calling the Worklight Server architecture

This architecture relies on the enterprise backend to deliver messages to a
Worklight Server cluster by calling an IBM Worklight adapter procedure.

Using this architecture, the flow is as follows:
v The enterprise backend initiates calls to the load balancer.
v The request is routed to one of the Worklight Server instances, which sends a

push message to a provider.
v In this flow all Worklight Server instances send push notifications.

Pros of this method are that all Worklight Servers can be used to send push
notifications, so you can add more servers if you must send more messages per
second. Cons of this method are that every push message is a transaction on the
Worklight Server. You can mitigate this overhead by sending a number of messages
together or by having the IBM Worklight adapter procedure that is invoked call the
backend for a batch of messages rather than single messages.

Setting up push notifications
You can send push notifications to mobile devices via the Worklight Server. You
can set up push notifications on Android, iOS, and Windows Phone 8.

About this task

The process for setting up push notifications varies significantly for each platform,
and for Android and iOS you must refer to documentation for those products. For
more information about the processes for each platform, see the following tasks:

Figure 85. Enterprise backend push notification architecture

588 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Setting up push notifications for Android
To set up push notifications for Android devices, you must use the Google Cloud
Messaging (GCM) service. In order to use GCM, you need a valid Gmail account.

Procedure
1. Create a Gmail account.

a. Open the GCM web page: http://developer.android.com/google/gcm/
gs.html.

b. Open the Google APIs Console page. If you have not done this previously,
you will be asked to create a project. The project has an ID; this is the
senderID value that you use in the application-descriptor.xml file.

c. Click the option to create a new key, and choose the option to create a
browser key. The generated key is the key value that you use in the
application-descriptor.xml file. When you create the browser key, do not
restrict it to any specific URL.

2. From Worklight Server, ensure that ports 5228, 5229, and 5230 are open.
Typically, GCM uses only port 5228, but it sometimes uses 5229 and 5230.

3. Ensure that your firewall will accept outgoing connections to all IP addresses
contained in the IP blocks listed in Google's ASN of 15169.

4. In the application-descriptor.xml file, for <android> set the following
attributes for the <pushsender> element:

Attribute Description

key The key value received from GCM.

senderID The project ID received from GCM.

Note: Android OS 2.3.x devices must be synchronized with a Gmail account.
Android OS 4.x does not impose account synchronization.

Results

Your push notifications setup is now complete.

Setting up push notifications for iOS
To set up push notifications for iOS devices, you must use the Apple Push
Notification Service (APNS). In order to use APNS, you must be a registered Apple
iOS Developer, and obtain an Apple APNS certificate for your application.

Before you begin

Ensure that the following servers are accessible from Worklight Server:
v Sandbox servers:

– gateway.sandbox.push.apple.com:2195
– feedback.sandbox.push.apple.com:2196

v Production servers:
– gateway.push.apple.com:2195
– feedback.push.apple.com:2196

Chapter 8. Developing IBM Worklight applications 589

http://developer.android.com/google/gcm/gs.html
http://developer.android.com/google/gcm/gs.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Perform the required steps to obtain your APNS certificate and its password.

For detailed information, see the developerWorks article Understanding and
setting up artifacts required to use iOS devices and APNS in a development
environment

2. Place the Apple APNS certificate file at the root of the application folder, in
which the application-descriptor.xml file is held.

3. Install the Entrust CA root certificate using SSL port 443. For more information,
see the iOS Developer Library.

4. In the application-descriptor.xml file, for <iPhone> set the following
attributes for the <pushsender> element:

Attribute Description

password The APNS certificate password received
from Apple.

Results

Your push notifications setup is now complete.

Setting up push notifications for Windows Phone 8
You can set up a web service to provide authenticated web services on Windows
Phone 8. Authenticated web services have no daily limit on the number of push
notifications they can send, whereas unauthenticated web services are throttled at a
rate of 500 push notifications per subscription per day.

Before you begin

If you want to use an authenticated push notifications service, you must first set
up a Secure Sockets Layer (SSL) certificate keystore. For more information, see SSL
certificate keystore setup. The keystore can contain several certificates, one of
which is the certificate for authenticated push notifications to MPNS.

You must also authenticate your web service with Microsoft, as documented in the
Windows Phone Development Center at http://dev.windowsphone.com/en-us/
develop/.

Procedure

In the application-descriptor.xml file, for <windowsPhone8> set the following
attributes for the <pushSender> element:

Attribute Setting

serviceName The common name (CN) found in the MPNS
certificate's Subject value.

keyAlias The alias used to access the keystore
specified by the following properties in the
worklight.properties file:

v ssl.keystore.path

v ssl.keystore.type

v ssl.keystore.password

keyAliasPassword The password for your key alias.

590 IBM Worklight V6.1.0

https://www.ibm.com/developerworks/community/blogs/worklight/entry/understanding-and-setting-up-push-notifications-in-development-evnironment?lang=en
https://www.ibm.com/developerworks/community/blogs/worklight/entry/understanding-and-setting-up-push-notifications-in-development-evnironment?lang=en
https://www.ibm.com/developerworks/community/blogs/worklight/entry/understanding-and-setting-up-push-notifications-in-development-evnironment?lang=en
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/CommunicatingWIthAPS.html
http://dev.windowsphone.com/en-us/develop/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Results

The serviceName attribute from the application descriptor is passed to the
application's client side, and is used when a new notification channel is created.
The URI token of the notification channel starts with "https", rather than "http".
The keyAlias and keyAliasPassword attributes are used byWorklight Server to
extract the certificate from the Java™ keystore file, so that it can be used in the
handshake process with Microsoft Push Notification Service (MPNS). Any push
notifications submitted to the application will be authenticated and secure.

In response to push notification requests, MPNS returns a response code and a
status. If the request is successful, the response code is 200, and the status is
Received. For details of other response codes, go to the MSDN website at
msdn.microsoft.com, and search for "push notification service response codes".

Example
<windowsPhone8>

<pushSender>
<authenticatedPush serviceName="myservice"

keyAlias="janedoe"
keyAliasPassword="a1b2c3d4"</authenticatedPush>

</pushSender>
...
</windowsPhone8>

Subscribing to push notifications
Before a device can start receiving push notifications, it must first subscribe to a
push notification event source. When the user approves the push notification
subscription, the device is registered with an appropriate push server.

About this task

There are two levels of subscription: user subscription and device subscription.
v User subscription is an entity that contains a user ID, a device ID, and an event

source ID. It represents the intent of the user to receive notification from a
specific event source.

v A device subscription belongs to a user subscription, and exists in the scope of a
specific user and event source. A user subscription can have several device
subscriptions.

The user subscription for an event source is created when the user first subscribes
to the event source from any device. The event source is declared in the IBM
Worklight adapter that is used by the application for push notification services.

After the user approves a push notification subscription, the device is registered
with an Apple, Google, or Microsoft push server to obtain a token that is used to
identify the device. The token is in the following form: Allow notifications for
application X on device Y. The device then sends a subscription request to the
Worklight Server.

Procedure
1. When a device calls the WL.Client.Push.subscribe API, the device registers

with a push service mediator and obtains a device token. This process is done
automatically by IBM Worklight.

2. When the token is obtained, the application subscribes to an event source.

Chapter 8. Developing IBM Worklight applications 591

http://www.msdn.microsoft.com

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. Optional: If push notifications are no longer required, you can unsubscribe. The
device subscription is deleted either by an application that calls the
WL.Client.Push.unsubscribe API, or when the push mediator informs the
Worklight Server that the device is permanently not accessible.

Results

While the user subscription exists, the Worklight Server can produce push
notifications for the subscribed user. These notifications can be delivered by the
adapter code to all or some of the devices that the user has subscribed from.

Web-based SMS subscription
Subscription, and unsubscription, to SMS notifications can be performed by
making HTTP GET requests to the subscribe SMS servlet. The subscribe SMS
servlet can be used for SMS subscriptions without the requirement for a user to
have an app installed on their device.

Enter the following URL to access the subscribe SMS servlet:
http://<hostname>:<port>/<context>/subscribeSMS

This URL can be used to subscribe and unsubscribe.

You must create an application and an event source within an adapter and deploy
them on the IBM Worklight Server before you make calls to the subscribe SMS
servlet. For more information about how to create an event source, see the
createEventSource method in the WL.Server class.

Table 97. Subscribe SMS servlet URL parameters

URL
parameter URL parameter description

option Optional string. Subscribe or unsubscribe action to perform. The default
option is subscribe. If any non-blank string other than subscribe is
supplied, the unsubscribe action is performed.

eventSource Mandatory string. The name of the event source. The event source name is
in the format AdapterName.EventSourceName.

alias Optional string. A short ID defining the event source during subscription.
This ID is the same ID as provided in WL.Client.Push.subscribeSMS.

phoneNumber Mandatory string. User phone number to which SMS notifications are sent.
The phone number can contain digits (0-9), plus sign (+), minus sign (-), and
space (�) characters only.

userName Optional string. Name of the user. If no user name is provided during
subscription, an anonymous subscription is created by using the phone
number as the user name. If a user name is provided during subscription, it
must also be provided during unsubscription.

appId Mandatory string for subscribe. The ID of the application that contains the
SMS gateway definition. The application ID is constructed from the
application name, application environment, and application version. For
example, version 1.0 of Android application SMSPushApp has appId =
SMSPushApp-android-1.0.

Note: If any parameter value contains special characters, this parameter must be
encoded by using URL encoding, also known as percent encoding, before the URL
is constructed. Parameter values containing only the following characters do not
need to be encoded:

592 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-server/html/WL.Server.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

a-z, A-Z, 0-9, period (.), plus sign (+), minus sign (-), and underscore (_)

Subscriptions that are created by using the subscribe SMS servlet are independent
of subscriptions that are created by using a device. For example, it is possible to
have two subscriptions for the same phone number and user name; one created by
using the device and one created by using the subscribe SMS servlet. If there are
two subscriptions for the same phone number and user name, unsubscription by
using the subscribe SMS servlet unsubscribes only the subscription that is made
through the subscribe SMS servlet. However, unsubscription by using the IBM
Worklight Console unsubscribes both subscriptions.

Security

It is important to secure the subscribe SMS servlet because it is possible for entities
with malicious intent to call the servlet and create spurious subscriptions. By
default, IBM Worklight protects static resources such as the subscribe SMS servlet.
The authenticationConfig.xml file is configured to reject all requests to the
subscribe SMS servlet with a rejecting login module. To allow restricted access to
the subscribe SMS servlet, IBM Worklight administrators must modify the
authenticationConfig.xml file with appropriate authenticator and login modules.

For example, the following configuration in the authenticationConfig.xml file
ensures only requests with a specific user name in the header of the HTTP request
are allowed:

<staticResources>
<resource id="subscribeServlet" securityTest="SubscribeServlet">
<urlPatterns>/subscribeSMS*</urlPatterns>
</resource>
...

</staticResources>

<securityTests>
<customSecurityTest name="SubscribeServlet">

<test realm="SubscribeServlet" isInternalUserID="true"/>
</customSecurityTest>
...

</securityTests>

<realms>
<realm name="SubscribeServlet" loginModule="headerLogin">

<className>com.worklight.core.auth.ext.HeaderAuthenticator</className>
</realm>
...

</realms>

<loginModules>
<loginModule name="headerLogin">

<className>com.worklight.core.auth.ext.HeaderLoginModule</className>
<parameter name="user-name-header" value="username"/>

</loginModule>
...

</loginModules>

Sending push notifications to the device
IBM Worklight provides a unified push notifications API to enable you to send
push notifications from the server to the device.

Chapter 8. Developing IBM Worklight applications 593

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

To start receiving push notifications, an application must first subscribe to a push
notification event source. The event source is a push notification channel to which
mobile applications can register. An event source is defined within a Worklight
adapter. The device user must approve the push notification subscription.

When the user approves, the device registers with an Apple, Google, or Microsoft
push server to obtain a device token that is used to identify the device. The device
then sends a subscription request to the Worklight Server. This operation is
performed automatically within IBM Worklight.

The unified push notifications API comprises two elements:
v The Adapter API, to manage subscriptions, push and pull notifications from the

server, and to send push notifications to devices.
v The Application API, to subscribe to and unsubscribe from push notification

event sources, and to handle incoming notifications.

For more information about the API, see WL.Client.Push.

Procedure
1. A notification is retrieved from the back-end system. Notifications can be polled

from the back-end system, or the back-end system can explicitly push a new
notification.

2. The notification is retrieved by the adapter, processed, and then sent through
the corresponding push service mediator (Apple, Google, or Microsoft). For
more information about setting up push notifications, see Setting up push
notifications.

3. The push service mediator receives the notification and sends it to a device.
4. The device processes the received notification.

Sending SMS push notifications to the device
In addition to standard push notifications, you can also send Short Message
Service (SMS) messages, more commonly known as text messages, to user devices.

The SMS notification framework extends the push notification framework. In order
to receive SMS notifications, the user must first subscribe to a push notification
event source.

About this task

SMS support is provided for Apple, Google, and Windows Phone 8 devices, and
for BlackBerry devices that support SMS functions. IBM Worklight includes the
capability to send SMS notifications to all platforms that provide SMS support.

Procedure
1. An SMS notification infrastructure is set up, comprising a Worklight adapter

acting as a connector to an app running on a mobile device.
2. The user of the mobile device sends a subscribe request from the application to

the event source declared in the Worklight adapter, by using the client-side
SMS subscribe API WL.Client.Push.subscribeSMS.

3. The user subscription to the event source is registered at the Worklight Server.

594 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.Push.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

4. When the back-end service has to notify the user, it invokes a method in the
Worklight adapter.

5. The adapter checks whether an SMS subscription already exists for that user
and, if it does, sends the SMS alert message through a preconfigured SMS
Aggregator.

6. Optional: If SMS notifications are no longer required, you can unsubscribe. The
subscription is deleted either by an application that calls the
WL.Client.Push.unsubscribeSMS API, or by using the Admin console. For more
information, see Administering push notifications with the Worklight Console.
For a detailed scenario-based example showing SMS messaging, see the
developerWorks article Send SMS push notifications to your mobile app using
IBM Worklight.

Sending push notifications from WebSphere Application
Server – IBM DB2

To issue push notifications from a WebSphere Application Server that uses IBM
DB2 as its database, a custom property must be added.

About this task

If you use WebSphere Application Server with an IBM DB2 database, errors can
arise when you try to send push notifications. To resolve this situation, you must
add a custom property in WebSphere Application Server, at the data source level.

Procedure
1. Log in to the WebSphere Application Server admin console.
2. Select Resources > JDBC > Data sources > DataSource name > Custom

properties and click New.
3. In the Name field, enter allowNextOnExhaustedResultSet.
4. In the Value field, type 1.
5. Change the type to java.lang.Integer.
6. Click OK to save your changes.
7. Select custom property resultSetHoldability.
8. In the Value field, type 1.
9. Click OK to save your changes.

Configuring a polling event source to send push notifications
Polling event sources can be used to generate notification events, such as push
notifications, that the IBM Worklight client framework can subscribe to.

About this task

The Worklight adapter framework provides the ability to implement event sources,
which can be used to generate notification events such as push notifications.
However, notifications must be retrieved from a back-end system before they can
be sent out. Event sources can either poll notifications from the back-end system,
or wait for the back-end system to explicitly push a new notification.

This task describes how to create a polling event source, and use it to send push
notifications. A polling event source is a long-running task that has the following
mandatory properties:

Chapter 8. Developing IBM Worklight applications 595

http://www.ibm.com/developerworks/websphere/techjournal/1305_ramachandra/1305_ramachandra.html
http://www.ibm.com/developerworks/websphere/techjournal/1305_ramachandra/1305_ramachandra.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Event source name
v Polling interval
v Polling function

Procedure
v Consider the following simple example. The diagram shows a sample for a basic

polling event source:

The doSomething() function is invoked every three seconds. If you deploy this
adapter to the Worklight Server, you see the following logs in the server console:

The log shows that the doSomething() function is invoked at 3-second intervals.
v This second example shows a more realistic example of a polling event source:

596 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The sample includes the following key elements:
– Lines 7 - 8: The polling event source continuously invokes a

sendNotifications() function with a 3-second interval.
– Lines 18 - 19: Every time the sendNotifications() function is invoked it

requests messages data from the back-end. The sample shows an HTTP
back-end, but it could be any other type of back-end Worklight adapter
support, for example, SQL. The code assumes that the following JSON

Chapter 8. Developing IBM Worklight applications 597

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

markup is returned by the back-end. However, since the Worklight adapter
knows how to automatically convert data to JSON, the back-end data could
also be XML.

{
messages: [{

userId: "John",
text: "New incoming transition",
badge: 2,
payload: {}

},
{

userId: "Bob",
text: "Please approve withdrawal",
badge: 5,
payload: {}

}]
}

– Line 22: The code iterates over the received messages array.
– Line 25: Every message contains the user ID of a user that the notification

should be sent to.
– Line 28: Using this user ID, the code tries to obtain a userSubscription object.
– Lines 30 - 33: If a userSubscription object is found for the specified user ID,

a new notification is created and is sent to all user devices.
– Line 35. If a userSubscription object is not found for the specified user ID, an

error is logged.
An important feature of a polling event source is that unlike regular adapter
procedures, the polling function is triggered by the Worklight Server itself, and
not by the incoming request. Therefore any data or APIs related to request or
session context are not available or functional. For example, APIs such as
WL.Server.getActiveUser() or WL.Server.getClientRequest() are not functional.
Also, you do not need to expose polling function in the adapter XML file.

Using two-way SMS communication
SMS two-way communication enables communication between a mobile phone
and the Worklight Server, over an SMS channel. SMS messages that originate from
the mobile device can be sent to the Worklight Server through an external SMS
gateway. The Worklight Server can then send a response message back to the
originating mobile device.

Before you begin

To run SMS two-way communication, the mobile device must support SMS
functions.

About this task

Keywords or shortcodes should be configured with the third-party SMS gateway.
The gateway should be configured to forward SMS messages to the SMS servlet of
the Worklight Server, either directly or through a reverse proxy URL, based on the
topology in your environment:

http://hostname:port/context/receiveSMS

The SMS messages that are sent from mobile phones are forwarded to an adapter
procedure on the Worklight Server, which is configured by the developer. The
adapter procedure can include the logic to process the request, or the procedure

598 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

can forward the request to a back-end system for processing. The response is
returned by using the IBM Worklight notification framework. For more
information, see Push notification.

The two-way SMS architecture is summarized in the following figure:

1. The adapter registers SMS event handlers on the Worklight Server.
2. SMS messages are sent from mobile devices to the SMS gateway, which is

configured with an SMS servlet of Worklight Server.
3. The SMS gateway forwards SMS messages to a configured Worklight URL.
4. An SMS servlet on Worklight Server matches the parameters with filters that

are defined in SMS event handlers, and calls an adapter callback procedure.
5. The adapter processes SMS messages and sends an SMS message to the mobile

device by using the SMS API.

You use a series of server API methods to send and receive SMS messages:

WL.Server.createSMSEventHandler
Create an SMS event handler.

WL.Server.setEventHandlers
Set event handlers to implement callbacks for received events.

WL.Server.subscribeSMS
Subscribe a phone number to the specified event source.

WL.Server.unsubscribeSMS
Unsubscribe the phone number from the specified event source.

WL.Server.getSMSSubscription
Return an SMS subscription object for a phone number.

Figure 86. Two-way SMS architecture

Chapter 8. Developing IBM Worklight applications 599

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

IBM Worklight security framework
This collection of topics contains information about and tasks for using IBM
Worklight security framework in applications.

IBM Worklight Security Overview
An overview of security features within IBM Worklight.

The following sections provide high-level information about the IBM Worklight
security model.

Goals and structure of IBM Worklight security framework

The IBM Worklight security framework serves two main goals. It controls access to
the protected resources, and it propagates the user (or server) identity to the
backend systems through the adapter framework.

It is key to the success of the application that the Worklight security framework
does not include its own user registry, credentials storage, or access control
management. Instead, it delegates all those functions to the existing enterprise
security infrastructure. This delegation allows Worklight Server to integrate
smoothly as a presentation tier into the existing enterprise landscape. Integration
with the existing security infrastructure is an important feature of the Worklight
security framework, and supports custom extensions that allow integration with
virtually any security mechanism.

Another feature of the Worklight security framework is support of multi-factor
authentication. It means that any protected resource can require multiple checks to
control access. A typical example of multi-factor authentication is the combination
of device, application, and user authentication.

Each type of security check has its own configuration, and a configured check is
called a realm. Multiple realms can be grouped in a named entity that is called a
security test. Each protected resource refers to the security test. All the configuration
entities are defined in a single configuration file so that the definitions can be
reused across different protected resources.

An implementation of security checks usually includes a client part and a server
part. The two parts interact with each other according to their private protocol.
This protocol is usually a sequence of 1) challenges that are sent by the server and
2) responses that are returned by the client.

The Worklight security framework provides a wire protocol. This protocol allows the
combination of challenges and responses of multiple security checks during a
single request-and-response round trip. The protocol serves two important
purposes: it allows the number of extra round trips between the client and server
to be minimized, and it separates the application logic and the security checks
implementation.

600 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Protected resources and authentication context

A protected resource can be any of the following items:
v Application

Any request to the application requires successful authentication in all realms of
the security test that is defined in the application descriptor.

v Adapter procedure

Procedure invocation requires successful authentication in all realms of the
security test that is defined in the adapter descriptor. The user identity and
credentials that are obtained during such authentication can be propagated to
the enterprise information system represented by this adapter.

v Event source

Subscription to push notifications requires successful authentication in all realms
of the security test that are defined in the event source definition (in adapter
JavaScript).

v Static resource

Static resources are defined as URL patterns in the authentication configuration
file. They allow protection of "static" web applications such as the Worklight
Console.

During the session, an application can access different resources. The results of the
authentication in different realms are stored in the session authentication context.
These results are then shared among all of the protected resources in the scope of
the current session.

Chapter 8. Developing IBM Worklight applications 601

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Realms and security tests

A realm represents a fully configured security check that must be completed before
it can allow access to a protected resource. The semantics of the checks are not
limited to the authentication, but can implement any logic that can serve as
protection for the server-side application resources, for example:
v User authentication
v Device authentication and provisioning
v Application authenticity check
v Remote disable of the ability to connect to Worklight Server
v Direct update
v Anti-XSRF check (cross-site request forgery)

The realms are defined in the authentication configuration file on the Worklight
project level. A realm consists of two parts: the authenticator and the login module.
The authenticator obtains the credentials from the client, and the login module
validates those credentials, and builds the user identity.

The realms are grouped into security tests, which are defined in the same
authentication configuration files. The security test defines not only the group of
realms, but also the order in which they must be checked. For example, it often
makes sense not to ask for the user credentials until you make sure that the
application itself is authentic.

Since some of realms are relevant only to mobile or only to web environments, the
configuration of a security test can be non-trivial. Worklight provides simplified
security test configurations for mobile and web environments. It is also possible to
create a custom security test from scratch.

Worklight protocol and client challenge handlers

Each security check defines its own protocol, which is a sequence of challenges
that are sent by the server and responses that are sent by the client. On the server
side, the component that implements this private protocol is the authenticator. On
the client side, the corresponding component is called the challenge handler.

When the client request tries to access to a protected resource, Worklight Server
checks all the appropriate realms. Several realms can decide to send a challenge.
Challenges from multiple realms are composed into a single response and sent
back to the client.

Worklight client infrastructure extracts the individual challenges from the response,
and routes them to the appropriate challenge handlers. When a challenge handler
finishes the processing, it submits its response to the Worklight client
infrastructure. As an example, this occurs when it obtains the user name and
password from a login user interface. When all the responses are received, the
Worklight client infrastructure resends the original request with all the challenge
responses.

Worklight Server extracts those responses from the request and passes them to the
appropriate authenticators. If an authenticator is satisfied, it reports a success, and
Worklight Server calls the login module. If the login module succeeds in validating

602 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

all of the credentials, the realm is considered successfully authenticated. If all the
realms of the security test are successfully authenticated, Worklight Server allows
the request processing to proceed.

If a realm check fails, its authenticator sends another (or the same) challenge to the
client, and the whole process repeats.

Combining multiple challenges and responses into a single response and request
maximizes security efficiency by reducing the number of extra round trips. For
example, the checks for device authentication, application authenticity, and direct
update can be done in a single round trip.

The fact the Worklight client infrastructure automatically resends the original
request with the challenge responses allows separation between the application
logic and security aspects. Though any application request can result in a security
challenge, the application logic must not include any special processing for that
case. The challenge handlers are not related to the application context and can
focus on the security-related logic.

Integration with container security

Worklight Server is technically a web application hosted by an application server
(such as WebSphere Application Server). Thus, it is often desirable to reuse
authentication capabilities of the application server for Worklight Server, and vice
versa. This task can be non-trivial, and one must understand the differences
between Worklight and Web Container authentication models.

The Java Platform, Enterprise Edition model allows only one authentication
scheme for a web application, with multiple resource collections that are defined
by URL patterns with authentication constraints defined by a white list of role
names.

The Worklight model allows protection of each resource by multiple authentication
checks, and the resources are not necessarily identified by the URL pattern. In
some cases authentication can be triggered dynamically during the request
processing.

As a result, the authentication integration between Worklight Server and the Java
Platform, Enterprise Edition container is implemented as a custom Worklight
realm. This realm can interact with the container and obtain and set its
authenticated principal.

Worklight Server includes a set of login modules and authenticators for WebSphere
Application Server Full Profile and WebSphere Application Server Liberty Profile
that implement this integration with LTPA tokens. The integration works as
follows:
v If the caller principal (an entity that can be authenticated) of the servlet request is

already set, the container authentication was successful, and the same principal
is set as the Worklight user identity. This case assumes that the Worklight WAR
file has appropriate login configuration and resource collection definitions.
Including this information can be tricky because the web.xml file for Worklight
project is generated automatically, and those definitions would be overwritten in
every build.

Chapter 8. Developing IBM Worklight applications 603

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v If the incoming request contains a Lightweight Third Party Authentication
(LTPA) token, the login module validates it, and creates the Worklight user
identity.

v If the request does not contain an LTPA token, the authenticator requests the
user name and password from the client. The login module validates them and
creates the Worklight user identity. In addition, it creates the LTPA token, and
sends it back to the client as a cookie.

In this case, the authentication capabilities of WebSphere Application Server are
reused by Worklight realms in the form of Java utilities that implement validation
and building of an LTPA token.

Integration with web gateways

Web gateways like DataPower and IBM Security Access Manager provide user
authentication so that only authenticated requests can reach the internal
applications. The internal applications can obtain the result of the authentication
that is done by the gateway from a special header, for example, an LTPA token.

When Worklight Server is protected by a web gateway, it means that the client
requests first encounter the gateway. The gateway sends back a login form and
validates the credentials, and if the validation is successful, submits the request to
the Worklight Server. This sequence implies the following requirements on the
Worklight security elements:
v The client-side challenge handler must be able to present the gateway's login

form, submit the credentials, and recognize the login failure and success.
v The authentication configuration must include the realm that can obtain and

validate the token that is provided by the gateway.
v The security test configuration must take into account that the user

authentication is always done first. For example, there is no point in using the
device single sign-on (SSO) feature because the user credentials are requested by
the gateway.

Further information on security, as it is implemented in IBM Worklight, is
provided in the following overview of security features. There are links to the
relevant sections of the documentation, which pertain to them.

Integration with IBM Security Access Manager

IBM Security Access Manager can be integrated with IBM Worklight to provide the
following protections by using risk-based access decisions to protect Worklight
applications and adapters as listed here:
v user authentication
v SSO
v Identity attributes
v Fine-grained authorization

SSO can be achieved to the mobile client and in adapter server connections. The
context-based access policies can be defined to provide identity assurance and
strong authentication with a one time password (OTP) for adapter-based
transactions in Worklight and application authentication.

For more information about IBM Security Access Manager, see IBM Security Access
Manager for IBM Worklight.

604 IBM Worklight V6.1.0

http://www.ibm.com/support/docview.wss?uid=swg24034222
http://www.ibm.com/support/docview.wss?uid=swg24034222

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Security Tests
A security test defines a security configuration for a protected resource. Predefined
tests are supplied for standard web and mobile security requirements. You can
write your own custom security tests and define the sequence in which they are
implemented.

A security test specifies one or more authentication realms and an authentication
realm can be used by any number of security tests. A protectable resource can be
protected by any number of realms.

A protected resource is protected by a security test. When a client attempts to
access a protected resource, IBM Worklight checks whether the client is already
authenticated according to all realms of the security test. If the client is not yet
authenticated, IBM Worklight triggers the process of authentication for all
unauthenticated realms.

Before you define security tests, define the authentication realms that the tests use.

Define a security test for each environment in the application-descriptor.xml file,
by using the property securityTest="test_name". If no security test is defined for
a specific environment, only a minimal set of default platform tests is run.

You can define three types of security test:

webSecurityTest
A test that is predefined to contain realms that are related to web security.

Use a webSecurityTest to protect web applications.

A webSecurityTest must contain one testUser element with a realm
definition for user authentication. The identity that is obtained from this
realm is considered to be a user identity.

By default, a webSecurityTest includes protection against cross-site request
forgery (XSRF) attacks.

mobileSecurityTest
A test that is predefined to contain realms that are related to mobile
security.

Use a mobileSecurityTest to protect mobile applications.

A mobileSecurityTest must contain one testUser element with a realm
definition for user authentication. The identity that is obtained from this
realm is considered to be a user identity.

A mobileSecurityTest must contain one testDevice element with a realm
definition for device authentication. The identity that is obtained from this
realm is considered to be a device identity.

By default, a mobileSecurityTest includes protection against XSRF attacks
and the ability to remotely disable, from the Worklight Console, the ability
for the app to connect to Worklight Server.

customSecurityTest
A custom security test. No predefined realms are added.

Use a customSecurityTest to define your own security requirements and
the sequence and grouping in which they occur.

Chapter 8. Developing IBM Worklight applications 605

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

You can define any number of tests within a customSecurityTest. Each test
specifies one realm. To define a realm as a user identity realm, add the
property isInternalUserId="true" to the test. The isInternalUserID
attribute means that this realm is used for user identification for reporting
and push subscriptions. There must be exactly one such realm for every
security configuration that is applied to a mobile or web resource.

For a device auto provisioning realm, the isInternalDeviceID attribute
means that this realm is used for device identification for reporting, push
subscriptions, and device SSO features. There must be exactly one such
realm for every security configuration that is applied to a mobile resource.

Important: When you use device auto provisioning in customSecurityTests,
an authenticity realm must also be present within the tests, otherwise
provisioning cannot succeed.

To specify the order in which a client must authenticate in the different
realms, add the property step="n" to each test, where n indicates the
sequence. If a sequence is not specified, then all tests are done in a single
step.

Note: Application authenticity and Device provisioning are not supported in Java
Platform, Micro Edition (Java ME).

Sample security tests

The following figure shows what a webSecurityTest and a mobileSecurityTest
contain. The security tests on the right are detailed equivalent of the security tests
on the left.

The webSecurityTest contains:
v The following realms, enabled by default: wl_anonymousUserRealm and

wl_antiXSRFRealm.
v The user realm that you must specify.

The mobileSecurityTest contains:
v The following realms, enabled by default: wl_anonymousUserRealm,

wl_antiXSRFRealm, wl_remoteDisableRealm and wl_deviceNoProvisioningRealm.
v The user and device realms that you must specify.

A customSecurityTest has no realms that are enabled by default. You must define
all realms that you want your customSecurityTest to contain.

For a webSecurityTest:
<webSecurityTest name="webTest">

<testUser realm="wl_anonymousUserRealm"/>
</webSecurityTest>

The equivalent as a customSecurityTest:
<customSecurityTest name="webTest">

<test realm="wl_antiXSRFRealm" />
<test realm="wl_anonymousUserRealm" isInternalUserId="true" />

</customSecurityTest>

For a mobileSecurityTest:

606 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<mobileSecurityTest name="mobileTest">
<testUser realm="wl_anonymousUserRealm"/>
<testDeviceId provisioningType="none" />

</mobileSecurityTest>

The equivalent as a customSecurityTest:
<customSecurityTest name="mobileTest">

<test realm="wl_antiXSRFRealm" />
<test realm="wl_remoteDisableRealm" />
<test realm="wl_anonymousUserRealm" isInternalUserID="true" />
<test realm="wl_deviceNoProvisioningRealm" isInternalUserID="true" />

</customSecurityTest>

Usually, you add your own realm to your configuration to authenticate users. The
following example shows a configuration where the realm named
MyUserAuthRealm is the realm that the developer added.

Example with your own realm name as a realm definition for testUser:

For a webSecurityTest:
<webSecurityTest name="webTest">

<testUser realm="MyUserAuthRealm"/>
</webSecurityTest>

The equivalent as a customSecurityTest
<customSecurityTest name="webTest">

<test realm="wl_antiXSRFRealm" />
<test realm="MyUserAuthRealm" isInternalUserId="true" />

</customSecurityTest>

For a mobileSecurityTest:
<mobileSecurityTest name="mobileTest">

<testUser realm="MyUserAuthRealm"/>
<testDeviceId provisioningType="none" />

</mobileSecurityTest>

The equivalent as a customSecurityTest:
<customSecurityTest name="mobileTest">

<test realm="wl_antiXSRFRealm" />
<test realm="wl_remoteDisableRealm" />
<test realm="MyUserAuthRealm" isInternalUserID="true" />
<test realm="wl_deviceNoProvisioningRealm" isInternalUserID="true" />

</customSecurityTest>

Authentication realms
Resources are protected by authentication realms. Authentication processes can be
interactive or non-interactive.

An authentication realm defines the process to be used to authenticate users, and
consists of the following steps:
1. Specification of how to collect user credentials, for example, by using a form,

using basic HTTP authentication or using SSO.
2. Specification of how to verify the user credentials, for example, checking that

the password matches the user name, or using an LDAP server or some other
authentication server.

3. Specification of how to build the user identity, that is, how to build objects that
contain all the necessary user properties.

Chapter 8. Developing IBM Worklight applications 607

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The same realm can be used In different security tests. In this case, clients must
undergo the authentication process that is defined for the realm only once

Authentication processes can be interactive or non-interactive, as demonstrated in
the following authentication process examples:
v An example of interactive authentication is a login form that is displayed when

a user attempts to access a protected resource. The authentication process
includes verifying the user credentials.

v An example of non-interactive authentication is a user cookie that the
authentication process looks for when a user attempts to access a protected
resource. If there is a cookie, this cookie is used to authenticate the user. If there
is no cookie, a cookie is created, and this cookie is used to authenticate the user
in the future.

Authenticators and Login Modules
An authenticator collects client credentials. A login module validates them.

An authenticator is a server component which is used to collect credentials from the
client. The authenticator passes the credentials to a login module, which validates
them and builds a client identity object. Both authenticators and login modules are
components of the application's realm.

An authenticator can, for example, collect any type of information accessible from
an HTTP request object, such as cookies or any data in headers or the body of the
request.

A login module can validate the credentials that are passed to it in various ways.
For example:
v Using a web service
v Looking up the client ID in a database
v Using an LTPA token

A number of predefined authenticators and login modules are supplied. If these do
not meet your needs, you can write your own in Java.

The authentication configuration file
All types of authentication component are configured in the authentication
configuration file.

Authentication components, security tests, realms, login modules, and
authenticators are all configured in the authenticationConfig.xml authentication
configuration file, which is in the /server/conf directory of your IBM Worklight
project. A web security test or mobile security test must contain a <testUser>
element that specifies the realm name. The definition of a realm includes the class
name of an authenticator, and a reference to a login module, and refers to a
collection of resource managers that recognizes a common set of user credentials
and authorizations. Authenticators are the entities that authenticate clients.
Authenticators collect client information, and then use login modules to verify this
information.

608 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 98. Predefined realms: properties of the <test realm> element.

Authenticator class name Login module reference Description

wl_antiXSRFRealm WLAntiXSRFLoginModule This realm is used to avoid
cross-site request forgery
attacks. When a new session
is initiated, the first request
to Worklight Server gets an
HTTP 401 response that
contains the WL-Instance-Id
token. The Worklight
framework extracts this
token and uses it as a header
on all subsequent requests. If
this header is not present in
these subsequent requests,
HTTP 401 is returned again.
This security mechanism
makes sure that all
subsequent requests are
coming from the same source
as the initial one.

wl_deviceNoProvisioningRealmWLDeviceNoProvisioningLoginModuleA default device identity
realm. Device identity is
similar to user identity, but it
is provided by the device
itself. Device identity is
relevant for hybrid and
native smartphone
environments only. The
device identity is a must for
functionality such as push
notifications, and reports.
This parameter means that
the obtained device identity
is used as is, without
provisioning.

wl_deviceAutoProvisioningRealmWLDeviceAutoProvisioningLoginModuleThe description of this
parameter is the same as for
wl_deviceNoProvisioningRealm,
but the obtained device
identity is automatically
provisioned by the Worklight
Server. This realm must be
used with
wl_authenticityRealm.

wl_authenticityRealm wl_authenticityLoginModule This realm is used to verify
that application is authentic
and it was not modified by a
third party. The authenticity
check is based on certificates
that are used to sign
applications. This
functionality is only available
on customer and enterprise
versions of IBM Worklight,
and is supported by iOS and
Android environments only.

Chapter 8. Developing IBM Worklight applications 609

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

IBM Worklight static resources (other than Application Center) such as the
Worklight Console are also configured in the authentication configuration file, in
the <resource> element.

The configuration file has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<tns:loginConfiguration xmlns:tns="http://www.worklight.com/auth/config" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<staticResources>
<resource> ... </resource>
<resource> ... </resource>

</staticResources>
<securityTests>

<customSecurityTest> ... </customSecurityTest>
<customSecurityTest> ... </customSecurityTest>

</securityTests>
<realms>

<realm> ... </realm>
<realm> ... </realm>

</realms>
<loginModules>

<loginModule> ... </loginModule>
<loginModule> ... </loginModule>

</loginModules>
</tns:loginConfiguration>

Configuring IBM Worklight web application authorization
Configure authentication to the Worklight Console, usage reports, and the
Application Center console.

The Worklight web applications that require authentication are the Worklight
Console, the IBM Worklight usage reports, and the Application Center console. The
Worklight Console and Worklight usage reports are configured by using
<resource> elements in the authenticationConfig.xml file.

The Application Center console is not subject to the authentication model described
here. For information about setting up authentication for the Application Center
console, see “Configuring the Application Center after installation” on page 138.

Configuring authenticators and realms
Authenticators are defined within the realm that uses them.

Realms are defined in <realm> elements in the authenticationConfig.xml file. The
<realms> element contains a separate <realm> subelement for each realm.

Modify realms by using the authentication configuration editor.

The <realm> element has the following attributes:

Table 99. The <realm> element attributes

Attribute Description

name Mandatory. The unique name by which the realm is referenced by the
protected resources.

loginModule Mandatory. The name of the login module that is used by the realm.

The <realm> element has the following subelements:

610 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 100. The <realm> element subelements

Element Description

<className> Mandatory. The class name of the authenticator.

For details of the supported authenticators, see the following topics.

<parameter> Optional. Represents the name-value pairs that are passed to the
authenticator upon instantiation.

This element might be displayed multiple times.

<onLoginUrl> Optional. Defines the path to which the client is forwarded upon successful
login.

If this element is not specified, then depending on the authenticator type,
either the current request processing is continued, or a saved request is
restored.

Basic authenticator
Description and syntax of the basic authenticator.

Description

The basic authenticator implements basic HTTP authentication. Basic
authentication is an industry-standard method used to collect user name and
password information.

Note: You can use the basic authenticator only for web applications, not for mobile
applications.

Class Name
com.worklight.core.auth.ext.BasicAuthenticator

Parameters

The basic authenticator has the following parameters:

Parameter Description

<basic-realm-
name>

Mandatory. A string that is sent to the client as a realm name, and
presented by the browser in the login dialog.

<realm name="realmForMyApp" loginModule="DatabaseLoginModule">
<className> com.worklight.core.auth.ext.BasicAuthenticator </className>
<parameter name="basic-realm-name" value="My App" />

</realm>

Form-based authenticator
Description and syntax of the form-based authenticator.

Description

The form-based authenticator presents a login form to the user. The login form
must contain fields named j_username and j_password, and the submit action must
be j_security_check. If the login fails, the user is redirected to an error page.

Chapter 8. Developing IBM Worklight applications 611

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Class Name
com.worklight.core.auth.ext.FormBasedAuthenticator

Parameters

The form-based authenticator has the following parameters:

Parameter Description

login-page Path to a user-defined login page template, relative to the web
application context under the conf directory. A sample login.html
template file is provided under this directory when creating a Worklight
project in Worklight Studio.

The authenticator renders the login page template with the error
messages. To display the error message, use the
placeholder ${errorMessage} within your login page template, as
depicted in the example.

auth-redirect Path to a user defined login page (html/jsp) relative to the web
application context. Worklight redirects to this page when the user
credentials are needed.

Both the login-page and auth-redirect parameter are optional, but if used, they
cannot be used together. It is also possible to use neither of them; if no parameters
are supplied, Worklight uses its default template.
<realm name="AppAuthRealm" loginModule="DatabaseLoginModule">
<className> com.worklight.core.auth.ext.FormBasedAuthenticator </className>
<parameter name="login-page" value="login.html" />
</realm>

If no parameters are specified, Worklight will use its default login page template.

Header authenticator
Description and syntax of the header authenticator.

Description

The header authenticator is not interactive. The header authenticator must be used
with the Header login module.

Class Name
com.worklight.core.auth.ext.HeaderAuthenticator

Parameters

None.
<realm name="RealmHeader" loginModule="HeaderLoginModule">
<className> com.worklight.core.auth.ext.HeaderAuthenticator </className>
</realm>

Persistent cookie authenticator
Description and syntax of the persistent cookie authenticator.

612 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Description

The persistent cookie authenticator looks for a specific cookie in any request that is
sent to it. If the request does not contain the cookie, the authenticator creates a
cookie, and sends it in the response. This authenticator is not interactive, that is, it
does not ask the user for credentials, and is mainly used in environment realms.

Class Name
com.worklight.core.auth.ext.PersistentCookieAuthenticator

Parameters

The persistent cookie authenticator class has the following parameter:

Parameter Description

<cookie-name> Optional. The name of the persistent cookie. If this parameter is not
specified, the default name, WL_PERSISTENT_COOKIE, is used.

<realm name="PersistentCookie" loginModule="dummy">
<className> com.worklight.core.auth.ext.PersistentCookieAuthenticator </className>
</realm>

Adapter-based authentication
The adapter authenticator enables you to develop custom authentication logic
using JavaScript. When you use adapter-based authentication, the entire
authentication logic (the credentials validation and the creation of a user identity)
is implemented via a JavaScript function within an IBM Worklight adapter.

Since all of the validation logic that is usually done in a login module is now
performed in the adapter's JavaScript code (and no further validation is required),
adapter-based authentication should only be used with a
NonValidatingLoginModule (see “Non-validating login module” on page 617).

The adapter authenticator fully qualified Java class name
is com.worklight.integration.auth.AdapterAuthenticator, and it has two
parameters:
v login-function (mandatory)
v logout-function (optional)

Both parameters specify adapter function names. The syntax is
"adapter-name.function-name"; for example, "myAuthAdapter.onAuthRequired".

Example of configuration of adapter-based authentication in the
authenticationConfig.xml file
<securityTests>

<customSecurityTest name="AuthenticationAdapter-securityTest">
<test isInternalUserID="true" realm="AdapterAuthRealm"/>

</customSecurityTest>
</securityTests>

<realms>
<realm loginModule="AdapterAuthLoginModule" name="AdapterAuthRealm">

<className>com.worklight.integration.auth.AdapterAuthenticator</className>
<parameter name="login-function" value="AuthAdapter.onAuthRequired"/>
<parameter name="logout-function" value="AuthAdapter.onLogout"/>

</realm>
</realms>

Chapter 8. Developing IBM Worklight applications 613

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<loginModules>
<loginModule name="AdapterAuthLoginModule">

<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>
</loginModule>

</loginModules>

You will now need to implement the login function (AuthAdapter.onAuthRequired
in the example above) and logout function (AuthAdapter.onLogout in the example
above) in your adapter.js source file.

Note that both login-function and logout-function should only be used
internally by a Worklight Server. For this reason, it is important that you do not
expose them as procedures in the adapter .xml file. The function that receives
credentials, on the other hand, is directly invoked by a client, and so you need to
expose it in the adapter xml file. Keep in mind that this function must be accessed
by unauthenticated clients, and so it should not be protected by a security test.

In addition to implementing login-function and logout-function described
above, you also need to implement an adapter function that will receive credentials
from the client, validate them, and create a user identity; for example, function
submitCredentials (user, password).

The login function

The login-function parameter specifies the name of the JavaScript function to be
invoked once the login process is triggered. The triggering can happen when either
the client application explicitly invokes the WL.Client.login() API, or when an
unauthenticated attempt to access a resource protected by the adapter
authentication realm is made. Use this function to return a payload to the client
notifying it about the required authentication. The login-function receives original
request headers converted to JSON as a first function argument so that they can be
used to decide on the kind of authentication needed, for example. The response
from login-function will be returned to the client instead of the expected one.

The submit credentials function

This is the function that actually performs the authentication. The client should call
this function with arguments containing user credentials or authentication data. It
should then validate the credentials and once validated, this function should use
WL.Server.setActiveUser(realm, identity) to register the authenticated identity.
The function can include a flag or message in the response to let the application
know if the login was successful or not.

The logout function

The logout-function parameter specifies the name of the JavaScript function to be
invoked once logout from the realm has occurred. The logout can be triggered by
having the client application call the WL.Client.logout() API, or when the
Worklight Server decides to invalidate the session (for example, a session timeout).
The logout-function receives no arguments. This function should use the
WL.Server.seActiveUser(realm, null) to remove the authenticated identity. Note
that the same WL.Server function is used to login but here null is used instead of a
userIdentity object to do the logout and remove the authenticated identity.

614 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Further information

For an example of how to correctly implement adapter authentication and the
adapter functions required, see the module Adapter-based authentication under
category 8, Authentication and security, in Chapter 3, “Tutorials and samples,” on
page 27.

LTPA authenticator
Description and syntax for the LTPA authenticator.

Description

Use the Lightweight Third-Party Authentication authenticator to integrate with the
WebSphere Application Server LTPA mechanisms.

Note: This authenticator is supported only on WebSphere Application Server. To
avoid unnecessary errors on other application servers, the authenticator is
commented out in the default authenticationConfig.xml file that is created with
an empty Worklight project. To use it, remove the comments first.

This authenticator can be used with the WASLTPAModule login module.

Class Name
com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator

Parameters

The adapter authenticator class has the following parameters:

Parameter Description

login-page Mandatory. The login page URL relative to the web application context.

error-page Optional. The error page URL relative to the web application context. If
this parameter is not set, the URL from the login-page is also used for
the error-page.

cookie-domain Optional. A String such as example.com, which specifies the domain in
which the LTPA SSO cookie applies. If this parameter is not set, no
domain attribute is set on the cookie. The single sign-on is then
restricted to the application server host name and does not work with
other hosts in the same domain.
Note: This parameter is deprecated. Define this parameter in the
<loginModule> entry for the WebSphereLoginModule instead. If the
parameter is defined in both places, the value in the <loginModule>
entry takes precedence.

httponly-cookie Optional. A String with a value of either true or false, which specifies
whether the cookie has the HttpOnly attribute set. This attribute helps
to prevent cross-site scripting attacks.
Note: This parameter is deprecated. Define this parameter in the
<loginModule> entry for the WebSphereLoginModule instead. If the
parameter is defined in both places, the value in the <loginModule>
entry takes precedence.

Chapter 8. Developing IBM Worklight applications 615

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameter Description

cookie-name Optional. A String that specifies the name of the LTPA SSO cookie. If
this parameter is not set, the default cookie name is LtpaToken.
Note: This parameter is deprecated. Define this parameter in the
<loginModule> entry for the WebSphereLoginModule instead. If the
parameter is defined in both places, the value in the <loginModule>
entry takes precedence.

Example
<realm name="WASLTPARealm" loginModule="WASLTPAModule">

<className>com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator</className>
<parameter name="login-page" value="/login.html"/>
<parameter name="error-page" value="/loginError.html"/>

</realm>

Configuring login modules
Login modules are defined in <loginModule> elements in the
authenticationConfig.xml file.

The <loginModules> element contains a separate <loginModule> subelement for
each login module.

The <loginModule> element has the following attributes:

Attribute Description

name Mandatory. The unique name by which
realms reference the login module.

audit Optional. Defines whether login attempts
that use the login module are logged in the
audit log. The log file is Worklight Project
Name/server/log/audit/audit.log.

Valid values are:

true
Login and logout attempts are logged in
the audit log.

false
Default. Login and logout attempts are
not logged in the audit log.

The <loginModule> element has the following subelements:

Element Description

<className> Mandatory. The class name of the login
module.

For details of the supported login modules,
see the following topics.

<parameter> Optional. An initialization property of the
login module. The supported properties and
their semantics depend on the login module
class.

This element can occur multiple times.

616 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Non-validating login module
The non-validating login module accepts any user name and password passed by
the authenticator.

Class Name
com.worklight.core.auth.ext.NonValidatingLoginModule

Parameters

None
<loginModule name="dummy" canBeResourceLogin="false" isIdentityAssociationKey="true">
<className> com.worklight.core.auth.ext.NonValidatingLoginModule </className>
</loginModule>

Single identity login module
The single identity login module is used to grant access to the Worklight Console
to a single user, the identity of which is defined in the worklight.properties file.
Use this module only for test purposes.

Class Name
com.worklight.core.auth.ext.SingleIdentityLoginModule

Parameters

None

Configuration

.The worklight.properties file must contain the following properties:

Key Description

console.username Name of the user who can access the
Console

console.password Password of the user who can access the
Console. The password can be encrypted as
indicated in “Storing properties in encrypted
format” on page 779.

<loginModule name="Console" canBeResourceLogin="false" isIdentityAssociationKey="false">
<className> com.worklight.core.auth.ext.SingleIdentityLoginModule </className>
</loginModule>

Header login module
The Header login module is always used with the Header authenticator. It
validates the request by looking for specific headers.

Class Name
com.worklight.core.auth.ext.HeaderLoginModule

Chapter 8. Developing IBM Worklight applications 617

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters

The Header login module has the following parameters:

Parameter Description

user-name-header Mandatory. The name of the header that
contains the user name. If the request does
not contain this header, the authentication
fails.

display-name-header Optional. The name of the header that
contains the display name. If this parameter
is not specified, the user name is used as the
display name.

<loginModule name="HeaderLoginModule" audit="true">
<className>com.worklight.core.auth.ext.HeaderLoginModule</className>
<parameter name="user-name-header" value="userid"/>
<parameter name="display-name-header" value="username"/>

</loginModule>

WASLTPAModule login module
The WASLTPAModule login module enables integration with WebSphere
Application Server LTPA mechanisms.

Note: This login module is only supported on WebSphere Application Server. To
avoid unnecessary errors when Worklight is run on other application servers, the
login module is commented out in the default authenticationConfig.xml file that
is created with an empty Worklight project. To use it, remove the comments first.

Class Name

com.worklight.core.auth.ext.WebSphereLoginModule

Parameters

The login module class has the following parameters:

Parameter Description

cookie-domain Optional. A String such as example.com, which specifies the domain in
which the LTPA SSO cookie applies. If this parameter is not set, no
domain attribute is set on the cookie. The single sign-on is then
restricted to the application server host name and does not work with
other hosts in the same domain.

httponly-cookie Optional. A String with a value of either true or false, which specifies
whether the cookie has the HttpOnly attribute set. This attribute helps
to prevent cross-site scripting attacks.

cookie-name Optional. A String that specifies the name of the LTPA SSO cookie. If
this parameter is not set, the default cookie name is LtpaToken.

role Optional. A String that specifies the Java EE role that the authenticated
user must belong to for the login to be successful. If the parameter is
not specified, no role checking is performed.

618 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: When you specify a role parameter, the role must be defined in the
Worklight web application deployment descriptor (web.xml). A set of users or
groups must be mapped to that role by using the usual WebSphere Application
Server mechanisms.
<loginModule name="WASLTPAModule">

<className>com.worklight.core.auth.ext.WebSphereLoginModule</className>
<parameter name="role" value="wluser"/>
<parameter name="cookie-domain" value="example.com"/>
<parameter name="httponly-cookie" value="true"/>
<parameter name="cookie-name" value="LtpaToken2"/>

</loginModule>

LDAP login module
You can use the LDAP login module to authenticate users against LDAP servers,
for example Active Directory, or OpenLDAP.

LDAP login module implements a UserNamePasswordLoginModule interface, so you
must use it with an authenticator that implements a
UsernamePasswordAuthenticator interface.

Class Name
com.worklight.core.auth.ext.LdapLoginModule

Parameters

You must set the following parameters for the LDAP login module:

Parameter Description Sample values

ldapProviderUrlMandatory. The IP address or the URL of the
LDAP server.

ldap://10.0.1.2

ldaps://10.0.1.3

ldapTimeoutMs Mandatory. The connection timeout to the
LDAP server in milliseconds.

2000

ldapSecurityAuthenticationMandatory. The LDAP security authentication
type. The value is usually simple. Consult
your LDAP administrator to obtain the
relevant authentication type.

none

simple

strong

validationType Mandatory. The type of validation. The value
can be exists, searchPattern, or custom. See
the following table for more details.

exists

searchPattern

custom

ldapSecurityPrincipalPatternMandatory. Depending on the LDAP server
type, this parameter might require security
credentials that you must supply in several
formats. Some LDAP servers require only the
user name, for example john, and others
require the user name and the domain, for
example john@server.com. You use this property
to define the pattern to create your user name
based credentials. You can use the {username}
placeholder.

{username}

{username}@myserver.com

CN={username},DC=myserver,DC=com

Chapter 8. Developing IBM Worklight applications 619

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameter Description Sample values

ldapSearchFilterPatternOptional. This parameter is required only if
the value of the validationType parameter is
searchPattern. You use this parameter to
define a search filter pattern that is run when
a successful LDAP binding is established. The
user validation is successful if the search
returns one or more entries. You can use the
{username} placeholder. The syntax might
change depending on the LDAP server type.

(sAMAccountName={username})

(&(objectClass=user)(sAMAccountName={username})(memberof=CN=Sales,OU=Groups,
OU=MyCompany,DC=myserver,DC=com))

ldapSearchBase Optional. This parameter is required only if
the validationType parameter is
searchPattern. Use this parameter to define
the base of the LDAP search.

dc=myserver,dc=com

Sample LDAP login module definition:
<loginModule name="LDAPLoginModule">

<className>com.worklight.core.auth.ext.LdapLoginModule</className>
<parameter name="ldapProviderUrl" value="ldap://10.0.1.2"/>
<parameter name="ldapTimeoutMs" value="2000"/>
<parameter name="ldapSecurityAuthentication" value="simple"/>
<parameter name="validationType" value="searchPattern"/>
<parameter name="ldapSecurityPrincipalPattern" value="{username}@myserver.com"/>
<parameter name="ldapSearchFilterPattern" value="(&(objectClass=user)(sAMAccountName={username})(memberof=CN=Sales,OU=Groups,OU=MyCompany,DC=myser
<parameter name="ldapSearchBase" value="dc=myserver,dc=com"/>

</loginModule>

Values of the validationType parameter

Value Description

exists The login module tries to establish the LDAP binding with
the supplied credentials. The credentials validation is
successful if the binding is successfully established.

searchPattern The login module tries to do the exists validation. When
the validation succeeds, the login module issues a search
query to the LDAP server context, according to the
ldapSearchFilterPattern and ldapSearchBase parameters.
The credentials validation is successful if the search query
returns one or more entries.

custom With this value, you can implement custom validation
logic. The login module tries to do the exists validation.
When the validation succeeds, the login module calls a
public boolean doCustomValidation(LdapContext ldapCtx,
String username) method. To override this method, you
must create a custom Java class in your Worklight project
and extend from
com.worklight.core.auth.ext.UserNamePasswordLoginModule.
See the following example.

Sample custom validation implementation:
package mycode;
import javax.naming.ldap.LdapContext;
import com.worklight.core.auth.ext;

public class MyCustomLdapLoginModule extends LdapLoginModule {

@Override

620 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

public boolean doCustomValidation(LdapContext ldapCtx, String username, String password) {

boolean success = true;

// Do some custom validations here using ldapCtx, validationProperties and username
// Return true in case of validation success and false otherwise

return success;
}

}

Note:

After you implement your custom extension of LdapLoginModule, use it as a
className value of LoginModule in your AuthenticationConfig.xml file.

Mobile device authentication
You can require mobile devices to authenticate themselves. Device identity is used
in several places within IBM Worklight. You can use provisioning, which is the
process of obtaining a security certificate. There are three modes of the
provisioning process.

Unique device ID

The unique device ID is used by IBM Worklight for device ID-related features,
such as security, device SSO, reports, and push notifications.
v On iOS:

– To calculate the unique device ID, a globally unique ID (GUID) is used that is
generated during device authentication process.

– The unique device ID can be unique either to the application or to all
applications from the same vendor.

– The unique device ID is stored in the device keychain.
v On Android:

– To calculate the unique device ID, device properties are used, such as the
WiFi Mac address. This guarantees the uniqueness of the device ID, and make
the process more secure by generating the device ID at the start of each
application.

– The unique device ID can be unique either to the application or to all
applications from the same vendor.

– The unique device ID is stored in the application keystore, which is a file in
the application sandbox folder.

v On BlackBerry and Windows Phone:
– To calculate the unique device ID, the ID that is provided by the operating

system is used.
– The unique device ID is global to the device.

Note: The availability of the unique device ID depends on the operating system of
the device, and on the application vendor. A vendor that provides multiple
applications that can be installed on the same device might then choose whether to
require provisioning for each individual application or for a group of applications.
If several applications are from the same vendor, they can have the same unique
device ID. If these applications are from different vendors, they have different
unique device IDs.

Chapter 8. Developing IBM Worklight applications 621

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To access the unique device ID on the device and on the IBM Worklight back-end
server, some security controls are performed. The device ID is not a secret data,
and can be passed to the server in one of the two following ways:
v As is, for a non-secure device authentication.
v Accompanied with credentials, for a secure device authentication. In that case,

the device ID is digitally signed with a X509 certificate that is obtained as the
result of the provisioning process that takes place at the first time the application
runs on the device.

The unique device ID is stored in the raw data reports that are generated by IBM
Worklight. There are no special access controls available on these reports, as the
unique device ID is not considered sensitive data. For more information about raw
data reports, see “Using raw data reports” on page 968.

For more information about mobile device provisioning, see the module Device
provisioning concepts, under category 8. Authentication and security, in Chapter 3,
“Tutorials and samples,” on page 27.

Scope of mobile device authentication

In addition to requiring users to authenticate before they access certain resources,
you can also require mobile devices to authenticate before apps installed on them
can access the Worklight Server.

Device and application authentication is a process that allows making claims of
type "this is application A installed on device D".

Device and application authentication is relevant only for applications that are
installed on mobile devices.

Mobile device provisioning

When an IBM Worklight application first runs on a mobile device, it creates a pair
of PKI-based keys. It then uses the keys to sign the public characteristics of the
device and application, and sends them to the Worklight Server for authentication
purposes.

A key pair alone is not sufficient to sign these public characteristics because any
app can create a key pair. In order for a key pair to be trusted, it must be signed
by an external trusted authority to create a certificate. The process of obtaining
such a certificate is called provisioning.

When a certificate is obtained, the app can then store the key pair in the device
keystore, access to which is protected by the operating system.

The provisioning process has three modes:

No provisioning
In this mode, the provisioning process does not happen. This mode is
usually suitable during the development cycle, to temporarily disable the
provisioning for the application. Technically, the client application does not
trigger the provisioning process, and the server does not verify the client
certificate.

Auto-provisioning
In this mode, the Worklight Server automatically issues a certificate for the

622 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

device and application data that are provided by the client application. Use
this option only when the IBM Worklight application authenticity features
are enabled.

Custom provisioning
In this mode, the Worklight Server is augmented with custom logic that
controls the device and application provisioning process. This logic can
involve integration with an external system, such as a mobile device
manager (MDM). The external system can issue the client certificate based
on an activation code that is obtained from the app, or can instruct the
Worklight Server to do so.

Note: Auto-provisioning and custom provisioning are supported only on iOS and
Android devices.

Device auto-provisioning

Device auto-provisioning has three aspects:
v Provisioning granularity: the scope of the provisioned entity.
v Pre required login: the realms that a client must be authenticated with before it

can get permission to perform provisioning.
v CA Certificate: the parent certificate, which issues device certificates for the

provisioning process.

The default behavior is as follows:
v Provisioning granularity: a single application.
v Pre required login: a login is required to the authentication realm, if any, defined

for the current security test.
v CA Certificate: an IBM Worklight CA Certificate, which is embedded into the

platform.

Whether it is obtained by an auto-provisioning or custom provisioning process, the
certificate is stored by the client app on the device, and used for signing the
payload sent to the Worklight Server. The Worklight Server validates the client
certificate, regardless of how it is obtained.

The server sends a request for ID, which the client responds to with a
certificate-signed payload. If the client does not have the certificate, then a request
is sent to the Worklight Server automatically to get a certificate, and after that is
done, the client automatically sends the signed payload.

After the server sends the ok response, the original request is sent automatically.

Granularity of provisioning

The key pair that is used to sign the device and app properties can represent a
single application, a group of applications, or an entire device. For example:

Single application
A company’s provisioning process requires separate activation for each
application that is installed on the device. In this case, the application is
the provisionable entity, and each application must generate its own key
pair.

Group of applications
A company develops different groups of applications to employees in

Chapter 8. Developing IBM Worklight applications 623

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

different geographical regions. If the activation is required per region, the
key pair would represent the group of applications that belong to that
region. All applications from the same group use the same key pair for
their signatures.

Entire device
In this case, the key pair represents the whole device. All the applications
from the same vendor that are installed on that device use the same key
pair.

Configuring and implementing device provisioning
You can change the default behavior with regard to granularity, pre-required
realms, and CA certificates. You can also implement custom provisioning.

Procedure
1. To change the default behavior of provisioning granularity and pre-required

realms, define a new realm for device provisioning and add the following
<realm> element to the <realms> element in the authenicationConfig.xml file.
Then, use it in your security test of choice:
<realm name="wl_myProvisioningRealm"

loginModule="WLDeviceAutoProvisioningLoginModule">
<className>com.worklight.core.auth.ext.DeviceAutoProvisioningAuthenticator</className>
<parameter name="provisioned-entity" value="application" />
<parameter name="pre-required-realms" value="wl_authenticityRealm" />

<realm>

where provisioned-entity can have one of the following values:
v application
v device
v group:<group-name>, where group-name is the name of the provisioning

application group

and pre-required-realms is a comma-separated list of realm names that are
required to be successfully logged in to before provisioning is allowed to begin.

Note: Applications must be signed by the same signing credentials and (on
iOS) share the same bundleID prefix.

2. To use a CA certificate other than the default Worklight CA certificate,
configure the following properties. For information about how to specify IBM
Worklight configuration properties, see “Configuration of IBM Worklight
applications on the server” on page 772

wl.ca.keystore.path
The path to the keystore, relative to the server folder in the Worklight
Project, for example: conf/default.keystore.

wl.ca.keystore.type
The type of the keystore file. Valid values are jks or pkcs12.

wl.ca.keystore.password
The password to the keystore file, for example: worklight.

wl.ca.key.alias
The alias of the entry where the private key and certificate are stored,
in the keystore, for example: keypair1.

wl.ca.key.alias.password
The password to the alias in the keystore for example: worklight.

624 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. If you want to change the provisioning mechanism to use different granularity
(application, device or group) or a different list of pre-required realms, you can
create your own customized authenticator, login module and challenge handler.
For more information about custom authentication, see the module Custom
Authenticator and Login Module under category 8, Authentication and security, in
Chapter 3, “Tutorials and samples,” on page 27.

Implementing client-side components for custom device
provisioning

You can implement client-side components for custom device provisioning.

Before you begin

The following prerequisites are required for device provisioning:
v Worklight Studio and Worklight Server, from IBM Worklight Enterprise Edition

or IBM Worklight Consumer Edition.
v Android apps must be built for production and signed by a certificate other than

the included debugging certificate.
v In the Application Center console, app authentication must be set to enabled,

blocking.

The included Worklight Development Server can be used for device provisioning.

About this task

To implement client-side components for custom device provisioning, complete the
following steps.

Procedure
1. Create an application.
2. Add an iPhone, iPad, or Android environment to the application.
3. Configure the application for the Application Authenticity test. The

authenticity test works only IBM Worklight Consumer Edition, and IBM
Worklight Enterprise Edition. For more information about application
authenticity, see “IBM Worklight application authenticity overview” on page
631.

4. Update the application HTML file.
<body id="content" style="display: none;">

<div id="AppBody">
<div class="header">

<h1>CustomProvisioningApp</h1>
</div>
<div id="wrapper">

Device authentication with custom device provisioning was not complete
</div>
<button id="conectToServerButton">

Connect to Worklight server
</button>

</div>
<div id="ProvBody" style="diplay: none">

<div id="provisioningError></div>
<input id="submitProvCodeButton">Send</button>

</div>
...
</body>

5. Add a listener to connectToServerButton.

Chapter 8. Developing IBM Worklight applications 625

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

6. Optional: Use the WL.Client.connect() API to connect to the Worklight Server
if the connectOnStartup property is set to false in the initOptions.js file.
function wlCommonInit() {

$("#connectToServerButton").click(function(){
WL.Client.connect();

});
}

7. For the WL.Client.connect() function to trigger authentication, specify the
Worklight Server as the protected resource by adding a custom security test or
mobile security test in the application descriptor.
<iphone securityTest="ADPSecurityTest" version="1.0">

or
<ipad securityTest="ADPSecurityTest" version="1.0">

or
<android securityTest="ADPSecurityTest" version="1.0">

8. Add a CustomDeviceProvisioningRealmChallengeHandler.js file, and reference
it from the main HTML file.

9. Implement the following methods that are required by the device provisioning
challenge handler:
v handler.createCustomCsr(challenge) - This method is responsible for

returning custom properties that are added to CSR. Add a custom
activationCode property, which is used in the adapter’s validateCSR
function.

Note: This method is asynchronous to allow collecting custom properties
through native code or separate flow.

v handler.processSuccess(identity) - This method is invoked when
certificate validation is successfully completed by using the
validateCertificate adapter function.

v handler.handleFailure() - This method is invoked when certificate
validation fails.

10. Implement the device provisioning challenge handler.
var customDevProvChallengeHandler =

WL.Client.createProvisioningChallengeHandler("CustomDeviceProvisioningRealm");

customDevProvChallengeHandler.createCustomCsr = function(challenge) {
WL.Logger.debug("createCustomCsr :: " + JSON.stringify(challenge));

$("#AppBody").hide();
$("#ProvBody").show();
$("#provisioningCode").val("");

if (challenge.error) {
$("#provigioningError").html(new Date() + " " + challenge.error);

} else {
$("#provisioningError").html(new Data() + " Enter activation code.");

}

$("#submitProvCodeButton").click(function() {
var customCsrProperties = {

activationCode: $("#provisioningCode").val()
};
customDevProvChallengeHandler.submitCustomCsr(customCsrProperties, challenge);

});
};

626 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

customDevProvChallengeHandler.processSuccess = function(identity) {
WL.Logger.debug("processSuccess :: " + JSON.stringify(identity));
$("#connectToServerButton").hide();
$("#AppBody").show();
$("#ProvBody").hide();
$("#wrapper").text("Device authentication with custom device provisioning " +

"was successfully completed");
};

customDevProvChallengeHandler.handleFailure = function() {
WL.Logger.debug("handleFailure");
$("#AppBody").show();
$("#ProvBody").hide();
$("#wrapper").text.("Server has rejected your device. You must reinstall the

application and perform device provisioning again.");
};

Results

You implemented client-side components for custom device provisioning.

What to do next

You can implement server-side components for custom device provisioning. For
more information about implementing server-side components, see “Implementing
server-side components for custom device provisioning.” For more information
about custom device provisioning, see the module Custom device provisioning under
category 8, Authentication and security, in Chapter 3, “Tutorials and samples,” on
page 27.

Implementing server-side components for custom device
provisioning

You can implement server-side components for custom device provisioning.

About this task

To implement server-side components for custom device provisioning, complete
the following steps.

Procedure
1. Create an adapter named ProvisioningAdapter.
2. Add two functions with the following signatures to the adapter’s JavaScript

file:
v validateCSR(clientDN, csrContent) - This function is invoked only during

initial device provisioning. The function is used to check whether the device
is authorized to be provisioned. After the device is provisioned, this function
is not invoked again.

v validateCertificate(certificate, customAttributes) - This function is
invoked each time that the mobile application establishes a new session with
the Worklight Server. The function is used to validate that the certificate that
the application or device possesses is still valid and that the application or
device is allowed to communicate with the Worklight Server.

Note: These functions are called internally by the Worklight authentication
framework. Do not declare them in the adapter’s XML file.

3. Configure the authenticationConfig.xml file.

Chapter 8. Developing IBM Worklight applications 627

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

a. Add a realm named CustomDeviceProvisioningRealm to the
authenticationConfig.xml file.
v Use CustomDeviceProvisioningLoginModule for the loginModule.
v Use the auto provisioning authenticator className parameter.
v Add a validate-csr-function parameter.
v The value of this parameter points to an Adapter function that performs

the certificate signing request (CSR) validation.
<realms>

<realm name="CustomDeviceProvisioningRealm"
loginModule="CustomDeviceProvisioningLoginModule">

<className>com.worklight.core.auth.ext.DeviceAutoProvisioningAuthenticator</className>
<parameter name="validate-csr-function"

value="ProvisioningAdapter.validateCSR" />
</realm>

</realms>

b. Add the loginModule named CustomDeviceProvisioningLoginModule.
v Use the auto provisioning login module className parameter.
v Add a validate-certificate-function parameter.
v The value of this parameter points to an Adapter function that performs

certificate validation.
<loginModules>

<loginModule name="CustomDeviceProvisioningModule">
<className>com.worklight.core.auth.ext.DeviceAutoProvisioningLoginModule</classname>
<parameter name="validate-certificate-function"

value="ProvisioningAdapter.validateCertificate" />
</loginModule>

</loginModules>

c. Create a securityTest named mobileSecurityTest.
v Add a mandatory <testAppAuthenticity /> test.
v Add a mandatory <testDeviceId /> test.
v Specify provisioningType="custom".
v Specify realm="CustomDeviceProvisioningRealm".
<securityTests>

<mobileSecurityTest name="CustomDeviceProvisioningSecurityTest">
<testAppAuthenticity />
<testDeviceId provisioningType="custom" realm="CustomDeviceProvisioningRealm" />

</mobileSecurityTest>
</securityTests>

Results

You implemented server-side components for custom device provisioning.

Example

The following example shows the validateCSR function:
function validateCSR(clientDN, csrContent) {

WL.Logger.log("validateCSR :: clientDN :: " + JSON.stringify(clientDN));
WL.Logger.log("validateCSR :: csrContent :: " + JSON.stringify(csrContent));

var activationCode = csrContent.activationCode;

// This is a place to perform validation of csrContent and update clientDN if required.
// You can do it using adapter backend connectivity
if (activationCode == "worklight") {

response = {
isSuccessful: true,
clientDN: clientDN + ",CN=someCustomData",
attributes: {

628 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

customAttribute: "some-custom-attribute"
}

};
} else {

response = {
isSuccessful: false,
errors: ["Invalid activation code"]

};
}

return response;
}

The following example shows the validateCertificate function:
function validateCertificate(certificate, customAttributes) {

WL.Logger.log("validateCertificate :: certificate :: + "JSON.stringify(certificate));
WL.Logger.log("validateCertificate :: customAttributes :: + "JSON.stringify(customAttributes));

// Additional custom certificate validations can be performed here.

return {
isSuccessful: true

};
}

What to do next

You can implement client-side components for custom device provisioning. For
more information about implementing client-side components, see “Implementing
client-side components for custom device provisioning” on page 625. For more
information about custom device provisioning, see the module Custom device
provisioning under category 8, Authentication and security, in Chapter 3, “Tutorials
and samples,” on page 27.

Device single sign-on (SSO)
Single sign-on (SSO) enables users to access multiple resources (that is, applications
and adapter procedures) by authenticating only once.

When a user successfully logs in through an SSO-enabled login module, the user
gains access to all resources that are using the same login module, without having
to authenticate again for each of them. The authenticated state remains alive as
long as requests to resources protected by the login module are being issued
within the timeout period, which is identical to the session timeout period.

Device authentication

The SSO feature requires the use of device authentication. This means that for a
protected resource that needs to be protected with SSO, there must also be a device
authentication realm in the securityTest protecting the resource in the
authenticationConfig.xml file. Device authentication should take place before the
SSO-enabled user authentication.

Supported devices

SSO is supported on Android and iOS devices.

Chapter 8. Developing IBM Worklight applications 629

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Performance

When you use the single sign-on feature, the load on the database might increase,
and you might have to adjust the database configuration.

Implementing a custom authentication to support SSO

To allow SSO to operate on your custom authentication classes (authenticator and
loginModule) you must:
1. Make all fields in your class transient except for those fields that are being used

by the following methods:
v

WorklightAuthenticator.processRequestAlreadyAuthenticated(HttpServletRequest,
HttpServletResponse)

v WorklightAuthLoginModule.logout()

2. Mark the authenticator and loginModule classes (and any class referred to by
those classes that is not transient after you perform step 1) with the class
annotation @DeviceSSO(supported = true) .

Configuring device single sign-on
Enable single sign-on from a mobileSecurityTest element or from a
customSecurityTest element.

Procedure
v When configuring mobileSecurityTest elements, enable single sign-on from the

securityTest element by setting the value of the sso attribute to true. Note that
you can enable SSO for user realms only. For example:
<mobileSecurityTest name="mst">

<testDeviceId provisioningType="none"/>
<testUser realm="myUserRealm" sso="true"/>

</mobileSecurityTest>

v When configuring customSecurityTest elements, enable single sign-on by
configuring an ssoDeviceLoginModule property on the user login module in the
authentication configuration file. For example:
<loginModule name="MySSO" ssoDeviceLoginModule="WLDeviceNoProvisioningLoginModule">

<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>
</loginModule>

In this example, "MySSO" is the name of the user login module for which single
sign-on is being enabled so that its login can be shared.
"WLDeviceNoProvisioningLoginModule" is the name of the login module that
handles device authentication; in this case, with no provisioning. To use
auto-provisioning as the device login module, set the ssoDeviceLoginModule
property to the value "WLDeviceAutoProvisioningLoginModule". With custom
provisioning, you define the name when you create the custom provisioning
login module.

v When configuring customSecurityTest elements, you must configure the user
realm at least one step later than the device realm. This is necessary to ensure
that the SSO feature operates correctly. The following example illustrates a
correct customSecurityTest configuration:
<customSecurityTest name="adapter">

<test realm="wl_deviceNoProvisioningRealm" isInternalDeviceID="true" step="1"/>
<test realm="MySSO" isInternalUserID="true" step="2"/>

</customSecurityTest>

630 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v A cleanup task cleans the database of orphaned and expired single-sign-on login
contexts. To configure the cleanup task interval, use the
sso.cleanup.taskFrequencyInSeconds server property and assign the required
task interval value expressed in seconds. For information about how to specify
IBM Worklight configuration properties, see “Configuration of IBM Worklight
applications on the server” on page 772.

IBM Worklight application authenticity overview
An overview of application authenticity features and procedures within IBM
Worklight.

The IBM Worklight framework provides a number of security mechanisms. One of
them in an application authenticity security test. Most IBM Worklight security
mechanisms are based on the same concept: obtaining identity through challenge
handling. Just as the user authentication realm is used to obtain and validate a
user’s identity, an application authenticity realm is used to obtain and validate an
application’s identity. Therefore, this process is referred to as an application
authenticity.

HTTP services (APIs) that are exposed by a Worklight Server can be accessed by
any entity by issuing an HTTP request. This is why it is suggested that you protect
relevant services with a number of security tests. Application authenticity makes
sure that any application that tries to connect to a Worklight Server is authentic
and was not tampered with or modified by some third-party attacker.

Authenticity details

An application authenticity check uses the same transport protocol as other
Worklight authentication framework realms:
1. The application makes an initial request to Worklight Server.
2. Worklight Server goes through the authentication configuration and finds that

this application must be protected by an application authenticity realm.
3. Worklight Server generates a challenge token and returns it to application.
4. The application receives the challenge token.
5. The application processes the challenge token and generates a challenge

response.
6. The application submits the challenge response to the Worklight Server.
7. If the challenge response is valid, Worklight Server serves the application with

the required data.
8. If the challenge response is invalid, Worklight Server refuses to serve the

application.

The two most important things to understand about step #5 are:
v The token is not processed by JavaScript; instead it is processed with compiled

native code. This procedure ensures that a third-party attacker is not able to see
the logic behind the token processing.

v Application authenticity is based on certificate keys that are used to sign the
application bundle. Only the developer or enterprise who has access to the
original private key that was used to sign the application is able to modify,
repackage, and resign the bundle. This process makes this security measure
bulletproof.

Chapter 8. Developing IBM Worklight applications 631

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: In a cluster environment, the application authenticity setting is
not synchronized between nodes. If you do need to modify the application
authenticity setting in a production environment, you must do it on each cluster
node separately.

Enabling an application authenticity check (example)

Currently, application authenticity is supported only on iOS and Android
platforms.

Note: The free Worklight Studio Developer Edition does not contain application
authenticity-related components. You must use either Worklight Studio Consumer
Edition or Worklight Studio Enterprise Edition to enable application authenticity.

The following sections present an example of how application authenticity is
enabled for iOS and Android:
1. The first step in enabling application authenticity is to modify your

authenticationConfig.xml file to add relevant authenticity realms to your
security tests:
v If you use <mobileSecurityTest>, you must add the <testAppAuthenticity/>

child element to this file.
v If you use <customSecurityTest>, you must add <test

realm=”wl_authenticityRealm”/> child element to the file.

Remember to rebuild and redeploy your .war file when you have updated your
authenticationConfig.xml file.

2. The second step is to modify the application-descriptor.xml file of your
application. The procedure is different for Android and for iOS environments.
v To enable an application authenticity check for an iOS environment, you

must specify the bundleId of your application exactly as you defined it in the
Apple Developer portal:

In addition, for a native iOS app, in your XCode project, under Build
Settings > Linking > Other Linker Flags, add the flag -ObjC.

v To enable an application authenticity check for the Android environment,
you must extract the public signing key of the certificate that is used to sign
the application bundle (.apk file).
Worklight Studio provides tools to simplify this process. If you are building
your application for distribution (production), you must extract the public
key from the certificate you are using to sign your production-ready
application. If you are building your application in a development
environment, you can use the public key from a default development

632 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

certificate that is supplied by Android. The development certificate can be
found in a keystore that is located under {user-home}/.android/
debug.keystore.
You can either extract the public key manually or use a wizard that is
provided by Worklight Studio. To do the latter:
a. Right-click your Android environment and select Extract public signing

key.
b. Specify the location and password of the keystore file and click Load

Keystore.
c. The default password for debug.keystore is android. Select key alias and

click Next.

v The public key is displayed on a window:

When you click Finish, the public key is automatically pasted into the
relevant section of application-descriptor.xml.

3. After you have updated the required elements, remember to rebuild and
redeploy your application to the Worklight Server.

Chapter 8. Developing IBM Worklight applications 633

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Controlling application authenticity from Worklight Console

Worklight Console allows enabling or disabling the application authenticity realm
in run time. This feature is useful for the Development and QA environments.
There are three modes you can set:
v Enabled, blocking – means that the application authenticity check is enabled. If

the application fails the check, it is not served by a Worklight server.
v Enabled, serving – means that the application authenticity check is enabled. If

the application fails the check, it is still served by a Worklight server.
v Disabled – means that the application authenticity check is disabled.

User certificate authentication realm
The user certificate authentication realm authenticates the user with X.509
certificates that are generated with the Worklight Server together with your public
key infrastructure (PKI).

For more information about this realm and how to set it up, see “User certificate
authentication overview” on page 995.

Troubleshooting authenticity problems
Find information to help resolve issues that you might encounter related to
authenticity.

634 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 101. Authenticity troubleshooting guidelines. This table lists possible problems and
actions to take to troubleshoot authenticity problems.

Problem Actions to take

The client runtime continually makes
requests to the Worklight Server and the
server responds with the same
authentication request.

The WL.Client.addGlobalHeader("Cookie",
"name=value") API in JavaScript might cause
a product client to enter an authentication
loop. The product uses cookies internally to
maintain session states between the client
and the server. The
WL.Client.addGlobalHeader API replaces the
entire 'Cookie' header and destroys the
session state.

Do not use the
WL.Client.addGlobalHeader("Cookie",
"name=value") API. Instead, use the
document.cookie = "name=value" API within
your JavaScript logic. The document.cookie
API ensures that the cookie is appended to
the existing cookie list instead of replacing
all existing cookies.

Developing globalized hybrid applications
To develop globalized hybrid applications, learn about globalization in JavaScript
frameworks and IBM Worklight, and about globalizing web services and push
notifications.

Applications that are developed and uploaded to application stores must support
multiple languages if they are to be used globally. IBM Worklight provides
capabilities for you to develop globalized hybrid applications. This series of topics
describes how to globalize your applications when using JavaScript frameworks
and IBM Worklight, and how to globalize web services and push notifications.

Globalization in JavaScript frameworks
You can use several JavaScript frameworks to globalize your applications: Dojo,
jQuery, and Sencha Touch.

You can use the capabilities of different JavaScript frameworks to globalize your
applications. Dojo, jQuery, and Sencha Touch each provide globalization functions
that are based on resource bundles and resource files, and they can switch to
different resource bundles based on current locale information. In addition, Dojo
also provides string and date format utilities that are based on user locale
information.

Dojo globalization framework
You can use the Dojo globalization framework to globalize your application.

The following example application demonstrates how to use the Dojo Mobile
JavaScript API to construct a globalized application with a native look and feel.
Dojo Mobile provides globalization functions for detecting locale, loading and
accessing resource bundles, and simple formatting utilities for culture-sensitive
display. Figure 1 and Figure 2 show pages of the application that display the
resource bundles loaded and the string format that is determined by the user

Chapter 8. Developing IBM Worklight applications 635

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

preferences on the device.

Figure 87. Dojo globalization application

636 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

In the example, the Dojo library is loaded as shown in Listing 1: Including Dojo
Mobile. The required modules must be loaded before you can use the Dojo
globalization API.

Listing 1: Including Dojo Mobile
<script type="text/javascript">

var dojoConfig = {
parseOnLoad: false,
packages: [{

name: "resource",
location: "../../bundles"

}]
};

</script>
<script type="text/javascript" src="libs/dojox/mobile/deviceTheme.js"></script>
<script type="text/javascript" src="libs/dojo/dojo.js"></script>

Figure 3 shows how to load Dojo resource bundles by defining a package that
maps the location of resource files within your hybrid application to a package
name.

Figure 88. Dojo cultural formatting

Chapter 8. Developing IBM Worklight applications 637

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

In the example, the language resource bundles are part of the application package,
and are stored on the client-side instead of being supplied dynamically from the
server or inserted directly into the HTML markup. Storing the language resource
bundles on the client-side enables the application to be used offline. The resource
files are encoded as JSON files.

Listing 2: Globalization application Views

This listing shows the code to generate the pages as simple HTML markup. The
following strings are the strings that you globalize in the application.
<!-- Main page -->
<div id="globalization" data-dojo-type="dojox.mobile.View" selected="true">

<h1 id="globalization_heading" data-dojo-type="dojox.mobile.Heading" label="msg_globalization"></h1>
<ul data-dojo-type="dojox.mobile.RoundRectList">

<li id="months_choice" data-dojo-type="dojox.mobile.ListItem" moveTo="months" callback="getMonths" label="msg_months">
<li id="days_choice" data-dojo-type="dojox.mobile.ListItem" moveTo="days" callback="getDays" label="msg_days">
<li id="formats_choice" data-dojo-type="dojox.mobile.ListItem" moveTo="formats" callback="getFormats" label="msg_formats">
<li id="icon_choice" data-dojo-type="dojox.mobile.ListItem" label="msg_icon">

<h1 id="globalization_footer" data-dojo-type="dojox.mobile.Heading" fixed="bottom" label="msg_footer" ></h1>

</div>

<!-- The "Icon" sub-page -->
<div id="icons" data-dojo-type="dojox.mobile.View">

<h1 id="icon_heading" data-dojo-type="dojox.mobile.Heading" moveTo="globalization" label="msg_icon" back="msg_previous"></h1>
</div>

<!-- The "Months" sub-page -->
<div id="months" data-dojo-type="dojox.mobile.View">

<h1 id="months_heading" data-dojo-type="dojox.mobile.Heading" moveTo="globalization" label="msg_months" back="msg_previous"></h1>
</div>

Figure 89. Dojo resource bundle structure

638 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<!-- The "Days" sub-page -->
<div id="days" data-dojo-type="dojox.mobile.View">

<h1 id="days_heading" data-dojo-type="dojox.mobile.Heading" moveTo="globalization" label="msg_days" back="msg_previous"></h1>
</div>

<!-- The "Formats" sub-page -->
<div id="formats" data-dojo-type="dojox.mobile.View">

<h1 id="formats_heading" data-dojo-type="dojox.mobile.Heading" moveTo="globalization" label="msg_formats" back="msg_previous"></h1>
</div>

Listing 3: Loading modules and resource files with the Dojo Mobile
resource bundle API

This listing shows the resources files that are loaded by the dojo/i18n plug-in
using Asynchronous Module Definition (AMD).
require(

[
"dojo/domReady", // Make sure DOM are ready
"dojo/i18n!resource/nls/messages", // Load our resource bundle
"dojox/mobile/parser", // This mobile app uses declarative programming
"dojox/mobile", // This is a mobile app
"dojox/mobile/i18n", // Load resources bundle declaratively
"dojox/mobile/compat", // This mobile app supports running on desktop browsers
],
function(ready, messages, parser, mobile, mi18n) {

ready(function() {
// demonstrates how to load resources declaratively
// dojox.mobile.i18n.load() must be called before dojox.mobile.parser.parse()
mi18n.load("resource", "messages");
parser.parse();

});
}

);

Note: The dojo.18n.getLocalization API is deprecated. Use dojox/mobile/i18n to
load resources declaratively. The dojox/mobile/i18n load() method treats text in
all mobile widgets as resource keys, and automatically replaces those keys with the
actual resources. If you want to explicitly control how these resources are used,
they can be loaded programmatically. The following listings show how to load
these resources.

Listing 4: Explicitly using the loaded resources

This listing shows how to use an argument such as resource to retrieve loaded
resources.
require(

[
"dojo/domReady", // Make sure DOM are ready
"dojo/i18n!resource/nls/messages", // Load our resource bundle
"dijit/registry", // For registry.byId
"dojox/mobile/parser", // This mobile app uses declarative programming
"dojox/mobile", // This is a mobile app
"dojox/mobile/compat", // This mobile app supports running on desktop browsers
],
function(ready, messages, parser, registry) {

ready(function() {
parser.parse();
registry.byId("globalization_heading").set("label", messages["msg_globalization"]);
registry.byId("months_choice").set("label", messages["msg_months"]);
registry.byId("days_choice").set("label", messages["msg_days"]);
registry.byId("formats_choice").set("label", messages["msg_formats"]);
// get locale by dojo

Chapter 8. Developing IBM Worklight applications 639

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

var footer_msg = bundle["msg_footer"] + dojo.locale;
registry.byId("globalization_footer").set("label", footer_msg);

});
}

);

Listing 5: Dojo cultural formatting

This listing shows the Dojo cultural formatting functions.
function getFormats(){

var formatsView = dojo.byId("formats");
require(

[
"dojox/mobile/RoundRectList",
"dojox/mobile/ListItem",
"dojo/date/locale",
"dojo/number",
"dojo/currency"
],
function(RoundRectList, ListItem, localeDate, localeNumber, localeCurrency){

var formatsList = new RoundRectList({id: "formats_list"}).placeAt(formatsView);
// get locale by dojo
var myLocale = dojo.locale;
// format locale date by dojo/date/locale
var date = localeDate.format(new Date(), {locale: myLocale});
var formattedDate = new ListItem({label: "Date: " + date});
formatsList.addChild(formattedDate);
// format with parameter
date = localeDate.format(new Date(), {selector: ’date’, formatLength: ’full’});
formattedDate = new ListItem({label: "Date: " + date});
formatsList.addChild(formattedDate);
// format number
var number = localeNumber.format(1234567.89);
var formattedNumber = new ListItem({label: "Number: " + number});
formatsList.addChild(formattedNumber);
// format currency
var currency = localeCurrency.format(1234.567, {currency: "USD"});
var formattedCurrency = new ListItem({label: "Currency: " + currency});
formatsList.addChild(formattedCurrency);

}
);

};

For more information about globalization with Dojo Mobile, see
http://dojotoolkit.org/reference-guide/1.9/dojox/mobile/
internationalization.html#dojox-mobile-internationalization.

jQuery Mobile globalization plug-in
You can use jQuery globalization functions with the jQuery Mobile globalization
plug-in.

There are no official jQuery globalization bundles. Here, the
jquery.i18n.properties-1.0.9.js jQuery globalization plug-in is used to
demonstrate jQuery globalization functions. The jquery.i18n.properties-1.0.9.js
jQuery globalization plug-in can be downloaded from http://code.google.com/p/
jquery-i18n-properties/.

The example application does not show the jQuery globalization string format
feature because there is no official globalization string formatting plug-in for
jQuery frameworks.

640 IBM Worklight V6.1.0

http://dojotoolkit.org/reference-guide/1.9/dojox/mobile/internationalization.html#dojox-mobile-internationalization
http://dojotoolkit.org/reference-guide/1.9/dojox/mobile/internationalization.html#dojox-mobile-internationalization
http://code.google.com/p/jquery-i18n-properties/
http://code.google.com/p/jquery-i18n-properties/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Listing 1: Load Cordova, jQuery mobile, and jQuery globalization
plug-in

This listing shows the scripts for loading Cordova, jQuery mobile, and the
jquery.i18n.properties-1.0.9.js jQuery globalization plug-in.
<script

type="text/javascript"
src="js/CordovaGlobalization.js">

</script>
<script

type="text/javascript"
src="js/messages.js">

</script>
<script

type="text/javascript"
src="js/jquery.mobile-1.1.1.min.js">

</script>
<script

type="text/javascript"
src="js/jquery.i18n.properties-min-1.0.9.js">

</script>

The resource bundle structures in jQuery and Dojo are different. Dojo resource files
have the same file name but are in separate folders corresponding to the locale
name. jQuery resource files are in one folder but the file names include the locale
information. Figure 2 shows the structure of the jQuery resource files.

Figure 90. jQuery globalization application

Chapter 8. Developing IBM Worklight applications 641

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Listing 2: Load and use resource by jQuery globalization plug-in

This listing shows the jQuery scripts to initialize the globalization plug-in.
function doGlobalization(){

$.i18n.properties({
name: ’messages’,
path: ’bundles/nls/’,
mode: ’both’,
// language: ’zh’,
callback: function(){

// Main page
$(’#globalization_heading’).empty().

append($.i18n.prop(’msg_globalization’));
$(’#msg_months’).empty().append($.i18n.prop(’msg_months’));
$(’#msg_days’).empty().append($.i18n.prop(’msg_days’));
$(’#msg_formats’).empty().append($.i18n.prop(’msg_formats’));
$(’#msg_icon’).empty().append($.i18n.prop(’msg_icon’));
// Sub page heading
$(’#icon_heading’).empty().append($.i18n.prop(’msg_icon’));
$(’#months_heading’).empty().append($.i18n.prop(’msg_months’));
$(’#days_heading’).empty().append($.i18n.prop(’msg_days’));
$(’#formats_heading’).empty().append($.i18n.prop(’msg_formats’));
$(’#words_heading’).empty().append($.i18n.prop(’msg_words’));
//Back buttons
var items = $(’a[data-rel="back"]’);
$.each(items, function(i){

$(items[i]).empty().append($.i18n.prop(’msg_previous’));
});
//Show locale by jQuery i18n plug-in
$(’#globalization_footer’).empty().

append($.i18n.prop(’msg_footer’) + $.i18n.browserLang());
}

});
};

Figure 91. jQuery resource bundle structure

642 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Sencha Touch globalization plug-in
You can use Sencha Touch globalization functions with the Sencha Touch
globalization plug-in.

There are no official Sencha Touch globalization bundles. Here, the
Ext.i18n.bundle-touch Sencha Touch globalization plug-in is being used to
demonstrate globalization functions. The Ext.i18n.bundle-touch globalization
plug-in can be downloaded from http://gaver.dyndns.org/elmasse/site/
index.php/download-menu/9-sencha-touch/21-exti18nbundle-touch-downloads.

The example application does not show the Sencha Touch globalization string
format feature because there is no official globalization string formatting plug-in
for Sencha frameworks.

Listing 1: Load Sencha Touch and globalization plug-in

This listing shows the scripts for loading Sencha Touch and the
Ext.i18n.bundle-touch globalization plug-in.
<script src="js/sencha-touch-all.js"></script>
<script>

Ext.Loader.setConfig({
enabled: true,
paths: {

Figure 92. Sencha Touch globalization application

Chapter 8. Developing IBM Worklight applications 643

http://gaver.dyndns.org/elmasse/site/index.php/download-menu/9-sencha-touch/21-exti18nbundle-touch-downloads
http://gaver.dyndns.org/elmasse/site/index.php/download-menu/9-sencha-touch/21-exti18nbundle-touch-downloads

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

’Ext.i18n’: ’js/i18n’,
’patch’: ’js/patch’

}
});

</script>
<script src="js/SenchaGlobalization.js"></script>
<script src="js/messages.js"></script>
<script src="js/auth.js"></script>

Figure 2 shows the structure of the Sencha Touch resource files.

Sencha Touch also provides a convenient API to retrieve the message in the
resource bundle and set the value to the UI component.

Listing 2: Load and use resource by Sencha Touch globalization
plug-in
function loadResource(){

Ext.require(’Ext.i18n.Bundle’, function(){
Ext.i18n.appBundle = Ext.create(’Ext.i18n.Bundle’, {

bundle: ’messages’,
path: ’bundles/nls’,
noCache: true

});

Figure 93. Sencha Touch resource bundle structure

644 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

});
Ext.application({

name: "Sencha Touch Globalization",
launch: function(){

Ext.i18n.appBundle.onReady(function(){doGlobalization();});
}

});
};

function doGlobalization(){
// global header
var globalHeader = Ext.create(’Ext.Toolbar’, {

docked: ’top’,
xtype: ’toolbar’,
title: ’<div width="100px">’ +

Ext.i18n.appBundle.getMsg(’msg_globalization’) + ’</div>’
});
// show locale by Ext.i18n.Bundle
var globalFooter = Ext.create(’Ext.Toolbar’, {

docked: ’bottom’,
xtype: ’toolbar’,
title: ’<div width="100px">’ +

Ext.i18n.appBundle.getMsg("msg_footer") +
Ext.i18n.appBundle.language + ’</div>’

});
// main list data model
Ext.define(’mainListModel’, {

extend: ’Ext.data.Model’,
config: {fields: [’index’, ’type’]}

});
// main list data store
var mainListStore = Ext.create(’Ext.data.Store’, {

model: ’mainListModel’,
sorters: ’index’,
proxy: {

type: ’localstorage’,
id: ’mainListStore’

},
data: [

{
index: ’1’,
type: Ext.i18n.appBundle.getMsg(’msg_months’)

},
{

index: ’2’,
type: Ext.i18n.appBundle.getMsg(’msg_days’)

},
{

index: ’3’,
type: Ext.i18n.appBundle.getMsg(’msg_formats’)

},
{

index: ’4’,
type: Ext.i18n.appBundle.getMsg(’msg_words’)

},
{

index: ’5’,
type: Ext.i18n.appBundle.getMsg(’msg_icon’)

}
]

});
// main list view
var mainList = Ext.create(’Ext.List’, {

itemTpl: ’{type}’,
store: mainListStore,
onItemDisclosure: function(record, btn, index){

Chapter 8. Developing IBM Worklight applications 645

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

showSecondContainer(record, btn, index);
}

});
}

Globalization mechanisms in IBM Worklight
IBM Worklight automatically translates application strings according to a
designated file. Multi-language translation is implemented by using JavaScript.

Cordova globalization API

The Cordova globalization API provides enhanced globalization capabilities that
mirror existing JavaScript globalization functions, where possible, without
duplicating functions already present in JavaScript. The emphasis of the Cordova
globalization API is on parsing and formatting culturally sensitive data. The
Cordova API uses native functions in the underlying operating system, where
possible, rather than re-creating these functions in JavaScript. Table 1 summarizes
the Cordova globalization API functions provided.

Table 102. Cordova globalization API summary

Function Name Purpose

getPreferredLanguage The current language of the client.

getLocaleName The client current locale setting on the
device.

dateToString A date that is formatted as a string,
according to the locale and timezone of the
client.

stringToDate A string that is parsed as a date, according
to the client's user preferences.

getDatePattern A pattern string for formatting and parsing
dates.

getDateNames The names of the months, or the days of the
week.

isDayLightSavingsTime Whether daylight saving time is in effect for
a specified date.

getFirstDayOfWeek The first day of the week.

numberToString A number that is formatted as a string,
according to the user preferences.

stringToNumber A string that is parsed as a number,
according to the user preferences.

getNumberPattern A pattern string for formatting and parsing
numbers.

getCurrencyPattern A pattern string for formatting and parsing
currencies.

The Cordova globalization API is an independent globalization framework, which
can be integrated with any JavaScript libraries to provide globalization functions.
The Cordova globalization API is different from other globalization libraries. The
Cordova globalization API does not provide a parameter to indicate a locale. The
set of supported locales is determined by the device and its SDK and not by
Cordova.

646 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The Cordova globalization API uses the client locale setting and any default values
that are overridden. This design greatly simplifies the use of the globalization API
while still providing robust support. It is important to note that, although the set
of interfaces remains constant across the devices that Cordova supports, the results
can vary across the devices.

The Cordova framework does not provide access to graphical widgets that are
present in device SDKs. The Cordova framework is used in concert with other
JavaScript widget libraries, such as Dojo, to build complete mobile applications.
The Cordova globalization API is interoperable with Dojo Mobile, jQuery Mobile,
and Sencha Touch. It is an asynchronous implementation to prevent blocking
JavaScript execution in user interface code. The following listings and figures show
the Cordova globalization API. Dojo is used to demonstrate the user interface.

Table 103. Listing 1: Using the Cordova globalization API

function onDeviceReady(){
g11n = window.plugins.globalization;

}

The code to generate the names of the months, days of the week, and format the
current date is shown in Listing 2, Listing 3, and Listing 4.

Table 104. Listing 2: Month names

function getMonths(){
g11n.getDateNames(function(data){

var items = data.value;
var monthsView = document.getElementById(’monthsView’);
for (var i = 0; i < items.length; i++) {

monthsView.append(’’ + items[i] + ’’);
}

},
function(code){

alert("Error: " + code);
});

};

Chapter 8. Developing IBM Worklight applications 647

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Figure 94. Using Cordova to show locale-based months

648 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 105. Listing 3: Days of the week

function getDays(){
g11n.getDateNames(

function(data){
var items = data.value;
var daysView = document.getElementById(’daysView’);
for (var i = 0; i < items.length; i++) {

daysView.append(’’ + items[i] + ’’);
}

},
function(code){

alert("Error: " + code);
},
{item: "days"}

);
}

Chapter 8. Developing IBM Worklight applications 649

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Figure 95. Using Cordova to show the days of week

650 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 106. Listing 4: Formatting current date

function getFormats(){
var formatsView = document.getElementById(’formatsView’);
g11n.dateToString(

new Date(),
function(date){

formatsView.append(’’ + date.value + ’’);
},
function(code){

alert("Error: " + code);
},
{selector: "date", formatLength: "full"}

);
g11n.getDatePattern(

function(date){
formatsView.append(’’ + date.pattern + ’’);
var timeZone = date.timezone;
formatsView.append(’’ + timeZone + ’’);
var offset = date.utc_offset;
formatsView.append(’’ + offset + ’’);
var dstoffset = date.dst_offset;
formatsView.append(’’ + dstoffset + ’’);

},
function(code){

alert("Error: " + code);
},
{selector: "date", formatLength: "full"}

);
g11n.isDayLightSavingsTime(

new Date(),
function(date){

var dst = date.dst;
formatsView.append(’’ + dst + ’’);

},
function(code){

alert("Error: " + code);
}

);
g11n.numberToString(

1234.56,
function(number){

formatsView.append(’’ + number.value + ’’);
},
function(code){

alert("Error: " + code);
},
{type: "decimal"}

);
}

Chapter 8. Developing IBM Worklight applications 651

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Enabling translation of application strings

messages.js is the file that is designated for application strings and can be found
in the common/js folder. If you use Dojo, jQuery, or Sencha Touch in your
application, use the translation resource loading mechanisms and file formats from
these JavaScript technologies instead of mechanisms that are provided by IBM
Worklight. Use IBM Worklight application messages only when the JavaScript
graphical toolkit used in your application does not provide these services.
Messages = {

headerText: "Default header",
actionsLabel: "Default action label",
sampleText: "Default sample text",

Figure 96. Using Cordova for cultural formatting

652 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

englishLanguage: "English",
frenchLanguage: "French",
(...)

}

Application messages that are stored in messages.js can be referenced in two
ways:
v As a JavaScript object property; for example, Messages.header or

Messages.sampleText.
v As the ID of an HTML element with class=“translate”.

<div id="header">
<h1 id="headerText" class="translate"></h1>

</div>

Note: A string that is defined in Messages.headerText is automatically used here.

Enabling translation of system messages

You can enable the translation of the system messages that the application
displays, such as Internet connection is not available, or Invalid user name or
password.

You can find the list of the system messages in the worklight/messages/
messages.json file that is in the environment folder of the projects that you
generated with IBM Worklight.

To enable the translation of a system message, you must override its value in the
WL.ClientMessages object, as indicated in “The WL.ClientMessages object” on page
699.

Implementing multi-language translation

You can implement multi-language translation for your applications by using
JavaScript.
1. Define default application strings in messages.js as shown in the following

code example:
Messages = {

headerText: "Default header",
actionsLabel: "Default action label",
sampleText: "Default sample text",
englishLanguage: "English",
frenchLanguage: "French",
russianLanguage : "Russian",
hebrewLanguage : "Hebrew"

};

2. Override some or all of the default application strings with JavaScript. The
following two code examples define JavaScript functions that are used to
override the default strings that are defined in messages.js:
function setFrench(){

Messages.headerText = "Traduction";
Messages.actionsLabel = "Sélectionnez langue:";
Messages.sampleText = "ceci est un exemple de texte en français.";

}
function setRussian(){

Messages.headerText = "�������";
Messages.actionsLabel = "���o� ����a:";
Messages.sampleText = "��� ������ ������ �� ������� �����.";

}

Chapter 8. Developing IBM Worklight applications 653

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

function languageChanged(lang){
if (typeof(lang)!="string") lang = $("#languages").val();
switch (lang){

case "english":
setEnglish();
break;

case "french":
setFrench();
break;

case "russian":
setRussian();
break;

case "hebrew":
setHebrew();
break;

}
if ($("#languages").val()=="hebrew")

$("#AppBody").css({direction: ’rtl’});
else

$("#AppBody").css({direction: ’ltr’});

$("#sampleText").html(Messages.sampleText);
$("#headerText").html(Messages.headerText);
$("#actionsLabel").html(Messages.actionsLabel);

}

A language parameter is passed to the languageChanged() JavaScript function. The
languageChanged() function calls the corresponding function to override the
default English language string.

Detecting device-specific information

You can detect the locale and language of your device by using
WL.App.getDeviceLocale() and WL.App.getDeviceLanguage().
var locale = WL.App.getDeviceLocale();
var lang = WL.App.getDeviceLanguage();
WL.Logger.debug(">> Detected locale: " + locale);
WL.Logger.debug(">> Detected language: " + lang);

The following screen capture shows the print output:

Globalization of web services
You can use the Cordova globalization method to get the user locale preference,
and check what user locale is used.

In some situations, localized results are obtained by calling web services. The
Cordova globalization method getLocaleName returns the user locale preference,
which can be used in client-driven service calls.

The following listing shows how the user locale is used to collate a list of words.
The locale of the returned word list can be checked to verify that the user locale
was used or a substitute locale was used instead.

654 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Listing: Locale-based service call
function getWords(){

var services;
require(

["dojox/rpc/Service"],
function(Service){

services = new Service({
target: "{Your Web Service URL}",
transport: "POST",
envelope: "JSON-RPC-1.0",
contentType:

"application/json",
services: {

"sorter.getWordList": {
returns: {"type": "object"},
parameters: [{"type": "string"}]

}
}

});
}

);
g11n.getLocaleName(

function(locale){
// invoke the JSON web service to get the list of sorted words
var deferred = services.sorter.getWordList(locale.value);
deferred.addCallback(

function(result){
var wordsView = dojo.byId("words");
require(

[
"dojox/mobile/RoundRectList",
"dojox/mobile/ListItem",
"dojox/mobile/Heading"

],
function(RoundRectList, ListItem, Heading){

var wordsList = new RoundRectList({
id: "words_list"}).placeAt(wordsView);

items = result.words.list;
for (var i = 0; i < items.length; ++i) {

var word = new ListItem({label: items[i]});
wordsList.addChild(word);

}
var wordsFooter = new Heading({

label: result.localeName}).placeAt(wordsView);
});

}
)

},
function(code){

alert("Error: " + code);
}

);
};

Globalization of push notifications
With IBM Worklight, you can globalize push notifications so that push notifications
are displayed in the language of the user. You use different methods to globalize
push notifications, depending on the way the application runs: in the foreground,
in the background, or not running at all.

Mobile applications frequently rely on server-side services to provide data to the
mobile application. However, there are occasions when the application is not
running or is not connected to the server. Push notifications are short messages
that provide a mechanism for notifying mobile applications that a server has data

Chapter 8. Developing IBM Worklight applications 655

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

that can be downloaded or information that can be viewed by the mobile
application when the application is either not running or not running in the
foreground.

Translate push notification messages so that the correct language is displayed to
the user. How the application runs, such as, in the foreground, in the background,
or not running at all, determines your choice of architectural pattern.
v When the application is running in the foreground, it uses the language and

cultural settings on the device to determine the appropriate language to display.
To support this pattern, messages must be stored in the resource files of the
mobile application, and not in the resource files of the server application, even
though messages are generated on the server-side.

v When a notification is sent to a mobile application, send the notification resource
key and not the actual text of the message.

v When a mobile application receives the notification, or message, use the key that
was sent in the notification message to look up the text of the message from its
resource file, as shown in Figure 1.

Note: iOS uses Apple Push Notification Service (APNS) to push notifications to
mobile applications. Android uses Google Cloud Messaging (GCM) to push
notifications to mobile applications.

Listing 1, Listing 2, and Listing 3 show sample code that can be used when the
mobile application is running in the foreground.

First, create an IBM Worklight adapter to send the notification. For more
information about how to create an adapter, see the module Push Notifications,
under category 9, Advanced topics, in Chapter 3, “Tutorials and samples,” on page
27

Listing 1: Send notification using created adapter

This listing shows how to send a notification with the created adapter. The target
message, or resource key, to be translated on the client-side, is specified in the
payload.

Figure 97. Using the resource key

656 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

function sendNotificationOTA(userId, notificationText) {
var userSubscription = WL.Server.getUserNotificationSubscription(

’mysuranceAdapter.mysuranceEventSource’, userId);
WL.Server.notifyAllDevices(

userSubscription,
{

badge : 1,
sound : "",
alert : notificationText,
payload : { globalizeString : ’notificationText’ }

}
);

}

Listing 2: Client-side subscription code

This listing shows the code that is required on the client-side to subscribe to push
notification.
WL.Client.Push.onReadyToSubscribe = function(){

WL.Client.Push.registerEventSourceCallback(
"mysurancePush",
"mysuranceAdapter",
"mysuranceEventSource",
pushNotificationReceived);

};

After successful subscription, the callback method is implemented. The callback
method is responsible for retrieving the data from the payload, retrieving
application locale preferences, retrieving the message by using the resource key,
and formatting the message.

Listing 3: Callback method

This listing shows how to retrieve the locale information and load the
corresponding translated message with Dojo by using the resource key that is
stored in the payload object.
function pushNotificationReceived(props, payload){

if (payload.globalizeString != "undefined"){
require(

["dojox/mobile/i18n", "dojo/number"],
function(mi18n, number){

bundle = mi18n.load("resource", "messages");
// get globalization text by dojo mobile i18n
var notificationText = bundle[payload.globalizeString];
// format number by device locale
var num = number.format(1234567890, {

places: 2, locale: WL.App.getDeviceLocale()});
num = bundle["amount"] + num;
//display globalization message
alert(notificationText + "\n" +num);

}
);

}
}

v If a notification provides data in addition to the message, then send the data in a
locale-neutral format. When the application retrieves the message, the data can
be formatted based on the user cultural preferences at the time the message is
received.

v An application that is running in the background, or not running at all, can elect
to use a previously registered user profile to access the appropriate language
and cultural settings for push notifications. To support this pattern, the server

Chapter 8. Developing IBM Worklight applications 657

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

sends the translated message and data in a format that is determined by the user
cultural and language preferences that are stored in the profile, as shown in
Figure 2. The push notifications are then processed differently by the mobile
application. Processing is based on the native operating system that the
application is running on.

v On Android, notification messages wake up Android applications, and the
applications directly access the language and cultural preferences so that the
correct translation and formatting can be applied.

v On iOS, notification messages do not wake up iOS applications, therefore the
native operating system automatically selects the appropriate language to use for
notifications. The iOS operating system automatically attempts to locate and
load the correct language resource.

v In hybrid applications that are built using IBM Worklight, notifications are not
directly processed by the application when the application is not running in the
foreground. In this case, the user language and cultural profile that was
previously established is used.

Developing accessible applications
To develop accessible applications, easily used by people with disabilities, this topic
helps you to learn about resources available to improve the accessibility of your
apps.

When you build an application for your business, it is important to consider the
user experience of individuals with a disability or impairment. Taking steps to
consider enablement of tools like screen magnification, audio assistance, or other
assistive technologies can extend the reach of your business.

In general, mobile applications can be made highly accessible. This following
sections provides a number of resources to help you make your mobile application
as accessible as possible. IBM Worklight provides a strong foundation for building
accessible applications because it supports industry standards and allows you to
leverage them. But accessibility features vary among target environments,
depending on the Native OS or the Hybrid library vendor.

Figure 98. Sending push notifications according to the user’s settings

658 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Native application accessibility

If your application is native, the ability to make it accessible is determined by the
capabilities of the target platform itself. The links that follow provide excellent
resources for the supported mobile platforms, laying out available options and
capabilities.
v iOS

– Accessibility in iOS
– Understanding Accessibility on iOS
– iOS. A wide range of features for a wide range of needs.

v Android

– Accessibility
v BlackBerry

– Accessibility
– Introduction to the Accessibility API
– Accessibility API concepts
– Developing accessible BlackBerry device applications by using the

Accessibility API
– Test an accessible BlackBerry device application

v Windows Phone

– Accessibility on Windows Phone

Hybrid application accessibility

If your application is a hybrid, options are available from a number of JavaScript
libraries. Dojo Mobile and jQuery Mobile are popular examples, but there are
several others. Useful references for writing accessible hybrid applications are
provided in the following links. Note that if you are using Dojo Mobile, version 1.9
or newer is highly suggested because it has better accessibility coverage than
previous versions.
v Dojo Mobile

– Dojo Accessibility Design Requirements
– Dojo Accessibility

v jQuery Mobile

– Accessibility

Location services
Location services in IBM Worklight provide you with the opportunity to create
differentiated services that are based on a user location, by collecting geolocational
and WiFi data, and by feeding the location data and triggers to business processes,
decision management systems, and analytics systems.

Geolocation is a powerful differentiator of mobile apps. Yet because geolocation
coordinates must be constantly polled to understand where a mobile device is
located, the resulting stream of geographic information can be difficult to manage
without exhausting resources such as battery and network. IBM Worklight includes
location services that handle multiple geo modalities such as GPS, WiFi sampling,
and interpolation. You can set policies for acquiring geolocation data and
transmitting it to the server in order to optimize battery and network usage.

Chapter 8. Developing IBM Worklight applications 659

https://developer.apple.com/technologies/ios/accessibility.html
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/iPhoneAccessibility/Accessibility_on_iPhone/Accessibility_on_iPhone.html
http://www.apple.com/accessibility/iphone/vision.html
http://developer.android.com/guide/topics/ui/accessibility/index.html
http://us.blackberry.com/legal/accessibility.html
http://docs.blackberry.com/en/developers/deliverables/11936/Intro_to_Accessibility_API_791538_11.jsp
http://docs.blackberry.com/en/developers/deliverables/20100/Key_concepts_Accessibility_API_791537_11.jsp
http://docs.blackberry.com/en/developers/deliverables/20100/Developing_an_acc_BB_device_app_791536_11.jsp
http://docs.blackberry.com/en/developers/deliverables/20100/Developing_an_acc_BB_device_app_791536_11.jsp
http://docs.blackberry.com/en/developers/deliverables/20100/Test_accessible_BB_device_app_791541_11.jsp
http://www.slideshare.net/rajeshlal/accessibility-on-windows-phone
http://dojotoolkit.org/community/a11yReq
http://www.ibm.com/able/resources/dojo.html
http://jquerymobile.com/demos/1.2.0/docs/about/accessibility.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

With location services in IBM Worklight, you can use data that is acquired by a
mobile device to trigger events that benefit both the owner of the device and the
enterprise that has received the data. For example:
v A fast food outlet could start preparing food for a customer, based on data

collected regarding his geographical location, so that the food is ready just as the
customer arrives to collect.

v A warehouse could improve the efficiency of its processes by using locational
data from its delivery vehicles to ensure that goods are removed from storage
and made ready for collection.

v Shopping outlets could respond more readily to the needs of regular customers
by using geo-locational data.

Location services can also be used to improve internal efficiency within an
organization, for example, by understanding behavior and trends in application
usage, and thus driving ongoing improvement.

Location services are currently supported on hybrid Android, iOS, and Windows
Phone 8.

The following figure shows how the location services feature works:

Application code on the mobile device, in the form of an acquisition policy, controls
the collection of data from device sensors. The collected data is referred to as the
device context. When a change occurs in the device context, such as a change in the
geolocation of the device, or the fact that it has just entered a WiFi zone, triggers

Figure 99. Location services architecture

660 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

can be activated. The triggers specify that an action should occur: either a callback
function is called, or an event is sent to the server, based on the device context.

Events are created by triggers and application code, and include a snapshot of the
device context at the time of their creation. Events are buffered on the client, and
are transmitted to the server periodically. The server might process the event much
later. During the event transmission process, the device context is synchronized
transparently to the server.

To handle the events, the server uses adapter application code. This code sets up
event handlers on the server, which filter event data and pass matching events to a
callback function. The code also accesses the client's device context (its location and
WiFi network information) and sets an application context. Server activities and
received events are logged, together with the device and application contexts, for
future reporting and analytics.

Platform support for location services
Location services are supported for hybrid applications on iOS, Android, and
Windows Phone 8 in IBM Worklight V6.1.0. However, the level of support for each
platform is slightly different.

The following table lists the features of location services where support differs for
iOS, Android, and Windows Phone 8:

Feature iOS Android Windows Phone 8

Geo acquisition
policy

minChangeTime is
not supported.

highAccuracyOptions:
iOSBestAccuracy is
not supported.

highAccuracyOptions:
iOSBestAccuracy is
not supported.

WiFi visible access
points

Not supported. Only
the Connect and
Disconnect triggers
are supported for iOS
WiFi.

Not supported. Only
the Connect and
Disconnect triggers
are supported for
Windows Phone 8
WiFi.

Connected WiFi
signal strength

Not supported. Not supported.

Connected WiFi
MAC address

Not supported.

KeepAliveInBackgroundNot supported. Use
standard iOS options
for acquiring location
data while in the
background.

Not supported. Use
standard Windows
Phone 8 options for
acquiring location
data while in the
background.

For information about iOS, Android, and Windows Phone 8 permissions, see
“Location services permissions.”

Location services permissions
To use IBM Worklight location services, you must define the correct permissions.

Location services are supported for hybrid applications on Android, iOS, and
Windows Phone 8.

Chapter 8. Developing IBM Worklight applications 661

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Android

For Android, the following permissions are required.

For Geo acquisition:
v ACCESS_COARSE_LOCATION
v ACCESS_FINE_LOCATION (when enableHighAccuracy=true)

For WiFi acquisition:
v ACCESS_WIFI_STATE
v CHANGE_WIFI_STATE

iOS

For iOS, you must update info.plist with the following information.
Geo:
UIRequiredDeviceCapabilities:

location-services
gps (when enableHighAccuracy=true)

Wifi:
UIRequiredDeviceCapabilities: wifi

When location services are running in the background on iOS:
UIBackgroundModes key: location (when enableHighAccuracy=true)

Windows Phone 8

For Windows Phone 8, you must add the ID_CAP_LOCATION capability in the
WMAppManifest.xml file.

When location services are running in the background on Windows Phone 8,
replace the DefaultTask details in the WMAppManifest.xml file with the following
information:
<DefaultTask Name="_default" NavigationPage="MainPage.xml"> <BackgroundExecution> <ExecutionType Name="LocationTracking" /> <BackgroundExecution> </Defa

See the Windows Phone Development Center web page http://
msdn.microsoft.com/en-us/library/windowsphone/develop/
jj662935(v=vs.105).aspx for details on running location-tracking apps in the
background.

Triggers
A trigger is a mechanism that detects an occurrence, and can cause additional
processing in response. Triggers are activated when a change occurs in the device
context.

Triggers can be activated for changes in Geo or WiFi data.

Geo triggers

For Geo data, two types of regions, also known as geofences, are considered: circles
and polygons. The following trigger types are available for Geo data.

662 IBM Worklight V6.1.0

http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj662935(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj662935(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj662935(v=vs.105).aspx

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Trigger type Description

PositionChange The trigger is activated when the position of
the device changes by at least a specified
distance.

Enter The trigger is activated when the device
enters a region.

Exit The trigger is activated when the device
leaves a region.

DwellInside The trigger is activated when the device
remains inside a region for a given time
period.

DwellOutside The trigger is activated when the device
remains outside a region for a given time
period.

For Enter, Exit, DwellInside, and DwellOutside, you can increase or decrease the
size of the region by altering the buffer zone width. Sensor accuracy is measured
by using GPS coordinates and network accuracy.

You can control trigger activation based on confidence levels. For example, if you
choose a confidence level of low, accuracy is not taken into account when you are
determining whether a geo-locational coordinate acquired from a device is inside
or outside a region. If you choose a confidence level of medium, accuracy is taken
into account, and you can be sure that the coordinate lies within, or outside of, the
region at approximately a 70% confidence level. If you choose a confidence level of
high, accuracy is taken into account, and you can be sure that the coordinate lies
within, or outside of, the region at approximately a 95% confidence level.

WiFi triggers

For WiFi data, triggers are activated based on a change in visible access points.
Access points are defined by using SSIDs (service set identifiers) and MACs (media
access control addresses). The following trigger types are available for WiFi data.

Trigger type Description

VisibleAccessPointsChange The trigger is activated when the visible
access points that define a WiFi area change
by a specified amount.

Enter The trigger is activated when the device
enters a WiFi area.

Exit The trigger is activated when the device
leaves a WiFi area.

DwellInside The trigger is activated when the device
remains inside a WiFi area for a given time
period.

DwellOutside The trigger is activated when the device
remains outside a WiFi area for a given time
period.

Connect The trigger is activated when the device
connects to a WiFi access point.

Disconnect The trigger is activated when the device gets
disconnected from a WiFi access point.

Chapter 8. Developing IBM Worklight applications 663

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

You can control trigger activation based on confidence levels. A low confidence
level is used to indicate that the WiFi acquisition policy signalStrengthThreshold
value is used when determining whether an access point is visible. A medium
confidence level is used to indicate that a signal strength of at least 50% is
necessary for an access point to be visible. A high confidence level is used to
indicate that a signal strength of at least 80% is necessary for an access point to be
visible.

When you use the confidence level to determine whether an access point is visible,
each specified access point in the area must be at least as strong as that indicated
by the confidence level. If the area access point is for an SSID without a MAC
address, then the highest signal strength for that SSID must be at least as strong as
that indicated by the confidence level. In order to exit the area, the signal strength
level for at least one access point must be below the WiFi acquisition policy
signalStrengthThreshold value.

Note: For WiFi triggers, the confidenceLevel parameter is not supported by
DwellOutside.

For detailed information about the parameters for the trigger types, see the
startAcquisition method as defined in the WL.Device class.

Setting an acquisition policy
You can set up a location services acquisition policy that is based on your
requirements. For example, your policy could be set up to maximize positional
accuracy, but with the capability of reducing accuracy if the device is known to be
low on charge, to conserve battery usage.

About this task

An acquisition policy controls how data is collected from a sensor of a mobile
device, using GPS positions and WiFi access points. To manage battery life
appropriately, you should match the policy used to your needs. For example, while
you might want to have a very accurate position for a geofence trigger, you may
be able to save power by using a different policy when the device is far away from
the area of interest.

You set up an acquisition policy by using the WL.Device.startAcquisition API.

You can specify a preset geo policy to use in the WL.Device.startAcquisition API.
You do this by using the WL.Device.Geo.Profiles API, in which you can specify
one of the following functions, based on your requirements:
v LiveTracking. Use to get the most accurate and timely position information, but

with heavy battery use.
v RoughTracking. Use to track devices, but when you do not need the most

accurate or timely information. Use of power is less than for LiveTracking.
v PowerSaving. Use to get infrequent positional data at low accuracy levels, but

with very good power conservation.

For information about the preset values for each function, see
WL.Device.Geo.Profiles.

In addition to these three functions, you can specify many other configuration
options as part of the WL.Device.startAcquisition API. At the most basic level,
you can decide whether you want to allow for GPS use. This option is controlled

664 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Device.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Device.Geo.Profiles.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

by the enableHighAccuracy parameter. Note that you should set your permissions
appropriately if you want to use GPS. For information about permissions, see
“Location services permissions” on page 661. If you decide not to use GPS, then a
lower-power and less accurate position provider is used.

When the device for which you are acquiring data is plugged in, you might want
to use the LiveTracking profile. Then, at different battery levels, switch to other
options that save power. You might want similar behavior when the application
goes to the background, or resumes. To fulfill these requirements, you can use
Apache Cordova, and register for the appropriate event. Apache Cordova events
provide you with the ability to monitor battery status, and respond appropriately
based on the status. For more information, see the Apache Cordova documentation
at http://cordova.apache.org/docs/en/2.6.0/index.html, and search for "events".

Procedure
1. Decide on the requirements for your application policy.
2. Optional: Call the WL.Device.Geo.Profiles API, specifying the required

function.
3. Optional: Use Apache Cordova to monitor your battery status.
4. Call the WL.Device.startAcquisition API.

Example

In the code, triggers is a variable that stores the currently defined triggers, and
failureFunctions is a variable that stores the functions to be called when
acquisition fails.

For hybrid Android, iOS, or Windows Phone 8:
window.addEventListener("batterylow", goToPowerSaveMode, false);

function goToPowerSaveMode() {
WL.Device.startAcquisition(

{ Geo: WL.Device.Geo.Profiles.PowerSaving() },
triggers,
failureFunctions

);
}

For native Android:
WLDevice wlDevice = WLClient.getInstance().getWLDevice();
wlDevice.startAcquisition(

new WLLocationServicesConfiguration()
.setPolicy(new WLAcquisitionPolicy()

.setGeoPolicy(WLGeoAcquisitionPolicy.getPowerSavingProfile()))
.setTriggers(triggers)

.setFailureCallbacks(failureFunctions)
);

For native iOS:
id<WLDevice> wlDevice = [[WLClient sharedInstance] getWLDevice];
[wlDevice startAcquisition:

[
[

[
[[WLLocationServicesConfiguration alloc] init]
setPolicy:
[

[[WLAcquisitionPolicy alloc] init]

Chapter 8. Developing IBM Worklight applications 665

http://cordova.apache.org/docs/en/2.6.0/index.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

setGeoPolicy: [WLGeoAcquisitionPolicy getPowerSavingProfile]
]

]
setTriggers: triggers

]
setFailureCallbacks: failureFunctions

]
];

Working with geofences and triggers
You can use geofences and triggers to identify users entering, exiting, or staying
inside or outside a geographical area. You can initiate actions, such as improving
responsiveness for privileged guests at a hotel chain, based on data relating to the
geofence.

Before you begin

Acquisition of geolocation data must be started before you can receive triggers
related to geofences. For more information, see “Setting an acquisition policy” on
page 664.

About this task

A geofence is a geographical area, defined in the form of a circle or polygon. You
can increase or decrease the size of the area by changing the value of the
bufferZoneWidth parameter in the WL.Device.startAcquisition API.

Triggers are used to identify users entering, exiting, or staying inside or outside a
geofence. For the entering and exiting triggers, the user must have been previously
outside or inside the area, including the buffer zone, for the trigger to occur.

Confidence levels are used to help determine whether the trigger condition is met,
and can be used to trade off sensitivity, correctness, and battery usage. A
confidence level of low, which is the default, uses the acquired position and does
not take into account the accuracy of the measurement. The medium and high
confidence levels do take accuracy into account. The medium confidence level
indicates that the system is approximately 70% confident that the condition is met.
The high confidence level corresponds to a level of approximately 95%.

A low confidence level indicates that the condition is met more often, although
there is a higher likelihood of it being mistaken. A high confidence level indicates
that the condition is met less often, however it is less likely to be mistaken.

Note that after an Enter trigger has been activated, it will not activate again until
the user leaves the “activated” area, which includes the buffer zone. For the
entering and dwelling inside triggers, this means that the user must exit the area.
For the exiting and dwelling outside triggers, this means that the user must enter
the area.

Procedure
1. Start acquiring geolocation data, by using the WL.Device.startAcquisition API.
2. Include trigger definitions for geofence triggers: Enter, Exit, DwellInside, and

DwellOutside. Set confidence levels for the triggers.
3. Set events to be transmitted when triggers are activated.

666 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Example

For hybrid Android, iOS, or Windows Phone 8:
function wlCommonInit(){

/*
* Application is started in offline mode as defined by a connectOnStartup property in initOptions.js file.
* In order to begin communicating with Worklight Server you need to either:
*
* 1. Change connectOnStartup property in initOptions.js to true.
* This will make Worklight framework automatically attempt to connect to Worklight Server as a part of application start-up.
* Keep in mind - this may increase application start-up time.
*
* 2. Use WL.Client.connect() API once connectivity to a Worklight Server is required.
* This API needs to be called only once, before any other WL.Client methods that communicate with the Worklight Server.
* Don’t forget to specify and implement onSuccess and onFailure callback functions for WL.Client.connect(), e.g:
*
* WL.Client.connect({
* onSuccess: onConnectSuccess,
* onFailure: onConnectFailure
* });
*
*/

// Common initialization code goes here

}

var triggers = {
Geo: {

centralPark: {
type: "DwellInside",
polygon: [

{longitude: -73.95824432373092, latitude: 40.80062106285157},
{longitude: -73.94948959350631, latitude: 40.79691751000037},
{longitude: -73.97309303283704, latitude: 40.764486356929645},
{longitude: -73.98167610168441, latitude: 40.76799670467469}

],
dwellingTime: 600000, // 10 minutes
bufferZoneWidth: -100, // at least 100 meters within the park
callback: after10MinsInCentralPark

},
statueOfLiberty: {

type: "Enter",
circle: {

longitude: -74.044444,
latitude: 40.689167,
radius: 5000 // 5km

},
confidenceLevel: "high", // ~95% confidence that you are in the circle
eventToTransmit: {

event: {
nearAttraction: "statue_of_liberty"

},
transmitImmediately: true

}
}

}
};

For native Android:

Chapter 8. Developing IBM Worklight applications 667

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WLTriggersConfiguration triggers = new WLTriggersConfiguration();
triggers.getGeoTriggers().put("centralPark",

new WLGeoDwellInsideTrigger()
.setArea(new WLPolygon(Arrays.asList(

new WLCoordinate(40.80062106285157, -73.95824432373092),
new WLCoordinate(40.79691751000037, -73.94948959350631),
new WLCoordinate(40.764486356929645, -73.97309303283704),
new WLCoordinate(40.76799670467469, -73.98167610168441))))

.setDwellingTime(600000) // 10 minutes

.setBufferZoneWidth(-100) // at least 100 meters within the park

.setCallback(after10MinsInCentralPark));
triggers.getGeoTriggers().put("statueOfLiberty",

new WLGeoEnterTrigger()
.setArea(new WLCircle(new WLCoordinate(40.689167, -74.044444), 5000)) // 5 km
.setConfidenceLevel(WLConfidenceLevel.HIGH) // �95% confidence that we are in the circle
.setEvent(new JSONObject("{nearAttraction: ’statue_of_liberty’}"))
.setTransmitImmediately(true));

For native iOS:
WLTriggersConfiguration* triggers = [[WLTriggersConfiguration alloc] init];

[[triggers getGeoTriggers] setObject:
[[[[

[[WLGeoDwellInsideTrigger alloc] init]
setArea: [[WLPolygon alloc] init: [NSMutableArray arrayWithObjects:

[[WLCoordinate alloc] initWithLatitude:40.80062106285157 longitude:-73.95824432373092],
[[WLCoordinate alloc] initWithLatitude:40.79691751000037 longitude:-73.94948959350631],
[[WLCoordinate alloc] initWithLatitude:40.764486356929645 longitude:-73.97309303283704],
[[WLCoordinate alloc] initWithLatitude:40.76799670467469 longitude:-73.98167610168441],
nil]]]

setDwellingTime: 60000] // 10 minutes
setBufferZoneWidth: -100] // at least 100 meters within the park
setCallback: after10MinsInCentralPark]

forKey:@"centralPark"];

[[triggers getGeoTriggers] setObject:
[[[[

[[WLGeoEnterTrigger alloc] init]
setArea: [[WLCircle alloc] initWithCenter:[[WLCoordinate alloc] initWithLatitude:40.689167 longitude:-74.044444] radius:5000]]
setConfidenceLevel: HIGH] // �95% confidence that we are in the circle
setEvent: [NSDictionary dictionaryWithObject: @"statue_of_liberty" forKey:@"nearAttraction"]]
setTransmitImmediately: true]

forKey:@"statueOfLiberty"];

Differentiating between indoor areas
You can use visible access points to identify areas in an indoor location such as a
shopping mall. After transmitting this data to a server, together with the device
context, you can use it for auditing, reporting, and analysis.

About this task

The process of acquiring data that identifies discrete areas in an indoor location,
where the GPS signal might be poor or non-existent, involves acquiring WiFi data,
and using WiFi triggers to initiate events.

Procedure
1. Scan the area to determine which access points are visible from each area that

you are interested in, and then record the access points.
To scan the area, create a small application that has the following elements:

668 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v A WiFi acquisition policy for appropriate SSIDs. In the policy, specify MAC:
"*" to see each access point.

v A data entry function, for specifying the various indoor areas of interest, and
submitting the data. This data entry function calls WL.Client.transmitEvent
to send the location, together with the device context, to the server for
logging and subsequent analysis.

2. Analyze the data, and use the analysis to determine which access points are
visible in each of the regions.

3. In the application, use the accessPointFilters parameter to define the same
visible access points that were used previously.

4. Define WiFi-fence triggers for each region.

Example

This example shows the use of two small applications.

The first defines which networks are to be scanned, and lets the user define named
regions as the client device moves around the indoor area. For example, when the
user enters the food court, they could specify that the region is called "FoodCourt".
Upon leaving it, they could either clear the current region, or enter the name of the
adjacent region they are entering, such as "MallEntrance5". In order to implement
this process, adapter logic is implemented on the server side. It updates the
application context with the region information and handles all received events. In
this way, all the information is written out to the raw reports database, where each
row includes the region name in the APP_CONTEXT column, and the visible
access points under WIFI_APS.

The data can then be gathered to define triggers to implement the required
application logic. For example, in the triggers that are defined at the end of the
example, the two specific access points are identified, which should be visible
when the device is in the food court. The example shows the identification of a
global trigger for entering the mall; instead, a trigger could have been defined for
each of the mall entrances based on the access points visible at each location.

Application to set up acquisition policy, including triggers - hybrid Android,
iOS, and Windows Phone 8
function wlCommonInit(){

/*
* Application is started in offline mode as defined by a connectOnStartup property in initOptions.js file.
* In order to begin communicating with Worklight Server you must either:
*
* 1. Change connectOnStartup property in initOptions.js to true.
* This will make Worklight framework automatically attempt to connect to Worklight Server as a part of application start-up.
* Keep in mind - this may increase application start-up time.
*
* 2. Use WL.Client.connect() API when the connectivity to a Worklight Server is required.
* This API needs to be called only once, before any other WL.Client methods that communicate with the Worklight Server.
* You must specify and implement onSuccess and onFailure callback functions for WL.Client.connect() -- for example:
*
* WL.Client.connect({
* onSuccess: onConnectSuccess,
* onFailure: onConnectFailure
* });
*
*/

Chapter 8. Developing IBM Worklight applications 669

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

// Common initialization code goes here.
}

var SSIDs = [];

function addNetworkToBeScanned(ssid) {
if (SSIDs.indexOf(ssid) < 0)

SSIDs.push(ssid);
}

function removeNetwork(ssid) {
var idx = SSIDs.indexOf(ssid);
if (idx > 0)

SSIDs.splice(idx, 1);
}

function startScanning() {
var filters = [];
for (var i = 0; i < SSIDs.length; i++) {

var ssid = SSIDs[i];
filters.push({SSID: ssid, MAC: "*"});

}

var policy = {
Wifi: {

interval: 3000,
accessPointFilters: filters

}
};

var triggers = {
Wifi: {

change: {
type: "VisibleAccessPointsChange",
eventToTransmit: {

event: {
name: "moved"

}
}

}
}
};

var onFailure = {
Wifi: onWifiFailure

};

WL.Device.startAcquisition(policy, triggers, onFailure);
}

function stopScanning() {
WL.Device.stopAcquisition();

}

function onWifiFailure(code) {
// show an error message to the user...

}

// receives a string, indicating the name of the region
function setCurrentRegion(region) {

WL.Server.invokeProcedure(
{

adapter: "HT_WifiScan",
procedure: "setAppContext",
parameters: [JSON.stringify({regionName: region})]

},
{

670 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

onSuccess: function() {
// update UI, indicating success

},
onFailure: function() {

// update UI, indicating error
}

}
);

}

Application to set up acquisition policy, including triggers - native Android
Set<String> ssids = new HashSet<String>();

public void addNetworkToBeScanned(String ssid) {
ssids.add(ssid);

}

public void removeNetwork(String ssid) {
ssids.remove(ssid);

}

public void startScanning() throws JSONException {
List<WLWifiAccessPointFilter> filters = new ArrayList<WLWifiAccessPointFilter>();

for (String ssid : ssids)
filters.add(new WLWifiAccessPointFilter (ssid, WLWifiAccessPointFilter.WILDCARD));

WLAcquisitionPolicy policy = new WLAcquisitionPolicy()
.setWifiPolicy(

new WLWifiAcquisitionPolicy()
.setInterval(3000)
.setAccessPointFilters(filters));

WLTriggersConfiguration triggers = new WLTriggersConfiguration();
triggers.getWifiTriggers().put(

"change",
new WLWifiVisibleAccessPointsChangeTrigger()

.setEvent(new JSONObject("{name: ’moved’}")));

WLAcquisitionFailureCallbacksConfiguration failures = new WLAcquisitionFailureCallbacksConfiguration();
failures.setWifiFailureCallback(new WLWifiFailureCallback() {

@Override
public void execute(WLWifiError wifiError) {

onWifiFailure(wifiError);
}

});

WLClient.getInstance().getWLDevice().startAcquisition(new WLLocationServicesConfiguration()
.setPolicy(policy)
.setTriggers(triggers)
.setFailureCallbacks(Collections.singletonList(failures)));

}

void stopScanning() {
WLClient.getInstance().getWLDevice().stopAcquisition();

}

void onWifiFailure(WLWifiError wifiError) {
//show an error message to the user...

}

// receives a string, indicating the name of the region
void setCurrentRegion(String region) {

WLProcedureInvocationData invocData = new WLProcedureInvocationData ("HT_WifiScan", "setAppContext");
invocData.setParameters(new Object[] {"{regionName: ’" + region + "’}"});

Chapter 8. Developing IBM Worklight applications 671

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WLClient.getInstance().invokeProcedure(
invocData,
new WLResponseListener() {

@Override
public void onSuccess(WLResponse response) {

// update UI, indicating success
}

@Override
public void onFailure(WLFailResponse response) {

// update UI, indicating error
}

});
}

Application to set up acquisition policy, including triggers - native iOS
// NSMutableSet* ssids -- is defined in the header as a member field and initialized as ssids = [NSMutableSet set];

-(void) addNetworkToBeScanned: (NSString*) ssid {
[ssids addObject:ssid];

}

-(void) removeNetwork: (NSString*) ssid {
[ssids removeObject:ssid];

}

-(void) startScanning {
NSMutableArray* filters = [[NSMutableArray alloc] init];

for (NSString* ssid in ssids) {
[filters addObject: [[WLWifiAccessPointFilter alloc] initWithSSID:ssid MAC:WILDCARD]];

}

WLAcquisitionPolicy* policy =
[

[[WLAcquisitionPolicy alloc] init]
setWifiPolicy:

[[
[[WLWifiAcquisitionPolicy alloc] init]

setInterval: 3000]
setAccessPointFilters: filters]];

WLTriggersConfiguration* triggers = [[WLTriggersConfiguration alloc] init];
[[triggers getWifiTriggers] setObject:

[
[[WLWifiVisibleAccessPointsChangeTrigger alloc] init]

setEvent: [NSDictionary dictionaryWithObject: @"moved" forKey:@"name"]]
forKey:@"change"];

WLAcquisitionFailureCallbacksConfiguration* failures = [[WLAcquisitionFailureCallbacksConfiguration alloc] init];
[failures setWifiFailureCallback: [WLCallbackFactory createWifiFailureCallback:^(WLWifiError* wifiError) {

[self onWifiError: wifiError];
}]];

[[[WLClient sharedInstance] getWLDevice] startAcqusition:
[[[

[[WLLocationServicesConfiguration alloc] init]
setPolicy: policy]
setTriggers: triggers]
setFailureCallbacks: [NSMutableArray arrayWithObject:failures]]];

}

-(void) stopScanning {
[[[WLClient sharedInstance] getWLDevice] stopAcqusition];

}

672 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

-(void) onWifiFailure: (WLWifiError*) wifiError {
//show an error message to the user...

}

// receives a string, indicating the name of the region
-(void) setCurrentRegion: (NSString*) region {

WLProcedureInvocationData* invocData = [[WLProcedureInvocationData alloc] initWithAdapter:@"HT_WifiScan" procedure:@"setAppContext"];
[invocData setParameters:[NSArray arrayWithObject:[NSString stringWithFormat:@"{regionName: ’%@’}", region]]];

// replace this with a WLDelegate instance which will update the UI indicating success/failure
id<WLDelegate> delegate = nil;

{[WLClient sharedInstance] invokeProcedure:invocData withDelegate: delegate];
}

Adapter logic to update application context and handle events
// defined as a procedure:
function setAppContext(context) {

WL.Server.setApplicationContext(JSON.parse(context));
}

function handleEvent(event) {
// nothing specific to do, the event device context will be logged to raw reports db in any case

}

// log all events
WL.Server.setEventHandlers([WL.Server.createEventHandler({}, handleEvent)]);

Example of Enter trigger - hybrid Android, iOS, and Windows Phone 8
var triggers = {

Wifi: {
welcomeToMall: {

type: "Enter",
areaAccessPoints: [{SSID: "FreeMallWifi"}]
callback: showWelcome

}
foodCourt: {

type: "Enter",
areaAccessPoints: [{SSID: "FreeMallWifi", MAC: "12:34:56:78:9A:BC"}, {SSID: "FreeMallWifi", MAC: "CB:A9:87:65:43:21"}]
callback: showFoodCoupons

}
}

};

Example of Enter trigger - native Android
WLTriggersConfiguration triggers = new WLTriggersConfiguration();

triggers.getWifiTriggers().put(
"welcomeToMall",
new WLWifiEnterTrigger()

.setAreaAccessPoints(Collections.singletonList(new WLWifiAccessPointFilter("FreeMallWifi")))

.SetCallback(showWelcome));

triggers.getWifiTriggers().put(
"foodCourt",
new WLWifiEnterTrigger()

.setAreaAccessPoints(Arrays.asList(
new WLWifiAccessPointFilter("FreeMallWifi", "12:34:56:78:9A:BC"),
new WLWifiAccessPointFilter("FreeMallWifi", "CB:A9:87:65:43:21")))

.SetCallback(showFoodCoupons));

Example of Enter trigger - native iOS

Chapter 8. Developing IBM Worklight applications 673

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WLTriggersConfiguration triggers = new WLTriggersConfiguration();

WLTriggersConfiguration* triggers = [[WLTriggersConfiguration alloc] init];
[[triggers getWifiTriggers] setObject:

[[
[[WLWifiEnterTrigger alloc] init]

setAreaAccessPoints: [NSMutableArray arrayWithObject: [[WLWifiAccessPointFilter alloc] init: @"FreeMallWifi"]]]
setCallback: showWelcome]

forKey:@"welcomeToMall"];

[[triggers getWifiTriggers] setObject:
[[

[[WLWifiEnterTrigger alloc] init]
setAreaAccessPoints: [NSMutableArray arrayWithObjects:

[[WLWifiAccessPointFilter alloc] initWithSSID: @"FreeMallWifi" MAC: @"12:34:56:78:9A:BC"],
[[WLWifiAccessPointFilter alloc] initWithSSID: @"FreeMallWifi" MAC: @"CB:A9:87:65:43:21"],
nil]]

setCallback: showFoodCoupons]
forKey:@"foodCourt"];

Securing server resources based on location
Device context data can tell you whether a user's device is connected to a secure
network. If it is not connected, the device context can tell you whether the device
is within a desired geofence. This data can be used to restrict access to sensitive
information or to prevent running specific program logic. It can also be used to
require that additional authentication mechanisms, such as one-time pads, be used.

About this task

In many environments it is important to ensure that sensitive resources are secure,
but can be easily accessed by authorized users who are on site. You can use the
WL.Server.getClientDeviceContext API to obtain a device context from an
authorized user. You can then validate the device context by checking whether a
user's device is connected to a secure network, or is within a designated desired
geofence.

For example, in a hospital, patient records must be secure and confidential, but
must be accessible by authorized personnel such as doctors and nurses.

Procedure
1. While the acquisition is running, the device context reflects the most up-to-date

information regarding the user's location. The user's device context is
transparently synchronized to the server, so that WL.Device.getContext and
WL.Server.getClientDeviceContext return the same result.

Note: The developer must call WL.Device.startAcquisition to benefit from the
synchronization and validation. Until the developer calls
WL.Device.startAcquisition, the result is null.

2. Based on the information in the device context, the adapter logic can check
whether the user is connected to a specific network. Additionally, by using the
WL.Geo functions, the adapter logic can validate whether the user is in a
specific, desired geographical location.

Example

This example performs the following tasks:
1. An attempt is made to verify the location. The device context information is

acquired, by using both Geo and WiFi data. A check is made to ensure that the

674 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

data is current (acquired within the last 5 minutes), and that the device is
within the area that is defined by the legalPolygon variable. Time calculations
are done by using UTC time.

2. If the location cannot be verified, the message not in an authorized location
is thrown.

3. If the location is verified, further processing takes place.
var legalPolygon = loadFromDB();
var secureNetworks = [’Secure1’, ’Secure2’];

function loadFromDB() {
// invoke Cast Iron or load from a database, etc.
// for this example: showing a triangle
return [{longitude: 0, latitude: 1}, {longitude: 1, latitude: 0}, {longitude: -1, latitude: 0}];

}

function verifyLocation() {
// get the server’s copy of the client’s device context
var deviceContext = WL.Server.getClientDeviceContext();
if (deviceContext == null)

throw ’acquisition not started’;

// is the device connected to a WiFi access point?
if (deviceContext.Wifi && deviceContext.Wifi.connectedAccessPoint) {
// is the connected access point a secure one?
if (secureNetworks.indexOf(deviceContext.Wifi.connectedAccessPoint.SSID) >= 0)

return;
}

// has a geolocation been acquired?
if (deviceContext.Geo && deviceContext.Geo.coords) {

// verify the information:
var timestamp = deviceContext.Geo.timestamp;
var offset = deviceContext.timezoneOffset;
var utcTime = timestamp + offset;

var now = new Date();
var nowTime = now.getTime() + now.getTimezoneOffset();

if (nowTime - utcTime <= 5*60000) { // time is within last 5 minutes
if (WL.Geo.isInsidePolygon(deviceContext.Geo.coords, legalPolygon))

return;
}

}

throw ’not in an authorized location’;
}

function aProcedure() {
verifyLocation();

// rest of logic:
// ...

}

Tracking the current location of devices
You can track the location of devices by ensuring that ongoing acquisition of
geo-locational data is taking place. When the position of the device changes, a
trigger is activated.

Chapter 8. Developing IBM Worklight applications 675

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

You acquire geo-locational data from a device by using the
WL.Device.startAcquisition API. The PositionChange trigger is activated if the
position of the device changes significantly, and events can then be sent to the
server. The server handles these events by setting up an event handler.

For example, a warehouse could improve the efficiency of its processes by using
locational data from its delivery vehicles to guide the vehicles to the correct docks,
and notify warehouse personnel so that they can be prepared for the arrival of the
vehicles.

Procedure
1. The acquisition of geo-locational data is initiated by the

WL.Device.startAcquisition API.
2. The PositionChange trigger in the API is used to emit events that are then

transmitted to the server. For "live" views, either the transmission interval that
is set in the WL.Client.setEventTransmissionPolicy API should be small, or
the transmitImmediately parameter must be set to true.

3. An event handler is set up on the server by using the
WL.Server.createEventHandler(filter,handlerFunction) API. The filter is a
literal object that is used to match only the events that you want the handler
function to handle.

4. The events that are transmitted to the server contain the client's device context
at the time the trigger was activated. The handler can pass this, or other
information, to external systems where, for example, the data could be
displayed on a map.

Example

Adapter code
function handleDeviceLocationChange(event) {

// do something with event
}

function handleDeliveryTruckMoved(event) {
// do something with event

}

function handleRefrigeratedDeliveryTruckMoved(event) {
// do something with event

}

var deviceMoveHandler = WL.Server.createEventHandler(
{},
handleDeviceLocationChange

);

var deliveryTruckMovedHandler = WL.Server.createEventHandler(
{vehicle: "DeliveryTruck"},
handleDeliveryTruckMoved

);

var coolTruckMovedHandler = WL.Server.createEventHandler(
{

vehicle: "DeliveryTruck",
refrigeration: true

},

676 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

handleRefrigeratedDeliveryTruckMoved
);

WL.Server.setEventHandlers(
[

deviceMoveHandler,
deliveryTruckMovedHandler,
coolTruckMovedHandler

]
);

Mobile application logic -hybrid Android, iOS, and Windows Phone 8
function wlCommonInit(){

// Common initialization code goes here.
// get truck id (for example from the user) -- for this example, using a hard-coded value.
var truckId = 123;
var driverName = "John Smith";

var policy = {
Geo: {

enableHighAccuracy: true,
timeout: 10000

}
};

var triggers = {
Geo: {

tracking: {
type: "PositionChange",
minChangeDistance: 100, // 100 meters
eventToTransmit: {

event: {
vehicle: "DeliveryTruck",
id: truckId,
driverName: driverName

}
}

}
}

};

WL.Device.startAcquisition(policy, triggers);
}

Mobile application logic - native Android
// get truck id (for example from the user) -- for this example, using a hard-coded value.
long truckId = 123;
String driverName = "John Smith";

WLAcquisitionPolicy policy = new WLAcquisitionPolicy()
.setGeoPolicy(new WLGeoAcquisitionPolicy()

.setEnableHighAccuracy(true)

.setTimeout(10000));

WLTriggersConfiguration triggers = new WLTriggersConfiguration();
triggers.getGeoTriggers().put(

"tracking",
new WLGeoPositionChangeTrigger()

.setMinChangeDistance(100)

.setEvent(new JSONObject()
.put("vehicle", "DeliveryTruck")
.put("id", truckId)
.put("driverName", driverName)));

Chapter 8. Developing IBM Worklight applications 677

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WLClient.getInstance().getWLDevice().startAcquisition
new WLLocationServicesConfiguration()

.setPolicy(policy)

.setTriggers(triggers));

Mobile application logic - native iOS
// get truck id (for example from the user) -- for this example, using a hard-coded value.
long long truckId = 123;
NSString* driverName = @"John Smith";

WLAcquisitionPolicy* policy =
[[WLAcquisitionPolicy alloc] init]

[
setGeoPolicy:

[[
[[WLGeoAcquisitionPolicy alloc] init]
setEnableHighAccuracy: true]
setTimeout: 10000]];

WLTriggersConfiguration* triggers = [[WLTriggersConfiguration alloc] init];
[[triggers getGeoTriggers] setObject:

[[
[[WLGeoPositionChangeTrigger alloc] init]

setMinChangeDistance: 100]
setEvent: [NSDictionary dictionaryWithObjectsAndKeys:

@"DeliveryTruck", @"vehicle",
truckId, @"id",
driverName, @"driverName",
nil]]

forKey:@"tracking"];

[[[WLClient sharedInstance] getWLDevice] startAcqusition:
[[

[[WLLocationServicesConfiguration alloc] init]
setPolicy: policy]
setTriggers: triggers]];

Keeping the application running in the background
When you are tracking a device by acquiring geolocation data, it is important to
keep an application running in the background so that data can continue to be
acquired.

About this task

If you are using Android, iOS, or Windows Phone 8, you can keep an application
running in the background, even when the device owner is using another
application, such as checking email.

The process for each platform is described in the following procedure.

Procedure
v For Android devices and hybrid applications, to ensure that the application will

continue to run in the background use WL.App.setKeepAliveInBackground(true,
options). Using this API binds the application to a foreground service. By
default, if no options are specified, the application's name and icon are
displayed. Tapping on the notification takes the user back to the last activity that
made the call to WL.App.setKeepAliveInBackground(true). The notification is
present until the app exits, or WL.App.setKeepAliveInBackground(false) is
called. For details on using the options to change the text, the icon, or which

678 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

activity gets called when the user presses on the notification, see the method
setKeepAliveInBackground as defined in the WL.App class.

v For Android devices and native applications, you should access the location
APIs through a service. For more information about Android services, see the
“Services” section on the Android development site at http://
developer.android.com/guide/components/services.html.

v For iOS devices, you must set up your info.plist file to indicate that you want
to use background location services when enableHighAccuracy=true. To do this,
you must set the location string on the UIBackgroundModes key in the
info.plist file.

v For Windows Phone 8 devices, replace the DefaultTask details in the
WMAppManifest.xml file with: <DefaultTask Name="_default"
NavigationPage="MainPage.xml"> <BackgroundExecution> <ExecutionType
Name="LocationTracking" /> <BackgroundExecution> </DefaultTask>. See the
Windows Phone Development Center web page http://msdn.microsoft.com/en-
us/library/windowsphone/develop/jj662935(v=vs.105).aspx for details on
running location-tracking apps in the background.

Testing hybrid location service applications with MBS
You can use the mobile browser simulator (MBS) to test applications within a
browser, and preview Worklight applications on Android, iOS, and Windows
Phone 8. Location services only support these platforms, other platforms must be
removed. With the Geolocation, Network and Scenario widgets, you can test
applications in MBS that use the JavaScript location service APIs.

Mobile browser simulator geolocation widget
The geolocation widget can be used to provide a simulation of the device's
geolocation information to the application. The application can access this
information by using the W3C geolocation APIs or IBM Worklight location services
APIs for hybrid applications.

Note: Location services for hybrid applications are only supported for Android,
iOS, and Windows Phone 8. Other platforms must be removed.

The geolocation information can be directly configured in the widget.

Chapter 8. Developing IBM Worklight applications 679

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.App.html
http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/services.html
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj662935(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj662935(v=vs.105).aspx

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

You can use the Latitude and Longitude options to set specific GPS coordinates.
You can click the map to update the latitude and longitude. A Heading of 0o

corresponds to North. By clicking the Play, the device's movement is simulated
from the current location in the direction that is given by Heading, at the speed
specified. An update is given once a second. After you click Play, the button
changes to Stop, and clicking it stops the simulation. Alternatively, a single
1-second step can be taken by using Step.

To simulate various errors that might occur, select the appropriate error and click
Generate Error. This action causes the next call to a geolocation API to have its
failure function is called with the selected error.

Accuracy is used to set the accuracy of the position, and can affect geofences when
you are using the confidenceLevel parameter. For more information, see “Triggers”
on page 662.

Altitude and Altitude Accuracy appear in the position information, but are not
used by location services APIs.

You can use Step and Play to simulate the movement of devices. For example, if
the Speed setting is increased, you can see the effect in the simulator window by
clicking Step to generate a new set of values for the app, or Play to generate new
values periodically.

680 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Mobile browser simulator network widget
The network widget can be used to provide network information, for example
information that is accessible by the WL.Device.getNetworkInfo API or that can
activate WiFi based triggers in IBM Worklight location services.

WiFi access points can be configured in this widget for testing the use of location
services, for example see the section on WiFi triggers in “Triggers” on page 662.

Click Add Access Point to define a new access point. There you must define the
SSID and MAC addresses. You can also specify visibility and signal strength.

Click an access point to open a dialog to edit its properties.

The Visible check box indicates whether the access point is visible to the device,
and whether it could be returned by a call to
WL.Device.Wifi.acquireVisibleAccessPoints.

Click Connect to set an access point to be the connected access point, and
Disconnect to disconnect it. Clicking Connect also changes the data connection to
WiFi Network.

Chapter 8. Developing IBM Worklight applications 681

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Only one access point can be connected at a time. The access point is connected to
the data network, which switches to WiFi. When you switch the network to
something that is not WiFi, then the connected access point is disconnected.

To simulate various errors that can occur, select the appropriate error from the
drop-down list and click Generate Error. This action causes the next acquisition
that is performed to call its failure function with the selected error.

Location scenarios
Location scenarios are intended for developers who want to develop and test
location-dependent behavior of mobile apps, as part of the IBM Worklight mobile
tools suite. Location scenarios represent a multi-sensor simulation environment for
mobile apps.

Note: The scenario widget only runs on the following web browsers:
v Chrome 17 and later.
v Safari 5 and later.

Worklight Mobile Browser Simulator (MBS) allows developers to quickly test,
debug, and experiment with their hybrid applications from the convenience of the
web browser. Although MBS provides sensor simulation it requires manual
updates each time a new sensor data update is required, which is slow and not
repeatable. With the new location scenario widget, testing location-aware apps
becomes much easier.

The process for working with a location scenario widget is as follows:
1. The user defines a scenario on a map, which comprises the following items:

v A route, with the time for each point
v WiFi hot spots
v No-GPS zones

2. As the user plays back the scenario, the sensor inputs are simulated:
v Location updates arrive according to the route and no-GPS zone definitions.

These include the generation of timeout errors based on the acquisition
policy, when the scenario moves through no-GPS zones.

682 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v WiFi hot spots become visible according to the current location. These hot
spots include the calculated signal strength on each update.

The testing scenarios that are listed here demonstrate the versatility of the scenario
widget.

Background: You have implemented an application for improved hotel check-in.
This application defines a geo-fence with a five-kilometer radius around a hotel,
within which a guest is invited to check in. In addition, the application defines a
WiFi trigger when the hotel WiFi is visible, to welcome the hotel guest and alert
the hotel manager that the guest has arrived.

Testing a scenario for entering a geofence: You would like to test the geofence
that is defined in this application. Complete the following steps:
1. Right-click the environment you want to test (hybrid Android, iOS, or

Windows Phone 8) and click Preview to start the mobile browser simulator and
open the scenario widget.

2. Create a new scenario and move to the correct location on the map. Create the
path to the hotel by clicking the map to indicate the points on the path. For
each path point you can specify the time. When completed, you can save the
scenario to a local file.

3. Click Play . The current location on the route is clearly visualized for the
application, as it is simulated. When the current location is five kilometers from
the hotel (the defined trigger), you see a message appear on the mobile
application indicating that the correct event was triggered and handled by your
application, prompting the guest to check in remotely.

Testing a scenario for entering a WiFi zone: You would like to test your
application when the guest enters the hotel. Complete the following steps:
1. Edit the scenario widget and add a visible network with the hotel SSID and

MAC address in the hotel location.
2. Click Play . You can clearly see the current location that is simulated for your

application. When the first geo-fence is entered, you work with the application
to confirm the remote check-in. While you are operating the application the
current location is still changing, as planned. As the current location enters the
hotel WiFi zone, you can see that the correct event was triggered and handled
by your application, welcoming the guest to the hotel.

Loading and editing a location scenario: You would like to test a scenario you
created in the past. Complete the following steps:
1. Open the scenario widget and click Import to select a scenario.
2. Edit the scenario by moving some of the points in the route, by deleting some

of the points in the route, and by adding more points to the route. When you
have finished editing, click Apply. You can then play the scenario to test your
application. To save the scenario to a file that you can play in the future, click
Export.

Manually editing a location scenario: Complete the following steps:
1. Open a scenario file that you have tested in a text editor. The format is readable

and you can clearly understand how the path, WiFi zones, and no-GPS zones
are represented.

2. Manually edit the no-GPS polygon to a different polygon. You save the file and
load it in the MBS. You can see the new polygon on the scenario map.

Chapter 8. Developing IBM Worklight applications 683

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Location scenarios: demonstration:

This demonstration shows what is provided by the scenario widget, which can be
used to develop and test location-dependent behavior of mobile apps, as part of
the IBM Worklight mobile tools suite.

Clicking the scenario widget presents a scenario template. You can create, import,
load, export, edit scenarios, and play or restart scenarios.

v To name the scenario, enter a name in the Name field.
v To edit the scenario, click Edit.

Note: You provide the longitude and latitude for the location, which is based on
the behavior of the application you want to test. To test geofences, enter a location
close to their boundary. For example, if your application defines a geofence around
a store, you could provide the location of that store.

Figure 2 shows a map displaying an area of roads and buildings and also includes
the location of a shopping mall. The template supplies the Longitude, Latitude
field which must be completed.

Figure 100.

684 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Provide the location for the user's device to be set up and tested in the Longitude,
Latitude field. This is where the movement of the device will be simulated. After
entering the longitude and latitude click Go to move the map to that location.

The template also shows the various buttons and tools that are used for
navigating, and for creating paths and zones in your scenario.
v To move around the map click the directional arrows or click and drag the map.
v To zoom in or out use the +/- track below the directional arrows, or use the

scroll wheel.
v These buttons are provided for use, as necessary.

– Click Go to move the map to the specified location.
– Click Cancel to cancel all changes made to the scenario and close the editor.
– Click Apply to apply the changes to the scenario and close the editor.

The three icon buttons are used to define the scenario by creating paths and zones.
v The first button is used to create a simulated path for the mobile subscriber. For

example, you could simulate defining a route along a road, then turning into a
parking lot, and then entering the shopping mall.
– Click this button to define a path. Click the map to add vertices (points) to

the path. Double-clicking adds the final point to the path.

Figure 101.

Chapter 8. Developing IBM Worklight applications 685

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

– Click a vertex to change the time at which the simulated subscriber will pass
that vertex. The first vertex is fixed at time 0. When you click on a vertex, a
Delete Path button is also visible, which deletes the entire path if clicked.

– Click on the path between vertices to show two blue circles. The circle on the
path can be clicked and dragged to move the path. The circle to the lower
right of the path can be clicked and dragged to resize or rotate the path.

– Only a single path can be defined at one time. Beginning a new path deletes
the previously defined path.

When you play the scenario, the geolocation widget automatically updates the
location, the heading and the calculated speed, based on the simulated user's
position along the path.

v The second button can be used to define WiFi access points and their coverage
zones.
– After you have clicked the button, clicking on the map defines a new access

point. Click on the map where the center of the coverage zone for the WiFi
access point should be, and drag to set the desired size. The coverage zone is
displayed. The gray outer circle corresponds to a signal strength of 15%,
which is the default signal strength threshold for the WiFi acquisition policy.
The yellow inner circle corresponds to a 50% signal strength, which is the
medium confidence level. The innermost orange circle indicates 80% signal
strength, which is the high confidence level.

– Click on the WiFi zone to edit the properties for the access point. You can set
the SSID and MAC, or you can click Delete to delete the access point.

– After clicking on a WiFi zone you can also see two blue circles. Clicking the
circle in the center of the zone and dragging it can be used to move the WiFi
zone. The circle to the lower left of the zone can be clicked and dragged to
resize the WiFi zone.

– It is possible to define multiple WiFi zones.
When you play the scenario, the network widget automatically updates the
visible access points, including their simulated signal strengths, based on the
simulated device position. WiFi zones are not used to simulate the geolocation of
the device.

v The third button is used to define no-GPS coverage zones.
– Click this button to define no-GPS coverage zones. Click the map to add

vertices (points) to define the boundary of the zone. Double-clicking adds the
final point to the zone.

– Click a no-GPS zone to move it, or delete it by clicking Delete. After you
click a no-GPS zone, two blue circles appear. The blue circle at the center of
the no-GPS zone can be clicked and dragged to move the no-GPS zone. The
circle to the lower right of the zone can be clicked and dragged to resize and
rotate the no-GPS zone.

– It is possible to define multiple no-GPS zones.
When you play the scenario, the geolocation does not change from its previous
value while the simulated user's position is inside a no-GPS zone. This behavior
can be seen in the geolocation widget, which does not update while the
simulated user moves through a no-GPS zone.

Figure 3 shows the Access Point that requires data to be entered in the fields.

686 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

When you click the WiFi zone, the Access Point presents the SSID and MAC
fields, so that you can enter the relevant data. Here you can use the name of a
restaurant or store, for example. A Delete button is provided if you want to delete
the WiFi zone. Two blue circles, or handles, are also visible. These can be used to
move or resize the WiFi zone. In figure 4, the WiFi Zone is moved and enlarged. A
no-GPS zone has been defined, see the gray polygon.

Figure 102.

Chapter 8. Developing IBM Worklight applications 687

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

If you click the path, it produces a Route Point dialog, which is used to enter how
much time it takes the simulated user to reach various points along the route. The
first Route Point is set at 0, which cannot be edited.

The second Route Point can be set as 11, for example

The third Route Point can be set as 17, for example

Figure 103.

688 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

You can change the times, but each value must be increasing from the last. When
you play the simulation, the simulated user is at point 1 at time 0, at point 2 at
time 11, at point 3 at time 17.

When the scenario is completed, click Apply and then Play to play the scenario;
see Figure 5.

On your screen you see the user moving along the path, and the information that
you receive can be used to interact with the application that is being tested. As the
user enters various areas, if a geofence or WiFi trigger is set up then you see that
the user's device would register the geofences or WiFi fences.

Click Export to save the scenario to disk. You can reload it by clicking Import,
selecting the file where it was previously saved, and clicking Play. After clicking
Play, the button changes to Pause and can be clicked to pause the scenario.
Clicking Restart plays the scenario from the beginning.

Client-side log capture
Applications in the field occasionally experience problems that require a
developer's attention to fix. It is often difficult to reproduce problems in the field
because developers who worked on the code for the problem application often do
not have the environment or exact device with which to test. In these situations, it
is helpful to be able to retrieve debug logs from the client devices as the problems
occur in the environment in which they happen.

To make debug logs effective, developers should produce meaningful log messages
with an appropriate level. For example:
[WARN] Procedure sayHello timed out due to a network connection failure.

Questions to consider

Consider the following questions, and make the appropriate API calls to the native
client logger API to achieve your goals:
v When should you turn on log capture in your client applications?

– Leave log capture on?
– Turn log capture on selectively for applications or operating systems that are

known to be problematic?
– Turn log capture on the second Tuesday of every month?

v When should you call send() to upload any captured client logs?
– On a specific time interval?
– In application lifecycle events (like pause and resume events)?
– Batched with other application network activity (to be friendly to the device

radio or letting it sleep and preserve battery)?
v What level and above do you want to capture?

– DEBUG is verbose, while INFO is nearly quiet.
– The JavaScript level is controlled independently from the native level, but the

native level can be set by using the WL.Logger.setNativeOptions JavaScript
API call.

v How large should you let the capture buffer grow before you stop capturing?

Figure 104. View of Scenario showing the path into the shopping mall.

Chapter 8. Developing IBM Worklight applications 689

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Where can you strategically place log API calls to see the required data to solve
problems in the field?

v How can you process the uploaded logs at the server?
– Forward them to an analytics product?
– Print them into the server-side log file?

What is provided on the client side?

Android
com.worklight.common.Logger

Note: Native Android code that calls the android.util.Log.* API is not
captured in the client-side logs. Developers must use
com.worklight.common.Logger to capture client-side logs. For more
information about the com.worklight.common.Logger API, see the Logger
class.

iOS
OCLogger

Note: Native iOS code that calls nslog directly is not captured in the
client-side logs. Developers must use OCLogger to capture client-side logs.
For more information about the OCLogger API, see “Objective-C client-side
API for native iOS apps” on page 699.

JavaScript
WL.Logger

Note: JavaScript code that calls console.log directly is not captured in the
client-side logs. Developers must use WL.Logger to capture client-side logs.
For more information about the WL.Logger API, see the WL.Logger class.

Server preparation for uploaded log data
You must prepare your server for uploaded log data.

By default, the client logger, when it is instructed to send logs, sends the logs to an
adapter that the customer must implement. The adapter must be an HTTP adapter
that is named WLClientLogReceiver, and have at least one procedure. The
procedure must be named log. The log procedure is passed two parameters:
deviceInfo (a JSON object) and logMessages (a JSON array). For more information
about implementing adapter procedures, see “Implementing adapter procedures”
on page 552.

The following example shows an implementation of the log procedure in the
WLClientLogReceiver-impl.js file:
function log(deviceInfo, logMessages) {

/* The adapter can choose to process the parameters,
for example to forward them to a backend server for
safekeeping and further analysis.

The deviceInfo object may look like this:
{

"appName": "wlapp",
"appVersion": "1.0",
"deviceId": "66eed0c9-ecf7-355f-914a-3cedac70ebcc",
"model": "Galaxy Nexus - 4.2.2 - API 17 - 720x1280",
"systemName": "Android",
"systemVersion": "4.2.2",
"os.arch": "i686", // Android only
"os.version": "3.4.0-qemu+" // Android only
}
The logMessages parameter is a JSON array

690 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-android/html/com/worklight/common/Logger.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Logger.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

that contains JSON object elements, and might look like this:

[{
"timestamp" : "17-02-2013 13:54:23:745", // "dd-MM-yyyy hh:mm:ss:S"
"level" : "ERROR", // ERROR || WARN || INFO || LOG || DEBUG
"package" : "your_tag", // typically a class name, app name, or JavaScript object name
"msg" : "the message", // a helpful log message
"threadid" : 42, // (Android only) id of the current thread
"metadata" : { "$src" : "js" } // additional metadata placed on the log call

}]

*/

return true;

}

The procedure element in the WLClientLogReceiver.xml file for log:
<procedure name="log" securityTest="wl_unprotected" audit="true" />

The security test must be wl_unprotected because apps in the field might be
uploading data before the application successfully authenticated. This scenario
might occur in the case of crashes during the first time that the app starts.

The audit="true" flag means that uploaded parameters are recorded in the server
log. It is a convenient way to get uploaded client logs without having to
implement anything in the adapter. You can call WL.Server.log manually in the
adapter log procedure implementation.

Client-side logging in client apps
You can take advantage of the client-side logging feature in your client apps.

Log capture

Log capture is enabled by default, but can be turned on or off with native or
JavaScript API calls.

Logger native options can be controlled statically by the initOptions.js file in a
IBM Worklight generated app. Customers can inspect these values to ensure that
they are set as wanted. The processing of initOptions changes the Logger native
options. You can affect the log capture configuration programmatically by using
the WL.Logger API or statically by specifying the options in the initOptions.js file,
but not both at the same time.

Client logs are always captured, but not sent, for first-time start of every IBM
Worklight application. To change this behavior, you can specifically place an API
call to disable the capture in Android or IOS native code.

Android
The API call to affect the capture setting is:
Logger.setCapture(true);

iOS The API call to affect the capture setting is:
[OCLogger setCapture: YES]

JavaScript
The API call to affect the capture setting is:
WL.Logger.setNativeOptions({’capture’: true});

Chapter 8. Developing IBM Worklight applications 691

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Uncaught exception capture

An uncaught exception that is permitted to pass all the way out of an application
at run time appears to the user as an application crash.

Uncaught exceptions on Android and iOS are recorded when log capture is turned
on. This data is recorded to the same persistent buffer as all other normal log calls.
As well all other persistently captured log data, it is only sent to the server on
demand. You can place an API call early in your application lifecycle to send the
data to the server before the same exception occurs during the next user attempt to
start the application.

Android
// placed as the first line in the main Activity’s onCreate method
Logger.sendIfUnCaughtExceptionDetected(this);

iOS
// placed as first line in
// - (BOOL)application:(UIApplication *)application
// didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
[OCLogger sendIfUnCaughtExceptionDetected];

The sendIfUnCaughtExceptionDetected method is an optimization, and behaves the
same as the send method. The difference is that the
sendIfUnCaughtExceptionDetected method does what the name implies; sends only
if the persistent log capture buffer contains an uncaught exception entry.

Sending captured logs to the server

You must create and deploy an adapter with a specific name and procedure as part
of your application to receive uploaded logs at the IBM Worklight Server. For more
information about these requirements, see “Server preparation for uploaded log
data” on page 690. Captured logs are not automatically sent to the server.

Android
You can add code to the main Activity’s onCreate method (and any other
lifecycle methods):
// send log to server if anything was captured
Logger.send();

For more information about the Logger.send API, see the Logger class.

iOS You can add code to the application lifecycle events in the Application
Delegate to call:
OCLogger.send();

For more information about the OCLogger.send API, see “Objective-C
client-side API for native iOS apps” on page 699.

JavaScript
You can call:
// must wait until the Cordova deviceReady event fires,
// or in wlCommonInit, which is the equivalent
WL.Logger.send();

For more information about the WL.Logger.send API, see the WL.Logger
class.

692 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-android/html/com/worklight/common/Logger.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Logger.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Polling an adapter or other endpoint to affect logger
configuration

You can write client-side code to poll a customer-written adapter. The adapter can
reply with an appropriate response, the client must parse the response, and call the
appropriate WL.Logger, OCLogger, or Logger API to affect the wanted configuration
change.

For example, an adapter implementation might have the following procedure:
config() {

return {capture: true};
}

The client code invokes the procedure by using the standard IBM Worklight
invokeProcedure function as follows:
WL.Client.invokeProcedure({
adapter: ’WLClientLogReceiver’,
procedure: ’config’,
parameters: []

}, {
onSuccess: function() {
WL.Logger.setNativeOptions({capture: res.invocationResult.capture}).then(WL.Logger.send);

}
});

You can conditionally return options from the adapter config procedure that is
based on some client metadata. To do so, send the metadata through the
parameters of the invokeProcedure call as follows:
environment : WL.Client.getAppProperty(WL.AppProp.ENVIRONMENT)
appName : WL.Client.getAppProperty(WL.AppProp.APP_DISPLAY_NAME)
appVersion : WL.Client.getAppProperty(WL.AppProp.APP_VERSION)

Process the incoming data in the adapter config procedure as follows:
config(metadata) {

// turn capture on for Android clients only
if (metadata.environmen == "android") {

return {capture: true};
}
return {capture: false};

}

Chapter 8. Developing IBM Worklight applications 693

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

694 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 9. API reference

To develop your native or hybrid applications, refer to the IBM Worklight API in
JavaScript, Java Platform, Micro Edition (Java ME), Java for Android, and
Objective-C for iOS.

Use IBM Worklight API to develop your applications in JavaScript, Java Platform,
Micro Edition (Java ME), Java for Android, and Objective-C for iOS.

IBM Worklight client-side API
This collection of topics contains a description of the application programming
interface (API) for use in writing client applications with IBM Worklight.

You can use IBM Worklight client-side API capabilities to improve application
development, and IBM Worklight server-side API to improve client/server
integration and communication between mobile applications and back-end
systems.

With the IBM Worklight client-side API, your mobile application has access to
various IBM Worklight features during run time, by using libraries that are
bundled into the application. The libraries integrate your mobile application with
Worklight Server by using predefined communication interfaces. The libraries also
provide unified access to native device functionality, which simplifies application
development.

IBM Worklight client-side API includes native, hybrid, mixed hybrid, and
web-based APIs. These APIs provide support for all mobile development
approaches with enhanced security and integration features. IBM Worklight
client-side API components deliver a uniform bridge between web technologies
(HTML5, CSS3, JavaScript) and the native functions that are available on different
mobile platforms.

For hybrid and mixed hybrid applications, the Apache Cordova plug-ins that are
included add native capabilities and cross-platform user interface controls.

The IBM Worklight client-side API provide access to IBM Worklight functions
across multiple device platforms and development approaches. Applications that
are built by using web technologies can access Worklight Server through the APIs
by using JavaScript, and application using native components can access the APIs
directly by using Java and Objective-C. Mobile applications developed with the
hybrid and native development approaches, including the applications that run on
Android, iOS, or Java ME, benefit from simplified application security and
integration features of IBM Worklight.

IBM Worklight client-side API components also provide the following features,
which improve application development.

Cross-platform compatibility layer

This cross-platform compatibility layer supports development for all supported
platforms. If you develop hybrid mobile applications, you can access common
control elements such as tab bars and clipboards, and native device capabilities

695

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

such as the location service or camera. You can extend these functions for Android
and iOS by using a custom shell.

Client to server integration

Client to server integration ensures transparent communication between a mobile
application that is built with IBM Worklight technology, and Worklight Server. IBM
Worklight mobile applications always use an SSL-enabled connection to the server,
including for authentication. With such an integration, you can manage your
applications and implement security features such as remotely disabling the ability
to connect to Worklight Server, or updating the web resources of a hybrid
application.

Encrypted data store

This encrypted data store is located on the device and can access private data by
using an API. This helps prevent malicious users to access private data, because all
they can obtain is highly encrypted data. The encryption uses ISO/IEC 18033-3
security standards, such as AES256 or PCKS#5, that complies with the United
States National Security Agency regulations for transmitting confidential or secret
information. The key that is used to encrypt the information is unique to the
current user of the application and the device. Worklight Server issues a special
key when a new encrypted data store is created.

JSONStore

A JSONStore store is included in IBM Worklight to synchronize mobile application
data with related data on the back-end. JSONStore provides an offline-capable,
key-value database that can be synchronized. JSONStore implements the
application local read, write, update, and delete operations and use the IBM
Worklight adapter technology to synchronize the related back-end data.

Runtime skinning

Runtime skinning is a feature that helps you incorporate an adaptive design that
you can adapt to each mobile device. The IBM Worklight runtime skin is a
user-interface variant that you can apply during application run time, which is
based on device properties such as operating system, screen resolution, and form
factor. This type of user-interface abstraction helps you develop applications for
multiple mobile device models at the same time.

Location services API

IBM Worklight provides a number of functions for location services. Location
services enable you to use Geo and WiFi positions to perform various actions.

JavaScript client-side API
You can use JavaScript API to develop apps for all environments.

For more information about these APIs, expand the entry for this topic in the
Contents panel, and see the Overview topic and the Classes topic listed there.

The other topics in this section contain additional information that you need to
fully use the JavaScript client-side API.

696 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The options Object
The options object contains properties that are common to all methods. It is used
in all asynchronous calls to the Worklight server

Pass an options object for all asynchronous calls to Worklight Server. The options
object contains properties that are common to all methods. Sometimes it is
augmented by properties that are only applicable to specific methods. These
additional properties are detailed as part of the description of the specific methods.

The common properties of the options object are as follows:
options = {

onSuccess: success-handler-function(response),
onFailure: failure-handler-function(response),
invocationContext: invocation-context

};

The meaning of each property is as follows:

Table 107. Options object properties

Property Description

onSuccess Optional. The function to be invoked on
successful completion of the asynchronous
call.

The syntax of the onSuccess function is:

success-handler-function(response)

where response is an object that contains at a
minimum the following property:

invocationContext
The invocationContext object that
was originally passed to the
Worklight Server in the options
object, or undefined if no
invocationContext object was
passed.

status The HTTP response status
Note: For methods for which the response
object contains additional properties, these
properties are detailed as part of the
description of the specific method.

Chapter 9. API reference 697

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 107. Options object properties (continued)

Property Description

onFailure Optional. The function to be invoked when
the asynchronous call fails. Such failures
include both server-side errors, and
client-side errors that occurred during
asynchronous calls, such as server
connection failure or timed out calls.
Note: The function is not called for
client-side errors that stop the execution by
throwing an exception.

The syntax of the onFailure function is:

failure-handler-function(response)

where response is an object that contains the
following properties:

invocationContext
The invocationContext object that
was originally passed to the
Worklight Server in the options
object, or undefined if no
invocationContext object was
passed.

errorCode
An error code string. All error
codes that can be returned are
defined as constants in the
WL.ErrorCode object in the
worklight.js file.

errorMsg
An error message that is provided
by the Worklight Server. This
message is for the developer's use
only, and should not be displayed
to the user. It will not be translated
to the user's language.

status The HTTP response status
Note: For methods for which the response
object contains additional properties, these
properties are detailed as part of the
description of the specific method.

698 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 107. Options object properties (continued)

Property Description

invocationContext Optional. An object that is returned to the
success and failure handlers.

The invocationContext object is used to
preserve the context of the calling
asynchronous service upon returning from
the service.

For example, the invokeProcedure method
might be called successively, using the same
success handler. The success handler needs
to be able to identify which call to
invokeProcedure is being handled. One
solution is to implement the
invocationContext object as an integer, and
increment its value by one for each call of
invokeProcedure. When it invokes the
success handler, Worklight passes it the
invocationContext object of the options
object associated with the invokeProcedure
method. The value of the invocationContext
object can be used to identify the call to
invokeProcedure with which the results that
are being handled are associated.

The WL.ClientMessages object
You can see a list of the system messages that are stored in the WL.ClientMessages
object, and enable the translation of these system messages.

The WL.ClientMessages object is an object that stores the system messages that are
defined in the worklight/messages/messages.json file. This file is in the
environment folder of the projects that you generated with IBM Worklight. To
enable the translation of a system message, you must override the value of this
message in the WL.ClientMessages object, as indicated in the following code
example:
WL.ClientMessages.invalidUsernamePassword="The custom user name and password are not valid";

Note: You must override the system messages on a global JavaScript level because
some parts of the code run only after the application successfully initialized.

Objective-C client-side API for native iOS apps
You can use Objective-C API to develop native apps for the iOS environment.

Use the Objective-C client-side API for native iOS apps that IBM Worklight
provides if you want to access IBM Worklight services from native iOS applications

You can find the description of this API in the following document: Objective-C
client-side API for native iOS apps.

Java client-side API for native Android apps
You can use Java API to develop native apps for the Android environment.

Chapter 9. API reference 699

http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/wl_objcref_ios.pdf
http://public.dhe.ibm.com/software/mobile-solutions/worklight/docs/v610/wl_objcref_ios.pdf

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Use the Java client-side API for native Android apps that IBM Worklight provides
if you want to access IBM Worklight services from native Android applications.

For more information about these APIs, expand the entry for this topic in the
Contents panel and see the Overview topic listed there.

Java client-side API for Java ME apps
You can use Java API to develop Java Platform, Micro Edition (Java ME) apps.

Use the Java client-side API for Java Platform, Micro Edition (Java ME) that IBM
Worklight provides if you want to access IBM Worklight services from native Java
ME apps.

For more information about these interfaces, expand the entry for this topic in the
Contents panel and see the Overview topic listed there.

IBM Worklight server-side API
Use the server-side API that IBM Worklight defines to modify the behavior of the
servers that your mobile applications rely on.

Worklight Server provides a set of mobile capabilities with the use of client/server
integration and communication between mobile applications and back-end
systems.

Server-side application code

You can develop server-side application code and optimize performance, security,
and maintenance. By developing server-side application code, your mobile
application has direct access to back-end transactional capabilities and cloud-based
services. This improves error handling, and enhances security by including more
custom steps for request validation or process authorization.

Built-in JSON translation capability

A built-in JSON translation capability reduces the footprint of data transferred
between the mobile application and Worklight Server. JSON is a lightweight and
human-readable data interchange format. Because JSON messages have a smaller
footprint than other comparable data-interchange formats, such as XML, they can
be more quickly parsed and generated by mobile devices. In addition, Worklight
Server can automatically convert hierarchical data to the JSON format to optimize
delivery and consumption.

Built-in security framework

You can use encryption and obfuscation techniques with a built-in security
framework to protect both user-specific and application business logic. A built-in
security framework provides easy connectivity or integration into your existing
enterprise security mechanisms. This security framework handles connection
credentials for back-end connectivity, so the mobile application can use a back-end
service, without having to know how to authenticate with it. The authentication
credentials stay with Worklight Server, and do not stay on the mobile device. If
you are running Worklight Server with IBM WebSphere Application Server, you
can use enterprise-class security and enable Single-Sign-On (SSO) by using IBM
Lightweight Third Party Authentication (LTPA).

700 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Adapter library

You can use the adapter library to connect to various back-end systems, such as
web services, databases, and messaging applications. For example, IBM Worklight
provides adapters for SOAP or XML over HTTP, JDBC, and JMS. Extra adapters
simplify integration with IBM WebSphere Cast Iron, which in turn supplies
connectors for various cloud-based or on-premise services and systems. With the
adapter library, you can define complex lookup procedures and combine data from
multiple back-end services. This aggregation helps to reduce overall traffic between
a mobile application and Worklight Server.

Unified push notification

You can use unified push notification, which simplifies the notification process
because the application remains platform-neutral. Unified push notification is an
abstraction layer for sending notifications to mobile devices by using either the
device vendor's infrastructure or Worklight Server SMS capabilities. The user of a
mobile application can subscribe to notifications through the mobile application.
This request, which contains information about the device and platform, is sent to
the Worklight Server. The system administrator can manage subscriptions, push or
poll notifications from back-end systems, and use the Application Center to send
notifications to mobile devices.

JavaScript server-side API
The IBM Worklight server-side JavaScript API comprises a series of packages.

For more information about these packages and their content, expand the entry for
this topic in the Contents panel, and see the Overview topic and the Classes topic
listed there.

Java server-side API
The IBM Worklight server-side Java API comprises a series of packages.

For more information about these packages and their content, expand the entry for
this topic in the Contents panel, and see the Overview topic listed there.

Internal IBM Worklight database tables
You can access a database of common tables from the Worklight Server. The
database must not be written to, and it might change from one release to another.

The following table provides a list of common IBM Worklight database tables, their
description, and how they are used.

Name Description Order of Magnitude

ADAPTER_SYNC_DATA Stores the adapter
deployable elements. This
table is used to synchronize
the adapter deployable
elements between cluster
nodes.

10s of rows.

Chapter 9. API reference 701

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Name Description Order of Magnitude

APP_SYNC_DATA Stores the application
deployable elements. This
table is used to synchronize
the application deployable
elements between cluster
nodes.

10s of rows.

APP_VERSION_ACCESS_DATA Stores the applications that
have the remote disable
mode to block or notify.

10s of rows.

AUTH_ASSOCIATED_IDENTITY This table is no longer used
and might be removed in the
future.

n/a

CLUSTER_SYNC Internal cluster
synchronization tasks.

10s of rows.

DEVICES Tracks devices that access the
platform. The devices are
recorded as active or
inactive, based on the
configured decommissioning
policy, and other information
may be stored for them.

1 row per device that
accesses the platform in the
last n days, where n is the
sum of the values for the
wl.device.decommission.when
and
wl.device.archiveDecommissioned
parameters.

GADGET_APPLICATIONS Environments (for example,
iPhone, Android) of
deployed applications.
References the GADGETS table.

10s of rows.

GADGET_USER This table is no longer used
and might be removed in the
future.

n/a

GADGET_USER_PREF User preferences according to
unique user identifier. No
user preferences are ready
for immediate use. The App
developer can add
preferences.

If used, this table can contain
1 row per preference, per
user.

GADGETS Deployed applications. 10s of rows.

LICENSE_TERMS Stores the various license
metrics captured every time
the device decommissioning
task is run.

10s of rows. Will not exceed
the value set by the property
wl.device.decommission.when.

NOTIFICATION_APPLICATION Push notification table. 10s of rows

NOTIFICATION_DEVICE Push notification table. Stores
a record per device, per user
subscription. Many to 1
relationships with
NOTIFICATION_USER table.

1 row per device subscribed
to event source.

NOTIFICATION_MEDIATOR Push notification table. Less than 10 rows.

NOTIFICATION_USER Push notification table. Stores
a record per user
subscription to event sources.

1 row per user subscribed to
an event.

702 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Name Description Order of Magnitude

OPENJPA_SEQUENCE_TABLE Internal table created for JPA.
Not used, and will be
removed in the future.

n/a

PROPERTIES This table is no longer used
and might be removed in the
future.

n/a

SSO_LOGIN_CONTEXTS Stores the active sessions that
use the SSO feature.

Depends if SSO is enabled. If
enabled, there is one entry
per session.

USAGE_DATA This table is no longer used
and might be removed in the
future.

n/a

WORKLIGHT_VERSION The Worklight version. 1 row.

The following table provides a list of common IBM Worklight WLREPORT database
tables and their usage.

Name Description Order of Magnitude

ACTIVITIES_CUBE A materialized table of the 4
dimensional data cube.

Populated every night, based
on the last 30 days of data.
Can be used by BIRT or
other reporting tools.

Size depends on app and
device usage, but is limited
to the last 30 days for faster
access to the last 30 days of
activities.

APP_ACTIVITY_REPORT The reports row data. Data is
aggregated by either our
aggregation task or by the
customer aggregation task.

For more information about
using the row data, see
“Using raw data reports” on
page 968.

The size depends on
application. The customer is
responsible for purging older
entries after aggregating to
Data Warehouse.

Chapter 9. API reference 703

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Name Description Order of Magnitude

FACT_ACTIVITIES Summarization of activities
that are used for device
analytics.

Updated by Worklight Server
every 24 hours with data
from the
APP_ACTIVITY_REPORT table.
Primarily used by BIRT
reports and by other
reporting tools. The update
interval can be configured
with the
wl.db.factProcessingInterval
property. The processing and
update can also be disabled
by setting the
wl.db.factProcessingInterval property
to a negative value if only
the raw data from the
APP_ACTIVITY_REPORT table is
of interest. For more
information about the
property, see “Device usage
reports” on page 972.

Size depends on app/device
usage.

NOTIFICATION_ACTIVITIES Summarization of activities
that are used for notification
analytics.

Updated with data from the
NOTIFICATION_REPORT table.
Primarily used by BIRT
reports and by other
reporting tools.

Size depends on
app/notification usage.

NOTIFICATION_PROC_REPORT Internal table to store raw
notification data. The data is
aggregated by an
aggregation task.

1 row per notification.

NOTIFICATION_REPORT Each time the data
processing is done, a time
stamp is added to the
PROC_REPORT table with the
processing result (timestamp
and number of processed
entries).

About 72 rows per day.

OPENJPA_SEQUENCE_TABLE Internal table created for JPA.
Not used, and will be
removed in the future.

n/a

PROC_REPORT Internal table that is used for
housekeeping and
maintaining the state of the
scheduler tasks.

About 72 rows per day.

704 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

HTTP Interface of the production server
You can use the HTTP interface of the production server to make application API
requests or web application resource requests. Use the following request structures,
headers, and elements.

Application API requests

Use the following request structure to perform an application API request:
{Protocol}://{Worklight Server}/apps/services/api/{Application ID}/{Application Environment}/{Action}

Table 108. . Application API request headers

Header Name Data Type Description Valid values

x-wl-app-version String Version of the
application

WL-Instance-ID String Protection
mechanism for XSS
attacks.

Table 109. . Application API request elements

Header Name Data Type Description Valid values

Protocol String HTTP

Worklight Server String Host name or IP
address (and
possibly port)
identifying the
IBM Worklight
Server

Application ID String Unique Identifier
of the
application
within the IBM
Worklight Server.
Every
application
deployed on the
IBM Worklight
Server must have
a unique
identifier

Up to 256
alphanumeric
and underscore
characters

Application Environment String Name of the
environment the
application is
running on

air, android,
Androidnative,
blackberry,
desktopbrowser,
iOSnative,
ipad, iphone,
JavaMEnative,
mobilewebapp,
windows8,
windowsphone

Action String Requested action Details in
following table

Chapter 9. API reference 705

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 110. . Actions

Action HTTP Request Parameters

init POST x, isAjaxRequest – see the
following table showing
common parameters.

heartbeat POST x, isAjaxRequest – see the
following table showing
common parameters.

logactivity POST x, isAjaxRequest – see the
following table showing
common parameters.

activity – string.

query POST x, isAjaxRequest – see the
following table showing
common
parameters.filterList –
JSON block

parameterList – JSON block

sorterList – JSON block
Note: When the action is
query, the request URL has
the following structure:
.../query/{Adapter
Name}/{Procedure Name}
where Adapter Name and
Procedure Name are strings.

logout POST x, isAjaxRequest - see the
following table showing
common parameters.

login POST x, isAjaxRequest – see the
following table showing
common parameters.

realm – string.

updates POST x, isAjaxRequest – see the
following table showing
common parameters.

skin – current skin name
(string)

checksum – the checksum of
the current skin (string)

skinLoaderChecksum – the
checksum of the skin
selection code (string)

getup POST x, isAjaxRequest - see the
following table showing
common parameters.

706 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 110. (continued). Actions

Action HTTP Request Parameters

deleteup POST x, isAjaxRequest – see the
following table showing
common parameters.

userprefkey – the user
preference to delete.

getuserinfo POST x, isAjaxRequest – see the
following table showing
common parameters.

getgadgetprefs POST x, isAjaxRequest - see the
following table showing
common parameters.

notifications POST x, isAjaxRequest – see the
following table showing
common parameters.

subscribe – JSON string
containing subscribe options

unsubscribe – when
specified, designates an
unsubscribe action

updateToken – the update
notification token (string)

adapter – the name of the
notification adapter (string)

eventSource – the name of
the notification event source
(string)

alias – notification
subscription alias (string)

fbcallback GET or POST x, isAjaxRequest – see the
following table showing
common parameters.

popup – string

composite POST x, isAjaxRequest - see the
following table showing
common parameters.

requests – a JSON string
containing information about
other actions to invoke.

This action is used to
combine several actions in a
single HTTP request.

appversionaccess GET x, isAjaxRequest – see the
following table showing
common parameters.

Chapter 9. API reference 707

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 110. (continued). Actions

Action HTTP Request Parameters

setup POST x, isAjaxRequest - see the
following table showing
common parameters.

userprefs contains JSON
pairs of preference key and
value

authentication POST x, isAjaxRequest - see the
following table showing
common parameters.

action values are popup,
test, or test_img

authenticate POST x, isAjaxRequest - see the
following table showing
common parameters.

This is an empty handler
used to allow the client to
respond to authentication
challenges with a
challengeResponse that
cannot fit in a single header
or when all headers
combined are bigger than the
limit for header size.

Table 111. . Common parameters

Parameter Values Comments

isAjaxRequest true Included with every GET and
POST request only from
Adobe™ AIR application.

_ None Included with every POST
request only from
Webkit-based browsers and
application frameworks:
Safari, Chrome, and Adobe
AIR.

Web application resource requests

Use the following request structure to perform a web application resource request:
{Protocol}://{Worklight Server}/apps/services/www/{Application ID}/{Application Environment}/{Application Resource Path}

Request elements

See Application API Request Elements for details about the following request
elements: Protocol, Worklight Server, Application ID, and Application
Environment.

708 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Element Data Type Description Valid Values

Application
Resource Path

String HTML, image,
JavaScript, CSS, and
any other
application resource

Example values:
img/bg.png,
myWidget.html,
js/myWidget.js

Preview application resource requests

Use the following request structure to preview application resource requests:
{Protocol}://{Worklight Server}/apps/services/preview/{Application ID}/{Application Environment}/{Application Version}/{Application Resource Path}

Request elements

See Application API Request Elements for details about the following request
elements: Protocol, Worklight Server, ApplicationID, and Application
Environment.

Element Data Type Description Valid Values

Application
Resource Path

String HTML, image,
JavaScript, CSS,
and any other
application
resource

Example values:
img/bg.png, myWidget.html,
js/myWidget.js

Console API requests

Use the following request structure to perform a console API request:
http://{hostname}:{port}/{context-root}/console/api/{api-context}/{action}/{parameters}

Table 112. Actions

API
Context Action

HTTP
Request Parameters

Adapters

delete POST adapterName

get GET adapterName

all GET None

upload POST adapterName, input

Chapter 9. API reference 709

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 112. Actions (continued)

API
Context Action

HTTP
Request Parameters

Applications

getPublishUrl GET gadgetAppId

parseCSV POST CSV file

delete POST applicationName

deleteGadgetApplication POST gadgetAppId

setAccessRule POST gadgetAppId (mandatory), action
(mandatory: delete, block, or notify),
message (mandatory), downloadLink
(optional)

setAuthenticityRule POST gadgetAppId (mandatory), action
(mandatory: disabled, ignored, or
enabled)

setVersionLock POST gadgetAppId, lock (true or false)

getBinaryApp GET gadgetAppId

all GET None

get GET applicationName

upload POST input, applicationFolderPath

Push unsubscribeSMS POST phoneNumbers

Push,
Applications

all GET None

Push,
Mediators

all GET None

get GET gcm, apns, or mpns

Push,
Event
Sources

all GET None

get GET adapterName/eventSourceName

Users
userName GET None

logout GET None

v To retrieve a specific adapter:
http://myWorklightServerHost:10080/myProjectRoot/console/api/adapters/get/myAdapterName

v To retrieve all applications:
http://myWorklightServerHost:10080/myProjectRoot/console/api/applications/all

710 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 10. Deploying IBM Worklight projects

After you have created projects and apps with Worklight Studio, you must deploy
them to the production environment.

You can deploy several Worklight projects (that is, several project WAR files) to an
application server just as you would deploy any JEE application: each deployed
project must have a unique name and a unique context path. You can choose
between having several projects use the same database server, or making each
project use a different database server. If you configure several projects to use the
same database, you must configure each data source to connect to an independent
data storage structure (for example, different schemas on DB2, or different user
names on Oracle). Database sharing is not relevant for MySQL and Apache Derby.

Several Worklight Servers with different versions of Worklight installed can share
the same application server. For example, different Worklight project WAR files
that use different versions of worklight-jee-library.jar can coexist on the same
application server.

Read this series of topics to learn how to deploy your IBM Worklight projects and
apps to the production environment.

Deploying IBM Worklight applications to test and production
environments

When you have developed an application, deploy it to a separate test and
production environment.

About this task

When you finish a development cycle of your application, you usually deploy it to
a testing environment, and then to a production environment.

The tools that you can use to deploy apps and adapters across development, QA,
and production environments are described in the following topics.

Deploying an application from development to a test or
production environment

This section describes the steps to move from a development environment and
deploy a Worklight project to a test or production environment.

Before you begin

You have built a Worklight project containing one or more applications in IBM
Worklight Studio. A WAR file and a set of .wlapp files are created in the bin folder
of your IBM Worklight project. You now want to deploy the project and the
applications to a test or production environment.
v A WAR file is created by Worklight Studio for every Worklight project,

regardless of the number of apps it contains.

711

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v If you build an entire app, a file called app-name.wlapp is created, containing the
code and resources of all environments that are supported by your app. For
example: myApp-all.wlapp.

v If you build an app only for specific environments, a file called
app-name-env-version.wlapp is created per environment. For example:
myApp-android-1.0.wlapp.

Important: When building an Android application for deployment to a production
environment, do not build it to run in debuggable mode. Ensure that the
AndroidManifest.xml file does not include an android:debuggable attribute, or set
its value to false. For more information, see Configuring Your Application for
Release.

About this task

First, you prepare the application or applications for deployment, and then you
deploy them. You can deploy many apps within the same project. The following
instructions lead you through this process.

Procedure
1. For each application in the project, change the settings in the

application-descriptor.xml file to match your production environment.
The following settings might need changing, depending on the functions of the
app.
v Settings screen
v Device provisioning
v Application authenticity
v User authentication
v The Android shared user ID

For more information, see “The application descriptor” on page 331
2. You might want to look at the settings in the worklight.properties file, which

is located in server/conf. Those settings define the default values for the IBM
Worklight configuration properties on the server. When you deploy your
Worklight project on the server, you can replace the default settings that are in
the worklight.properties file with values that are relevant for the production
environment. For more information, see “Configuring an IBM Worklight project
in production by using JNDI environment entries” on page 784.

3. Build each application in either of two ways:
v Right-click the application and click Run As > Build Settings and Deploy

Target.
v Use the Ant script tool that is described in “Ant tasks for building and

deploying applications and adapters” on page 791

If you use Worklight Studio, the project WAR file is named projectName.war
and is located in the \bin folder. This file contains the project configuration that
was done in steps 1 and 2 and any classes built from Java code in the
server/java folder.

4. Configure a database and deploy the project WAR to the application server
with one of these two methods:
v With the Worklight Server Configuration Tool. For more information, see

“Deploying, updating, and undeploying a Worklight Server by using the
Server Configuration Tool” on page 715

712 IBM Worklight V6.1.0

http://developer.android.com/tools/publishing/preparing.html#publishing-configure
http://developer.android.com/tools/publishing/preparing.html#publishing-configure

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v With Ant tasks for configuring a database for a Worklight project and
deploying a Worklight project WAR file to an application server. With this
method, you can also configure the project on the server using JNDI
environment entries.
– The documentation of the Ant tasks for configuring a database is at

“Creating and configuring the databases with Ant tasks” on page 722.
– The documentation of the Ant tasks for deploying a project WAR file is at

“Deploying a project WAR file and configuring the application server with
Ant tasks” on page 748.

– The list of JNDI environment entries that can be configured is at
“Configuring an IBM Worklight project in production by using JNDI
environment entries” on page 784.

– Sample Ant files using these Ant tasks can be found in the IBM Worklight
distribution in <WORKLIGHT_INSTALL_DIR>/WorklightServer/configuration-
samples. Their file names use the naming convention configure-
<appServer>-<database>.xml. For more information, see “Sample
configuration files” on page 762.
You must call configuredatabase first (target databases in the sample Ant
files) and then configureapplicationserver (target install in the sample
Ant files).

5. Open the IBM Worklight Console of the target environment. The address is of
the format http://your-remote-server:server-port/context_root/console

Note: The context root used in Worklight Server is not necessarily related to
the Worklight project name, or to the name of the WAR file created in
Worklight Studio. It indicates the common prefix of the path of URLs to the
application, as installed on this particular application server.

6. From the Worklight Console, deploy the relevant .wlapp files from the bin
folder of your Worklight project.
v For more information about how to deploy an app by using IBM Worklight

Console, see “Deploying apps” on page 799.
v You can also deploy the app to the target environment by using an Ant task

that is provided by IBM Worklight. For more information about how to
deploy an app by using the provided Ant task, see “Deploying an
application” on page 794.

7. Obtain the adapters from the development environment.
a. Navigate to the bin folder in your project.
b. Copy the .adapter file or files.

8. From the IBM Worklight Console, deploy the .adapter files from the bin folder
of your project.
v For more information about how to deploy an adapter by using IBM

Worklight Console, see “Deploying adapters” on page 799.
v You can also deploy the adapter to the target environment by using an Ant

task that is provided with IBM Worklight. For more information about how
to deploy an adapter by using the provided Ant task, see “Deploying an
adapter” on page 795.

Results

A message is displayed, indicating whether the deployment action succeeded or
failed.

Chapter 10. Deploying IBM Worklight projects 713

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Building a project WAR file with Ant
Build the project WAR file with Ant tasks as detailed here.

Apache Ant is required to run these tasks. The minimum supported version of Ant
is listed in “System requirements for using IBM Worklight” on page 9.

For convenience, Apache Ant 1.8.4 is included in Worklight Server. In the
WL_INSTALL_DIR/shortcuts/ directory, the following scripts are provided:
v ant for UNIX / Linux
v ant.bat for Windows

These scripts are ready to run, which means that they do not require specific
environment variables. If the environment variable JAVA_HOME is set, the scripts
accept it.

The following section documents an example of the Ant XML file used to build an
IBM Worklight project WAR file.

Building the project WAR file

The Ant task for building the project WAR file has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<project name="myProject" default="all">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="WL_INSTALL_DIR/WorklightServer/worklight-ant-builder.jar"/>
</classpath>

</taskdef>
<target name="all">

<war-builder projectfolder="."
destinationfolder="bin/war"
warfile="bin/project.war"
classesFolder="classes-folder"/>

</target>
</project>

The <war-builder> element has the following attributes:
v The projectfolder attribute specifies the path to your project.
v The destinationfolder attribute specifies a folder for holding temporary files.
v The warfile attribute specifies the destination and file name of the generated

.war file
v The classesFolder attribute specifies a folder with compiled Java classes to add

to the .war file. .jar files in the projectfolder\server\lib directory are added
automatically

Deploying the project WAR file
Deploy an IBM Worklight project by following the steps as detailed here.

You need to deploy an IBM Worklight project to an application server to have the
Worklight Console available and to have the Worklight Server running. The
database and application server prerequisites for this task are described in
“Installation prerequisites” on page 52.

You also need a Worklight project WAR file. You can build it by using Worklight
Studio, or by following the instructions in “Building a project WAR file with Ant.”

714 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The WAR file contains the Worklight Console, default configuration values for the
server, and some resources for the Worklight applications and adapters.

The Project WAR file must be built with the same version of Worklight Studio as
the version used to build the apps deployed on the Worklight Server.

You can deploy a Worklight project in the following ways:
v By using the Server Configuration Tool
v By using a set of Ant tasks supplied with Worklight Server to deploy a project

WAR file and configure your databases and application servers.
v Follow the procedure for “Creating and configuring the databases manually” on

page 732 and for deploying the Worklight Console manually.

Deploying, updating, and undeploying a Worklight Server by
using the Server Configuration Tool
The Server Configuration Tool is a graphical tool that lets you deploy, update, or
undeploy a Worklight Server to or from an Application Server and database.

If this tool is used in production to upgrade a Worklight Server, a number of other
actions need to be completed to upgrade the server, as described in “Upgrading to
Worklight Server V6.1.0 in a production environment” on page 226.

The Server Configuration Tool provides the same capabilities as the Ant tasks
described in “Ant tasks for deploying a project WAR file and configuring an
application server” on page 718 with the following limitations:
v The tool is limited to four operations (create, edit, update, and remove)

described below, that correspond to predefined invocations of the Ant tasks.
v The Derby database is not supported. The supported databases are IBM DB2,

Oracle, and MySQL.
v It is not possible to define JNDI deployment properties (such as

publicWorkLightHostname or other properties listed in “Configuring an IBM
Worklight project in production by using JNDI environment entries” on page
784). To define those properties, Ant files must be used. You can use the Server
Configuration Tool to export an Ant file from a server configuration and then
add JNDI deployment properties to it manually. (See “Other operations available
in the Server Configuration Tool” on page 718.)

v The Server Configuration Tool must be launched on the computer where your
application server is installed.

v The Server Configuration Tool maintains a deployment status of configuration
servers (deployed or not). This status is not accurate if the Worklight Server is
modified outside the Server Configuration Tool.

v The Server Configuration Tool is available only on Windows and Linux (x86). It
is also available on Mac OS for test or demonstration purposes, but the
Worklight Server is not supported for production on this platform.

Chapter 10. Deploying IBM Worklight projects 715

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Running the Server Configuration Tool

You can start the Worklight Server Configuration Tool in the following ways:
v On Linux:

– By using the desktop menu shortcut "Server Configuration Tool".
– In a file manager, click the file WL_INSTALL_DIR/shortcuts/configuration-

tool.sh.
– From a shell command line, execute the command WL_INSTALL_DIR/

shortcuts/configuration-tool.sh.
v On Windows:

– By using the Start menu shortcut "Server Configuration Tool".
– In Windows explorer, double-click the file WL_INSTALL_DIR/shortcuts/

configuration-tool.bat.
– In a console window, execute WL_INSTALL_DIR/shortcuts/configuration-

tool.bat.
v On Mac OS X

Note: The Worklight Server is not supported for production on this platform.
– In the Finder, double-click the file WL_INSTALL_DIR/shortcuts/configuration-

tool.sh.
– In a Terminal window, execute WL_INSTALL_DIR/shortcuts/configuration-

tool.sh.

Main tasks

Create a new Worklight Server configuration
To create a new Worklight Server configuration, complete the following
steps:
1. Enter a descriptive name for the server configuration.

Figure 105. Server Configuration Tool main window

716 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. Select the path for the Worklight project WAR file to be deployed.
3. Select a shortcut file location. These shortcuts are used to contain the

URL of the Worklight Console.
4. Step through the Wizard to describe the target database management

system.
v If you need to create a database for your Worklight Server, the Server

Configuration Tool can create it for you if you provide the requested
administrator password when prompted in the panel "Database
Creation Request". Alternatively, you can ask your database
administrator to create the database manually by following the
instructions in “Optional creation of databases before you use the
Ant tasks” on page 719

5. Follow the steps of the Wizard to describe the target application server.
You will need to be authorized to write in the directory of the
Application Server.

6. As soon as you have provided all the necessary information, the
Deploy button is enabled. When you click it, the following actions take
place:
v The configuration file is saved.
v If the database contains no Worklight tables, the Worklight tables are

created.
v If the database contains Worklight tables for an older version of

Worklight, the tables are upgraded to the current Worklight version.
v If the database operations succeed, the Worklight Server is deployed

to the application server. If the WAR file needs to be migrated to the
current version, it is migrated.

In the Navigation view, in the left panel of the Server Configuration Tool,
log files of the operations are listed under the configuration label.

Edit an existing Worklight Server configuration and redeploy
Use this task to edit and modify an existing Worklight Server
configuration. If you select this action, you are prompted to select one of
the configurations visible in the Navigation view. If passwords are needed
to redeploy the configuration, you are asked to enter them. When you have
entered the passwords, the configuration is checked for errors. If errors are
found, a report is displayed. You can then edit the configuration. If the
configuration contains no errors, the Redeploy button is enabled. When
you click Redeploy, the following actions are completed:
v If the server is already deployed, it is undeployed.
v If undeployment succeeds, the databases are checked. If they contain

Worklight tables for an older version of Worklight, the tables are
upgraded to the current Worklight version.

v If this succeeds, the new configuration is redeployed. If the WAR file
needs to be migrated to the current version, it is migrated.

Note: If you assigned properties to the deployed web application in the
application server (for example, security settings), you need to set them
again due to the web application having been undeployed.

Update the project's WAR file of a deployed Worklight Server configuration
Use this task to update the WAR file of an existing Worklight Server
configuration without changing any other settings. If you select this action,
you are asked to select one of the deployed configurations visible in the

Chapter 10. Deploying IBM Worklight projects 717

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Navigation view. If passwords are needed to redeploy the configuration,
you are asked to enter them. When you have entered the passwords, the
configuration is checked for errors. If errors are found, a report is
displayed and the update action is canceled. You can then change the path
of the WAR file to be deployed. If your application server is a Liberty or
WebSphere Application Server, your new WAR file must have the same
name as the WAR file that is already deployed. When you click Update,
the following action is completed:
v The WAR file in the application server is updated. If necessary, the WAR

file is migrated to the current version.

Remove a Worklight Server configuration
Use this task to remove a Worklight Server environment from an
application server. If you select this action, you are asked to select one of
the deployed configurations visible in the Navigation view. If passwords
are needed to remove the configuration from the application server, you
are asked to enter them. When you click Undeploy, the following actions
are completed:
v The Worklight Server is removed from the application server. The

database is not modified and the data remains available in the database.

Other operations available in the Server Configuration Tool

Export a Configuration
When you click File > Export, an Ant task is exported. This Ant file
contains tasks that take the following actions:
v Create or update the databases
v Deploy the WAR file
v Update the WAR file
v Undeploy the WAR file

A "help" target, the default target of the Ant project, describes the different
targets available. You might want to export a configuration for the
following reasons:
v To add deployment JNDI properties and then run the Ant file in

command line mode with Apache Ant.
v To run the Ant file on a computer without a graphical user interface.
v To perform the Worklight Server operations in batch mode (from the

command line and without using a graphical user intarface).

If you modify the Worklight Server status outside the Server Configuration
Tool, the status for this configuration is no longer accurate.

Import a Configuration
When you click File > Import, you can import an Ant file that was
generated by the Server Configuration Tool.

Change the working directory where the configurations are stored
From the File menu, click Preferences, and then select an alternative
working directory.

Ant tasks for deploying a project WAR file and configuring an
application server
A set of Ant tasks is supplied with Worklight Server. The tasks in this section are
used to deploy a project WAR file, and configure your databases and application
servers.

718 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Apache Ant is required to run these tasks. For more information about the
minimum supported version of Ant, see “System requirements for using IBM
Worklight” on page 9.

For convenience, Apache Ant 1.8.4 is included in Worklight Server. In the
WL_INSTALL_DIR/shortcuts/ directory, the following scripts are provided:
v ant for UNIX / Linux
v ant.bat for Windows

These scripts are ready to run, which means that they do not require specific
environment variables. If the environment variable JAVA_HOME is set, the scripts
accept it.

Creating and configuring the databases
Create and configure the databases by following the steps detailed here.

Optional creation of databases before you use the Ant tasks:

If you plan to use the Ant tasks to create and configure your databases, you must
have the proper database access rights to run the Ant scripts.

If you want to create the Worklight databases with the Ant tasks described in the
following topic, you must have certain database access rights that entitle you to
create the tables that are required by IBM Worklight. If you have sufficient
database administration credentials, and if you enter the administrator user name
and password in the Ant file, the Ant tasks can create the databases for you.

If you do not have these permissions, you must ask your database administrator to
create the required databases for you. The databases must be created before you
run the Ant tasks to configure the databases.

The following topics describe the procedures a database administrator uses to
create each of the supported databases.

Creating the DB2 databases:

This section explains the procedures used to create the DB2 databases.

About this task

The <configureDatabase> Ant task can create the databases for you if you enter the
name and password of a user account on the database server that has the DB2
SYSADM or SYSCTRL privilege, and the account can be accessed through SSH.
Otherwise, the database administrator can create the databases for you. For more
information, see the DB2 Solution user documentation.

You can replace the database names (here WRKLGHT and WLREPORT) and
passwords with database names and passwords of your choosing.

Important: You can name your databases and user differently, or set a different
password, but ensure that you enter the appropriate database names, user name,
and password correctly across the DB2 database setup. DB2 has a database name
limit of 8 characters on all platforms, and has a user name and password length
limit of 8 characters for Unix and Linux systems, and 30 characters for Windows.

Chapter 10. Deploying IBM Worklight projects 719

http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.sec.doc%2Fdoc%2Fc0055206.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

You can also choose to have the IBM Worklight data and the Worklight reports
data be stored in a single database, as different schemas. To this effect, in the
following procedure, use a single database name of your choosing instead of
WRKLGHT and WLREPORT.

Procedure

1. Create a system user, for example, named wluser in a DB2 admin group such
as DB2USERS, using the appropriate commands for your operating system. Give
it a password, for example, wluser. If you want multiple Worklight projects to
connect to the same database, use a different user name for each connection.
Each database user has a separate default schema. For more information about
database users, see the DB2 documentation and the documentation for your
operating system.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:
v On Windows systems, click Start > IBM DB2 > Command Line Processor

v On Linux or UNIX systems, navigate to ~/sqllib/bin and enter ./db2.
v Enter database manager and SQL statements similar to the following

example to create the two databases:
CREATE DATABASE WRKLGHT COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WRKLGHT
GRANT CONNECT ON DATABASE TO USER wluser
DISCONNECT WRKLGHT
CREATE DATABASE WLREPORT COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WLREPORT
GRANT CONNECT ON DATABASE TO USER wluser
DISCONNECT WLREPORT
QUIT

Where wluser is the name of the system user that you previously created. If
you defined a different user name, replace wluser accordingly.

3. It is also possible to use only one database (with pagesize settings compatible
with what is previously listed), and to create the databases for Worklight in
different schemas. In that case, only one database is required. If the
IMPLICIT_SCHEMA authority is granted to the user created in step 1 (the
default in the database creation script in step 2), no further action is required. If
the user does not have the IMPLICIT_SCHEMA authority, you need to create a
SCHEMA for the Worklight database tables and objects and a SCHEMA for the
Worklight Report database tables and objects.

Creating the MySQL databases:

This section explains the procedures used to create the MySQL databases.

About this task

The <configureDatabase> Ant task can create the databases for you if you enter the
name and password of the superuser account. For more information, see Securing
the Initial MySQL Accounts on your MySQL database server. Your database
administrator can also create the databases for you. When you manually create the
databases, you can replace the database names (here WRKLGHT and WLREPORT)
and the password with database names and a password of your choosing. Note
that MySQL database names are case-sensitive on Unix.

720 IBM Worklight V6.1.0

http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html
http://dev.mysql.com/doc/refman/5.1/en/default-privileges.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

1. Start the MySQL command-line tool.
2. Enter the following commands:

CREATE DATABASE WRKLGHT CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON WRKLGHT.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’password’;
GRANT ALL PRIVILEGES ON WRKLGHT.* TO ’worklight’@’localhost’ IDENTIFIED BY ’password’;
FLUSH PRIVILEGES;
CREATE DATABASE WLREPORT CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON WLREPORT.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’password’;
GRANT ALL PRIVILEGES ON WLREPORT.* TO ’worklight’@’localhost’ IDENTIFIED BY ’password’;
FLUSH PRIVILEGES;

Where worklight before the @ sign is the user name, password after IDENTIFIED
BY is the user password, and Worklight-host is the name of the host on which
IBM Worklight runs.

Creating the Oracle databases:

This section explains the procedures used to create the Oracle databases.

About this task

The <configureDatabase> Ant task can create the databases or users and schemas
inside an existing database for you if you enter the name and password of the
Oracle administrator on the database server, and the account can be accessed
through SSH. Otherwise, the database administrator can create the databases or
users and schemas for you. When you manually create the databases or users, you
can use database names, user names, and a password of your choosing. Note that
lowercase characters in Oracle user names can lead to trouble.

Procedure

1. If you do not already have a database named ORCL, use the Oracle Database
Configuration Assistant (DBCA) and follow the steps in the wizard to create a
new database named ORCL:
a. Use global database name ORCL_your_domain, and system identifier (SID)

ORCL.
b. On the Custom Scripts tab of the step Database Content, do not run the

SQL scripts, because you must first create a user account.
c. On the Character Sets tab of the step Initialization Parameters, select Use

Unicode (AL32UTF8) character set and UTF8 - Unicode 3.0 UTF-8 national
character set.

d. Complete the procedure, accepting the default values.

If the Oracle installation is on a UNIX or Linux machine, make sure that the
database will be started the next time the Oracle installation is restarted. To this
effect, make sure the line in /etc/oratab that corresponds to the database ends
with a Y, not with an N.

2. Create database users either by using Oracle Database Control, or by using the
Oracle SQLPlus command-line interpreter.
v Using Oracle Database Control.

a. Create the user for the runtime database:
1) Connect as SYSDBA.
2) Go to the Users page: click Server, then Users in the Security section.
3) Create a user, for example, named WORKLIGHT. If you want multiple

IBM Worklight projects to connect to the same general-purpose

Chapter 10. Deploying IBM Worklight projects 721

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

database you created in step 1, use a different user name for each
connection. Each database user has a separate default schema.

4) Assign the following attributes:
– Profile: DEFAULT
– Authentication: password
– Default table space: USERS
– Temporary table space: TEMP
– Status: UNLOCK
– Add role: CONNECT
– Add role: RESOURCE
– Add system privilege: CREATE VIEW

– Add system privilege: UNLIMITED TABLESPACE

b. Repeat step "a" to create a user, for example, named
WORKLIGHTREPORTS for the IBM Worklight report database.

v Using the Oracle SQLPlus command-line interpreter.
The commands in the following example create a user named WORKLIGHT
and a user named WORKLIGHTREPORTS:
CONNECT system/<system_password>@ORCL
CREATE USER WORKLIGHT IDENTIFIED BY ’WORKLIGHT_password’;
GRANT CONNECT, RESOURCE, CREATE VIEW TO WORKLIGHT;
DISCONNECT;

CONNECT system/<system_password>@ORCL
CREATE USER WORKLIGHTREPORTS IDENTIFIED BY ’WORKLIGHTREPORTS_password’;
GRANT CONNECT, RESOURCE, CREATE VIEW TO WORKLIGHTREPORTS;
DISCONNECT;

Creating and configuring the databases with Ant tasks:

Use Ant tasks to create and configure the IBM Worklight databases as detailed
here.

An Ant task is supplied that ensures that a Worklight or WorklightReports
database is present and that it is operational. The task:
v Creates the database, if it does not yet exist.
v Ensures that the database is accessible by the specified user, granting the

required access rights if necessary.
v Ensures that the database has a schema with the given name. It creates the

schema if necessary. (DB2 and Apache Derby only)
v Ensures that the database has the required tables. It creates the tables if the

database or schema is empty, or upgrades the database contents if it finds tables
from a previous version of IBM Worklight.

To start the Ant task, you need an Ant XML file with one or more invocations of
the <configuredatabase> task. The machine on which you run the Ant XML file
depends on the type of database:
v For an Apache Derby database, it must be run on the machine that contains the

application server.
v For an IBM DB2 or Oracle database, it can be run on any machine. A common

choice is to run it on the machine that contains the application server; it will

722 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

connect to the database server. It requires SSH access to the database server
machine if the database does not yet exist or the user does not have the
privileges to use the database.

v For a MySQL database, it can be run on any machine from which the user (or
administrator) is allowed to connect to the MySQL server. A common choice is
to run it on the machine that contains the application server; it will connect to
the database server.

If you want to start the Ant task from a computer on which Worklight Server is
not installed, you must copy the file <WorklightInstallDir>/WorklightServer/
worklight-ant-deployer.jar to that computer.

Sample Ant XML files are presented in the following sections.

Prerequisite steps

Before doing these steps, it is necessary that:
v Worklight Server is installed.
v Apache Ant is installed.
v If you plan to use a database management system other than Apache Derby, the

database management system must be installed on some database server
(possibly the same machine, possibly a different machine), and that database
server is running.

v If you do not have database administrator permissions on the database
management system, the steps in section “Optional creation of databases before
you use the Ant tasks” on page 719 must be completed.

To create Apache Derby databases

Note: The Apache Derby database is provided in the Worklight Server distribution,
but is not suggested for use in production environments. In these environments, an
IBM DB2, MySQL, or Oracle database is more common and more appropriate. The
following Ant XML examples are provided in case you want to install the Apache
Derby database in a test environment.

If you want to have two different databases, for example to implement the
situation that is described in “Setting up your Apache Derby databases manually”
on page 737, the configuration looks similar to the following example:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="all">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="/opt/IBM/Worklight/WorklightServer/worklight-ant-deployer.jar"/>
</classpath>

</taskdef>

<target name="all">

<configuredatabase kind="Worklight">
<derby database="WRKLGHT" datadir="/var/ibm/Worklight/derby"/>

</configuredatabase>

<configuredatabase kind="WorklightReports">
<derby database="WLREPORT" datadir="/var/ibm/Worklight/derby"/>

</configuredatabase>

</target>
</project>

Chapter 10. Deploying IBM Worklight projects 723

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

If you want to have a single database with different schemas:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="all">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="/opt/IBM/Worklight/WorklightServer/worklight-ant-deployer.jar"/>
</classpath>

</taskdef>

<target name="all">

<configuredatabase kind="Worklight">
<derby database="WorklightProduction" datadir="/var/databases/derby" schema="WL60"/>

</configuredatabase>

<configuredatabase kind="WorklightReports">
<derby database="WorklightProduction" datadir="/var/databases/derby" schema="WL60REP"/>

</configuredatabase>

</target>
</project>

To create DB2 databases

If you want to have two different databases, for example to implement the
situation that is described in “Setting up your DB2 databases manually” on page
732, the configuration can look like the following example:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="all">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="/opt/IBM/Worklight/WorklightServer/worklight-ant-deployer.jar"/>
</classpath>

</taskdef>

<target name="all">

<configuredatabase kind="Worklight">
<db2 database="WRKLGHT" server="proddb.example.com"

user="wl6admin" password="wl6pass">
<dba user="db2inst1" password="db2IsFun"/>

</db2>
<driverclasspath>

<fileset dir="/opt/database-drivers/db2-9.7">
<include name="db2jcc4.jar"/>
<include name="db2jcc_license_*.jar"/>

</fileset>
</driverclasspath>

</configuredatabase>

<configuredatabase kind="WorklightReports">
<db2 database="WLREPORT" server="proddb.example.com"

user="wl6admin" password="wl6pass">
<dba user="db2inst1" password="db2IsFun"/>

</db2>
<driverclasspath>

<fileset dir="/opt/database-drivers/db2-9.7">
<include name="db2jcc4.jar"/>
<include name="db2jcc_license_*.jar"/>

</fileset>
</driverclasspath>

</configuredatabase>

</target>
</project>

724 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

If you want to have a single database with two schemas, each owned by a
different user:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="all">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="/opt/IBM/Worklight/WorklightServer/worklight-ant-deployer.jar"/>
</classpath>

</taskdef>

<target name="all">

<configuredatabase kind="Worklight">
<db2 database="PROD" server="proddb.example.com"

user="wladmin" password="wl6pass">
<dba user="db2inst1" password="db2IsFun"/>

</db2>
<driverclasspath>

<fileset dir="/opt/database-drivers/db2-9.7">
<include name="db2jcc4.jar"/>
<include name="db2jcc_license_*.jar"/>

</fileset>
</driverclasspath>

</configuredatabase>

<configuredatabase kind="WorklightReports">
<db2 database="PROD" server="proddb.example.com"

user="wlreport" password="wl6pass">
<dba user="db2inst1" password="db2IsFun"/>

</db2>
<driverclasspath>

<fileset dir="/opt/database-drivers/db2-9.7">
<include name="db2jcc4.jar"/>
<include name="db2jcc_license_*.jar"/>

</fileset>
</driverclasspath>

</configuredatabase>

</target>
</project>

To create a single database with two schemas, which are owned by the same user:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="all">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="/opt/IBM/Worklight/WorklightServer/worklight-ant-deployer.jar"/>
</classpath>

</taskdef>

<target name="all">

<configuredatabase kind="Worklight">
<db2 database="PROD" server="proddb.example.com"

user="wl6admin" password="wl6pass" schema="WL60">
<dba user="db2inst1" password="db2IsFun"/>

</db2>
<driverclasspath>

<fileset dir="/opt/database-drivers/db2-9.7">
<include name="db2jcc4.jar"/>
<include name="db2jcc_license_*.jar"/>

</fileset>
</driverclasspath>

</configuredatabase>

<configuredatabase kind="WorklightReports">

Chapter 10. Deploying IBM Worklight projects 725

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<db2 database="PROD" server="proddb.example.com"
user="wl6admin" password="wl6pass" schema="WL60REP">

<dba user="db2inst1" password="db2IsFun"/>
</db2>
<driverclasspath>

<fileset dir="/opt/database-drivers/db2-9.7">
<include name="db2jcc4.jar"/>
<include name="db2jcc_license_*.jar"/>

</fileset>
</driverclasspath>

</configuredatabase>

</target>
</project>

To create MySQL databases

With MySQL, you must have two different databases. The configuration looks
similar to the following example:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="all">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="/opt/IBM/Worklight/WorklightServer/worklight-ant-deployer.jar"/>
</classpath>

</taskdef>

<target name="all">

<configuredatabase kind="Worklight">
<mysql database="WRKLGHT" server="proddb.example.com"

user="wl6admin" password="wl6pass">
<dba user="root" password="UnGuessable"/>
<client hostname="prodserver.example.com"/>

</mysql>
<driverclasspath>

<pathelement location="/opt/database-drivers/mysql/mysql-connector-java-5.1.25-bin.jar"/>
</driverclasspath>

</configuredatabase>

<configuredatabase kind="WorklightReports">
<mysql database="WLREPORT" server="proddb.example.com"

user="wl6admin" password="wl6pass">
<dba user="root" password="UnGuessable"/>
<client hostname="prodserver.example.com"/>

</mysql>
<driverclasspath>

<pathelement location="/opt/database-drivers/mysql/mysql-connector-java-5.1.25-bin.jar"/>
</driverclasspath>

</configuredatabase>

</target>
</project>

To create Oracle databases

You may want to have two different users and schemas in the same database, for
example to implement the situation that is described in “Setting up your Oracle
databases manually” on page 744. In this case, the configuration can look like the
following example:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="all">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

726 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<pathelement location="/opt/IBM/Worklight/WorklightServer/worklight-ant-deployer.jar"/>
</classpath>

</taskdef>

<target name="all">

<configuredatabase kind="Worklight">
<oracle database="ORCL" server="proddb.example.com"

user="WL60MAIN" password="wl6pass"
SYSTEMPassword="Passw0rd">

<dba user="oracle" password="delphi"/>
</oracle>
<driverclasspath>

<pathelement location="/opt/databases-drivers/oracle-11.1/ojdbc6.jar"/>
</driverclasspath>

</configuredatabase>

<configuredatabase kind="WorklightReports">
<oracle database="ORCL" server="proddb.example.com"

user="WL60REPT" password="wl6pass"
systemPassword="Passw0rd">

<dba user="oracle" password="delphi"/>
</oracle>
<driverclasspath>

<pathelement location="/opt/databases-drivers/oracle-11.1/ojdbc6.jar"/>
</driverclasspath>

</configuredatabase>

</target>
</project>

If you want to have two different databases (the way that IBM Worklight 5.x
created the databases by default), the configuration can look like the following
example:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="all">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="/opt/IBM/Worklight/WorklightServer/worklight-ant-deployer.jar"/>
</classpath>

</taskdef>

<target name="all">

<configuredatabase kind="Worklight">
<oracle database="WRKLGHT" server="proddb.example.com"

user="SCOTT" password="tiger"
SYSPassword="Passw0rd" SYSTEMPassword="Passw0rd">

<dba user="oracle" password="delphi"/>
</oracle>
<driverclasspath>

<pathelement location="/opt/databases-drivers/oracle-11.1/ojdbc6.jar"/>
</driverclasspath>

</configuredatabase>

<configuredatabase kind="WorklightReports">
<oracle database="WLREPORT" server="proddb.example.com"

user="SCOTT" password="tiger"
sysPassword="Passw0rd" systemPassword="Passw0rd">

<dba user="oracle" password="delphi"/>
</oracle>
<driverclasspath>

<pathelement location="/opt/databases-drivers/oracle-11.1/ojdbc6.jar"/>
</driverclasspath>

Chapter 10. Deploying IBM Worklight projects 727

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

</configuredatabase>

</target>
</project>

Ant configuredatabase task reference:

Reference information for the Ant <configuredatabase> task.

The <configuredatabase> task does the following:
v Configures a database for a Worklight Project by:

– Checking if the Worklight tables exist and creating them if needed.
– If the tables exist and are for an older version of Worklight, migrating them to

the current version.
– If they exist and are for the current version of Worklight, do nothing.

v In addition, if the inner element <dba> is present, the task can:
– Create the database if needed.
– Create a user, if necessary, and grant that user privileges to access the

database.

The <configuredatabase> task has the following attributes:

Table 113. Attributes for the <configuredatabase> Ant task

Attribute Description Required Default

kind Type of database (Worklight or
WorklightReports)

Yes none

It supports the following elements:

Table 114. Inner elements for the <configuredatabase> Ant attribute

Element Description Count

derby Parameters for Derby 0..1

db2 Parameters for DB2 0..1

mysql Parameters for MySQL 0..1

oracle Parameters for Oracle 0..1

driverclasspath JDBC driver class path 0..1

For the configuration of Apache Derby databases

The element <derby> has the following attributes:

Table 115. Attributes for the <derby> element

Attribute Description Required Default

database Database name No WRKLGHT or
WLREPORT, depending
on kind

datadir Directory that contains the databases Yes none

schema Schema name No WORKLIGHT

728 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For the configuration of DB2 databases

The element <db2> has the following attributes:

Table 116. Attributes for the <db2> element

Attribute Description Required Default

database Database name No WRKLGHT or
WLREPORT, depending
on kind

server Host name of database server Yes none

port Port on database server No 50000

user User name for accessing database Yes none

password Password for accessing database No Queried interactively

instance DB2 instance name No Depends on server

schema Schema name No Depends on user

For more information about DB2 user accounts, see DB2 security model overview.

The <db2> element also supports an inner element <dba> that specifies database
administrator credentials. This element has the following attributes:

Table 117. Attributes for the <dba> element for DB2 databases

Attribute Description Required Default

user User name for accessing database Yes none

password Password or accessing database No Queried interactively

The user that is specified in a <dba> element must have either the DB2 privilege
SYSADM or SYSCTRL. For more information, see Authorities overview.

The <driverclasspath> element must contain a DB2 JDBC driver JAR file and an
associated license JAR file. You can download DB2 JDBC drivers from DB2 JDBC
Driver Versions, or you can fetch the db2jcc4.jar file and its associated
db2jcc_license_*.jar files from the directory DB2_INSTALL_DIR/java on the DB2
server.

You cannot specify details of the table allocations, such as the table space, through
the Ant task. To control the table space, you must use the manual instructions in
section “Configuring the DB2 databases manually” on page 732.

Chapter 10. Deploying IBM Worklight projects 729

http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.sec.doc%2Fdoc%2Fc0021804.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.sec.doc%2Fdoc%2Fc0055206.html
http://www.ibm.com/support/docview.wss?uid=swg21363866
http://www.ibm.com/support/docview.wss?uid=swg21363866

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For the configuration of MySQL databases

The element <mysql> has the following attributes:

Table 118. Attributes for the <mysql> element

Attribute Description Required Default

database Database name No WRKLGHT or
WLREPORT, depending
on kind

server Host name of database server Yes none

port Port on database server No 3306

user User name for accessing database Yes none

password Password for accessing database No Queried interactively

For more information about MySQL user accounts, see MySQL User Account
Management.

The <mysql> element also supports an inner element <dba> that specifies database
administrator credentials. This element has the following attributes:

Table 119. Attributes for the <dba> element for MySQL databases

Attribute Description Required Default

user User name for accessing database Yes none

password Password or accessing database No Queried interactively

The user that is specified in a <dba> element must be a MySQL superuser account.
For more information, see Securing the Initial MySQL Accounts.

The <mysql> element also supports inner elements <client> that each specifies a
client computer or a wildcard for client computers. These computers are allowed to
connect to the database. This element has the following attributes:

Table 120. Attributes for the <client> element for MySQL databases

Attribute Description Required Default

hostname Symbolic host name, IP address, or
template with % as a placeholder

Yes none

For more details on the hostname syntax, see Specifying Account Names.

The <driverclasspath> element must contain a MySQL Connector/J JAR file. You
can download it from Download Connector/J.

Alternatively, you can use the <mysql> element with the following attributes:

730 IBM Worklight V6.1.0

http://dev.mysql.com/doc/refman/5.5/en/user-account-management.html
http://dev.mysql.com/doc/refman/5.5/en/user-account-management.html
http://dev.mysql.com/doc/refman/5.5/en/default-privileges.html
http://dev.mysql.com/doc/refman/5.5/en/account-names.html
http://www.mysql.com/downloads/connector/j/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 121. Alternative attributes for the <mysql> element

Attribute Description Required Default

url Database connection URL Yes none

user User name for accessing database Yes none

password Password for accessing database No Queried interactively

Note: If you specify the database with the alternative attributes, this database must
exist, the user account must exist, and the database must already be accessible to
the user. In this case, the <configuredatabase> task does not attempt to create the
database nor the user, nor does it attempt to grant access to the user. The
<configuredatabase> task only ensures that the database has the required tables
for the current Worklight Server version. You do not have to specify the inner
elements <dba> or <client>.

For the configuration of Oracle databases

The element <oracle> has the following attributes:

Table 122. Attributes for the <oracle> element

Attribute Description Required Default

database Database name No ORCL

server Host name of database server Yes none

port Port on database server No 1521

user User name for accessing database Yes none

password Password for accessing database No Queried interactively

sysPassword Password for the user SYS No Queried interactively, if
the database does not
yet exist

systemPassword Password for the user SYSTEM No Queried interactively, if
the database or the user
does not yet exist

For more information about Oracle user accounts, see Overview of Authentication
Methods.

The <oracle> element also supports an inner element <dba> that specifies database
administrator credentials. This element has the following attributes:

Table 123. Attributes for the <dba> element for Oracle databases

Attribute Description Required Default

user User name for accessing database Yes none

password Password for accessing database No Queried interactively

Chapter 10. Deploying IBM Worklight projects 731

http://docs.oracle.com/cd/B28359_01/server.111/b28318/security.htm#i12374
http://docs.oracle.com/cd/B28359_01/server.111/b28318/security.htm#i12374

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The <driverclasspath> element must contain an Oracle JDBC driver JAR file. You
can download Oracle JDBC drivers from JDBC, SQLJ, Oracle JPublisher and
Universal Connection Pool (UCP).

You cannot specify details of the table allocations, such as the table space, through
the Ant task. To control the table space, you can create the user account manually
and assign it a default table space, before invoking the Ant task. To control other
details, you must use the manual instructions in section “Configuring the Oracle
databases manually” on page 744.

Alternatively, you can use the <oracle> element with the following attributes:

Table 124. Alternative attributes for the <oracle> element

Attribute Description Required Default

url Database connection URL Yes none

user User name for accessing database Yes none

password Password for accessing database No Queried interactively

Note: If you specify the database with the alternative attributes, this database must
exist, the user account must exist, and the database must already be accessible to
the user. In this case, the <configuredatabase> task does not attempt to create the
database nor the user, nor does it attempt to grant access to the user. The
<configuredatabase> task only ensures that the database has the required tables
for the current Worklight Server version. You do not have to specify the inner
element <dba>.

Creating and configuring the databases manually:

You can manually create and configure the IBM Worklight databases.

Configuring the DB2 databases manually:

You configure the DB2 databases manually by creating the databases, creating the
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the databases. This step is described in “Creating the DB2 databases” on
page 719

2. Create the tables in the databases. This step is described in “Setting up your
DB2 databases manually”

3. Perform the application server-specific setup as the following list shows.

Setting up your DB2 databases manually:

You can set up the database manually instead of using the Ant tasks.

About this task

Set up your DB2 database by creating the database schema. The following
procedure creates the schemas for WRKLGHT and WLREPORT in different databases, but
it is possible to group them in the same database. In this case, skip step 5.

732 IBM Worklight V6.1.0

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

1. Create a system user, worklight, in a DB2 admin group such as DB2USERS, by
using the appropriate commands for your operating system. Give it the
password password. For more information, see the DB2 documentation and the
documentation for your operating system.

Important: You can name your user differently, or set a different password, but
ensure that you enter the appropriate user name and password correctly across
the DB2 database setup. DB2 has a user name and password length limit of 8
characters for UNIX and Linux systems, and 30 characters for Windows.

Note: If you want multiple IBM Worklight Servers to connect to the same
database, use a different user name for each connection. Each database user has
a separate default schema.

2. Open a DB2 command line processor, with a user that has SYSADM or SYSCTRL
permissions:
v On Windows systems, click Start > IBM DB2 > Command Line Processor.
v On Linux or UNIX systems, go to ~/sqllib/bin and enter ./db2.

3. Enter the following database manager and SQL statements to create a database
that is called WRKLGHT:
CREATE DATABASE WRKLGHT COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WRKLGHT
GRANT CONNECT ON DATABASE TO USER worklight
QUIT

Where worklight is the name of the system user that you previously created. If
you defined a different user name, replace worklight with the user name.

4. Run DB2 with the following commands to create the WRKLGHT tables:
db2 CONNECT TO WRKLGHT USER worklight USING password
db2 SET CURRENT SCHEMA = ’WRKSCHM’
db2 -vf <worklight_install_dir>/WorklightServer/databases/create-worklight-db2.sql -t

Where worklight after USER is the name of the system user with "CONNECT"
access to the WRKLGHT database that you previously created, and password after
USING is this user's password. If you defined either a different user name, or a
different password, or both, replace worklight, or password, or both.
DB2 has a user name and password length limit of 8 characters for UNIX and
Linux systems, and 30 characters for Windows.

Important: If you do not specify the user name and password, DB2 assumes
that the user is the current user, and creates the tables by using this current
user's schema. If the current user differs from the settings in Worklight, then
the current user is denied access to the tables in the database.

5. Enter the following database manager and SQL statements to create a database
that is called WLREPORT:
CREATE DATABASE WLREPORT COLLATE USING SYSTEM PAGESIZE 32768
CONNECT TO WLREPORT
GRANT CONNECT ON DATABASE TO USER worklight
QUIT

6. Run DB2 with the following commands to create the WLREPORT tables:
db2 CONNECT TO WLREPORT USER worklight USING password
db2 SET CURRENT SCHEMA = ’WLRESCHM’
db2 -vf <worklight_install_dir>/WorklightServer/databases/create-worklightreports-db2.sql -t

Chapter 10. Deploying IBM Worklight projects 733

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Configuring Liberty Profile for DB2 manually:

If you want to manually set up and configure your DB2 database with WebSphere
Application Server Liberty Profile, use the following procedure.

About this task

Complete the DB2 Database Setup procedure before continuing.

Procedure

1. Add the DB2 JDBC driver JAR file (download it from DB2 JDBC Driver
Versions, or fetch it from the directory DB2_INSTALL_DIR/java on the DB2
server) to $LIBERTY_HOME/wlp/usr/shared/resources/db2. If that directory does
not exist, create it.

2. Configure the data source in the $LIBERTY_HOME/wlp/usr/servers/
worklightServer/server.xml file (worklightServer may be replaced in this path
by the name of your server) as follows:
<!-- Declare the jar files for DB2 access through JDBC. -->
<library id="DB2Lib">

<fileset dir="${shared.resource.dir}/db2" includes="*.jar"/>
</library>

<!-- Declare the Worklight Server project database -->
<dataSource jndiName="worklight/jdbc/WorklightDS" transactional="false">

<jdbcDriver libraryRef="DB2Lib"/>
<properties.db2.jcc databaseName="WRKLGHT" currentSchema="WRKSCHM"

serverName="db2server" portNumber="50000"
user="worklight" password="password"/>

</dataSource>

<!-- Declare the Worklight Server reports database -->
<dataSource jndiName="worklight/jdbc/WorklightReportsDS" transactional="false">

<jdbcDriver libraryRef="DB2Lib"/>
<properties.db2.jcc databaseName="WLREPORT" currentSchema="WLRESCHM"

serverName="db2server" portNumber="50000"
user="worklight" password="password"/>

</dataSource>

where worklight after user= is the name of the system user with "CONNECT"
access to the WRKLGHT database that you have previously created, and password
after password= is this user's password. If you have defined either a different
user name, or a different password, or both, replace these entries accordingly.
Also, replace db2server with the host name of your DB2 server (for example,
localhost, if it is on the same machine).
DB2 has a user name and password length limit of 8 characters for UNIXand
Linux systems, and 30 characters for Windows.
The jndiName attributes must depend on the context root that you select for the
Worklight Server application, following the instructions in “Configuring the
WebSphere Liberty Profile manually” on page 768. If the context root is
/app_context, use jndiName="app_context/jdbc/WorklightDS" and
jndiName="app_context/jdbc/WorklightReportsDS" respectively.

Configuring WebSphere Application Server for DB2 manually:

If you want to manually set up and configure your DB2 database with WebSphere
Application Server, use the following procedure.

734 IBM Worklight V6.1.0

http://www.ibm.com/support/docview.wss?uid=swg21363866
http://www.ibm.com/support/docview.wss?uid=swg21363866

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

Complete the DB2 Database Setup procedure before continuing.

Procedure

1. Add the DB2 JDBC driver JAR file (download it from DB2 JDBC Driver
Versions, or fetch it from the directory DB2_INSTALL_DIR/java on the DB2
server) to WAS_INSTALL_DIR/optionalLibraries/IBM/Worklight/6.0/db2. If that
directory does not exist, create it.

2. Set up the JDBC provider:
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers > New.
b. Set the scope of the JDBC connection to Node level.
c. Set Database type to DB2.
d. Set Provider type to DB2 Using IBM JCC Driver.
e. Set Implementation Type to Connection pool data source.
f. Set Name to DB2 Using IBM JCC Driver.
g. Click Next.
h. Set the class path to the set of JAR files in the directory

WAS_INSTALL_DIR/optionalLibraries/IBM/Worklight/6.0/db2, one per line.
i. Do not set Native library path.
j. Click Next.
k. Click Finish.
l. The JDBC provider is created.
m. Click Save.

3. Create a data source for the IBM Worklight database:
a. Select the new JDBC provider and click Data Source.
b. Click New to create a data source.
c. Set the Data source name to Worklight Database.
d. Set JNDI Name to jdbc/WorklightDS.
e. Click Next.
f. Enter properties for the data source: For example, Driver type: 4, Database

Name: WRKLGHT, Server name: localhost, Port number: 50000 (default).
Leave “Use this data source in (CMP)” checked;

g. Click Next.
h. Create JAAS-J2C authentication data, specifying the DB2 user name and

password for Container Connection.
i. Select the component-managed authentication alias that you created.
j. Click Next and Finish.
k. Click Save.
l. In Resources > JDBC > Data sources, select the new data source.
m. Click WebSphere Application Server data source properties.
n. Select the Non-transactional data source check box.
o. Click OK.
p. Click Save.
q. Click Custom properties for the datasource, select property currentSchema,

and set the value to the schema used to create the datasource tables
(WRKSCHM and WLRESCHM in this example).

Chapter 10. Deploying IBM Worklight projects 735

http://www.ibm.com/support/docview.wss?uid=swg21363866
http://www.ibm.com/support/docview.wss?uid=swg21363866

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

4. Create a data source for the IBM Worklight reports database:
a. Select the new JDBC provider and click Data Source.
b. Click New to create a data source.
c. Set the Data source name to Worklight Reports Database.
d. Set JNDI Name to jdbc/WorklightReportsDS.
e. Click Next.
f. Select the component-managed authentication alias that you created.
g. Click Next and Finish.
h. Click Save.
i. In Resources > JDBC > Data sources, select the new data source.
j. Click WebSphere Application Server data source properties.
k. Select the Non-transactional data source check box.
l. Click OK.
m. Click Save.
n. Click Custom properties for the datasource, select property currentSchema,

and set the value to the schema used to create the datasource tables
(WRKSCHM and WLRESCHM in this example).

5. Test the data source connection by selecting each Data Source and clicking Test
Connection.

Configuring Apache Tomcat for DB2 manually:

If you want to manually set up and configure your DB2 database with Apache
Tomcat server, use the following procedure.

About this task

Complete the DB2 Database Setup procedure before continuing.

Procedure

1. Add the DB2 JDBC driver JAR file (download it from DB2 JDBC Driver
Versions, or fetch it from the directory DB2_INSTALL_DIR/java on the DB2
server) to $TOMCAT_HOME/lib.

2. Update the $TOMCAT_HOME/conf/context.xml file as follows:
<Context>

...
<Resource auth="Container"

driverClassName="com.ibm.db2.jcc.DB2Driver"
name="jdbc/WorklightDS"
username="worklight"
password="password"
type="javax.sql.DataSource"
url="jdbc:db2://server:50000/WRKLGHT:currentSchema=WRKSCHM;"/>

<Resource auth="Container"
driverClassName="com.ibm.db2.jcc.DB2Driver"
name="jdbc/WorklightReportsDS"
username="worklight"
password="password"
type="javax.sql.DataSource"
url="jdbc:db2://server:50000/WLREPORT:currentSchema=WLRESCHM;"/>

...
</Context>

Where worklight after user= is the name of the system user with "CONNECT"
access to the WRKLGHT database that you have previously created, and password

736 IBM Worklight V6.1.0

http://www.ibm.com/support/docview.wss?uid=swg21363866
http://www.ibm.com/support/docview.wss?uid=swg21363866

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

after password= is this user's password. If you have defined either a different
user name, or a different password, or both, replace worklight accordingly.
DB2 has a user name and password length limit of 8 characters for UNIX and
Linux systems, and 30 characters for Windows.

Configuring the Apache Derby databases manually:

You configure the Apache Derby databases manually by creating the databases and
database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the databases and the tables within them. This step is described in
“Setting up your Apache Derby databases manually”

2. Configure the application server to use this database setup. Go to one of the
following topics:
v “Configuring Liberty Profile for Derby manually”
v “Configuring WebSphere Application Server for Derby manually” on page

738
v “Configuring Apache Tomcat for Derby manually” on page 740

Setting up your Apache Derby databases manually:

You can set up the database manually instead of using the Ant tasks. The
following topic explains how to set up the Apache Derby database manually.

About this task

Set up your Apache Derby database by creating the database schema.

Procedure

1. In the location where you want the database to be created, run ij.bat on
Windows systems or ij.sh on UNIX and Linux systems. The script displays ij
version 10.8.

Note: The ij program is part of Apache Derby. If you do not already have it
installed, you can download it from Apache Derby: Downloads.

2. At the command prompt, enter the following commands:
connect ’jdbc:derby:WRKLGHT;user=WORKLIGHT;create=true’;
run ’<worklight_install_dir>/WorklightServer/databases/create-worklight-derby.sql’;
connect ’jdbc:derby:WLREPORT;user=WORKLIGHT;create=true’;
run ’<worklight_install_dir>/WorklightServer/databases/create-worklightreports-derby.sql’;
quit;

Configuring Liberty Profile for Derby manually:

If you want to manually set up and configure your Apache Derby database with
WebSphere Application Server Liberty Profile, use the following procedure.

About this task

Complete the Apache Derby database setup procedure before continuing.

Chapter 10. Deploying IBM Worklight projects 737

http://db.apache.org/derby/derby_downloads

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of your
server) as follows:
<!-- Declare the jar files for Derby access through JDBC. -->
<library id="derbyLib">

<fileset dir="C:/Drivers/derby" includes="derby.jar" />
</library>

<!-- Declare the Worklight Server project database -->
<dataSource jndiName="worklight/jdbc/WorklightDS" transactional="false" statementCacheSize="10">

<jdbcDriver libraryRef="DerbyLib"
javax.sql.ConnectionPoolDataSource="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40"/>

<properties.derby.embedded databaseName="DERBY_DATABASES_DIR/WRKLGHT" user="WORKLIGHT"
shutdownDatabase="false" connectionAttributes="upgrade=true"/>

<connectionManager connectionTimeout="180"
maxPoolSize="10" minPoolSize="1"
reapTime="180" maxIdleTime="1800"
agedTimeout="7200" purgePolicy="EntirePool" />

</dataSource>

<!-- Declare the Worklight Server reports database -->
<dataSource jndiName="worklight/jdbc/WorklightReportsDS" transactional="false" statementCacheSize="10">

<jdbcDriver libraryRef="DerbyLib"
javax.sql.ConnectionPoolDataSource="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40"/>

<properties.derby.embedded databaseName="DERBY_DATABASES_DIR/WLREPORT" user="WORKLIGHT"
shutdownDatabase="false" connectionAttributes="upgrade=true"/>

<connectionManager connectionTimeout="180"
maxPoolSize="10" minPoolSize="1"
reapTime="180" maxIdleTime="1800"
agedTimeout="7200" purgePolicy="EntirePool" />

</dataSource>

The jndiName attributes must depend on the context root that you select for the
Worklight Server application, following the instructions in “Configuring the
WebSphere Liberty Profile manually” on page 768. If the context root is
/app_context, use jndiName="app_context/jdbc/WorklightDS" and
jndiName="app_context/jdbc/WorklightReportsDS" respectively.

Configuring WebSphere Application Server for Derby manually:

If you want to manually set up and configure your Apache Derby database for
Application Center with WebSphere Application Server, use the following
procedure.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Add the Derby JAR file from WORKLIGHT_INSTALL_DIR/ApplicationCenter/tools/
lib/derby.jar to WAS_INSTALL_DIR/optionalLibraries/IBM/Worklight/6.0/
derby. If that directory does not exist, create it.

2. Set up the JDBC provider.
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers.
b. Set the scope to Node level.

738 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

c. Click New.
d. Set Database type to User-defined.
e. Set Class Implementation name to

org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40.
f. Set Name to Worklight - Derby JDBC Provider.
g. Set Description to Derby JDBC provider for Worklight.
h. Click Next.
i. Set the Class path to WAS_INSTALL_DIR/optionalLibraries/IBM/Worklight/

6.0/derby/derby.jar.
j. Click Finish.

3. Create the data source for the IBM Worklight database.
a. In the WebSphere Application Server console, click Resources > JDBC >

Data sources.
b. Set the scope to Node level.
c. Click New.
d. Set Data source Name to Worklight Database.
e. Set JNDI name to jdbc/WorklightDS.
f. Click Next.
g. Select the existing JDBC provider that is named Worklight - Derby JDBC

Provider.
h. Click Next.
i. Click Next.
j. Click Finish.
k. Click Save.
l. In the table, click the Worklight Database datasource that you created.
m. Under Additional Properties, click Custom properties.
n. Click databaseName.
o. Set Value to the path to the WRKLGHT database that is created by the

configuredatabase ant task.
p. Click OK.
q. Click Save.

r. At the top of the page, click Worklight Database.
s. Under Additional Properties, click WebSphere Application Server data

source properties.
t. Select Non-transactional datasource.
u. Click OK.
v. Click Save.
w. In the table, select the Worklight Database datasource that you created.
x. Click test connection (only if you are not on the console of a WAS

Deployment Manager).
4. Set up the data source for the IBM Worklight report database.

a. In the WebSphere Application Server console, click Resources > JDBC >
Data sources.

b. Set the scope to Node level.
c. Click New.
d. Set Data source name to Worklight Reports Database.

Chapter 10. Deploying IBM Worklight projects 739

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

e. Set JNDI name to jdbc/WorklightReportsDS.
f. Click Next.
g. Select the existing JDBC provider that is named Worklight - Derby JDBC

Provider.
h. Click Next.
i. Click Next.
j. Click Finish.
k. Click Save.
l. In the table, click the Worklight Reports Database datasource that you

created.
m. Under Additional properties, click Custom properties.
n. Click databaseName.
o. Set Value to the path to the WLREPORT database that is created by the

configuredatabase ant task.
p. Click OK.
q. Click Save.
r. At the top of the page, click Worklight Reports Database.
s. Under Additional Properties, click WebSphere Application Server data

source properties.
t. Select Non-transactional datasource.
u. Click OK.
v. Click Save.
w. In the table, select the Worklight Reports Database datasource that you

created.
x. Click test connection (only if you are not on the console of a WAS

Deployment Manager).

Configuring Apache Tomcat for Derby manually:

If you want to manually set up and configure your Apache Derby database with
the Apache Tomcat server, use the following procedure.

About this task

Complete the Apache Derby database setup procedure before continuing.

Procedure

1. Add the Derby JAR file from WORKLIGHT_INSTALL_DIR/ApplicationCenter/tools/
lib/derby.jar to the directory $TOMCAT_HOME/lib.

2. Update the $TOMCAT_HOME/conf/context.xml file as follows:
<Context>

...
<Resource auth="Container"

driverClassName="org.apache.derby.jdbc.EmbeddedDriver"
name="jdbc/WorklightDS"
username="WORKLIGHT"
password=""
type="javax.sql.DataSource"
url="jdbc:derby:DERBY_DATABASES_DIR/WRKLGHT"/>

<Resource auth="Container"
driverClassName="org.apache.derby.jdbc.EmbeddedDriver"
name="jdbc/WorklightReportsDS"
username="WORKLIGHT"

740 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

password=""
type="javax.sql.DataSource"
url="jdbc:derby:DERBY_DATABASES_DIR/WLREPORT"/>

...
</Context>

Configuring the MySQL databases manually:

You configure the MySQL databases manually by creating the databases, creating
the database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the databases. This step is described in “Creating the MySQL databases”
on page 720

2. Create the tables in the databases. This step is described in “Setting up your
MySQL databases manually”

3. Perform the application server-specific setup as the following list shows.

Setting up your MySQL databases manually:

You can set up the database manually instead of using the Ant tasks.

About this task

Complete the following procedure to set up your MySQL databases.

Procedure

1. Create the database schema.
a. Run a MySQL command line client with the option -u root.
b. Enter the following commands:

CREATE DATABASE WRKLGHT CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON WRKLGHT.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’password’;
GRANT ALL PRIVILEGES ON WRKLGHT.* TO ’worklight’@’localhost’ IDENTIFIED BY ’password’;
FLUSH PRIVILEGES;
CREATE DATABASE WLREPORT CHARACTER SET utf8 COLLATE utf8_general_ci;
GRANT ALL PRIVILEGES ON WLREPORT.* TO ’worklight’@’Worklight-host’ IDENTIFIED BY ’password’;
GRANT ALL PRIVILEGES ON WLREPORT.* TO ’worklight’@’localhost’ IDENTIFIED BY ’password’;
FLUSH PRIVILEGES;

USE WRKLGHT;
SOURCE <worklight_install_dir>/WorklightServer/databases/create-worklight-mysql.sql;

USE WLREPORT;
SOURCE <worklight_install_dir>/WorklightServer/databases/create-worklightreports-mysql.sql;

Where worklight before the "at" sign (@) is the user name, password after
IDENTIFIED BY is its password, and Worklight-host is the name of the host
on which IBM Worklight runs.

2. Add the following property to your MySQL option file:
max_allowed_packet=16M

For more information about max_allowed_packet, see the MySQL
documentation, section Packet Too Large.
For more information about option files, see the MySQL documentation at
MySQL.

Chapter 10. Deploying IBM Worklight projects 741

http://dev.mysql.com/doc/refman/5.5/en/packet-too-large.html
http://dev.mysql.com

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Configuring Liberty Profile for MySQL manually:

If you want to manually set up and configure your MySQL database with
WebSphere Application Server Liberty Profile, use the following procedure.

About this task

Complete the MySQL database setup procedure before continuing.

Procedure

1. Add the MySQL JDBC driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/mysql. If that directory does not exist, create it.

2. Configure the data source in the $LIBERTY_HOME/usr/servers/worklightServer/
server.xml file (worklightServer may be replaced in this path by the name of
your server) as follows:
<!-- Declare the jar files for MySQL access through JDBC. -->
<library id="MySQLLib">

<fileset dir="${shared.resource.dir}/mysql" includes="*.jar"/>
</library>

<!-- Declare the Worklight Server project database -->
<dataSource jndiName="worklight/jdbc/WorklightDS" transactional="false">

<jdbcDriver libraryRef="MySQLLib"/>
<properties databaseName="WRKLGHT"

serverName="mysqlserver" portNumber="3306"
user="worklight" password="password"/>

</dataSource>

<!-- Declare the Worklight Server reports database -->
<dataSource jndiName="worklight/jdbc/WorklightReportsDS" transactional="false">

<jdbcDriver libraryRef="MySQLLib"/>
<properties databaseName="WLREPORT"

serverName="mysqlserver" portNumber="3306"
user="worklight" password="password"/>

</dataSource>

where worklight after user= is the user name, password after password= is this
user's password, and mysqlserver is the host name of your MySQL server (for
example, localhost, if it is on the same machine).
The jndiName attributes must depend on the context root that you select for the
Worklight Server application, following the instructions in “Configuring the
WebSphere Liberty Profile manually” on page 768. If the context root is
/app_context, use jndiName="app_context/jdbc/WorklightDS" and
jndiName="app_context/jdbc/WorklightReportsDS" respectively.

Configuring WebSphere Application Server for MySQL manually:

If you want to manually set up and configure your MySQL database for
Application Center with WebSphere Application Server, use the following
procedure.

About this task

Complete the MySQL database setup procedure before continuing.

Note: MySQL in combination with WebSphere Application Server Liberty Profile
or WebSphere Application Server Full Profile is not classified as a supported

742 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

configuration. For more information, see WebSphere Application Server Support
Statement. We suggest that you use IBM DB2 or another database supported by
WebSphere Application Server to benefit from a configuration that is fully
supported by IBM Support.

Procedure

1. Set up the JDBC provider:
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers.
b. Create a JDBC provider named MySQL.
c. Set Database type to User defined.
d. Set Scope to Cell.
e. Set Implementation class to

com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource.
f. Set Database classpath to the location of the MySQL JDBC connector .jar file.
g. Save your changes.

2. Create a data source for the IBM Worklight database:
a. Click Resources > JDBC > Data sources.
b. Click New to create a data source.
c. Type any name (for example, Worklight Database).
d. Set JNDI Name to jdbc/WorklightDS.
e. Use the existing JDBC Provider MySQL, defined in the previous step.
f. Set Scope to New.
g. On the Configuration tab, select Non-transactional data source.
h. Click Next a number of times, leaving all other settings as defaults.
i. Save your changes.

3. Create a data source for the IBM Worklight reports database:
a. Click New to create a data source.
b. Type any name (for example, Worklight Report Database).
c. Set JNDI Name to jdbc/WorklightReportsDS.
d. Use the existing JDBC Provider MySQL, defined in the previous step.
e. Set Scope to New.
f. On the Configuration tab, select Non-transactional data source. New.
g. Click Next a number of times, leaving all other settings as defaults.
h. Save your changes.

4. Set the custom properties of each new data source.
a. Select the new data source.
b. Click Custom properties.
c. Set the following properties:

portNumber = 3306
relaxAutoCommit=true
databaseName = WRKLGHT or WLREPORT respectively
serverName = the host name of the MySQL server
user = the user name of the MySQL server
password = the password associated with the user name

5. Set the WAS custom properties of each new data source.
a. In Resources > JDBC > Data sources, select the new data source.
b. Click WebSphere Application Server data source properties.

Chapter 10. Deploying IBM Worklight projects 743

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

c. Select the Non-transactional data source check box.
d. Click OK.
e. Click Save.

Configuring Apache Tomcat for MySQL manually:

If you want to manually set up and configure your MySQL database with the
Apache Tomcat server, use the following procedure.

About this task

Complete the MySQL database setup procedure before continuing.

Procedure

1. Add the MySQL Connector/J JAR file to the $TOMCAT_HOME/lib directory.
2. Update the $TOMCAT_HOME/conf/context.xml file as follows:

<Context>
...
<Resource name="jdbc/WorklightDS"

auth="Container"
type="javax.sql.DataSource"
maxActive="100"
maxIdle="30"
maxWait="10000"
username="worklight"
password="password"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://server:3306/WRKLGHT"/>

<Resource name="jdbc/WorklightReportsDS"
auth="Container"
type="javax.sql.DataSource"
maxActive="100"
maxIdle="30"
maxWait="10000"
username="worklight"
password="password"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://server:3306/WLREPORT"/>

...
</Context>

Configuring the Oracle databases manually:

You configure the Oracle databases manually by creating the databases, creating
the database tables, and then configuring the relevant application server to use this
database setup.

Procedure

1. Create the databases. This step is described in “Creating the Oracle databases”
on page 721

2. Create the tables in the databases. This step is described in “Setting up your
Oracle databases manually”

3. Perform the application server-specific setup as the following list shows.

Setting up your Oracle databases manually:

You can set up the database manually instead of using the Ant tasks.

744 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

Complete the following procedure to set up your Oracle databases.

Procedure

1. Ensure that you have at least one Oracle database. In many Oracle installations,
the default database has the SID (name) ORCL. For best results, the character set
of the database should be set to Unicode (AL32UTF8).
If the Oracle installation is on a UNIX or Linux machine, make sure that the
database will be started the next time the Oracle installation is restarted. To this
effect, make sure the line in /etc/oratab that corresponds to the database ends
with a Y, not with an N.

2. Create the user WORKLIGHT, either by using Oracle Database Control, or by using
the Oracle SQLPlus command-line interpreter.
Create the user for the IBM Worklight database/schema, by using Oracle
Database Control:
a. Connect as SYSDBA.
b. Go to the Users page.
c. Click Server, then Users in the Security section.
d. Create a user named WORKLIGHT with the following attributes:

Profile: DEFAULT
Authentication: password
Default tablespace: USERS
Temporary tablespace: TEMP
Status: UNLOCK
Add role: CONNECT
Add role: RESOURCE
Add system privilege: CREATE VIEW
Add system privilege: UNLIMITED TABLESPACE

Repeat the previous step to create the user WORKLIGHTREPORTS for the IBM
Worklight reports database/schema and a user APPCENTER for the IBM
Application Center database/schema.

To create the two users by using Oracle SQLPlus, enter the following
commands:
CONNECT system/system_password@ORCL
CREATE USER WORKLIGHT IDENTIFIED BY WORKLIGHT_password;
GRANT CONNECT, RESOURCE, CREATE VIEW TO WORKLIGHT;
DISCONNECT;
CONNECT system/system_password@ORCL
CREATE USER WORKLIGHTREPORTS IDENTIFIED BY WORKLIGHTREPORTS_password;
GRANT CONNECT, RESOURCE, CREATE VIEW TO WORKLIGHTREPORTS;
DISCONNECT;

3. Create the database tables for the IBM Worklight database and IBM Worklight
reports database:
a. Using the Oracle SQLPlus command-line interpreter, create the required

tables for the IBM Worklight database by running the create-worklight-
oracle.sql file:
CONNECT WORKLIGHT/<WORKLIGHT_password>@ORCL
@<worklight_install_dir>/WorklightServer/databases/create-worklight-oracle.sql
DISCONNECT;

b. Using the Oracle SQLPlus command-line interpreter, create the required
tables for the IBM Worklight report database by running the
create-worklightreports-oracle.sql file:

Chapter 10. Deploying IBM Worklight projects 745

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

CONNECT WORKLIGHTREPORTS/<WORKLIGHTREPORTS_password>@ORCL
@<worklight_install_dir>/WorklightServer/databases/create-worklightreports-oracle.sql
DISCONNECT;

4. Download and configure the Oracle JDBC driver:
a. Download the JDBC driver from the Oracle website at Oracle: JDBC, SQLJ,

Oracle JPublisher and Universal Connection Pool (UCP):
b. Ensure that the Oracle JDBC driver is in the system path. The driver file is

ojdbc6.jar.

Configuring Liberty Profile for Oracle manually:

If you want to manually set up and configure your Oracle database with
WebSphere Application Server Liberty Profile, use the following procedure.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Add the Oracle JDBC Driver JAR file to $LIBERTY_HOME/wlp/usr/shared/
resources/oracle. If that directory does not exist, create it.

2. If you are using JNDI, configure the data sources in the $LIBERTY_HOME/wlp/usr/
servers/worklightServer/server.xml file (worklightServer may be replaced in
this path by the name of your server) as shown in the following JNDI code
example:
<!-- Declare the jar files for Oracle access through JDBC. -->
<library id="OracleLib">

<fileset dir="${shared.resource.dir}/oracle" includes="*.jar"/>
</library>

<!-- Declare the Worklight Server project database -->
<dataSource jndiName="worklight/jdbc/WorklightDS" transactional="false">

<jdbcDriver libraryRef="OracleLib"/>
<properties.oracle driverType="thin" databaseName="ORCL"

serverName="oserver" portNumber="1521"
user="WORKLIGHT" password="WORKLIGHT_password"/>

</dataSource>

<!-- Declare the Worklight Server reports database -->
<dataSource jndiName="worklight/jdbc/WorklightReportsDS" transactional="false">

<jdbcDriver libraryRef="OracleLib"/>
<properties.oracle driverType="thin" databaseName="ORCL"

serverName="oserver" portNumber="1521"
user="WORKLIGHTREPORTS" password="WORKLIGHTREPORTS_password"/>

</dataSource>

Where oserver is the host name of your Oracle server (for example, localhost, if
it is on the same machine).
The jndiName attributes must depend on the context root that you select for the
Worklight Server application, following the instructions in “Configuring the
WebSphere Liberty Profile manually” on page 768. If the context root is
/app_context, use jndiName="app_context/jdbc/WorklightDS" and
jndiName="app_context/jdbc/WorklightReportsDS" respectively.

746 IBM Worklight V6.1.0

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Configuring WebSphere Application Server for Oracle manually:

If you want to manually set up and configure your DB2 database with WebSphere
Application Server, use the following procedure.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Set up the JDBC provider:
a. In the WebSphere Application Server console, click Resources > JDBC >

JDBC Providers > New.
b. Set the scope of the JDBC connection to Node.
c. Complete the JDBC Provider fields as indicated in the following table:

Table 125. JDBC Provider field values

Field Value

Database type Oracle

Provider type Oracle JDBC Driver

Implementation type Connection pool data source

Name Oracle JDBC Driver

d. Click Next.
e. Set the class path for the ojdbc6.jar file, for example /home/Oracle-jar/

ojdbc6.jar.
f. Click Next.

The JDBC provider is created.
2. Create a data source for the IBM Worklight database:

a. Click Resources > JDBC > Data sources > New.
b. Set Data source name to Oracle JDBC Driver DataSource.
c. Set JNDI name to jdbc/WorklightDS.
d. Click Next.
e. Click Select an existing JDBC provider and select Oracle JDBC driver from

the list.
f. Click Next.
g. Set the URL value to jdbc:oracle:thin:@oserver:1521/ORCL, where oserver

is the host name of your Oracle server (for example, localhost, if it is on the
same machine).

h. Click Next twice.
i. Click Resources > JDBC > Data sources > Oracle JDBC Driver DataSource

> Custom properties.
j. Set oracleLogPackageName to oracle.jdbc.driver.
k. Set user = WORKLIGHT.
l. Set password = WORKLIGHT_password.
m. Click OK and save the changes.
n. In Resources > JDBC > Data sources, select the new data source.
o. Click WebSphere Application Server data source properties.
p. Select Non-transactional data source.

Chapter 10. Deploying IBM Worklight projects 747

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

q. Click OK.
r. Click Save.

3. Create a data source for the IBM Worklight reports database, following the
instructions in step 2, but using the JNDI name jdbc/WorklightReportsDS and
the user name WORKLIGHTREPORTS and its corresponding password.

Configuring Apache Tomcat for Oracle manually:

If you want to manually set up and configure your Oracle database with the
Apache Tomcat server, use the following procedure.

About this task

Complete the Oracle database setup procedure before continuing.

Procedure

1. Add the Oracle JDBC driver JAR file to the directory $TOMCAT_HOME/lib.
2. Update the $TOMCAT_HOME/conf/context.xml file as follows:

<Context>
...
<Resource name="jdbc/WorklightDS"

auth="Container"
type="javax.sql.DataSource"
driverClassName="oracle.jdbc.driver.OracleDriver"
url="jdbc:oracle:thin:@oserver:1521/ORCL"
username="WORKLIGHT"
password="WORKLIGHT_password"/>

<Resource name="jdbc/WorklightReportsDS"
auth="Container"
type="javax.sql.DataSource"
driverClassName="oracle.jdbc.driver.OracleDriver"
url="jdbc:oracle:thin:@oserver:1521/ORCL"
username="WORKLIGHTREPORTS"
password="WORKLIGHTREPORTS_password"/>

...
</Context>

Where oserver is the host name of your Oracle server (for example, localhost, if
it is on the same machine).

Deploying a project WAR file and configuring the application
server
You can deploy a project WAR file to an application server, and configure the
application server, as detailed here.

Deploying a project WAR file and configuring the application server with Ant
tasks:

Use Ant tasks to deploy the project WAR file to an application server, and
configure data sources, properties, and database drivers for use by IBM Worklight
as detailed here.

The <configureapplicationserver> Ant task

You can use the <configureapplicationserver> Ant task to configure an
application server for a Worklight project. This configured application includes the
Worklight console. The input for this configuration is the Worklight project WAR
file. The task:

748 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Installs the project WAR file as an application in the application server.
v Configures the data sources for IBM Worklight and for the IBM Worklight

reports.
v Configures Worklight configuration properties (through JNDI).
v Installs the database drivers and the Worklight Server runtime library

(worklight-jee-library.jar) in the application server.

To start the Ant task, you need an Ant XML file with one or more invocations of
the <configureapplicationserver> task. If you want to start the Ant task from a
computer on which Worklight Server is not installed, you must copy the files
<WorklightInstallDir>/WorklightServer/worklight-ant-deployer.jar and
<WorklightInstallDir>/WorklightServer/worklight-jee-library.jar to this
computer.

Before starting the <configureapplicationserver> task, you must create and
configure the databases. See “Creating and configuring the databases with Ant
tasks” on page 722 for details.

Note: The <database> elements that are passed to <configureapplicationserver>
must be consistent with the <configuredatabase> invocations that were used when
configuring the databases.

The Ant task must be run on the same computer as the application server. If you
use WebSphere Application Server Network Deployment as the application server,
the Ant task must be run on the same machine as the deployment manager.

The <unconfigureapplicationserver> Ant task

Use the <unconfigureapplicationserver> Ant task to remove the configuration
that was done by an earlier <configureapplicationserver> invocation. This Ant
task takes the same parameters as the <configureapplicationserver> invocation.

The <updateapplicationserver> Ant task

You can use the <updateapplicationserver> Ant task to update the WAR file and,
optionally, also update the runtime library in the application server, following an
earlier <configureapplicationserver> invocation. It does not change the other
elements of the application server configuration (such as data sources or JNDI
properties).

This Ant task is useful in two situations:
v When you receive an updated project WAR file.
v When you upgrade to a new Worklight Server fix pack; that is, an upgrade in

which only the fourth digit of the Worklight Server version has changed.

The <updateapplicationserver> Ant task takes the same parameters as the
<configureapplicationserver> invocation, except that the <database> elements
may be omitted.

Sample Ant XML files are presented in the following sections.

Chapter 10. Deploying IBM Worklight projects 749

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Sample Ant XML file for WebSphere Application Server Liberty Profile with
Derby databases

Note: The Apache Derby database is provided in the IBM Worklight distribution,
but is not suggested for use in production environments. In these environments, an
IBM DB2, MySQL, or Oracle database is more common and more appropriate. The
following Ant XML examples are provided in case you want to install the Apache
Derby database in a test application server environment.
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="install">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="/opt/IBM/Worklight/WorklightServer/worklight-ant-deployer.jar"/>
</classpath>

</taskdef>

<target name="databases">
<configuredatabase kind="Worklight">

<derby database="WRKLGHT" datadir="/var/ibm/Worklight/derby"/>
</configuredatabase>
<configuredatabase kind="WorklightReports">

<derby database="WLREPORT" datadir="/var/ibm/Worklight/derby"/>
</configuredatabase>

</target>

<target name="install">
<configureapplicationserver shortcutsDir="/tmp/shortcuts">

<project warfile="/n/download/testWorklight.war"/>

<!-- Here you can define values which override the
default values of Worklight configuration properties -->

<property name="serverSessionTimeout" value="10"/>

<applicationserver>
<websphereapplicationserver installdir="/n/java/webservers/was-liberty-8.5-express"

profile="Liberty">
<server name="server1"/>

</websphereapplicationserver>
</applicationserver>
<database kind="Worklight">

<derby database="WRKLGHT" datadir="/var/ibm/Worklight/derby"/>
</database>
<database kind="WorklightReports">

<derby database="WLREPORT" datadir="/var/ibm/Worklight/derby"/>
</database>

</configureapplicationserver>
</target>

<target name="uninstall">
<unconfigureapplicationserver shortcutsDir="/tmp/shortcuts">

<project warfile="/n/download/testWorklight.war"/>
<property name="serverSessionTimeout" value="10"/>
<applicationserver>

<websphereapplicationserver installdir="/n/java/webservers/was-liberty-8.5-express"
profile="Liberty">

<server name="server1"/>
</websphereapplicationserver>

</applicationserver>
<database kind="Worklight">

<derby database="WRKLGHT" datadir="/var/ibm/Worklight/derby"/>
</database>
<database kind="WorklightReports">

<derby database="WLREPORT" datadir="/var/ibm/Worklight/derby"/>

750 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

</database>
</unconfigureapplicationserver>

</target>
</project>

Sample Ant XML file for an Apache Tomcat server with MySQL databases
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="install">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="/opt/IBM/Worklight/WorklightServer/worklight-ant-deployer.jar"/>
</classpath>

</taskdef>

<target name="databases">
<configuredatabase kind="Worklight">

<mysql database="WRKLGHT" server="proddb.example.com" user="wl6test" password="wl6pass">
<dba user="root" password="UnGuessable"/>
<client hostname="localhost"/>
<client hostname="prodtomcat.example.com"/>

</mysql>
<driverclasspath>

<pathelement location="/opt/database-drivers/mysql/mysql-connector-java-5.1.25-bin.jar"/>
</driverclasspath>

</configuredatabase>
<configuredatabase kind="WorklightReports">

<mysql database="WLREPORT" server="proddb.example.com" user="wl6test" password="wl6pass">
<dba user="root" password="UnGuessable"/>
<client hostname="localhost"/>
<client hostname="prodtomcat.example.com"/>

</mysql>
<driverclasspath>

<pathelement location="/opt/database-drivers/mysql/mysql-connector-java-5.1.25-bin.jar"/>
</driverclasspath>

</configuredatabase>
</target>

<target name="install">
<configureapplicationserver shortcutsDir="/tmp/shortcuts">

<project warfile="/n/download/testWorklight.war"/>

<!-- Here you can define values which override the
default values of Worklight configuration properties -->

<property name="serverSessionTimeout" value="10"/>

<applicationserver>
<tomcat installdir="/n/java/webservers/tomcat-7.0.23"/>

</applicationserver>
<database kind="Worklight">

<mysql database="WRKLGHT" server="proddb.example.com" user="wl6test" password="wl6pass"/>
<driverclasspath>

<pathelement location="/opt/database-drivers/mysql/mysql-connector-java-5.1.25-bin.jar"/>
</driverclasspath>

</database>
<database kind="WorklightReports">

<mysql database="WLREPORT" server="proddb.example.com" user="wl6test" password="wl6pass"/>
<driverclasspath>

<pathelement location="/opt/database-drivers/mysql/mysql-connector-java-5.1.25-bin.jar"/>
</driverclasspath>

</database>
</configureapplicationserver>

</target>

<target name="uninstall">
<unconfigureapplicationserver shortcutsDir="/tmp/shortcuts">

<project warfile="/n/download/testWorklight.war"/>

Chapter 10. Deploying IBM Worklight projects 751

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<property name="serverSessionTimeout" value="10"/>
<applicationserver>

<tomcat installdir="/n/java/webservers/tomcat-7.0.23"/>
</applicationserver>
<database kind="Worklight">

<mysql database="WRKLGHT" server="proddb.example.com" user="wl6test" password="wl6pass"/>
<driverclasspath>

<pathelement location="/opt/database-drivers/mysql/mysql-connector-java-5.1.25-bin.jar"/>
</driverclasspath>

</database>
<database kind="WorklightReports">

<mysql database="WLREPORT" server="proddb.example.com" user="wl6test" password="wl6pass"/>
<driverclasspath>

<pathelement location="/opt/database-drivers/mysql/mysql-connector-java-5.1.25-bin.jar"/>
</driverclasspath>

</database>
</unconfigureapplicationserver>

</target>
</project>

Sample Ant XML file for a WebSphere Application Server Full Profile with DB2
databases
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="install">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="/opt/IBM/Worklight/WorklightServer/worklight-ant-deployer.jar"/>
</classpath>

</taskdef>

<target name="databases">
<configuredatabase kind="Worklight">

<db2 database="WRKLGHT" server="proddb.example.com" user="wl6test" password="wl6pass">
<dba user="db2inst1" password="db2IsFun"/>

</db2>
<driverclasspath>

<fileset dir="/opt/database-drivers/db2-9.7">
<include name="db2jcc4.jar"/>
<include name="db2jcc_license_*.jar"/>

</fileset>
</driverclasspath>

</configuredatabase>
<configuredatabase kind="WorklightReports">

<db2 database="WLREPORT" server="proddb.example.com" user="wl6test" password="wl6pass">
<dba user="db2inst1" password="db2IsFun"/>

</db2>
<driverclasspath>

<fileset dir="/opt/database-drivers/db2-9.7">
<include name="db2jcc4.jar"/>
<include name="db2jcc_license_*.jar"/>

</fileset>
</driverclasspath>

</configuredatabase>
</target>

<target name="install">
<configureapplicationserver shortcutsDir="/tmp/shortcuts">

<project warfile="/n/download/testWorklight.war" libraryfile="/n/download/worklight-jee-library.jar"/>

<!-- Here you can define values which override the
default values of Worklight configuration properties -->

<property name="serverSessionTimeout" value="10"/>

<applicationserver>
<websphereapplicationserver installdir="/n/java/webservers/was-8.0-express"

profile="AppSrv01"

752 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

user="admin" password="admin">
<server name="server1"/>

</websphereapplicationserver>
</applicationserver>
<database kind="Worklight">

<db2 database="WRKLGHT" server="proddb.example.com" user="wl6test" password="wl6pass"/>
<driverclasspath>

<fileset dir="/opt/database-drivers/db2-9.7">
<include name="db2jcc4.jar"/>
<include name="db2jcc_license_*.jar"/>

</fileset>
</driverclasspath>

</database>
<database kind="WorklightReports">

<db2 database="WLREPORT" server="proddb.example.com" user="wl6test" password="wl6pass"/>
<driverclasspath>

<fileset dir="/opt/database-drivers/db2-9.7">
<include name="db2jcc4.jar"/>
<include name="db2jcc_license_*.jar"/>

</fileset>
</driverclasspath>

</database>
</configureapplicationserver>

</target>

<target name="uninstall">
<unconfigureapplicationserver shortcutsDir="/tmp/shortcuts">

<project warfile="/n/download/testWorklight.war" libraryfile="/n/download/worklight-jee-library.jar"/>
<property name="serverSessionTimeout" value="10"/>
<applicationserver>

<websphereapplicationserver installdir="/n/java/webservers/was-8.0-express"
profile="AppSrv01"
user="admin" password="admin">

<server name="server1"/>
</websphereapplicationserver>

</applicationserver>
<database kind="Worklight">

<db2 database="WRKLGHT" server="proddb.example.com" user="wl6test" password="wl6pass"/>
<driverclasspath>

<fileset dir="/opt/database-drivers/db2-9.7">
<include name="db2jcc4.jar"/>
<include name="db2jcc_license_*.jar"/>

</fileset>
</driverclasspath>

</database>
<database kind="WorklightReports">

<db2 database="WLREPORT" server="proddb.example.com" user="wl6test" password="wl6pass"/>
<driverclasspath>

<fileset dir="/opt/database-drivers/db2-9.7">
<include name="db2jcc4.jar"/>
<include name="db2jcc_license_*.jar"/>

</fileset>
</driverclasspath>

</database>
</unconfigureapplicationserver>

</target>
</project>

Ant configureapplicationserver task reference:

Reference information for the <configureapplicationserver>,
<updateapplicationserver>, and <unconfigureapplicationserver> Ant tasks.

The <configureapplicationserver> task configures an application server to run a
Worklight project's WAR file as a web application. In detail:

Chapter 10. Deploying IBM Worklight projects 753

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v It declares the Worklight web application in the specified context root
(/worklight by default).

v It deploys the project's WAR file on the application server.
v It declares data sources and – on WebSphere Application Server Full Profile –

JDBC providers for Worklight and Worklight reports.
v It deploys the Worklight Server runtime (worklight-jee-library.jar) and the

database drivers in the application server.
v It configures Worklight configuration properties, through JNDI environment

entries. These JNDI environment entries override the Worklight project's default
values that are contained in the worklight.properties file inside the WAR file.

v On WebSphere Application Server, it configures a needed web container custom
property.

The <updateapplicationserver> task updates an already-configured Worklight web
application on an application server. In detail:
v It updates the project's WAR file (which must have the same basename as the

project WAR file previously deployed).
v It updates the Worklight Server runtime library (worklight-jee-library.jar).

It does not change the application server's configuration (web application
configuration, data sources, JNDI environment entries).

The <unconfigureapplicationserver> task undoes the effects of an earlier
<configureapplicationserver> invocation. In detail:
v It removes the configuration of the Worklight web application with the specified

context root. This also removes the settings that have been added manually to
that application.

v It removes the project's WAR file from the application server.
v It removes the data sources and – on WebSphere Application Server Full Profile

– the JDBC providers for Worklight and Worklight reports.
v It removes the Worklight Server runtime library (worklight-jee-library.jar)

and the database drivers from the application server.
v It removes the associated JNDI environment entries.

The <configureapplicationserver>, <updateapplicationserver>, and
<unconfigureapplicationserver> tasks have the following attributes:

Table 126. Attributes for the <configureapplicationserver>, <updateapplicationserver>, and
<unconfigureapplicationserver>Ant tasks

Attribute Description Required Default

contextroot Common prefix of path of URLs to the
application (context root)

No /worklight

id Distinguishes different deployments No empty

shortcutsDir Directory where to place shortcuts No none

The contextroot and id attributes distinguish different Worklight projects. By
default, when a project is created in Worklight Studio V6.0.0 and higher, its context
root is the name of the project; the default value of /worklight was chosen to
facilitate backward compatibility with Worklight V5.x applications.

754 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

In WebSphere Application Server Liberty profile and in Tomcat environments, the
contextroot parameter is sufficient for this purpose. In WebSphere Application
Server Full profile environments, the id attribute is used instead.

The shortcutsDir attribute specifies where to place shortcuts to the Worklight
console. If this attribute is set, three files can be added to this directory:
v A file worklight-console.url. This file is a Windows shortcut. It opens the

Worklight console in a browser.
v A file worklight-console.sh. This file is a UNIX shell script that opens the

Worklight console in a browser.
v A file worklight-console.html. This file is a web page for testing Worklight

console deployments in WebSphere Application Server Network Deployment
environments.

The <configureapplicationserver>, <updateapplicationserver>, and
<unconfigureapplicationserver> tasks support the following elements:

Table 127. Inner elements for the <configureapplicationserver>, <updateapplicationserver>,
and <unconfigureapplicationserver> Ant tasks

Element Description Count

project Project 1

property Properties 0..∞

applicationserver Application server 1

reports Reports 0..1

database Databases 2

The element <project> specifies details about the project to deploy into the
application server. It has the following attributes:

Table 128. Attributes for the <project> element

Attribute Description Required Default

warfile Project WAR file Yes none

libraryfileFile name of worklight-jee-
library.jar

No In the same directory as
worklight-ant-
deployer.jar

migrate Whether to auto-migrate the WAR file
to the current Worklight Server version

No true

migratedWarBackupFileWhere to store a backup of the migrated
WAR file

No

The warfile is created through the <war-builder> Ant task. See “Building a project
WAR file with Ant” on page 714.

The WAR file is automatically migrated to the current Worklight Server version by
default. In this case, you can request that a backup of the migrated WAR file is
stored on disk, before it is deployed in the application server. You do this by
specifying a value for the migratedWarBackupFile attribute. If you set migrate to

Chapter 10. Deploying IBM Worklight projects 755

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

false, migration of the WAR file is not done, and the deployment fails if the
Worklight version that produced the WAR file is not suitable for the Worklight
Server version.

The element <property> specifies a deployment property that is to be defined in
the application server. It has the following attributes:

Table 129. Attributes for the <property> element

Attribute Description Required Default

name Name of the property Yes none

value Value for the property Yes none

For general information about Worklight properties, or for a list of properties that
can be set,, see “Configuration of IBM Worklight applications on the server” on
page 772.

The element <applicationserver> describes the application server into which to
deploy the Worklight application. It is a container for one of the following
elements:

Table 130. Inner elements for the <applicationserver> element

Element Description Count

websphereapplicationserver
or was

Parameters for WebSphere
Application Server

0..1

tomcat Parameters for Apache
Tomcat

0..1

The element <websphereapplicationserver> (or <was> in its short form) denotes a
WebSphere Application Server, version 7.0 or newer. WebSphere Application Server
Full Profile (Express, Base, and Network Deployment) are supported, as is Liberty
Profile (Core). Liberty Profile Network Deployment is not yet supported. The
element <websphereapplicationserver> has the following attributes:

Table 131. Attributes for the <websphereapplicationserver> or <was> element

Attribute Description Required Default

installdir WebSphere Application Server
installation directory.

Yes none

profile WebSphere Application Server profile,
or Liberty

Yes none

user WebSphere Application Server
administrator name

Yes, except
for Liberty

none

password WebSphere Application Server
administrator password

No Queried interactively

It supports the following elements for single-server deployment:

756 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 132. Inner elements for the <was> element (single-server deployment)

Element Description Count

server A single server 0..1

The element <server>, used in this context, has the following attributes:

Table 133. Inner elements for the <server> element (single-server deployment)

Attribute Description Required Default

name Server name Yes none

It supports the following elements for Network Deployment:

Table 134. Inner elements for the <was> element (network deployment)

Element Description Count

cell The entire cell 0..1

cluster All servers of a cluster 0..1

node All servers in a node,
excluding clusters

0..1

server A single server 0..1

The element <cell> has no attributes.

The element <cluster> has the following attributes:

Table 135. Attributes for the <cluster> element (network deployment)

Attribute Description Required Default

name Cluster name Yes none

The element <node> has the following attributes:

Table 136. Attributes for the <node> element (network deployment)

Attribute Description Required Default

name Node name Yes none

The element <server>, used in a Network Deployment context, has the following
attributes:

Table 137. Attributes for the <server> element (network deployment)

Attribute Description Required Default

nodeName Node name Yes none

serverName Server name Yes none

The element <tomcat> denotes an Apache Tomcat server. It has the following
attributes:

Chapter 10. Deploying IBM Worklight projects 757

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 138. Attributes of the <tomcat> element

Attribute Description Required Default

installdir Tomcat installation directory. For a
Tomcat installation that is split between
a CATALINA_HOME directory and a
CATALINA_BASE directory, here you need
to specify the value of the
CATALINA_BASE environment variable.

Yes none

The element <reports> specifies a set of reports (BIRT *.rptdesign files) to
instantiate so that they can access the Worklight reports database.

The element <reports> has the following attributes:

Table 139. Attributes of the <reports> element

Attribute Description Required Default

todir Destination directory Yes none

It supports the following elements:

Table 140. Inner elements for the <reports> element

Element Description Count

fileset Set of files to copy and
process

0..∞

A <reports> element without any inner <fileset> element instantiates all report
templates provided in the WorklightServer/report-templates/ directory in the
Worklight Server distribution.

The element <database> specifies the information that is needed to access a
particular database. Two databases must be declared: <database
kind=”Worklight”> and <database kind=”WorklightReports”>. The element
<database> is specified like the <configuredatabase> task, except that it does not
have the elements <dba> and <client>. It might, however, have <property>
elements. The element <database> has the following attributes:

Table 141. Attributes of the <database> element

Attribute Description Required Default

kind Type of database (Worklight or
WorklightReports)

Yes none

It supports the following elements:

Table 142. Inner elements for the <database> element

Element Description Count

derby Parameters for Derby 0..1

db2 Parameters for DB2 0..1

mysql Parameters for MySQL 0..1

oracle Parameters for Oracle 0..1

driverclasspath JDBC driver class path 0..1

758 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To specify an Apache Derby database

The element <derby> has the following attributes:

Table 143. Attributes of the <derby> element

Attribute Description Required Default

database Database name No WRKLGHT or
WLREPORT, depending
on kind

datadir Directory that contains the databases Yes none

schema Schema name No WORKLGHT

It supports the following elements:

Table 144. Inner elements for the <derby> element

Element Description Count

property Data source property or
JDBC connection property

0..∞

For the available properties, see the documentation for class EmbeddedDataSource40
at Class EmbeddedDataSource40. See also the documentation for class
EmbeddedConnectionPoolDataSource40 at Class
EmbeddedConnectionPoolDataSource40.

For the available properties for a Liberty server, see the documentation for
properties.derby.embedded at Liberty profile: Configuration elements in the
server.xml file.

A <driverclasspath> element is not needed in this case, when the
worklight-ant-deployer.jar is used within the installation directory of Worklight.

To specify a DB2 database

The element <db2> has the following attributes:

Table 145. Attributes of the <db2> element

Attribute Description Required Default

database Database name No WRKLGHT or
WLREPORT, depending
on kind

server Host name of database server Yes none

port Port on database server No 50000

user User name for accessing database Yes none

password Password for accessing database No Queried interactively

Chapter 10. Deploying IBM Worklight projects 759

http://db.apache.org/derby/docs/10.8/publishedapi/jdbc4/org/apache/derby/jdbc/EmbeddedDataSource40.html
http://db.apache.org/derby/docs/10.8/publishedapi/jdbc4/org/apache/derby/jdbc/EmbeddedConnectionPoolDataSource40.html
http://db.apache.org/derby/docs/10.8/publishedapi/jdbc4/org/apache/derby/jdbc/EmbeddedConnectionPoolDataSource40.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.wlp.nd.doc%2Fautodita%2Frwlp_metatype_4ic.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.wlp.nd.doc%2Fautodita%2Frwlp_metatype_4ic.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

schema Schema name No Depends on user

For more information about DB2 user accounts, see DB2 security model overview.

It supports the following elements:

Table 146. Inner elements for the <db2> element

Element Description Count

property Data source property or
JDBC connection property

0..∞

For the available properties, see Properties for the IBM Data Server Driver for
JDBC and SQLJ.

For the available properties for a Liberty server, see the properties.db2.jcc section
at Liberty profile: Configuration elements in the server.xml file.

The <driverclasspath> element must contain a DB2 JDBC driver JAR file and an
associated license JAR file. You can download DB2 JDBC drivers from DB2 JDBC
Driver Versions.

To specify a MySQL database

The element <mysql> has the following attributes:

Table 147. Attributes of the <mysql> element

Attribute Description Required Default

database Database name No WRKLGHT or
WLREPORT, depending
on kind

server Host name of database server Yes none

port Port on database server No 3306

user User name for accessing database Yes none

password Password for accessing database No Queried interactively

A URL can also be specified instead of database, server, and port. The alternative
list of attributes is as follows:

Table 148. Alternative elements for the <mysql> element

Attribute Description Required Default

url Database connection URL Yes none

user User name for accessing database Yes none

password Password for accessing database No Queried interactively

760 IBM Worklight V6.1.0

http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.sec.doc%2Fdoc%2Fc0021804.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.apdv.java.doc%2Fsrc%2Ftpc%2Fimjcc_rjvdsprp.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.apdv.java.doc%2Fsrc%2Ftpc%2Fimjcc_rjvdsprp.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.wlp.nd.doc%2Fautodita%2Frwlp_metatype_4ic.html
http://www.ibm.com/support/docview.wss?uid=swg21363866
http://www.ibm.com/support/docview.wss?uid=swg21363866

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For more information about MySQL user accounts, see MySQL User Account
Management.

It supports the following elements:

Table 149. Inner elements for the <mysql> element

Element Description Count

property Data source property or
JDBC connection property

0..∞

For the available properties, see the documentation at Driver/Datasource Class
Names, URL Syntax and Configuration Properties for Connector/J.

For the available properties for a Liberty server, see the properties section at
Liberty profile: Configuration elements in the server.xml file.

The <driverclasspath> element must contain a MySQL Connector/J JAR file. You
can download it from Download Connector/J.

To specify an Oracle database

The element <oracle> has the following attributes:

Table 150. Attributes of the <oracle> element

Attribute Description Required Default

database Database name No ORCL

server Host name of database server Yes none

port Port on database server No 1521

user User name for accessing database Yes none

password Password for accessing database No Queried interactively

A URL can also be specified instead of database, server, and port. The alternative
list of attributes is as follows:

Table 151. Alternative attributes of the <oracle> element

Attribute Description Required Default

url Database connection URL Yes none

user User name for accessing database Yes none

password Password for accessing database No Queried interactively

For more information about Oracle user accounts, see Overview of Authentication
Methods.

For details on Oracle database connection URLs. see the Database URLs and
Database Specifiers section at Data Sources and URLs.

Chapter 10. Deploying IBM Worklight projects 761

http://dev.mysql.com/doc/refman/5.5/en/user-account-management.html
http://dev.mysql.com/doc/refman/5.5/en/user-account-management.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.wlp.nd.doc%2Fautodita%2Frwlp_metatype_4ic.html
http://www.mysql.com/downloads/connector/j/
http://docs.oracle.com/cd/B28359_01/server.111/b28318/security.htm#i12374
http://docs.oracle.com/cd/B28359_01/server.111/b28318/security.htm#i12374
http://docs.oracle.com/cd/B28359_01/java.111/b31224/urls.htm

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

It supports the following elements:

Table 152. Inner elements for the <oracle> element

Element Description Count

property Data source property or
JDBC connection property

0..∞

For the available properties, see the Data Sources and URLs section at Data Sources
and URLs.

For the available properties for a Liberty server, see the properties.oracle section
at Liberty profile: Configuration elements in the server.xml file.

The <driverclasspath> element must contain an Oracle JDBC driver JAR file. You
can download Oracle JDBC drivers from JDBC, SQLJ, Oracle JPublisher and
Universal Connection Pool (UCP).

The <property> element, which can be used inside <derby>, <db2>, <mysql>, or
<oracle> elements, has the following attributes:

Table 153. Attributes for the <property> element in a database-specific element

Attribute Description Required Default

name Name of the property Yes none

type Java type of the property's values
(usually java.lang.String/Integer/
Boolean)

No java.lang.String

value Value for the property Yes none

Sample configuration files:

IBM Worklight includes a number of sample configuration files to help you get
started with the Ant tasks.

The easiest way to get started with the <configureapplicationserver> and
<configuredatabase> Ant tasks is by working with the sample configuration files
provided in the WorklightServer/configuration-samples/ directory of the
Worklight Server distribution.

Step 1

Pick the appropriate sample configuration file. The following files are provided

Table 154. Sample configuration files provided with IBM Worklight

Sample Derby DB2 MySQL Oracle

WebSphere
Application
Server Liberty
profile

configure-
liberty-
derby.xml

configure-
liberty-db2.xml

configure-
liberty-
mysql.xml (see
Note)

configure-
liberty-
oracle.xml

762 IBM Worklight V6.1.0

http://docs.oracle.com/cd/B28359_01/java.111/b31224/urls.htm
http://docs.oracle.com/cd/B28359_01/java.111/b31224/urls.htm
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.wlp.nd.doc%2Fautodita%2Frwlp_metatype_4ic.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 154. Sample configuration files provided with IBM Worklight (continued)

Sample Derby DB2 MySQL Oracle

WebSphere
Application
Server Full
profile,
single-server

configure-was-
derby.xml

configure-was-
db2.xml

configure-was-
mysql.xml (see
Note)

configure-was-
oracle.xml

WebSphere
Application
Server Network
Deployment

n/a configure-
wasnd-cluster-
db2.xml

configure-
wasnd-server-
db2.xml

configure-
wasnd-node-
db2.xml

configure-
wasnd-cell-
db2.xml

configure-
wasnd-cluster-
mysql.xml (see
Note)

configure-
wasnd-server-
mysql.xml (see
Note)

configure-
wasnd-node-
mysql.xml (see
Note)

configure-
wasnd-cell-
mysql.xml (see
Note)

configure-
wasnd-cluster-
oracle.xml

configure-
wasnd-server-
oracle.xml

configure-
wasnd-node-
oracle.xml

configure-
wasnd-cell-
oracle.xml

Apache Tomcat configure-
tomcat-
derby.xml

configure-
tomcat-db2.xml

configure-
tomcat-
mysql.xml

configure-
tomcat-
oracle.xml

Note: MySQL in combination with WebSphere Application Server Liberty Profile
or WebSphere Application Server Full Profile is not classified as a supported
configuration. For more information, see WebSphere Application Server Support
Statement. Consider using IBM DB2 or another database supported by WebSphere
Application Server to benefit from a configuration that is fully supported by IBM
Support.

Step 2

Change the file access rights of the sample file to be as restrictive as possible. Step
3 requires that you supply some passwords. If you must prevent other users on the
same computer from learning these passwords, you must remove the read
permissions of the file for users other than yourself. You can use a command, such
as the following examples:
v On UNIX:

chmod 600 configure-file.xml

v On Windows:
cacls configure-file.xml /P Administrators:F %USERDOMAIN%\%USERNAME%:F

Step 3

Similarly, if the server is a WebSphere Application Server Liberty Profile or Apache
Tomcat server, and the server is meant to be started only from your user account,
you must also remove the read permissions for users other than yourself from the
following file:

Chapter 10. Deploying IBM Worklight projects 763

http://www.ibm.com/support/docview.wss?uid=swg27004311
http://www.ibm.com/support/docview.wss?uid=swg27004311

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v For WAS Liberty profile: wlp/usr/servers/<server>/server.xml
v For Apache Tomcat: conf/server.xml

Step 4

Replace the placeholder values for the properties at the top of the file.

Note: The following special characters need to be escaped when used in values in
Ant XML scripts:
v The dollar sign ($) must be written as $$, unless you explicitly want to reference

an Ant variable through the syntax ${variable}, as described in Properties in
the Apache Ant Manual.

v The ampersand character (&) must be written as &, unless you explicitly
want to reference an XML entity.

v Double quotation marks (") must be written as ", except when inside a
string enclosed in single quotation marks.

Step 5

In the <configureapplicationserver> and <unconfigureapplicationserver>
invocations (in target install and uninstall), define Worklight properties. For a
list of properties that can be set, see “Configuration of IBM Worklight applications
on the server” on page 772. In production, you must often define the following
specific properties:
v publicWorkLightHostname

v publicWorkLightProtocol

v publicWorkLightPort

Step 6

Run the command:
ant -f configure-file.xml databases

This command ensures that the designated databases exist and contain the
required tables for Worklight.

Step 7

Run the command:
ant -f configure-file.xml install

This command installs your Worklight project as a .war file into the application
server.

To install an updated Worklight project in the application server, run the command
ant -f configure-file.xml minimal-update

To reverse the install step, run the command:
ant -f configure-file.xml uninstall

This command uninstalls the Worklight project .war file.

At least for WebSphere Application Server, it is a good idea to keep the modified
configure-file.xml for later use when you install updates of the Worklight

764 IBM Worklight V6.1.0

http://ant.apache.org/manual/properties.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

project's .war file. This file makes it possible to redeploy an updated .war file with
the same Worklight properties. If you use the WebSphere Application Server's
administrative console to update the .war file, all properties that are configured for
this web application are lost.

Configuring multiple IBM Worklight projects:

The Ant tasks that are used to configure multiple projects on a single server are
documented in this section.

It is possible to install different IBM Worklight projects WAR files in the same
application server, and have them operate in parallel and independently. This
configuration is possible even for IBM Worklight projects that use different
versions of IBM Worklight. For example, several IBM Worklight V6.0.x projects and
at most one IBM Worklight V5.0.6 project can be used at the same time in the same
application server.

Note that each IBM Worklight project presents its own Worklight Console, and that
uploading an app or an adapter to one of the Worklight Consoles has no effect on
the other Worklight Consoles.

If you use this configuration, some constraints must be respected:
v Each IBM Worklight project configuration must use a different IBM Worklight

database or schema, and each must use its own IBM Worklight reports database
or schema.

v If the application server is WebSphere Application Server Liberty Profile, each
IBM Worklight project must use a different contextroot attribute and have a
different base name for the .war file. But you can rename a .war file before you
install it. The id attribute is not used in this case.

v If the application server is WebSphere Application Server Full Profile or
WebSphere Application Server Network Deployment, each IBM Worklight
project must use a different id attribute. Different deployments with the same
contextroot attribute are possible, if they are deployed to separate sets of
servers (for example, to different clusters or to different nodes).

v If the application server is Tomcat, each IBM Worklight project must use a
different contextroot attribute. The id attribute is not used in this case. In
addition, the versions of the JDBC drivers must be suitable for all declared data
sources of the particular database type.

Configuring WebSphere Application Server Network Deployment servers:

Specific considerations when configuring WebSphere Application Server Network
Deployment servers through Ant tasks are documented in this section.

To install a Worklight project into a set of WebSphere Application Server Network
Deployment servers, run the <configureapplicationserver> Ant task on the
computer where the deployment manager is running.

Procedure

1. Specify a database type other than Apache Derby. IBM Worklight supports
Apache Derby only in embedded mode, and this choice is incompatible with
deployment through WebSphere Application Server Network Deployment.

2. As value of the profile attribute, specify the deployment manager profile.

Chapter 10. Deploying IBM Worklight projects 765

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Attention: Do not specify an application server profile and then a single
managed server. Doing so causes the deployment manager to overwrite the
configuration of the server. This is true whether you install on the computer on
which the deployment manager is running or on a different computer.

3. Specify an inner element, depending on where you want the Worklight project
to be installed. The following table lists the available elements:

Table 155. Inner elements of <was> for network deployment

Element Explanation

cell Install the Worklight project into all application servers of the cell.

cluster Install the Worklight project into all application servers of the
specified cluster.

node Install the Worklight project into all application servers of the
specified node that are not in a cluster.

server Install the Worklight project into the specified server, which is not
in a cluster.

4. After starting the <configureapplicationserver> Ant task, restart the affected
servers:
v You must restart the servers that were running and on which the Worklight

project application was installed. To restart these servers with the
deployment manager console, select Applications > Application Types >
WebSphere enterprise applications > IBM_Worklight_Console > Target
specific application status.

v You do not have to restart the deployment manager or the node agents.

Results

The configuration has no effect outside the set of servers in the specified scope.
The JDBC providers, JDBC data sources, and shared libraries are defined with the
specified scope. The entities that have a cell-wide scope (the applications and, for
DB2, the authentication alias) use the specified id attribute as a suffix in their
name; it makes their name unique. So, you can install IBM Worklight Server in
different configurations or even different versions of IBM Worklight Server, in
different clusters of the same cell.

Note: Because the JDBC driver is installed only in the specified set of application
servers, the Test connection button for the JDBC data sources in the WebSphere
Application Server administration console of the deployment manager might not
work.

Adding a server to a cluster

When you add a server to a cluster that has a Worklight project installed on it, you
must repeat some configuration manually. For each affected server, add a specific
web container custom property:
1. Click Servers > Server Types > Application Servers, and select the server.
2. Click Web Container Settings > Web container.
3. Click Custom properties.
4. Click New.
5. Enter the property values listed in the following table:

766 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 156. Web container custom property values

Property Value

Name com.ibm.ws.webcontainer.invokeFlushAfterService

Value false

Description See http://www.ibm.com/support/
docview.wss?uid=swg1PM50111.

6. Click OK.
7. Click Save.

Deploying a project WAR file and configuring the application server manually:

The procedure to manually deploy your app to an application server depends on
the type of application server being configured, as detailed here. Depending on the
version of Worklight Studio that was used to build the project WAR file and the
version of Worklight Server, you might need to migrate the WAR file first.

When the version of Worklight Studio produces a WAR file that is not compatible
with the version of Worklight Server, you must migrate the project WAR file to the
current Worklight Server version to ensure a successful manual deployment. All fix
packs of a Worklight version are compatible in that sense, and so you do not need
to migrate associated project WAR files. For example, if you build a project WAR
file by using Worklight Studio V6.0.0 and want to deploy it manually to Worklight
Server V6.0.0.1, you do not need to migrate the WAR file. WAR file migration is
necessary if Worklight Studio and Worklight Server are of different versions. For
example, if you build a project WAR file by using Worklight Studio V6.0.0 and
want to deploy it to Worklight Server V6.1.0, you must migrate the WAR file
before you deploy it manually. Project WAR files need to be migrated because they
contain information that is specific to the Worklight Server version. The migration
updates the version-specific information in the WAR file, thus making it suitable to
run on the new version of Worklight Server.

Only WAR files produced by Worklight Studio from V5.0.6 and later can be
migrated: earlier versions are not supported.

These manual configuration instructions assume that you are familiar with your
application server.

Note: Using the Ant task to deploy the project WAR file and configure the
application server is more reliable than installing and configuring manually, and
should be used whenever possible.

Migrating a project WAR file for use with a new Worklight Server:

Use Ant tasks to migrate a project WAR file so that you can deploy it manually to
a new version of Worklight Server.

You migrate a project WAR file by running a <migrate> Ant task, which is
included in the worklight-ant-deployer.jar library. You can migrate .war files
that are developed in Worklight Studio V5.0.6 and later. To run the Ant task, you
invoke it from an Ant XML file similar to the following example:
<?xml version="1.0" encoding="UTF-8"?>
<project name="MigrateWarFile" default="migrate" basedir=".">

<target name="migrate">
<echo message="Loading Ant Tool" />

Chapter 10. Deploying IBM Worklight projects 767

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="worklight-ant-deployer.jar" />
</classpath>

</taskdef>
<migrate sourceWarFile="d:/myOldWarFolder/myProject.war" destWarFile="d:/myNewWarFolder/myMigratedProject.war"/>

</target>
</project>

The <migrate> task accepts the following input parameters:

sourceWarFile
(mandatory) The path to the source project WAR file. The path must not
contain spaces.

destWarFile
(optional) The destination file for the migrated WAR file. Default value:
<source-war-folder>/migrated-to-<new version number>/<source-war-
filename>.

Configuring the WebSphere Liberty Profile manually:

To configure WebSphere Application Server Liberty Profile manually, you must
modify the server.xml file.

About this task

In addition to modifications for the databases that are described in “Creating and
configuring the databases manually” on page 732, you must make the following
modifications to the server.xml file.

Note: In the following procedure, when the example uses worklight.war, it must
be the name of your Worklight project, for example, myProject.war.

Procedure

1. In the installation directory of Liberty, open the user data directory.
If the installation directory of Liberty contains a etc/server.env file, and if this
file defines a WLP_USER_DIR variable, then the user data directory is the value of
this variable. Otherwise, it is the usr directory in the installation directory of
Liberty.

2. Copy the IBM Worklight JAR file into the shared/resources/lib/ directory that
is in the user data directory.
If there is no etc/server.env file in the installation directory of Liberty, enter
the following commands, according to your operating system:
v On UNIX and Linux:

mkdir -p WLP_DIR/usr/shared/resources/lib
cp WL_INSTALL_DIR/WorklightServer/worklight-jee-library.jar WLP_DIR/usr/shared/resources/lib

v On Windows:
mkdir WLP_DIR\usr\shared\resources\lib
copy /B WL_INSTALL_DIR\WorklightServer\worklight-jee-library.jar WLP_DIR\usr\shared\resources\lib\worklight-jee-library.jar

3. Ensure that the <featureManager> element contains at least the following
<feature> elements:
<feature>ssl-1.0</feature>
<feature>servlet-3.0</feature>
<feature>jdbc-4.0</feature>
<feature>appSecurity-1.0</feature>

768 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

4. Add the following declarations in the <server> element, for the Worklight run
time and the Worklight Console:
<!-- Declare the Worklight Server application. -->
<application id="worklight" name="worklight" location="worklight.war" type="war">

<classloader delegation="parentLast">
<commonLibrary>

<fileset dir="${shared.resource.dir}/lib" includes="worklight-jee-library.jar"/>
</commonLibrary>

</classloader>
</application>

<!-- Declare web container custom properties for the Worklight Server application. -->
<webContainer invokeFlushAfterService="false"/>

This declaration installs the Worklight Server application with the context root
/worklight. If you want to assign a different context root /app_context, start
the declaration with one of the following code snippets:
<application id="app_context" name="app_context" location="worklight.war" type="war">

or:
<application id="worklight" name="worklight" location="worklight.war" context-root="/app_context" type="war">

For more information about the context root, see WebSphere Application Server
documentation about Deploying application to the Liberty Profile

Configuring WebSphere Application Server manually:

To configure WebSphere Application Server manually, you must configure
variables, custom properties, and class loader policies.

Before you begin

These instructions assume that you already have a standalone profile created with
an application server named Worklight and that the server is using the default
ports.

Procedure

1. Log on to the WebSphere Application Server administration console for your
IBM Worklight server. The address is of the form http://server.com:9060/ibm/
console, where server is the name of the server.

2. Create the WORKLIGHT_INSTALL_DIR variable:
a. Click Environment > WebSphere Variables.
b. From the Scope list, select Worklight server.
c. Click New. The Configuration pane is displayed.
d. In the Name field, type WORKLIGHT_INSTALL_DIR.
e. In the Value field, type /opt/IBM/Worklight.
f. (Optional) In the Description field, type a description of the variable.
g. Click OK.
h. Save the changes.

3. Create the IBM Worklight shared library definition:
a. Click Environment > Shared libraries.
b. From the Scope list, select Worklight server.
c. Click New. The Configuration pane is displayed.
d. In the Name field, type WL_PLATFORM_LIB.

Chapter 10. Deploying IBM Worklight projects 769

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.wlp.doc/ae/twlp_dep.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.wlp.doc/ae/twlp_dep.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

e. (Optional) In the Description field, type a description of the library.
f. In the Classpath field, type ${WORKLIGHT_INSTALL_DIR}/WorklightServer/

worklight-jee-library.jar.
4. Create the IBM Worklight JDBC data source and provider. See the instructions

for the appropriate DBMS in “Creating and configuring the databases
manually” on page 732

5. Add a specific web container custom property.
a. Click Servers > Server Types > Application Servers, and select the server

used for Worklight.
b. Click Web Container Settings > Web container.
c. Click Custom properties.
d. Click New.
e. Enter the property values listed in the following table:

Table 157. Web container custom property values

Property Value

Name com.ibm.ws.webcontainer.invokeFlushAfterService

Value false

Description See http://www.ibm.com/support/
docview.wss?uid=swg1PM50111

f. Click OK.
g. Click Save.

6. Install an IBM Worklight project WAR file.

Note: In the following procedure, when the example uses worklight.war, it
should be the name of your Worklight project, for example, myProject.war.
a. Depending on your version of WebSphere Application Server, click one of

the following options:
v Applications > New > New Enterprise Application

v Applications > New Application > New Enterprise Application

b. Navigate to the IBM Worklight Server installation directory
WL_INSTALL_DIR/WorklightServer.

c. Select worklight.war, and then click Next.
d. On the “How do you want to install the application”? page, select Detailed,

and then click Next.
e. On the Application Security Warnings page, click Continue.
f. Click Continue repeatedly until you reach Step 4 of the wizard: Map Shared

Libraries.
g. Select Select for worklight_war and click Reference shared libraries.
h. From the Available list, select WL_PLATFORM_LIB and click >.
i. Click OK.
j. Click Next until you reach the “Map context roots for web modules” page.
k. In the Context Root field, type /worklight.
l. Click Next.
m. Click Finish.

7. (Optional). As an alternative to step 6, you can map the shared libraries as
follows:

770 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

a. Click Applications > Application Types > WebSphere enterprise
applications > worklight_war.

b. In the References section, click Shared library references.
c. Select Select for worklight_war and click Reference shared libraries.
d. From the Available list, select WL_PLATFORM_LIB and click >.
e. Click OK twice to return to the worklight_war configuration page.
f. Click the Save link.

8. Configure the class loader policies and then start the application:
a. Click the Manage Applications link, or click Applications > WebSphere

Enterprise Applications.
b. From the list of applications, click worklight_war.
c. In the “Detail Properties” section, click the Class loading and update

detection link.
d. In the “Class loader order” pane, click Classes loaded with local class

loader first (parent last).
e. Click OK.
f. In the Modules section, click Manage Modules.
g. From the list of modules, click the Worklight module.
h. In the “Class loader order” pane, click Classes loaded with local class

loader first (parent last).
i. Click OK twice.
j. Click Save.
k. Select Select for worklight_warand click Start.

9. Review the server class loader policy: Click Servers > Server Types >
Application Servers > Worklight

v If the class loader policy is set to Multiple, do nothing.
v If the class loader policy is set to Single and the class loading mode is set to

parent-last, do nothing.
v If the class loader policy is set to Single and the class loading mode is set to

parent-first, change the class loader policy to Multiple, and set the class
loader order of all applications other than Worklight applications to
parent-first.

Results

You can now access IBM Worklight Console at http://<server>:<port>/
worklight/console, where server is the host name of your server and port is the
port number (default 9080).

Configuring Apache Tomcat manually:

To configure Apache Tomcat manually, you must copy JAR and WAR files to
Tomcat, add database drivers, edit the server.xml file, and then start Tomcat.

Procedure

1. Copy the IBM Worklight JAR file to the Tomcat lib directory:
v On UNIX and Linux systems: cp WL_INSTALL_DIR/WorklightServer/

worklight-jee-library.jar TOMCAT_HOME/lib

v On Windows systems: copy /B WL_INSTALL_DIR\WorklightServer\worklight-
jee-library.jar TOMCAT_HOME\lib\worklight-jee-library.jar

Chapter 10. Deploying IBM Worklight projects 771

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. Add the database drivers to the Tomcat lib directory. See the instructions for
the appropriate DBMS in “Creating and configuring the databases manually”
on page 732.

3. Copy the Worklight project WAR file to the Tomcat web application directory,
TOMCAT_HOME/webapps, thereby renaming it according to the required context
root. For example:
v If the context root is /worklight, rename it to worklight.war.
v If the context root is /, rename it to ROOT.war.

4. Edit TOMCAT_HOME/conf/server.xml to declare the context and properties of the
Worklight application:
<!-- Declare the IBM Worklight Console application. -->
<Context path="/worklight" docBase="worklight"/>

Here, make sure that the path and docBase attributes are both consistent with
the WAR file name. That is, if the WAR file name is worklight.war, set the path
to "/worklight" and the docBase to "worklight". Whereas if the WAR file name
is ROOT.war, set the path to "" and the docBase to "ROOT".

5. Start Tomcat.

Completing the deployment of a project WAR file:

To complete the deployment, you may need to restart the application server.

When the project WAR file is deployed on the application server, you must restart
the application server in the following circumstances:
v When you used the <configureApplicationServer> Ant task or the manual

instructions for deploying the project WAR file:
– If you are using WebSphere Application Server with DB2 as database type for

one or both of the databases.
– If you are using WebSphere Application Server Liberty Profile or Apache

Tomcat.
v When you used the <updateApplicationServer> Ant task:

– If you are using WebSphere Application Server (Full Profile or Liberty Profile)
and the Worklight runtime library (worklight-jee-library.jar) is changed.

– If you are using Apache Tomcat.

If you are using WebSphere Application Server Network Deployment and you
deployed to managed servers through the deployment manager:
v You must restart the servers that were running during the deployment and on

which the Worklight project's web application has been installed.
To restart these servers with the deployment manager console, select
Applications > Application Types > WebSphere enterprise applications >
IBM_Worklight_Console > Target specific application status.

v You do not have to restart the deployment manager or the node agents.

Configuration of IBM Worklight applications on the server
You can configure each IBM Worklight application by specifying a set of
configuration parameters on the server side.

IBM Worklight application configuration parameters configure the database, push
notifications, the use of SSL to secure communications between the server and the
client application, and other settings.

772 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

When you develop an IBM Worklight application, you use the
worklight.properties file to specify most of the configuration parameters. This file
is in the server/conf folder in the project structure in Worklight Studio. You use
the worklight.properties file during development to test a particular
configuration. For example, if you want to use the analytics features during
development, you might set the wl.analytics.url property to a valid URL in the
worklight.properties file.

When your IBM Worklight project is built by Worklight Studio, the project WAR
file that is created in the project bin folder contains the configuration that is
specified in the worklight.properties file. The values for the parameters that are
specified in the worklight.properties file then define the default configuration of
your application.

When you deploy your project (your WAR file) to the production or test
environment, your configuration is certain to be different from the development
environment. It is easy to modify the configuration to fit the new environment
because the project WAR file defines JNDI environment entries for each parameter
that can be configured in a production environment. You leave the values in the
worklight.properties file unchanged; instead, you specify the configuration
during the deployment to the application server.

See “Configuring an IBM Worklight project in production by using JNDI
environment entries” on page 784 to learn about the JNDI environment entries that
you can specify in a production environment. Properties that are relevant only in
development environments are not available as JNDI entries.

Within the worklight.properties file, you can define some application-specific
configuration properties; for example, to configure the URL of a service that is
called from the mobile application and the URL is different in production,
development, and test environments. See “Declaring and using configuration
properties” on page 781 to learn how to create such configuration properties.

Configuring the Worklight Server location
You can configure the Worklight Server location by specifying configuration
properties.

In production, you must configure your server location, since in most cases,
production servers sit behind a reverse proxy; therefore, their machine IP address
(which is the default value of publicWorkLightHostname) is not used for accessing
them from the outside world.

To configure the Worklight Server location, set the values of the following
properties:

Chapter 10. Deploying IBM Worklight projects 773

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 158. Worklight Server location properties

Property name Description

publicWorkLightHostname The IP address or host name of the
computer running IBM Worklight.

If the Worklight Server is behind a reverse
proxy, the value is the IP address or host
name of the reverse proxy.

This property must be identical for nodes
within the same cluster.

Default: IP address of current server.

publicWorkLightPort The port for accessing the Worklight Server.

If the Worklight Server is behind a reverse
proxy, the value is the port for accessing the
reverse proxy.

This property must be identical for nodes
within the same cluster.

Default: 10080.

The <configureApplicationServer> Ant task
sets a default value that depends on the
application server.

publicWorkLightProtocol The protocol for accessing the Worklight
Server.

The valid values are HTTP and HTTPS. If the
Worklight Server is behind a reverse proxy,
the value is the protocol for accessing the
reverse proxy.

This property must be identical for nodes
within the same cluster.

Default: HTTP.

The <configureApplicationServer> Ant task
sets a default value that depends on the
application server.

For descriptions of other configuration properties, see “Configuring an IBM
Worklight project in production by using JNDI environment entries” on page 784

For information about how to specify configuration properties, see “Configuration
of IBM Worklight applications on the server” on page 772.

IBM Worklight database setup for development mode
IBM Worklight uses defaults to access the IBM Worklight database. When you
work in a development environment and use JDBC to connect to a database, you
can use a set of property keys to change the settings.

774 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Attention:

This method of declaring data sources is deprecated in a production environment
and is only suitable when working in a development environment and using JDBC
for database connections. To configure data sources when working in a production
environment, see “Creating and configuring the databases manually” on page 732.

Property keys and values for JDBC-based properties

Property Key Property Value

wl.db.url JDBC path to IBM Worklight database.

wl.db.username IBM Worklight database user name.

Default: Worklight

wl.db.password IBM Worklight database password.

Default: Worklight

wl.db.driver The class that implements a JDBC driver for
each vendor. For example:

MySQL: com.mysql.jdbc.Driver

Oracle: oracle.jdbc.OracleDriver

DB2: com.ibm.db2.jcc.DB2Driver

Derby:
org.apache.derby.jdbc.EmbeddedDriver

wl.reports.db.url(*) JDBC path to IBM Worklight Reports
database

Default: refers to IBM Worklight database

wl.reports.db.username(*) IBM Worklight Reports database user name.

Default: refers to IBM Worklight database

wl.reports.db.password(*) IBM Worklight Reports database password

Default: refers to IBM Worklight database

Note: (*) By default all IBM Worklight report mechanisms use a single reports
database. The reports database is set to be the same as the IBM Worklight
database. For information about how this default setting can be changed, see
“Using raw data reports” on page 968.

Testing the Worklight Console login screen
When you work in a development environment, you can test the Worklight
Console login screen by defining user credentials that are required to access it.

The user credential settings that you define to test the Worklight Console login
screen can be encrypted as described in “Storing properties in encrypted format”
on page 779.

Property Key Property Value

console.username Name of the user that can access the
Console

console.password User password

Chapter 10. Deploying IBM Worklight projects 775

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

In addition to defining these two properties, it is also required to uncomment
several sections in the authenticationConfig.xml file:
<!-- Uncomment the next element to protect the worklight console and the first section in securityTests below. -->

<staticResources>
<!--
<resource id="worklightConsole" securityTest="WorklightConsole">

<urlPatterns>/console*</urlPatterns>
</resource>
-->

<securityTests>
<!--
<customSecurityTest name="WorklightConsole">

<test realm="WorklightConsole" isInternalUserID="true"/>
</customSecurityTest>
...
...
...
-->

</securityTests>

Follow the instructions in the file about how to configure it. The
authenticationConfig.xml file is located under <Worklight Root
Directory>\server\conf. This file is described in “The authentication configuration
file” on page 608.

Note: Setting user credentials in this way is not a suitable method for protecting
Worklight Console access in a production environment. Use an alternative method
such as LDAP instead.

Push notification settings
When working with push notifications, you must use the correct proxy settings.
For Android, you use GCM proxy settings, and for iOS, you use APNS proxy
settings. SMS has its own set of proxy settings.

GCM proxy settings Value

push.gcm.proxy.enabled Shows whether Google GCM must be
accessed through a proxy. Can be either true
or false. The default is false.

push.gcm.proxy.protocol GCM proxy protocol. Can be either http or
https.

push.gcm.proxy.host GCM proxy host.

push.gcm.proxy.port GCM proxy port. Use -1 for the default
port.

push.gcm.proxy.user Proxy user name, if the proxy requires
authentication. An empty user name means
no authentication.

push.gcm.proxy.password Proxy password, if the proxy requires
authentication.

APNS proxy settings Value

push.apns.proxy.enabled Shows whether APNS must be accessed
through a proxy. Can be either true or
false. The default is false.

push.apns.proxy.type APNS proxy type. Must be SOCKS.

push.apns.proxy.host APNS proxy host.

776 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

APNS proxy settings Value

push.apns.proxy.port APNS proxy port.

SMS proxy settings Value

push.sms.proxy.enabled Can be either true or false. Use true to
send SMS notifications through proxy.

push.sms.proxy.protocol SMS proxy protocol. Can be either http or
https.

push.sms.proxy.host SMS proxy host name.

push.sms.proxy.port SMS proxy port. Use -1 for the default port.

push.sms.proxy.user Proxy user name, for authentication. An
empty user name means no authentication.

push.sms.proxy.password Proxy password, if the proxy requires
authentication.

Analytics
Analytics properties files contain the parameters for how IBM Worklight creates
activity logs and sends them to a server for analysis.

You can modify how the Worklight Server forwards analytics data to the IBM
SmartCloud Analytics Embedded (operational analytics) server by editing the
following properties files.

Table 159.

Property Key Property Value

wl.analytics.logs.forward A Boolean value (true or false) that indicates
whether to send messages that are logged by
the Worklight Server to the operational
analytics server. If this value is true, all logs
that are specified in com.worklight settings
are forwarded to the operational analytics
server. The default value is true. This setting
is only supported on IBM Worklight
production servers. It s not supported on the
IBM Worklight Studio development
environment. (Optional.)

wl.analytics.url The url to which analytics data are sent.
Typically, this url is for the operational
analytics server that comes with the IBM
Worklight installation. The URL is of the
form <protocol>://<iwapURL>/iwap/v1/
events/_bulk Example: http://
myServer.austin.ibm.com/iwap/v1/events/
_bulk
Note: The Analytics tab is displayed in the
IBM Worklight console only if the user
enters a valid link for wl.analytics.url in
the worklight.properties file. If the
properties file contains no URL, the
Analytics tab is not present.

wl.analytics.username The basic authorized user name for the URL
entered in wl.analytics.url. (Optional.)

Chapter 10. Deploying IBM Worklight projects 777

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 159. (continued)

Property Key Property Value

wl.analytics.password The basic authorized password for the URL
entered in wl.analytics.url. (Optional.)

wl.analytics.queues Sets the maximum number of queues that
the Worklight Server can create to hold
analytics data before it sends the data to the
server. When this number of queues is
reached, the Worklight Server rejects any
new analytics data until the current data
finishes processing. The default value is 20
(Optional).

wl.analytics.queue.size Sets the number of individual analytics
events that each queue can hold. The total
number of analytics events that the server
can hold at one time before it begins to drop
data is (wl.analytics.queues *
wl.analytics.queue.size). In a production
environment, the default value is 10. In the
Worklight Studio development environment
when you use the Worklight Development
Server, the default value is 1. This value can
be changed by setting a different value
through JNDI. (Optional.)

SSL certificate keystore setup
Mobile applications often connect to multiple back-end systems. Some back-end
systems require access through an HTTP adapter, and each back-end system can
require a different SSL certificate for secure communication using HTTPS. These
SSL certificates are stored in a keystore that is configured to the Worklight Server
by using property keys.

IBM Worklight provides a default keystore. You can choose to use this default
keystore or replace it with your own keystore.

To configure an SSL certificate keystore, you must set the values of the property
keys listed in the following table:

Table 160. JNDI environment entries for SSL certificate keystore

Property name Description

ssl.keystore.path Path to the keystore relative to the server
folder in the Worklight Project; for example:
conf/my-cert.jks.

ssl.keystore.type Type of keystore file. Valid values are jks or
pkcs12.

ssl.keystore.password Password to the keystore file.

For descriptions of other IBM Worklight configuration properties, see “Configuring
an IBM Worklight project in production by using JNDI environment entries” on
page 784

For information about how to specify IBM Worklight configuration properties, see
“Configuration of IBM Worklight applications on the server” on page 772.

778 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

In addition to defining these three properties, configure the HTTP adapter XML
file, which is located under <Worklight Root Directory>\adapters\<HTTP adapter
name>. This file is described in “The adapter XML File” on page 529.

If you use SSL with mutual authentication between the Worklight Server and a
back-end system, be aware of the following requirement:
v Define an alias and password for the private key of the keystore where the SSL

certificate is stored. The alias and password are defined in the
<connectionPolicy> element of the HTTP adapter XML file, adaptername.xml.
The <sslCertificateAlias> and <sslCertificatePassword> subelements are
described in “The <connectionPolicy> element of the HTTP adapter” on page
534.

Note: The password that is specified in ssl.keystore.password is not the same
password that is specified in <sslCertificatePassword>. ssl.keystore.password
is used to access the keystore itself. <sslCertificatePassword> is used to access
the correct SSL certificate within the keystore.

Miscellaneous Settings
Configure the serverSessionTimeout, bitly.username, and bitly.apikey
parameters.

Property keys and values for serverSessionTimeout, bitly.username, and bitly.apikey
parameters.

Property Key Property Value

serverSessionTimeout Client inactivity timeout, after which the
IBM Worklight session is invalidated.

Default is 10 minutes.

bitly.username User name for accessing the bit.ly API for
creating a shortened URL for mobile web
apps through IBM Worklight Console.

bitly.apikey The bit.ly API Key.

compress.response.threshold The threshold size of the payload that is
returned in response to an invokeProcedure
call beyond which the response is
compressed. The default value is 20480
bytes. Responses with payload larger than
the compress.response.threshold are
compressed by the server. To disable
compression, set this value to a large value.
Similarly, to compress every response, set
this value to 0 (zero). If the payload is larger
than the compress.response.threshold, the
payload is compressed irrespective of
whether or not compression was requested
by the client through the compressResponse
option.

Storing properties in encrypted format
You must encrypt the properties that are too sensitive to be written in clear text.

There are 2 ways to encrypt the properties:

Chapter 10. Deploying IBM Worklight projects 779

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v “Encryption within the properties file.” This is the only option available with
Tomcat.

v For WebSphere Application Server and Liberty Profile: “Encoding the JNDI
properties” on page 781 by using the application server encoding tools
(PropFilePasswordEncoder for WebSphere Application Server and
SecurityUtility for Liberty Profile).

Encryption within the properties file

The encryption facility included with IBM Worklight uses the 128-bit
symmetric-key algorithm defined by the AES specification.

Storing properties in open or encrypted format

You can keep properties contained in worklight.properties either in open
or in encrypted form.

An encrypted property is determined by a suffix .enc on its name, for
example:
console.password.enc=TYakEHRba3rIU7pNjxtDxoAdqijKIEt7cy4mCr0iaEj0rY08ODK00yqR

The IBM Worklight configuration is accessed for a property. If the property
is not found, but the same encrypted property (with .enc suffix) is defined,
IBM Worklight automatically decrypts the value and returns it to the caller.

Storing the master key

All of the encrypted values use the same secret key, which is stored in the
special variable called worklight_enc_password. This variable is defined as
an operating system environment variable:
v On Windows systems: Set an environment variable under the user

running Worklight Server. When running under a Windows NT service,
define the password as a service property by using the registry editor.
For more information, see the Microsoft support website.

v On Linux systems: Set the environment variable.

Encryption

You can encrypt IBM Worklight properties using the 128-bit symmetric-key
algorithm defined by the AES specification.

To encrypt properties on Windows systems, use the encrypt.bat utility
under < worklight_install_dir>/WorklightServer.

This utility accepts a file that contains the properties to be encrypted and
the encryption password. The utility outputs the encrypted values to the
same file (so that sensitive data is deleted).

On Linux systems, use the encrypt.sh utility.

The input file for the encryption is called secret.properties and contains
the following data:
worklight_enc_password=abc123
certificate.password=certificatepwd123
wl.db.password=edf545

After running the encrypt.sh tool, the file secret.properties contains the
following data:

780 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

#Copy the contents of this file to the worklight.properties file.
#Keep the password value in the secure system property worklight_enc_password.
#Wed Nov 28 10:10:44 CST 2012
certificate.password.enc=dR4lnMQDaNEQyLQl7b2RmpdE99HKpqaSJ6mce0uJgaY\=
wl.db.password.enc=6boxojGZsUNTXwOOGgI6dg\=\=

Encoding the JNDI properties

The preferred way to encrypt the JNDI properties in WebSphere Application Server
is to use the password encoding tools available with both products:
v The PropFilePasswordEncoder tool for WebSphere Application Server.
v The SecurityUtility command for Liberty Profile.

The encoded value can then be used for the value of the JNDI properties.

For more details about how to encode the properties with the application server
tools, see the WebSphere Application Server documentaton.

Obsolete properties
Some properties are no longer required.

Table 161. Categories and list of obsolete properties

Category Properties

Proxy settings proxy.enabled, proxy.nonProxyHosts, proxy.host,
proxy.port, proxy.username, proxy.password,
https.proxy.host, https.proxy.port

Public resource server
settings

publicResourceServer.deployDestination,
publicResourceServer.host, publicResourceServer.port,
publicResourceServer.filesRootDir

Environments environment.netvibes, environment.iphone,
environment.embedded, environment.air,
environment.android, environment.blackberry

Certificate settings certificate.certificatesDirPath,
certificate.keyStoreFilePath, certificate.keyAlias,
certificate.keyStorePassword,
certificate.keyAliasPassword, certificate.PFXFilePath,
certificate.password, certificate.DERFilePath,
certificate.P7BFilePath,
vista.linux.osslsigncodeFilepath

Push notification settings push.apns.certificatePassword, push.gcm.senderID,
push.gcm.senderPassword

Miscellaneous settings devmode, guid, wlclientTimeout, backend.request.timeout,
reports.produceReports, wl.db.initialSize,
wl.db.maxActive, wl.db.maxIdle, wl.db.testOnBorrow,
wl.db.autoddl

Tomcat settings local.bindAddress, local.httpPort

Console security settings console.username, console.password

Declaring and using configuration properties
Use the ${propertyName} notation to reuse project-specific properties that are
declared in the worklight.properties file.

Chapter 10. Deploying IBM Worklight projects 781

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

You can declare project-specific properties in the worklight.properties file. You
can then reuse the value of those properties within the authentication configuration
file (authenticationConfig.xml) and the adapter descriptor file (adapter.xml) by
using the ${propertyName} notation.

Here is an example for declaring a data source and reusing it in an adapter:
1. In the worklight.properties file, define a new (custom) property:

my.adapter.db.jndi.name=jdbc/MyAdapterDS

2. You can then include a property declaration in the adapter.xml file:
<wl:adapter>

...
<connectivity>

<connectionPolicy xsi:type="sql:SQLConnectionPolicy">
<dataSourceJNDIName>

${my.adapter.db.jndi.name}
</dataSourceJNDIName>

</connectionPolicy>
...

Such properties are exposed as JNDI entries (see “Configuring an IBM
Worklight project in production by using JNDI environment entries” on page
784) for the project WAR file. In this example, the JNDI name of the adapter
data source becomes parametric and can be changed from the server
configuration files.

In authenticationConfig.xml, you can use ${propertyName} notation for all realm
and loginModule parameters. Here are examples in bold for such properties:
<securityTests>

<customSecurityTest name="MySecurityTest">
<test realm="MySecurityRealm" isInternalUserID="true"/>

</customSecurityTest>

</securityTests>

<realms>

<realm name="MySecurityRealm" loginModule="MySecurityLoginModule">
<className>com.test.auth.MyAuthenticator</className>
<parameter name="login-mode" value="${my.security.realm.mode}"/>
<parameter name="my-other-realm-param" value="${my.security.realm.param}"/>

</realm>

</realms>

<loginModules>

<loginModule name="MySecurityLoginModule">
<className>com.test.auth.MyLoginModule</className>
<parameter name="roles-allowed" value="${my.security.allowed.roles}"/>
<parameter name="my-other-login-param" value="${my.security.login.param}"/>

</loginModule>

</loginModules>

For more information about configuring realm parameters, see “Configuring
authenticators and realms” on page 610. For loginModule parameters, see
“Configuring login modules” on page 616.

In adapter.xml, you can use the ${propertyName} notation in the following
elements:

782 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For HTTP adapters:
<connectivity>

<connectionPolicy xsi:type="http:HTTPConnectionPolicyType">
<protocol>${my.protocol}</protocol>
<domain>${my.domain}</domain>
<port>${my.port}</port>

<authentication>
<ntlm workstation="${local.hostname}" />
<serverIdentity>

<username>${my.server.identity.username}</username>
<password>${my.server.identity.password}</password>

</serverIdentity>
</authentication>

<!-- Following properties used by adapter’s key manager for choosing specific certificate from key store -->

<sslCertificateAlias>${my.ssl.certificate.alias}</sslCertificateAlias>
<sslCertificatePassword>${my.ssl.certificate.password}</sslCertificatePassword>

</connectionPolicy>

<loadConstraints maxConcurrentConnectionsPerNode="${max.connections.per.node}"/>
</connectivity>

For SQL adapters:
<connectivity>

<connectionPolicy xsi:type="sql:SQLConnectionPolicy">

<!-- Example for using a JNDI data source, replace with actual data source name -->
<!-- <dataSourceJNDIName>${my.data.source.jndi.name}</dataSourceJNDIName> -->

<!-- Example for using MySQL connector, do not forget to put the MySQL connector library in the project’s lib folder -->
<dataSourceDefinition>

<driverClass>${my.driver.class.name}</driverClass>
<url>${my.data.source.url}</url>
<user>${my.data.source.username}</user>
<password>${my.data.source.password}</password>

</dataSourceDefinition>
</connectionPolicy>

<loadConstraints maxConcurrentConnectionsPerNode="${max.connections.per.node}" />
</connectivity>

For JMS adapters:
<connectivity>

<connectionPolicy xsi:type="jms:JMSConnectionPolicyType">

<!-- uncomment this if you want to use an external JNDI repository -->
<!-- <namingConnection url="${my.naming.connection.url}"

initialContextFactory="${my.initial.context.factory}"
user="${my.naming.connection.username}"
password="${my.naming.connection.password}"/>
-->

<jmsConnection connectionFactory="${my.jms.connection.factory}"
user="${my.jms.connection.username}"
password="${my.jms.connection.password}"

/>
</connectionPolicy>

<loadConstraints maxConcurrentConnectionsPerNode="${max.connections.per.node}"/>
</connectivity>

For more information about configuring adapters, see “The <authentication>
element of the HTTP adapter” on page 535.

Chapter 10. Deploying IBM Worklight projects 783

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Configuring an IBM Worklight project in production by using
JNDI environment entries
When you deploy an IBM Worklight project to a Worklight Server, the project’s
WAR file can be configured with JNDI environment entries. These entries cover all
the properties that you can set in a production environment. You set the JNDI
environment entries either by editing the deployer Ant task configuration XML
file, or by configuring the server's environment entries through the administration
console (WebSphere Application Server) or the server.xml file (WebSphere
Application Server Liberty Profile, Apache Tomcat).

About this task

Many of the IBM Worklight configuration properties must have different values
when the project is deployed to different environments. For example, the
configuration properties that are used to specify the Worklight Server public URL
(that is, publicWorkLightHostname, publicWorkLightPort, and
publicWorkLightProtocol) might be different when the Worklight project is
deployed to a staging server or to a production server. You can configure the
project WAR file through JNDI environment entries.

Note: Some of the properties are only relevant in a development environment and
are not available as JNDI entries.

Note: There are two ways to encrypt the JNDI properties that are listed in the
following table, as described in “Storing properties in encrypted format” on page
779:
v You can define the property with the .enc suffix in the worklight.properties

file that is packaged in the WAR file of the IBM Worklight project. It is then
possible to override the encrypted value by using a JNDI property. This is the
only option available with Apache Tomcat.

v On WebSphere Application Server and Liberty Profile, you can use the password
encoding tools (PropFilePasswordEncoder for WebSphere Application Server and
SecurityUtility for Liberty Profile).

The following table lists the IBM Worklight properties that are always available as
JNDI entries:

Table 162. IBM Worklight properties available as JNDI entries

Property name Description

publicWorkLightHostname The IP address or host name of the
computer that is running IBM Worklight.

If the Worklight Server is behind a reverse
proxy, the value is the IP address or host
name of the reverse proxy.

This property must be identical for nodes
within the same cluster.

Default: IP address of current server.

784 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 162. IBM Worklight properties available as JNDI entries (continued)

Property name Description

publicWorkLightPort The port for accessing the Worklight Server.

If the Worklight Server is behind a reverse
proxy, the value is the port for accessing the
reverse proxy.

This property must be identical for nodes
within the same cluster.

Default: 10080.

The <configureApplicationServer> Ant task
sets a default value that depends on the
application server.

publicWorkLightProtocol The protocol for accessing the Worklight
Server.

The valid values are HTTP and HTTPS. If the
Worklight Server is behind a reverse proxy,
the value is the protocol for accessing the
reverse proxy.

This property must be identical for nodes
within the same cluster.

Default: HTTP.

The <configureApplicationServer> Ant task
sets a default value that depends on the
application server.

serverSessionTimeout Idle session timeout in minutes. Default: 10.

reports.exportRawData Whether reporting is activated (true or
false). Default: false.

push.gcm.proxy.host GCM proxy host. A negative value means
default port.

push.gcm.proxy.port GCM proxy port. Use -1 for the default
port. Default: -1.

push.gcm.proxy.protocol Either http or https.

push.gcm.proxy.enabled Shows whether GCM must be accessed
through a proxy. Default: false.

push.gcm.proxy.user Proxy user name, if the proxy requires
authentication. Empty user name means no
authentication.

push.gcm.proxy.password Proxy password, if the proxy requires
authentication.

push.apns.proxy.enabled Indicates whether APNS must be accessed
through a proxy. Default: false.

push.sms.proxy.enabled Indicates whether push SMS proxy is
enabled. Default: false.

push.apns.proxy.host APNS proxy host.

push.apns.proxy.port APNS proxy port.

push.sms.proxy.protocol Push SMS proxy protocol.

Chapter 10. Deploying IBM Worklight projects 785

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 162. IBM Worklight properties available as JNDI entries (continued)

Property name Description

push.sms.proxy.host Push SMS proxy host.

push.sms.proxy.port Push SMS proxy port.

push.sms.proxy.user Push SMS proxy user.

push.sms.proxy.password Push SMS proxy password.

wl.ca.keystore.path Path to the keystore relative to the server
folder in the Worklight Project; for example:
conf/my-cert.jks.

wl.ca.keystore.type Type of keystore file. Valid values are jks or
pkcs12.

wl.ca.keystore.password Password to the keystore file.

wl.ca.key.alias Alias of the entry where the private key and
certificate are stored in the keystore.

wl.ca.key.alias.password Password to the alias in the keystore.

ssl.keystore.path SSL certificate keystore location. Default:
conf/default.keystore.

ssl.keystore.type SSL certificate keystore type. Valid keystore
types: jks or PKCS12. Default: jks.

ssl.keystore.password SSL certificate keystore password. Default:
worklight.

cluster.data.synchronization.taskFrequencyInSecondsApplications and adapters cluster data
synchronization interval. Default: 2.

deployables.cleanup.taskFrequencyInSecondsDeployable folder cleanup task interval (in
seconds). Default: 86400.

sso.cleanup.taskFrequencyInSeconds Interval (seconds) for a cleanup task that
cleans the database of orphaned and expired
single-sign-on login contexts. Default: 5

wl.analytics.logs.forward Boolean value (true or false) that indicates
whether to send all com.worklight.* logs to
the operational analytics server. If this value
is true, all logs that are specified in
com.worklight settings are forwarded to the
operational analytics server. The default
value is true. This setting is only supported
on IBM Worklight production servers. It is
not supported on the Worklight Studio
development environment.

wl.analytics.url URL to which analytics data are sent.
Typically, this URL is for the operational
analytics server that comes with the IBM
Worklight installation. The URL is of the
form [protocol]://[iwapURL]/iwap/v1/
events/[eventName]. Currently, the only
event name that is used is _bulk. Example:
http://myServer.austin.ibm.com/iwap/v1/
events/_bulk.

786 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 162. IBM Worklight properties available as JNDI entries (continued)

Property name Description

wl.analytics.username Basic authorized user name for the URL
entered in wl.analytics.url.
Note: The user name is only required if you
configured the IBM HTTP Server (IHS) in
your IBM SmartCloud Analytics Embedded
installation to use SSL.

wl.analytics.password Basic authorized password for the URL
entered in wl.analytics.url.
Note: The password is only required if you
configured the IBM HTTP Server (IHS) in
your IBM SmartCloud Analytics Embedded
installation to use SSL.

wl.analytics.queues Sets the maximum number of queues that
Worklight Server can create to hold analytics
data before it sends the data to the server.
When all the queues are full, Worklight
Server quietly discards any new analytics
data until the current data finishes
processing. Default: 20.

wl.analytics.queue.size Number of individual analytics events that
each queue can hold. The total number of
analytics events that the server can hold at
one time before it begins to drop data is
(wl.analytics.queues *
wl.analytics.queue.size). In a production
environment, the default value is 10. In the
Worklight Studio development environment,
when you use the Worklight Development
Server, the default value is 1. This value can
be changed by setting a different value
through JNDI. (Optional.)

wl.device.archiveDecommissioned.when A value, in days, that defines when client
devices that were decommissioned will be
placed in an archive file when the
decommissioning task is run. The archived
client devices are written to a file in the
Worklight Server home\
devices_archive directory. The name of the
file contains the time stamp when the
archive file is created. Default: 90 days.

wl.device.decommission.when The number of days of inactivity after which
a client device is decommissioned by the
device decommissioning task. Default: 90
days.

wl.device.enableAccessManagement A Boolean value (true or false) that enables
the Access Management features on the
Worklight Server. If the Access Management
features are enabled, each time a device
attempts to connect to the server, it is
checked against the backend for its access
rights.

Chapter 10. Deploying IBM Worklight projects 787

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 162. IBM Worklight properties available as JNDI entries (continued)

Property name Description

wl.device.tracking.enabled A value that is used to enable or disable
device tracking in Worklight. For
performance reasons, you can disable this
flag when Worklight is running only
Business-to-Consumer (B2C) apps. When
device tracking is disabled, the license
reports are also disabled and no license
metrics are generated.

Custom user properties that are defined in the worklight.properties file are
exposed as well.

The properties: wl.db.* and wl.reports.db.* are not available as JNDI
environment entries because they are intended for use only during the
development phase.

Configuring with the Ant task

When you deploy and configure the project with the Ant task (as described in
“Deploying a project WAR file and configuring the application server with Ant
tasks” on page 748), it is possible to set values for Worklight configuration
properties inside the <configureapplicationserver> tag. For example:
<configureapplicationserver shortcutsDir="${shortcuts.dir}">

<property name="serverSessionTimeout" value="30"/>
<property name="publicWorkLightHostname" value="www.example.com"/>
<property name="publicWorkLightPort" value="80"/>
<property name="publicWorkLightProtocol" value="http"/>

Manually configuring on the server

In some cases, when you do not want to or cannot redeploy the application, it is
also possible to set values for Worklight configuration properties manually on the
server configuration files (or console). This procedure is what the Ant task does
behind the scenes. The manual configuration method is less recommended because
in some cases (for example, when upgrading or redeploying), the application
server might forget the configuration and the administrator must reconfigure it.

Procedure

Complete the following tasks, depending on which application server is used:
v WebSphere Liberty Profile:

Insert the following declarations in the server.xml file:
<application id="worklight" name="worklight" location="worklight.war"

type="war" context-root="/app_context_path">
</application>
<jndiEntry value="9080" jndiName="app_context_path/publicWorkLightPort"/>
<jndiEntry value="www.example.com" jndiName="app_context_path/publicWorkLightHostname"/>

The context path (in the previous example: app_context_path) connects between
the JNDI entry and a specific IBM Worklight application. If multiple Worklight
applications exist on the same server, you can define specific JNDI entries for
each application by using the context path prefix. Typically, app_context_path is
"worklight".

v Apache Tomcat:

788 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Insert the following declarations in the server.xml file:
<Context docBase="app_context_path" path="/app_context_path">

<Environment name="publicWorkLightPort" override="false"
type="java.lang.String" value="9080"/>

<Environment name="publicWorkLightHostname" override="false"
type="java.lang.String" value="www.example.com"/>

</Context>

Note: On Apache Tomcat, override="false" is mandatory.
With Apache Tomcat, the context path prefix is not needed because the JNDI
entries are defined inside the <Context> element of an application.

v WebSphere Application Server:
1. In the administration console, go to Applications > Application Types >

WebSphere enterprise applications > Worklight > Environment entries for
Web modules

2. In the Value fields, enter values that are appropriate to your circumstances.
See Figure 106

Related reference:
“Configuration of IBM Worklight applications on the server” on page 772
You can configure each IBM Worklight application by specifying a set of
configuration parameters on the server side.

SMS gateway configuration
An SMS gateway, or SMS aggregator, is a third-party entity which is used to
forward SMS notification messages to a destination mobile phone number. IBM
Worklight routes the SMS notification messages through the SMS gateway.

To send SMS notifications from IBM Worklight, one or more SMS gateways must
be configured in the SMSConfig.xml file, which is in the /server/conf folder of

Figure 106. Setting JNDI environment entries on WebSphere Application Server

Chapter 10. Deploying IBM Worklight projects 789

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

your project. To configure an SMS gateway, you must set the values of the
following elements, subelements, and attributes in the SMSConfig.xml file. The
Worklight Server must be restarted when any changes are made in the
SMSConfig.xml file.

Table 163. SMSConfig.xml elements and subelements

Element Element Value

gateway Mandatory. The <gateway> element is the
root element of the SMS gateway definition.
It includes 6 attributes:

v hostname

v id

v port

v programName

v toParamName

v textParamName

These attributes are described in Table 164

parameter Optional. The <parameter> subelement is
dependent on the SMS gateway. Each SMS
gateway may have its own set of
parameters. The number of <parameter>
subelements is dependent on SMS
gateway-specific parameters. If an SMS
gateway requires the user name and
password to be set, then these parameters
can be defined as <parameter> subelements.

Each <parameter> subelement has the
following attributes:

v name

v value

Table 164. <gateway> element attributes

Attribute Attribute Value

hostname Mandatory. The host name of the configured
SMS gateway.

id Mandatory. A unique ID that identifies the
SMS gateway. Application developers
specify the ID in the application descriptor
file, application-descriptor.xml, when they
develop an application.

port Optional. The port number of the SMS
gateway. The default value is 80.

programName Optional. The name of the program that the
SMS gateway expects. For example, if the
SMS gateway expects the following URI:

http://<hostname>:port/sendsms

then programName="sendsms"

790 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 164. <gateway> element attributes (continued)

Attribute Attribute Value

toParamName Optional. The name that is used by the SMS
gateway to specify the destination mobile
phone number. The default value is to. The
destination mobile phone number is sent as
a name-value pair when SMS notifications
are sent; that is, toParamName=destination
mobile phone number.

textParamName Optional. The name that is used by the SMS
gateway to specify the SMS message text.
The default value is text.

If the SMS gateway expects an HTTP post in the following format to forward SMS
messages to a mobile device:

http://myhost:13011/cgi-bin/sendsms?to=destination mobile phone
number&text=message text&username=fcsuser&password=fcspass

The SMSConfig.xml file is configured as follows:
<?xml version="1.0" encoding="UTF-8"?>
<sms:config xmlns:sms="http://www.worklight.com/sms/config" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<gateway hostname="myhost" id="kannelgw" port="13011" programName="cgi-bin/sendsms" toParamName="to" textParamName="text">
<parameter name = "username" value = "fcsuser" />
<parameter name = "password" value = "fcspass" />

</gateway>

</sms:config>

Ant tasks for building and deploying applications and
adapters

A set of Ant tasks is supplied with Worklight Server. The tasks in this section are
used to build and deploy your applications, adapters, and projects.

IBM Worklight provides a set of Ant tasks that help you build and deploy adapters
and applications to your IBM Worklight Server. A typical use of these Ant tasks is
to integrate them with a central build service that is invoked manually or
periodically on a central build server.

Apache Ant is required to run these tasks. The minimum supported version of Ant
is listed in “System requirements for using IBM Worklight” on page 9.

For convenience, Apache Ant 1.8.4 is included in Worklight Server. In the
WL_INSTALL_DIR/shortcuts/ directory, the following scripts are provided:
v ant for UNIX / Linux
v ant.bat for Windows

These scripts are ready to run, which means that they do not require specific
environment variables. If the environment variable JAVA_HOME is set, the scripts
accept it.

Chapter 10. Deploying IBM Worklight projects 791

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Building from a Worklight V6.0.0 project and deploying to a
V6.1.0 Worklight Server

If you want to build apps and adapters from a Worklight Studio V6.0.0 project and
deploy them to a V6.1.0 Worklight Server, you might think that all you need to do
is add an additional <taskdef> definition as shown in the following Ant task:
<taskdef resource="com/worklight/ant/defaults.properties">

<classpath>
<pathelement location="WL600_DIR/WorklightServer/worklight-ant.jar" />

</classpath>
</taskdef>

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="WL610_DIR/WorklightServer/worklight-ant-deployer.jar" />
</classpath>

</taskdef>

Note: WL600_DIR and WL610_DIR are the installation directories of Worklight Server.

However, the definitions of <app-deployer> and <adapter-deployer> conflict in the
aforementioned Ant script. To solve this conflict, you must split the script into two
different Ant files: one to build V6.0.0 artifacts, and the other to deploy them to the
V6.1.0 server, as shown in the following examples:

Ant script to build V6.0.0 artifacts
<project basedir="." default="build-and-deploy">

<property name="project.name" value="MyProject" />
<property name="wl.server" value="http://localhost:9080/${project.name}/" />
<property name="wl.project.location" location="${basedir}/${project.name}" />
<property name="output.location" location="${wl.project.location}/bin" />

<property name="wl.adapter.name" location="MyAdapter" />
<property name="wl.application.name" location="MyApplication" />

<property name="worklight-ant" location="worklight-ant.jar" />

<target name="init">
<taskdef resource="com/worklight/ant/defaults.properties">

<classpath>
<pathelement location="${worklight-ant}" />

</classpath>
</taskdef>

</target>

<target name="build">
<adapter-builder folder="${wl.project.location}/adapters/${wl.adapter.name}" destinationFolder="${output.location}"/>
<app-builder applicationFolder="${wl.project.location}/apps/${wl.application.name}" outputfolder="${output.location}" worklightserverhost="$

</target>

<target name="deploy">
<ant antfile="deploy.xml" inheritall="true" />

</target>

<target name="build-and-deploy" depends="init,build,deploy" />
</project>

Ant script to deploy V6.0.0. artifacts to a V6.1.0 server
<project basedir="." default="deploy">

<property name="worklight-ant-deployer" location="worklight-ant-deployer.jar" />

<target name="init">
<taskdef resource="com/worklight/ant/defaults.properties">

792 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<classpath>
<pathelement location="${worklight-ant-deployer}" />

</classpath>
</taskdef>

</target>

<target name="deploy" depends="init">
<adapter-deployer deployable="${output.location}/${wl.adapter.name}.adapter" worklightServerHost="${wl.server}"/>

<app-deployer deployable="${output.location}/${wl.application.name}-all.wlapp" worklightServerHost="${wl.server}"/>
</target>

</project>

Building applications and adapters
The Ant tasks used for building IBM Worklight applications and adapters are
documented in this section.

The following sections document examples of Ant XML files used to build and
deploy applications.

Building an application

The Ant task for building an application has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="target-name">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="WL_INSTALL_DIR/WorklightServer/worklight-ant-builder.jar"/>
</classpath>

</taskdef>
<target name="target-name">

<app-builder
worklightserverhost="http://server-address:port"
applicationFolder="application-source-files-folder"
environments="list-of-environments"
nativeProjectPrefix="project-name"
outputFolder="output-folder"/>

</target>
</project>

The <app-builder> element has the following attributes:
v The worklightserverhost attribute (mandatory) specifies the full URL of your

Worklight Server.
v The applicationFolder attribute specifies the root folder for the application,

which contains the application-descriptor.xml file and other source files for
the application.

v The environments attribute is a comma-separated list of environments to build.
This attribute is optional. The default action is to build all environments.

v The nativeProjectPrefix attribute is mandatory when you build iOS
applications

v The ouptputFolder attribute specifies the folder to which the resulting .wlapp
file is written.

By default, running the Ant task to build an application does not handle the Dojo
Toolkit, because Ant is not run with build-dojo.xml. You must explicitly configure
the task to do so, by using the following app-builder setting in the Ant build file:
skinBuildExtensions=build-dojo.xml

If you use this setting, the Dojo Toolkit files are deployed with your application.

Chapter 10. Deploying IBM Worklight projects 793

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Building an adapter

The Ant task for building an adapter has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="target-name">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="WL_INSTALL_DIR/WorklightServer/worklight-ant-builder.jar"/>
</classpath>

</taskdef>
<target name="target-name">

<adapter-builder
folder="adapter-source-files-folder"
destinationfolder="destination-folder"/>

</target>
</project>

The <adapter-builder> element has the following attributes:
v The folder attribute specifies the folder that contains the source files of the

adapter (its .xml and .js files).
v The destinationfolder attribute specifies the folder to which the resulting

.adapter file is written.

If you must build more than one adapter file, add an <adapter-builder> element
for each adapter.

Deploying applications and adapters
The Ant tasks used for deploying IBM Worklight applications and adapters are
documented in this section.

The following sections show examples of Ant XML files that use the
<app-deployer> Ant task to deploy applications and the <adapter-deployer> Ant
task to deploy adapters. These Ant tasks can be run locally on the Worklight
Server host computer or remotely on a different computer. To run them remotely
on a different computer, you must first copy the file <WorklightInstallDir>/
WorklightServer/worklight-ant-deployer.jar to that computer.

Deploying an application

Note: As a prerequisite step, before using this Ant task you must have deployed
the application's corresponding Worklight project. For more information, see
“Deploying the project WAR file” on page 714.

The Ant task for deploying an application has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="target-name">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="WL_INSTALL_DIR/WorklightServer/worklight-ant-deployer.jar" />
</classpath>

</taskdef>
<target name="target-name">

<app-deployer deployable="app.wlapp"
worklightServerHost="http://server-address:port/contextroot"
userName="username" password="password" />

</target>
</project>

The <app-deployer> element has the following attributes:

794 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v The worklightServerHost attribute (mandatory) specifies the full URL of your
Worklight Server.

v The deployable attribute (mandatory) contains the .wlapp file to deploy.
v The userName attribute (optional) contains the console user name, and is used if

the console is protected with a form-based authenticator.
v The password attribute (optional) contains the console password, and is used if

the console is protected with a form-based authenticator.

If you must deploy more than one .wlapp file, add an <app-deployer> element for
each file.

Deploying an adapter

Note: As a prerequisite step, before using this Ant task you must have deployed
the adapter's corresponding Worklight project. For more information, see
“Deploying the project WAR file” on page 714.

The Ant task for deploying an adapter has the following structure:
<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="target-name">

<taskdef resource="com/worklight/ant/defaults.properties">
<classpath>

<pathelement location="WL_INSTALL_DIR/WorklightServer/worklight-ant-deployer.jar" />
</classpath>

</taskdef>
<target name="target-name">

<adapter-deployer deployable="myAdapter.adapter"
worklightserverhost="http://server-address:port/contextroot"
userName="username" password="password" />

</target>
</project>

The <adapter-deployer> element has the following attributes:
v The worklightserverhost attribute (mandatory) specifies the full URL of your

Worklight Server.
v The deployable attribute (mandatory) specifies the .adapter file to deploy.
v The userName attribute (optional) contains the console user name, and is used if

the console is protected with a form-based authenticator.
v The password attribute (optional) contains the console password, and is used if

the console is protected with a form-based authenticator.

If you must deploy more than one .adapter file, add an <adapter-deployer>
element for each file.

Deploying applications and adapters to Worklight Server
You can deploy customer-specific content (apps and adapters) only after the project
WAR file is deployed and the server is started.

About this task

Customer-specific content includes applications that must be served by Worklight
Server and their underlying integration adapters. You can create apps and adapters
by building them in Worklight Studio, or with the Ant tasks provided with IBM
Worklight to build them. The result of the build action is files with extension
.wlapp and .adapter respectively.

Chapter 10. Deploying IBM Worklight projects 795

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

There are two ways to deploy applications and adapters to Worklight Console:
v Use Ant tasks provided with IBM Worklight, and described in “Ant tasks for

building and deploying applications and adapters” on page 791 and “Ant tasks
for deploying a project WAR file and configuring an application server” on page
718.

v Use Worklight Console to manually deploy apps and adapters as described in
the section.

Worklight Console opens in a “Catalog” page that enables you to work with apps
and adapters.

To deploy an adapter:

Procedure
1. Click Browse, then navigate to the .adapter file and select it.
2. Click Submit.

A message is displayed indicating whether the deployment action succeeded or
failed.

As a result, the details of the deployed adapter are added to the catalog:

3. Click Show details to view connectivity details for the adapter and the list of
procedures it exposes.

Figure 107. IBM Worklight Catalog

Figure 108. IBM Worklight adapter deployment success or failure message

Figure 109. Deployed adapter details

796 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

4. Repeat steps 1 – 3 for each adapter.
To deploy an application:

5. In the catalog page, click Browse, then navigate to the .wlapp file and select it.

6. Click Submit. A message is displayed indicating whether the deployment
action succeeded or failed.

As a result, the details of the deployed application are added to the catalog.

Figure 110. Adapter connectivity details

Figure 111. Browsing the catalog page to find the .wlapp file

Figure 112. Deployment success or failure message

Chapter 10. Deploying IBM Worklight projects 797

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

7. Repeat steps 1 and 2 for each app.

Results

A message is displayed, indicating whether the deployment action succeeded or
failed.

Administering adapters and apps in Worklight Console
Open the console before performing administrative tasks.

About this task

Before performing any of the other tasks in this collection of topics, open the
console:

Procedure
1. Open a browser and enter the following URL: http://my-host:10080/my-

context-root/console 10080 is the default port. You might be using a different
value.

2. If your Worklight Server is configured to require login, and you are not
currently logged in, log in when prompted to do so.

Figure 113. Details of the deployed application

798 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Results

The Catalog page of the IBM Worklight Console opens, and you can start
performing adapter administration tasks.

Deploying apps
Deploy an app by submitting it.

Procedure

To deploy an app:
1. Click Browse, then navigate to your .wlapp file and select it.
2. Click Submit.

Results

A message is displayed, indicating whether the deployment action succeeded or
failed.

Deleting apps
To delete an app, click Delete.

Procedure

To delete an app:

Click Delete to the right of the app name.

Exporting adapter configuration files
Export the configuration files for the adapter by copying them from the source
folder.

Procedure

To export a deployed adapter:

Obtain the adapter from the development environment.
1. Navigate to the /bin folder in your project
2. Copy the .adapter file or files.

Deploying adapters
Deploy an adapter from the console.

Procedure

To deploy an adapter:
1. Click Browse, then navigate to your .adapter file and select it.

Chapter 10. Deploying IBM Worklight projects 799

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. Click Submit.

A message is displayed indicating whether the deployment action succeeded or
failed. If it succeeded, the details of the deployed adapter are added to the
catalog.

3. Click Show details to view the connectivity details for the adapter and the list
of procedures it exposes.

Results

A message is displayed, indicating whether the deployment action succeeded or
failed.

Modifying adapters
To modify an adapter, replace it with a new one.

Procedure

To modify an adapter:

Deploy the modified adapter file, as described in “Deploying adapters” on page
799.

Results

The new adapter replaces the original one.

Deleting adapters
Delete an adapter by clicking Delete.

Procedure

To delete an adapter:

Click Delete to the right of the adapter name.

800 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Worklight Security and LTPA overview
Worklight has comprehensive support for various authentication and authorization
methods, including Lightweight Third-Party Authentication (LTPA).

Worklight security basics

The following image shows the authentication elements hierarchy:

Security test
A security test is a set of tests that are used to protect a resource, such as
an adapter procedure or application environment. A test includes
information about which realm is required to authenticate and other
parameters, such as authentication order. A protected resource is accessible
only after the client authenticates to all of the tests that are specified in the
security test. If the client is unable to log in to all tests, the request to
access the protected resource is denied. Individual adapter procedures or
an entire application environment can be protected by a security test. For
more information about security tests and the different types of security
tests, see “Security Tests” on page 605.

Realm A realm creates a relationship between a Worklight login module and a
Worklight authenticator to provide a means of authentication. For more
information about realms, see “Authentication realms” on page 607.

Authenticator
An authenticator parses incoming requests from a Worklight client to
search for required credentials when a protected resource is requested. If
credentials are not available in the request, the authenticator is responsible
for challenging the client to authenticate. The credentials, after received
correctly from the client, are formatted to the login module's predefined
requirements and sent to the login module. For more information about
authenticators, see “Authenticators and Login Modules” on page 608.

Login module
After an authenticator is able to parse credentials from a request, they are
sent to a login module that is responsible for validating those credentials.
After the credentials are considered valid and the user can be authorized,
the login module creates a user identity for the realm. For more
information about login modules, see “Authenticators and Login Modules”
on page 608.

Chapter 10. Deploying IBM Worklight projects 801

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

User identity
After a login module successfully validates a set of user credentials, it
creates a user identity. A user identity contains at least a user name and a
display name. It can also contain attributes that provide more details the
protected resource might need.

Challenge handlers
A challenge handler is the client-side JavaScript that is included into a
Worklight application that is created by the developer. A challenge handler
handles an authentication challenge from the server. A challenge handler
can be defined for each realm, and is responsible for the following tasks:
v Determine whether a request is an authentication challenge that is

specific to the realm.
v Perform necessary user interaction if it receives a challenge.
v Send the credentials to the server to complete the authentication.
v Validate that the authentication was successful.

Worklight security configuration
For a Worklight Server to protect a resource, such as an adapter procedure or an
application environment, the administrator must first configure the Worklight
Server.

Defining a login module

A login module is the most basic security element in the Worklight authentication
configuration. You can define a login module in the <loginModules> element in the
authenticationConfig.xml file. The following example shows a login module
definition:
<loginModules>
...

<loginModule name="HeaderLogin"
canBeResourceLogin="true"
isIdentityAssociationKey="true"
audit="true>

<className>com.worklight.core.auth.ext.HeaderLoginModule</className>
<parameter name="user-name-header" value="userid" />
<parameter name="display-name-header" value="username" />

</loginModule>
...
</loginModules>

In this example, the login module is called HeaderLogin, and is referred to from a
realm element. The <className> element must contain the full Java namespace to a
login module implementation. The HeaderLoginModule is a login module that is
included by default. It checks to make sure that the user entered any, non-empty
user name and password.

Defining a realm

After a login module is defined, you must specify a realm. You can add a realm to
the <realms> element in the authenticationConfig.xml file. The following example
shows a realm definition:
<realms>
...

<realm name="RequiresUserHeaders" loginModule="HeaderLogin">

802 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<className>com.worklight.core.auth.ext.HeaderAuthenticator</className>
</realm>

...
</realms>

In this example, the realm is called RequiresUserHeaders, and uses the login
module that was defined in the previous example. The <className> element must
contain the full Java namespace to an authentication implementation. This realm
definition creates a link between an authenticator and a login module.

Defining a security test

A security test can be defined in the <securityTests> element in the
authenticationConfig.xml file. The following example shows a security test
definition:
<securityTests>
...

<customSecurityTest name="BasicRequirements">
<test realm="wl_antiXSRFRealm" />
<test realm="wl_authenticityRealm" />
<test realm="wl_remoteDisableRealm" />
<test realm="RequiresUserHeaders" isInternalUserID="true" />
<test realm="wl_deviceNoProvisioningRealm" isInternalDeviceID="true" />

</customSecurityTest>
...
</securityTests>

This custom security test is called BasicRequirements, and contains a list of tests.
The tests define which realms are required for authorization into the protected
resource. The tests in this example are built in realms. Built in realms are prefixed
with wl_.

Note: If one test fails, then the entire security test fails.

The isInternalUserID attributes can be set to true only on a single realm. This
attribute is used as the default identity for a user in the security test. The
isInternalDeviceID attribute is similar, but sets a default device identity.

This example uses the RequiresUserHeaders realm in the previous example.

Creating a challenge handler

You must create a challenge handler for your Worklight app to handle any custom
challenges.For more information about challenge handlers, see the module Custom
Authenticator and Login Module under category 8, Authentication and security, in
Chapter 3, “Tutorials and samples,” on page 27.

Worklight application environment protection

After a security test is configured with the appropriate realms, you can protect any
resource. One option is to protect an application’s environment, such as iPhone,
iPad, or Android, completely with that security test.

To set up this protection, you must add the securityTest attribute to the
environment’s element in the applicationDescriptor.xml file. The following
example shows the environment protection definition:

Chapter 10. Deploying IBM Worklight projects 803

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<android version="1.0" securityTest="BasicRequirements">
...
</android>

This definition requires every Android device that connects to the server through
your application to log in to the BasicRequirements security test.

Worklight adapter procedure protection

Another option is to protect a Worklight adapter procedure. Using the same
security test, you can protect an adapter procedure. When the procedure is called
and the user is not already authenticated into the security test, the client is
required to authenticate. If you have an adapter procedure named GetSecretData,
you can protect it in the adapter’s XML configuration file by adding the
securityTest attribute to the <procedure> element:
<procedure name="GetSecretData" securityTest="BasicRequirements" />

Worklight Security and LTPA
Lightweight Third-Party Authentication (LTPA) is a security token type that is used
by IBM WebSphere Application Server and other IBM products. LTPA can be used
to send the credentials of an authenticated user to backend services. It can also be
used as a single sign-on (SSO) token between the user and multiple servers.

The following image shows a simple client/server flow with LTPA:

804 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

After a user logs in, the server generates an LTPA token, which is an encrypted
hash that contains authenticated user information. The token is signed by a private
key that is shared among all the servers that want to decode it. The token is
usually in cookie form for HTTP services. By sending the token as a cookie, there
is no need for subsequent user interaction.

LTPA tokens have a configurable expiration time to reduce the possibility for
session hijacking.

The following image shows a client-server-backend flow with LTPA:

Your infrastructure can also use the LTPA token to communicate with a backend
server to act on behalf of the user. The user cannot directly access the backend
server. Enterprise environments should use a reverse proxy, such as DataPower or
IBM ISAM, in the DMZ, and place the Worklight Server in the intranet. This
configuration ensures that access to the Worklight Server cannot be obtained until
a user authenticates. For more information, see “Reverse proxy with LTPA” on
page 810.

Configuring the Worklight LTPA realm:

The Worklight Server contains the authenticator and login module that are
designed to handle authentication by using LTPA through form-base
authentication.

About this task

You must update the authenticationConfig.xml file to configure your server to
use the Worklight LTPA realm.

Procedure

1. Add the login module definition to the <loginModules> element in your
server’s authenticationConfig.xml file. The following example uses a login
module that is called WASLTPAModule:

Chapter 10. Deploying IBM Worklight projects 805

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<loginModules>
...

<loginModule name="WASLTPAModule">
<className>com.worklight.core.auth.ext.WebSphereLoginModule</className>

</loginModule>
...
</loginModules>

2. Add the realm definition to the <realms> element in your server’s
authenticationConfig.xml file. The following example uses a realm that is
called WASLTPARealm:
<realms>
...

<realm name="WASLTPARealm" loginModule="WASLTPAModule">
<className>com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator</className>

<parameter name="login-page" value="/login.html" />
<parameter name="error-page" value="/loginError.html" />

</realm>
...
</realms>

3. Add a user test to an existing test in the authenticationConfig.xml file.
<customSecurityTest name="LTPASecurityTest">

<test realm="wl_authenticityRealm" />
<test realm="WASLTPARealm" isInternalUserID="true" />
<test realm="wl_deviceNoProvisiongRealm" isInternalDeviceID="true" />

</customSecurityTest>

4. Create a login page and a login error page. The WASLTPARealm must know
which HTML file to present to the client when the client must authenticate.
This HTML file must be named login.html. When the client enters invalid
credentials, the WASLTPARealm presents an error HTML file. This HTML file must
be named loginError.html. These HTML files must be added to the root
directory in the Worklight Server WAR file. The following example shows a
sample login.html file:
<html>

<head>
<title>Login</title>

</head>
<body>

<form method="post" action="j_security_check">
<input type="text"

id="j_username"
name="j_username"
placeholder="User name" />

<input type="password"
id="j_password"
name="j_password"
placeholder="Password" />

<input type="submit" id="login" name="login" value="Log In" />
</form>

</body>
</html>

The following example shows a sample loginError.html file:
<html>

<head>
<title>Login Error</title>

</head>
<body>

An error occurred while trying to log in.
</body>

</html>

806 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Supported configurations for LTPA
IBM Worklight supports different configuration options to take advantage of LTPA,
based on the server configuration and administrative requirements.

Protective application server (Option 1)

This configuration is formally known as Option 1 in the module WebSphere
LTPA-based authentication, under category 8, Authentication and security, in Chapter 3,
“Tutorials and samples,” on page 27. The application server is configured to
protect all resources in the Worklight Server application, which is given specified
roles. The application server sends the login page if the user does not send a valid
LTPA token with the request. After the user sends valid credentials, the original
request is sent to the Worklight Server application with an LTPA token. The LTPA
realm consumes the LTPA token and automatically logs in the user.

The following image shows a protective application server flow:

This option is not preferred for new configurations. The application server such as
the IBM WebSphere Application Server Liberty Profile (Liberty) protects all
resources and forces users to log in before any other authentication mechanism.
The behavior occurs regardless of the expected authentication order for a security
test.

To use this option with Liberty, you must edit the web.xml from the Worklight
Server WAR file and Liberty’s server.xml file. The following example shows the
required modifications to the web.xml file:
<!-- Existing web.xml configuration here -->

<security-constraint id="worklightSecurityConstraint">
<web-resource-collection id="worklightWebResourceCollection">

<web-resource-name>Worklight Server</web-resource-name>
<description>Protection area for Worklight Server.</description>
<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>

Chapter 10. Deploying IBM Worklight projects 807

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<auth-constraint id="worklightAuthConstraint">
<description></description>
<role-name>allAuthenticationUsers</role-name>

</auth-constraint>
<user-data-constraint id="worklightUserDataConstraint">

<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>

</security-constraint>

<security-role id="securityRoleAllAuthenticatedUsers">
<description>All Authenticated Users Role.</description>
<role-name>allAuthenticationUsers</role-name>

</security-role>

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>

<form-login-page>/login.html</form-login-page>
<form-error-page>/loginError.html</form-error-page>

</form-login-config>
</login-config>

The following example shows the required modifications to the server.xml file:
<featureManager>

<feature>appSecurity-1.0</feature>
<!-- Any additional features you need go here -->

</featureManager>

<!-- Use an existing user registry instead if you have one.
This registry is just an example. -->

<basicRegistry>
<user name="sampleuser" password="demo" />

</basicRegistry>

<!-- Any additional settings go here -->
<application context-root="/worklight"

location="worklight.war"
name="worklight"
type="war">

<classloader commonLibraryRef="worklight-6.1.0,apps-common" />

<!-- This is our addition: application-bnd.
The security-role defines who is authorized into a role from web.xml -->

<application-bnd>
<security-role name="allAuthenticationUsers">

<special-subject type="ALL_AUTHENTICATED_USERS" />
</security-role>

</application-bnd>
</classloader>

</application>

Note: Remember to add the login.html and loginError.html files to the root
directory in the Worklight Server WAR file to provide a way for the user to log in.
For more information, see step 4 of “Configuring the Worklight LTPA realm” on
page 805.

Protective IBM Worklight security test (Option 2)

An alternative configuration allows the server to use all of the Worklight security
test configuration features. This option is preferred for new configurations. For
example, Option 1 always asks the user to log in on the first request. Option 2 asks
for the user to authenticate only when the Worklight Server deems that it is
necessary.

808 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The following image shows a protective security test flow:

You need to modify only Liberty’s server.xml file to configure this option. The
WASLTPARealm handles the actual authentication against the user registry that is
defined in the server.xml file. The example configuration allows the user with the
user name sample user and the password demo to authorize correctly.

The following example shows the required modifications to the server.xml file:
<featureManager>

<feature>appSecurity-1.0</feature>
<!-- Any additional features you need go here -->

</featureManager>

<!-- Use an existing user registry instead if you have one.
This registry is just an example. -->

<basicRegistry>
<user name="sampleuser" password="demo"/>

</basicRegistry>

<!-- Any additional settings go here -->
<application context-root="/worklight"

location="worklight.war"
name="worklight"
type="war">

<classloader commonLibraryRef="worklight-6.1.0,apps-common"/>
<!-- This is our addition: application-bnd.

The security-role defines who is authorized into a role from web.xml -->
<application-bnd>

<security-role name="allAuthenticationUsers">
<special-subject type="ALL_AUTHENTICATED_USERS" />

</security-role>
</application-bnd>

</classloader>
</application>

Note: Remember to add the login.html and loginError.html files to the root
directory in the Worklight Server WAR file to provide a way for the user to log in.
For more information, see step 4 of “Configuring the Worklight LTPA realm” on
page 805.

Chapter 10. Deploying IBM Worklight projects 809

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Advanced security features
IBM Worklight supports more features that can use LTPA in advanced scenarios,
such as user certificate authentication and role-based authentication.

Role-based authentication

In Worklight V6.1 and later, role-based authentication is supported. This feature
allows the Worklight LTPA realm to be configured to restrict access to a specific
Java Platform, Enterprise Edition role. The realm denies the user if the user is not
authorized to the role that is specified. This feature is optional. By not defining a
required role in the realm's configuration, all users get an LTPA token and are
authorized if credentials are correct.

For more information, see “WASLTPAModule login module” on page 618.

User certificate authentication

In Worklight V6.1 and later, the User Certificate Authentication feature is
supported. This form of authentication allows users to authenticate through an
X.509 client certificate over SSL. The realm definition includes parameters to
configure the authenticator, which includes the concept of a dependent realm. The
dependent realm is a realm that is required to be authenticated before the user
certificate can be generated. After the user logs in to the dependent realm, the user
certificate authenticator uses the user identity to build the certificate signing
request (CSR) and certificate.

For more information, see “User certificate authentication” on page 994.

Topologies and use cases
Worklight supports various infrastructure topologies for a set of requirements that
can take advantage of LTPA or Worklight security.

Reverse proxy with LTPA

A reverse proxy can be used to authenticate, and then send the user's LTPA token
after the user is authenticated. This configuration can be useful when you want to
offload Worklight from handling vital user credentials or to use an existing
authentication setup. The Worklight Server must be configured for LTPA
authentication to get the user identity. Both supported LTPA configurations log the
user in automatically if the LTPA token is valid and the user is authorized. For
more information about integrating IBM Worklight with a reverse proxy, see
“Integration with reverse proxy” on page 1017.

The following image shows a reverse proxy flow:

810 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

High availability
High availability is provided through clustering, the ability to provide multiple
Worklight Servers acting together.

Multiple Worklight Servers enable horizontal scaling of the software as well as the
prevention of a single point of failure.

Clustering
The Worklight Server creates a cluster by deploying multiple servers that share the
database instance.

The basic setup consists of the load balancer, the cluster nodes, and a database that
is shared by the cluster nodes.

All cluster nodes are identical, that is, the content of the installation folder is the
same in all nodes. Cluster nodes do not synchronize with each other at run time.
All shared runtime data is in the database so that database changes made through
one node are immediately available to all other nodes. The exception is the project
WAR, which is not held in the database, and each node must have its own copy and
can be secured individually. With WebSphere Application Server Network
Deployment, you can use built in clustering support for distributing the IBM
Worklight project WAR (and the Worklight Shared library). For more information,
see the IBM WebSphere Application Server V8 user documentation.

IBM Worklight servers can run on a VMware virtual machine. In such cases, one
machine image is created and then deployed again and again.

IBM Worklight is stateful. It caches session state within the server memory. The
result is that if one Worklight Server is taken offline, active user sessions are lost
and the client is asked to log on again.

Chapter 10. Deploying IBM Worklight projects 811

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/index.jsp

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Configuring the load balancer
You can use hardware-based or software-based load balancers.

If you do not want to use a hardware-based load balancer, you can use a simpler,
software-based load balancer or reverse proxy such as the Apache Tomcat web
server. Any load balancer that can support the following features is adequate:
v Sticky session (recommended configuration)
v Reverse proxy capabilities
v Optional: SSL Acceleration

Configuration of the load balancer depends on the vendor and is not covered in
this document. It is common to define the range of the node addresses so that they
can be added or deleted dynamically.

Adding a node to the cluster
Follow the instructions for creating a Worklight Server to add a node to the cluster.

About this task

You can add a node to the cluster, by following the instructions for creating a
Worklight Server:

Procedure
1. Add the IP address of the node to the load balancer or use an existing address

from a range that was pre-allocated to Worklight Servers.
2. Install the Worklight Server.
3. Apply the project WAR.

Firewalls
Firewalls can be configured at various layers of the IBM Worklight architecture.

Firewalls in front of a Worklight Server use the typical configuration.

Special attention must be given to a firewall layer between the IBM Worklight
servers and the IBM Worklight database.
v IBM Worklight Server employs database connection pooling. Firewalls may

detect idle database connections and terminate them resulting in unexpected
behavior.

v Firewalls limit the number of connections allowed. This is done to prevent
Denial of Service (DoS) attacks. However, with multiple clustered IBM Worklight
servers, the number of connections might be higher than usual.

Disaster Recovery Site
IBM Worklight supports the creation of a separate disaster recovery site that
becomes operational if the original site goes down.

A disaster recovery site is a second, physically separate IT center on which a copy
of the IT systems exists, and springs into operation if the original site is down.
IBM Worklight has such a site for some of its customers.

Within the site, IBM Worklight provides redundancy at every level: compensating
load balancers, multiple IBM Worklight servers that scale linearly, and database
redundancy through Oracle RAC. Some customers prefer to provide another level
of redundancy by using a disaster recovery site.

812 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The key administrative factors for such a site are:
v Architecture
v Data mirroring from master to backup site
v Switching to back up site on disaster

Architecture
The architecture of the backup site is a copy of the original site. Special
care must be taken to:
v Provide access to all corporate back-end systems.
v Create a switch that transfers incoming requests from master to backup

site.

IBM Worklight relies on one single database, so an active-active
configuration of master and back-up sites is not encouraged (unless you
have the required bandwidth to perform database WAN replication).

Data mirroring
For the backup site to work, data on the master site must be mirrored to
the backup regularly:

Table 165. Data mirroring

Component Description Mirror frequency

IBM Worklight Database All tables must be mirrored.
The exceptions to this rule
are cache tables
(SSO_LOGIN_CONTEXTS) and
report tables (which are large
in size).

Highly dependent on
implementation and can
range from a few minutes to
24 hours. For more
information, contact software
support.

IBM Worklight Software,
customization, and content

Any change in IBM
Worklight software,
customization, or content
must also be installed on the
mirror servers.

As it occurs.

Switching to back up site
When you switch to the backup site, some information might be lost:
v All clients lose context and disconnect. In the case of an authenticated

app, the user is prompted to log in again.
v Report information is lost (unless previously mirrored).
v Cache is lost. If Cache was implemented for various queries, an

additional server fetch is required to fill cache.

Switching back to Master Site
Before you switch back to the master site, you must mirror the database
back to the master site.

Important: The success of a recovery site is in the details. To ensure the
successful functioning of such a site, you must develop and follow a strict
written procedure, which you test regularly.

Updating IBM Worklight apps in production
There are general guidelines for upgrading your IBM Worklight apps when they
are already in production, on the Application Center or in app stores.

Chapter 10. Deploying IBM Worklight projects 813

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Deploying your IBM Worklight apps for the first time to Worklight Server and the
Application Center is covered in other sections of the information center, such as
“Deploying an application from development to a test or production environment”
on page 711. To recap, the general procedure is as follows:
v Build and test your app in Worklight Studio, and use either the Worklight

Console or the supplied Ant tasks to deploy its .wlapp file to Worklight Server
and the Application Center.

v Submit the generated device app files (such as .apk for Android apps and .ipa
for iOS apps) to their respective app stores (in this example, Google Play and
Apple Store).

v Wait for the completion of the review and approval process. Try to avoid
updating your app before the review process is completed because doing so can
trigger a Direct Update and can confuse the reviewers.

Procedures for upgrading your app when it is already in production are contained
in this section. There are several ways to perform such upgrades, depending on
their nature:
v Is the upgrade a new version of the app that contains new features or native

code, or is it a bug fix or security upgrade?
v Is the upgrade mandatory or optional?
v If it is optional, do you want to leave the old version of the app in place and

available to users, or not?
v How and when do you want to notify users of the upgrade?

These subjects are covered in the following topics.

Deploying a new app version and leaving the old version
working

The most common upgrade path, used when you introduce new features or
modify native code, is to release a new version of your app. Consider following
these steps:
1. In Worklight Studio, increment the app version number.
2. Build and test your project and generate new .wlapp, .apk, and .ipa files for it.
3. Deploy the new .wlapp file to Worklight Server.
4. Submit the new .apk or .ipa files to their respective app stores.
5. Wait for review and approval, and for the apps to become available.
6. Optional - send notification message to users of the old version, announcing

the new version. See “Displaying a notification message on application startup”
on page 840 and “Defining administrator messages from Worklight Console in
multiple languages” on page 840.

Deploying a new app version and blocking the old version

This upgrade path is used when you want to force users to upgrade to the new
version, and block their access to the old version. Consider following these steps:
1. Optional - send notification message to users of the old version, announcing a

mandatory update in a few days. See “Displaying a notification message on
application startup” on page 840 and “Defining administrator messages from
Worklight Console in multiple languages” on page 840.

2. In Worklight Studio, increment the app version number.
3. Build and test your project and generate new .wlapp, .apk, and .ipa files for it.
4. Deploy the new .wlapp file to Worklight Server.

814 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

5. Submit the new .apk or .ipa files to their respective app stores.
6. Wait for review and approval, and for the apps to become available.
7. Copy links to the new app version.
8. Block the old version of the app in Worklight Console, supplying a message

and link to the new version. See “Locking an application” on page 836 and
“Remotely disabling application connectivity” on page 837.

Note: If you disable the old app, it is no longer able to communicate with
Worklight Server. Users can still start the app and work with it offline unless you
force a server connection on app startup.

Direct Update (no native code changes)

Direct Update is a mandatory upgrade mechanism that is used to deploy fast fixes
to a production app. When you redeploy an app to Worklight Server without
changing its version, Worklight Server directly pushes the updated web resources
to the device when the user connects to the server. It does not push updated native
code. Things to keep in mind when you consider a Direct Update include:
v Direct update does not update the app version. The app remains at the same

version, but with a different set of web resources. The unchanged version
number can introduce confusion if used for the wrong purpose

v Direct update also does not go through the app store review process because it
is technically not a new release. This should not be abused because vendors like
Apple and Google can become displeased if you deploy a whole new version of
your app that bypasses their review. It is your responsibility to read each store's
usage agreements and abide by them. Direct update is best used to fix urgent
issues that cannot wait for several days.

v Direct Update is considered a security mechanism, and therefore it is mandatory,
not optional. When you initiate the Direct Update, all users must update their
app to be able to use it.

v Direct Update does not work if an application is compiled (built) with a
different version of Worklight Studio than the one that was used for the initial
deployment.

The steps for initiating a Direct Update are as follows:
1. Optional - send notification message to users of the old version, announcing a

mandatory update in the next few hours or days. See “Displaying a notification
message on application startup” on page 840 or “Defining administrator
messages from Worklight Console in multiple languages” on page 840.

2. In Worklight Studio, do not increment the app version number.
3. Build and test your project and generate a new .wlapp file for it.
4. Deploy the new .wlapp file to Worklight Server. This initiates the Direct

Update.

For more information about Direct Update, see “Direct updates of app versions to
mobile devices” on page 833.

Deploying to the cloud by using IBM PureApplication System and IBM
SmartCloud Orchestrator

IBM Worklight provides the capability to deploy and manage IBM Worklight
Servers and applications on IBM PureApplication System and IBM SmartCloud
Orchestrator.

Chapter 10. Deploying IBM Worklight projects 815

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Using IBM Worklight in combination with IBM PureApplication System and IBM
SmartCloud Orchestrator provides a simple and intuitive environment for
developers and administrators to develop mobile applications, test them, and
deploy them to the cloud. The following components are available:

IBM Mobile Application Platform Pattern Type
Provides IBM Worklight runtime and artifacts support for IBM
PureApplication System.

IBM Mobile Application Platform Pattern Extension for Worklight Studio
Provides Mobile Application Platform Pattern tooling support for
Worklight Studio.

Ant command line interface
Provides an alternative method to build and deploy Worklight Virtual
Application.

Installing IBM Worklight support for cloud deployment
You must install the IBM Mobile Application Platform Pattern Type and IBM
Mobile Application Platform Pattern Extension for Worklight Studio.

Installing the IBM Mobile Application Platform Pattern Type
You use the PureApplication System Workload Console to install the IBM Mobile
Application Platform Pattern Type.

Before you begin

You can find the worklight.ptype-6.1.0.2.tgz file in the
worklight_pattern_6.1.0.2.offering.zip file. Make sure you extract it before you
start this procedure.

Procedure
1. Log in to IBM PureApplication System with an account that has permission to

create new pattern types.
2. Go to Workload Console > Cloud > Pattern Types.
3. Upload the IBM Mobile Application Platform Pattern Type .tgz file.
4. On the toolbar, click +. The “Install a pattern type” window opens.
5. On the Local tab, click Browse, select the IBM Mobile Application Platform

Pattern Type .tgz file, and then wait for the upload process to complete. The
pattern type is displayed in the list and is marked as not enabled.

6. In the list of pattern types, click the uploaded pattern type. Details of the
pattern type are displayed.

7. In the License Agreement row, click License. The License window is displayed
stating the terms of the license agreement.

8. To accept the license, click Accept. Details of the pattern type now show that
the license is accepted.

9. In the Status row, click Enable. The pattern type is now listed as being enabled.

Installing custom IBM Worklight database workload standards
You need to install custom workload standards for the IBM Worklight runtime
database and the IBM Worklight reports database.

816 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Before you begin

Extract the WLRTDB.zip and WLRPTDB.zip files from the
worklight_pattern_6.1.0.2.offering.zip file.

Procedure
1. Log in to IBM PureApplication System with an account that has permission to

create database workload standards.
2. In the Workload Console, navigate to Catalog > Database Workload Standards.
3. From the toolbar, click +. The Database Workload Standards window opens.
4. In the Name field, enter a name; for example, WL_DB.
5. From the Workload type list, select Departmental Transactional.
6. In the Upload file (.zip) field, select the WLRTDB.zip file you extracted from the

worklight_pattern_6.1.0.2.offering.zip file.
a. Click Browse, navigate to the folder into which you extracted the

WLRTDB.zip file, and then select the WLRTDB.zip file.
7. Click Save to save your custom runtime database workload standard.
8. Repeat the previous steps to upload the WLRPTDB.zip file to create the custom

reports database workload standard.

What to do next

You use the installed database workload standards in the process of creating an
IBM Mobile Application Platform Pattern (see “Creating an IBM Mobile
Application Platform Pattern” on page 819).

Installing IBM Worklight support for cloud deployment from the
command line
If you download the IBM PureApplication System command-line interface, you can
install IBM Worklight support for cloud deployment by running a Python script
from the command line.

Before you begin

You need to download the command-line interface before you run the Python
script. For further information about the command-line interface, see
http://pic.dhe.ibm.com/infocenter/psappsys/v1r1m0/topic/
com.ibm.puresystems.appsys.1500.doc/iwd/cct_usingcli.html.

Procedure

Open a command prompt and run the following Python script:
./deployer -h localhost -u cbadmin -p cbadmin -a -f install.py /dir/mobile

install.py:
import sys
mobileloc=sys.argv[1]

print "Loading Mobile"
deployer.patterntypes.create(mobileloc+’/worklight.ptype-6.1.0.2.tgz’)
print "Accept/enable"
deployer.patterntypes.get("worklight.ptype","6.1.0.2").acceptLicense()
deployer.patterntypes.get("worklight.ptype","6.1.0.2").enable()

print "creating db workload standards"
temp=deployer.dbworkloads.create({"rate":"3","workload_type":"Departmental OLTP","initial_disk_size":"1","name":"WL_DB","description":"","is_system":

Chapter 10. Deploying IBM Worklight projects 817

http://pic.dhe.ibm.com/infocenter/psappsys/v1r1m0/topic/com.ibm.puresystems.appsys.1500.doc/iwd/cct_usingcli.html
http://pic.dhe.ibm.com/infocenter/psappsys/v1r1m0/topic/com.ibm.puresystems.appsys.1500.doc/iwd/cct_usingcli.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

deployer.dbworkloads.get(temp[’id’]).workloadfiles.upload(mobileloc+"/WLRTDB.zip")
temp=deployer.dbworkloads.create({"rate":"3","workload_type":"Departmental OLTP","initial_disk_size":"1","name":"WL_Report_DB","description":"","is_syst
deployer.dbworkloads.get(temp[’id’]).workloadfiles.upload(mobileloc+"/WLRPTDB.zip")

Installation of IBM Mobile Application Platform Pattern Extension
for Worklight Studio
IBM Mobile Application Platform Pattern Extension is included with Worklight
Studio in both the IBM Worklight Enterprise Edition and IBM Worklight Consumer
Edition. When Worklight Studio is installed in the Eclipse development
environment, the IBM Mobile Application Platform Pattern Extension is also
installed.

For more information about installation and configuration of Worklight Studio, see
Chapter 6, “Installing and configuring,” on page 45.

Working with the IBM Mobile Application Platform Pattern
Type

Working with the IBM Mobile Application Platform Pattern Type involves creating
an IBM Mobile Application Platform Pattern, integrating with Tivoli Directory
Server, connecting to a Tivoli Directory Server, and managing Worklight VAP
instances.

Composition and components
The IBM Mobile Application Platform Pattern Type is composed of the IBM Web
Application Pattern and the IBM Mobile Application Platform Pattern. The IBM
Mobile Application Platform Pattern provides a number of components.

Composition

IBM Mobile Application Platform Pattern Type is composed of the following
patterns:
v IBM Web Application Pattern
v IBM Mobile Application Platform Pattern

Components

In addition to all components provided by IBM Web Application Pattern, IBM
Mobile Application Platform Pattern provides the following components:
v IBM Worklight application component
v IBM Worklight adapter component
v IBM Worklight configuration component
v IBM Worklight application component link to enterprise application (Websphere

Application Server) component
v IBM Worklight adapter component link to enterprise application (Websphere

Application Server) component
v Enterprise application (Websphere Application Server) component link to IBM

Worklight configuration component
v IBM Worklight configuration link to user registry (Tivoli Directory Server)

Importing the sample IBM Worklight virtual application pattern
You import the sample IBM Worklight virtual application pattern from the IBM
PureApplication system console. You need to set the correct database workload
standard.

818 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

A sample Worklight application pattern can be found in
worklight_pattern_6.1.0.2.offering.zip called WorklightSamplePattern.zip.

Procedure
1. Import the sample IBM Worklight application pattern.

a. Log on to the IBM PureApplcation system console.
b. Select Patterns > Virtual applications.
c. In the filter, select IBM Mobile Application Platform Pattern Type 6.1.
d. Click the Import icon.
e. Upload the WorklightSamplePattern.zip file.

2. Set the correct database workload standard.
a. In IBM PureApplication System, in the Virtual Application Builder, click the

Diagram tab to edit the sample Worklight virtual application pattern.
b. Click Worklight Runtime DB, then from the Source properties list in the

right panel, select Apply a database workload standard, and then click the
Worklight runtime database workload standard.

c. Repeat the previous step to set the Worklight reports database workload
standard for Worklight Reports DB.

Creating an IBM Mobile Application Platform Pattern
You create an IBM Mobile Application Platform Pattern by creating and
configuring a Worklight Server, a runtime database, and an optional reports
database, and by uploading applications and adapters.

Before you begin

This procedure involves uploading certain artifacts to IBM PureApplication System
such as the Worklight Server. Before you begin, ensure that the artifacts are
available for upload.

About this task

All actions associated with creating and configuring the reports database are
optional. The reports database is required only for viewing Worklight reports.

Procedure
1. Create a Worklight Server.

a. If necessary, use the IBM Mobile Application Platform Pattern Extension or
the command line interface to package up the Worklight Server into an EAR
file. For more information, see the following topics:
v “Deploying an IBM Worklight project to IBM PureApplication System or

IBM SmartCloud Orchestrator” on page 824
v “Building an IBM Worklight virtual application” on page 825

b. In IBM PureApplication System, in the Virtual Application Builder, click the
Diagram tab.

c. From the Assets list, expand Application Components, and then drag and
drop an Enterprise Application WebSphere Application Server component
onto the canvas.

d. Supply the following information in the fields provided:

Chapter 10. Deploying IBM Worklight projects 819

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 166. Worklight Server component properties

Property Description

Name Name for the Worklight Server.

EAR file IBM Worklight EAR file that contains the
Worklight Server package to be uploaded.

2. Create IBM Worklight runtime and optional reports databases.
a. From the Assets list, expand Database Components, and then drag and

drop a Database DB2 component onto the canvas.
b. Supply the following information in the fields provided to define the

runtime database:

Table 167. Worklight runtime database component properties

Property Description

Name Name for the Worklight runtime database
component; for example, WL Runtime DB.

Database name Name for the runtime database; for example,
WLRTIME.

Source From the Source list, select Apply a
database workload standard, and then click
the database workload standard created for
the IBM Worklight runtime database (see
“Installing custom IBM Worklight database
workload standards” on page 816).

c. Optional: Repeat step 2a to create a reports database.
d. Optional: Supply the following information in the fields provided to define

the reports database:

Table 168. Worklight reports database component properties

Property Description

Name Name for the Worklight reports database
component; for example, WL Reports DB.

Database name Name for the reports database; for example,
WLRPT.

Source From the Source list, select Apply a
database workload standard, and then click
the database workload standard created for
the IBM Worklight reports database (see
“Installing custom IBM Worklight database
workload standards” on page 816).

3. Configure connectivity for the runtime and reports databases.
a. Drag a connection from the Worklight Server component to the runtime

database component.
b. In the Resource References of Data Source field, select jdbc/WorklightDS

for the IBM Worklight runtime database.
c. Optional: Drag a connection from the Worklight Server component to the

reports database component.

820 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: A warning message is displayed in the Worklight Server component,
indicating “Connection to 'xxx database' is required for res-ref-name
'jdbc/WorklightReportsDS' in module 'xxx.war'”. This warning message can
be disregarded.

d. Optional: In the Resource References of Data Source field, select
jdbc/WorklightReportsDS for the IBM Worklight reports database.

4. Configure the Worklight Server.
a. From the Assets list, expand Worklight Components, and then drag and

drop a Worklight Configuration component onto the canvas.
b. Create a link from the Worklight Server component to the Worklight

configuration component.
c. Supply the following information in the fields provided:

Table 169. Worklight configuration component properties

Property Description

Name Name for the Worklight configuration
component.

Worklight Console Protection Select this check box to enable security
protection for the Worklight console. Clear
the check box to disable security protection.

Worklight Console Username User name for Worklight console protection.

Worklight Console Password Password for Worklight console protection.

5. Create Worklight applications and adapters.
a. From the Assets list, expand Worklight Components, and then drag and

drop a Worklight adapter component and a Worklight application
component onto the canvas.

b. For the Worklight application component, supply the following information
in the fields provided:

Table 170. Worklight application component properties

Property Description

Name Name for the Worklight application.

Worklight Application Files Worklight application files to upload.
Supported formats are *.wlapp and *.zip.

c. For the Worklight adapter component, supply the following information in
the fields provided:

Table 171. Worklight adapter component properties

Property Description

Name Name for the Worklight adapter.

Worklight Adapter Files Worklight adapter files to upload. Supported
formats are *.wlapp and *.zip.

d. Create links from the Worklight application component to the Worklight
Server component, and from the Worklight adapter component to the
Worklight Server component.

Chapter 10. Deploying IBM Worklight projects 821

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Integrating with Tivoli Directory Server
Tivoli Directory Server is supported as a directory server in IBM Mobile
Application Platform Pattern and can be used in conjunction with LdapLoginModule
provided by IBM Worklight.

To use Tivoli Directory Server, LDAPLoginModuleIPAS must be defined in your IBM
Worklight application. For more information, see “Integration with Tivoli Directory
Server” on page 825

Connecting to a new Tivoli Directory Server:

You connect to a new Tivoli Directory Server by dragging and dropping a new
User Registry TDS component onto the PureApplication System canvas, linking the
IBM Worklight configuration component to it, and then uploading an LDIF file for
Tivoli Directory Server.

Procedure

1. In IBM PureApplication System, in the Virtual Application Builder, click the
Diagram tab.

2. From the Assets list, expand User Registry Components, and then drag and
drop a User Registry Tivoli Directory Server component onto the canvas.

3. Supply the following information in the fields provided:

Table 172. Tivoli Directory Server component properties

Property Description

Name Name for the directory server.

LDIF file LDIF file to be uploaded for the Tivoli
Directory Server.

Base DN Effective only when the LDAP login module
has the parameter baseDN.

User filter Effective only when the LDAP login module
has the parameter userFilter.

Group filter Effective only when the LDAP login module
has the parameter groupFilter.

Connecting to an existing Tivoli Directory Server:

You connect to an existing Tivoli Directory Server by dragging and dropping a
Connect Out component onto the PureApplication System canvas, specifying the IP
address and port number of your existing Tivoli Directory Server, and linking the
Worklight Server component to the Connect Out component.

Procedure

1. In IBM PureApplication System, in the Virtual Application Builder, click the
Diagram tab.

2. From the Assets list, drag and drop a Connect Out component onto the canvas.
3. Specify the IP address and port number of your existing Tivoli Directory Server.
4. Drag a link from the Worklight Server component to the Connect Out

component.

822 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Performing operations on running IBM Worklight Virtual
Application Pattern instances
Use the PureApplication System Workload Console to perform management tasks
on a running IBM Worklight Virtual Application Pattern instance.

Procedure
1. In IBM PureApplication System, in the Workload Console, click the Instances

tab.
2. From the Virtual Application Instances list, click the required instance, and then

click Manage.
3. Click the Operations tab, and then from the Operations list, click

WORKLIGHT.
4. In the details panel, you can perform the following operations:

Table 173. Operations on Virtual Application Pattern instances

Operation Description

Worklight Application/Adapter Install or update Worklight applications and
adapters. Supported file types: *.wlapp,
*.adapter, *.zip.

Worklight Console Protection Enable and disable security protection for
the Worklight Console.

Worklight Console Username Username for Worklight Console protection.

Worklight Console Password Password for Worklight Console protection.

5. To submit the changes you have made, click Submit.
6. Navigate back to the Instances tab and verify that the status of the instance is

displayed as "Running".

Upgrading IBM Mobile Application Platform Pattern
To upgrade IBM Mobile Application Platform Pattern, upload the .tgz file that
contains the latest updates.

Procedure
1. Log into IBM PureApplication System with an account that is allowed to

upload new system plugins.
2. Navigate to Workload Console > Cloud > System Plug-ins.
3. Upload the IBM Mobile Application Platform Pattern .tgz file that contains the

updates.
4. Enable the plugins you have uploaded.
5. Redeploy the pattern.

Working with IBM Mobile Application Platform Pattern
Extension for Worklight Studio

Working with IBM Mobile Application Platform Pattern Extension for Worklight
Studio involves setting up cloud environment preferences, deploying your
Worklight project to the cloud, and integrating with Tivoli Directory Server.

Note: IBM Mobile Application Platform Pattern Extension for Worklight Studio
copies the PureApplication configuration into the WorklightServerConfig folder
under your eclipse workspace.

Chapter 10. Deploying IBM Worklight projects 823

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: Deployment to the cloud from Worklight Studio is for the development
environment only. For information about deploying to the cloud in a production
environment, see “Working with the IBM Mobile Application Platform Pattern
Type” on page 818.

Note: IBM Mobile Application Platform Pattern Extension for Worklight Studio
uses several REST APIs to interact with IBM PureApplication System and IBM
SmartCloud Orchestrator. Ensure your account has permission to access the
following locations:
v <system host>/resources/environmentProfiles

v <system host>/resources/clouds

v <system host>/resources/hypervisors

v <system host>/resources/databaseWorkloads

Specifying cloud environment preferences in Worklight Studio
Specify cloud environment preferences in Worklight Studio before you deploy IBM
Worklight projects to the cloud.

Procedure
1. In Eclipse, click Windows > Preferences > Worklight > IBM Mobile

Application Platform Pattern.
2. Supply the following information in the fields provided:

Table 174. Cloud environment preferences

Property Description

System Host IP address of the system host.

User name Account user name for accessing the system
host.

Password Password for accessing the system host.

3. Click Fetch Deployment Information. Details of retrieved environment profiles
are displayed in the Preferences panel.

4. From the Profiles list, select the correct profile for cloud deployment.
5. Click Apply to save the settings, and then click OK to close the Preferences

panel.

Deploying an IBM Worklight project to IBM PureApplication
System or IBM SmartCloud Orchestrator
You deploy a Worklight project to PureApplication System or SmartCloud
Orchestrator by running the project in Eclipse.

Before you begin

Before deploying, write your Worklight application and test it in the local
development environment. Since you are deploying to an environment outside
Eclipse, make sure you have applied the correct settings for the Worklight Server
location in the worklight.properties file. For more information, see “Configuring
the Worklight Server location” on page 773.

Procedure
1. In Eclipse, navigate to the Project Explorer view.
2. Right-click your Worklight project, and then click Run As > Deploy project as

IBM Mobile Application Platform Pattern.

824 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. Select Worklight applications and adapters to be deployed on PureApplication
System or SmartCloud Orchestrator, and then click Run.

4. In the Worklight Console, check the status and wait for the project to be
deployed. When the project has been deployed, a window opens displaying the
Worklight Console URL.

Displaying the Worklight Console URL for a deployed IBM
Worklight project
You can display the Worklight Console URL for a deployed IBM Worklight project
by using a command available in the Worklight Console.

Procedure

In the Worklight Console, right-click the Worklight project, and then click IBM
Mobile Application Platform Pattern > Display Worklight Console URL. A
window opens displaying the Worklight Console URL.

Integration with Tivoli Directory Server
To use Tivoli Directory Server as a user registry for your IBM Worklight
application on PureApplication System or IBM SmartCloud Orchestrator, you need
to implement an LDAP login module.

You need to implement the LDAP login module as follows:
v The name attribute of LoginModule must be set to LDAPLoginModuleIPAS.
v The module must include a parameter with a name attribute set to

ldapProviderURL.
This is an example of a suitable LDAP login module:
<loginModule name="LDAPLoginModuleIPAS">
<className>com.worklight.core.auth.ext.LdapLoginModule</className>
<parameter name="ldapProviderURL" value="ldaps://192.0.2.123:636"/>
...
...
</loginModule>

v If Connect to a new TDS is enabled in your IBM Worklight project
configuration, you need to specify a .ldif file.

v If Connect to existing TDS is enabled, the value of the ldapProviderURL
parameter is taken as the Tivoli Directory Server address.

Building and deploying IBM Worklight virtual applications by
using the command line interface

IBM Mobile Application Platform Pattern includes a set of Ant tasks to help you
build IBM Worklight virtual applications and artifacts and deploy to IBM
PureApplication System or IBM SmartCloud Orchestrator.

Building an IBM Worklight virtual application
You can use an Ant task to build an IBM Worklight virtual application.

Before you begin

The Ant tasks are contained in the worklight-ant.jar file, which you can find in
the worklight_pattern_6.1.0.2.offering.zip file. Make sure you extract it before
you build and deploy Worklight virtual applications with the command line
interface.

Chapter 10. Deploying IBM Worklight projects 825

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

The Ant task for building a Worklight virtual application has the following
structure:
<taskdef resource="com/worklight/ant/defaults.properties"

classpath="${taskdefClasspath}"/>
<target name="buildIPAS_VAP"

depends="buildAll" >
<vap-builder

worklightWar="${worklightWar}"
destinationFolder="${wlProjectDestDir}"
artifactsFolder="${artifactsFolder}"
elbHost="${elbHost}"/>

</target>

The following table describes the attributes.

Table 175. Ant task build attributes

Attributes Description

worklightWar Required. The Worklight Console WAR file
including the full file path.

destinationFolder Optional. Default value:
${projectfolder}/bin.

artifactsFolder Optional. Folder for adapters and
applications.

elbHost Optional. Host name for elastic load
balancer.

createVAPFlag Optional. Whether to generate a VAP .zip
file. Default value: true.

isConnectNewTDS Optional. Whether to connect a new Tivoli
Directory Service.

ldifFile Optional. When isConnectNewTDS is true,
you must set this attribute.

ipasModel Optional. Default value is W1500; in this case,
it works on Intel. You can set its value to
W1700; in this case, IBM PureApplication
System or IBM SmartCloud Orchestrator
runs on Power® system.

ipasHost Optional. The URL of IBM PureApplication
System or IBM SmartCloud Orchestrator.
Required when createVAPFlag is true.

username Optional. The user name that is required to
access the IBM PureApplication System or
IBM SmartCloud Orchestrator console.
Required when createVAPFlag is true.

password Optional. The password that is required to
access the IBM PureApplication System or
IBM SmartCloud Orchestrator console.
Required when createVAPFlag is true.

Deploying an IBM Worklight virtual application
You can use an Ant task to deploy an IBM Worklight virtual application.

826 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Before you begin

The Ant tasks are contained in the worklight-ant.jar file, which you can find in
the worklight_pattern_6.1.0.2.offering.zip file. Make sure you extract it before
you build and deploy Worklight virtual applications with the command line
interface.

About this task

The Ant task for deploying a Worklight virtual application has the following
structure:
<taskdef resource="com/worklight/ant/defaults.properties" classpath="${taskdefClasspath}"/>
<target name="deployVAP" depends="buildVap4IPAS">

<ipas-deployer
vapZipFile="${vapFile}"
ipasHost="${ipasHost}"
username="${username}"
password="${password}"
profileName="${profileName}"
cloudGroupName="${cloudGroupName}"
ipGroupName="${ipGroupName}"
priority="${ipasPriority}"/>

</target>

The following table describes the attributes.

Table 176. Ant task deployment attributes

Attributes Description

vapZipFile Required. Path to the zip file built by
vap-builder.

ipasHost Required. URL of IBM PureApplication
System.

username Required. Username to access
PureApplication System console.

password Required. Password to access
PureApplication System console.

deploymentTarget Optional. Deployment target type that is
used to deploy VAP. The value can be either
“environment profile” (default value) or
“cloud group”.

profileName Required when deploymentTarget is equal to
“environment profile”. Profile name for
deploying VAP.

cloudGroupName Required. Cloud group name for deploying
VAP.

ipGroupName Required when deploymentTarget is equal to
“environment profile”. IP group name for
deploying VAP.

priority Required when deploymentTarget is equal to
“environment profile”. Priority for deploying
VAP.

IPVersion Required when deploymentTarget is equal to
“cloud group”. IP version that is used to
deploy VAP. The value can be either “IPv4”
or “IPv6”.

Chapter 10. Deploying IBM Worklight projects 827

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Deployment of the Application Center on IBM PureApplication
System

You must configure and connect the operational components of the Application
Center to deploy the enterprise application on PureApplication System or IBM
SmartCloud Orchestrator.

The operational model of the Application Center is composed of:
v An application server that hosts the administration console and services.
v A user authentication system; here, an LDAP server that handles user and group

authentication and user management, but the basic authentication mechanism of
the application server can be used.

v The database, a repository for tracking users, applications, and feedback.

Related concepts:
Application Center
Learn about the Application Center: what it is for, the different components and
features, and how to use the console and the client.

Figure 114. Typical operational model of the Application Center

828 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Configuring the Application Center after installation
You configure user authentication and choose an authentication method;
configuration procedure depends on the web application server that you use.
Managing users with LDAP
Use the Lightweight Directory Access Protocol (LDAP) registry to manage users.

Deploying the Application Center on IBM PureApplication
System
Configure the enterprise application, the database, the user registry, and map the
security roles before you deploy the Application Center on PureApplication
System.

Before you begin

Install the Application Center. The Application Center is part of Worklight Server.
You can install it through IBM Installation Manager or manually. See “Installing
Worklight Server” on page 52.

Make a note of the path of the installation folder, because later in the procedure
you will need some assets that are located in it. When you install the Worklight
Server through the IBM Installation Manager, the Application Center artifacts are
installed in the {worklight_install_folder }/ApplicationCenter.

You must have an IBM PureApplication System environment and the privilege to
create Virtual Application Pattern (VAP) and to run Virtual Application instances.

About this task

By following this procedure you prepare the operational components of the
Application Center for deployment of the enterprise application on
PureApplication System. You connect the operational components to each other
and then you can save the configuration and deploy the Application Center on
PureApplication System as a web application.

Procedure
1. Get the enterprise archive (EAR) file for the Application Center. This file is

located in {worklight_install_folder }/ApplicationCenter/console. As of
V5.0.6, the Application Center has two web archive (WAR) files, one for the
console and one for the services. An EAR file containing them is supplied to
simplify deployment on PureApplication System. The context roots of the
WAR files within the EAR file are:
v /appcenterconsole for the console
v /applicationcenter for the services
If you choose to build the EAR file manually, you must remember the context
roots of the WAR files.

2. Create the Virtual Application Pattern.
a. Log in to IBM PureApplication System
b. Select Workload Console > Patterns > Virtual Application Patterns.
c. Select Web Application Pattern Type 2.0.
d. Click +.
e. Select a template to start from and then click Start Building. You can select

any template that conforms with the operational model used in this
documentation. You must create one web application component, one

Chapter 10. Deploying IBM Worklight projects 829

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

database component, and one user registry component. The example is
based on selection of “Blank application”.

3. Add an Enterprise Application component.
a. Expand Application Components.
b. Drag the Enterprise Application component into the pane on the right.
c. Select the component in this property pane and specify the path of the

Application Center EAR file.
4. Add routing policy.

a. Move the mouse over the Enterprise Application component and click the
plus sign (+).

b. Select Routing Policy.
c. In the property pane, click Routing Policy and specify Virtual Host name.

Take a note of the host name, because you will use it later.
5. Optional: Add JVM policy. If you use the supplied EAR file or have defined

the context root of the services WAR file as /applicationcenter, this step is
optional.
a. Select JVM Policy in the same way as you selected Routing Policy.
b. In the property pane, specify Generic JVM arguments:

-Dibm.appcenter.services.endpoint=http://{virtual_host}/
{services_context_root} where:
virtual_host is the virtual host name that you specified in Routing Policy.
services_context_root is the context root of the services WAR file.

6. Add a database component.
a. In the left pane, expand Database Components.
b. Drag a database into the property pane on the right. The database used in

the example is DB2.
c. In the property panel, click the Database component and specify the

schema file. You can find create-appcenter-{db}.sql, used in the example,
in {worklight_install_folder}/ApplicationCenter/database.

7. Connect enterprise application and database.
a. On the Enterprise Application component, click and drag the connection

point on the right edge to the Database component. This gesture creates
the connection between the web application and the database.

b. Click the connector and specify the data source as jdbc/AppCenterDS.
8. Add a user registry component.

a. In the left pane, expand User Registry Components.
b. Drag the user registry component into the property pane.
c. In the property pane, select the User Registry component and specify the

“Base DN” and the “LDIF file”.
9. Connect web application and user registry.

a. Drag two connectors between the Enterprise Application component and
the User Registry component.

b. Specify the “Role name” appcenteradmin.
c. Set “Mapping special subjects” to AllAuthenticatedUsers.
d. Specify the next “Role name” appcenteruser.
e. Set “Mapping special subjects” to AllAuthenticatedUsers.

10. Save the configuration and deploy the Application Center on PureApplication
System.

830 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

a. Save the virtual application; give it a name, for example, “Worklight
Application Center”.

b. Return to Virtual Application Patterns. You should see the pattern that
you created in this procedure.

c. Click Deploy to deploy the Application Center on PureApplication System.

Chapter 10. Deploying IBM Worklight projects 831

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

832 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 11. Administering IBM Worklight applications

Run and maintain IBM Worklight applications in production.

Administering IBM Worklight applications with Worklight Console
You can administer IBM Worklight applications through the Worklight console, by
implementing direct updates to mobile devices and desktop apps, by locking apps
or denying access, or by displaying notification messages.

Use the Worklight Console to manage your applications. You can use the console
to see all applications that are installed and all the device platforms that are
supported. You can use the console to disable specific application versions on
specific platforms and to force users to upgrade the application before they
continue to use them. Additionally, you can use the console to send out
notifications to application users, and to manage push notifications from defined
event sources to applications. You can also use the Worklight Console to install and
manage adapters that are used by applications, and to inspect aggregated usage
statistics from the Worklight Server.

When you implement direct updates to mobile devices and desktop apps, software
updates are pushed directly to application web resources or users’ desktops.

You can lock apps to prevent them from being mistakenly updated and to prevent
the redeployment of web resources for a particular application.

You can display a notification message on app startup to give information to users,
but which does not cause the application to exit.

You can also control authenticity testing for an application.

Direct updates of app versions to mobile devices
The Worklight Server can directly push updated web resources to deployed
applications.

Subject to the terms and conditions of the target platform, organizations are not
required to upload new app versions to the app store or market. This option is
available for iPhone, iPad, and Android apps.

When you redeploy an app to the Worklight Server without changing its version,
the Worklight Server directly pushes the web resources (HTML, JavaScript, and
CSS) of the newly deployed app to the device. When an app with an older version
of these resources connects to the Worklight server, the server does not push
updated native code.

Direct Update is enabled by default. To update the web resources of an app on a
certain environment, redeploy the app.

The Direct Update feature works if the server-side artifacts (in this case, the .wlapp
file) are built with the same version of Worklight Studio used to generate the

833

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

mobile app. See “Upgrading to Worklight Studio V6.1.0” on page 222 for
instructions about how to reenable direct update after an upgrade of Worklight
Server.

When the app connects to the Worklight Server, it starts downloading the newly
deployed resources, as shown in the following figures. If the download fails
mid-way, the direct update will resume from where the download was broken the
previous time.

Note: The user notifications seen in Figures 1 through 4 show the default method
of implementing Direct Update. Another option is to set the updateSilently
property of the WL.Client.init method to true, as defined in the WL.Client class.
When this is done, the Direct Update is performed silently, without notifying the
user before downloading new application resources.

Figure 115. Update notice from Android

834 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Figure 116. Downloading newly deployed resources to Android

Figure 117. Update notice from iOS

Chapter 11. Administering IBM Worklight applications 835

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Direct updates of app versions to desktop apps
A direct updates mechanism is available for desktop apps as well as for mobile
devices.

When you redeploy a desktop app with a new version, the Worklight Server
automatically pushes the app to the user's desktop. When the desktop app
connects to the Worklight Server and an update is available, it displays a dialog
box for the user, asking the user to accept a new version. If the user accepts the
new version, it is automatically downloaded to the user's desktop. The user must
then open the downloaded app to install it on the desktop.

This option is only available for Adobe AIR applications.

Locking an application
You can prevent developers or administrators from mistakenly updating an
application, by locking it in Worklight Console.

About this task

You can lock applications for iPhone, iPad, and Android.

Figure 118. Downloading newly deployed resources to iOS

836 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

To lock an application version in a certain environment, select the Lock this
version check box for that application version in the relevant environment.

Remotely disabling application connectivity
You can use the Remote Disable procedure to deny a user's access to a certain
application version due to phase-out policy or due to security issues encountered
in the application.

Before you begin

If you need to use the Remote Disable feature with servers and clusters that
experience heavy loads, consider enabling the Remote Disable cache. Enabling the
cache can improve performance by reducing how frequently the database is
checked to see if an app has been remotely disabled. By default, the cache is
disabled. To enable and configure the cache, add the following lines to the
Worklight project's worklight.properties file:
v wl.remoteDisable.cache.enabled=true

v wl.remoteDisable.cache.refreshIntervalInSeconds=1

The refresh interval determines how long (measured in seconds) values are kept in
the cache before they are refreshed from the database. If you increase the interval,
performance is improved as a result of fewer connections being made to the
database, but you increase the duration before the remote disable state comes into
effect. For example, if your infrastructure contains a cluster of four Worklight
Servers and you set wl.remoteDisable.cache.refreshIntervalInSeconds=1, the
database is accessed 4 times per second to check the remote disable state.

About this task

Using the IBM Worklight Console, you can disable access to a specific version of a
specific application on a specific mobile operating system and provide a custom
message to the user.

Procedure
1. To use this Remote Disable feature, change the status of the application version

that must be disabled from Active to Access Disabled.
2. Add a custom message as shown in the following figure:

Figure 119. Locking an application version in a certain environment

Chapter 11. Administering IBM Worklight applications 837

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

You can also specify a URL for the new version of the application (usually in
the appropriate app store or market).
When users run an application that is Remotely Disabled, they receive a text
message about the access denial. They can either close the dialog and continue
working offline (that is, without access to the Worklight Server), or they can
upgrade to the latest version of the application. Closing the dialog keeps the
application running, but any application interaction that requires server

Figure 120. Denying access to older application versions

838 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

connectivity causes the dialog to be displayed again.

Modifying the behavior of the Remote Disable operation

As noted above, the default dialog that is displayed to a user when an
application is remotely disabled contains two buttons, Get new version, and
Close. Clicking Close closes the dialog, but allows the user to continue
working offline, with no connection to the Worklight Server.

Note: The actual text on the two buttons is customizable, and can be
overridden in the message.properties file.
In older versions of IBM Worklight, when you disabled an application using
the Worklight Console, the default behavior was to completely disable or end
it, such that the application would not function, even in offline mode.
There is a way to modify the default behavior of the Remote Disable feature to
completely disable an application if there is a need to do so (such as a severe
security flaw).
v Add a new Boolean attribute to your initOptions.js file, named

showCloseOnRemoteDisableDenial.
v If this attribute is missing or is set to true, the Remote Disable notification

displays the default behavior described earlier.
v If this attribute is set to false (that is, "Do not show the Close button on the

dialog"), the behavior is as follows:
– If you disable the application on the Worklight Console and specify a link

to the new version, the dialog displays only a single button, the Get new
version button. The Close button is not shown. The user has no choice
but to update the application, and this preserves the older behavior of
forcing the user to exit the application.

– If you disable the application and do not specify a link to the new version,
the dialog again displays only a single button, but in this case the Close
button.

Related tasks:
“Defining administrator messages from Worklight Console in multiple languages”
on page 840
You can set the deny and notification messages from Worklight Console in
multiple languages. The messages are sent based on the locale of the device, and

Figure 121. Denying access to older application versions – message received by user

Chapter 11. Administering IBM Worklight applications 839

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

must comply with the ISO 639-1 and ISO 3166-2 standards.

Displaying a notification message on application startup
You can set a notification message that is displayed for the user when the
application starts, but does not cause the application to exit.

About this task

You can use this type of message to notify application users of temporary
situations, such as planned service downtime.

Procedure

For the relevant application, change the status of the application version from
Active to Active, Notifying, and add a custom message:

Results

The message is displayed the next time that the app is started or resumed. The
message is displayed only once.
Related tasks:
“Defining administrator messages from Worklight Console in multiple languages”
You can set the deny and notification messages from Worklight Console in
multiple languages. The messages are sent based on the locale of the device, and
must comply with the ISO 639-1 and ISO 3166-2 standards.

Defining administrator messages from Worklight Console in
multiple languages

You can set the deny and notification messages from Worklight Console in
multiple languages. The messages are sent based on the locale of the device, and
must comply with the ISO 639-1 and ISO 3166-2 standards.

Procedure

To add the deny and notification messages for multiple languages, follow these
steps.

Figure 122. Displaying a simple notification message

840 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

1. In Worklight Console, select the status Active, Notifying, or Disabled in the
list of application rules.

2. Click Enter messages for multiple languages.

3. In the Messages for multiple languages window that opens, notice that you
can upload a CSV file.

Figure 123. Defining the status of application rules in Worklight Console

Chapter 11. Administering IBM Worklight applications 841

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Such a CSV file must define a series of lines. Each line contains a locale code,
such as “fr-FR” for French (France) or “en” for English, a comma, and the
corresponding message text. The specified locale codes must comply with the
ISO 639-1 and ISO 3166-2 standards. The first line with an empty locale defines
the default message. If you did not define an alternative, or if the locale from
the client matches none of the uploaded locales, this default message is
displayed

Note: To create a CSV file, you must use an editor that supports UTF-8
encoding, such as NotePad. In the CSV file.
The following figure shows an example of a CSV file:

4. Click Upload CSV to browse and select the CSV file that you want to upload.
You can see the languages that you uploaded in the Supported Languages list.

Figure 124. Defining messages for multiple languages

Figure 125. Sample CVS file

842 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

5. Click a language in the Supported Languages list to see the translation of your
message in this language in the Translation box.

6. Optional: Click Clear to clear the Supported Languages list. This action does
not clear the default message.

7. Click Save to save the messages that you uploaded, or Cancel to discard the
changes and return to the console.

Note: If you modified the default message, then the new default message
shows.

Figure 126. View of your uploaded languages, and the default message with its translation

Chapter 11. Administering IBM Worklight applications 843

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Controlling authenticity testing for an app
You can control authenticity testing for apps that connect to the Worklight Server.

When an app first connects to the Worklight Server, the server tests the
authenticity of the app. This test helps to protect apps against some malware and
repackaging attacks. This option is available for iPhone, iPad, and Android apps.

This figure displays the mobile device of the user, which shows the localized message. The title and the button
caption are in English. If the locale does not supply any messages, the default message is returned.
Figure 127. Application Disabled message

844 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The application developer must configure the app to enable authenticity testing
(see “IBM Worklight security framework” on page 600 for details).
v If the app is configured with authenticity testing disabled for a specific version,

then the Authenticity Testing drop down menu in the Console is disabled. An
example for the iPhone environment is shown in the following figure.

v If the app is configured with authenticity testing enabled for a specific version,
then the Authenticity Testing drop-down menu in the Console is enabled. An
example for the Android environment is shown in the following figure.

The menu has three options:
v Disabled – the Worklight Server does not test the authenticity of the app

(despite the developer's settings).
v Enabled, servicing – the Worklight Server tests the authenticity of the app. If

the app fails the test, the Worklight Server outputs an information message to
the log but services the app.

v Enabled, locking – the Worklight Server tests the authenticity of the app. If the
app fails the test, the Worklight Server outputs an information message to the
log and blocks the app.

Note: The authenticity feature is only enabled for apps that use the customer
version of the IBM Worklight Development Studio. Since the non-customer version
of the studio is available on the web, it is a common developer mistake to use it
instead of the customer version.

Figure 128. Authenticity testing enabled for the Android environment

Chapter 11. Administering IBM Worklight applications 845

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Administering push notifications with the Worklight Console
The Push Notifications page in the Worklight Console provides you with a quick
view of the various entities in the push notification chain.

The left column displays the list of data sources that are configured in your
Worklight Server, including the number of users that are subscribed to notifications
from each source.

The right column displays deployed applications, which can receive push
notifications. For each application, the push notification services available for this
application are also displayed. The console displays the number of notifications
that are retrieved by an event source and sent to each application since system
startup. It also displays errors that are related to connectivity to the push
notification services.

Figure 129. Push notifications in the Worklight Console

846 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Administrators can forcibly unsubscribe existing SMS subscriptions by clicking
Unsubscribe devices. The Unsubscribe SMS Devices window opens, and
administrators can then enter the mobile phone numbers to be unsubscribed.

Note: It is possible to have two subscriptions for the same phone number and user
name; one created by using the device and one created by using the subscribe SMS
servlet. If there are two subscriptions for the same phone number and user name,
unsubscription by using the Worklight Console unsubscribes both subscriptions.

Figure 130. SMS push notifications in the Worklight Console

Figure 131. Unsubscribe existing SMS subscriptions

Chapter 11. Administering IBM Worklight applications 847

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Application Center
Learn about the Application Center: what it is for, the different components and
features, and how to use the console and the client.

The sale of mobile devices now exceeds that of personal computers. Consequently,
mobile applications become critical for businesses.

The Application Center is a tool to make sharing mobile applications within an
organization easier.

You can use the Application Center as an enterprise application store. With the
Application Center, you can target some mobile applications to particular groups
of users within the company.

A development team can also use the Application Center during the development
phase of an application to share applications with testers, designers, or executives
in the company. In such a scenario, it makes collaboration easier between all the
people who are involved in the development process.

Concept of the Application Center
The Application Center can be used as an Enterprise application store and is a
means of sharing information among different team members within a company.

The concept of the Application Center is similar to the concept of the Apple public
App Store or the Android Market, except that it targets only private usage within a
company.

By using the Application Center, users from the same company or organization
download applications to mobile phones or tablets from a single place that serves
as a repository of mobile applications.

The Application Center targets mobile applications that are installed on the device
itself. Those applications can be native applications that are built by using the
device SDK or hybrid applications that mix native and web content. The
Application Center does not target mobile web applications; such applications are
delivered to the mobile device web browser through a URL like a website.

In the current version, the Application Center supports applications that are built
for the Google Android platform, the Apple iOS platform, the Windows Phone 8
platform, and the BlackBerry platform for OS versions 6 and 7. Windows Phone 7,
Windows RT, and BlackBerry OS 10 are not supported by the current version of the
Application Center.

The Application Center manages mobile applications; it supports any kind of
Android, iOS, Windows Phone 8, or BlackBerry OS 6 or OS 7 application,
including applications that are built on top of the IBM Worklight platform.

You can use the Application center as part of the development process of an
application. A typical scenario of the Application Center is a team building a
mobile application; the development team creates a new version of an Android,
iOS, Windows Phone, or BlackBerry application. The development team wants this
new version to be reviewed and tested by the extended team. A developer goes to
the Application Center console and uploads the new version of the application to
the Application Center. As part of this process, the developer can enter a

848 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

description of the application version. For example, the description could mention
the elements that the development team added or fixed from the previous version.
The new version of the application is then available to the other members of the
team.

Another person, for example, a beta tester, can launch the Application Center
installer application, the mobile client, to locate this new version of a mobile
application in the list of available applications and install it on his mobile device.
After testing the new version, the beta tester can rate the application and submit
feedback. The feedback is visible to the developer from the Application Center
console.

The Application Center is a convenient way to share mobile applications within a
company or a group; it is a means of sharing information among team members.

Specific platform requirements
Different operating systems impose specific requirements for deploying, installing,
or using applications on the appropriate mobile devices.

Android
The mobile device must be configured for installation from unknown
sources. The corresponding toggle can be found in the Android Settings.
See User Opt-in for apps from unknown sources for details.

iOS All applications managed through the Application Center must be
packaged for “Ad Hoc Distribution”. With an iOS developer account, you
can share your application with up to 100 iOS devices. With an iOS
enterprise account, you can share your in-house application with an
unlimited number of iOS devices. See iOS Developer Program and iOS
Enterprise Program for details.

BlackBerry
Applications must be signed with a signing key for “BlackBerry OS 7 and
earlier” that can be obtained by BlackBerry. Unsigned applications cannot
access the full BlackBerry API of the device. Therefore, only very simple
applications do not require this signing process. See BlackBerry Keys Order
Form for details.

Windows Phone 8
Applications are not installed from the Windows Store, but from the
Application Center, which acts as what Microsoft documentation calls a
“Company Hub”. See Company app distribution for Windows Phone for
details.

To use a company hub, Windows Phone requires you to register a
company account with Microsoft and to sign all applications, including the
Application Center client, with the company certificate. Only signed
applications can be managed through the Application Center.

You must enroll all mobile devices through an application enrollment
token associated with your company account.The Application Center helps
you to enroll devices through facilities to distribute the application
enrollment token. See “Application enrollment tokens in Windows Phone
8” on page 886 for details.

Chapter 11. Administering IBM Worklight applications 849

http://developer.android.com/distribute/open.html#unknown-sources
https://developer.apple.com/programs/ios/distribute.html
https://developer.apple.com/programs/ios/enterprise/
https://developer.apple.com/programs/ios/enterprise/
https://www.blackberry.com/SignedKeys/codesigning.html
https://www.blackberry.com/SignedKeys/codesigning.html
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj206943%28v=vs.105%29.aspx

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

General architecture
The Application Center is composed of these main elements: a server-side
component, a repository, an administration console, and a mobile client
application.

Server-side component

The server-side component is a Java™ Enterprise application that must be deployed
in a web application server such as IBM WebSphere or Apache Tomcat.

The server-side component consists of an administration console and a mobile
application. This mobile application installs the mobile applications available to the
client-side component.

The web console and the installer application communicate through REST services
with the server component.

Several services compose the Application Center server-side component; for
example, a service that lists available applications, a service that delivers the
application binary files to the mobile device, or a service that registers feedback
and ratings.

Repository

A database that stores information such as which application is installed on which
devices, the feedback about applications, and the mobile application binary files.
The Application Center application is associated with the database when you
configure the Application Center for a particular web application server and a
supported database.

Administration console

A web console through which administrators can manage applications, user access
rights to install applications, user feedback about mobile applications, and details
about applications installed on devices. See “The Application Center console” on
page 865.

Mobile client application

You use the mobile client to install applications on a mobile device and to send
feedback about an application to the server. See “The mobile client” on page 896.

The following figure shows an overview of the architecture.

850 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

From the Application Center console you can:
v Upload different versions of mobile applications.
v Remove unwanted applications.
v Control access to applications.

Access to the applications stored in the Application Center can be controlled from
the Application Center console. Each application is associated with the list of
people that can install the application.
v View feedback that mobile users have sent about an application.
v Obtain information about applications installed on a device.
v Make an application inactive so that it is not visible in the available applications

for download.

From the mobile client you can:
v List available mobile applications.
v Install a new application on a device.
v Send feedback about an application.

The Application Center supports applications for Android, iOS, Windows Phone 8,
and BlackBerry devices. Therefore, the mobile client comes in several versions: an
Android, an iOS, a Windows Phone 8, and a BlackBerry version.

These mobile applications are built on the Worklight platform. You will find
instructions in this document about how to configure the Application Center
server-side component on various Java application servers after IBM Worklight is
installed, as well as how to build Worklight applications for the Application Center
client.

Preliminary information
To use the Application Center, you must configure security settings, start the web
application server where IBM Worklight is installed, start the Application Center
console, and log in.

Figure 132. Architecture of the Application Center

Chapter 11. Administering IBM Worklight applications 851

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

When you install IBM Worklight, the Application Center is automatically installed
in the specified application server.

If you install the Application Center in WebSphere Application Server Liberty
profile, the server is created and located in installation-directory/server.

After the installation is complete, you must configure the security settings for the
applications. See “Configuring the Application Center after installation” on page
138 or, if you are using LDAP authentication, “Managing users with LDAP” on
page 144.

The following example shows how to start the server and then the Application
Center console on Liberty profile.

You can start the Liberty server by using the server command located in the
directory installation-directory/server/wlp/bin.

To start the server, use the command:
server start worklightServer

When the server is running, you can start the Application Center console by
entering this address in your browser:

http://localhost:9080/appcenterconsole/

You are requested to log in. By default, the Application Center installed on Apache
Tomcat or WebSphere Liberty Profile has two users defined for this installation:
v demo with password demo

v appcenteradmin with password admin

To start using the Application Center console, refer to “The Application Center
console” on page 865.

To install and run the mobile client on:
v Android operating system: see “Installing the client on an Android mobile

device” on page 896
v iOS operating system: see “Installing the client on an iOS mobile device” on

page 899
v BlackBerry OS 6 and OS 7: see “Installing the client on a BlackBerry mobile

device” on page 900.
v Windows Phone 8: see “Installing the client on Windows Phone 8” on page 901

Preparations for using the mobile client
To use the mobile client to install applications on mobile devices, you must first
import the IBMAppCenter project into Worklight Studio, or the
IBMAppCenterBlackBerry6 project into the BlackBerry Eclipse environment, build
the project, and deploy the mobile client in the Application Center.

Prerequisites for building the Application Center installer

The Application Center comes with an Android, an iOS, Windows Phone, and a
BlackBerry version of the client application that runs on the mobile device. This

852 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

mobile application that supports installation of applications on your mobile device
is called the mobile client. The mobile client is an IBM Worklight mobile
application.

The Worklight project IBMAppCenter contains the Android, the iOS, and the
Windows Phone versions of the client.

The BlackBerry project IBMAppCenterBlackBerry6 contains the version of the client
for BlackBerry OS 6 and OS 7 devices. BlackBerry OS 10 is not supported by the
current version of the Application Center.

The Android version of the mobile client is included in the software delivery in the
form of an Android application package (.apk) file. The IBMApplicationCenter.apk
file is in the directory ApplicationCenter/installer. Push notifications are
disabled. If you want to enable push notifications, you must rebuild the .apk file.
See “Push notifications of application updates” on page 860 for more information
about push notifications in the Application Center.

To build the Android version, you must have the latest version of the Android
development tools.

The iOS version for iPad and iPhone is not delivered as a compiled application.
The application must be created from the Worklight project named IBMAppCenter.
This project is also delivered as part of the distribution in the ApplicationCenter/
installer directory.

To build the iOS version, you must have the appropriate Worklight and Apple
software. The version of Worklight Studio must be the same as the version of
Worklight Server on which this documentation is based. The Apple Xcode version
is V5.0.

The Windows Phone version of the mobile client is included as an unsigned
Windows Phone application package (.xap) file in the software delivery. The
IBMApplicationCenterUnsigned.xap file is in the ApplicationCenter/installer
directory.

The unsigned .xap file cannot be used directly. You must sign it with your
company certificate obtained from Symantec/Microsoft before you can install it on
a device.

Optional: If necessary, you can also build the Windows Phone version from
sources.

To build the Windows Phone version, you must have the latest version of the
Microsoft Visual Studio development tools.

The BlackBerry version is included as an archive (.zip) file. The
IBMApplicationCenterBB6.zip file is in the ApplicationCenter/installer directory.

Optional: If necessary, you can also build the BlackBerry version from sources by
using the BlackBerry project named IBMAppCenterBlackBerry6. This project is
delivered as part of the distribution in the ApplicationCenter/installer directory.

To build the BlackBerry version, you must have the BlackBerry Eclipse IDE (or
Eclipse with the BlackBerry Java plug-in) with the BlackBerry SDK 6.0. The
application also runs on BlackBerry OS 7 when compiled with BlackBerry SDK 6.0.

Chapter 11. Administering IBM Worklight applications 853

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Download the software from: https://developer.blackberry.com/java/download/
eclipse/.
1. Start the BlackBerry Eclipse IDE.
2. Select Help > Install New Software > Work with: BlackBerry Update Site.
3. Expand the BlackBerry Java Plug-in Category and select “BlackBerry Java SDK

6.0.x.y.”

Importing and building the project (Android, iOS, Windows
Phone)
You must import the IBMAppCenter project into Worklight Studio and then build
the project.

About this task

Follow the normal procedure to import a project into Worklight Studio.

Procedure
1. Select File > Import.
2. Select General > Existing Project into Workspace.
3. On the next page, select Select root directory and locate the root of the

IBMAppCenter project.
4. Select “IBMAppCenter project”.
5. Select “Copy projects into workspace”. This selection creates a copy of the

project in your workspace. On UNIX systems, the IBMAppCenter project is read
only at the original location. so copying projects into workspace avoids
problems with file permissions.

6. Click Finish to import the IBMAppCenter project into Worklight Studio.

What to do next

Build the IBMAppCenter project. The Worklight project contains a single application
named AppCenter. Right-click the application and select Run as > Build All
Environments.

Android
Worklight Studio generates a native Android project in
IBMAppCenter/apps/AppCenter/android/native. A native Android
development tools (ADT) project is in the android/native folder. You can
compile and sign this project by using the ADT tools. This project requires
Android SDK level 16 to be installed, so that the resulting APK is
compatible with all Android versions 2.3 and later. If you choose a higher
level of the Android SDK when you build the project, the resulting APK
will not be compatible with Android version 2.3.

See the Android site for developers for more specific Android information
that affects the mobile client application.

If you want to enable push notifications for application updates, you must
first configure the Application Center client properties. See “Configuring
push notifications for application updates” on page 861 for more
information.

iOS Worklight Studio generates a native iOS project in IBMAppCenter/apps/
AppCenter/iphone/native. The IBMAppCenterAppCenterIphone.xcodeproj
file is in the iphone/native folder. This file is the Xcode project that you
must compile and sign by using Xcode.

854 IBM Worklight V6.1.0

https://developer.blackberry.com/java/download/eclipse/
https://developer.blackberry.com/java/download/eclipse/
https://developer.android.com/index.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

See The Apple developer site to learn more about how to sign the iOS
mobile client application. To sign an iOS application, you must change the
Bundle Identifier of the application to a bundle identifier that can be used
with the provisioning profile that you use. The value is defined in the
Xcode project settings as com.your_internet_domain_name.appcenter,
where your_internet_domain_name is the name of your internet domain.

If you want to enable push notifications for application updates, you must
first configure the Application Center client properties. See “Configuring
push notifications for application updates” on page 861 for more
information.

Windows Phone 8
Worklight Studio generates a native Windows Phone 8 project in
IBMAppCenter/apps/AppCenter/windowsphone8/native. The
AppCenter.csproj file is in the windowsphone8/native folder. This file is the
Visual Studio project that you must compile and sign by using Visual
Studio.

See Windows Phone Dev Center to learn more about how to build and
sign the Windows Phone mobile client application.

See Developing IBM Worklight applications for more information about how you
can create hybrid mobile applications with Worklight Studio.

Android, iOS, Windows Phone: for experts
You can customize features by editing a central property file and manipulating
some other resources.

Purpose

To customize features: several features are controlled by a central property file
called config.json in the directory IBMAppCenter/apps/AppCenter/common/js/
appcenter/. If you want to change the default application behavior, you can adapt
this property file before you build the project.

Properties

This file contains the properties shown in the following table.

Table 177. Properties in the config.js file

Property Description

url The hardcoded address of the Application Center
server. If this property is set, the address fields of the
Login view are not displayed.

defaultPort If the url property is null, this property prefills the
port field of the Login view on a phone. This is a
default value; the field can be edited by the user.

defaultContext If the url property is null, this property prefills the
context field of the Login view on a phone. This is a
default value; the field can be edited by the user.

ssl The default value of the SSL switch of the Login view.

allowDowngrade This property indicates whether installation of older
versions is authorized or not; an older version can be
installed only if the operating system and version
permit downgrade,

Chapter 11. Administering IBM Worklight applications 855

https://developer.apple.com/
http://dev.windowsphone.com/en-us

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 177. Properties in the config.js file (continued)

Property Description

showPreviousVersions This property indicates whether the device user can
show the details of all the versions of applications or
only details of the latest version.

showInternalVersion This property indicates whether the internal version is
shown or not. If the value is false, the internal version
is shown only if no commercial version is set.

listItemRenderer This property can have one of these values:

v full, the default value; the application lists show
application name, rating, and latest version.

v simple: the application lists show the application
name only.

listAverageRating This property can have one of these values:

v latestVersion: the application lists show the average
rating of the latest version of the application.

v allVersions: the application lists show the average
rating of all versions of the application.

requestTimeout This property indicates the timeout in milliseconds for
requests to the Application Center server.

gcmProjectId The Google API project ID (project name =
com.ibm.appcenter), which is required for Android
push notifications; for example, 123456789012.

allowAppLinkReview This property indicates whether local reviews of
applications from external application stores can be
registered and browsed in the Application Center.
These local reviews are not visible in the external
application store. These reviews are stored in the
Application Center server.

Other resources

Other resources that are available are application icons, application name, splash
screen images, icons, and translatable resources of the application.

Application icons
Android: The file named icon.png in the IBMAppCenter/apps/AppCenter/
android/native/res/drawabledensity directories; one directory exists for
each density.

iOS: Files named iconsize.png in the IBMAppCenter/apps/AppCenter/
iphone/native/Resources directory.

Windows Phone: Files named ApplicationIcon.png,
IconicTileSmallIcon.png, and IconicTileMediumIcon.png in the
IBMAppCenter/apps/AppCenter/windowsphone8/native directory.

Application name
Android: Edit the app_name property in the IBMAppCenter/apps/AppCenter/
android/native/res/values/strings.xml file.

iOS: Edit the CFBundleDisplayName key in the IBMAppCenter/apps/
AppCenter/iphone/native/IBMAppCenterAppCenterIphone-Info.plist file.

856 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Windows Phone: Edit the Title attribute of the App entry in the
IBMAppCenter/apps/AppCenter/windowsphone8/native/Properties/
WMAppManifest.xml file.

Splash screen images
Android: Edit the file named splashimage.9.png in the
IBMAppCenter/apps/AppCenter/android/native/res/drawable/density
directories; one directory exists for each density. This file is a patch 9
image.

iOS: Files named Default-size.png in the IBMAppCenter/apps/AppCenter/
iphone/native/Resources directory.

Windows Phone: Edit the file named SplashScreenImage.png in the
IBMAppCenter/apps/AppCenter/windowsphone8/native directory.

Icons (buttons, stars, and similar objects) of the application
IBMAppCenter/apps/AppCenter/common/css/images.

Translatable resources of the application
IBMAppCenter/apps/AppCenter/common/js/appcenter/nls/common.js.

Importing and building the project (BlackBerry)
You must import the BlackBerry project into the BlackBerry Eclipse IDE and then
build the project.

About this task

Follow the normal procedure to import a project into the BlackBerry Eclipse IDE.

Procedure
1. Select File > Import.
2. Select General > Existing Project into Workspace.
3. On the next page, select Select root directory and locate the root of the

IBMAppCenterBlackBerry6 project.
4. Select "IBMAppCenterBlackBerry6 project".
5. Click Finish to import the IBMAppCenterBlackBerry6 project into the BlackBerry

Eclipse IDE.

What to do next

The IBMAppCenterBlackBerry6 project is a native BlackBerry application that
requires protected BlackBerry API. Therefore, you must first obtain a signature to
sign the project. In your web browser, open https://www.blackberry.com/
SignedKeys/codesigning.html. Follow the instructions to obtain the signature,
which consists of several keys. All signature keys must be imported into Eclipse by
using Window > Preferences > BlackBerry Java Plugin > Signature Tool.

To build the IBMAppCenterBlackBerry6 project:
1. Right-click the project and select BlackBerry > Package Project(s).

This action packages the project.
2. Right-click the project and select BlackBerry > Sign with Signature Tool.

This action signs the project.

The result is located in a generated directory called deliverables. This directory
contains two subdirectories:

Chapter 11. Administering IBM Worklight applications 857

https://www.blackberry.com/SignedKeys/codesigning.html
https://www.blackberry.com/SignedKeys/codesigning.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Standard
This directory contains the packaged application for uploading with USB
cable to the device. This method is incompatible with the packaging
required for the IBM Application Center server.

Web This directory contains the packaged application for uploading over the air.
This method is compatible with the IBM Application Center. Therefore, use
this directory and not the Standard directory. Place this directory into an
archive (.zip) file.

Important: Make sure that the archive file does not contain the Standard
directory.

Refer to the BlackBerry site for developers for more specific information that affects
the mobile client application for BlackBerry projects.

BlackBerry: for experts
You can customize features by adapting a central property file and manipulating
some other resources .

Purpose

To customize features: look and feel and various features are controlled by a
central property file called appcenter.properties in the directory
IBMAppCenterBlackBerry6/src/main/resources. If you want to disable or customize
various features, you can adapt this property file before you build the project. For
example, you can disable the feature for reverting the installation of an application
to a previous version.

Properties

This file contains the properties shown in the following table.

Table 178. Properties in the appcenter.properties file

Property Description

defaultServer The default value of the server field of the
Login view. The field can be edited by the
user.

defaultPort The default value of the port field of the
Login view. The field can be edited by the
user.

defaultContext The default value of the context field of the
Login view. The field can be edited by the
user.

defaultUseSSL The default value of the SSL switch of the
Login view.

serverSettingVisibleInLoginScreen This property indicates whether the server,
port, and context fields and the SSL check
box are visible in the login screen. If this
property is disabled, the defaultServer,
defaultPort, defaultContext, and
defaultUseSSL properties must be set,
because the user cannot edit their values
when they are not visible.

858 IBM Worklight V6.1.0

https://developer.blackberry.com/java/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 178. Properties in the appcenter.properties file (continued)

Property Description

KeepLoginCredentialsTime The number of minutes the password
remains valid after exiting the application. If
set to 0, the user must log in again
whenever the application starts. If set to -1,
the login credentials are kept forever until
the user explicitly logs out. If any other
value is given and the user restarts the
application within this time, it is not
necessary to log in again.

listAverageRating This property can have one of these values:

v latestVersion: the application lists show
the average rating of the latest version of
the application.

v allVersions: the application lists show the
average rating of all versions of the
application.

AdaptAppCatalogInfoLineToSorting This property indicates whether the
rendering of the application list shows
popularity or updates when sorting
according to popularity and updates.
Normally, the rendering shows version
numbers. When this feature is enabled and
you choose sorting according to the
timestamps of popularity or updates, the
rendering shows popularity or update
timestamps instead of versions.

Other resources

Other resources that are available are application icon, application name, icons, and
translatable resources of the application.

Application icon
IBMAppCenterBlackBerry6/src/main/resources/img/launchicon-
144x144.png.

Application name
Edit the IBMAppCenterBlackBerry6/BlackBerry_App_Descriptor.xml file.
The key title is the application name.

Icons (buttons, stars, and similar objects) of the application
IBMAppCenterBlackBerry6/src/main/resources/img/.

Depending on the color theme, either dark or light icons are chosen. For
example, if the background is dark, light icons are chosen. Therefore, all
icon file names have the suffix “light” or “dark”. Several buttons can be
disabled. To show the corresponding icon on a disabled button, some icons
have the file name suffix “t50”. The visual indicator of disabled buttons is
implemented by adding 50% transparency to the icon.

Translatable resources of the application
IBMAppCenterBlackBerry6/src/main/resources/com/ibm/appcenter/i18n/
I18N.rrc.

Deploying the mobile client in the Application Center
Deploy the different versions of the client application to the Application Center.

Chapter 11. Administering IBM Worklight applications 859

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The Android, iOS, Windows Phone, and BlackBerry versions of the mobile client
must be deployed to the Application Center. To do so, you must upload the
Android application package (.apk) files, iOS application (.ipa) files, Windows
Phone application (.xap) files, and BlackBerry Web directory archive (.zip) files to
the Application Center.

Follow the steps described in “Adding a mobile application” on page 868 to add
the mobile client application for Android, iOS, Windows Phone, and BlackBerry.
Make sure that you select the Installer application property to indicate that the
application is an installer. Selecting this property enables mobile device users to
install the mobile client application easily over the air. To install the mobile client,
see the related task that corresponds to the version of the mobile client app
determined by the operating system.
Related tasks:
“Installing the client on an Android mobile device” on page 896
You can install the mobile client, or any signed application marked with the
installer flag, on your Android mobile device by entering the access URL in your
browser, entering your credentials, and completing the required steps.
“Installing the client on an iOS mobile device” on page 899
You can install the mobile client, or any signed application marked with the
installer flag, on your iOS mobile device by entering the access URL in your
browser, entering your credentials, and completing the required steps.
“Installing the client on Windows Phone 8” on page 901
You can install the mobile client, or any signed application marked with the
installer flag, on Windows Phone 8 by entering the access URL in your browser,
entering your credentials, and completing the required steps. The company account
must be preinstalled on your mobile device.
“Installing the client on a BlackBerry mobile device” on page 900
You can install the mobile client, or any signed application marked with the
installer flag, on your BlackBerry mobile device by entering the access URL in your
browser, entering your credentials, and completing the required steps.

Push notifications of application updates
You can configure the Application Center client so that push notifications are sent
to users when an update is available for an application in the store.

The Application Center administrator uses push notifications to automatically send
a notification to any iOS or Android device where a specific application is installed
when a new version of this application is available.

Push notifications are currently not available for the BlackBerry Application Center
client.

Push notification process

The first time that the Application Center client starts on a device, the user might
be asked whether or not to accept incoming push notifications; that is the case for
iOS mobile devices. The push notification feature does not work when the service
is disabled on the mobile device. iOS and modern Android operating system
versions offer a way to switch this service on or off on a per application basis.
Refer to your device vendor to learn how to configure your mobile device for push
notifications.

860 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Configuring push notifications for application updates
Configure the Application Center services to communicate with Google or Apple
push notification servers.

Purpose

You must configure the credentials or certificates of the Application Center services
to be able to communicate with third-party push notification servers.

Configuring the server scheduler of the Application Center

The server scheduler is a background service that automatically starts and stops
with the server. This scheduler is used to empty at regular intervals a stack that is
automatically filled by administrator actions with push update messages to be sent.
The default interval between sending two batches of push update messages is
twelve hours. If this default value does not suit you, you can modify it by using
the server environment variables ibm.appcenter.push.schedule.period.amount and
ibm.appcenter.push.schedule.unit.

The value of ibm.appcenter.push.schedule.period.amount is an integer. The value of
ibm.appcenter.push.schedule.unit can be “seconds”, “minutes”, or “hours”. If the unit
is not specified, the amount is the interval expressed in hours. These variables are
used to define the elapsed time between two batches of push messages.

Use JNDI properties to define these variables.

Important: In production, you should avoid setting the unit to “seconds”. The
shorter the elapsed time, the higher the load on the server; the unit expressed in
seconds is only implemented for testing and evaluation purposes. For example,
when the elapsed time is set to 10 seconds, push messages are sent almost
immediately.

See “List of JNDI properties for the Application Center” on page 172 for a
complete list of properties that you can set.

Example for Apache Tomcat server

Define these variables with JNDI properties in the server.xml file:
<Environment name="ibm.appcenter.push.schedule.period.unit" override="false" type="java.lang.String" value="hours"/>
<Environment name="ibm.appcenter.push.schedule.period.amount" override="false" type="java.lang.String" value="2"/>

For information about how to configure JNDI variables for WebSphere Application
Server v8.5, see Using resource environment providers in WebSphere Application
Server.

For information about how to configure JNDI variables for WebSphere Application
Server Liberty Profile, see Using JNDI binding for constants from the server
configuration files.

The remaining actions for setting up the push notification service depend on the
vendor of the device where the target application is installed. See the following
topics.

Configuring the Application Center server for connection to
Google Cloud Messaging
Enable Google Cloud Messaging (GCM) for your application.

Chapter 11. Administering IBM Worklight applications 861

http://www.ibm.com/developerworks/websphere/library/techarticles/0611_totapally/0611_totapally.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0611_totapally/0611_totapally.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.wlp.nd.doc%2Fae%2Ftwlp_dep_jndi.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.wlp.nd.doc%2Fae%2Ftwlp_dep_jndi.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

To enable Google Cloud Messaging (GCM) for an application, you must attach the
GCM services to a developer Google account with the Google API enabled. See
Getting Started with GCM for details.

Important: The Application Center client without Google Cloud Messaging: The
Application Center relies on the availability of the Google Cloud Messaging (GCM)
API. This API might not be available on devices in some territories such as China.
To support those territories, you can build a version of the Application Center
client that does not depend on the GCM API. The push notification feature does
not work on that version of the Application Center client. See “Building a version
of the mobile client that does not depend on the GCM API” on page 864 for
details.

Procedure
1. If you do not have the appropriate Google account, go to Create a Google

account and create one for the Application Center client.
2. Register this account by using the Google API in the Google API console.

Registration creates a new default project that you can rename. The name you
give to this GCM project is not related to your Android application package
name. When the project is created, a GCM project ID is appended to the end of
the project URL. You should record this trailing number as your project ID for
future reference.

3. Enable the GCM service for your project; in the Google API console, click the
Services tab on the left and enable the “Google Cloud Messaging for Android”
service in the list of services.

4. Make sure that a Simple API Access Server key is available for your application
communications.
a. Click the API Access vertical tab on the left of the console.
b. Create a Simple API Access Server key or, if a default key is already created,

note the details of the default key. Two other kinds of key exist that are not
of interest at this time.

c. Save the Simple API Access Server key for future use in your application
communications through GCM. The key is about 40 characters long and is
referred to as the Google API key that you will need later on the server
side.

5. Enter the GCM project ID as a string resource property in the JavaScript project
of the Application Center Android client; in the IBMAppCenter/apps/AppCenter/
common/js/appcenter/config.json template file, modify this line with your
own value:
gcmProjectId:""// Google API project (project name = com.ibm.appcenter) ID needed for Android push.
// example : 123456789012

6. Register the Google API key as a JNDI property for the Application Center
server. The key name is : ibm.appcenter.gcm.signature.googleapikey. For
example, you can configure this key for an Apache Tomcat server as a JNDI
property in the server.xml file:
<Context docBase="AppCenterServices" path="/applicationcenter" reloadable="true" source="org.eclipse.jst.jee.server:AppCenterServices">
<Environment name="ibm.appcenter.gcm.signature.googleapikey" override="false" type="java.lang.String"
value="AIxaScCHg0VSGdgfOZKtzDJ44-oi0muUasMZvAs"/>
</Context>

The JNDI property must be defined in accordance with your application server
requirements.

862 IBM Worklight V6.1.0

http://developer.android.com/google/gcm/gs.html
https://mail.google.com/mail/signup
https://mail.google.com/mail/signup
https://code.google.com/apis/console/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

See “List of JNDI properties for the Application Center” on page 172 for a
complete list of properties that you can set.

Important: If you use GCM with earlier versions of Android, you might need
to pair your device with an existing Google account for GCM to work
effectively. See GCM service: “It uses an existing connection for Google
services. For pre-3.0 devices, this requires users to set up their Google account
on their mobile devices. A Google account is not a requirement on devices
running Android 4.0.4 or higher.”

Configuring the Application Center server for connection to
Apple Push Notification Services
Configure your iOS project for Apple Push Notification Services (APNs).

About this task

You must be a registered Apple developer to successfully configure your iOS
project with Apple Push Notification Services (APNs). In the company, the
administrative role responsible for Apple development requests APNs enablement.
The response to this request should provide you with an APNs-enabled
provisioning profile for your iOS application bundle; that is, a string value that is
defined in the configuration page of your Xcode project. This provisioning profile
is used to generate a signature certificate file.

Two kinds of provisioning profile exist: development and production profiles,
which address development and production environments respectively.
Development profiles address Apple development APNs servers exclusively.
Production profiles address Apple production APNs servers exclusively. These
kinds of servers do not offer the same quality of service.

Procedure
1. Obtain the APNs-enabled provisioning profile for the Application Center Xcode

project. The result of your administrator's APNs enablement request is shown
as a list accessible from https://developer.apple.com/ios/my/bundles/
index.action. Each item in the list shows whether or not the profile has APNs
capabilities. When you have the profile, you can download and install it in the
Application Center client Xcode project directory by double-clicking the profile.
The profile is then automatically installed in your keystore and Xcode project.

2. If you want to test or debug the Application Center on a device by launching it
directly from XCode, in the "Xcode Organizer" window, go to the "Provisioning
Profiles" section and install the profile on your mobile device.

3. Create a signature certificate used by the Application Center services to secure
communication with the APNs server. This server will use the certificate for
purposes of signing each and every push request to the APNs server. This
signature certificate is produced from your provisioning profile.
a. Open the "Keychain Access" utility and click the My Certificates category in

the left pane.
b. Find the certificate you want to install and disclose its contents. You see

both a certificate and a private key; for the Application Center, the
certificate line contains the Application Center application bundle
com.ibm.imf.AppCenter.

c. Select File > Export Items to select both the certificate and the key and
export them as a Personal Information Exchange (.p12) file. This .p12 file
contains the private key required when the secure handshaking protocol is
involved to communicate with the APNs server.

Chapter 11. Administering IBM Worklight applications 863

http://developer.android.com/google/gcm/gcm.html
https://developer.apple.com/ios/my/bundles/index.action
https://developer.apple.com/ios/my/bundles/index.action

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

d. Copy the .p12 certificate to the computer responsible for running the
Application Center services and install it in the appropriate place. Both the
certificate file and its password are needed to create the secure tunneling
with the APNs server. You also require some information that indicates
whether a development certificate or a production certificate is in play. A
development provisioning profile produces a development certificate and a
production profile gives a production certificate. The Application Center
services web application uses JNDI properties to reference this secure data.
The examples in the table show how the JNDI properties are defined in the
server.xml file of the Apache Tomcat server.

Table 179. JNDI properties

JNDI Property
Type and
description Example for Apache Tomcat server

ibm.appcenter.apns.p12.certificate.locationA string value that
defines the full
path to the .p12
certificate.

<Environment name="ibm.appcenter.apns.p12.certificate.location"
override="false" type="java.lang.String" value=
"/Users/someUser/someDirectory/apache-tomcat/conf/AppCenter_apns_dev_cert.p12"/>

ibm.appcenter.apns.p12.certificate.passwordA string value that
defines the
password needed
to access the
certificate.

<Environment name="ibm.appcenter.apns.p12.certificate.password" override="false"
type="java.lang.String"
value="this_is_a_secure_password"/>

ibm.appcenter.apns.p12.certificate.isDevelopmentCertificateA boolean value
(identified as true
or false) that
defines whether or
not the
provisioning
profile used to
generate the
authentication
certificate was a
development
certificate.

<Environment name="ibm.appcenter.apns.p12.certificate.isDevelopmentCertificate"
override="false" type="java.lang.String"
value="true"/>

See “List of JNDI properties for the Application Center” on page 172 for a
complete list of properties that you can set.

Building a version of the mobile client that does not depend on
the GCM API
You can remove the dependency on Google Cloud Messaging (GCM) API from the
Android version of the client to comply with constraints in some territories. Push
notifications do not work on this version of the client.

About this task

The Application Center relies on the availability of the Google Cloud Messaging
(GCM) API. This API might not be available on devices in some territories such as
China. To support those territories, you can build a version of the Application
Center client that does not depend on the GCM API. The push notification feature
does not work on that version of the Application Center client.

864 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Check that push notifications are disabled by checking that the

IBMAppCenter/apps/AppCenter/common/js/appcenter/config.json file contains
this line: "gcmProjectId": "" ,.

2. Remove from two places in the IBMAppCenter/apps/AppCenter/android/
native/AndroidManifest.xml file all the lines that are located between these
comments: <!-- AppCenter Push configuration --> and <!-- end of
AppCenter Push configuration -->.

3. Delete the IBMAppCenter/apps/AppCenter/android/native/src/com/ibm/
appcenter/GCMIntenteService.java class.

4. In Eclipse, run "Build Android Environment" in the IBMAppCenter/apps/
AppCenter/android folder.

5. Delete the IBMAppCenter/apps/AppCenter/android/native/libs/gcm.jar file that
was created by the IBM Worklight plug-in when you ran the previous "Build
Android Environment" command.

6. Refresh the newly created IBMAppCenterAppCenterAndroid project, so that the
removal of the GCM library is taken into account.

7. Build the .apk file of the Application Center.

What to do next

The gcm.jar library is automatically added by the IBM Worklight Eclipse plug-in
each time that the Android environment is built. Therefore, this java archive file
must be deleted from the IBMAppCenter/apps/AppCenter/android/native/libs/
directory each time that the IBM Worklight Android build process is run.
Otherwise, the gcm.jar library is present in the resulting appcenter.apk file.

The Application Center console
With the Application Center console, you can manage the repository of the
Application Center and your applications.

The Application Center console is a web application to manage the repository of
the Application Center. The Application Center repository is the central location
where you store the mobile applications that can be installed on mobile devices.

Use the Application Center console to:
v Upload applications written for these operating systems: Android, iOS,

BlackBerry OS 6 and OS 7, or Windows Phone 8.
v Manage several different versions of mobile applications.
v Review the feedback of testers of mobile applications.
v Define the users who have the rights to list and install an application on the

mobile devices.
v Track which applications are installed on which devices.

Note:

Only users with the administrator role can log in to the Application Center
console.

Multicultural support: the user interface of the Application Center console has not
been translated.

Chapter 11. Administering IBM Worklight applications 865

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Starting the Application Center console
You can start the Application Center with your web browser and log in if you have
the administrator role.

Procedure
1. Start a web browser session on your desktop.
2. Contact your system administrator to obtain the address and port of the server

where the Application Center is installed.
3. Enter the following URL: http://server/appcenterconsole

Where server is the address and port of the server where the Application Center
is installed.
http://localhost:9080/appcenterconsole

4. Log in to the Application Center console
Contact your system administrator to get your credentials so that you can log
in to the Application Center console.

Note:

Only users with the administrator role can log in to the Application Center
console.

Troubleshooting a corrupt login page (Apache Tomcat)
You can recover from a corrupt login page of the Application Center console when
the Application Center is running in Apache Tomcat.

Figure 133. Login of the Application Center console

866 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Symptom

When the Application Center is running in Apache Tomcat, the use of a wrong
user name or password might corrupt the login page of the Application Center
console.

When you try to log in to the console with an incorrect user name or an incorrect
password, you receive an error message. When you correct the user name or
password, instead of a successful login, you have one of the following errors; the
message depends on your web browser.
v The same error message as before
v The message “The connection was reset”
v The message “The time allowed for login exceeded”

Cause

The behavior is linked to the management by Apache Tomcat of the
j_security_check servlet. This behavior is specific to Apache Tomcat and does not
occur in any of the WebSphere Application Server profiles.

Solution

The workaround is to click the refresh button of the browser to refresh the web
page after a login failure. Then, enter the correct credentials.

Application Management
You can use Application Management to add new applications and versions and to
manage those applications.

The Application Center enables you to add new applications and versions and to
manage those applications.

Click Applications to access Application Management.

Application Center installed on WebSphere Application Server Liberty
Profile or on Apache Tomcat

Installations of the Application Center on these application servers, during
installation of Worklight with the IBM Installation Manager package, have two
different users defined that you can use to get started.
v User with login demo and password demo

v User with login appcenteradmin and password admin

WebSphere Application Server full profile

If you installed the Application Center on WebSphere Application Server full
profile, one user named appcenteradmin is created by default with the password
indicated by the installer.

Chapter 11. Administering IBM Worklight applications 867

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Adding a mobile application
Add applications to the repository on the server by using the Application Center
console. These applications can then be installed on mobile devices by using the
mobile client.

About this task

In the Applications view, you can add applications to the Application Center.
Initially the list of applications is empty and you must upload an application file.
Application files are described in this procedure.

Procedure

To add an application to make it available to be installed on mobile devices:
1. Click Add Application.
2. Click Upload.
3. Select the application file to upload to the Application Center repository.

Android

The application file extension is apk.

iOS

The application file extension is ipa for normal iOS applications.

The application file extension is zip for instrumented iOS applications
for use in IBM Mobile Test Workbench for Worklight.

BlackBerry OS 6 and OS 7

Figure 134. Available applications

868 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The application file extension is zip. This archive file must contain a
file with extension jad and all related files with extension cod. If you
are using the BlackBerry Eclipse IDE for a native application, the files
are in the deliverables/Web folder. You can place the entire folder in an
archive (.zip) file.

If you are using the Ripple Environment in combination with Worklight
Studio for a hybrid application, the files are in the OTAInstall folder.
You can place the entire folder in an archive (.zip) file.

Windows Phone 8

The application file extension is xap. The application must be signed
with a company account. The application enrollment token for this
company account must be made available to Windows Phone 8 devices
before the application can be installed on the devices. See “Application
enrollment tokens in Windows Phone 8” on page 886 for details.

4. Click Next to access the properties to complete the definition of the application.
5. Complete the properties to define the application. See Application properties

for information about how to complete property values.
6. Click Finish.

Chapter 11. Administering IBM Worklight applications 869

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Adding an application from a public app store
Application Center supports adding to the catalog applications that are stored in
third-party application stores, such as Google play or Apple iTunes.

Figure 135. Application properties, adding an application

870 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

Applications from third-party app stores appear in the Application Center catalog
like any other application, but users are directed to the corresponding public app
store to install the application. You add an application from a public app store in
the console, in the same place as you add an application created within your own
enterprise. See “Adding a mobile application” on page 868.

Note: Currently, the Application Center supports only Google play and Apple
iTunes. Microsoft Market Place for Windows Phone 8 and BlackBerry App World
are not yet supported.

Instead of providing the application executable, you must provide a URL to the
third party application store where the application is stored. To make it easy to
find the correct application link, the console provides direct links in the “Add an
application” page to the supported third-party application store web sites.

The Google play store address is https://play.google.com/store/apps.

The Apple iTunes store address is https://linkmaker.itunes.apple.com/; use the
linkmaker site rather than the iTunes site, because you can search this site for all
kinds of iTunes items, including songs, podcasts, and other items supported by
Apple. Only selecting iOS applications provides you with compatible links to
create application links.

Procedure
1. Click the URL of the public app store that you want to browse.
2. Copy the URL of the application in the third-party app store to the Application

URL text field in the “Add an application” page of the Application Center
console.
v Google play:

a. Select an application in the store.
b. Click the detail page of the application.
c. Copy the address bar URL.

v Apple iTunes:
a. When the list of items is returned in the search result, select the item that

you want.
b. On the right, click “iPhone App Link” to open the application details

page.
c. Copy the address bar URL.

3. When the application link is in the Application URL text field of the console,
click Next to validate the creation of the application link. If the validation is
successful, this action will display the application properties.
If the validation is unsuccessful, an error message will be displayed in the
“Add an application” page. You can either try another link or cancel the
attempt to create the current link.
If the validation of the application link is successful, you can modify the
application description in the application properties before performing the next
step.

Chapter 11. Administering IBM Worklight applications 871

https://play.google.com/store/apps
https://linkmaker.itunes.apple.com/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

4. Click Done to create the application link. This action makes the application
available to the corresponding version of the Application Center mobile client.
A small link icon appears on the application icon to show that this application
is stored in a public app store and is different from a binary app.

Related concepts:
Configuring WebSphere Application Server to support applications in public app
stores
Configure WebSphere Application Server full profile and Liberty profile before
access to public app stores through application links, because of the use of SSL
connections.
Related tasks:
Configuring WebSphere Application Server to support applications in Google play
Configure WebSphere Application Server to enable links in the Application Center
console to access applications in Google play.
Configuring WebSphere Application Server to support applications in Apple iTunes
Configure WebSphere Application Server to enable links in the Application Center
console to access applications in Apple iTunes.
“Installing applications through public app stores” on page 915
You can link from the mobile client to applications that are stored in supported
public app stores and install these applications on your compatible device by
following the normal procedure of the public app store.

Figure 136. Modified application description in application properties

Figure 137. Link to an application stored in Google play

872 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Application properties
Applications have their own sets of properties that depend on the operating
system on the mobile device and that cannot be edited. Applications also have a
common property and editable properties.

The values of the following fields are taken from the application and you cannot
edit them.
v Package

v Internal Version

v Commercial Version

v Label

Properties of Android applications
v Package is the package name of the application; package attribute of the

manifest element in the manifest file of the application. See the Android SDK
documentation.

v Internal Version is the internal version identification of the application;
android:versionCode attribute of the manifest element in the manifest file of the
application. See the Android SDK documentation.

v Commercial Version is the published version of the application.
v Label is the label of the application; android:label attribute of the application

element in the manifest file of the application. See the Android SDK
documentation.

Properties of iOS applications
v Package is the company identifier and the product name; CFBundleIdentifier

key. See the iOS SDK documentation.
v Internal Version is the build number of the application; CFBundleVersion key

of the application. See the iOS SDK documentation.
v Commercial Version is the published version of the application.
v Label is the label of the application; CFBundleDisplayName key of the application.

See the iOS SDK documentation.
v Instrumented indicates whether the uploaded application is an instrumented

application for use in IBM Mobile Test Workbench for Worklight or a normal iOS
application.

Properties of BlackBerry applications
v Package is the name of the application project; MIDlet-Name entry of the jad file.

See JSR-118 specification.
v Internal Version is the version of the application; MIDlet-Version entry of the

jad file. See JSR-118 specification.
v Commercial Version, like Internal Version, is the version of the application.
v Label is the label of the application; MIDlet-l entry of the jad file. See JSR-118

specification. This property is optional. The label can be set or updated during
the import of the application to the Application Center.

v Vendor is the vendor who created this application; MIDlet-Vendor entry of the
jad file. See JSR-118 specification.

Chapter 11. Administering IBM Worklight applications 873

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Properties of Windows Phone 8 applications
v Package is the product identifier of the application; ProductID attribute of the

App element in the manifest file of the application. See Windows Phone
documentation.

v Internal Version is the version identification of the application; Version
attribute of the App element in the manifest file of the application. See Windows
Phone documentation.

v Commercial Version, like Internal Version, is the version of the application.
v Label is the title of the application; Title attribute of the App element in the

manifest file of the application. See Windows Phone documentation.
v Vendor is the vendor who created the application; Publisher attribute of the App

element in the manifest file of the application. See Windows Phone
documentation.

Common property

Author

The Author field is read only. It displays the user name of the user who uploads
the application.

Editable properties

You can edit the following fields:

Description

Use this field to describe the application to the mobile user.

Recommended

Select Recommended to indicate that you recommend users to install this application.
Recommended applications appear in a special list of recommended applications in
the mobile client.

Installer

For the Administrator only: This property indicates that the application is used to
install other applications on the mobile device and send feedback on an application
from the mobile device to the Application Center. Usually only one application is
qualified as Installer and is called the mobile client. This application is
documented in “The mobile client” on page 896.

Active

Select Active to indicate that an application can be installed on a mobile device. If
you do not select Active, the mobile user will not see the application in the list of
available applications displayed on the device.

If you do not select Active, the application is inactive. In the list of available
applications in Application Management, if Show inactive is selected, the
application is disabled.

If Show inactive is not selected, the application does not appear in the list of
available applications.

874 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Ready for production

Select Ready for production to indicate that an application can be managed by the
application store of Tivoli Endpoint Manager. Applications with this property
selected are the only ones that are flagged to Tivoli Endpoint Manager. The
property Ready for production indicates that an application is ready to be
deployed in a production environment and is therefore suitable to be managed by
Tivoli Endpoint Manager through its application store.

Editing application properties
You can edit the properties of an application in the list of uploaded applications.

Procedure

To edit the properties of an uploaded application:
1. Select Applications to see the list of uploaded applications: Available

Applications.
2. Click the version of the application to edit the properties: Application Details.
3. Edit any of the editable properties that you want. See “Application properties”

on page 873 for details about these properties. The name of the current
application file is shown below the properties.
Important: If you want to update the file, it must belong to the same package
and be the same version number. If either of these properties is not the same
you must go back to the application list and add the new version first.

4. Click OK to save your changes and return to Available Applications or Apply
to save and keep Application Details open.

Chapter 11. Administering IBM Worklight applications 875

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Figure 138. Application properties for editing

876 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Downloading an application file
You can download the file of an application registered in the Application Center.

Procedure
1. Select Applications to see the list of uploaded applications: Available

Applications.
2. Tap the version of the application under Application Details.
3. Tap the file name in the "Application File" section.

Viewing application reviews
In the Application Center console, you can see reviews about mobile application
versions sent by users.

About this task

Users of mobile applications can write a review, which includes a rating and a
comment, and submit the review through the Application Center client. Reviews
are available in the Application Center console and the client. Individual reviews
are always associated with a particular version of an application.

Procedure

To view reviews from mobile users or testers about an application version:
1. Select Applications to see the list of uploaded applications: Available

Applications.
2. Select the version of the application.
3. In the menu, select Reviews.

Chapter 11. Administering IBM Worklight applications 877

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The rating is an average of the ratings in all recorded reviews. It consists of one
to five stars, where one star represents the lowest level of appreciation and five
stars represent the highest level of appreciation. The client cannot send a zero
star rating.
The average rating gives an indication of how the application satisfies the
intended use of the application.

4. Click the two arrow heads on the right to expand the comment that is part
of the review and to view the details of the mobile device where the review is
generated.
For example, the comment can give the reason for submitting the review, such
as failure to install.
If you want to delete the review, click the trash can on the right.

User and group management
You can use users and groups to define who has access to some features of the
Application Center, such as installing applications on mobile devices.

Purpose

Use users and groups in the definition of access control lists (ACL).

Managing registered users

To manage registered users, click the Users/Groups tab and select Registered
users. You obtain a list of registered users of the Application Center that includes:

Figure 139. Reviews of application versions

878 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Mobile client users
v Console users
v Local group members
v Members of an access control list

If the Application Center is connected to an LDAP repository, you cannot edit the
user display names. If the repository is not LDAP, you can change a user display
name by selecting it and editing it.

To register new users, click Register User, enter the login name and the display
name, and click OK.

To unregister a user, click the trash icon next to the user name.

Unregistering a user from the Application Center has the effect of:
v Removing feedback given by the user
v Removing the user from the access control lists
v Removing the user from local groups

Note:

When you unregister a user, the user is not removed from the application server or
the LDAP repository.

Managing local groups

To manage local groups, click the Users/Groups tab and select User group.

Figure 140. List of registered users of the Application Center

Chapter 11. Administering IBM Worklight applications 879

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To create a local group, click Create group. Enter the name of the new group and
click OK.

If the Application Center is connected to an LDAP repository, the search includes
local groups as well as the groups defined in the LDAP repository. If the repository
is not LDAP, only local groups are available to the search.

To delete a group, click the trash icon next to the group name. The group is also
removed from the access control lists.

To add or remove members of a group, click the Edit members link of the group.

Figure 141. Local user groups

880 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To add a new member, search for the user by entering the user display name,
select the user, and click Add.

If the Application Center is connected to an LDAP repository, the search for the
user is performed in the LDAP repository. If the repository is not LDAP, the search
is performed in the list of registered users.

To remove a member from a group, click the cross on the right of the user name.

Access control
You can decide whether installation of an application on mobile devices is open to
any users or whether you want to restrict the ability to install an application.

Installation of applications on a mobile device can be limited to specific users or
available to any users.

Access control is defined at the application level and not at the version level.

By default, after an application is uploaded, any user has the right to install the
application on a mobile device.

The current access control for an application is displayed in Available Applications
for each application. The unrestricted or restricted access status for installation is
shown as a link to the page for editing access control.

Installation rights are only about the installation of the application on the mobile
device. If access control is not enabled, everybody has access to the application.

Managing access control
You can add or remove access for users or groups to install an application on
mobile devices.

Figure 142. Managing group membership

Chapter 11. Administering IBM Worklight applications 881

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

You can edit access control:
1. In Application Management under Available Applications, click the unrestricted

or restricted state of Installation of an application.

2. Select Access control enabled to enable access control.
3. Add users or groups to the access list.

To add a single user or group, enter a name, select the entry in the matching
entries found, and click Add.
If the Application Center is connected to an LDAP repository, you can search
for users and groups in the repository as well as locally defined groups. If the
repository is not LDAP, you can search only local groups and registered users.
Local groups are exclusively defined in the Users/Groups tab. When you use
the Liberty profile federated registry, you can only search for users by using the
login name; the result is limited to a maximum of 15 users and 15 groups
(instead of 50 users and 50 groups).
To register a user at the same time as you add the user to the access list, enter
the name and click Add. Then you must specify the login name and the
display name of the user.
To add all the users of an application, click Add users from application and
select the appropriate application.

882 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To remove access from a user or group, click the cross on the right of the name.

Device Management
You can see the devices that connected to the Application Center from the
Application Center mobile client and their properties.

Device Management shows under the Registered Devices the list of devices that
have connected to the Application Center at least once from the Application Center
mobile client.

Figure 143. Adding users to the access list

Chapter 11. Administering IBM Worklight applications 883

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Device properties

Click a device in the list of devices to view the properties of the device or the
applications installed on that device.

Figure 144. The device list

884 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Select Properties to view the device properties.

Name

The name of the device. You can edit this property.

Note: on iOS, the user can define this name in the settings of the device in
Settings > General > Information > Name. The same name is displayed on
iTunes.

User Name

The name of the first user who logged into the device.

Manufacturer

The manufacturer of the device.

Model

The model identifier.

Operating System

Figure 145. Device properties

Chapter 11. Administering IBM Worklight applications 885

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The operating system of the mobile device.

Unique identifier

The unique identifier of the mobile device.

If you edit the device name, click OK to save the name and return to Registered
Devices or Apply to save and keep Edit Device Properties open.

Applications installed on device

Select Applications installed on device to list all the applications installed on the
device.

Application enrollment tokens in Windows Phone 8
The Windows Phone 8 operating system requires users to enroll each device with
the company before users can install company applications on their devices. One
way to enroll devices is by using an application enrollment token.

Purpose

Application enrollment tokens enable you to install company applications on a
Windows Phone 8 device. You must first install the enrollment token for a
specified company on the device to enroll the device with the company. Then, you
can install applications that are created and signed by the corresponding company.

The Application Center simplifies the delivery of the enrollment token. In your role
of administrator of the Application Center catalog, you can manage the enrollment

Figure 146. Applications installed on a device

886 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

tokens from the Application Center console. Once the enrollment tokens are
declared in the Application Center console, they are available for Application
Center users to enroll their devices.

The enrollment tokens interface available from the Application Center console in
the Settings view enables you to manage application enrollment tokens for
Windows Phone 8 by registering, updating, or deleting them.

Managing application enrollment tokens

In your role of administrator of the Application Center, you can access the list of
registered tokens by clicking the gear icon in the screen header to display
Application Center Settings. Then, select Enrollment Tokens to display the list of
registered tokens.

To enroll a device, the device user must upload and install the token file before
installing the Application Center mobile client. The mobile client is also a company
application. Therefore, the device must be enrolled before the mobile client can be
installed.

The registered tokens are available through the bootstrap page at
http://hostname:portnumber/appcenterconsole/installers.html, where hostname
is the host name of the server hosting the Application Center console and
portnumber is the corresponding port number.

To register a token in the Application Center console, click Upload Token and
select a token file. The token file extension is aetx.

To update the certificate subject of a token, select the token name in the list, change
the value, and click OK.

To delete a token, click the trash can icon on the right side of the token in the list.

Signing out of the Application Center console
For security purposes, you must sign out of the console when you have finished
your administrative tasks.

Purpose

To log out of the secure sign-on to the Application Center console..

To sign out of the Application Center console, click Sign out next to the Welcome
message that is displayed in the banner of every page.

Command-line tool for uploading or deleting an application
To deploy applications to the Application Center through a build process, use the
command-line tool.

You can upload an application to the Application Center by using the web
interface of the Application Center console. You can also upload a new application
by using a command-line tool.

This is particularly useful when you want to incorporate the deployment of an
application to the Application Center into a build process. This tool is located at:

installDir/ApplicationCenter/tools/applicationcenterdeploytool.jar

Chapter 11. Administering IBM Worklight applications 887

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The tool can be used for application files with extension APK or IPA. It can be
used stand alone or as an ant task.

The tools directory contains all the files required to support the use of the tool.
v applicationcenterdeploytool.jar: the upload tool.
v json4j.jar: the library for the JSON format required by the upload tool.
v build.xml: a sample ant script that you can use to upload a single file or a

sequence of files to the Application Center.
v acdeploytool.sh and acdeploytool.bat: Simple scripts to call java with

applicationcenterdeploytool.jar.

Using the stand-alone tool to upload an application
To upload an application, call the stand-alone tool from the command line.

Procedure

Use the stand-alone tool by following these steps.
1. Add applicationcenterdeploytool.jar and json4j.jar to the java classpath

environment variable.
2. Call the upload tool from the command line:

java com.ibm.appcenter.Upload [options] [files]

You can pass any of the available options in the command line.

Option Content indicated by Description

-s serverpath The path to the Application
Center server.

-c context The context of the
Application Center web
application.

-u user The user credentials to access
the Application Center.

-p password The password of the user.

-d description The description of the
application to be uploaded.

-l label The fallback label. Normally
the label is taken from the
application descriptor stored
in the file to be uploaded. If
the application descriptor
does not contain a label, the
fallback label is used.

-isActive true or false The application is stored in
the Application Center as an
active or inactive application.

-isInstaller true or false The application is stored in
the Application Center with
the “installer” flag set
appropriately.

-isReadyForProduction true or false The application is stored in
the Application Center with
the “ready-for-production”
flag set appropriately.

888 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Option Content indicated by Description

-isRecommended true or false The application is stored in
the Application Center with
the “recommended” flag set
appropriately.

-e Shows the full exception
stack trace on failure.

-f Force uploading of
applications, even if they
exist already.

-y Disable SSL security
checking, which allows
publishing on secured hosts
without verification of the
SSL certificate. Use of this
flag is a security risk, but
may be suitable for testing
localhost with temporary
self-signed SSL certificates.

The files parameter can specify files of type Android application package
(.apk) files or iOS application (.ipa) files.
In this example user demo has the password demopassword. Use this command
line.
java com.ibm.appcenter.Upload -s http://localhost:9080 -c applicationcenter -u demo -p demopassword -f app1.apk app2.ipa

Using the stand-alone tool to delete an application
To delete an application from the Application Center, call the stand-alone tool from
the command line.

Procedure

Use the stand-alone tool by following these steps.
1. Add applicationcenterdeploytool.jar and json4j.jar to the java classpath

environment variable.
2. Call the upload tool from the command line:

java com.ibm.appcenter.Upload -delete [options] [files or applications]

You can pass any of the available options in the command line.

Option Content indicated by Description

-s serverpath The path to the Application
Center server.

-c context The context of the
Application Center web
application.

-u user The user credentials to access
the Application Center.

-p password The password of the user.

Chapter 11. Administering IBM Worklight applications 889

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Option Content indicated by Description

-y Disable SSL security
checking, which allows
publishing on secured hosts
without verification of the
SSL certificate. Use of this
flag is a security risk, but
may be suitable for testing
localhost with temporary
self-signed SSL certificates.

You can specify files or the application package, operating system, and version.
If files are specified, the package, operating system and version are determined
from the file and the corresponding application is deleted from the Application
Center. If applications are specified, they must have one of the following
formats:
package@os@version: This exact version is deleted from the Application Center.
The version part must specify the “internal version”, not the “commercial
version” of the application.
package@os: All versions of this application are deleted from the Application
Center.
package: All versions of all operating systems of this application are deleted
from the Application Center.

Example

In this example, user demo has the password demopassword. Use this command line
to delete the Android application demo.HelloWorld with internal version 3.
java com.ibm.appcenter.Upload -delete -s http://localhost:9080 -c applicationcenter -u demo -p demopassword demo.HelloWorld@Android@3

Using the stand-alone tool to clear the LDAP cache
Use the stand-alone tool to clear the LDAP cache and make changes to LDAP users
and groups visible immediately in the Application Center.

About this task

When the Application Center is configured with LDAP, changes to users and
groups on the LDAP server become visible to the Application Center after a delay.
The Application Center maintains a cache of LDAP data and the changes only
become visible after the cache expires. By default, the delay is 24 hours. If you do
not want to wait for this delay to expire after changes to users or groups, you can
call the stand-alone tool from the command line to clear the cache of LDAP data.
By using the stand-alone tool to clear the cache, the changes become visible
immediately.

Procedure

Use the stand-alone tool by following these steps.
1. Add applicationcenterdeploytool.jar and json4j.jar to the java classpath

environment variable.
2. Call the upload tool from the command line:

java com.ibm.appcenter.Upload -clearLdapCache [options]

You can pass any of the available options in the command line.

890 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Option Content indicated by Description

-s serverpath The path to the Application
Center server.

-c context The context of the
Application Center web
application.

-u user The user credentials to access
the Application Center.

-p password The password of the user.

-y Disable SSL security
checking, which allows
publishing on secured hosts
without verification of the
SSL certificate. Use of this
flag is a security risk, but
may be suitable for testing
localhost with temporary
self-signed SSL certificates.

Example

In this example, user demo has the password demopassword.
java com.ibm.appcenter.Upload -clearLdapCache -s http://localhost:9080 -c applicationcenter -u demo -p demopassword

Ant task for uploading or deleting an application
You can use the upload and delete tools as an Ant task and use the Ant task in
your own Ant script.

Apache Ant is required to run these tasks. The minimum supported version of
Apache Ant is listed in “System requirements for using IBM Worklight” on page 9.

For convenience, Apache Ant 1.8.4 is included in Worklight Server. In the
WL_INSTALL_DIR/shortcuts/ directory, the following scripts are provided:
v ant for UNIX / Linux
v ant.bat for Windows

These scripts are ready to run, which means that they do not require specific
environment variables. If the environment variable JAVA_HOME is set, the scripts
accept it.

When you use the upload tool as an ant task, the classname of the upload ant task
is com.ibm.appcenter.ant.UploadApps. The classname of the delete ant task is
com.ibm.appcenter.ant.DeleteApps.

Parameters of
ant task Description

serverPath To connect to the Application Center. The default value is
http://localhost:9080.

context The context of the Application Center. The default value is
/applicationcenter.

loginUser The user name with permissions to upload an application.

loginPass The password of the user with permissions to upload an application.

Chapter 11. Administering IBM Worklight applications 891

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Parameters of
ant task Description

forceOverwrite If set to true, the ant task attempts to overwrite applications in the
Application Center when it uploads an application that is already
present. This parameter is only available in the upload ant task.

file The .apk or .ipa file to be uploaded to the Application Center or to be
deleted from the Application Center. This parameter has no default
value.

fileset To upload or delete multiple files.

application The package name of the application; this parameter is only available in
the delete ant task.

os The operating system of the application (Android, iOS, BlackBerry). This
parameter is only available in the delete ant task.

version The internal version of the application; this parameter is only available
in the delete ant task. Do not use the commercial version here, because
the commercial version is unsuitable to identify the version exactly.

Example

An extended example can be found in the directory ApplicationCenter/tools/
build.xml.

The following example shows how to use the ant task in your own ant script.
<?xml version="1.0" encoding="UTF-8"?>
<project name="PureMeapAntDeployTask" basedir="." default="upload.AllApps">

<property name="install.dir" value="../../" />
<property name="workspace.root" value="../../" />

<!-- Server Properties -->
<property name="server.path" value="http://localhost:9080/" />
<property name="context.path" value="applicationcenter" />
<property name="upload.file" value="" />
<property name="force" value="true" />

<!-- Authentication Properties -->
<property name="login.user" value="appcenteradmin" />
<property name="login.pass" value="admin" />
<path id="classpath.run">

<fileset dir="${install.dir}/ApplicationCenter/tools/">
<include name="applicationcenterdeploytool.jar" />
<include name="json4j.jar"/>

</fileset>
</path>
<target name="upload.init">

<taskdef name="uploadapps" classname="com.ibm.appcenter.ant.UploadApps">
<classpath refid="classpath.run" />

</taskdef>
</target>
<target name="upload.App" description="Uploads a single application" depends="upload.init">

<uploadapps serverPath="${server.path}"
context="${context.path}"
loginUser="${login.user}"
loginPass="${login.pass}"
forceOverwrite="${force}"
file="${upload.file}" />

</target>
<target name="upload.AllApps" description="Uploads all found APK and IPA files" depends="upload.init">
<uploadapps serverPath="${server.path}"

loginUser="${login.user}"
loginPass="${login.pass}"
forceOverwrite="${force}"
context="${context.path}" >
<fileset dir="${workspace.root}">

<include name="**/*.ipa" />
<include name="**/*.apk" />

</fileset>
</uploadapps>

</target>
</project>

892 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

This sample ant script is in the tools directory. You can use it to upload a single
application to the Application Center.
ant upload.App -Dupload.file=sample.apk

You can also use it to upload all applications found in a directory hierarchy.
ant upload.AllApps -Dworkspace.root=myDirectory

Properties of the sample ant script

Property Comment

install.dir Defaults to ../../

server.path The default value is http://localhost:9080.

context.path The default value is applicationcenter.

upload.file This property has no default value. It must include the exact file path.

workspace.root Defaults to ../../

login.user The default value is appcenteradmin.

login.pass The default value is admin.

force The default value is true..

To specify these parameters by command line when you call ant, add -D before the
property name. For example:
-Dserver.path=http://localhost:8888/

Publishing Worklight applications to the Application Center
You can use the application management plug-in to publish native applications to
the IBM Application Center.

About this task

You can deploy applications for Android, iOS, and BlackBerry operating systems to
the Application Center directly from the IBM Worklight Studio IDE. In Worklight
Studio, you can deploy Android application package (.apk) files, iOS application
(.ipa) files, and BlackBerry (.zip) files that you choose from your file system. You
can right-click an application (.apk, .ipa, or .zip) file to deploy it to the
Application Center.

Procedure

To publish an application to the Application Center, complete the following steps:
1. Specify the publish preferences for the Application Center:

a. In the main menu, click Window > Preferences.
b. Expand IBM Application Center > Publish Preferences.

Chapter 11. Administering IBM Worklight applications 893

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

c. Specify the default publish preference settings for the Application Center:

Preference Description

Credentials Specify the login and password required to
access the application repository.

Application Center Server Specify the URL of the application center
server to use when publishing applications.

2. Publish an application (.apk, .ipa, or .zip file) from a Worklight project:
a. Right-click the application and click IBM Application Center > Publish on

IBM Application Center. The Publish Confirm dialog opens.

b. In the Publish Confirm dialog, choose one of the following options:

894 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Option Description

Publish the application by using the current
preferences.

Click Publish.

Change any of the preferences before
publishing the application.

Click Preferences to open the Publish
Preferences page and edit the preference
settings.

You receive confirmation when publication is successful.

If the application already exists, publication will fail. You are given the
option to overwrite the existing version of the application.

Tip: To publish an application that is not part of the Worklight project:
1) Right-click the Worklight project and click IBM Application Center >

Publish on IBM Application Center. The Select Application to Publish
window opens.

Chapter 11. Administering IBM Worklight applications 895

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2) Navigate to the application (.apk, .ipa, or .zip) file that you want to
publish and click Open to open the Publish Confirm dialog.

The mobile client
You can install applications on your mobile device with the Application Center
mobile client.

The Application Center mobile client is the application that runs on your Android,
iOS, Windows Phone, or BlackBerry device. (Only Windows Phone 8 and
BlackBerry OS 6 and OS 7 are supported by the current version of the Application
Center.) You use the mobile client to list the catalog of available applications in the
Application Center. You can install these applications on your device. The mobile
client is sometimes referred to as the Application Center installer. This application
must be present on your device if you want to install on your device applications
from your private application repository.

Prerequisites

Your system administrator must give you a user name and password before you
can download and install the mobile client. This user name and password is
required whenever you start the mobile client on your device. For security reasons,
do not disseminate these credentials. These credentials are the same credentials
used to log in to the Application Center console.

Installing the client on an Android mobile device
You can install the mobile client, or any signed application marked with the
installer flag, on your Android mobile device by entering the access URL in your
browser, entering your credentials, and completing the required steps.

Procedure
1. Start the browser on your mobile device.

896 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. Enter the following access URL in the address text field: http://
hostname:portnumber/appcenterconsole/installers.html

Where hostname is the address of the server and portnumber is the number of
the port where the Application Center is installed. Your system administrator
can provide this information.
The Application Center also provides an alternative URL for installing the client
on a mobile device: http://hostname:portnumber/appcenterconsole/inst.html
The page of this URL works better with some older or some nonstandard
mobile web browsers. If the page installers.html does not work on your
mobile device, you can use inst.html. This page is provided in English only
and is not translated into other languages.

The Android browser is not able to run pages when SSL communication and
self-signed certificates are used. In this case, you must use a non self-signed
certificate or use another browser on the Android device, such as Firefox, Chrome,
or Opera.
3. Enter your user name and password. See Prerequisites in “The mobile client”

on page 896.
When your user name and password are validated, the list of compatible
installer applications for your device is displayed in the browser. Normally,
only one application, the mobile client, appears in this list.

Before you can see the mobile client in the list of available applications, the
Application Center administrator must install the mobile client application. The
administrator uploads the mobile client to the Application Center and sets the
Installer property to true. See “Application properties” on page 873.

4. Select an item in the list to display the application details.
Typically, these details include the application name and its version number.

Figure 147. List of available mobile client applications to install

Chapter 11. Administering IBM Worklight applications 897

http://hostname:portnumber/appcenterconsole/inst.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

5. Tap Install Now to download the mobile client.
6. Launch the Android Download applications.
7. Select the Application Center client installer.

You can see the access granted to the application when you choose to install it.

8. Select Install to install the mobile client.
9. When the application is installed, select Open to open the mobile client or

Done to close the Downloads application.

Figure 148. Application details

Figure 149. Installation of the mobile client on Android

898 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Installing the client on an iOS mobile device
You can install the mobile client, or any signed application marked with the
installer flag, on your iOS mobile device by entering the access URL in your
browser, entering your credentials, and completing the required steps.

Before you begin

�For experts�

The ibm.appcenter.ios.plist.onetimeurl JNDI property of the IBM Application
Center Services controls whether One-Time URLs are used when the mobile client
is installed on an iOS mobile device. Set this property to false for maximal
security. When you set this property to false, users must enter their credentials
several times when they install the mobile client: once when they select the client
and once when they install the client.

When you set the property to true, users enter their credentials only once. A
temporary download URL with a cryptographic hash is generated when the user
enters the credentials. This temporary download URL is valid for one hour and
does not require additional authentication. This solution is a compromise between
security and ergonomy.

The steps to specify the ibm.appcenter.ios.plist.onetimeurl JNDI property are
similar to the steps for the ibm.appcenter.proxy.host property. See “Defining the
endpoint of the application resources” on page 165.

Procedure

Installing the mobile client on an iOS device is similar to installing it on Android,
but with some differences. The installer is automatically launched directly after
download. Your user name and password credentials are requested for almost all
the installation steps.
1. Start the browser on your mobile device.
2. Enter the following access URL in the address text field: http://

hostname:portnumber/appcenterconsole/installers.html

Where hostname is the address of the server and portnumber is the number of
the port where the Application Center is installed. Your system administrator
can provide this information.
The Application Center also provides an alternative URL for installing the client
on a mobile device: http://hostname:portnumber/appcenterconsole/inst.html
The page of this URL works better with some older or some nonstandard
mobile web browsers. If the page installers.html does not work on your
mobile device, you can use inst.html. This page is provided in English only
and is not translated into other languages.

3. Select an item in the list of available applications to display the application
details.

4. Tap Install Now to download the mobile client.
5. Enter your credentials to authorize the downloader transaction.
6. To authorize the download, tap Install.

Chapter 11. Administering IBM Worklight applications 899

http://hostname:portnumber/appcenterconsole/inst.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

7. Enter your credentials to authorize the installation.
If you entered valid credentials, the browser will close and you can watch the
download progress.
Installing an application on a device requires a provisioning profile that enables
the application to be installed on the selected device. If you accidentally try to
install an application that is not valid for your device, iOS version 6 or earlier
gives an error message. Some versions of iOS 7 might try to install the
application in an endless loop without ever succeeding or indicating any error.
The application icon that shows the progress of the installation appears on the
home screen, but, because of the endless loop, it is difficult to delete this
application icon to stop the endless loop. A workaround is to put the device
into Airplane mode. In this mode, the endless loop is stopped and you can
delete the application icon by following the normal steps to delete apps on iOS
devices.

Installing the client on a BlackBerry mobile device
You can install the mobile client, or any signed application marked with the
installer flag, on your BlackBerry mobile device by entering the access URL in your
browser, entering your credentials, and completing the required steps.

Figure 150. Confirm app to be installed

900 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure

The installer is automatically launched directly after download. Your user name
and password credentials are requested for almost all the installation steps.
1. Start the browser on your mobile device.
2. Enter the following access URL in the address text field: http://

hostname:portnumber/appcenterconsole/installers.html.
Where hostname is the address of the server and portnumber is the number of
the port where the Application Center is installed. Your system administrator
can provide this information.
The Application Center also provides an alternative URL for installing the client
on a mobile device: http://hostname:portnumber/appcenterconsole/inst.html
The page of this URL works better with some older or some nonstandard
mobile web browsers. If the page installers.html does not work on your
mobile device, you can use inst.html. This page is provided in English only
and is not translated into other languages.

3. Enter your credentials to authorize access to the server.
4. Select an item in the list of available applications to display the application

details.
5. Tap Install Now to download the mobile client.
6. In the BlackBerry Over The Air Installation Screen, tap Download to complete

the installation.

Note: BlackBerry OS 10 is not supported by the current version of the
Application Center.

Installing the client on Windows Phone 8
You can install the mobile client, or any signed application marked with the
installer flag, on Windows Phone 8 by entering the access URL in your browser,
entering your credentials, and completing the required steps. The company account
must be preinstalled on your mobile device.

Before you begin

Before you can install apps published by your company, you must add the
company account to your mobile device. You must download an application

Figure 151. The installer in the BlackBerry browser

Chapter 11. Administering IBM Worklight applications 901

http://hostname:portnumber/appcenterconsole/inst.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

enrollment token (AET) to your Windows Phone device. This AET must already be
present on the Worklight Server. It is uploaded to the Worklight Server by using
the Application Center console. See “Application enrollment tokens in Windows
Phone 8” on page 886 for details.

Procedure
1. Start the browser on your mobile device.
2. Enter the following access URL in the address text field: http://

hostname:portnumber/appcenterconsole/installers.html.
Where hostname is the address of the server and portnumber is the number of
the port where the Application Center is installed. Your system administrator
can provide this information.
The Application Center also provides an alternative URL for installing the
client on a mobile device: http://hostname:portnumber/appcenterconsole/
inst.html The page of this URL works better with some older or some
nonstandard mobile web browsers. If the page installers.html does not
work on your mobile device, you can use inst.html. This page is provided in
English only and is not translated into other languages.

3. Enter your credentials to authorize access to the server.
In the lower part of the screen, a toolbar contains Installers tab and Tokens
tab.

4. Tap Tokens and select an application enrollment token in the list of available
tokens to display the token details.

Figure 152. Preparing to install tokens and applications on a Windows Phone device

902 IBM Worklight V6.1.0

http://hostname:portnumber/appcenterconsole/inst.html
http://hostname:portnumber/appcenterconsole/inst.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

5. Tap Add to download the application enrollment token.
6. Tap Add to add the company account.

Windows Phone 8 does not provide any feedback about adding the company
account.

7. Tap the Back icon to return to the details of application enrollment tokens.

Figure 153. AET details on a Windows Phone device

Figure 154. Adding a company account in Windows Phone 8

Chapter 11. Administering IBM Worklight applications 903

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

8. Tap Installers and select the mobile client application in the list of available
applications. The application details are displayed.

9. Tap Install to download the selected application.

10. Tap Install to install the application.

Windows Phone 8 does not provide any feedback about installing the
application.

Tip: When you install a company application on a device, the device must
connect to the Microsoft server to verify the application signature. Sometimes,
the Microsoft server does not respond. In this case, you can try the installation
again a few minutes later. See “Installing an application on a Windows Phone
device” on page 913 for the possible error messages.

Results

When the installation is finished, the mobile client application should be available
in your applications list in Windows Phone.

The Login view
In the Login view, you can access the fields that are required to connect to the
server to view the list of applications available for your device.

Use the Login view to enter your credentials to connect to the Application Center
server to view the list of applications available for your device.

The Login view presents all the mandatory fields for the information required to
connect to the server.

When the application is started the Login page is displayed. The login credentials
are required to connect to the server.

Figure 155. The application selected to download on a Windows Phone device

Figure 156. Installing the downloaded application on a Windows Phone device

904 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Figure 157. Login view on Android or iOS phone

Figure 158. Login view on Android or iOS tablet

Chapter 11. Administering IBM Worklight applications 905

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

User name and password
Enter your credentials for access to the server. These are the same user
name and password granted by your system administrator for
downloading and installing the mobile client.

Application Center server address
The Application Center server address is composed of:
v Host name or IP address.
v Port, which is optional if the default port is used.
v Context, which is optional if the Application Center is installed at the

root of the server.

On a phone, a field is available for each part of the address.

On a tablet, a single field that contains a preformatted example address is
displayed. Use it as a model for entering the correct server address to
avoid formatting errors. See “Preparations for using the mobile client” on
page 852 for information on filling parts of the address in advance, or
hardcode the address and hide the associated fields.

Secure Socket Layer (SSL)
Select SSL to turn on the SSL protocol for communications over the
network. (Tapping this field again when SSL is selected switches SSL off.)

SSL selection is available for cases where the Application Center server is
configured to run over an SSL connection. Selecting SSL when the server is
not configured to handle an SSL layer prevents you from connecting to the
server. Your system administrator can inform you whether the Application
Center runs over an SSL connection.

Complex input on BlackBerry devices
If you have non-Latin characters to enter in the text field, such as Chinese
and Japanese user names, select Complex input on a BlackBerry device.
Selecting Complex input switches to the BlackBerry complex input mode
in all text fields of the application.

.

Figure 159. Login view on BlackBerry devices

906 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Connecting to the server

To connect to the server:
1. Enter your user name and password.
2. Enter your Application Center server address.
3. If your configuration of the Application Center runs over the SSL protocol,

select SSL.
4. Tap Log in to connect to the server.

If this login is successful, the user name and server address are saved to fill the
fields on subsequent launches of the client.

Views in the Application Center client
The client provides views that are adapted to the various tasks that you want to
perform.

After a successful login, you can choose among these views.

These views enable you to communicate with a server to send or retrieve
information about applications or to manage the applications located on your
device. Here are descriptions of the different views.

Catalog

This view shows the applications that can be installed on a device.

Favorites

This view shows the list of applications that you marked as favorites.

Installed on BlackBerry version.

This view shows the applications installed on your mobile device. This view is not
available on Android and iOS versions of the client.

Updates

Figure 160. Views in the client application (Android and iOS operating systems)

Figure 161. Views in the client application (BlackBerry devices)

Chapter 11. Administering IBM Worklight applications 907

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

This view shows all applications that you marked as favorite apps and that have a
later version available in the Application Center than the version, if any, installed
on the device.

When you first start the mobile client, it opens the Login view for you to enter
your user name, password, and the address of the Application Center server. This
information is mandatory.

Displays on different device types

The layout of the views is specific to the Android, iOS, or BlackBerry environment,
even though the common functions that you can perform in the views are the
same for all operating systems. Different device types might have quite different
screen real estate. On the phone, a list is displayed. On a tablet, a grid of
applications is used.

Figure 162. Catalog view on a phone

908 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Features of the views

On an Android or iOS tablet, you can sort the lists by tapping one of the sort
criteria.

On an Android, iOS, or BlackBerry phone, sort criteria are available through the

sort button.

On BlackBerry devices, if the list of applications is too long, you can use the search
field to find an application that contains the search string it its name.

Applications that are marked as favorites are indicated by a star superposed on the
application icon.

The average rating of the latest version of an application is shown by using a
number of stars and the number of ratings received. See “Preparations for using
the mobile client” on page 852 for how to show the rating of all versions of the
application instead of the latest version only.

Tapping an application in the list navigates to the Details view of the latest
installed version of this application.

To refresh the view, tap the refresh button.

To return to the login page:

v In Android and iOS applications, tap the logout button.

v In the BlackBerry version of the client, tap the return button. Then tap
Log out/Change User.

Figure 163. Catalog view on a tablet

Chapter 11. Administering IBM Worklight applications 909

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The Details view

Tapping an application in the Catalog, Favorites, or Updates view navigates to the
Details view where you can see details of the application properties. Details of the
application version are displayed in this view.
v The name of the application.
v Commercial version: the published version of the application.
v Internal version: on Android, the internal version identification of the

application; on iOS, the build number of the application; on BlackBerry, the
version of the application and the same as the commercial version. See
“Application properties” on page 873 for technical details concerning this
property on all operating systems.

v Update date.
v Approximate size of the application file.
v Rating of the version and number of ratings received.
v Description of the application.

You can perform several actions in this view.
v Install, upgrade, downgrade, or uninstall an application version.
v Cancel the current operation in progress.
v Rate the application version if it is installed on the device.
v List the reviews of the this version or of all versions of the application.
v Show details of a previous version.
v Mark or unmark the application as a favorite app.
v Refresh the view with the latest changes from the Application Center server.

Installing an application on an Android device
From the Details view, you can install an application on your Android device.

About this task

In the Details view, if a previous version of the application is not installed, you
can install this application version on your Android device.

910 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. In the Details view, tap Install.

The application is downloaded. You can tap Cancel in the Details view at any
time during the download to cancel the download. (The Cancel button appears
only during the installation steps.) If you let the download complete, you will
see the rights that are granted to the application.

2. Tap Install to confirm installation of the application or Cancel to cancel
installation..
Depending on the action taken, the application is installed or not.

Figure 164. Details view of an app version shown on your Android device

Figure 165. Application rights on your Android device

Chapter 11. Administering IBM Worklight applications 911

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

If you selected Cancel, in the application rights confirmation panel, you can tap
Cancel in the Details view at any time to notify the application that the
installation has been canceled. The Cancel button appears in the Details view
only during the installation steps.

Installing an application on an iOS device
From the Details view, you can install or reinstall an application version on your
iOS mobile device.

About this task

Procedure
1. In the Details view, tap Install or Reinstall. You are requested to confirm the

download and installation of the application version.
2. Tap Install to confirm download and installation of the application version or

Cancel to cancel the installation.

Figure 166. Details view of an app version shown on your iOS device

912 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Depending on the action taken, the application is installed or not.
3. Optional: If you tap Cancel, you must notify the application that the

installation has been canceled by tapping Report Not in Progress.

Installing an application on a Windows Phone device
From the Details view, you can install a company application on your Windows
phone device.

About this task

The Details view of the selected application displays information about the
application that you want to install.

Figure 167. Canceling application installation on your iOS device

Chapter 11. Administering IBM Worklight applications 913

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. In the Details view, tap Install. The application is downloaded and installed.

You can tap Cancel at any time during the downloading of the application to
cancel the activity. Cancel appears only during the downloading step of the
installation process.
At the beginning of the installation process, you are requested to confirm
whether you want to add the company application to the applications installed
on your mobile device.

2. Tap Install to confirm installation of the application or Cancel to cancel the
installation.

Tip: When you install a company application on a device, the device must
connect to the Microsoft server to verify the application signature. Sometimes,
the Microsoft server does not respond. In this case, you can try the installation
again a few minutes later.
The possible error messages are:
v There's a problem with this company app. Contact your company's

support person for help.

You are probably using an unsigned Windows Phone application package
(.xap) file. You must sign application package (.xap) files before using them
in the Application Center. This message might also occur if the Microsoft
server does not respond and the signature of the company application cannot
be validated. In this case, try the installation again a few minutes later.

v Before you install this app, you need to add ... company account.

The Windows Phone application package (.xap) file is signed, but the device
is not enrolled for company applications. You must first install on the device
the application enrollment token of the company.

v We haven't been able to contact the company account to make sure you
can install this app. ...

Figure 168. Details view of a version of a company application for installation on a Windows Phone device

Figure 169. Confirming or canceling installation of a company application on a Windows Phone device

914 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Either the company account is expired or blocked, or the Microsoft server is
temporarily not responding. Make sure that your device is connected to the
internet and connected to the Microsoft server, and try again.

Note: If a device is registered with several company accounts, the Windows
Phone operating system might display the wrong company account in the
message Would you like to install application from company name?. This
message is outside the control of the Application Center. This situation is a
display problem only and does not affect the functionality.

Results

Depending on the action that you take, the application is installed or not.

Installing an application on a BlackBerry device
From the Details view, you can install or reinstall an application version on your
BlackBerry device.

Procedure
1. In the Details view, tap Install or Reinstall. You are requested to confirm the

download and installation of the application version.
2. Optional: During the installation, a progress bar is displayed; tap or click the

red cross next to the progress bar to cancel the installation while the application
is being downloaded. When the download of the application is complete, the
installation can no longer be canceled.

Updating or reverting an application often results in a request for a reboot. If
you choose to reboot later, the list of installed applications displayed in the
mobile client might temporarily become unsynchronized until the next reboot.

Installing applications through public app stores
You can link from the mobile client to applications that are stored in supported
public app stores and install these applications on your compatible device by
following the normal procedure of the public app store.

Figure 170. Downloading an application to a BlackBerry device

Chapter 11. Administering IBM Worklight applications 915

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

The Application Center administrator can create links to selected applications
stored in supported public app stores and make them available to users of the
Application Center mobile client on the operating systems that match these
applications. See “Adding an application from a public app store” on page 870.
You can install these applications through the mobile client on your compatible
device.

Links to Android applications stored in Google play and to iOS applications stored
in Apple iTunes are listed in the application list on the device along with the
binary files of private applications created within your enterprise.

Procedure
1. Select an application stored in a public app store from the application list to see

the application details. Instead of Install, you see Go to Store.
2. Tap Go to Store to open Google play or Apple iTunes.

3. Follow the usual procedure of the public app store to install the application.

Removing an installed application
You can remove an application that is installed on your mobile device.

Procedure
1. Start the removal procedure that is valid for the operating system of your

device.

Figure 171. Accessing an application in Google play from the mobile client on the device

Figure 172. Accessing an application in Apple iTunes from the mobile client on the device

916 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Android: See the procedure in step 2.
v iOS: You can remove applications only from the iOS Home screen, and not

through the Application Center client. Use the normal iOS procedure for
removing an application.

v Windows Phone: You can remove applications only from the Windows Phone
Home screen, and not through the Application Center client. Use the normal
Windows Phone procedure for removing an application.

v BlackBerry: See the procedure in step 3.
2. Android only: Remove an application from an Android device.

a. In the Details view of any version of the application, tap Uninstall. The
Uninstall button appears in the Details view only when a version of the
application is installed. You are requested to confirm that the application
version is to be uninstalled.

b. Tap Uninstall to uninstall the application version or Cancel to notify the
application that the uninstallation command has been canceled.

3. BlackBerry only: Remove an application from a BlackBerry device.
a. In the Details view of any version of the application, tap Uninstall. The

Uninstall button appears in the Details view only when this version of the
application is installed. You are requested to confirm that the application
version is to be uninstalled.

b. Tap Uninstall to uninstall the application version or Cancel to cancel the
uninstallation command. Removing an installed application often results in
a reboot request. If you choose to reboot later, the list of installed
applications displayed in the mobile client might temporarily become
unsynchronized until the next reboot.

Showing details of a specific application version
Select a version of an application to show its details.

About this task

You can show the details of the selected version of an application by following the
appropriate procedure for an Android or iOS phone or tablet, a Windows Phone
device, or a BlackBerry device.

Procedure
1. Show details of a specific application version on a mobile device by selecting

the appropriate procedure to follow for your device.
v A Windows Phone, Android, or iOS phone; see step 2.
v A BlackBerry phone; see step 3 on page 918.
v A tablet; see step 4 on page 918.

2. Windows Phone, Android, iOS only: Show details of a specific application
version on a Windows Phone, Android, or iOS phone.
a. Tap Select a version to navigate to the version list view.

Chapter 11. Administering IBM Worklight applications 917

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

b. Tap the required version of the application. The Details view is updated
and shows the details of the selected application version.

3. BlackBerry only: Show details of a specific application version on a BlackBerry
phone.
a. Slide to the Versions pane.

b. Tap the required version of the application. The Details view is updated
and shows the details of the selected application version.

4. Tablet devices only: Show details of a specific application version on a tablet.
a. Tap Select version.
b. In the pop-up menu, select the required version of the application. The

Details view is updated and shows the details of the selected application
version.

Updating an application
You can update an application that is installed on your device if a new version is
available in the Application Center.

Figure 173. Specific version of an application selected in the list of versions on a Windows Phone, Android, or iOS
phone

Figure 174. List of versions of an application on a BlackBerry phone

918 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

Follow this procedure to make the latest versions of favorite and recommended
apps available on your device. Applications that are marked as favorites and that
have an updated version are listed in the Updates view. The applications that are
marked as recommended by the Application Center server administrator are also
listed in the Updates view, even if they are not favorites.

If a more up-to-date version of an installed application is available on the server, it
is listed under Update or Recommended.

Procedure
1. In the Updates view, navigate to the Details view.
2. In the Details view, select a newer version of the application or take the latest

available version.
3. Android, Windows Phone, and BlackBerry only: On Android, Windows

Phone, and BlackBerry devices, tap Update.
4. iOS only: On iOS devices, tap Install latest.
5. Follow the appropriate application installation procedure.

v “Installing an application on an Android device” on page 910
v “Installing an application on an iOS device” on page 912
v “Installing an application on a Windows Phone device” on page 913
v “Installing an application on a BlackBerry device” on page 915

Reverting an installed application
You can revert the version of an installed application if an earlier version exists on
the server.

Purpose

To replace the currently installed version of an application with an earlier version,
from the Catalog, Updates, or Favorites view, navigate to the Details view. In the
Details view, select an earlier version. See “Showing details of a specific
application version” on page 917 for information about how to display details of a
specific application version on a mobile device.

See “Preparations for using the mobile client” on page 852 for information about
how to disable reverting to earlier versions of an application.

On Android

If the installed version of the Android operating system is earlier than 4.2.2, tap
Revert.

If the installed version of the Android operating system is 4.2.2 or later, you must
uninstall the version currently installed before you can install the earlier version.

Then, follow the procedure documented in “Installing an application on an
Android device” on page 910.

On iOS

Use the normal procedure of the operating system to remove the application.

Chapter 11. Administering IBM Worklight applications 919

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Tap Install to install the earlier version of the application. Follow the procedure
documented in “Installing an application on an iOS device” on page 912.

On Windows Phone

Tap Revert. Follow the procedue documented in “Installing an application on a
Windows Phone device” on page 913.

On BlackBerry

Tap or click Revert. Follow the procedure documented in “Installing an application
on a BlackBerry device” on page 915.

Marking or unmarking a favorite app
Mark your favorite apps or unmark an app to have it removed from the favorites
list.

An application marked as a favorite on your device indicates that you are
interested in this application. This application is then listed in the list of favorite
apps to make locating it easier. This application is displayed on every device
belonging to you that is compatible with the application. If a later version of the
app is available in the Application Center, the application is listed in the Updates
view.

To mark or unmark an application as a favorite app, tap the Favorites icon in
the header of the Details view.

An installed application is automatically marked as a favorite app.

Submitting a review for an installed application
You can review an application version installed on your mobile device; the review
must include a rating and a comment.

About this task

You can only submit a review of a version of an application if that version is
installed on your mobile device.

Procedure
1. In the Details view, initiate your review:

v On Android and iOS phones, tap Review version X to navigate to the review
screen.

v On BlackBerry phones, slide to the Reviews pane and select Write Review.
v On Android and iOS tablets, tap Review version X to show the screen for

entering your review.
2. Enter a nonzero star rating:

v On mobile devices with touch screens, tap a star, from 1 to 5, to represent
your approval rating of the version of the application.

v On BlackBerry devices without touch screen, use the trackpad to slide and
select the number of stars.

One star represents the lowest level of appreciation and five stars represent the
highest level of appreciation.

3. Enter a comment about this version of the application.

920 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

4. Tap Submit to send your review to the Application Center.

Viewing reviews
You can view reviews of a specific version of an application or of all versions of an
application.

Purpose

To view reviews of application versions; reviews are displayed in descending order
from the most recent review. If the number of reviews fills more than one screen,
tap Load more to show more reviews. On Android, iOS, and Windows Phone
devices, the review details are visible in the list. On BlackBerry devices, select a
review to view the review details.

Viewing reviews of a specific version

The Details view always shows the details of a specific version. On a phone, the
reviews are for that version.

In the Details view of an application version:

On a Windows Phone, Android, or iOS phone
Tap View Reviews to navigate to the Reviews view.

On a BlackBerry phone
Slide to the Reviews pane.

On a tablet
Tap Reviews xx, where xx is the displayed version of the application.

Viewing reviews of all versions of an application

In the Details view of an application version:

On a Windows Phone, Android, or iOS phone
Tap View Reviews to navigate to the Reviews view. Then tap the settings

icon , tap All versions, and confirm the selection.

On a BlackBerry phone
Viewing reviews of all versions is only available when the details of the
latest version are displayed. This action is not available when the details of
another specific version are displayed. Slide to the Reviews pane, select
the settings icon, select All versions, and confirm the selection.

On a tablet
Tap All Reviews.

Advanced information for BlackBerry users
You have a choice of connection suffixes for manual connection between the
mobile client and BlackBerry.

Purpose

Sometimes you might have to set up the connection between the Application
Center mobile client and BlackBerry service manually. This information helps you
to set the correct connection.

Chapter 11. Administering IBM Worklight applications 921

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The mobile client connects to the Application Center Server through HTTP.
BlackBerry offers a wide range of HTTP connection modes that can be controlled
by a connection suffix. The Application Center mobile client tries to detect the
connection mode automatically. By default, the mobile client tries WiFi, then WAP
2.0, and then direct TCP over the mobile carrier (GPRS, 3G, and so on).

Note: BlackBerry OS 10 is not supported by the current version of the Application
Center.

Setup of a manual connection

In rare cases, it might be necessary to set up the connection suffix manually.

On the BlackBerry home screen:
1. Open Options.
2. Open Third Party Application.
3. Open IBM Application Center.

You can then specify the connection suffix and the connection timeout
parameter.

The table shows the possible connection suffixes. For corporate-owned devices, you
might need to contact your network administrator for the correct connection suffix.
Corporate-owned devices might disallow certain connection modes in the service
book of the device.

See http://supportforums.blackberry.com/t5/Java-Development/Network-
Transports/ta-p/482457 for more details.

Table 180. Details for manual connection

Connection suffix User type Conditions Connection path

interface=wifi All users WiFi must be
enabled. The
device service
book must allow
WiFi. The device
must be
connected to a
WiFi access point.

Device > Wifi
access point >
Internet > IBM
Application
Center Server

922 IBM Worklight V6.1.0

http://supportforums.blackberry.com/t5/Java-Development/Network-Transports/ta-p/482457
http://supportforums.blackberry.com/t5/Java-Development/Network-Transports/ta-p/482457

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 180. Details for manual connection (continued)

Connection suffix User type Conditions Connection path

deviceside=true All users The mobile carrier
must allow data
connections. The
device service
book must allow
direct TCP. The
mobile carrier's
APN must be set
up.

Device > Mobile
carrier > Internet
> IBM Application
Center Server

deviceside=true;apn=xyz Similar to
deviceside=true,
but uses the
specified APN.

deviceside=true;apn=xyz;TunnelAuthUsername=user;TunnelAuthPassword=passwordSimilar to
deviceside=true,
but uses the
specified APN
and user name
and password.

deviceside=true;ConnectionUID=xyzAll users The mobile carrier
must allow data
connections. The
device service
book must allow
WAP 2.0. The
WAP 2.0
connection details
for the UID must
be set up in the
service book.

Device > Mobile
carrier > WAP 2.0
Gateway >
Internet > IBM
Application
Center Server

deviceside=true;WapGatewayIP=127.0.0.1;WapGatewayPort:9201;
WapGatewayAPN=xyz

All users The mobile carrier
must allow data
connections. The
device service
book must allow
WAP 1.0/1.1.

Device > Mobile
carrier > WAP 1.0
/1.1 Gateway >
Internet > IBM
Application
Center Server

deviceside=false Corporate users Your corporate
entity must set up
a BlackBerry
Enterprise Server
(BES) for mobile
device services
(MDS). The MDS
connection UID
must be set up in
the service book.

Device > Wifi or
Mobile carrier >
Blackberry
Infrastructure
Network
Operation Center
(NOC) >
Corporate BES >
IBM Application
Center Server

deviceside=false;ConnectionUID=xyz Similar to
deviceside=false,
but uses the
specified UID.
This setting is
useful when your
corporate entity
has set up
multiple BES.

Chapter 11. Administering IBM Worklight applications 923

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 180. Details for manual connection (continued)

Connection suffix User type Conditions Connection path

A secret connection suffix. BlackBerry
Alliance members

You must be a
member of the
BlackBerry
Alliance. In this
case, you have
received your
own connection
suffix. Instead of a
corporate BES,
you connect to the
central Internet
Service Browsing
Server (BIS-B) of
BlackBerry.

Device > Wifi or
Mobile carrier >
Blackberry
Infrastructure
Network
Operation Center
(NOC) > BIS-B >
IBM Application
Center Server

EndToEndRequired All users SSL connections
only; use this
suffix in
combination with
the other
connection
suffixes.

Device > ... > IBM
Application
Center Server is
fully SSL
encrypted

EndToEndDesired All users SSL connections
only; use this
suffix in
combination with
the other
connection
suffixes.

Device > ... > (BES
or BIS-B does not
necessarily use
SSL) BES or BIS-B
> ... > IBM
Application
Center Server
uses SSL

Federal standards support in IBM Worklight
IBM Worklight supports Federal Desktop Core Configuration (FDCC), and United
States Government Configuration Baseline (USGCB) specifications. IBM Worklight
also supports the Federal Information Processing Standards (FIPS) 140-2, which is a
security standard that is used to accredit cryptographic modules.

For more information about the Federal Desktop Core Configuration and United
States Government Configuration Baseline, see FDCC and USGCB.

For more information about the Federal Information Processing Standards 140-2,
see FIPS 140-2 support.

FDCC and USGCB support
The United States federal government mandates that federal agency desktops that
run on Microsoft Windows platforms adopt Federal Desktop Core Configuration
(FDCC) or the newer United States Government Configuration Baseline (USGCB)
security settings.

IBM Worklight was tested by using the USGCB and FDCC security settings via a
self-certification process. Testing includes a reasonable level of testing to ensure
that installation and core features function on this configuration.

924 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

References

For more information about the Federal Desktop Core Configuration, see FDCC.

For more information about the United States Government Configuration Baseline,
see USGCB.

FIPS 140-2 support
Federal Information Processing Standards (FIPS) are standards and guidelines that
are issued by the United States National Institute of Standards and Technology
(NIST) for federal government computer systems. FIPS Publication 140-2 is a
security standard that is used to accredit cryptographic modules.

FIPS 140-2 on the Worklight Server, and SSL communications
with the Worklight server

The IBM Worklight server runs in an application server, such as the WebSphere
Application Server. The WebSphere Application Server can be configured to enforce
the use of FIPS 140-2 validated cryptographic modules for inbound and outbound
Secure Socket Layer (SSL) connections. The cryptographic modules are also used
for the cryptographic operations that are performed by the applications by using
the Java™ Cryptography Extension (JCE). Since the Worklight Server is an
application that runs on the application server, it uses the FIPS 140-2 validated
cryptographic modules for the inbound and outbound SSL connections.

When an IBM Worklight client transacts a Secure Socket Layer (SSL) connection to
a Worklight Server, which is running on an application server that is using the
FIPS 140-2 mode, the results are the successful use of the FIPS 140-2 approved
cipher suite. If the client platform does not support one of the FIPS 140-2 approved
cipher suites, the SSL transaction fails and the client is not able to establish an SSL
connection to the server. If successful, the client uses a FIPS 140-2 approved cipher
suite.

Note: The cryptographic module instances that are used on the client are not
necessarily FIPS 140-2 validated. For options to use FIPS 140-2 validated libraries
on client devices, see “FIPS 140-2 on the IBM Worklight client device for protection
of data at rest in JSONStore and data in motion when using HTTPS
communications.”
Specifically, the client and server are using the same cipher suite
(SSL_RSA_WITH_AES_128_CBC_SHA for example), but the client side
cryptographic module perhaps did not go through the FIPS 140-2 validation
process, whereas the server side is using FIPS 140-2 certified modules.

See “References” on page 927 for links to documentation to enable FIPS 140-2
mode in WebSphere Application Server.

FIPS 140-2 on the IBM Worklight client device for protection of
data at rest in JSONStore and data in motion when using HTTPS
communications

Protection of data at rest on the client device is provided by the JSONStore feature
of IBM Worklight. Protection of data in motion is provided by the use of HTTPS
communication between the Worklight client and the Worklight Server. By default,
these features use non-FIPS 140-2 validated libraries. But for iOS and Android
devices, there is an option to use FIPS 140-2 validated libraries for the protection

Chapter 11. Administering IBM Worklight applications 925

http://nvd.nist.gov/fdcc/index.cfm
http://usgcb.nist.gov/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

(encryption and decryption) of the local data that is stored by JSONStore and for
the HTTPS communication to the Worklight Server. This support is achieved by
using an OpenSSL library that achieved FIPS 140-2 validation (Certificate #1747).
To enable this option in a Worklight client project, select the FIPS 140-2 optional
feature in the Worklight Studio.

Note: There are some restrictions to be aware of:
v This FIPS 140-2 validated mode applies only to the protection (encryption) of

local data that is stored by the JSONStore feature and protection of HTTPS
communications between the Worklight client and the Worklight Server.

v It is only supported on the iOS and Android platforms.
v On Android, it is only supported on devices or simulators that use the x86 or

armv7 architectures. It is not supported on Android using armv5 or armv6
architectures. The reason is because the OpenSSL library used did not obtain
FIPS 140-2 validation for armv5 or armv6 on Android.

v On iOS, it is supported on i386, armv7, and armv7s architectures.
v It only works with hybrid applications (not native).
v For HTTPS communications, only the communications between the Worklight

client and the Worklight Server use the FIPS 140-2 libraries on the client. Direct
connections to other servers or services do not use the FIPS 140-2 libraries.

v The use of the analytics feature (Tealeaf) on the client is not supported with the
FIPS 140-2 feature.

v The use of the User Certificate Authentication feature is not supported with the
FIPS 140-2 feature.

v The Worklight Application Center client does not support the FIPS 140-2 feature.
v The use of the Direct Update feature is not supported by the FIPS 140-2 feature.

The FIPS 140-2 optional feature supersedes the changes that were described in the
module JSONStore - Encrypting sensitive data with FIPS 140-2 that was available for
previous versions of IBM Worklight under category 5, Advanced client side
development. If you previously made the changes that are described in this module,
you must delete and recreate your Android or iOS environments after first saving
any other environment-specific changes that you made.

Figure 175. Example

926 IBM Worklight V6.1.0

http://www.ibm.com/developerworks/mobile/worklight/previous-versions.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For more information about JSONStore, see “JSONStore overview” on page 567.

References

For information about how to enable FIPS 140-2 mode in the WebSphere
Application Server, see Federal Information Processing Standard support.

For the WebSphere Liberty Profile, there is no administrative console option to
enable FIPS 140-2 mode. But FIPS 140-2 can be enabled by configuring the Java
runtime environment to use the FIPS 140-2 validated modules. For more
information, see Java Secure Socket Extension (JSSE) IBMJSSE2 Provider Reference
Guide.

Enabling FIPS 140-2
To use the FIPS 140-2 feature in IBM Worklight V6.1.0, you must first enable the
optional feature.

About this task

To enable this option in a Worklight client project, select the FIPS 140-2 optional
feature in the Worklight Studio. After the optional feature is enabled, it must then
be configured as described in the What to do next section. After the FIPS 140-2
optional feature is enabled and configured, this feature applies both to HTTPS and
JSONStore data encryption.

Note: FIPS 140-2 is only supported on Android and iOS, and only for i386, armv7,
and armv7s architectures.

The FIPS 140-2 feature is an optional feature in IBM Worklight V6.1.0. To use the
FIPS 140-2 feature, you must enable it by modifying the application-
descriptor.xml file.

Chapter 11. Administering IBM Worklight applications 927

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.nd.multiplatform.doc/ae/rovr_fips.html
http://publib.boulder.ibm.com/infocenter/javasdk/v5r0/topic/com.ibm.java.security.component.doc.50/secguides/jsse2Docs/JSSE2RefGuide.html#enablefips
http://publib.boulder.ibm.com/infocenter/javasdk/v5r0/topic/com.ibm.java.security.component.doc.50/secguides/jsse2Docs/JSSE2RefGuide.html#enablefips

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Double-click the application-descriptor.xml file to open it in the Application

Descriptor Editor.
2. Click the Design tab.
3. Under Overview, expand Application [your application's name].
4. Click Optional Features.
5. Click Add.
6. Select FIPS 140-2.
7. Click OK.

What to do next

“Configure FIPS 140-2 mode for HTTPS and JSONStore encryption”

Configure FIPS 140-2 mode for HTTPS and JSONStore
encryption
Learn about settings to configure FIPS 140-2 for encrypting data for HTTPS and
JSONStore.

The following code snippet is populated into a new IBM Worklight application in
the initOptions.js file for configuring FIPS 140-2:
var wlInitOptions = {

...
// # Enable FIPS 140-2 for data-in-motion (network) and data-at-rest (JSONStore) on iOS or Android.

Figure 176. Installing the FIPS 140-2 optional feature

928 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

// Requires the FIPS 140-2 optional feature to be enabled also.
// enableFIPS : false
...

};

Notice the default value of enableFIPS is false. To enable FIPS 140-2 for both
HTTPS and JSONStore data encryption, uncomment and set the option to true.
After you set the value of enableFIPS to true, you should listen for the FIPS ready
JavaScript event.

The following example assumes that you are using jQuery 1.7 or later, or WLJQ
(jQuery that is included with IBM Worklight).
$(document).on(’WL/FIPS/READY’, function(evt, obj) {

//evt - Contains information about the event
//obj - JavaScript object sent after the attempt to enable FIPS completes
// if successfully enabled, object will be {enabled: true}
// if enablement failed, object will be {enabled: false, msg: "message
// indicating cause of the failure to enable"}

});

After you set the value of the enableFIPS property, create an Android, iPhone, or
iPad environment, and build those environments.

Note: You must enable the FIPS 140-2 optional feature before you set the
enableFIPS property to true. Otherwise, a warning message is logged that states
the initOption value is set but the optional feature was not found. The FIPS 140-2
and JSONStore features are both optional. FIPS 140-2 affects JSONStore data
encryption only if the JSONStore optional feature is also enabled. If JSONStore is
not enabled, then FIPS 140-2 does not affect JSONStore.
[WARN] FIPSHttp feature not found, but initOptions enables it on startup

For more information about installing the FIPS 140-2 optional feature, see
“Enabling FIPS 140-2” on page 927.

Configuring FIPS 140-2 for existing applications
You must modify applications that were created in earlier versions of IBM
Worklight to enable the FIPS 140-2 feature.

Before you begin

The FIPS 140-2 optional feature is not enabled by default. To enable the FIPS 140-2
optional feature, see “Enabling FIPS 140-2” on page 927. After the optional feature
is enabled, you can configure FIPS 140-2.

About this task

After you completed the steps that are described in “Enabling FIPS 140-2” on page
927, you must configure FIPS 140-2 by modifying the initOptions.js file to add
the FIPS configuration property.

Note: For JSONStore FIPS 140-2 users – Starting with IBM Worklight V6.1.0, the
FIPS 140-2 feature, combined with the JSONStore feature, enables FIPS 140-2
support for JSONStore. This combination supersedes what was detailed in the
module JSONStore - Encrypting sensitive data with FIPS 140-2 that was available for
previous versions of IBM Worklight under category 5, Advanced client side
development. If you previously modified an application by following the
instructions in this module, delete and re-create its iPhone, iPad, and Android

Chapter 11. Administering IBM Worklight applications 929

http://www.ibm.com/developerworks/mobile/worklight/previous-versions.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

environments. Because any environment-specific changes that you previously made
are lost when you delete an environment, make sure to back up any such changes
before you delete any environment. After the environment is re-created, you can
reapply those changes to the new environment.

Procedure
1. Add the following lines of code to the initOptions object found in the

[appFolder]/common/js/initOptions.js file.
enableFIPS : true

2. Rebuild and deploy your app.

Avoiding an archive build failure with the FIPS 140-2 optional
feature on iOS
You can avoid an archive build failure with the FIPS 140-2 optional feature on iOS
by changing the Xcode linker options.

About this task

When the FIPS 140-2 optional feature is included in a Worklight Studio project
with an iPhone or iPad environment, you must change the Xcode linker options
before you archive the product (for example, if you want to create an IPA file).

If you do not change the linker options, the archive build fails with an error that is
similar to the following text:
4196 duplicate symbols for architecture armv7
Linker command failed with exit code 1 (use -v to see
invocation)

To resolve the problem, change the linker options in Xcode by completing the
following steps:

Procedure
1. Select the Build Settings for your project.
2. Search for -all_load. You should find two occurrences under “Other Linker

Flags”: one is for Distribution and another one is for Release.
3. Double-click the Distribution value to open the editing window.

a. Click + on the lower left corner of the window and add the following
option:
-force_load $(BUILT_PRODUCTS_DIR)/libCordova.a

b. Click + on the lower left corner of the window and add the following
option:
-force_load $(SRCROOT)/WorklightSDK/libWorklightStaticLibProject.a

c. Click + on the lower left corner of the window and add the following
option:
-force_load $(SRCROOT)/FipsHttp/libfipshttp.a

d. Select the -all_load line and remove it by clicking - on the lower left corner
of the window.

e. Click outside of the editing window to save the changes and close this
window.

4. Repeat these steps for the Release value.

930 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Results

After you change the Xcode linker options, the archive build should succeed.

Chapter 11. Administering IBM Worklight applications 931

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

932 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 12. Monitoring and mobile operations

IBM Worklight includes a range of operational analytics and reporting mechanisms
for collecting, viewing, and analyzing data from your IBM Worklight applications
and servers, and for monitoring server health.

Logging and monitoring mechanisms
IBM Worklight reports errors, warnings, and informational messages into a log file.
The underlying logging mechanism varies by application server.

Worklight Server

Worklight Server uses the standard java.util.logging package. By default, all IBM
Worklight logging goes into the application server log files. You can control
Worklight Server logging by using the standard tools available in each application
server. If, for example, you want to activate trace logging in Liberty, add a trace
element to the server.xml file. To activate trace logging in WebSphere Application
Server, use the logging screen in the console and enable trace for IBM Worklight
logs. IBM Worklight logs all begin with "com.worklight".

For more information about the logging models of each server platform, including
the location of the log files, see the documentation for the relevant platform, as
shown in the following table.

Table 181. Documentation for different server platforms

Server platform Location of documentation

Apache Tomcat http://tomcat.apache.org/tomcat-7.0-doc/
logging.html#Using_java.util.logging_(default)

WebSphere Application
Server Version 7.0

http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/topic/
com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html

WebSphere Application
Server Version 8.0

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/
com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html

WebSphere Application
Server Version 8.5 Full
Profile

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/
com.ibm.websphere.nd.multiplatform.doc/ae/
ttrb_trcover.html

WebSphere Application
Server Version 8.5 Liberty
Profile

http://publib.boulder.ibm.com/infocenter/radhelp/v8r5/
topic/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/
rwlp_logging.html

Log level mappings

Worklight Server uses java util logging. The logging levels map to the following
levels:
v WL.Logger.debug: FINE
v WL.Logger.info: INFO
v WL.Logger.warn: WARNING
v WL.Logger.error: SEVERE

933

http://tomcat.apache.org/tomcat-7.0-doc/logging.html#Using_java.util.logging_(default)
http://tomcat.apache.org/tomcat-7.0-doc/logging.html#Using_java.util.logging_(default)
http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.base.doc/info/aes/ae/ttrb_trcover.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.nd.multiplatform.doc/ae/ttrb_trcover.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.nd.multiplatform.doc/ae/ttrb_trcover.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.nd.multiplatform.doc/ae/ttrb_trcover.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8r5/topic/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_logging.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8r5/topic/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_logging.html
http://publib.boulder.ibm.com/infocenter/radhelp/v8r5/topic/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_logging.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Log monitoring tools

For Apache Tomcat, you can use industry standard log file monitoring tools such
as Splunk to monitor logs and highlight errors and warnings.

For WebSphere Application Server, use the log viewing facilities that are described
in the information centers that are listed in the table in the Worklight Server
section.

Back-end connectivity

To enable trace to monitor back-end connectivity, see the documentation for your
specific application server platform in the table in the Worklight Server section.
The packages to be enabled for trace are com.worklight.adapters and
com.worklight.integration. Set the log level to FINEST for each package.

Audit logs

To write log information for auditing adapter calls, activate the audit logs by
setting audit="true" in your adapter.xml file in the procedure definition.

Login and authentication issues

To diagnose login and authentication issues, enable the package
com.worklight.auth for trace and set the log level to FINEST.

Vitality queries for checking server health
Use IBM Worklight vitality queries to run a health check of your server, and
determine the vitality status of your server.

You generally use the IBM Worklight vitality queries from a load balancer or from
a monitoring app (for example, Patrol).

You can run vitality queries for the server as a whole, for a specific adapter, for a
specific app, or for a combination of. The following table shows some examples of
vitality queries.

Table 182. Examples of queries that help determine server vitality

Query Purpose

http://<server>:<port>/
<publicWorkLightContext>/ws/rest/
vitality

Checks the server as a whole.

http://<server>:<port>/
<publicWorkLightContext>/ws/rest/
vitality?app=MyApp

Checks the server and the MyApp application.

http://<server>:<port>/
<publicWorkLightContext>/ws/rest/
vitality?app=MyApp&adapter=MyAdapter

Checks the server, the MyApp application, and
the MyAdapter adapter.

Note: Do not include the /<publicWorkLightContext> part of the URL if you use
IBM Worklight Developer Edition. You must add this part of the URL only if
Worklight Server is running on another application server, such as Apache Tomcat
or WebSphere Application Server (full profile or Liberty profile).

934 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Vitality queries return an XML content that contains a series of <ALERT> tags, one
for each test.

Example query and response

By running the http://<server>:<port>/ws/rest/vitality?app=MyApp query, you
might have the following successful response, with an <ALERT> tag for each of the
two tests:
<ROOT>

<ALERT>
<DATE> 2011-05-17T15:31:35.583+0300 </DATE>
<EVENTID>0</EVENTID>
<SUBJECT>SRV</SUBJECT>
<TYPE>I</TYPE>
<COMPUTER>worklight.acme.com</COMPUTER>
<DESCRIPTION>Server is running</DESCRIPTION>

</ALERT>
<ALERT>

<DATE> 2011-05-17T15:31:35.640+0300 </DATE>
<EVENTID>0</EVENTID>
<SUBJECT>APPL</SUBJECT>
<TYPE>I</TYPE>
<COMPUTER>worklight.acme.com</COMPUTER>
<DESCRIPTION>Application 'MyApp’ is deployed</DESCRIPTION>

</ALERT>
</ROOT>

Return values

The following table lists the attributes that might be returned, and their possible
values.

Table 183. Return values and values

Return attribute Possible values

DATE Date value in JavaScript™ format

EVENTID 0 for the running server, deployed adapter,
or deployed application

1 for not deployed adapter

2 for not deployed application

3 for malfunctioning server

SUBJECT SRV for Worklight Server

ADPT for adapter

APPL for application

TYPE I – valid

E – error

COMPUTER Reporting computer name

DESCRIPTION Status description in plain text

The returning XML contains more attributes, which are undocumented constants
that you must not use.

Chapter 12. Monitoring and mobile operations 935

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Configuring logging in the development server
Information about the default logging settings for the embedded development, and
procedures for changing them.

When you are trying to diagnose problems in the Worklight Studio embedded test
server (for example, when debugging a custom login module), it is important to be
able to see log messages. The default settings for server logging are described in
this section, along with the procedures for changing them if you must see finer
levels of messages.

In previous releases of Worklight Studio, the embedded Jetty test server did not
allow viewing the server logs. Since Worklight Studio V6.0.0, the test server is
replaced with an instance of the WebSphere Application Server Liberty Profile
server, and is now referred to as the Worklight Development Server.

Logging levels for the Worklight Studio plugin and builder can be configured with
a new file named logging.properties. This file is in the .metadata folder of your
Eclipse workspace.

For example, if your Worklight Studio workspace is /usr/workspace (on UNIX) or
C:\workspace (on Windows), the corresponding logging configuration file is
/usr/workspace/.metadata/logging.properties or C:\workspace\.metadata\
logging.properties.

This file contains the following default settings:
handlers = java.util.logging.FileHandler
.level = WARNING
com.worklight.level = INFO

Changing the Worklight Console logging levels

To change the logging level for all packages in this instance of Eclipse, edit the
.level = line. To change the logging level only for Worklight Studio, edit the
com.worklight.level = line.

The available setting levels for com.worklight.level = are:
v SEVERE (highest value)
v WARNING

v INFO

v CONFIG

v FINE

v FINER

v FINEST (lowest value)

In addition, there is an ALL level that specifies logging of all messages, and an OFF
level that turns off logging.

If you edit the logging.properties file to change the logging level, you must
restart Worklight Studio before the change takes effect.

Whatever the logging level, the messages are displayed in Worklight Studio in its
console view with the name Worklight Console, as shown in the following screen
capture:

936 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.Changing the Worklight Console Server console logging levels

Changing the logging properties for individual application server types is done
with those servers' administration tools.

To provide two examples for WebSphere Application Server Liberty Profile, the
server.xml file can be modified by appending the new logging element:
v To enable the INFO logging level for the server console, the following line is

added to the server.xml file:
<logging consoleLogLevel="INFO"/>

v To enable trace log files, the following line is added to the server.xml file:
<logging traceSpecification="*=audit=enabled:com.worklight.*=info=enabled" />

The available setting levels for consoleLogLevel are:
v INFO

v AUDIT

v WARNING

v ERROR

v OFF

Please note that this parameter does not support DEBUG level logging.

No server restart is necessary after you modify these settings.

Whatever the logging level, the messages are displayed in Worklight Studio in its
console view with the name Worklight Development Server, as shown in the
following screen capture:

This console view allows you to see messages from the Worklight Development
Server, but with some known limitations:
v Localized log messages are shown incorrectly. For more information about this

issue, see Liberty profile: Trace and logging.
v Setting the value of consoleLogLevel to WARNING, ERROR, or OFF causes the server

not to start from Worklight Studio using the Eclipse serversview.

Chapter 12. Monitoring and mobile operations 937

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.wlp.nd.multiplatform.doc%2Fae%2Frwlp_logging.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Trace log messages are not displayed in Worklight Studio, and are written to the
trace.log file only. This logging trace is optional and supports fine-tuning such as
packaging and more precise reporting levels, and is mainly used for debugging.

The trace*.log file is found under your Eclipse workspace in the folder
WorklightServerConfig\servers\worklight\logs\.

For example, if your Worklight Studio workspace is /usr/workspace (on UNIX) or
C:\workspace (on Windows), the log files are created under /usr/workspace/
WorklightServerConfig/servers/worklight/logs/ or C:\workspace\
WorklightServerConfig\servers\worklight\logs\.

The available setting levels for <logging
traceSpecification="*=audit=enabled:com.worklight.*=info=enabled" /> are:
v Off - No events are logged.
v Fatal - Task cannot continue and component cannot function.
v Severe - Task cannot continue, but component can still function.
v Warning - Potential error or impending error.
v Audit - Significant event affecting server state or resources.
v Info - General information outlining overall task progress.
v Config - Configuration change or status.
v Detail - General information detailing subtask progress.
v Fine - Trace information - General trace.
v Finer - Trace information - Detailed trace + method entry / exit / return values.
v Finest - Trace information - A more detailed trace - Includes all the detail that is

needed to debug problems.
v All - All events are logged. If you create custom levels, All includes your

custom levels, and can provide a more detailed trace than Finest.

For more information about WebSphere Application Server Liberty Profile logging
configuration, see Liberty profile: Trace and logging.

Analytics
The operational analytics feature enables searching across apps, services, devices,
and other sources to collect data about usage or detect problems.

In addition to reports summarizing app activity, IBM Worklight includes a scalable
operational analytics feature that is accessible in the IBM Worklight Console. The
analytics feature enables enterprises to search across logs and events that are
collected from devices, apps, and servers for patterns, problems, and platform
usage statistics. To understand the similarities and differences between the existing
reports feature and the new operational analytics feature, see “Comparison of
operational analytics and reports features” on page 939.

The data for operational analytics includes the following sources:
v Crash events of an app on iOS and Android devices.
v Interactions of any app-to-server activity (anything that is supported by the IBM

Worklight client/server protocol including push notification).
v Server-side logs that are captured in traditional IBM Worklight log files.

938 IBM Worklight V6.1.0

http://publib.boulder.ibm.com/infocenter/radhelp/v8r5/index.jsp?topic=%2Fcom.ibm.websphere.wlp.nd.multiplatform.doc%2Fae%2Frwlp_logging.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The operational analytics feature is accessible from the IBM Worklight Console and
includes these capabilities:

Interactive web-based usage.

Dashboard view
An Analytics Dashboard view with all the same reports as
available in the previous version of IBM Worklight with BIRT, with
enhanced features. These features include interaction support to see
the full device usage across the platform for the last 30, 60 or 90
days, and drill down to specific apps and app versions.

Search view
The ability to search on free text occurrences across logs for key
words and the ability to contextually narrow or expand the search
result.

Server Logs view
A scrolling view of the server-side log information in a table form
with ability to filter the view by keywords.

Geo Analytics view
An aggregate representation of activity by location (latitude and
longitude) on a world map, which can be zoomed or panned.

Near-real time reporting across the various views.
The data that is collected from the server or client can be searched for in
near-real time. During the search, IBM SmartCloud Analytics Embedded
processes the data and displays the results on the console.

In addition to an at-a-glance view of your mobile and web application analytics,
the analytics feature includes the capability to perform raw search against server
logs, client activities, captured client crash data, and any additional data you
explicitly provide through client and server side API function calls that feed into
IBM SmartCloud Analytics Embedded.
Related tasks:
Installing and configuring IBM SmartCloud Analytics Embedded
To run the analytics features, you must install IBM SmartCloud Analytics
Embedded.

Comparison of operational analytics and reports features
Compare the reports and operational analytics features to know why and how to
best use each.

With the introduction of the IBM Worklight operational analytics feature, you can
continue using the reports feature, use it along with the analytics feature, or just
use the analytics feature. A comparison of the capabilities of these two features can
help clarify the strengths of each, and help determine how you can best use them.

The data that is collected by the “Reports database” on page 967 feature is a subset
of the total data that is collected as part of the Operational “Analytics” on page
938 feature. You can use the reports database and the operational analytics feature
simultaneously, but usage of both in a production environment is redundant. Use
the reports feature in cases where you want direct access to the Reports database
to run custom queries. An example of a scenario where direct database access is
needed is the use of BIRT or a customized online analytics processing (OLAP)
system that runs database queries directly against the Reports database.

Chapter 12. Monitoring and mobile operations 939

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 184. Comparison of analytics and reports features

Operational analytics
feature Reports feature

Primary usage Problem determination,
device usage summary,
geographic view of mobile
activity

Device usage summary

Typical user Administrator, operational
support personnel,
developer, analyst

Administrator, analyst

Data used in analytics App crash from clients,
Worklight server log,
Worklight app to server
interaction activities

Worklight app to server
interaction activities

Data storage mechanism Files on IBM SmartCloud
Analytics Embedded

Relational database

Analytics mechanism Each log event is treated as a
JSON document. The data in
the document is indexed so
that it can be searched by
keyword in the document
and presented in a canonical
form that shows the app,
version, some device data,
location (if enabled),
timestamp, adapter (if
present in the document) and
other data.

Each log event is treated as a
row in the raw Reports
database table and then
aggregated for statistics into
the app_activities database
table, summarized to app,
device operating system, and
timestamp relationships.

Access mechanism Worklight Console BIRT or other reporting tools
that can understand data
cubes

Extendable Extending the published
reports is not supported.

Data can be extracted from
the database tables by using
any means that you desire,
including but not limited to,
BIRT.

Search across logs Yes No

Optional Yes Yes

In addition to an at-a-glance view of your mobile and web application analytics,
the operational analytics includes the capability to perform raw search against
server logs, client activities, captured client crash data. The operational analytics
feature can also search any additional data that you explicitly provide through
client and server-side API function calls that feed into IBM SmartCloud Analytics
Embedded.

IBM Worklight analytics components
IBM SmartCloud Analytics Embedded and several libraries make up the
components of the IBM Worklight operational analytics feature.

940 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

IBM Worklight includes IBM SmartCloud Analytics Embedded, which is the engine
that drives the IBM Worklight scalable operational analytics feature. This
component is designed for challenges that are introduced by the big data of the
mobile environment:

Volume
Mobile transactions continue to grow as more traffic comes from mobile
channel.

Velocity
Mobile interactions arrive quickly from different areas, depending on user
mobility patterns.

Veracity
With increased volume, there is an increase in noise.

Variety
With increasing variation in mobile usage patterns, apps, physical device
sizes, operating systems, and networks, collected data is increasingly
varied as well.

IBM Worklight also includes IBM Tealeaf CX Mobile libraries for iOS and Android
devices, and the JavaScript library for mobile web. These libraries are part of the
client run time on these platforms and support in client-side collection of analytics
data.

The diagram illustrates the high-level topology of the operational analytics feature
components. The existing databases and the BIRT reports feature are also shown
for context.

Chapter 12. Monitoring and mobile operations 941

http://www.ibm.com/software/data/bigdata/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: Enabling reports, using BIRT to query the reports database, and enabling
IBM SmartCloud Analytics Embedded are each optional.

IBM SmartCloud Analytics Embedded
IBM SmartCloud Analytics Embedded provides a real-time, extensible platform for
sensing, collecting, storing, indexing, analyzing, searching, and visualizing IT and
Business Data. IBM SmartCloud Analytics Embedded is built for handling large
volumes of data, which can dynamically grow in scenarios like mobile traffic. IBM
Worklight production environments for the enterprise typically deals with these
types of scenarios.

Note: IBM SmartCloud Analytics Embedded is also referred to as the IBM
WebSphere Analytics Platform.

Figure 177. High-level overview of reporting and analytics infrastructure.

942 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

IBM SmartCloud Analytics Embedded is customized to intake data that is
generated by the IBM Worklight Servers and devices to provide specific mobile
operational insights. The following figure shows a high-level architecture of IBM
SmartCloud Analytics Embedded:

At the core, IBM SmartCloud Analytics Embedded enables sensing and collection
of IBM Worklight Server-specific data along with device session data by using IBM
Tealeaf libraries. This data is indexed into a set of search nodes, which form the
search cluster. Search cluster is elastically scalable in a way to address massively
increasing amounts of mobile data that is handled by IBM Worklight.

Analytics Content is a custom designed module (also referred to as a plug-in) that
understands the structure of the data that is collected from the Worklight Server
and mobile devices to provide dashboards and user interfaces for the platform.
IBM SmartCloud Analytics Embedded is built on Representational State Transfer
(REST) APIs for individual functions like indexing, searching, visualization, and
dash-boarding.

From a physical deployment standpoint, IBM SmartCloud Analytics Embedded
consists of two types of nodes: Search Engine Nodes & Processing Console Nodes.

Search Engine Nodes
A search-engine node runs a search process usually running in its own
physical computer. The search node can store, index, and search by using
free formed text and term search, including real-time facets of different
fields that are used to represent the Worklight Server and device data.

Chapter 12. Monitoring and mobile operations 943

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Processing Console Node
A processing console node is an HTTP Server node that provides the UI
and API access to Worklight Analytics Content to users. This server is
shown to users and is responsible for providing the analytics dashboard
and APIs through the web browser.

IBM SmartCloud Analytics Embedded topologies:

IBM SmartCloud Analytics Embedded provides a scalable solution for real time
mobile analytics. You can learn how the search and console nodes of the platform
can be configured for highly scalable architecture.

Stand-alone analytics topology

IBM SmartCloud Analytics Embedded is made of primarily two types of nodes.
While they are self-contained independent nodes in terms of functionality, the
search and the processing console can be run in a stand-alone single server setup.
The following image shows a stand-alone server topology:

Both the processing console node and search node are installed and configured in a
single server. The search cluster has a single node and stores all the data on the
disk that is associated within this server.

This type of configuration is typically suitable for proof of concepts or quickly
bringing up a test analytics server for viability assessment and debugging.

Scalable stand-alone analytics topology

In this type of deployment, both the processing console node and the search node
are installed in a single server as a stand-alone configuration. Adding more than
one stand-alone server, with both console and search nodes on a single server, can
form a scalable stand-alone analytics topology.

944 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

An HTTP load balancer in the front of this topology ensures that a higher number
of concurrent uses is supported equally across the two stand-alone servers. The
following image shows a scalable stand-alone analytics topology:

If one of the console node processes fails, IBM SmartCloud Analytics Embedded is
still functional for end users.

If one of the search node processes fails, the secondary search node becomes the
primary node. The data is recovered on the secondary server from the replicas that
are maintained in the secondary node.

The drawback with this type of deployment is that the console node that is
associated with a failed search node becomes non-functional and might throw
exceptions. The advantage to this type of deployment is that the computing power
of the single server is shared between the processing console node and the search
node.

To achieve higher performance with high availability and a highly scalable
deployment, choose the highly available analytics topology.

Search optimized analytics topology

In this type of deployment, search cluster is distributed in a way that each search
node runs in a separate physical server. This deployment model provides high
availability and failover to the data stored by the search cluster. Data is stored in a
logical container that is called index, which is replicated and stored across different
search nodes that participate in the search cluster. The following image shows a
search optimized topology:

Chapter 12. Monitoring and mobile operations 945

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The search cluster is distributed into two separate nodes that consist of individual
disk mounts: disk 1 and disk 2. They are in a clustered mode, so one is selected as
a primary search node and the other is selected as a secondary search node.

If a search node process goes down, the secondary node comes up as a primary
node. The data is recovered on the secondary server from the replicas that are
maintained in the secondary node.

The total available space for storing Worklight Server and device data is the sum
of the space available on disk 1 and disk 2. The disks and their performance play a
key role in search cluster’s overall performance. These disks can be mounted
folders from SAN Storage or individual Solid State Drives (SSDs).

Note: Network-attached storage (NAS) is not supported for these disks.

This topology still has a single point of failure when it comes to supporting users
that access the processing console.

Highly available analytics topology

In this topology, both processing console and search nodes are on individual
physical servers. Every server component has a back-up and recovery mechanism
in the event of an unexpected failure. The following image shows a highly
available topology:

946 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

An HTTP load balancer in the front makes sure that more number of concurrent
users are supported equally across the two processing console nodes.

The search clients in the processing nodes are part of the search cluster. The
routing of search requests to the search nodes is automatically handled by the
search cluster.

If one of the search nodes or one of the console nodes fails, IBM SmartCloud
Analytics Embedded is still functional for users. This setup is an optimized search
cluster setup and is best for production environments.

IBM SmartCloud Analytics Embedded scalability:

The individual nodes that participate in processing console or search server are
elastically scalable. More nodes can be added to scale up the performance of the
analytics component. For enhanced storage and search performance, new search
nodes are added. For increased number of concurrent users, processing console
nodes can be added.

Adding search nodes for enhanced search performance and storage

A search cluster consists of one or more search nodes and works in primary,
secondary modes to give a complete balanced and distributed search cluster.

The primary search node is also referred to as master search node. The first node
to come up in a cluster is the primary or master search node. That node is
responsible for distributing search and indexing tasks for the participating
secondary nodes in the search cluster. The following image shows how to add new
search nodes:

Chapter 12. Monitoring and mobile operations 947

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The new search node must be in the same subnet as the primary or master node
for it be automatically added to the search cluster. No other manual configurations
are necessary.

When a new search node is added, part of the data is transferred to the new node.
The disk space that is associated with this node also becomes available for the total
space available for storing the Worklight Server and device data.

This type of scaling allows search clusters to be elastically scaled to tune the
requirements of growing mobile analytics data. To manage the overall size of the
search cluster’s storage, see “IBM SmartCloud Analytics Embedded data
accumulation management” on page 949.

Adding processing console nodes for increased concurrent users

A console node can communicate seamlessly with the search node or cluster and is
stateless in nature. It becomes easier to have multiple console nodes handle
incoming user requests through the web browser for viewing the Worklight
Analytics dashboard. The following image shows how to add new processing
console nodes:

948 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

A new processing console node needs configuration updates to the load balancer in
front so it can route HTTP(S) traffic from users to the new HTTP node.

If a search node process goes down, the secondary node comes up as a primary
node. The data is recovered on the secondary server from the replicas that are
maintained in the secondary node.

IBM SmartCloud Analytics Embedded data accumulation management:

The amount of data that is accumulated by IBM SmartCloud Analytics Embedded
depends on a number of factors.

These factors include but are not limited to:
v The log level that is configured on the server
v Whether client applications are calling the WL.Analytics.log function and with

what frequency
v Whether client applications are calling the WL.Client.logActivity function and

with what frequency
v How the client application is used (such as how often it is brought into the

foreground and how long it remains in the foreground)
v Whether the Worklight Location Services feature is enabled and how it is

configured
v The number of clients
v If client applications are failing, and how frequently
v Whether server adapters are calling the WL.Server.logActivity function and

with what frequency

Chapter 12. Monitoring and mobile operations 949

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For example, consider a client application that was created with no additional
customizations or features enabled. The usage pattern is that the application is
used five times a day, and stays in the foreground for 3 minutes each time it is
used. For this scenario, IBM SmartCloud Analytics Embedded accumulates
approximately 35 KB of data per day.

If the previous example application additionally makes 10 calls to the
WL.Analytics.log function each time it enters the foreground, IBM SmartCloud
Analytics Embedded accumulates approximately 91 KB of data per day.

The search index is configured for 300 GB by default. This value is configurable by
using the updateTenant.py script as follows:
<INSTALL_LOCATION>/searchengine/python updateTenant.py -t worklight -v <desired size in GB>

The search engine fails to respond if the disk is full on the server that is hosting
IBM SmartCloud Analytics Embedded. The data in the search index can be pruned
by using the pruneData.py script. The script cuts down the older data when the
search index exceeds the defined volume.

The pruneData.py script can be run by administrators periodically by using the
following command:
python pruneData.py

For example, if your current disk usage is around 350 GB, then by running the
pruneData.py utility, the oldest data is deleted to bring down the disk space to
~275 GB.

The command to run the pruneData.py script can also be scheduled to run
periodically. Create a shell script that starts the command and schedule the script
to run at a specific interval. You can use crontab or other similar time-based
service feature.

In addition to pruning the data in the search index that is accumulated, it is also
important to check the size of log files. Ensure that the console logs and the search
engine logs are regularly monitored and cleaned up to avoid failures due to
insufficient disk space. The console logs can be found in <INSTALL_LOCATION>/
HTTPServer/logs. The search engine logs can be found in the location that you
chose during installation.

Enabling analytics
To use the Analytics feature since IBM Worklight V6.1.0, you must take steps to
enable it.

Before you begin

Ensure that you configured your server for analytics as explained in “Configuring
Worklight Server for analytics” on page 215.

About this task

The Analytics feature is an optional feature since IBM Worklight V6.1.0. To use the
Analytics feature, you must enable it by modifying the application-
descriptor.xml file.

950 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Using the Application Descriptor Editor, open the file application-

descriptor.xml

2. Click the Design tab.
3. Under Overview, expand Application [your application's name].
4. Click Optional Features.
5. Click Add.
6. Select Analytics.
7. Click Ok.
8. Under Worklight Project, right-click the folder titled with your application

name.
9. Select Run As....

10. Click Run on Worklight Development Server.

Results

You have modified the application-descriptor.xml file to enable the Analytics
feature.

Figure 178. Enabling analytics

Chapter 12. Monitoring and mobile operations 951

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

What to do next

For more information on sending client application analytic data to the
IBMWorklight Server, see “Enabling analytic data for new applications.” If you
need to enable analytics for existing applications, see “Enabling analytic data for
existing applications.”
Related concepts:
“Troubleshooting analytics” on page 966
Find solutions to problems with IBM Worklight analytics features.

Enabling analytic data for new applications
You must modify your application to send client application analytic data to the
IBM Worklight Server.

Note: Ensure that you enabled the Analytics feature as explained in “Enabling
analytics” on page 950.

By default, the following code snippet is populated into a new IBM Worklight
application in the initOptions.js file:
var wlInitOptions = {

//Other key/value pairs not related to Analytics
analytics : {enabled: false}

};

Notice that the default value of analytics.enabled is false. To enable sending
captured application crash data, and analytic data that is recorded by the
WL.Analytics.log function call, you must either set the option to true or call the
WL.Analytics.enable function.

In IBM Worklight, client application crashes are recorded and analytic data are sent
to the IBM Worklight Server when the client analytic feature is enabled. If the IBM
Worklight Server is properly configured, this application crash data is then
forwarded to IBM SmartCloud Analytics Embedded. No additional client-side
application code, or any client application configuration, is necessary to enable the
client-side crash capture.

Captured crash data is stored persistently at the time of the crash and sent to the
server at the next application start after successful connection to the IBM Worklight
Server.

Note: No data is sent to the IBM Worklight Server until the application is
connected to the server. You can set connectOnStartup : true in the wlInitOptions
object in the [appFolder]/common/js/initOptions.js file, or successfully call an
adapter in the IBM Worklight Server.

The full WL.Analytics API is described in WL.Analytics.

Enabling analytic data for existing applications
You must modify applications that were created in earlier versions of IBM
Worklight to send client application analytic data to the IBM Worklight Server.

Note: Ensure that you enabled the Analytics feature as explained in “Enabling
analytics” on page 950.

Applications that you migrate from IBM Worklight V5.0.6 or earlier get most
updated features automatically when the IBM Worklight V6.0.0 upgrader updates

952 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Analytics.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

the applications. To enable analytics however, you must add the following lines of
code manually to the wlInitOptions object found in the [appFolder]/common/js/
initOptions.js file:
analytics : {

enabled: true
//url : //

}

Uncomment the url property and provide your server URL information if you
send data to a server other than the Worklight Server.

You must update the JNDI configuration for your WAR file to set the other required
properties, as explained in “Configuring Worklight Server for analytics” on page
215.

Note: Applications that use the IBM Worklight V5.0.6 or earlier that contained
Tealeaf client libraries must be manually upgraded into a new IBM Worklight
V6.0.0 project. For more information about how to migrate applications, see
Migration of projects using Tealeaf libraries.

Analytics event types
Event types for logged events are recorded and included in search results and
reports.

Analytics data is collected in several different contexts in an IBM Worklight
client/server infrastructure.

App Activity
All IBM Worklight client/server network communication activity.

Notification Activity:
Any push notification that is triggered from the backend.

Server Log:
From the IBM Worklight server, indicating server activity and log
messages.

Client Session:
Client side application crashes and any custom analytics log events.

Event types are recorded as part of the log event context, then used in analysis for
reporting. When you search for key terms in the Search View under the Analytics
tab of IBM Worklight Console for example, event types are included in the search
results.

Analytics tab in the Worklight Console
The Analytics tab in the Worklight Console is the user interface from which you
can search for analytics data and see results from your IBM Worklight system.

The Analytics tab provides a range of analytics features contained in various
views, each accessible from a tab. In addition to seeing a summary of your mobile
and web application analytics, you can perform raw searches on the following
sources:
v Server logs
v Client activities
v Captured client crash data

Chapter 12. Monitoring and mobile operations 953

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Any additional data that you explicitly provide through client and server-side
API function calls that feed into the IBM WebSphere Analytics Platform.

Dashboard view:

The Analytics Dashboard view presents a range of measures about the IBM
Worklight system.

The Analytics Dashboard displays the following charts:
v Daily Hits
v Daily Visits
v Active Users
v Environment Usage
v Notifications Per Day
v Notifications Per Source
v New Users

To read a description for each chart, click the icon in the Dashboard view next to
the name of the chart.

954 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Search view:

The Search view in the Analytics page enables you to search for logged events
from Worklight server.

The IBM Worklight Analytics page Search view also provides more information
about the search term:

Pie graph breakdown
The top search results broken down by source and event type.

Top common terms
The top 5 most common terms found among the search hits. These terms
can be used to find relationships and correlations among search results.

Timeline of Search HIts
A bar chart displaying the search result hits per day.

Figure 179. The Dashboard view is in the Analytics tab of the IBM Worklight Console

Chapter 12. Monitoring and mobile operations 955

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

When you click a search result, the page displays detailed information about the
individual hit.

Figure 180. Search results

956 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

You can also run a contextual search on a search hit, to run a new search that will
return events that occurred in the same time frame as the original search result.
The time frame can be selected by using the button group next to the contextual
search button.

Figure 181. Search results details

Chapter 12. Monitoring and mobile operations 957

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Contextual search is a powerful feature that can help to diagnose problems on an
application, or a server issue. There are two common patterns that are supported
in the current implementation of this Analytics feature, basic contextual search and
a more advanced search, drilling down to details in the search results.

For a basic contextual search, terms you enter in the search box return matches
from the log events that are collected by IBM SmartCloud Analytics Embedded.
Basic contextual search is useful to get an overview, to determine whether a term
or set of terms appears in any of the log events captured. This pattern can be
visualized as follows:

Figure 182. Contextual search with the original search hit highlighted

958 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

After a basic search you can select a log event, view the details, and run refined
contextual searches centered on that log entry. Available search refinements include
adding a time dimension for example, specifying a number of minutes
surrounding the log event to find what other log events occurred in that time
frame. You can also limit the context to either an event source (client, server, or
backend) or an event type. This pattern is illustrated in the following diagram.

Figure 183. Contextual branching search

Chapter 12. Monitoring and mobile operations 959

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Server Logs view:

Worklight Server logs are visible in the Sever Logs view of the Analytics page in
real time.

By default, Worklight Server forwards all server logs to the Analytics page Sever
Logs view, and the logs can be viewed in real time. You can adjust the rate at
which Worklight Server logs are retrieved and displayed. You can also filter the
logs by keyword or by severity.

Figure 184. Context search drill-down

960 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Geolocation view:

To view geospatial and WiFi information in your client data to be analyzed, you
must configure clients to include it.

You can use the IBM Worklight “Location services API” on page 696 to gather
geospatial and WiFi information from the analytics data collected. You can then
view the results in the IBM Worklight Console Analytics page, in the Geolocation
view. Geospatial information can include:
v Latitude
v Longitude
v Speed
v Direction

WiFi information can include:
v Available hotspots
v SSID

Set up the required permissions, as indicated in “Location services permissions” on
page 661, to enable the automatic appending of geospatial and WiFi data to
analytics events. When the location services feature is enabled, geospatial and WiFi
data is recorded in the app activity and client session analytics events
automatically. A map displays the latitude and longitude for each client that
records analytics data.

Figure 185. The Server Logs view.

Chapter 12. Monitoring and mobile operations 961

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Analytics data flow
Understanding the analytics data flow can help you adjust how much data is
buffered or discarded.

Worklight Server can pass large amounts of data to IBM SmartCloud Analytics
Embedded. The amount of data collected depends on:
v The number of Worklight Server cluster members.
v The number of clients.
v How frequently clients communicate with the server, which depends on these

factors:
– The connectOnStartup: true setting.
– The Location Services feature configuration.
– The frequency of adapter calls.

v The usage of the client-side APIs to record more custom analytics data.
v The usage of the server-side API to record more activities.

Figure 186. Geospatial information is displayed for clients that are configured to include it

962 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

IBM Worklight application clients send collected analytic data to Worklight Server.
Depending on the origin of the data, it can be buffered on the clients prior to
sending to best preserve battery life and network usage. Worklight Server forwards
data to IBM SmartCloud Analytics Embedded by using HTTP POST. If this
connection experiences socket timeouts or other failure, the data is discarded.

In a production environment, the Worklight Server queues analytics data before it
sends the data to IBM SmartCloud Analytics Embedded. This behavior means that
there might be a delay before the analytics data that is sent by the Worklight Client
is visible on IBM SmartCloud Analytics Embedded. In the Worklight Studio
development environment when you use the Worklight Development Server, the
analytics data is not queued by default. Because of this difference, the same type of
delay before the analytics data is visible on IBM SmartCloud Analytics Embedded
no longer exists.

When the server is unusually busy, Worklight Server buffers data that is
designated for IBM SmartCloud Analytics Embedded. You can tune IBM Worklight
to adjust this data loss, taking advantage of the memory capacity of Worklight
Sever and speed of the network connection from Worklight Server to IBM
SmartCloud Analytics Embedded. For more information see “Worklight Server
throughput tuning” on page 964.

Figure 187. Architectural overview of analytic data throughput.

Chapter 12. Monitoring and mobile operations 963

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Managing data throughput and accumulation
You can make configuration changes to adjust how data accumulates in IBM
SmartCloud Analytics Embedded (operational analytics) server.

The amount of data that is accumulated by the operational analytics server
depends on a number of factors such as:
v The log level that is configured on the server.
v How frequently client applications connect to Worklight Server
v How frequently client applications are calling the WL.Analytics.log function.
v How frequently client applications are calling the WL.Client.logActivity

function.
v How the client application is used, for example how often it is brought into the

foreground and how long it remains there.
v Whether the IBM Worklight Location Services feature is enabled, and how it is

configured.
v The number of clients.
v Whether clients crash and how frequently they do so.
v How frequently server adapters are calling the WL.Server.logActivity function.

For example, consider a client application with the following characteristics:
v Has no additional customization or features enabled.
v Is used five times a day.
v Stays in the foreground for three minutes each time it is used.

In this scenario, the operational analytics server accumulates approximately 35 KB
of data per day that is related to this application. If in addition, the application
makes 10 calls to the WL.Analytics.log function each time it enters the foreground,
the operational analytics server accumulates approximately 91 KB of data per day.

The search index is configured for 300 GB by default. This size is configurable by
using the updateTenant.py script, as follows:
<INSTALL_LOCATION>/searchengine/python updateTenant.py -t worklight -p <password for tenant> -v <desired size in GB>

The search engine fails to respond if the disk on the server that is hosting the
operational analytics server is full. You can prune the data in the search index by
using thepruneData.py script, which deletes older data when the search index
exceeds the defined volume (300 GB by default, or the size that you specified by
using updateTenant.py). You can run the pruneData.py script periodically by using
the following command:
python <INSTALL_LOCATION>/searchengine/pruneData.py

You can also schedule the pruneData.py to run periodically by using crontab or
other similar time-based service features, by creating a shell script that starts the
command and schedules the script to run at a specified time.

Worklight Server throughput tuning:

You can tune the amount of data that is held or deleted from queues to balance the
risk of data loss against the risk of overloading your server.

You can use the following two parameters in the JNDI configuration for your
application WAR for throughput tuning:

964 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v wl.analytics.queues

v wl.analytics.queue.size

wl.analytics.queues determines the maximum number of queues that the
Worklight Server holds in memory. When the maximum number of queues is
reached and all queues are full, Worklight Server drops the most recently received
data.

wl.analytics.queue.size is the number of individual elements each queue can
hold. Adjustment of these parameters affects:
v Memory that is consumed by the server.
v Frequency of POSTs to IBM SmartCloud Analytics Embedded.

The number of individual analytics events the server will hold at one time is
wl.analytics.queues * wl.analytics.queue.size. Take this into consideration
when defining these two variables. Setting them too low can cause large amounts
of analytics data to be dropped if the server is unusually busy. Setting them too
high can consume too much memory on Worklight Server.

Turning off server log forwarding to the operational analytics server:

You can turn off server log forwarding if too much data is accumulating.

By default, Worklight Server forwards all server-side log data to the IBM
SmartCloud Analytics Embedded (operational analytics) server to increase search
and visibility of log data. This means that an administrator does not have to gain
direct file system access to Worklight Server to inspect logs. Depending on the
server activity level and Worklight Server cluster size, it can sometimes be better to
disable this feature. You can disable the feature by setting the following flag in the
JNDI configuration for your WAR: wl.analytics.logs.forward=false The result is
that Server Logs are not forwarded to the operational analytics server.

Logging additional data
You can use activity log settings to expand the type of analytics data that you
collect.

There are two API calls on the client that you can use to accumulate more analytics
data:
v WL.Client.logActivity(String)

v WL.Analytics.log(Object, String)

You can use the logActivity function call, as defined in the WL.Client class, to
record any activity that you specify, and send the data to the IBM WebSphere
Analytics Platform (operational analytics) server (if configured), and the raw
reports database (if configured).

The log method, as defined in the WL.Analytics class, is a richer way to get data
into the operational analytics server than the logActivity function call, as defined
in the WL.Client class. Using the log method, as defined in the WL.Analytics class,
you can pass any JavaScript object as the first parameter, and optionally a
descriptive string as the second parameter. This data is sent to the operational
analytics server (if configured), but not to the raw reports database.

Note: The JavaScript object that you provide as a parameter is indexed and
therefore searchable on the Analytics tab in the Worklight Console.

Chapter 12. Monitoring and mobile operations 965

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Analytics.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Analytics.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The log method, as defined in the WL.Analytics class, uses fewer of the battery
and WiFi resources of your hybrid application, accumulates in a client-side queue,
and is sent over the network to the server after a queue threshold is reached. The
logActivity function call, as defined in the WL.Client class, sends instantly when
called. If you want to record large amounts of custom analytics data, use the log
method, as defined in the WL.Analytics class.

Table 185. Activity log settings

WL.Analytics.log WL.Client.logActivity

Destination operational analytics server
only

operational analytics server
and BIRT

HTTP POST One POST per ten
invocations (default)

One POST per invocation

Data Any JavaScript object and
description

Description only

An example use of WL.Analytics.log is as an indirect callback for the WL.Logger
API so that WL.Logger data is collected and sent to the operational analytics server,
where it is indexed and searchable. This process is a convenient way to remotely
view client-side logs in close to real time. See the WL.Logger for information about
setting the callback.

Custom server app activity

There is one API call on the server, in an adapter, that you can use to record more
analytics data: WL.Server.logActivity(String) It provides functionality similar to
WL.Client.logActivity, but on the server side. You might want to use
WL.Server.logActivity to record events or activities that occur within the scope of
your IBM Worklight adapter execution lifecycle.

Troubleshooting analytics
Find solutions to problems with IBM Worklight analytics features.

Table 186. Analytics troubleshooting guidelines

Problem Actions to take

No analytics content appears in the
Analytics tab on the IBM Worklight Console

Ensure that the wl.analytics.url property
is set in your JNDI configuration for this
war. The correct configuration is confirmed
by the presence of the Analytics tab on the
IBM Worklight Console.

The Analytics tab is not present in the IBM
Worklight Console.

Ensure that the wl.analytics.url property
is set in your JNDI configuration for this
war. The correct configuration is confirmed
by the presence of the Analytics tab on the
IBM Worklight Console.

The server logs tab in the analytics page
shows too many or too few log records This
tab shows Worklight Server logs in near real
time.

Logs are sent based on the level of logging
configured on Worklight Server. See
WL.Logger.

The server logs tab shows no server logs. Server logs are not sent if the
wl.analytics.logs.foward property is set to
false in your JNDI configuration for this
war. The default value for this property is
true.

966 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Analytics.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Analytics.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Logger.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Logger.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 186. Analytics troubleshooting guidelines (continued)

Problem Actions to take

Analytics content is slow to appear in the
Analytics tab in the IBM Worklight Console.

The analytics feature in client applications
and in the Worklight Server buffer collect
data and only send after a threshold is
reached. See the “Worklight Server
throughput tuning” on page 964 and
WL.Analytics.

My application crashed, but no crash data
appears at the server.

Crash data is recorded persistently on the
device and sent during the next application
start after successfully connecting to
Worklight Server. Ensure that the application
has been restarted after the crash. Note the
data may be buffered at Worklight Server, in
which case see “Worklight Server
throughput tuning” on page 964.

For more information, see “Troubleshooting Worklight Server” on page 216

Reports database
IBM Worklight provides an extensible mechanism for enterprises to use to integrate
reporting tools with IBM Worklight.

IBM Worklight provides raw data reports and a number of device reports that are
aggregated from the raw data report table. IBM Worklight also comes bundled
with a third-party Business Intelligence Report Tools (BIRT) feature, which
provides a range of predefined report templates. To understand the similarities and
differences between the existing reports feature and the new operational analytics
feature, see “Comparison of operational analytics and reports features” on page
939

Note: Enabling the BIRT feature is redundant if you already use the IBM
WebSphere Analytics Platform.

IBM Worklight provides three reporting mechanisms:

Raw data feeds
IBM Worklight emits raw data, which enables an OLAP system to extract
the required information and present it through corporate reporting
mechanisms. For more information, see “Using raw data reports” on page
968.

Device usage reports
IBM Worklight provides reports about device usage. Device usage reports
are default aggregations that are based on raw data, and are provided for
the benefit of organizations that do not have OLAP systems or choose not
to integrate IBM Worklight with an OLAP system. For more information,
see “Device usage reports” on page 972.

Note: Device usage reports are functional only in IBM Worklight Customer
Edition and IBM Worklight Enterprise Edition.

BIRT reports
IBM Worklight comes bundled with predefined BIRT report to use either as
they are or as templates to modify. For more information, see “Predefined
BIRT Reports” on page 974.

Chapter 12. Monitoring and mobile operations 967

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Analytics.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The reports architecture diagram shows how the raw data feed comes from three
devices into the Worklight Server and then into the IBM Worklight database, the
Reports database, or both. From the Reports database, data then becomes
aggregated data and is filtered out into the BIRT reports or to other reporting tools.

Important: When you work with report generation, you must update the
.rptdesign file with your reports database user name and password, which are
considered sensitive information. You are responsible for protecting it against
unauthorized access.

Using raw data reports
You can use the raw data reports feature to extract raw data to different databases
and view it in the form of reporting tables.

Figure 188. High-level overview of the reports architecture

968 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

Raw data reports provide you with analytics information about your applications
and adapter usage, such as activity type, device information, and application
version. Use the following steps to enable the raw data reports feature:

Procedure
1. Ensure that the IBM Worklight Server application server is not running.
2. Create a separate database or a new schema for reports. This action is not

mandatory but is useful because the raw data table is rapidly populated. For
information about creating databases in a development environment, see “IBM
Worklight database setup for development mode” on page 774. For information
about creating databases and schemas in a production environment, see
“Creating and configuring the databases” on page 719.

3. When you work in a development environment, complete the following steps.
a. Edit the worklight.properties file. Uncomment the reports.exportRawData

property and set its value to true.
b. Modify the wl.reports.db properties to contain your database settings as

shown in the following example.
###
Raw reports
###
reports.exportRawData=true
jndi name; empty value means Apache DBCP data source
#wl.reports.db.jndi.name=${wl.db.jndi.name}
Default values for DBCP connection pool
#wl.reports.db.initialSize=${wl.db.initialSize}
#wl.reports.db.maxActive=${wl.db.maxActive}
#wl.reports.db.maxIdle=${wl.db.maxIdle}
#wl.reports.db.testOnBorrow=${wl.db.testOnBorrow}
wl.reports.db.url=jdbc:mysql://localhost:3306/wlreport
wl.reports.db.username=worklight
wl.reports.db.password=worklight

c. Ensure that the wl.reports.db.url property contains the URL of the
database you are planning to use for raw data.

4. When you work in a production environment, connect to the reports database
by using JNDI environment entries in addition to editing the
worklight.properties file, as described in the previous step. See “Configuring
an IBM Worklight project in production by using JNDI environment entries” on
page 784.

5. Restart your application server.
The app_activity_report table of the raw data database is populated with data
as you use your applications and adapters.

Chapter 12. Monitoring and mobile operations 969

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The raw data app_activity_report table contains the following information:

Column Description

ACTIVITY_TIMESTAMP UTC time of entry

GADGET_NAME IBM Worklight Application name

GADGET_VERSION Application version

ACTIVITY Activity type

ENVIRONMENT Application environment name (iPhone,
Android, and so on)

SOURCE User identifier

ADAPTER IBM Worklight adapter name

PROC IBM Worklight adapter procedure name

USERAGENT User agent from HTTP header of client
device

SESSION_ID A unique identifier for the user’s session on
the server

IP_ADDRESS IP address of the client

DEVICE_ID A unique device ID

DEVICE_MODEL Manufacturer model, for example Galaxy
I9000

DEVICE_OS Device operating system version

LONGITUDE The longitude of the device. Requires that
ongoing acquisition is enabled for Geo.

LATITUDE The latitude of the device. Requires that
ongoing acquisition is enabled for Geo.

POS_USER_TIME The local time on the device when the latest
position information (longitude and latitude)
were updated. Requires that ongoing
acquisition is enabled for Geo.

WIFI_APS The access points visible on the device.
Requires that ongoing acquisition is enabled
for WiFi.

970 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Column Description

WIFI_CONNECTED_SSID The SSID (network identification) of the
connected WiFi access point. Requires that
ongoing acquisition is enabled for WiFi.

WIFI_CONNECTED_MAC The MAC address of the connected WiFi
access point. Requires that ongoing
acquisition is enabled for WiFi.

WIFI_USER_TIME The local time on the device when the latest
WiFi information was updated. Requires that
ongoing acquisition is enabled for WiFi.

APP_CONTEXT The application context, as set by
WL.Server.setApplicationContext.

The following activities can be included in reports:

Activity Description

Init Application initialization

Login Successful authentication in using the
application

Adoption New Not supported in IBM Worklight V5.0

Adoption Not supported in IBM Worklight V5.0

Query Procedure call to an adapter

Logout User logout

Event An event handler was called

In addition to predefined activity types, custom activities can be logged by
using WL.Client.logActivity("custom-string") APIs.
When the activity is Event, the reporting information comes from the event
device context instead of WL.Server.getClientDeviceContext. Also, when the
activity is Event the PROC column gives the name of the event handler function
that was called.

Important: Worklight raw data feed can increase rapidly. The data is typically
used by a BI system such as Cognos® or Business Objects. It is the
administrator’s responsibility to purge built-in tables periodically. For example,
the following commands delete Oracle database rows that are more than 30
days old from the activities_cube and app_activity_report tables. For other
databases such as MySQL, modify the syntax appropriately.

To delete rows from activities_cube that are more than 30 days old (assuming
ACTIVITY_DATE is a DATE type field):

DELETE FROM ACTIVITIES_CUBE WHERE ACTIVITY_DATE <= TRUNC(SYSDATE) - 30

To delete rows from app_activity_report that are more than 30 days old
(assuming ACTIVITY_TIMESTAMP is a TIMESTAMP type field):

DELETE FROM APP_ACTIVITY_REPORT WHERE ACTIVITY_TIMESTAMP <= TO_TIMESTAMP(TRUNC(SYSDATE) - 30)

Purging data by deleting rows might fail on heavily loaded systems. An
alternative approach is to use database table partitions to facilitate the purging
of accumulated data. For more information, see “Optimization and tuning of
Worklight Server project databases” on page 104.
In addition to the app_activity_report table, the raw data engine also
populates the notification_report table. This raw data table contains

Chapter 12. Monitoring and mobile operations 971

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

information about notifications that are sent from SMS event sources.

Device usage reports
For simpler and faster access to the reports data, Worklight Server runs an
analytics data processor task at a default time interval of every 24 hours.

The analytics data processor task retrieves raw entries for the specified time
interval from the app_activity_report table and processes them to populate the
fact_activities table.

Note: The fact_activities table is only populated with usage data from hybrid
and native applications from actual devices. Usage data from Worklight mobile
web applications that are running on actual devices or from a browser, such as
when you are using preview, is not populated into this table.

972 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The fact_activities table contains a total activity count (number of logged
actions) per application, application version, device, and environment. The
fact_activities data is also processed and put into the activities_cube table.
This table has the same structure as the fact_activities table and only contains
records for the last 30 days.

Chapter 12. Monitoring and mobile operations 973

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Each time the data processing is done, a time stamp is added to a proc_report
table with the processing result (time stamp and number of processed entries).

In addition, notification_report table data is also processed to populate the
notification_activities table with consolidated data. The table is populated in
the same way as the fact_activities table. Every time the notification_report
table data is processed, an entry is added to the notification_proc_report table,
which is similar to the proc_report table.

The processing interval can be modified by adding the following property to your
worklight.properties file and setting the required interval in seconds.
Default interval value for analytics processing task
wl.db.factProcessingInterval=86400

The processing interval can also be disabled by setting this property to a negative
value.
Set to a negative value to disable the analytics processing task
wl.db.factProcessingInterval=-1

Predefined BIRT Reports
You can use predefined BIRT reports to generate and display information about
mobile devices and usage.

974 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

IBM Worklight generates raw reports, which are stored in an app_activity_report
table. IBM Worklight also includes device usage reports, which are aggregations of
data from the app_activity_report, and are described in “Device usage reports”
on page 972 and “Using raw data reports” on page 968. Users can view or extract
data from the app_activity_report table or from the device usage reports, and
process it using their own business intelligence systems.

For users with no existing business intelligence analysis system, IBM Worklight
provides a selection of predefined Business Intelligence Reporting Tool (BIRT)
reports. BIRT is a third-party tool, and is not created or supported by IBM. IBM
Worklight provides several *.rptdesign files that contain logic to connect to the
reports database, pull data from device usage tables, process, and display the data.

IBM Worklight Customer and Enterprise Editions include the following predefined
BIRT reports:

Table 187. Predefined BIRT reports

Report Name Description Report file name

Active Users Active users in last 30
days.

report_active_users.rptdesign

Daily Hits The daily aggregated
hits for last 30 days.
Any action from the
user/device that
caused a request to the
server is counted as a
hit. This number,
aggregated over a day,
equals the daily hits.

report_daily_hits.rptdesign

Daily Visits The number of
discreet visits by
separate user/device
in last 30 days. All
actions by a
user/device that
caused one or more
requests to the server
within a day is
counted as a visit.

report_daily_visits.rptdesign

Environment
Usage

Application version
and application
environment used:
number of visits that
were recorded in the
last 30 days.

report_environment_usage.rptdesign

New Devices A record of unique
devices that were
connected in the last
30 days.

report_new_devices.rptdesign

Notification
Messages Per
Day

Number of messages
sent each day in the
past 90 days per data
source.

report_notification_messages_per_day.rptdesign

Chapter 12. Monitoring and mobile operations 975

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 187. Predefined BIRT reports (continued)

Report Name Description Report file name

Notification
Messages Per
Source

Total number of
messages that were
sent in the last 90 days
per data source.

report_notification_messages_per_source.rptdesign

License Total
New Device
Count

A record of unique
devices that were
connected over a
specified period (90
days as default), for
licensing purposes.

report_license_total_device_count.rptdesign

There are several ways of viewing predefined reports, by using one of the
following options.
v The Eclipse report designer plug-in. For instructions, see “BIRT in Eclipse” on

page 983
v The BIRT Viewer application that is installed on your Tomcat, WebSphere Full

Profile or WebSphere Liberty Profile application server.

Installing BIRT on Apache Tomcat
You can use the Business Intelligence Reporting Tool (BIRT) to generate and render
report content. You can view this content either by using an Eclipse plug-in, or an
application server and browser.

Figure 189. An example of a report generated by BIRT, in this case report_license_total_device_count.rptdesign

976 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

The IBM Worklight installation contains a number of predefined BIRT reports.
These reports are configurable XML files that are designed to retrieve and present
data from the IBM Worklight reports database tables. These files have an
.rptdesign extension.

Complete the following steps to set up the BIRT Reports for viewing in an Apache
Tomcat application server. For information about how to set up the BIRT Reports
on other application servers, refer to the BIRT Reports website at Birt Tools.

Procedure
1. Ensure that your Tomcat instance is not running.
2. Download the BIRT Reports runtime archive from Birt Report Downloads.
3. Extract the BIRT Reports runtime archive.
4. Copy the WebViewerExample folder to the webapps folder of your Tomcat server.
5. Rename the WebViewerExample folder to birt (this step isan option, and is just

to simplify later execution).
6. Copy your database jdbc connector JAR file package to the Tomcat \lib

folder (if you are using the same Tomcat instance that is running Worklight
Server the jdbc connector package is already in the \lib folder).

7. In some cases, Tomcat might not have enough memory allocated to run BIRT
Reports. To resolve this problem, edit the catalina.bat file under your Tomcat
\bin folder and add the following line at the start of it. You might want to
consult with your IT manager about exact settings.

8. Restart your Tomcat.
9. Go to theTomcat manager application at http://your-server/manager/ to

verify that the BIRT Reports application started.

10. Your BIRT Reports viewer application is accessible at http://your-server/
birt/.

11. You can test the BIRT Reports installation by going to http://your-server/
birt/frameset?__report=test.rptdesign&sample=my+parameter.

Chapter 12. Monitoring and mobile operations 977

http://www.eclipse.org/birt/phoenix/
http://download.eclipse.org/birt/downloads/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Installing BIRT on WebSphere Application Server Liberty Profile
Complete these steps to install Business Intelligence Reporting Tools on the
WebSphere® Application Server Liberty Profile.

Procedure
1. Verify that your WebSphere Application Server Liberty Profile instance is not

running.
2. Go to your WebSphere Application Server Liberty Profile folder and create

two folders as follows:
v apps
v libs

3. Locate the jdbc connector driver that you are using and copy it to the libs
folder.

4. Download the latest release of BIRT run time from http://
download.eclipse.org/birt/downloads/

5. Extract the downloaded file and go to the extracted folder.
6. Rename WebViewerExample folder to birt.

7. Go to the folder birt\WEB-INF\lib and delete the following files.
v org.apache.xerces*.jar
v org.apache.xml.resolver*.jar
v org.apache.xml.serializer*.jar

Set up the BIRT Viewer application on a Liberty instance by following these
steps.

8. Copy the birt folder to {your-liberty-instance}\usr\servers\{your-
server-name}\apps\

9. Update the server.xml file of your Liberty server profile.
10. Make sure that the JSP feature is enabled.
11. Add an application definition.
12. Add classloader definition with a privateLibrary definition that is

configured to point to your JDBC connector driver.
<server description="new server">

<featureManager>
<feature>jsp-2.2</feature>

</featureManager>

<httpEndpoint id="defaultHttpEndpoint"
host="*"

978 IBM Worklight V6.1.0

http://download.eclipse.org/birt/downloads/
http://download.eclipse.org/birt/downloads/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

httpPort="9080"
httpsPort="9443" />

<application id="birt"
name="birt"
type="war"
location="${server.config.dir}/apps/birt"
context-root="/birt">

<classloader delegation="parentLast">
<privateLibrary>

<fileset dir="${server.config.dir}/libs"
includes="mysql-connector*.jar" />

</privateLibrary>
</classloader>

</application>
</server>

13. Start your Liberty instance.
14. Browse to http://server:port/birt. The BIRT Viewer landing page opens.

15. Click View Example link.
16. If you see the following error message, refresh your page.

17. The BIRT Viewer sample report appears.

Chapter 12. Monitoring and mobile operations 979

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note test.rptdesign in the page URL. You can replace this text with the
name of other rptdesign files, as shown here for example:

Installing BIRT on WebSphere Application Server Full Profile
Complete these steps to install Business Intelligence Reporting Tools on the
WebSphere® Application Server Full Profile.

Procedure
1. Download the BIRT package and extract the contents.
2. From the folder birt-runtime-version\WebViewerExample\WEB-INF\lib, delete

(or remove) the following packages:
v org.apache.xerces.jar

v org.apache.resolver.jar

v org.apache.serializer.jar

980 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

3. Use a .war command to package the directory WebViewerExample into a WAR
file named birt.war

4. Start the WebSphere Server.
5. Open the console web page.
6. Log in.
7. From the console, install BIRT package by installing birt.war from the

runtime download.
8. Click Enterprise Applications in left menu.
9. Click the name of the deployed application, birt_war, to enter the

configuration page.
10. Under the heading Modules, click Manage Modules.
11. In the Module list, click Eclipse BIRT Report Viewer.
12. In the General Properties page, under Class loader order, select the Classes

loaded with parent class loader first option.
13. Click OK.
14. Save the Master Configuration.

Configuring BIRT reports for your application server by using
Ant
You can update your BIRT reports with your web application server settings by
using Ant.

About this task

To use BIRT reports, you must update them with your web application server
settings and install them in your server web applications folder. The easiest way to
do this is to specify a <reports> element in the Ant script that invokes the
<configureapplicationserver> Ant task.

Figure 190. Deleting three files

Chapter 12. Monitoring and mobile operations 981

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Procedure
1. Ensure that the <configureapplicationserver> invocation has the inner

element <reports todir=”web applications directory”/>. See “Ant
configureapplicationserver task reference” on page 753 for more details.

2. Invoke the Ant script, which copies the report templates from the
WorklightServer/report-templates/ directory to the web applications directory,
adjusting the <data-sources> element as needed.

3. Verify that the BIRT Viewer application is installed and running on your
application server.

4. To view or edit a BIRT Report, go to the path http://your-server/birt/
frameset?__report=[report name].rptdesign., in which [report
name].rtpdesign represents one of the following files:
report_active_users.rptdesign
report_daily_hits.rptdesign
report_daily_visits.rptdesign
report_environment_usage.rptdesign
report_license_total_device_count.rptdesign
report_new_devices.rptdesign
report_notification_messages_per_day.rptdesign
report_notification_messages_per_source.rptdesign

Manually configuring BIRT Reports for your application server
To use BIRT reports, you must update them with your web application server
settings.

About this task

Before using the BIRT Viewer application to see predefined reports, you must edit
them to adjust the IBM Worklight Reports database settings, and then copy the
reports to a specific folder on the application server.

Procedure
1. Go to your Worklight Server installation folder created by the IBM Installation

Manager.
2. Locate the \report-templates\ folder, which contains a set of .rptdesign files.
3. Copy all of the files with the .rptdesign extension from the

\report-templates\ folder to your server web applications folder.
4. Edit each .rptdesign file as needed and adjust the <data-sources> element

with the properties of your Worklight reports database.
<data-sources>

<oda-data-source extensionID="org.eclipse.birt.report.data.oda.jdbc" ...>
<list-property name="privateDriverProperties">

<ex-property>
<name>metadataBidiFormatStr</name>
<value>ILYNN</value>

</ex-property>
<ex-property>

<name>disabledMetadataBidiFormatStr</name>
</ex-property>
<ex-property>

<name>contentBidiFormatStr</name>
<value>ILYN</value>

</ex-property>
<ex-prperty>

<name>disabledContentBidiFormatStr</name>
</ex-property>

</list-property>
<property name="odaDriverClass">WLREPORT_DRIVER_CLASS</property>

982 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<property name="odaURL">WLREPORT_JDBC_URI</property>
<property name="odaUser">WLREPORT_DBUSERNAME</property>
<encrypted-property name="odaPassword" encryptionID="base64">

WLREPORT_DBPASSWORD_BASE64
</encrypted-property>

</oda-data-source>
</data-sources>

5. Make sure that BIRT Viewer application is installed and running on your
application server

6. To view or edit a BIRT Report, go to the path http://your-server/birt/
frameset?__report=[report name].rptdesign., where [report name].rtpdesign
represents one of the following files:
v report_active_users.rptdesign

v report_daily_hits.rptdesign

v report_daily_visits.rptdesign

v report_environment_usage.rptdesign

v report_license_total_device_count.rptdesign

v report_new_devices.rptdesign

v report_notification_messages_per_day.rptdesign

v report_notification_messages_per_source.rptdesign

BIRT in Eclipse
When BIRT is installed in Eclipse, it displays reports through the Eclipse interface.

You can install Business Intelligence Reporting Tools (BIRT) as either a stand-alone
instance of Eclipse, or as a plug-in added to your existing IBM Worklight Eclipse
instance, or any other instance of Eclipse. Each of these choices has potential
advantages, depending on your needs.

Installing a stand-alone Eclipse instance means having a dedicated tool for creating
reports. This option involves downloading an Eclipse installer that comes with
BIRT included.

Installing BIRT as a plug-in to your existing Eclipse instance that is running IBM
Worklight can provide you with a more integrated interface, for both IBM
Worklight and reports. Use the following links to select the option you want to
install.

Installing BIRT in stand-alone Eclipse:

You can install BIRT including the BIRT Report Designer in a stand-alone instance
of Eclipse as a dedicated reporting tool.

About this task

To use the BIRT Report Designer in a stand-alone, dedicated instance of Eclipse,
follow these steps:

Procedure

1. In your web browser, go to http://www.eclipse.org/downloads/
2. Download the Eclipse IDE for Java and Report Developers

3. Follow the Eclipse installation instructions in the installation package. Eclipse
and the BIRT components, including the Report Designer, are installed along
with Eclipse.

Chapter 12. Monitoring and mobile operations 983

http://www.eclipse.org/downloads/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Installing BIRT in Worklight Eclipse:

You can install BIRT in the instance of Eclipse on which IBM Worklight is running,
and use the Report Designer as an integrated tool.

About this task

To install BIRT in the existing instance of Eclipse that is running IBM Worklight,
follow these steps:

Procedure

1. Click Help > Install new software

2. In the Work with... dropbox, select http://download.eclipse.com/release/
juno

3. Select Business Intelligence Reporting and Charting

4. Click Next and follow the installation instructions. When the installation is
completed, you must install the reports.

5. Click Window > Open perspective > Other...

6. Select the Report Design perspective
7. Click File > New > Project

8. Select Report project and click Next

9. Enter a project name and click Finish

10. Using the import command, go to your Worklight Server installation folder
created by IBM Installation Manager.

11. Locate the \report-templates\ folder, which contains a set of .rptdesign files.
12. Import all files with the suffix .rptdesign from the \report-templates\ folder

into the Eclipse project. Eclipse comes with a bundled driver for Apache
Derby database. If you use another database type, you must add a JDBC
connector driver manually.

13. Click Manage Drivers...

14. Click Add... and add the JDBC connector driver package to communicate with
your Worklight reports database

15. Select Driver Class and adjust the rest of your database settings
16. Click Test Connection... to validate that database settings are correct.

Viewing BIRT reports in Eclipse:

With BIRT installed in Eclipse, you can view reports through the Eclipse interface.

About this task

To view BIRT reports in Eclipse, follow these steps:

Procedure

1. Click the black arrow next to View Report.

984 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. Select the output format for your report
3. View the report.

Notification reports database schema
IBM Worklight uses a database schema to store the notification reports data
derived from the raw data.

Chapter 12. Monitoring and mobile operations 985

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

A notification activities table is populated to simplify the use of report
construction. This notification activities table, NOTIFICATION_ACTIVITIES, is
populated as part of the analytics setup.

IBM Tealeaf CX integration
IBM Tealeaf client libraries are pre-integrated in IBM Worklight applications, which
means that IBM Worklight applications can be considered Tealeaf-ready.

IBM Tealeaf CX Mobile provides digital customer experience management and
behavior analysis solutions for companies that do business online. This helps
companies to better understand the purpose of customer online and mobile
interactions, to be able to enhance the customer experience.

Note: IBM Tealeaf server is not included in the IBM Worklight product offering. It
is a separately purchasable product in the IBM MobileFirst portfolio of products.

These are the main benefits of using IBM Tealeaf CX Mobile:
v Discover previously unknown site experience problems so you can improve

success rates and increase online revenue.
v Evaluate the magnitude of any identified site issue (numbers of affected

customers, and impact to revenue) to prioritize corrective actions.
v Quickly understand and diagnose site problems by visually analyzing customer

and site behavior.
v Dramatically reduce the time that is required to reproduce and resolve site

issues.

IBM Worklight includes IBM Tealeaf CX Mobile libraries on the iOS and Android
devices and JavaScript library for mobile web. IBM Tealeaf CX is part of the client
run time on these platforms and supports client-side collection of analytics data.
IBM Worklight uses this library to collect app crash events.

If your enterprise would like to enhance analytics capabilities by using IBM Tealeaf
CX Mobile, visit the IBM Tealeaf CX Mobile site for details.

Figure 191. NOTIFICATION_ACTIVITIES schema

986 IBM Worklight V6.1.0

http://www.ibm.com/software/products/us/en/cx-mobile

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

IBM Tealeaf CX can be extended to send specific client events to IBM Worklight to
support the operational analytics features. The diagram illustrates one scenario in
which analytics information, including more than just crash events is collected
from the client. This information is then processed by the IBM Tealeaf CX Mobile
services, and only the crash events sent to IBM Worklight to support the
operational analytics feature.

Accumulating data on IBM Tealeaf CX Mobile and IBM
SmartCloud Analytics Embedded
You can configure client applications to send data to both IBM Tealeaf CX Mobile
and IBM SmartCloud Analytics Embedded (operational analytics) servers.

To collect data on both IBM Tealeaf CX Mobile server and operational analytics
server, client applications must be configured to send WL.Analytics (client session)
data to the IBM Tealeaf CX Mobile server URL. Calls to the logActivity method,
as defined in the WL.Client class, and WL.Server.logActivity (app activity) are
never forwarded to IBM Tealeaf CX Mobile, and continue to accumulate data in the
operational analytics server and in the raw reports database, if configured in each.

To reset an IBM Worklight application to send analytics data to IBM Tealeaf CX
Mobile requires only one step, which is to call the enable method, as defined in
the WL.Analytics (url: "http://yourTealeafServer.com").

If the client application is already deployed and active among your users, you
must call: the restart method, as defined in the WL.Analytics (url:
"http://yourTealeafServer.com").

These calls result in your IBM Worklight application persisting the new setting
until the user clears their application data, or another invocation to the same
function is made with a different URL than the previous invocation. If you want
the data sent to the IBM Tealeaf CX server to also display in the Analytics tab in
the IBM Worklight Console, the IBM Tealeaf CX Mobile server must be configured

Figure 192. A possible configuration showing IBM Tealeaf CX Mobile service collecting many client session events,
and forwarding only crash events to Worklight Server.

Chapter 12. Monitoring and mobile operations 987

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Analytics.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Client.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Analytics.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Analytics.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

with an appropriate pre-processing script so that it can forward to IBM Worklight
Server. This is an advanced configuration.

Accumulating data on IBM Tealeaf CX Mobile only
You can configure client applications to send data only to IBM Tealeaf CX Mobile
and not to IBM SmartCloud Analytics Embedded.

You can use the IBM Tealeaf CX Mobile client side libraries directly, instead of
through the WL.Analytics API. Follow the IBM Tealeaf CX Modile documentation
to provide your own properties file (for Android), plist file (for IOS), or
configuration object (for JavaScript), and access the respective IBM Tealeaf CX
Mobile libraries directly. Do not use the WL.Analytics API in this configuration.

Note: In this configuration, neither crash capture nor WL.Analytics.log data is
indexed or searchable on IBM SmartCloud Analytics Embedded. The IBM
Worklight application developer now has full control of the client IBM Tealeaf CX
Mobile integration.

Troubleshooting IBM Tealeaf CX integration
Find solutions to problems with IBM Tealeaf CX integration.

Table 188. IBM Tealeaf CX integration troubleshooting guidelines

Problem Actions to take

WL.Analytics.log data is not searchable in
the Analytics tab on the IBM Worklight
Console.

The log method as defined in the
WL.Analytics class is not sent until IBM
Worklight authentication channels between
the client and server are open.

v Ensure that client apps have successfully
authenticated with Worklight Server.

v For WL applications that do not use
authentication, the initialization sequence
must be complete, which can be achieved
by setting connectOnStartup:true in
initOptions.js, making an adapter call.

v Ensure that WL.Analytics is ready before
calling the log method as defined in the
WL.Analytics class.

v If you are using Tealeaf directly and you
modified the Tealeaf configuration, revert
the configuration to the one generated by
IBM Worklight.

For more information, see “Troubleshooting Worklight Server” on page 216

Mobile application management
The Mobile Application Management feature enables mobile operators and
administrators to securely track, search, and control access to users through the
mobile applications that are used on their devices, all from the Worklight Console.

The IBM Worklight Server runtime tracks devices that access your mobile
infrastructure by the Worklight apps that are used by your users. Each user,
whether employee, customers, suppliers, or business partners, can use several
devices to access your mobile environment through one or more apps that you
deployed. IBM Worklight Console now provides a view into this mapping of user

988 IBM Worklight V6.1.0

http://www.ibm.com/software/products/us/en/cx-mobile
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Analytics.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Analytics.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

to devices through the apps that are used to access your Worklight Server. Mobile
operators and administrators can use the console to not only search for registered
users by name, but also block access to a specific app from a specific user's device.
They can also block any Worklight App that is installed on the device from
connecting to the Worklight Server.

When multiple applications from the same enterprise are installed to the same
device, it is desirable to disable access for all of the applications at once when the
device is lost, stolen, or its security compromised. When these applications on the
same device are authenticated to and routing traffic through a Worklight Server,
administrators can disable access for all Worklight applications on that device.

In some cases, it might not be desirable to block access for every Worklight
application that is installed on the device. Worklight application management
features allow the administrator to view each individual application that is
installed on a user’s device and select which applications to block access.

When a Worklight application requires a certificate from the user to authenticate,
the serial number of the certificate is recorded on the Worklight Server. In addition
to viewing each application installed on a device, the certificate serial number can
also be viewed in the Worklight console. This feature allows administrators to
revoke access to an application installed on the device by using the serial number
to locate and revoke the certificate.

Worklight maintains a database table of device IDs, among other device-related
metadata, to enable this feature. In addition to the device ID column in the
database, a status column is also kept. The possible status values are:
v active
v lost
v stolen
v expired (the device has not connected to this Worklight server in 90 days) -

configurable
v disabled

When a Worklight application from a device attempts to connect through the
Worklight Server, the device ID is stored in the in-memory session data on the
server. This device ID is checked against the database before any further
processing of the inbound message. If the status column for this device ID is any
value other than active, a 401 forbidden is returned. If the status is lost, stolen,
or disabled, only an administrator with access to the Worklight console or direct
database access can restore the status to the active state.

User to device mapping and control
Starting in Worklight V6.1.0, the Worklight Server tracks the devices that access the
system as part of the core Worklight database. You can now enable the user to
device mapping feature, which provides the ability for mobile operators or
administrators to query their mobile systems by user. A device friendly name can
also be established to see the devices that are mapped to a user. Further, specific
controls can be applied to a user-app-device mapping to either disable that link or
reactivate that link to address common situations. For example, a user loses a
device and must block all access from that device. Another example is the
requirement to block access to an app across all devices, or block access to an app
on a device, when a user changes departments. Reactivation is available for all of
these disablement control actions.

Chapter 12. Monitoring and mobile operations 989

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

For the user to device mapping feature to work, a security realm must exist that
establishes the user identity. The user identity is then used to associate the
Worklight Device ID with the user. Developers can create custom challenge
handlers or specific API calls to set a device friendly name as preferred by the
user, programmatically. This feature helps in querying the device by its friendly
name.

The following list shows what a mobile operator or admin can do with this set of
features:
v Search for a device by friendly name or search by user name.
v A matching search yields all devices that belong to that user or the single device

and the associated user, along with device model and information.
v The apps that are used on the device to access this system are also displayed.

The following list shows the available actions that can be taken for a queried
device:
v Disable the specific device, marking the state as lost or stolen so that access from

any of the apps on that device is blocked.
v Re-enable a disabled device so that access from the device to the Worklight

Server is allowed.
v Disable a specific app, marking the state as disabled so that access from the

specific app on that device is blocked.
v Re-enable that specific app on the device so that access from the specific app on

the device to the Worklight Server is allowed.

Device access management in the Worklight Console
Since IBM Worklight V6.1.0, the console displays a new tab called Devices. With
this tab, the IBM Worklight administrator can search for devices that accessed the
Worklight Server and manage their access rights.

In the search field, devices can be searched for by either the user ID (the ID that
was used to log in to the Authentication Realm), or the friendly name (a name that
is associated with the device to distinguish it from other devices that share the
user ID). The friendly name can be set on the client by using the client-side
JavaScript APIs: WL.Device.getFriendlyName and WL.Device.setFriendlyName. For
more information about the getFriendlyName API, see the getFriendlyName
method, as defined in the WL.Device class. For more information about the
setFriendlyName API, see setFriendlyName method, as defined in the WL.Device.

When a valid device is found, all devices that match the user ID or friendly name
are listed.

990 IBM Worklight V6.1.0

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Device.html
PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjavascript-client/html/WL.Device.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

The Status column contains the current access rights of the device. Any device
with the column marked as DEVICE STOLEN, DEVICE LOST, or DEVICE DISABLED is not
allowed to access the Worklight Server. The DEVICE EXPIRED status is used only for
licensing purposes. Upon successful connection to the server, any device with the
status marked as DEVICE EXPIRED is allowed to access the Worklight Server and its
status is changed to ACTIVE. For more information about licensing, see “License
Tracking report” on page 1012.

Clicking the + icon in the column shows a list of all applications that this device
accessed.

Figure 193. User or friendly name search

Chapter 12. Monitoring and mobile operations 991

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Each row in the table contains the name of the application, the certificate serial
number for this device-application pair (if enabled), and a status menu that is used
to disable an application's access to the Worklight Server for this device.

Enabling the device access management features
All devices that access the Worklight Server are recorded in the Worklight database
without any additional configurations. However, Worklight does not enforce the
device access settings that are set from the Worklight Console unless you enable a
property on the Worklight Server.

About this task

More processing is required on the Worklight Server when this property is enabled
to enforce access management on devices. Appropriate performance testing must
be done before production to measure how enabling this feature impacts the
server’s performance.

Procedure
1. Set the wl.device.enableAccessManagement=true property on the Worklight

Server (this value is false by default). The wl.device.tracking.enabled=true
property must also be set (this value is true by default).

2. Capture the UserID. The user ID is recorded for the device automatically when
the user logs in to an authentication realm that is marked as isInternalUserID.
The following example shows a sample authentication configuration file:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<tns:loginConfiguration xmlns:tns="http://www.worklight.com/auth/config"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

Figure 194. List of applications that are accessed by a device

992 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

<!-- Licensed Materials - Property of IBM
5725-G92 (C) Copyright IBM Corp. 2006, 2013. All Rights Reserved.
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp. -->

<securityTests>
<customSecurityTest name="DummyAdapter-securityTest">

<test isInternalUserID="true" realm="SampleAppRealm" />
</customSecurityTest?

</securityTests>

<realms>
<realm loginModule="StrongDummy" name="SampleAppRealm">

<className>com.worklight.core.auth.ext.FormBasedAuthenticator</className>
</realm>

</realms>

<loginModules>
<loginModule name="StrongDummy">

<className>com.worklight.core.auth.ext.NonValidatingLoginModule</className>
</loginModule>

</loginModules>

</tns:loginConfiguration>

Since a security test can include several realms that require a user ID, only the
realm that has the isInternalUserID property is recorded for the device in the
Worklight database. For a mobileSecurityTest, the realm that is set by the
testUser element is used. For more information about security tests, see
“Security Tests” on page 605.
If the user is authenticated through the UserCertificateAuthenticator, the
serial number that is generated for the certificate that is sent to the device is
automatically saved in the Worklight database. For more information about the
UserCertificateAuthenticator and serial number, see “User certificate
authentication” on page 994.

Performance implications for the server
You must consider two questions when you measure the Mobile Application
Management feature and its impact on performance.
1. Does Worklight save information about a device when it accesses the server?
2. Does Worklight enforce access rights when a device tries to access the server?

Saving device information

The Worklight administrator can control whether the server saves device
information to the internal database when a device connects to the Worklight
Server. This behavior is controlled by the following flag in the
worklight.properties file:
wl.device.tracking.enabled=true

When this flag is enabled, the Worklight server attempts to store information about
the device each time a device begins a new session with the server. In terms of
performance, this behavior results in a potential database write each time that a
device starts a new session.

Note: This flag is enabled by default in production, and is used for license
tracking. Do not disable this flag unless you fully understand the implications. For
more information about licensing, see “License tracking” on page 1010.

Chapter 12. Monitoring and mobile operations 993

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Enforcing access rights

The Worklight Server tries to save the device information only on the first request
of a session from the device. However, Worklight must enforce access rights on
every request that is made to the server from the device. This behavior ensures
that the rights that are set by the Worklight administrator take effect immediately.
This feature can be controlled by the following flag in the worklight.properties
file:
wl.device.enableAccessManagement=true

From a performance perspective, this behavior results in an extra database read
that occurs each time that the device tries to access a resource on the server. The
performance hit for the read is smaller than the write for saving device
information. Administrators must consider the fact that this read occurs every time
that a device tries to connect to the server. When this flag is disabled, the
administrator can still view the devices in the database from the Worklight console.
However, they cannot block access from the device to the Worklight Server.

Space limitations for the database

Database administrators must consider how enabling the Mobile Application
Management feature can affect the Worklight runtime database size. The Mobile
Application Management feature does not affect the Worklight raw reports
database. The following example shows a typical database row entry for a single
device:
(’db7abddf-3d5f-4b03-b3b8-f706e56e8306’, ’Lucas’, ’Tillman’, ’6.2’, ’iPad2,5’,’2013-10-08 15:12:32’, 3)

For each application that the device uses, another entry is created as follows:
(db7abddf-3d5f-4b03-b3b8-f706e56e8306, 12, 0)

The size impact for each device is small. However, administrators must consider
the potential size increases if their Worklight Server serves thousands of devices
that use multiple applications that are hosted by the server. Devices can be deleted
from the Worklight database in the Worklight console, but each device entry has a
Last Accessed time stamp column. That time stamp gives administrators the
ability to clear out old rows that are no longer being used, by creating custom
queries.

Note: Database rows that contain device information are used for licensing
purposes. Database administrators must not delete data from these rows if the
action of deleting the data affects licensing.

User certificate authentication
Enterprises can now use X.509 client-side certificates to authenticate users, by
applying a new user authentication realm to their existing security tests. This new
realm is called UserCertificateAuthRealm. This feature allows enterprises to enroll
users to their enterprise certificate authority (CA) directly from their mobile
devices. The traffic between the Worklight application on the device and the
Worklight Server in the enterprise can be secured over HTTPS with client-side
certificates that are issued to the users as part of the initial enrollment process.

This feature is available only on the hybrid iOS and Android environments for this
current release.

994 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

This feature is not supported with the FIPS 140-2 feature.

User certificate authentication overview
The User Certificate Authentication feature is a newly introduced user
authentication realm in IBM Worklight V6.1 that establishes user identity with an
X.509 client certificate.

With the User Certificate Authentication feature, Worklight provides a mechanism
for enterprises to easily integrate their mobile infrastructure and existing public
key infrastructure (PKI). With this new added function, enterprises can now
authenticate users that are trying to access sensitive backend systems through
mobile devices with X.509 client side certificates. Mobile clients can now present an
X.509 certificate to establish a secure client identity over the transport layer
security (TLS) protocol.

This feature allows enterprises to use their existing PKI to obtain full control of the
user authentication and user enrollment process. An embedded PKI
implementation is provided, which allows enterprises without their own PKI to
quickly set it up. With the embedded PKI option, Worklight internally signs
certificates and manages the validation and enrollment process.

More specifically, mobile clients are now able to present an X.509 client certificate
to establish a secure connection over the transport layer security (TLS) protocol.
Users are enrolled to the enterprise certificate authority (CA) directly from their
device. The client certificate is then used to authenticate and establish a user
identity on subsequent requests.

This feature is only available on hybrid iOS and Android environments for this
current release.

How it works

The Worklight Server can be configured to protect an application or adapter with
the user certificate authentication user realm (UserCertificateAuthRealm). This
realm requires the use of a PKI for managing X.509 client certificates. An existing
PKI can be used by implementing the PKI bridge interface that is provided for
you. The PKI bridge interface serves as the bridge between Worklight and your
PKI. Another option is to use the embedded PKI that is provided with this feature
for testing and development purposes.

The first time a user accesses a protected application or adapter procedure from a
device, the server initiates the applicable challenges and starts the user enrollment
process. The user enrollment process consists of having the user enroll into the
configured PKI and then provisioning the device with an X.509 certificate for
future use. Users enroll into existing PKIs through the help of a dependent user
authentication realm. After the user is authenticated through the dependent realm,
Worklight, through the PKI, generates the client certificate and provisions the
device with the certificate that is issued to the user. The server enrolls the user
after successfully establishing the user identity by using one of the pre-existing
login modules. This process results in an X.509 certificate that is issued to the user
and installed securely on the device.

The following figure shows the user enrollment flow:

Chapter 12. Monitoring and mobile operations 995

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Subsequent calls from that Worklight application use this X.509 certificate to
establish a secure connection over HTTPS, authenticate the user, and establish the
user identity on the server. Users need to log in only once for the life of the
certificate. When the certificate expires or is revoked by the PKI, the enrollment
process is initiated again. You can allow user enrollment to continue, ban the user,
or allow the user to log in only through the dependent realm.

Both the client and the server runtimes enforce certificate verification, ensuring that
the client certificate is valid and is issued to a known user. The client certificate is
valid if it is issued by a trusted CA, is not expired and is not revoked, and its
validity period is current. The server also verifies the client certificate's subject
against a user registry to ensure that the client certificate was issued to a known
user. Support for certificate revocation lists (CRL) is provided by the underlying
Java Platform, Enterprise Edition server, and JVM. For more information about
how to enable CRL support in WebSphere Application Server, see SSL
configurations.

Note: Not all JVMs provide CRL support.

The following figure shows the client certificate authentication flow:

996 IBM Worklight V6.1.0

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.nd.doc/ae/csec_sslconfigs.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.nd.doc/ae/csec_sslconfigs.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Protecting resources with user certificate authentication
You can protect your application or adapter procedures with the user certificate
authentication user realm.

About this task

Follow the steps to configure the user certificate authentication user realm to
protect your application or adapter procedure.

Procedure
1. Create a new Worklight project.
2. Create a new hybrid Worklight application.
3. Configure the challenge handlers for your dependent realm. These challenge

handlers help establish the identity of the user as part of the enrollment
process. For more information, see “User certificate authentication on the
client” on page 1007.

4. Configure the server.
a. Configure your WebSphere Application Server Liberty profile server. For

more information, see “Configuring the Liberty profile” on page 1005.
b. Configure the server for HTTPS. For more information, see “SSL

configuration” on page 998.
c. Configure an embedded PKI or external PKI. For more information, see

“PKI bridge configuration” on page 999.
d. Uncomment out the wl_UserCertificateAuthRealm realm elements in the

authentication configuration and update it as needed. For more information,
see “Updating the server authentication configuration” on page 1006.

Chapter 12. Monitoring and mobile operations 997

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

5. Edit the application descriptor to specify the security test that enforces
certificate authentication of the user. You can protect the application or the
adapter.

6. Install the root certificate authority (CA). For more information, see
“Configuring SSL between Worklight Servers and clients by using certificates
that are not signed by a trusted certificate authority” on page 125.

7. Complete the deployment to the server.
8. Install the application on the client.

What to do next

For a more comprehensive sample, see the module Client X.509 Certificate
Authentication and User Enrollment under Category 8, Authentication and security in
Chapter 3, “Tutorials and samples,” on page 27.

User certificate authentication on the server
Both the Worklight Server and its hosting application server must be configured to
use the User Certificate Authentication feature. The application server must be
configured for client-side SSL. The Worklight Server must be configured with a PKI
bridge and an appropriate security test to use the feature.

SSL configuration
The User Certificate Authentication feature depends on the use of SSL for
authentication purposes. You can host your application only on HTTPS, unless a
reverse proxy is being used.

For more information about how to configure SSL, see “WebSphere Application
Server and Liberty profile requirements” on page 1005.

The User Certificate Authentication feature requires integration with a PKI. For the
embedded PKI option, you are required to provide a certificate authority (CA) that
can be used to generate the client X.509 certificates.

Certificates and CAs

Client certificates that are issued to the user by the User Certificate Authentication
feature can be signed by a custom CA or a well-trusted CA through your PKI.
Server-side certificates can be signed by either type of CA. Self-signed certificates
are not supported. For more information about how to use and create an
intermediate CA to sign both the server and client certificates, see the module
Client X.509 Certificate Authentication and User Enrollment under category 8,
Authentication and security in Chapter 3, “Tutorials and samples,” on page 27.

If you encounter errors with certificates that are not signed by well-trusted CAs,
see “Configuring SSL between Worklight Servers and clients by using certificates
that are not signed by a trusted certificate authority” on page 125.

Certificate chains, keystore, and trust store

You must set the server certificate as the Worklight Server's keystore. Also, set the
client’s certificate signing CA as part of the trust store so that the server can trust
the client certificates. For more information about setting up the server with these
certificates, see “WebSphere Application Server and Liberty profile requirements”
on page 1005.

998 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Note: If you use intermediate custom CAs, ensure that you concatenate the server
certificate with the certificate chain. When you create the server certificate, use the
following order:
Server certificate -> intermediate(s) in order -> trust anchor

The following example works in Mac OS X and Linux, and concatenates the server
certificate with one intermediate CA and the trust anchor (root CA):
cat server/server.crt signingca/signing_ca.crt rootca/root_ca.crt > server_chain.crt

PKI bridge configuration
The PKI bridge is an interface between the Worklight Server and a business' public
key infrastructure (PKI). Each realm definition that uses the
WorklightCertificateAuthenticator must have a PKI bridge that is defined in its
configuration.

User certificate identity versus standard Worklight user identity

The standard Worklight user identity contains basic user details and is built after a
user realm is authenticated. The identity contains user name, display name, and
extra attributes. The identity can be requested for each realm in a security test by
authenticated resources, such as an adapter. For user certificate authentication,
more details might be required, such as device ID and application name. These
details are provided in the user certificate identity object that is sent to the PKI
bridge.

A user certificate identity instance contains the following elements:
v Standard Worklight user identity

– User name
– Display name
– Attributes

v Device ID
v Application name

Custom PKI bridge interface

A custom PKI bridge can be implemented by extending the
com.org.auth.ext.UserCertificatePKIBridge abstract class. The API for the PKI
bridge abstract class can be found at UserCertificatePKIBridge.

Embedded PKI bridge:

The embedded PKI bridge is an included PKI bridge that can be used with user
certificate authentication. The embedded PKI bridge is available with the
com.worklight.core.auth.ext.UserCertificateEmbeddedPKI class name and is
configured by adding parameters to the realm definition.

The embedded PKI bridge is useful for developers without direct access to the
business’ PKI during testing. Administrators that are interested in testing the user
certificate authentication feature without implementing their own PKI bridge can
also use the embedded PKI bridge. The embedded PKI bridge is not recommended
or supported for production environments.

Chapter 12. Monitoring and mobile operations 999

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-server/html/com/worklight/core/auth/ext/UserCertificatePKIBridge.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Requirements for use

For the embedded PKI bridge, a certificate authority (CA) certificate and private
key must be available. The certificate and private key must be added to a keystore
manually. The keystore must be in the PKCS #12 file format, such as a .p12 file. A
password to access the keystore can be supplied optionally in plaintext form. If the
.p12 file does not exist, cannot be read, or is supplied an invalid password, an
error is thrown in the server trace. The following example shows a realm definition
for wl_userCertificateAuthRealm with the embedded PKI:
<realm name="wl_userCertificateAuthRealm"

loginModule="UserCertificateLoginModule">
<className>com.worklight.core.auth.ext.UserCertificateAuthenticator</className>
<parameter name="dependent-user-auth-realm"

value="WASLTPARealm" />
<parameter name="pki-bridge-class"

value="com.worklight.core.auth.ext.UserCertificateEmbeddedPKI" />
<parameter name="embedded-pki-bridge-ca-p12-password"

value="capassword" />
<parameter name="embedded-pki-bridge-ca-p12-file-path"

value="/opt/ssl_ca/ca.p12" />
<parameter name="embedded-pki-bridge-organization"

value="IBM Worklight" />
<parameter name="embedded-pki-bridge-add-cert-extensions"

value="true" />
</realm>

Configuration parameters

The following embedded PKI bridge parameters are available.

embedded-pki-bridge-ca-p12-file-path
Required

Full file path of the .p12 file for the CA that signs user certificate requests.

embedded-pki-bridge-ca-p12-password
Optional

Password in plaintext that is used to decode the CA .p12 file that is
specified. No password is used if not specified.

embedded-pki-bridge-organization
Optional

Organization name that is added to the distinguished name (DN) inside a
signed certificate (O=<organization name specified>). If not specified, no
organization is added to the DN.

embedded-pki-bridge-add-cert-extensions
Optional

Add non-critical Worklight custom certificate extensions to the user
certificate before it is signed. This parameter provides more details to user
identity attributes on subsequent runs. These details include device id,
group ID, and application name that is stored in the certificate. By default,
this parameter is false. You can enable the parameter by using the true
value. This parameter is not always supported and may not work for your
configured server configuration. You must test this option first on your
infrastructure to ensure that a certificate is not marked invalid if extensions
are enabled. When this parameter is enabled, the device ID is added with
the OID 1.3.6.1.4.1.2.6.256.1 and the app name is added with the OID
1.3.6.1.4.1.2.6.256.2. These OIDs are not formally registered and may
change.

1000 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

embedded-pki-bridge-days-before-expire
Optional

Configure the length of time the generated certificate is valid. This setting
defaults to one year (365 days).

embedded-pki-bridge-crl-uri
Optional

Configure an optional CRL for your certificate authority. If the certificate
that is generated exists on a client’s device and is revoked in the CRL, the
client is required to generate a certificate.

External/adapter-based PKI bridge:

The adapter-based PKI bridge is an included PKI bridge that can be used with user
certificate authentication. The adapter-based PKI bridge is available with the
com.worklight.core.auth.ext.UserCertificateAdapterBasedPKI class name, and is
configured by adding parameters to the realm definition. An adapter is required
for this PKI bridge to work, and must be uploaded before any user connects with
this configuration. The adapter-based PKI bridge is useful if your PKI can be
accessed with an adapter (such as a REST API).

Requirements for use

For the adapter-based PKI bridge, an adapter must be added in the console and
the parameters for the bridge must be configured in the realm definition. The
following example shows a realm definition for wl_userCertificateAuthRealm with
the adapter-based PKI that uses an adapter that is called PKIAdapter:
<realm name="wl_userCertificateAuthRealm"

loginModule="UserCertificateLoginModule">
<className>com.worklight.core.auth.ext.UserCertificateAuthenticator</className>
<parameter name="dependent-user-auth-realm"

value="WASLTPARealm" />
<parameter name="pki-bridge-class"

value="com.worklight.core.auth.ext.UserCertificateAdapterBasedPKI" />
<parameter name="adapter-pki-bridge-init-procedure"

value="PKIAdapter.init" />
<parameter name="adapter-pki-bridge-identity-validation-procedure"

value="PKIAdapter.validateIdentity" />
<parameter name="adapter-pki-bridge-csr-requirements-procedure"

value="PKIAdapter.getCSRRequirements" />
<parameter name="adapter-pki-bridge-csr-validation-procedure"

value="PKIAdapter.validateCSR" />
<parameter name="adapter-pki-bridge-certificate-generation-procedure"

value="PKIAdapter.generateCertificate" />
<parameter name="adapter-pki-bridge-identity-from-certificate-procedure"

value="PKIAdapter.getIdentityFromCertificate" />
<parameter name="adapter-pki-bridge-certificate-validation-procedure"

value="PKIAdapter.validateCertificate" />
</realm>

Configuration parameters

The following adapter-based PKI bridge parameters are available.

adapter-pki-bridge-init-procedure
Required

An adapter procedure that is called to initialize the PKI bridge on each
call. Requires a single parameter for the configuration that is available in
the realm definition. The following example shows a sample value of this
parameter:

Chapter 12. Monitoring and mobile operations 1001

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

{"adapter-pki-bridge-csr-validationprocedure":"
PKIBridgeAdapter.validateCSR","adapter-pki-bridge-identity-fromcertificate-
procedure":"PKIBridgeAdapter.identityFromCertificate","pkibridgeclass":"
com.worklight.core.auth.ext.UserCertificateAdapterBasedPKI","adapterpki-
bridge-identity-validationprocedure":"
PKIBridgeAdapter.identityVerify","adapter-pki-bridge-csrrequirements-
procedure":"PKIBridgeAdapter.csrRequirements","adapter-pkibridge-
certificate-generationprocedure":"
PKIBridgeAdapter.generateCertificate","adapter-pki-bridgecertificate-
validationprocedure":"
PKIBridgeAdapter.certificateVerify","adapter-pki-bridge-initprocedure":"
PKIBridgeAdapter.init","dependent-user-authrealm":"
WASLTPARealm"}

adapter-pki-bridge-identity-validation-procedure
Optional

An adapter procedure that is called that allows the adapter to determine
whether the user identity from the dependent realm is allowed to generate
a certificate. This procedure is optional. By default, the PKI bridge always
returns YES. Requires a single userIdentity parameter. The following
example shows a sample value of this parameter:
{"deviceId":"C146B473-DA25-46A7-8A79-E8CE5E9270EE","userIdentity":
{"userName":"user@ibm.com","attributes":
{"LtpaToken":"dHwRqHp61ukJCkEFBMRd6g63uV1bDg0rmGBU2cuBrinFp+7L7BVb
+4OebyIRMOoKLhHldLxj9JIPiWH4s16tHtNjddBxxbd9rdjZUgnicVY8+6GM8uTEwleRW
+lVzzwJX0Htvfa2iOQD9KAWLXkNHgneiELIANjAUxGsMzJGGg2K8LYYWeBhE0JGqJcb8WFFLYH4T5
Cgb9C+qXpre/KF/MNTrv2WQF9kWjPmMlPuT1Lh1tY9oSSqN20DNNZ8VcQ8p26po5yBMvtDMtn4/
EzfdhKYeTNFzQEmQpR66caQJlRV++m/
Oq4EiZBBzkOY6zpBVtmUzcH3D2xh5PYYVcFO8g=="},"displayName":""},"appId":"UserCert"}

The procedure must return an object with the following format:
{valid: "YES"}

Options for valid:
v YES - The user is allowed to generate a certificate.
v NO_USE_DEPENDENT_REALM_ONLY - The user is allowed to log in to the

dependent realm, but is not allowed to generate a certificate.
v NO - The user is not allowed to log in at all, and is not allowed to

generate a certificate.

adapter-pki-bridge-csr-requirements-procedure
Optional

Build a set of requirements that must be in a CSR that the client generates.
This procedure is optional. By default, the CSR requirements include the
commonName that is equal to the user name from the dependent realm user
identity. The procedure has a single parameter that is called userIdentity
with the following format:
{"deviceId":"C146B473-DA25-46A7-8A79-E8CE5E9270EE","userIdentity":
{"userName":"user@ibm.com","attributes":
{"LtpaToken":"dHwRqHp61ukJCkEFBMRd6g63uV1bDg0rmGBU2cuBrinFp+7L7BVb
+4OebyIRMOoKLhHldLxj9JIPiWH4s16tHtNjddBxxbd9rdjZUgnicVY8+6GM8uTEwleRW
+lVzzwJX0Htvfa2iOQD9KAWLXkNHgneiELIANjAUxGsMzJGGg2K8LYYWeBhE0JGqJcb8WFFLYH4T5
Cgb9C+qXpre/KF/MNTrv2WQF9kWjPmMlPuT1Lh1tY9oSSqN20DNNZ8VcQ8p26po5yBMvtDMtn4/
EzfdhKYeTNFzQEmQpR66caQJlRV++m/
Oq4EiZBBzkOY6zpBVtmUzcH3D2xh5PYYVcFO8g=="},"displayName":""},"appId":"UserCert"}

This procedure must return a JSON object in the following format:
{ commonName: "user@ibm.com", additionalSubject: { "O": "IBM" }, additionalAttributes: {} }

v commonName - This attribute is a required entry that is used as the CN
attribute in the CSR. This value must match a user in the user registry of
the application server.

1002 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v additionalSubject - This attribute is a required JSON object that contains
key/value pairs for each additional attribute that must be in the subject
of the CSR, such as O for organization. If no additional attributes are
required, use an empty JSON object.

v additionalAttributes - This attribute is a required JSON object that
contains key/value pairs for each additional attribute that must be
included in the CSR. If no additional attributes are required, use an
empty JSON object.

adapter-pki-bridge-csr-validation-procedure
Optional

This procedure is called after a client sends a CSR that follows a request. It
is responsible for ensuring that all of the CSR attributes that were
requested in the requirements exist in the CSR. This procedure is optional.
By default, the PKI bridge always returns YES. The procedure has a single
parameter csr that contains a JSON object with the following format:
{"csr":"MIICXzCCAUcCADAbMRkwFwYDVQQDFBBsaXpldEB1cy5pYm0uY29tMIIBIjANBgkqhkiG9w0
BAQEFAAOCAQ8AMIIBCgKCAQEAt9A8WLa0NqAjizn9ccZFUPBLCCGEBCUQAgNPZKcf3wW2LhQ75
MEMfLyahZvqSBFd7IMMstRrpKiobx6PTGiMCkNB7lOzNa88tCHv81+wHaTIu2QggqpBMFPhvBdTbS
93pafEQ7kXEGBk+uU7vwalUIHQyQT1+9ZaiH4ssf8Ybi
+qYmGrOH4CjvO7h93l0sAyOOWqcGBnOCcb1+YJP9F/
EyHLNfdr1FTDAAp0ERtUqVMDeJIRxscFnqZ1GG0rXCEJqAl3IHvrn6BiLrmQOxA5oE
+Lk4ry6cizw1yxYY1mWZq9eTCQQbMGBS/Aa+4KBOG3NCCL
+e4YKN2RJ0m2bcHRswIDAQABoAAwDQYJKoZIhvcNAQEFBQADggEBAHHOJbrGBCZCiDi3hXzVzji7
1euKMf8IUjGe+sfr+Sy5sfx9k
+icvKixImHCxSy0PeKp4QICSgfZxk2xQzHhYVgdeB0Uv2WT7FjPngRjAgLL1jxu7LIkEMKWgiGiJMPg
54gOx8kWuj5uE9vqpWGRK0dGuPNlnQxh50pSgZi4PhRGz2nCBF6WdQFNmHDqssijk//
CUHWbNvMTIWyuHhXEhtwkplc0dAp1b3hHBywYM9Vae9fUmfpbHDb0yvjBjCHvceRjwkoQG6ABfh9
9ucE1NWO51Rc03XqGnHKsnk16BlqSH0YpM/sVWYrmio/F9h75aNX+Sz5EhkB7t/n4301aPOo="}

Note: csr is the CSR in DER format and is represented in base64.

The procedure must return a JSON object with the following format:
{valid: "YES"}

or
{valid: "NO"}

Options for valid:
v YES - The CSR meets the requirements from the PKI.
v NO - The CSR does not meet the requirements from the PKI.

Authentication fails.

adapter-pki-bridge-certificate-generation-procedure
Required

This procedure is responsible for requesting a certificate from the PKI and
returning a certificate. This procedure is required and has one required
parameter csr, which has the following format:
{"deviceId":"C146B473-DA25-46A7-8A79-
E8CE5E9270EE","csr":"MIICXzCCAUcCADAbMRkwFwYDVQQDFBBsaXpldEB1cy5pYm0uY29tMIIBIjA
NBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAt9A8WLa0NqAjizn9ccZFUPBLCCGEBCUQAgNPZK
cf3wW2LhQ75MEMfLyahZvqSBFd7IMMstRrpKiobx6PTGiMCkNB7lOzNa88tCHv81+wHaTIu2Qggq
pBMFPhvBdTbS93pafEQ7kXEGBk+uU7vwalUIHQyQT1+9ZaiH4ssf8Ybi
+qYmGrOH4CjvO7h93l0sAyOOWqcGBnOCcb1+YJP9F/
EyHLNfdr1FTDAAp0ERtUqVMDeJIRxscFnqZ1GG0rXCEJqAl3IHvrn6BiLrmQOxA5oE
+Lk4ry6cizw1yxYY1mWZq9eTCQQbMGBS/Aa+4KBOG3NCCL
+e4YKN2RJ0m2bcHRswIDAQABoAAwDQYJKoZIhvcNAQEFBQADggEBAHHOJbrGBCZCiDi3hXzVzji7
1euKMf8IUjGe+sfr+Sy5sfx9k
+icvKixImHCxSy0PeKp4QICSgfZxk2xQzHhYVgdeB0Uv2WT7FjPngRjAgLL1jxu7LIkEMKWgiGiJMPg
54gOx8kWuj5uE9vqpWGRK0dGuPNlnQxh50pSgZi4PhRGz2nCBF6WdQFNmHDqssijk//
CUHWbNvMTIWyuHhXEhtwkplc0dAp1b3hHBywYM9Vae9fUmfpbHDb0yvjBjCHvceRjwkoQG6ABfh9
9ucE1NWO51Rc03XqGnHKsnk16BlqSH0YpM/sVWYrmio/F9h75aNX+Sz5EhkB7t/
n4301aPOo=","userIdentity":{"userName":"lizet@us.ibm.com","attributes":

Chapter 12. Monitoring and mobile operations 1003

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

{"LtpaToken":"dHwRqHp61ukJCkEFBMRd6g63uV1bDg0rmGBU2cuBrinFp+7L7BVb
+4OebyIRMOoKLhHldLxj9JIPiWH4s16tHtNjddBxxbd9rdjZUgnicVY8+6GM8uTEwleRW
+lVzzwJX0Htvfa2iOQD9KAWLXkNHgneiELIANjAUxGsMzJGGg2K8LYYWeBhE0JGqJcb8WFFLYH4T5
Cgb9C+qXpre/KF/MNTrv2WQF9kWjPmMlPuT1Lh1tY9oSSqN20DNNZ8VcQ8p26po5yBMvtDMtn4/
EzfdhKYeTNFzQEmQpR66caQJlRV++m/
Oq4EiZBBzkOY6zpBVtmUzcH3D2xh5PYYVcFO8g=="},"displayName":""},"appId":"UserCert"}

Note: csr is the CSR in DER format and is represented in base64.

The procedure must return a base64 string of the X.509 certificate in DER
format in a JSON object with the following format:
{ certificateBase64: "<BASE64 STRING OF THE X.509 CERTIFICATE>" }

adapter-pki-bridge-certificate-validation-procedure
Optional

This procedure is responsible for validating a user’s certificate when it is
first received. This procedure is optional. If it is not used, the PKI bridge
always returns YES. The procedure has one parameter certificate that is
in the same format as the procedure in the adapter-pki-bridge-identity-
from-certificate-procedure parameter.

The procedure is required to return a JSON object that states the validity of
the certificate:
{valid: "YES"}

or
{valid: "NO"}

Options for valid:
v YES - The certificate is considered valid by the PKI.
v NO - The certificate is not considered valid by the PKI, and the client is

required to start the enrollment process over.

adapter-pki-bridge-identity-from-certificate-procedure
Required

This procedure is responsible for creating a user certificate identity from a
certificate that is passed by the user. The procedure must have one
parameter certificate with the following format:
{"publicKey":
{"base64":"MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAt9A8WLa0NqAjizn9ccZFUPBLC
CGEBCUQAgNPZKcf3wW2LhQ75MEMfLyahZvqSBFd7IMMstRrpKiobx6PTGiMCkNB7lOzNa88tCHv8
1+wHaTIu2QggqpBMFPhvBdTbS93pafEQ7kXEGBk+uU7vwalUIHQyQT1+9ZaiH4ssf8Ybi
+qYmGrOH4CjvO7h93l0sAyOOWqcGBnOCcb1+YJP9F/
EyHLNfdr1FTDAAp0ERtUqVMDeJIRxscFnqZ1GG0rXCEJqAl3IHvrn6BiLrmQOxA5oE
+Lk4ry6cizw1yxYY1mWZq9eTCQQbMGBS/Aa+4KBOG3NCCL
+e4YKN2RJ0m2bcHRswIDAQAB","algorithm":"RSA"},"signature":
{"base64":"cONA8EKOQBiIKtdhAzG68pm0FMRkNfbVAIyZlttp+J9nXYmjO/
aGOEJk37oGzEPTO5uA/
eDArvQ9WF3BtzOdF9hw4j3ACJjo5oEnD7UTXbPzK2k1w3INX4cuOInLi7EJEKb
+CuO5uMy1mUOjx1aj/WaK
+E2KroFKNPyXdHAL7mwpkZO0aSYxUYYwcu8IAureMWZGps196Swk1YptboIEUSd5r3j07rBZX81B
AX5awqEx3tpbP3qpIJIK+6xoiu2tL67mKqJj9l1/Yb/
qQmUg6ouJtt9fWYUO7p1wJgUm9N0eixXftKttJ32Fp/
s0B7R72ntO9pGPrkYt8IUkzSq22Q==","algorithm":"SHA1withRSA"},"subjectUniqueId":"","version"
:1,"issuer":{"dn":"CN=Worklight Test Beta Signing CA,OU=Security Division,O=IBM
Worklight,L=Austin,ST=TX,C=US","cn":"Worklight Test Beta Signing
CA","uniqueId":""},"dn":"CN=user@us.ibm.com","cn":"user@us.ibm.com","valid":{"notBefore":
1381193593,"notAfter":
1382403193},"serialNumber":"efa7b0e3f0d9cef0","base64":"MIIDIzCCAgsCCQDvp7Dj8NnO8DA
NBgkqhkiG9w0BAQUFADCBizELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAlRYMQ8wDQYDVQQHEwZ
BdXN0aW4xFjAUBgNVBAoTDUlCTSBXb3JrbGlnaHQxGjAYBgNVBAsTEVNlY3VyaXR5IERpdmlzaW9u
MSowKAYDVQQDEyFXb3JrbGlnaHQgR2FycmljayBCZXRhIFNpZ25pbmcgQ0EwHhcNMTMxMDA4M
DA1MzEzWhcNMTMxMDIyMDA1MzEzWjAbMRkwFwYDVQQDFBBsaXpldEB1cy5pYm0uY29tMIIBIjA
NBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAt9A8WLa0NqAjizn9ccZFUPBLCCGEBCUQAgNPZK
cf3wW2LhQ75MEMfLyahZvqSBFd7IMMstRrpKiobx6PTGiMCkNB7lOzNa88tCHv81+wHaTIu2Qggq

1004 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

pBMFPhvBdTbS93pafEQ7kXEGBk+uU7vwalUIHQyQT1+9ZaiH4ssf8Ybi
+qYmGrOH4CjvO7h93l0sAyOOWqcGBnOCcb1+YJP9F/
EyHLNfdr1FTDAAp0ERtUqVMDeJIRxscFnqZ1GG0rXCEJqAl3IHvrn6BiLrmQOxA5oE
+Lk4ry6cizw1yxYY1mWZq9eTCQQbMGBS/Aa+4KBOG3NCCL
+e4YKN2RJ0m2bcHRswIDAQABMA0GCSqGSIb3DQEBBQUAA4IBAQBw40DwQo5AGIgq12EDMbry
mbQUxGQ19tUAjJmW22n4n2ddiaM79oY4QmTfugbMQ9M7m4D94MCu9D1YXcG3M50X2HDiPcA
ImOjmgScPtRNds/MraTXDcg1fhy44icuLsQkQpv4K47m4zLWZQ6PHVqP9Zor4TYqugUo0/
Jd0cAvubCmRk7RpJjFRhjBy7wgC6t4xZkamzX3pLCTVim1uggRRJ3mvePTusFlfzUEBflrCoTHe2ls/
eqkgkgr7rGiK7a0vruYqomP2XX9hv+pCZSDqi4m2319ZhQ7unXAmBSb03R6LFd+0q20nfYWn
+zQHtHvae072kY+uRi3whSTNKrbZ"}

Note: base64 is the DER formatted certificate. publicKey is also encoded in
base64.

The procedure must return a JSON object in the following format:
{ userName:"user@us.ibm.com",displayName:"",attributes:{},appID:"UserCert",deviceId:"C146B473-DA25-46A7-8A79-E8CE5E9270EE” }

The goal of the JSON object that is returned is to form the original user
identity of the user that is provided by the dependent realm during
generation.

Note: appId and deviceId are optional in this step. If not used, use an
empty string as the value.

Custom PKI bridge:

A custom PKI bridge can be implemented by extending the
com.org.auth.ext.UserCertificatePKIBridge abstract class.

The API for the PKI bridge abstract class can be found at UserCertificatePKIBridge.

WebSphere Application Server and Liberty profile requirements
User certificate authentication uses standard SSL X.509 User Certificates, which
requires the use of an SSL channel.

There are a few requirements around SSL that must be configured in order for user
certificate authentication to work.
v The SSL channel for WebSphere Application Server or the Liberty profile must

be configured to include the certificate authority (CA) in the trust store that is
used to sign user certificates.

v The application server must be configured to allow a user certificate, but not
require it. This configuration is important so that IBM Worklight can send
unauthenticated challenges to the device when the device does not provide a
user certificate.

v The user registry for the application server must be defined. The name that is
used to authenticate a user against that user registry must match the common
name (CN) in a generated user certificate.

v If you want to protect the IBM Worklight Server with the WebSphere
Application Server Liberty Profile security mechanisms, you must install a fix for
APAR PI10103 for Liberty Versions 8.5.5.0 and 8.5.5.1. For more information, see
An IBM Worklight client cannot handle basic authentication without a
WebSphere Application Server Liberty Profile fix.

Configuring the Liberty profile:

You must enable an HTTPS endpoint in WebSphere Application Server Liberty
profile that uses the server's certificate, and trusts the client certificates.

Chapter 12. Monitoring and mobile operations 1005

PLUGINS_ROOT/com.ibm.worklight.apiref.doc/html/refjava-worklight-server/html/com/worklight/core/auth/ext/UserCertificatePKIBridge.html
http://www.ibm.com/support/docview.wss?uid=swg21659265
http://www.ibm.com/support/docview.wss?uid=swg21659265

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Before you begin

Ensure that you understand the documentation at Enabling SSL communication for
the Liberty profile. To set up the Worklight Server, see the WebSphere Application
Server Liberty profile documentation about setting up SSL for the server at Liberty
profile: SSL configuration attributes.

About this task

The application server requirements can be configured on the WebSphere
Application Server Liberty profile in the server.xml file.

Procedure

1. Install a server certificate for use by the SSL channel, and configure the SSL
channel.

2. Add a trust store to the configuration that contains a keystore with the CA
certificate that is used to sign user certificates. Add the following element to the
server.xml file:
<keyStore id="defaultTrustStore" location="trust.jks" type="JKS" password="defaultPWD" />

3. Enable the client authentication support by adding the
clientAuthenticationSupported="true" attribute to the SSL element in the
server.xml file.

4. Access the Worklight Console over SSL. You are presented with a trusted
website that asks for an optional user certificate.

Updating the server authentication configuration
A requirement to enable the User Certificate Authentication feature is to configure
the authentication configuration on the Worklight Server.

About this task

You must update the authenticationConfig.xml file to configure your server to
use the User Certificate Authentication feature. User certificate authentication uses
standard Worklight authentication mechanisms: authenticator and login modules.
The com.worklight.core.auth.ext.UserCertificateAuthenticator and the
com.worklight.core.auth.ext.UserCertificateLoginModule modules are bundled
with the core Worklight Server library.

Procedure
1. From within your server configuration, open the authenticationConfig.xml file

for editing.
2. Add a realm definition inside the <realms> attribute in your

authenticationConfig.xml file.
<realm name="wl_userCertificateAuthRealm"

loginModule="UserCertificateLoginModule">
<className>com.worklight.core.auth.ext.UserCertificateAuthenticator</className>
<parameter name="dependent-user-auth-realm"

value="<DEPENDENT REALM NAME HERE>" />
<parameter name="pki-bridge-class"

value="<PKI BRIDGE CLASS>" />
</realm>

3. Modify this realm definition by supplying your own dependent realm by
specifying its name for the dependent-user-auth-realm parameter and a PKI
bridge implementation (full Java class path) for the pki-bridge-class
parameter. You can use the included PKI bridge classes such as embedded

1006 IBM Worklight V6.1.0

http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/topic/com.ibm.websphere.wlp.nd.doc/ae/twlp_sec_ssl.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=/com.ibm.websphere.wlp.nd.doc/ae/rwlp_ssl.html
http://pic.dhe.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=/com.ibm.websphere.wlp.nd.doc/ae/rwlp_ssl.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

(“Embedded PKI bridge” on page 999) or adapter-based (“External/adapter-
based PKI bridge” on page 1001) or supply your own custom PKI bridge
implementation (“Custom PKI bridge” on page 1005).

4. Add your custom parameters to this realm definition based on your PKI bridge
implementation. Bundled PKI bridge implementations such as Embedded
(“Embedded PKI bridge” on page 999) or Adapter-Based (“External/adapter-
based PKI bridge” on page 1001) have extra required parameters that must be
added.

5. Add the following login module definition, as-is, to your <loginModules>
element in the authenticationConfig.xml file.
<loginModule name="UserCertificateLoginModule">

<className>com.worklight.core.auth.ext.UserCertificateLoginModule</className>
</loginModule>

6. Add the wl_userCertificateAuthRealm realm as a test in the security test that
you want to use for your application or environment.

7. Add the security test to the resource you want to protect. To protect an adapter
procedure, add the securityTest attribute for the procedure. For more
information, see “Overview of IBM Worklight adapters” on page 525. To protect
an application environment, define a security test for each environment in the
application-descriptor.xml file, by using the securityTest="your_test_name"
property. If no security test is defined for a specific environment, only a
minimal set of default platform tests are run.
<securityTest name="your_test_name">

<testUser realm="wl_userCertificateAuthRealm" />
<testDeviceId provisioningType="none" />

</securityTest>

Note: To protect your application or adapter procedure, reference your security
test in your application descriptor file.
<iphone bundleId="com.UserCertApp" version="1.0" securityTest="your_test_name">

User certificate authentication on the client
The User Certificate Authentication feature requires little configuration on the
client side. The Worklight client run time takes care of most of the heavy lifting on
your behalf. There are however, a few things you need to be aware of to ensure
successful and secure communication with your server.

Establishing trust

Because the User Certificate Authentication feature requires communication over
HTTPS, the first thing you must ensure is that your client device trusts the server's
credentials that are sent on the SSL handshake.

Each mobile platform comes with a predefined set of trusted certificate authorities
(CAs) that are deemed trustworthy by the platform. Trust is easily established if
your server uses a server certificate that is signed by one of these trusted CAs.

However, if your server uses a CA that is unknown to your device, you must do
some extra work on the client side to establish appropriate trust. To establish trust,
you must install the trust anchor certificate on the client device. The trust anchor is
either the root CA, or the root certificate if you are using a self-signed certificate.
For more information, see “Configuring SSL between Worklight Servers and clients
by using certificates that are not signed by a trusted certificate authority” on page
125.

Chapter 12. Monitoring and mobile operations 1007

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Dependent user realm

The first time a user attempts to connect to the server, Worklight tries to enroll the
user into the PKI and provision the device with the user certificate. To enroll the
user, Worklight requires the help of a dependent user authentication realm. This
behavior is all configured on the server. But you must ensure that your application
has the appropriate challenge handlers that are required to handle the challenges
that come from the server. The dependent realm challenge handlers do not require
any additional configuration. For more information, see the appropriate section of
this user documentation or getting started modules for instructions on how to
write the respective challenge handlers for your dependent user realm.

iOS Group Support

User certificates are issued by default to a user on a specific application and
device. Support for iOS is provided to issue a certificate to the user on a specific
device and to a group of applications. The same user certificate can be shared
among a group of applications that are installed on the device, allowing the user to
only authenticate through a dependent realm once, and not for every application.

In this case, the user enrollment process that requires the user to log in to a
dependent realm happens the first time that the user attempts to log in to the
server on a particular device. After the device is provisioned with the necessary
certificate, all subsequent authentications to the server from any of the Worklight
applications that are designated by you use the same certificate to authenticate to
the server.

To configure the sharing of user certificates among a group of applications, see
“Configuring user certificate authentication for a group of applications” on page
1009.

Clearing certificates on the chain

Certificates on the client are managed by the Worklight client run time. They are
installed and removed from the device as needed. However, there might be
situations when you want the ability to clear the certificates that are installed on
the device. For this reason, a JavaScript API is provided. The API allows the
application to remove the certificates at more convenient times, like during test
and development, or when the device is transferred to a new user.

The following API removes the certificate on the device for the specific application
in use:
WL.UserAuth.deleteCertificate();

On iOS only, if you would like to delete the certificate that is associated with a
specific group of applications, use the following API:
WL.UserAuth.deleteCertificate("yourGroupNameHere");

Security considerations

This new feature introduces a powerful and ITU-T X.509 standards-based way to
authenticate users. It also introduces a password-less login mechanism. The
identity is established by the Worklight client run time as part of the application
that presents the certificate as part of the server-side connection. Although this
behavior greatly simplifies the user experience, the following precautions must be

1008 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

taken by the enterprise. These precautions ensure that there is adequate protection
on the device to ensure cases where the user loses the device or when the device is
stolen.
1. Single user is required. The device is owned and used only by a single user

and not accessible to others.
2. Device must be maintained under a device passcode lock or PIN to ensure that

only the designated user can access the device and applications.

Configuring user certificate authentication for a group of
applications
You can configure the User Certificate Authentication feature to issue a certificate
to a user on a device for a group of applications that are protected by the user
certificate authentication realm. This configuration allows a user to authenticate
once and be automatically authenticated to a set of applications on the device.

About this task

You can configure the User Certificate Authentication feature to allow a group of
applications to authenticate with the same X.509 client certificate. This function is
supported only on iOS environments.

Procedure
1. Add a property to the worklight.plist worklight property list file on every

application that you want to be part of the same group.
Key: x509AccessGroup
Value: <choose a name for your group>

2. Ensure that all applications in your group are part of the same iOS
keychain-access-groups that are specified in your entitlement property list file.
By default, Worklight hybrid applications are part of the worklight.group
access group that is defined in the entitlement property file. Ensure that this
group continues to be the first group in the list.

3. The application-identifier entitlement must be the same for all the applications
in your group. Only applications from the same organization can share user
certificates.

4. Ensure that all applications in this group are protected on the server by the
same user certificate authentication realm.

Troubleshooting the User Certificate Authentication feature
Find solutions to problems with the User Certificate Authentication feature.

Table 189. User Certificate Authentication troubleshooting guidelines

Problem Actions to take

The server is not responding even though it
is accessible through the browser when it
uses a certificate that is signed by a private
CA.

Make sure that you can reach the Worklight
Server on your device. For example, go to
the Worklight Console on the device's
internet browser. If you can reach it, then
the most likely error is that the client is not
trusting the server's certificate. The server’s
certificate is most likely a certificate that is
signed by a private CA. To fix this problem,
you must install the root CA on the device
so that it is trusted. For more information,
see “Establishing trust” on page 1007.

Chapter 12. Monitoring and mobile operations 1009

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Table 189. User Certificate Authentication troubleshooting guidelines (continued)

Problem Actions to take

Certificates that are signed by a private CA
work on Android but not on iOS.

When Android is in debuggable mode, some
SSL errors are ignored. This behavior gives
the impression that SSL is working. Android
is in debuggable mode when the APK is
unsigned, or when you explicitly set it in the
manifest. Worklight sets it to debuggable in
the manifest by default. To make the
behavior consistent, set the Android
application to debuggable:false in the
manifest, or sign the APK. Make sure that
there is no explicit declaration in the
manifest that sets it to debuggable mode.
For more information about how to trust
certificates that are signed by your private
CA, see “Configuring SSL between
Worklight Servers and clients by using
certificates that are not signed by a trusted
certificate authority” on page 125.

javax.net.ssl.SSLPeerUnverifiedException
on Android or
WLSecureRequest:sendRequestToServerWithURL
A connection failure occured: SSL
Problem (Possible causes may include a
bad/expired/self-signed certificate,
clock set to the wrong date) on iOS.

One of the certificates was not trusted.
Usually it is because the server did not send
the server certificate with the whole
certificate chain in the right order, when it
uses an intermediate CA. For more
information, see “SSL configuration” on
page 998. Another explanation can be that
the certificate was revoked by the certificate
revocation list (CRL), and the PKI did not
allow the device to renew the certificate.

Authentication fails with an exception in the
PKI.

There was an exception somewhere in the
PKI bridge. To see more information about
the exception, make sure that the Worklight
Server has trace that is enabled for
com.worklight.*=all, and search for
UserCertificate* in the trace file. Possible
reasons include a syntax or runtime error in
the adapter when you use the adapter-based
PKI bridge, or a configuration error in the
embedded PKI.

The client certificate is expired or not yet
valid.

If the certificate is expired or not yet valid,
the client logs this information in the client's
logs. The client then proceeds with the
authentication as if it did not have a
certificate. The PKI then decides whether it
allows the user to renew the certificate or
not. In the ’certificate not yet valid’ scenario,
verify that the device and the server clocks
are set correctly.

License tracking
IBM Worklight is available in Enterprise (B2E) and Consumer (B2C) editions, and
the license terms vary depending on which edition was sold.

License tracking is enabled by default in Worklight, which tracks metrics relevant
to the licensing policy such as active client devices and installed apps.

1010 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

This information helps determine if the current usage of Worklight is within the
license entitlement levels and can prevent potential license violations.

Also, by tracking the usage of client devices, and determining whether the devices
are active, IBM Worklight administrators can decommission devices that are no
longer accessing the Worklight platform. This situation might arise if an employee
has left the company, for example.

License tracking details are gathered by specifying configuration properties in
JNDI, and the data that is gathered is displayed in a License Tracking report that is
accessed from the Worklight Console.

Configuring your license tracking details
Administrators can set Java Naming and Directory Interface (JNDI) configuration
properties to gather data that relates to license terms for devices that are accessing
the IBM Worklight platform. This data can be displayed in the License Tracking
report, which is accessed from the Worklight Console.

About this task

Administrators can specify the following JNDI configuration properties, which
enable the administrators to gather the required data:

wl.device.decommission.when
The number of days of inactivity after which a client device is decommissioned
by the device decommissioning task. The default value is 90 days.

wl.device.archiveDecommissioned.when
A value, in days, that defines when client devices that were decommissioned
will be placed in an archive file when the decommissioning task is run. The
archived client devices are written to a file in the Worklight Server
home\devices_archive directory. The name of the file contains the time stamp
when the archive file is created. The default value is 90 days.

wl.device.tracking.enabled
A value that is used to enable or disable device tracking in Worklight. For
performance reasons, you can disable this flag when Worklight is running only
Business-to-Consumer (B2C) apps. When device tracking is disabled, the
license reports are also disabled and no license metrics are generated.

For more information about specifying JNDI properties, see Configuring an IBM
Worklight project in production by using JNDI environment entries.

The decommissioning task is run daily, as a Worklight Server task in the
background. This task performs the following actions:
v Decommissions inactive devices, based on the wl.device.decommission.when

setting.
v Optionally, archives older decommissioned devices, based on the

wl.device.archiveDecommissioned.when setting.
v Generates the License Tracking report.

Active client devices are those devices whose status is not decommissioned;
inactive client devices have a decommissioned status.

Procedure
1. Specify the required properties as JNDI properties.

Chapter 12. Monitoring and mobile operations 1011

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

2. View the data in the License Tracking report in the Worklight Console. For
more information, see “License Tracking report.”

License Tracking report
IBM Worklight provides a report that shows how many client devices are accessing
the platform, and whether they are active or decommissioned. The report also
provides historical data.

The License Tracking report shows the following data:
v The number of applications deployed in the Worklight Server
v The number of client devices, both active and decommissioned
v The highest number of client devices reported over the last n days, where n is

the number of days of inactivity after which a client device is decommissioned.

Administrators might want to analyze data further. For this purpose, the number
of active client devices per application, the generated report details, and an
historical listing of license metrics are captured in a CSV file that can be
downloaded for further analysis.

The data is gathered by using the following JNDI configuration properties:
v wl.device.decommission.when

v wl.device.archiveDecommissioned.when

v wl.device.tracking.enabled

For more information, see Configuring your license tracking details.

To access the License Tracking report, click the Badge icon in the lower left corner

of the Worklight Console (). The License Tracking report is displayed:

1012 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

To save key details from the License Tracking report in a CSV file, click the CSV
icon at the lower left corner of the report.

Chapter 12. Monitoring and mobile operations 1013

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

1014 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 13. Integrating with other IBM products

To integrate IBM Worklight with other IBM products, you implement adapters and
authentication features.

This topic is intended for developers and administrators who want to understand
the various integration options available with IBM Worklight, specifically
concerning IBM Endpoint Manager for Mobile Devices, IBM WebSphere Cast Iron,
IBM WebSphere DataPower, and IBM Security Access Manager.

Introduction to IBM Worklight integration options
Developers and administrators can use integration options that are available as
part of the larger IBM Worklight offering, as introduced here.

IBM Worklight provides extensible connectivity options to external resources by
using the adapter technology available in IBM Worklight. IBM Worklight also
provides a flexible authentication framework to support existing security
requirements through the authenticator or login modules.

Figure 195 on page 1016 gives a high-level view of the topology context for an app
on a device that connects to IBM Worklight. It also shows how IBM Worklight uses
the adapter model to connect to existing back-end systems and other Internet or
intranet sources. IBM Worklight Enterprise Edition and IBM Worklight Consumer
Edition provide capabilities to integrate with IBM Endpoint Manager for Mobile
Devices and IBM WebSphere Cast Iron. In addition, there are other IBM products
that provide integration options for enterprise connectivity and enterprise security,
such as IBM WebSphere DataPower and IBM Security Access Manager.

Item Description

A App

D Device

N Network

I/i Internet or intranet

WL IBM Worklight

EBE Existing back ends

I Other Internet sources

1015

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Figure 196 shows where these products fit within the typical IBM Worklight
topology diagram shown in Figure 195.

Integration with Cast Iron
An overview of the use of IBM WebSphere Cast Iron to enable enterprise
connectivity within an IBM Worklight environment.

There are four adapters supported as part of IBM Worklight:
v SQL
v HTTP
v Cast Iron
v JMS

The Cast Iron adapter provides first-class integration with all of the cloud-based,
hardware appliance, or software-based hypervisor editions of IBM WebSphere Cast
Iron.

IBM WebSphere Cast Iron enables companies to integrate applications, regardless
of whether the applications are located on-premise or in public or private clouds.

Figure 195. Overall Topology

Figure 196. Integration Points

1016 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

WebSphere Cast Iron provides an approach to integrating applications that does
not require any programming knowledge. You can build integration flows in
WebSphere Cast Iron Studio, which is a graphical development environment that is
installed on a personal computer. With Cast Iron Studio, you can create an
integration project that contains one or more orchestrations. Each orchestration is
built with a number of activities that define the flow of data. You can define the
details of an activity from the configuration panes within Cast Iron Studio.

Figure 197 shows how the topology in Figure 1 in Introduction to IBM Worklight
integration options changes to reflect the use of Cast Iron, with the IBM Worklight
Cast Iron adapter represented by the thicker line between IBM Worklight and Cast
Iron.

For more information about Cast Iron adapters, see the module Cast Iron adapter -
Communicating with Cast Iron, under category 4, Worklight server-side development, in
Chapter 3, “Tutorials and samples,” on page 27.

Integration with reverse proxy
An overview of the use of a reverse proxy to enable enterprise connectivity within
an IBM Worklight environment.

Reverse proxies typically front IBM Worklight run times as part of the deployment
shown in Figure 198, and follow the gateway pattern.

The gateway icon (GW) represents a reverse proxy such as WebSphere DataPower,
or IBM Security Access Manager. In addition to protecting IBM Worklight resources
from the Internet, the reverse proxy provides termination of SSL connections and
authentication. The reverse proxy, in effect, can also act as a policy enforcement
point (PEP).

Figure 197. Integration with Cast Iron

Figure 198. Integration with reverse proxy

Chapter 13. Integrating with other IBM products 1017

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

When using a gateway, app (A) on device (D) uses the public URI advertised by
the gateway instead of the internal IBM Worklight URI. The public URI can be
exposed as a setting as part of the app or can be built in during promotion of the
app to production before publishing the app to public or private app stores.

Authentication at the gateway
Use of a reverse proxy to provide authentication to IBM Worklight.

If authentication is terminated at the gateway, IBM Worklight can be informed of
the authenticated user by a shared context, such as a custom HTTP header or a
cookie. By using the extensible authentication framework, IBM Worklight can be
configured to use the user identity from one of these mechanisms and establish a
successful login. A typical authentication flow is shown in Figure 199.

This configuration was tested with DataPower and IBM Security Access Manager
for header-based authentication and LTPA-based authentication.

Header-based authentication
Use of header-based authentication to log in to IBM Worklight through a reverse
proxy.
v On successful authentication, the gateway forwards a custom HTTP header with

the user name or ID to IBM Worklight.
v IBM Worklight is configured to use HeaderAuthenticator and HeaderLoginModule

on either Tomcat or WebSphere Application Server

Figure 199. Authentication flow

1018 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

LTPA-based authentication
Use of LTPA-based authentication to log in to IBM Worklight through a reverse
proxy.
v On successful authentication, the gateway forwards an LTPA token (in the form

of an HTTP cookie) to IBM Worklight
v IBM Worklight on WebSphere Application Server is configured to use

WebSphereFormBasedAuthenticator and WebSphereLoginModule.

IBM Endpoint Manager for Mobile Devices overview
An overview of the features and architecture of IBM Endpoint Manager for Mobile
Devices.

IBM Worklight allows the integration of security features that are provided by IBM
Endpoint Manager. The purpose of IBM Endpoint Manager is to deliver a unified
systems and security management solution for all enterprise devices.

The most interesting capabilities that are provided by IBM Endpoint Manager for
Mobile Devices from a security standpoint are delivered in the following areas:
v Enterprise Access Management – Configuration of email, VPN, and WiFi.
v Policy and Security Management – Password policies, device encryption,

jailbreak, and root detection.
v Management Actions – Selective wipe, full wipe, deny email access, remote lock,

user notification, clear passcode.
v Application Management – Application inventory, enterprise app store,

whitelisting, blacklisting, Apple Volume Purchase Program (VPP).
v Container Solution – Enterproid Divide provides a secure container for BYOD

(Bring Your Own Device) devices that is secure and manageable. Divide is an
app that provides a workspace that mimics device capabilities while being
isolated from the rest of the device. This allows information within Divide to be
secured and managed separately from the rest of the device.

Chapter 13. Integrating with other IBM products 1019

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v PIM (Personal Information Manager) – NitroDesk TouchDown is a PIM product
that allows enterprise data such as email to be secured separately in a BYOD
Android environment.

v Support for SAFE (Samsung's proprietary APIs that allow more security than
standard Android).

IBM Endpoint Manager for Mobile Devices architecture

IBM Endpoint Manager for Mobile Devices uses two approaches to manage those
devices:
v An agent-based, Mobile Device Management (MDM) API-based approach that is

supported on Android and iOS Devices through the IBM Mobile Client. This
approach provides the full set of capabilities through either a native Agent on
the Android platform or the usage of Apple’s MDM APIs and the Push
Notification Server infrastructure.

v An email-based management through Exchange (Active Sync) and Lotus®

Traveler (IBM Sync). In this approach, Android, iOS, Windows Phone, and
Symbian are supported, but the functionality is limited and includes the ability
to wipe a device, deny email access and set password policies. You cannot see
individual device details, perform application management, configure WiFi or
VPN connections or provide advance restrictions as in the agent–based, MDM
API-based approach.

v Container management is available through Enterproid Divide, as discussed in
the previous section.

v PIM is available through NitroDesk TouchDown.

The following diagram shows an architectural overview of a production-level,
agent-based, MDM API-based implementation with IBM Endpoint Manager for
Mobile Devices.

1020 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Managing end points with IBM Endpoint Manager
An overview of the use of IBM Endpoint Manager for Mobile Devices to manage
devices within an IBM Worklight environment.

IBM Worklight provides app management capabilities as part of the platform. IBM
Endpoint Manager provides specific device management capabilities. The app can
also use certain device functions which leads to an overlap in some of the
management aspects between IBM Worklight and IBM Endpoint Manager for
Mobile Devices, as shown in Figure 200.

For devices that must be managed as enterprise assets and devices that must be
controlled across applications, IBM Endpoint Manager provides the following
mobile device management capabilities:
v Safeguard of enterprise data
v Flexible management
v Maintained compliance
v Unified infrastructure

Safeguard of Enterprise Data

v Selectively wipes enterprise data when devices are lost or stolen.
v Configures and enforces passcode policies, encryption, VPN, and more.

Flexible Management

v Secures and manages employee-owned and corporate-owned mobile
devices by using a combination of email-based and agent-based
management, while preserving the native device experience.

Maintained Compliance

Figure 200. IBM Worklight and IBM Endpoint Manager management capabilities

Chapter 13. Integrating with other IBM products 1021

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

v Automatically identifies non-compliant devices.
v Denies email access or issues user notifications until corrective actions

are implemented.

Unified Infrastructure

v Uses a single infrastructure to manage and secure all of your enterprise
devices; that is, smartphones, media tablets, desktops, notebooks, and
servers.

Using WebSphere DataPower as a push notification proxy
IBM WebSphere DataPower can be used as a gateway for outbound connections to
facilitate monitoring and routing. IBM Worklight makes outbound connections to
notification mediators in order to push notifications for mobile applications. You
can set up DataPower to act as a push notification proxy for Worklight mobile
applications.

About this task

IBM WebSphere DataPower SOA Appliances are built for simplified deployment
and hardened security, bridging multiple protocols, and performing conversions at
wire speed. These capabilities help an organization to achieve and maintain its
security and operational polices.

DataPower can act as a reverse proxy and security gateway for handling inbound
traffic into an enterprise. In addition, in a situation where corporate policy
mandates that all outbound connections must be made through a gateway to
facilitate monitoring and routing, DataPower can also be used as a gateway for
such a requirement.

IBM Worklight makes outbound connections to a notification mediator, APNS
(Apple Push Notification Service) or GCM (Google Cloud Messaging servers), in
order to push notifications for mobile applications. DataPower can act as a proxy
between IBM Worklight Server and APNS or GCM.

Procedure
v For both APNS and GCM, you must configure both DataPower and the

Worklight Server.
v For GCM, there are two possible DataPower configurations that would enable it

to act as a GCM proxy for Worklight: a TCP proxy configuration and a web
application firewall configuration.

v For more information, and detailed step-by-step instructions, see the
developerWorks article Using WebSphere DataPower as a push notification
proxy for Worklight mobile applications.

Useful links
Other resources on integration with IBM WebSphere Cast Iron, IBM Endpoint
Manager, IBM WebSphere DataPower, and IBM Security Access Manager are
available from the product websites and IBM Redbooks® website.

For more information, use the following links:

IBM WebSphere Cast Iron

http://www.redbooks.ibm.com/redpapers/pdfs/redp4840.pdf

1022 IBM Worklight V6.1.0

http://www.ibm.com/developerworks/websphere/techjournal/1402_ramachandra/1402_ramachandra.html
http://www.ibm.com/developerworks/websphere/techjournal/1402_ramachandra/1402_ramachandra.html
http://www.redbooks.ibm.com/redpapers/pdfs/redp4840.pdf

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

http://www.redbooks.ibm.com/abstracts/sg248004.html?Open

IBM Endpoint Manager

http://www.ibm.com/software/tivoli/solutions/endpoint/mdm/

IBM WebSphere DataPower

http://www.redbooks.ibm.com/abstracts/redp4790.html?Open

http://www.redbooks.ibm.com/abstracts/sg247620.html?Open

IBM Security Access Manager

http://www.redbooks.ibm.com/abstracts/redp4621.html?Open

Chapter 13. Integrating with other IBM products 1023

http://www.redbooks.ibm.com/abstracts/sg248004.html?Open
http://www.ibm.com/software/tivoli/solutions/endpoint/mdm/
http://www.redbooks.ibm.com/abstracts/redp4790.html?Open
http://www.redbooks.ibm.com/abstracts/sg247620.html?Open
http://www.redbooks.ibm.com/abstracts/redp4621.html?Open

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

1024 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 14. Migrating from the WebSphere Application Server
Feature Pack

To migrate from the WebSphere Application Server Feature Pack, select an
appropriate scenario and follow its procedures.

About this task

This topic is intended for developers who want to migrate applications developed
with the Feature Pack for Web 2.0 and Mobile to IBM Worklight.

You can migrate applications that use the client programming model, the server
programming model, JAX-RS, JSON-RPC, or proxies.

Procedure
1. Select the scenario that your application uses.
2. Follow the steps.
3. Refer to the Dojo Showcase example for support.

Migration scenarios
This information is intended for developers who want to migrate applications
developed with the WebSphere Application Server Feature Pack for Web 2.0 and
Mobile to IBM Worklight.

A mobile web application created with the Feature Pack for Web 2.0 and Mobile uses
open standards such as HTML, CSS, and JavaScript. It might connect to SOA-based
services by using JAX-RS and JSON-RPC.

You can use IBM Worklight to package these mobile web applications as native
apps and make them available in an application store. In its simplest form, this
migration consists of repackaging the apps within IBM Worklight. You can also use
device APIs (through Apache Cordova) and IBM Worklight client APIs.

Migrating an application that uses the client programming model
Migrate a mobile app by using the IBM Worklight client programming model,
where the mobile web application is repackaged as a mobile hybrid application.

About this task

IBM Worklight assumes that the application is packaged with HTML, JavaScript, or
CSS and that it can be updated in static form to the native shell, by using direct
update features. To migrate the app, complete the steps in the Procedure section.

These steps describe a minimal migration. After migration, you can package the
app and deploy it to an app store.

To maximize the reuse of services and user interface code, you can refactor the
code to use Environment and Skin support. Keep the basic code in the common
directory and create overrides for each environment. Use dojo/has feature
detection for skin-specific behaviors.

1025

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Finally, you can extend your mobile app to use advanced features of IBM
Worklight. For example, you can use Cordova to control device features such as
cameras, and you can use IBM Worklight client APIs to control security.

Procedure
1. Create an IBM Worklight application, selecting the appropriate target

environments. A common directory and a directory for each environment are
generated.

2. Optional. Because devices vary in the features or functions they have, you can
use IBM Worklight application skins to provide a finer distinction than
environments. The IBM Worklight application skin is a user interface variant of
an application that can be applied during run time based on runtime device
properties. These properties include operating system version, screen
resolution, and form factor. For example, within the Android environment
folder, you might create a subfolder for Android 4.0 to take advantage of
features only available in Android 4.0.

3. Migrate the project structure to the IBM Worklight Environment Model:
a. Copy common web resources to the common directory.
b. Continue to use has feature detection (dojo/has).
c. Continue to use the deviceTheme feature (dojox/mobile/theme) for default

Dojo mobile themes.

Migrating an application that uses the server programming model
Migrate a mobile app by using the IBM Worklight server programming model,
which shows how to extend apps to use IBM Worklight server-side facilities.

About this task

The server programming model is an alternative model to the client programming
model. Applications use the server programming model if they use server-side
generated web content, such as JSPs and JSF for rendering HTML. Compared to
natively packaged apps, remote loading of resources reduces network performance.
Complete the following steps to migrate the app:

Procedure
1. Create a project structure according to the IBM Worklight Environment Model.

This step is required for creating a native shell for each mobile platform. The
shell is a simple Cordova instance that loads a remote resource from the
application server.

2. Continue to use the deviceTheme feature (dojox/mobile/theme) for default Dojo
mobile themes.

3. Use "has" feature detection (dojo/has) for device operating-system-specific
behaviors.

4. Determine dependencies for your mobile application:
a. Create a custom Dojo layer for core Dojo and Dojox mobile libraries.
b. Create a custom Dojo layer for common application Dojo libraries.
c. Create a custom Dojo layer for any platform-specific Dojo libraries.

1026 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Considerations for applications that use JAX-RS, JSON-RPC, or
proxying

Mobile web applications that connect to SOA-based services by using JAX-RS,
JSON-RPC, or through a proxy, might have additional steps when being migrated
from the WebSphere Application Server Feature Pack for Web 2.0 and Mobile to
IBM Worklight.

Migrating an application that uses JAX-RS

If your application contains services that were written using JAX-RS hosted on
WebSphere Application Server, consider the following points:
v No change is required to continue to use the WebSphere Security Model. You

can use existing REST services from the app.
v To integrate security with IBM Worklight, you must proxy existing REST

services that use JSON-RPC through an HTTP adapter.
v Services are hosted in a separate EAR or WAR file from the IBM Worklight

Application. However, there might be restrictions on host name and port
because the services and application are in the same sandbox domain.

Migrating an application that uses JSON-RPC

If your application contains services that were written using JSON-RPC hosted on
WebSphere Application Server, consider the following points:
v No change is required to continue to use the WebSphere Security Model. You

can use existing RPC services from the app.
v To integrate security with IBM Worklight, you must proxy existing RPC services

that use JSON-RPC through an HTTP adapter.
v Services are hosted in a separate EAR or WAR file from the IBM Worklight

Application. However, there might be restrictions on host name and port
because the services and application are in the same sandbox domain.

Migrating an application that uses proxying

If your application contains external services that require an Ajax Proxy on
WebSphere Application Server, consider the following points:
v No change is required to continue to use the WebSphere Security Model. You

can use the existing Ajax Proxy from the app.
v To integrate security with IBM Worklight you must proxy existing HTTP

requests that use JSON-RPC through an HTTP adapter
v Services are hosted externally of the IBM Worklight Application. However, you

can use the Ajax Proxy for advanced features.

Example: Migrating the Dojo showcase sample
Demonstrate the steps required to migrate the Dojo showcase sample from the
WebSphere Application Server Feature Pack for Web 2.0 and Mobile to IBM
Worklight.

Chapter 14. Migrating from the WebSphere Application Server Feature Pack 1027

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

About this task

The application to be migrated is the Dojo showcase which is a mobile web
application that demonstrates the capabilities of the Dojo toolkit. You can run the
demonstration at http://demos.dojotoolkit.org/demos/mobileGallery/demo-
iphone.html

To migrate the application, complete the following steps:

Procedure
1. Create an IBM Worklight project and create an IBM Worklight application in

the project.
2. Copy all the resources for the web application to the common directory of the

IBM Worklight application.
3. The Dojo showcase application contains only static html pages. If you have

remote dynamic server pages, you can either use the JavaScript templating
library or use web view. The JavaScript templating library renders the pages
locally on devices. Web view loads the remote server pages.

4. Change the <mainfile> element in the application-descriptor.xml file in the
IBM Worklight application. Make sure the content of <mainfile> element
points to the correct startup html page.

5. If you have startup JavaScript logic that initializes the web application when
the browser loads it, move the startup logic to the wlCommonInit method of the
.js file in the common/js directory. IBM Worklight initializes its own library and
runtime environment during startup and the application startup logic follows
the IBM Worklight initialization process.

6. To keep the application as small as possible, do not add any other IBM
Worklight skin to the application. Adding a skin results in the duplication of all
the web application resources in the final package built.

7. Minimize the required Dojo modules into one .js file so that the file size of the
application is minimal. IBM Worklight does not provide any javascript
shrinking in the build process.

1028 IBM Worklight V6.1.0

http://demos.dojotoolkit.org/demos/mobileGallery/demo-iphone.html
http://demos.dojotoolkit.org/demos/mobileGallery/demo-iphone.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 15. Glossary

This glossary provides terms and definitions for the IBM Worklight software and
products.

The following cross-references are used in this glossary:
v See refers you from a nonpreferred term to the preferred term or from an

abbreviation to the spelled-out form.
v See also refers you to a related or contrasting term.

For other terms and definitions, see the IBM Terminology website (opens in new
window).

“A” “B” on page 1030 “C” on page 1030 “D” on page 1031 “E” on page 1032 “F”
on page 1032 “G” on page 1032 “H” on page 1033 “I” on page 1033 “K” on page
1033 “L” on page 1033 “M” on page 1034 “N” on page 1034 “P” on page 1034 “R”
on page 1035 “S” on page 1035 “T” on page 1036 “V” on page 1036 “W” on page
1037 “X” on page 1037

A
acquisition policy

A policy that controls how data is collected from a sensor of a mobile
device. The policy is defined by application code.

adapter
The server-side code of an IBM Worklight application. Adapters connect to
enterprise applications, deliver data to and from mobile applications, and
perform any necessary server-side logic on sent data.

alias An assumed or actual association between two data entities, or between a
data entity and a pointer.

Android
A mobile operating system created by Google, most of which is released
under the Apache 2.0 and GPLv2 open source licenses. See also mobile
device.

API See application programming interface.

app A mobile device application.

Application Center
An IBM Worklight component that can be used to share applications and
facilitate collaboration between team members in a single repository of
mobile applications. See also Company Hub.

Application Center installer
An application that lists the catalog of available applications in the
Application Center. The Application Installer must be present on a device
in order to install applications from your private application repository.

application descriptor file
A metadata file that defines various aspects of an application.

© Copyright IBM Corporation 2014 1029

http://www.ibm.com/software/globalization/terminology/

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

application programming interface (API)
An interface that allows an application program that is written in a
high-level language to use specific data or functions of the operating
system or another program.

authentication
A security service that provides proof that a user of a computer system is
genuinely who that person claims to be. Common mechanisms for
implementing this service are passwords and digital signatures.

authenticator

1. In the Kerberos protocol, a string of data that is generated by the client
and sent with a ticket that is used by the server to certify the identity
of the client.

2. A server-side component that issues a sequence of challenges on the
server side and responds on the client side. See also challenge handler.

B
Base64

A plain-text format that is used to encode binary data. Base64 encoding is
commonly used in User Certificate Authentication to encode X.509
certificates, X.509 CSRs, and X.509 CRLs. See also DER encoded, PEM
encoded.

binary Pertaining to something that is compiled, or is executable.

BlackBerry OS
A closed source, proprietary mobile operating system created by Research
in Motion. See also mobile device.

block A collection of several properties (such as adapter, procedure, or
parameter).

build definition
An object that defines a build, such as a weekly project-wide integration
build.

C
CA See certificate authority.

callback function
Executable code that allows a lower-level software layer to call a function
defined in a higher-level layer.

catalog
A collection of apps.

certificate
In computer security, a digital document that binds a public key to the
identity of the certificate owner, thereby enabling the certificate owner to
be authenticated. A certificate is issued by a certificate authority and is
digitally signed by that authority. See also certificate authority.

certificate authority (CA)
A trusted third-party organization or company that issues the digital
certificates. The certificate authority typically verifies the identity of the
individuals who are granted the unique certificate. See also certificate.

1030 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

certificate authority enterprise application
A company application that provides certificates and private keys for its
client applications.

certificate revocation list (CRL)
A list of certificates that have been revoked before their scheduled
expiration date. Certificate revocation lists are maintained by the certificate
authority and used, during a Secure Sockets Layer (SSL) handshake to
ensure that the certificates involved have not been revoked.

challenge
A request for certain information to a system. The information, which is
sent back to the server in response to this request, is necessary for client
authentication.

challenge handler
A client-side component that issues a sequence of challenges on the server
side and responds on the client side. See also authenticator.

client A software program or computer that requests services from a server.

client-side authentication component
A component that collects client information, then uses login modules to
verify this information.

clone An identical copy of the latest approved version of a component, with a
new unique component ID.

cluster
A group of servers that share a database instance.

company application
An application that is designed for internal use inside a company.

Company Hub
An application that can distribute other specified applications to be
installed on a mobile device. For example, Application Center is a
Company Hub. See also Application Center.

component
A reusable object or program that performs a specific function and works
with other components and applications.

credential
A set of information that grants a user or process certain access rights.

CRL See certificate revocation list.

D
data source

The means by which an application accesses data from a database.

deployment
The process of installing and configuring a software application and all its
components.

DER encoded
Pertaining to a binary form of an ASCII PEM formatted certificate. See also
Base64, PEM encoded.

device See mobile device.

Chapter 15. Glossary 1031

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

device context
Data that is used to identify the location of a device. This data can include
geographical coordinates, WiFi access points, and timestamp details. See
also trigger.

documentify
A JSONStore command used to create a document.

E
emulator

An application that can be used to run an application meant for a platform
other than the current platform. For example, BlackBerry OS includes an
emulator to run Android applications.

encryption
In computer security, the process of transforming data into an
unintelligible form in such a way that the original data either cannot be
obtained or can be obtained only by using a decryption process.

enterprise application
See company application.

entity A user, group, or resource that is defined to a security service,

environment
A specific instance of a configuration of hardware and software.

event An occurrence of significance to a task or system. Events can include
completion or failure of an operation, a user action, or the change in state
of a process.

event source
An object that supports an asynchronous notification server within a single
Java virtual machine. Using an event source, the event listener object can
be registered and used to implement any interface.

F
facet An XML entity that restricts XML data types.

fire In object-oriented programming, to cause a state transition.

fragment
A file that contains HTML tags that can be appended to a parent element.

G
gateway

A device or program used to connect networks or systems with different
network architectures.

geofence
A circle or a polygon that defines a geographical area.

geolocating
The process of pinpointing a location based on the assessment of various
types of signals. In mobile computing, often WLAN access points and cell
towers are used to approximate a location. See also location services.

1032 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

H
hybrid application

An application that is primarily written in Web-oriented languages
(HTML5, CSS, and JS), but is wrapped in a native shell so that the app
behaves like, and provides the user with all the capabilities of, a native
app.

I
in-house application

See company application.

inner application
An application that contains the HTML, CSS, and JavaScript parts that run
within a shell component. Inner applications must be packaged within a
shell component to create a full hybrid application.

K
key

1. One or more characters within an item of data that are used to
uniquely identify a record and establish its order with respect to other
records.

2. A cryptographic mathematical value that is used to digitally sign,
verify, encrypt, or decrypt a message. See also private key, public key.

key pair
In computer security, a public key and a private key. When the key pair is
used for encryption, the sender uses the public key to encrypt the message,
and the recipient uses the private key to decrypt the message. When the
key pair is used for signing, the signer uses the private key to encrypt a
representation of the message, and the recipient uses the public key to
decrypt the representation of the message for signature verification.

L
library

1. A system object that serves as a directory to other objects. A library
groups related objects, and allows users to find objects by name.

2. A collection of model elements, including business items, processes,
tasks, resources, and organizations.

load balancing
A computer networking method for distributing workloads across multiple
computers or a computer cluster, network links, central processing units,
disk drives, or other resources. Successful load balancing optimizes
resource use, maximizes throughput, minimizes response time, and avoids
overload.

local store
An area on a device where applications can locally store and retrieve data
without the need for a network connection.

location services
A feature in IBM Worklight that can be used to create differentiated
services that are based on a user location. Location services involve

Chapter 15. Glossary 1033

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

collecting geolocational and WiFi data and transmitting this data to a
server, where it can be used for executing business logic and analytics.
Changes in the location data result in triggers being activated, which cause
application logic to execute. See also geolocating.

M
mobile

See mobile device.

mobile client
See Application Center installer.

mobile device (mobile)
A telephone, tablet, or personal digital assistant that operates on a radio
network. See also Android, BlackBerry OS.

N
native app

An app that is compiled into binary code for use on the mobile operating
system on the device.

node A logical group of managed servers.

notification
An occurrence within a process that can trigger an action. Notifications can
be used to model conditions of interest to be transmitted from a sender to
a (typically unknown) set of interested parties (the receivers).

P
page navigation

A browser feature that enables users to navigate backwards and forwards
in a browser.

PEM encoded
Pertaining to a Base64 encoded certificate. See also Base64, DER encoded.

PKI See public key infrastructure.

PKI bridge
A Worklight Server concept that enables the User Certificate Authentication
framework to communicate with a PKI.

poll To repeatedly request data from a server.

private key
In secure communication, an algorithmic pattern used to encrypt messages
that only the corresponding public key can decrypt. The private key is also
used to decrypt messages that were encrypted by the corresponding public
key. The private key is kept on the user system and is protected by a
password. See also key, public key.

project
The development environment for various components, such as
applications, adapters, configuration files, custom Java code, and libraries.

1034 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

project WAR file
A web archive (WAR) file that is deployed on an application server. This
file contains the default server-specific configurations such as security
profiles, server properties, and more.

provision
To provide, deploy, and track a service, component, application, or
resource.

proxy An application gateway from one network to another for a specific
network application such as Telnet or FTP, for example, where a firewall
proxy Telnet server performs authentication of the user and then lets the
traffic flow through the proxy as if it were not there. Function is performed
in the firewall and not in the client workstation, causing more load in the
firewall.

public key
In secure communication, an algorithmic pattern used to decrypt messages
that were encrypted by the corresponding private key. A public key is also
used to encrypt messages that can be decrypted only by the corresponding
private key. Users broadcast their public keys to everyone with whom they
must exchange encrypted messages. See also key, private key.

public key infrastructure (PKI)
A system of digital certificates, certification authorities, and other
registration authorities that verify and authenticate the validity of each
party involved in a network transaction. See also public key.

push To send information from a server to a client. When a server pushes
content, it is the server that initiates the transaction, not a request from the
client.

push notification
An alert indicating a change or update that appears on a mobile app icon.

R
realm A collection of resource managers that honor a common set of user

credentials and authorizations.

reverse proxy
An IP-forwarding topology where the proxy is on behalf of the back-end
HTTP server. It is an application proxy for servers using HTTP.

root The directory that contains all other directories in a system.

S
server-side authentication component

See authenticator.

service
A program that performs a primary function within a server or related
software.

session
A logical or virtual connection between two stations, software programs, or
devices on a network that allows the two elements to communicate and
exchange data for the duration of the session.

Chapter 15. Glossary 1035

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

shell A compnent that provides custom native capabilities and security features
for applications.

sign To attach a unique electronic signature, derived from the sender's user ID,
to a document or field when a document is mailed. Signing mail ensures
that if an unauthorized user creates a new copy of a user's ID, the
unauthorized user cannot forge signatures with it. In addition, the
signature verifies that no one has tampered with the data while the
message was in transit.

simulator
An environment for staging code that is written for a different platform.
Simulators are used to develop and test code in the same IDE, but then
deploy that code to its specific platform. For example, one can develop
code for a BlackBerry device on a computer, then test it using a simulator
on that computer.

skin An element of a graphical user interface that can be changed to alter the
appearance of the interface without affecting its functionality.

slide To move a slider interface item horizontally on a touchscreen. Typically,
apps use slide gestures to lock and unlock phones, or toggle options.

subelement
In UN/EDIFACT EDI standards, an EDI data element that is part of an
EDI composite data element. For example, an EDI data element and its
qualifier are subelements of an EDI composite data element.

subscription
A record that contains the information that a subscriber passes to a local
broker or server to describe the publications that it wants to receive.

syntax The rules for the construction of a command or statement.

system message
An automated message on a mobile device that provides operational status
or alerts, for example if connections are succesful or not.

T
tap To briefly touch a touchscreen. Typically, apps use tap gestures to select

items (similar to a left mouse button click).

template
A group of elements that share common properties. These properties can
be defined only once, at the template level, and are inherited by all
elements that use the template.

trigger
A mechanism that detects an occurrence, and can cause additional
processing in response. Triggers can be activated when changes occur in
the device context. See also device context.

V
view A pane that is outside of the editor area that can be used to look at or

work with the resources in the workbench.

1036 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

W
web application

An application that is accessible by a web browser and that provides some
function beyond static display of information, for instance by allowing the
user to query a database. Common components of a web application
include HTML pages, JSP pages, and servlets.

web application server
The runtime environment for dynamic web applications. A Java EE web
application server implements the services of the Java EE standard.

web resource
Any one of the resources that are created during the development of a web
application for example web projects, HTML pages, JavaServer Pages (JSP)
files, servlets, custom tag libraries, and archive files.

widget
A portable, reusable application or piece of dynamic content that can be
placed into a web page, receive input, and communicate with an
application or with another widget.

Worklight adapter
See adapter.

Worklight Console
A web-based interface that is used to control and manage applications that
are deployed in Worklight Server, and to collect and analyze user statistics.

Worklight Server
An IBM Worklight component that acts as a runtime container for mobile
applications that are developed using Worklight Studio. The Worklight
Server acts as a container for Worklight application packages, and is, in
fact, a collection of web applications (optionally packaged as an EAR file)
that run on top of traditional application servers.

Worklight Studio
An IBM Worklight component that is an integrated development
environment (IDE) that can be used to develop and test mobile
applications.

wrapper
A section of code that contains code that could otherwise not be
interpreted by the compiler. The wrapper acts as an interface between the
compiler and the wrapped code.

X
X.509 certificate

A certificate that contains information that is defined by the X.509
standard.

Chapter 15. Glossary 1037

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

1038 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 16. Notices

Permission for the use of these publications is granted subject to these terms and
conditions.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

1039

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

1040 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Privacy Policy Considerations

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies that collect session information (generated by the application
server). These cookies contain no personally identifiable information and are
required for session management. Additionally, persistent cookies may be
randomly generated to recognize and manage anonymous users. These cookies
also contain no personally identifiable information and are required.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent. For more information about the use of various technologies, including
cookies, for these purposes, see IBM’s Privacy Policy at http://www.ibm.com/
privacy and IBM’s Online Privacy Statement at http://www.ibm.com/privacy/
details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Copyright

© Copyright IBM Corp. 2006, 2014

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

Trademarks

IBM, the IBM logo, ibm.com®, AIX, Cast Iron, Cognos, DataPower, DB2,
developerWorks, Lotus, Passport Advantage, Power, PureApplication, Rational,
Rational Team Concert, Redbooks, IBM SmartCloud, Tealeaf, Tivoli,, WebSphere,
and Worklight are trademarks or registered trademarks of International Business
Machines Corporation, registered in many jurisdictions worldwide. A current list of
IBM trademarks is available on the Web at “Copyright and trademark information”
at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Chapter 16. Notices 1041

http://www.ibm.com/privacy
http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Other company products or service names may be trademarks or service marks of
others.

This document may not be reproduced in whole or in part without the prior
written permission of IBM.

1042 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 17. Support and comments

For the entire IBM Worklight documentation set, training material and online
forums where you can post questions, see the IBM website at:

http://www.ibm.com/mobile-docs

Support

Software Subscription and Support (also referred to as Software Maintenance) is
included with licenses purchased through Passport Advantage and Passport
Advantage Express. For additional information about the International Passport
Advantage Agreement and the IBM International Passport Advantage Express
Agreement, visit the Passport Advantage website at:

http://www.ibm.com/software/passportadvantage

If you have a Software Subscription and Support in effect, IBM provides you
assistance for your routine, short duration installation and usage (how-to)
questions, and code-related questions. For additional details, consult your IBM
Software Support Handbook at:

http://www.ibm.com/support/handbook

Comments

We appreciate your comments about this publication. Please comment on specific
errors or omissions, accuracy, organization, subject matter, or completeness of this
document. The comments you send should pertain to only the information in this
manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact
your IBM branch office, your IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you. IBM or any other organizations will only use the personal
information that you supply to contact you about the issues that you state.

Thank you for your support.

Submit your comments in the IBM Worklight Developer Edition support
community at:

https://www.ibm.com/developerworks/mobile/worklight/connect.html

If you would like a response from IBM, please provide the following information:
v Name
v Address
v Company or Organization
v Phone No.
v Email address

1043

http://www.ibm.com/mobile-docs
http://www.ibm.com/software/passportadvantage
http://www.ibm.com/support/handbook
https://www.ibm.com/developerworks/mobile/worklight/connect.html

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

1044 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Chapter 18. Terms and conditions for information centers

Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein. IBM
reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed. You
may not download, export or re-export this information except in full compliance
with all applicable laws and regulations, including all United States export laws
and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at www.ibm.com/legal/
copytrade.shtml.

© Copyright IBM Corporation 2006, 2014.

1045

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

This information center is Built on Eclipse. (www.eclipse.org)

1046 IBM Worklight V6.1.0

http://www.eclipse.org

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Index

Special characters
<adapter>

element of adapter XML file 529
<authentication>

element of the HTTP adapter 535
<connectionPolicy>

element of adapter XML file 531
element of the Cast Iron adapter 539
element of the HTTP adapter 534
element of the JMS adapter 540
element of the SAP adapter 542
element of the SQL adapter 537

<connectivity>
element of adapter XML file 531

<jmsConnection>
element of the JMS adapter 541

<loadConstraints>
element of adapter XML file 532

<namingConnection>
element of the JMS adapter 541

<procedure>
element of adapter XML file 532

<proxy>
element of the HTTP adapter 536

A
Access Control List

Application Center 149, 150
access for users and groups

Application Center 149, 150, 151, 152
accessibility 658
accuracy 679
ACL

Application Center 149, 150
ACL management for Application Center

with LDAP
WebSphere Application Server

V8 152
acquisition policy

setting 664
adapter 547
adapter configuration files

exporting 799
adapter framework 525
adapter invocation 552
adapter procedures

HTTP
implementing 553

implementing 552
adapter validation 555
adapter XML file 529

<adapter> element 529
<connectionPolicy> element 531
<connectivity> element 531
<loadConstraints> element 532
<procedure> element 532

adapters 547
administering in console 798
anatomy 525

adapters (continued)
benefits 525
building

Ant task 791, 793
Cast Iron

See Cast Iron adapters
composition 525
configuring 544
creating 544
deleting 800
deploying

Ant task 791, 794
from the console 799
from Worklight Studio 562

deploying between environments 711
HTTP

See HTTP adapters
JMS

See JMS adapters
modifying 800
overview 525
replacing 800
SQL

See SQL adapters
adding

desktop environment 338
mobile environment 338
to an

IBM Worklight application 338
web environment 338

adding custom splash images 325
additional data 965
administering

applications 833
apps and adapters

in Worklight Console 798
Adobe AIR applications

signing 465
Adobe AIR tools

installing 48
AIR

See Adobe AIR
AIR applications

signing 465
AMD 381
analytics 3, 215, 938, 939, 942, 944, 947,

949, 952, 953, 955, 961, 962, 965
enabling 950

Android 405
Android apps 458
Android Studio 458
Android tools

installing 48
animating transitions

from and to Java page 452
from Objective-C page to web

view 450
from web view to Objective-C

page 450
Ant tasks

application servers 753, 762, 765

Ant tasks (continued)
building adapters 791, 793
building applications 791, 793
building projects 714
configuring application servers 719,

748, 753, 762, 765
WebSphere Application Server

Network Deployment 765
configuring databases 719, 722, 728
configuring multiple Worklight

projects 765
deploying adapters 791, 794
deploying applications 791, 794
deploying projects 791
reference 728, 753, 762, 765
sample configuration files 762, 765

Apache 89, 740
Apache Tomcat server

manual configuration 96, 748
API reference 695
APIs

Apache Cordova globalization 646
JavaScript 303, 308

application 997
application authenticity

overview 631
application cache 507, 511, 512

managing 507, 511, 512
Application Center 3, 219, 303, 308

access for users and groups 149, 150,
151, 152

LDAP and WebSphere Application
Server V7 149

LDAP and WebSphere Application
Server V8 150, 151

updating production apps 814
Application Center Access Control List

Virtual Member Manager 150
application components

adding hooks 481
adding to Worklight projects 493
configuring preferences 478
creating from Worklight projects 479
elements

CordovaPlugin 483
ExternalLibraries 490
Files 491
Libraries (Android) 489
Libraries (iOS) 492
Receivers 487
Strings 488
UserPermission 486

introduction 479
removing from Worklight

projects 494
troubleshooting 494
validating 493
viewing 480

application descriptor 325, 331
<security> element 331

application features 507

1047

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

application features (continued)
including and excluding 507

application folder 324
application icons 325
application main file 325
application publishing 3
application resources 325
application server 221, 226, 228, 259,

270, 271, 303, 308
configuring

Ant task 719, 748, 753, 762, 765
reference 753, 762, 765

application skins
applying 381
deleting 381
developing 381

application strings 646
applications

administering 833
anatomy 323
building

Ant task 791, 793
composition 323
creating 314, 316, 317
deploying

Ant task 791, 794
developing 314
hybrid 314
native 314
overview 323
web 314

applying skins 381
apps

administering in console 798
deleting 799
deploying 799
deploying between environments 711
production apps

best practices 814
submitting 799
updating in production 814

Asynchronous Module Definition 381
authentication 219, 621

configuring
Application Center 610
usage reports 610
Worklight Console 610

authentication configuration
attributes of login modules 616
authentication realms 607
authenticators 608
configuring

authenticators 610
realms 610

header login module 617
LDAP login module 619
login modules 608

attributes 616
header 617
LDAP 619
non-validating 617
single identity 617
WASLTPAModule 618

non-validating login module 617
single identity login module 617
WASLTPAModule login module 618

authentication configuration file 608

authentication realms 607
authenticationConfig.xml 608
authenticators 608

basic 611
configuring 610
form-based 611
header 612
login forms 338
LTPA 615
persistent cookie 613

authenticity
troubleshooting 635

auto-complete 555
auto-provisioning 621

B
back-end connections 3
back-end services 547

application development 425
discovery 432
invoking 560
SAP 547
WSDL 547

basic authenticator 611
basic registry 219
BasicAuthenticator 611
benefits of adapters 525
BIRT

installing on Apache Tomcat 977
installing on WebSphere Application

Server Full Profile 980
installing on WebSphere Application

Server Liberty Profile 978
BlackBerry 10 project 460
browser configuration 386

Linux 386
browsers

Rich Page Editor 386
buffer zones 666
build settings 507, 516, 519, 521
build-settings.xml 516, 519, 521
building 458
building adapters

Ant task 791, 793
building and deploying 497, 499, 501,

502, 503, 506
building and deploying in Worklight

Studio 497, 499, 501, 502, 503, 506
building and deploying to the Worklight

Development Server 497, 499, 501, 502,
503, 506

building applications
Ant task 791, 793

building project
Ant task 714

C
CA certificates

selecting 624
Cache Manifest 507, 511, 512

editing 512
managing 507, 511, 512

capturing data 928, 952

Cascading Style Sheet files
concatenation of 516, 521
minification of 516, 519

Cast Iron adapters 525
<connectionPolicy> element 539
generating adapters 525
root element 539
services discovery wizard 525
troubleshooting 525

changing 371
context root 345
port number of application server 50
the target server 345

client configuration 1007
client libraries 986
cloud

deployment with IBM
PureApplication System 816

clusters 986, 987
common

user-interface controls 354
components 941
concatenation 507, 516

engine 521
confidence 679
confidence levels 666
configuration 283, 719, 802

databases 283, 719
security 106

configuring 89, 740
adapters 544
Apache 89, 740
authentication

web widgets 464
authenticators 610
Derby 89, 740
device provisioning 624
realms 610
web widget authentication 464
Worklight Server

MySQL 135
configuring LDAP for Application Center

WebSphere Application Center
V7 149

WebSphere Application Center
V8 151

connecting
to Worklight Server 414

connectOnStartup 414
console 961

administering apps and adapters 798
context root 753

changing 343, 345
contextual search 955
Cordova 259, 303, 308, 646
create 317
createIdentity 303
creating

adapters 544
applications 314, 316
Dojo-enabled Worklight projects 356
projects 316
QNX 458

CSS files
concatenation of 516, 521
minification of 516, 519

custom code 259, 303, 308

1048 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

custom server 965
custom splash images 325
customSecurityTest 605

D
dashboard 953, 954
data 439
data accumulation 964
data flow 962
data management 949
data object 425

configuring definitions 439
data

operations 432
defining 432

data objects
defining 437

data synchronization
troubleshooting 584

data throughput 964
databases

configuring 732
Ant task 719, 722, 728, 748, 753,

762, 765
reference 728

creating 732
upgrading 283

deleting
adapters 800
apps 799
skins 381

deploying
adapters 711

from the console 799
from Worklight Studio 562

apps 711, 799
to the cloud by using IBM

PureApplication System 816
projects 283
updated apps 814
Worklight Server

by using the Server Configuration
Tool 715

to the cloud by using IBM
PureApplication System 816

deploying adapters
Ant task 791, 794

deploying applications
Ant task 791, 794

deploying projects
Ant task 791

deployment 714
project 714

Derby 89, 740
descriptors

application 331
Desktop Browser apps 511
detect information 646
develop 317
Developer Edition

IBM Worklight 8
developing

application skins 381
applications 314

developing (continued)
guidelines

desktop and web
environments 464

development 3, 322, 354
Android 472
hybrid app 322

user interface 354
iOS 469
Java Platform, Micro Edition 476
native application 467, 469, 472, 476
user interface

hybrid app 354
development environment 221, 226, 228,

259, 270, 271, 303, 308
development guidelines

desktop and web environments 464
device

management 988, 990, 992, 993
device access management 990
device authentication 621
device provisioning 621

configuring 624
implementing 624

device types
what's new 23

device-specific 646
devices

tracking location 676
disabling an app 837
display

switching
between web view and native

page 449
distribution structure 78

Worklight Server 78
Dojo 262, 303, 308, 322, 635, 646

code 307
code migration 307
iOS fixes 307
migration 307
toolkit 307

Dojo API 381
Dojo library project 262

removing 371
setup 358

Dojo Mobile 355
Dojo tooling 262, 322
Dojo version 371

E
Eclipse 45

supported versions 9
editors

Rich Page Editor 383
embedded server

logging 936
embedded WebSphere Application Server

Liberty Profile
logging 936

emulator 405
enabling 992
environments 314

production 711
QA 711
test 711

environments (continued)
what's new 23

event types 953
exporting

adapter configuration files 799
extracting

public signing keys 454

F
Facebook apps

migrating 267
failure 575
fast development 18
feature comparison 939
feature table 9
feature-platform matrix 9
features

Worklight Studio 555
federal 924
Federal Desktop Core Configuration 924
Federal Information Processing

Standards 925
FIPS 140-2 928, 930

enabling 927, 929
fix pack 258
folder

application 324
form-based authenticator 611
FormBasedAuthenticator 611
framework 646

adapter 525
Dojo 635
globalization 635

G
generating 547
geo widget 679
Geo Wifi 679
geofence

buffer zones 666
confidence levels 666
creating 666

geolocation 679, 961
geolocation widget 679
geospatial 961
getting started 27

samples 27
tutorials 27

globalization 635, 646, 655
limitations 37

glossary 1029

H
header authenticator 612
header login module 617
HeaderAuthenticator 612
HeaderLoginModule 617
HTTP

adapters 547
HTTP adapters 525

<authentication> element 535
<connectionPolicy> element 534
<proxy> element 536

Index 1049

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

HTTP adapters (continued)
root element 533

hybrid 679
hybrid app 322, 354

development 322
user interface 354

user interface
development 354

hybrid applications 317, 635
accessibility 658

hybrid development 1
hybrid mixed development 1

I
IBM Installation Manager 45
IBM Worklight 3, 317, 699

application authenticity
overview 631

integrating IBM Endpoint
Manager 1019

security 600
application authenticity 631
IBM Endpoint Manager 1019

security overview 600
IBM Worklight Application framework

editor 429
IBM Worklight Application

Framework 316, 317
app configuration 430
overview 425
services discovery 430

IBM Worklight Consumer Edition 8
IBM Worklight Enterprise Edition 8
icons

specifying
Android apps 453
iPhone apps 452

implementing
adapter procedures 552

HTTP 553
device provisioning 624

initialization options 322
initOptions.js 322
inner applications 317
installation 45, 219

limitations 37
Worklight Server

walkthrough 53
installing

Adobe AIR tools 48
Android tools 48
custom IBM Worklight database

workload standards 817
IBM Mobile Application Platform

Pattern Extension for Worklight
Studio 818

IBM Mobile Application Platform
Pattern Type 816

IBM Worklight support for cloud
deployment 816

iOS tools 48
Mobile Test Workbench for

Worklight 51
test

workbench 51
tools 48

installing (continued)
WebWorks 49
Windows 8 tools 50
Windows Phone 8 tools 50
Worklight Studio 46

into an Eclipse IDE 47
with Rational Team Concert

V4.0 47
Xcode 48

integration 14
interim fix 259
invoking

back-end services 560
iOS 930

API 699
Objective-C 699

iOS tools
installing 48

iPhone iPad 405

J
Java ME 303
Java remote debugging 343
JavaScript 635, 646, 699

Rhino container 553
JavaScript API 354
JavaScript files

concatenation of 516, 521
minification of 516, 519

JavaScript frameworks 635
accessibility 658

JavaScript toolkits 355
JavaScript UI framework 355
JMS adapters 525, 563, 565

<connectionPolicy> element 540
<jmsConnection> element 541
<namingConnection> element 541
root element 540

JNDI 784
jQuery 635, 646

version 380
jQuery Mobile 355
JS files

concatenation of 516, 521
minification of 516, 519

JSONStore 925
collections 571
comparison of features 569
enabling 570
error codes 575
errors 575
events 574
overview 567
queries 572
search fields 571

K
keys

extracting 454
known limitations 37, 43

L
language 646
latitude 679
LDAP

Application Center on WebSphere
Application Server V7 149

Application Center on WebSphere
Application Server V8 150, 151, 152

LDAP login module 619
LdapLoginModule 619
Liberty profile 1006, 1009
Liberty Profile

configuring manually 768
license tracking 1011
Lightweight Directory Access Protocol

Application Center on WebSphere
Application Server V7 149

Application Center on WebSphere
Application Server V8 150, 151, 152

limitations 37
Linux

browser configuration 387
XULRunner browser

configuration 387
locale 646
locate 381
location services 679, 961

Android support 661
application in background 678
differentiating between indoor

areas 668
geofence 666
indoor areas 668
iOS support 661
overview 659
securing server resources 674
setting acquisition policy 664
tracking devices 676
triggers 662

logging 933, 936
login forms 338

web widgets 465
login modules 608

attributes 616
header 617
LDAP 619
non-validating 617
single identity 617
WASLTPAModule 618

login screen
screen widgets

setting size 465
logs

location 933
monitoring 933

longtitude 679
LTPA 801, 802, 804, 805, 807, 810
LTPA authenticator 615

M
main file, of application 325
mapping 439
MBS 679, 681
migrating 221, 223, 259, 262

1050 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

Migrating
Facebook apps 267

migration 221, 223, 224, 226, 228, 258,
259, 270, 271, 303, 308

minification 507, 516, 519
minification engine 519
miscellaneous 25
mobile applications

building 371
patterns 394, 395
running 371

mobile browser simulator 311, 679, 681
testing 402

mobile devices 405
creating web pages 393

mobile navigation
view 398

mobile operations 22, 634, 994, 995, 997,
998, 999, 1001, 1005, 1006, 1007, 1009

mobile patterns 394, 395
Mobile SDKs

installing 48
tools 48

Mobile Web apps 511
mobile web pages

Mobile Navigation view 398
mobileSecurityTest 605
modifying

adapters 800
monitoring 3, 933
multi-language 646
MySQL 135

stale connections 135

N
native and web development

technologies 311
native API 317
native applications

accessibility 658
native development 1
native pages

overview 449
net 681
network 681
network widget 681
non-validating login module 617
NonValidatingLoginModule 617

O
object 699
offline 3
operating systems

supported 9
operational analytics 213, 941, 954, 964,

987, 988
optimizing Worklight applications 507
Oracle databases 93, 95, 96, 745, 747, 748

Apache Tomcat server 96, 748
manual configuration 93, 95, 96, 745,

747, 748
manual setup 93, 745
WebSphere Application Server 95,

747

overview 679
adapters 525
JSONStore 567
location services 659

P
pattern project 396
patterns 396
performance 993
persistent cookie authenticator 613
PersistentCookieAuthenticator 613
PKI bridge 999, 1001, 1005
platform 942, 944, 947, 949
plug-in

globalization 640, 643
Mobile

jQuery 640
Sencha Touch 643

polling events source
configuring push notifications 595

port number
of application server 50

preferences
Rich Page Editor 388

previewing 405
procedures

invoking 559
running 559
testing 559

production environment 221, 226, 228,
258, 259, 270, 271, 303, 308

projects 314
anatomy 322
building

Ant task 714
composition 322
creating 316
deploying

Ant task 791
Dojo library 371
overview 322

Properties view
displaying tag information 397

provisioning 621
devices 624

public signing keys
extracting 454

push notification 585, 586
Android 589
architecture 585, 586
iOS 589
proxy settings 585
setting up 588
WebSphere DataPower as a

proxy 1022
Windows Phone 8 590

push notifications 3, 303, 595, 635, 655
datasource custom property 595
IBM DB2 595
polling event source 595
sending to the device 594
SMS 594
subscribing 591
WebSphere Application Server 595

Q
queues 962
quick fix 555

R
realm 634, 805
realms

authentication 607
configuring 610

receiving data
Java page 451
Objective-C page 449

reducing application size 507, 511, 512,
519, 521

remote disable 837
default behavior 837
modifying the default behavior 837

remoteDisable 837
replacing

adapters 800
Report viewer 977
reports 939

raw data 969
resources

accessibility 658
returning control

from Java page 451
from Objective-C page 449

Rhino container 553
Rich Page Editor 383, 386

browser requirements 385
creating web pages 392, 393
editing HTML files 390
limitations 37
opening web pages 389
setting preferences 388
views

design view 390
source view 390
split view 390

web pages
adding elements 396

root element
Cast Iron adapters 539
HTTP adapters 533
JMS adapters 540
SAP adapters 542
SQL adapters 537

Run As command
Android Studio project option 506
Build All Environments option 497,

501
Build Settings and Deploy Target

option 497, 503
Preview option 497, 502
Run on Worklight Development

Server option 497, 499
Xcode project option 506

running
back-end services 560

runtime skinning 311

S
samples 27

Index 1051

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

SAP
adapters 547

SAP adapters
<connectionPolicy> element 542
root element 542

SAP Netweaver Gateway 425
scaling 947
screen widgets

setting size of login screen 465
scripts 325
SDK

See Worklight
search 938, 955
security 3, 801, 802, 804, 805, 807, 810

BlackBerry 10
creating QNX environment 458

configuration 106
IBM Endpoint Manager 1019
overview 600
tests 605

security framework
overview 600

securityTest 605
Sencha Touch 355, 635, 646
server configuration 998, 1006
Server Configuration Tool

deploying a Worklight Server 715
server requirements 1005
server resources

securing 674
services discovery wizard 547
setting size

login screen
screen widgets 465

settings page 383
shell 311
shell components 317
signing

AIR applications 465
Windows 8 apps 466

single identity login module 617
SingleIdentityLoginModule 617
skins 314

applying 381
deleting 381
developing 381

SMS
two-way communication 598

SOAP
generating adapters 547
invoking services 553
web services 547

software development kits
supported 9

source control 320
specifying

icons
Android apps 453
iPhone apps 452

taskbar
AIR 464

splash images 325
splash screens 325
SQL adapters 525

<connectionPolicy> element 537
root element 537

SSL 303

SSL (continued)
configuring between Worklight

adapters and back-end servers 124
Configuring for Application

Center 170
setting up certificate keystore 778

SSL config 998
starting

Worklight Studio
Developer Edition 48

status codes 584
Studio

features 555
style sheets 325
submitting

apps 799
supported browsers

Rich Page Editor 385
supported configurations 807
switching display

between web view and native
page 449

synchronization
See data synchronization

system messages 646, 699

T
tags

displaying information 397
taskbar

AIR
specifying 464

Tealeaf CX 987, 988
integrating with 986

Tealeaf libraries 952
Technote 43
test server

logging 936
testing 3

mobile applications 387, 400, 402,
403, 404

mobile browser simulator 387, 400,
402, 403, 404

testing location services 679, 681
tests

security 605
thumbnail images 325
tools

installing 48
topologies 810, 944
tracking licenses 1011
transitions

animating from and to Java page 452
animating from Objective-C page to

web view 450
animating from web view to

Objective-C page 450
translation 646, 699
triggers 662
troubleshooting 43, 219, 1009

Cast Iron adapters 525
data synchronization 584

tutorials 27

U
UI patterns 396
uninstallation 219
unique device ID 621
United States Government Configuration

Baseline 924
update 3
upgrade path 221
upgrading 221, 226, 227, 228, 258, 259,

270, 271, 303, 308
databases 283
Worklight Server 221, 226, 227, 270

in production 221, 226, 227, 270
overview 227

Worklight Studio 268, 269
url

Worklight Server 383
user certificate authentication 994, 995,

997, 998, 999, 1001, 1005, 1006, 1007,
1009

user certificate enrollment 634
user interface 354, 355, 443

development
hybrid app 354

hybrid app
development 354

view configuration 447
view transitions 447

user to device mapping 990

V
validation

adapters 555
version 221, 223, 259
version control 320
views 443

user interface 425
Virtual Member Manager

Application Center Access Control
List 150

Visual Studio 50
Visual Studio 2012 50
VMM

Virtual Member Manager 150

W
WASLTPAModule login module 618
web and native pages

interaction 449
web browsers

supported 9
web development 1
web pages

adding elements
Rich Page Editor 396

creating in Rich Page Editor 392
opening in Rich Page Editor 389

web resource 405
web services 635

Cordova 654
globalization 654

web widget authentication
configuring 464

1052 IBM Worklight V6.1.0

IB
M W

ork
lig

ht
off

lin
e d

oc
um

en
tat

ion

This
 do

cu
men

t is
 pr

ov
ide

d "
as

 is
".

In
ca

se
 of

 is
su

es
, re

fer
 to

 th
e o

nli
ne

 us
er

do
cu

men
tat

ion
.

web widgets
login forms 465

webSecurityTest 605
WebSphere 213, 768
WebSphere Application Server

manual configuration 95, 747
WebSphere Application Server Full

Profile
installing BIRT 980

WebSphere Application Server Liberty
profile 219

WebSphere Application Server Liberty
Profile

installing BIRT 978
WebSphere Application Server Network

Deployment
configuring application servers

Ant tasks 765
WebSphere Application Server V7

configuring LDAP for Application
Center 149

WebSphere Application Server V8
configuring LDAP for Application

Center 151
managing ACL for Application Center

with LDAP 152
WebSphere DataPower

push notification proxy 1022
WebSphereFormBasedAuthenticator 615
WebSphereLoginModule 618
WebWorks SDK 2.0 460
WEBWORKS_HOME

installing 49
what's new 25

Android support 224
API 24
device types 23
Dojo 24
environments 23
external library 24
migrating existing apps 224
new mobile OS updates 224

what's new (continued)
new server capabilities 13
new Worklight Server features 13
server environment 13

widget 681
widgets

embedding in web pages 466
login forms 465

WiFi 961
WiFi widget 679
Windows 50
Windows 8 apps

signing 466
Windows 8 tools

installing 50
Windows Phone 8 303
Windows Phone 8 tools

installing 50
WL.Client.connect 414
WLClient 699
WLPush 699
working with multiple Worklight

Servers 345
Worklight applications

accessibility 658
Worklight build process 519, 521
Worklight Console 343

Access Disabled 837
Active 837
administering apps and adapters 798

Worklight Development Server 343
debugging 343
default port for debugging 343

Worklight project templates
configuring preferences 478
creating 495
introduction 495
viewing 495

Worklight Project Upgrader 224
Worklight projects 371

creating 356

Worklight projects (continued)
from Worklight project

templates 496
Dojo-enabled 356

Worklight Server 215, 221, 226, 227, 228,
259, 270, 271, 303, 308

changing the target server 345
migration 221
separation of lifecycle 221
support for apps created with

previous IBM Worklight
versions 13

support for older IBM Worklight
apps 13

upgrade 221
upgrading 258, 259
URL to the console 343

Worklight Studio
adding a new server 345
Developer Edition

starting 48
features 555
migration 221, 223
new console 343
overview 311
upgrade 223
upgrade path 221
upgrading 268, 269

WorkLightLoginModule
Interface 303

WSDL 425
www 322

X
Xcode

installing 48
Xcode linker options 930
XULRunner browser

browser configuration 387

Index 1053

	Contents
	Chapter 1. Overview of IBM Worklight
	Introduction to mobile application development
	Overview of IBM Worklight main capabilities
	Introducing IBM Worklight components
	IBM Worklight editions
	System requirements for using IBM Worklight
	Matrix of features and platforms

	Chapter 2. What's new
	What's new in IBM Worklight V6.1.0.2
	What's new in IBM Worklight V6.1.0.1
	What's new in IBM Worklight V6.1.0
	Easier Worklight Server upgrades and migration
	Increased ability to integrate IBM Worklight in common environments and production systems
	Faster development of better apps
	Improved mobile operations
	Augmented support of mobile environments and operating systems
	Enhanced IBM Worklight API
	Miscellaneous modifications

	Chapter 3. Tutorials and samples
	Chapter 4. Known limitations
	Chapter 5. Troubleshooting
	Chapter 6. Installing and configuring
	IBM Worklight installation overview
	Installing Worklight Studio
	Running post-installation tasks
	Running additional tasks for Rational Team Concert V4.0

	Starting Worklight Studio
	Installing mobile specific tools
	Installing tools for Adobe AIR
	Installing tools for iOS
	Installing tools for Android
	Installing tools for BlackBerry
	Installing tools for Windows Phone 8
	Installing tools for Windows 8

	Changing the port number of the internal application server

	Installing IBM Mobile Test Workbench for Worklight
	Troubleshooting IBM Mobile Test Workbench for Worklight
	Installing and configuring the mobile test client
	Contents
	Chapter 1. Installing the mobile test client
	Software and hardware requirements
	Installing Android mobile test client
	Installing the mobile test client on an Android device
	Installing the mobile test client for Android with adb
	Installing the mobile test client on an Android emulator
	Connecting an Android device to the test workbench with USB tethering
	Uninstalling the Android mobile test client

	Installing iOS mobile test client
	Installing the mobile test client on the iOS Simulator

	Chapter 2. Configuring the mobile test client
	Configuring the mobile test client for Android
	Configuring the iOS mobile test client on the iOS Simulator

	Index
	A
	C
	M

	Installing Worklight Server
	Installation prerequisites
	Worklight Server installation process walkthrough
	Running IBM Installation Manager
	Optional creation of databases
	Single-user versus multi-user installations
	Installing a new version of Worklight Server
	Upgrading Worklight Server from a previous release
	Installing Worklight Server into WebSphere Application Server Network Deployment
	Silent installation
	Completing the installation

	Distribution structure of Worklight Server
	Manually installing Application Center
	Configuring the DB2 database manually for Application Center
	Configuring the Apache Derby database manually for Application Center
	Configuring the MySQL database manually for Application Center
	Configuring the Oracle database manually for Application Center
	Deploying the Application Center WAR files and configuring the application server manually

	Configuring Worklight Server
	Backup and recovery
	Optimization and tuning of Worklight Server
	Optimization and tuning of Worklight Server project databases
	Security configuration
	Database and certificate security passwords
	Apache Tomcat security options
	WebSphere Application Server security options
	Running Worklight Server in WebSphere Application Server with Java 2 security enabled

	Transmitting IBM Worklight data on the BlackBerry Enterprise Server MDS channel
	Protecting your mobile application traffic by using IBM WebSphere DataPower as a security gateway
	Rules for HTTP basic authentication
	Rules for HTML forms-based authentication
	Sample form login stylesheet
	Sample redirect stylesheet

	Configuring SSL between Worklight adapters and back-end servers by using self-signed certificates
	Configuring SSL between Worklight Servers and clients by using certificates that are not signed by a trusted certificate auth
	Installing the root CA on iOS
	Installing the root CA on Android
	Updating your keystore and Liberty profile configuration to use a certificate chain

	Handling MySQL stale connections
	Configuring DB2 HADR seamless failover for Worklight Server and Application Center data sources

	Installing the Application Center
	Configuring the Application Center after installation
	Configuring WebSphere Application Server full profile
	Configuring WebSphere Application Server Liberty Profile
	Configuring Apache Tomcat
	Configuring properties of DB2 JDBC driver in WebSphere Application Server
	Configuring WebSphere Application Server to support applications in public app stores
	Configuring WebSphere Application Server to support applications in Google play
	Configuring WebSphere Application Server to support applications in Apple iTunes
	Configuring Liberty Profile when IBM JDK is used

	Managing users with LDAP
	LDAP with WebSphere Application Server V7
	LDAP with WebSphere Application Server V8.x
	LDAP with Liberty Profile
	LDAP with Apache Tomcat

	Defining the endpoint of the application resources
	Configuring the endpoint of the application resources (Full Profile)
	Configuring the endpoint of the application resources (Liberty profile)
	Configuring the endpoint of the application resources (Apache Tomcat)

	Configuring Secure Sockets Layer (SSL)
	Configuring SSL for WebSphere Application Server full profile
	Configuring SSL for Liberty profile
	Configuring SSL for Apache Tomcat

	List of JNDI properties for the Application Center

	Typical topologies of an IBM Worklight instance
	Setting up IBM Worklight in an IBM WebSphere Application Server Network Deployment V8.5 cluster environment
	Setting up IBM Worklight in an IBM WebSphere Application Server Liberty Profile farm
	Troubleshooting IBM HTTP Server startup

	Integrating IBM WebSphere DataPower with a cluster of Worklight Servers
	Sample dynamic routing stylesheet

	Installing and configuring IBM SmartCloud Analytics Embedded
	Configuring Worklight Server for analytics

	Troubleshooting Worklight Server
	Troubleshooting to find the cause of installation failure
	Troubleshooting failure to create the DB2 database
	Troubleshooting an installation blocked by DB2 connection errors
	Troubleshooting a Worklight Server upgrade with Derby as the database
	Troubleshooting failure to authenticate to Application Center and applications that use the basic registry element

	Testing with IBM Worklight
	Contents
	Creating a Test Workbench project from the IBM Worklight project creation wizard
	Initiating mobile testing from Android, iPad, and iPhone environments in Worklight Studio
	Using the Application Center and the Mobile Test Workbench to share applications
	Publishing test-ready iOS applications to the Application Center
	Creating a Test Workbench project
	Getting started with mobile testing
	Android testing overview
	iOS testing overview
	Getting started with Android testing
	Getting started with testing on iOS devices
	Getting started with testing on the iOS Simulator
	Index
	A
	C
	D
	E
	F
	I
	J
	L
	M
	O
	P
	S
	T
	V

	Managing mobile applications
	Importing applications to test in the workbench
	Adding web applications to test workbench
	Uploading Android applications from the mobile test client
	Instrumenting Android applications in a shell-sharing environment
	Instrumenting iOS applications on an iOS device
	Instrumenting iOS applications on the iOS Simulator
	Installing instrumented iOS applications on an iOS device
	Increasing memory allocation to upload applications

	Creating mobile tests
	Recording tests from the Android mobile test client
	Recording tests from the iOS mobile test client
	Recording tests from the test workbench

	Editing Mobile tests
	Creating verification points in a test
	Adding user actions in a test
	Creating application stubs in tests
	Defining a variable to run a test with a selected mobile device
	Defining a variable in a test to run the latest version of an application
	Assigning a test variable to an object’s property
	Adding hardware actions in a test
	Splitting a test
	Activating web UI actions
	Actions from the Mobile data view
	Adding user actions in a test from the Mobile data view
	Modifying a step in a test from the Mobile data view
	Creating verification points from a Mobile Data view

	Running mobile tests
	Running tests from an Android mobile test client
	Running tests from the iOS mobile test client
	Running tests from the test workbench
	Running Worklight hybrid tests on either Android or iOS mobile test client
	Running a test with different localized strings

	Evaluating results
	Viewing mobile reports
	Managing logs for Android mobile test client
	Uploading logs to test workbench

	Compound tests
	Creating a compound test
	Viewing compound tests
	Adding tests into a compound test
	Modifying a compound test
	Running compound tests
	Generating compound test result reports
	Exporting the Test Log
	Generating a functional test report
	Creating an executive summary

	Adding a compound test to a Test Workbench project
	Creating a compound test in a test workbench project

	Adding compound tests to schedule

	Extending Rational Test Workbench Eclipse Client
	Extending test execution with custom code
	Creating custom Java code
	Test execution services interfaces and classes
	Reducing the performance impact of custom code
	Custom code examples
	Migrating custom code from previous versions

	Chapter 7. Upgrading from one version of IBM Worklight to another
	Migrating from IBM Worklight V5.0.6 or later to V6.1.0
	Separation of lifecycle between Worklight Server and Worklight Studio
	Upgrading to Worklight Studio V6.1.0
	Migrating Worklight projects to Worklight Studio V6.1.0

	Upgrading to Worklight Server V6.1.0 in a production environment
	Overview of the upgrade to Worklight Server V6.1.0 process
	Preparing for the upgrade to Worklight Server 6.1.0
	Starting the Worklight Server V6.1.0 upgrade process
	Running IBM Installation Manager and completing the Application Center upgrade
	Upgrading the Worklight Console for Worklight Server 6.1.0
	Additional Worklight Server V6.1.0 upgrade information
	Upgrading from Worklight Server V6.1.0 to V6.1.0.x in a production environment
	Upgrading from Worklight Server V6.1.0 to an interim fix in a production environment

	Migrating from IBM Worklight V5.0.6 to V6.0.0
	Migrating an IBM Worklight project to use the Dojo library
	Manually migrating Facebook apps
	Migrating Worklight Studio to V6.0.0
	Migrating projects to a new Worklight Studio instance
	Upgrading Worklight Server in a production environment
	Preparing for the upgrade process
	Starting the upgrade process
	Running IBM Installation Manager to perform the upgrade
	Verifying the Worklight Server
	Configuring the Application Center
	Finishing the migration of the IBM Worklight projects
	Recovering from an unsuccessful upgrade

	Migrating from IBM Worklight V5.0.5 to V5.0.6
	Dojo iOS fixes
	Dojo 1.8.3 code migration

	Migrating from IBM Worklight V5.0.0.3 to V5.0.5

	Chapter 8. Developing IBM Worklight applications
	Worklight Studio overview
	Artifacts produced during development cycle
	IBM Worklight projects, environments, and skins
	Creating IBM Worklight projects
	Creating an application in an IBM Worklight project
	Creating the client-side of an IBM Worklight application
	Integrating with source control systems

	Developing hybrid and web applications
	Anatomy of an IBM Worklight project
	Anatomy of an IBM Worklight application
	The application folder
	Application resources
	The application descriptor
	Login form and authenticator

	Setting up a new IBM Worklight environment for your application
	The Worklight Development Server and the Worklight Console
	Working with multiple Worklight Servers in Worklight Studio
	Developing user interface of hybrid applications
	Using common UI controls
	Using JavaScript toolkits
	Application skins
	Settings page to change the server URL
	Rich Page Editor
	Testing mobile applications
	Preview web resource changes on an emulator or mobile device
	Previewing your Worklight applications

	Using the IBM Worklight client API
	Connecting to Worklight Server
	Configuring the Worklight Logger
	Enable Logger output
	Start Logger when IBM Worklight starts
	Select log levels
	Log different data types
	Set Logger priority
	Filter log levels
	Log package whitelist and blacklist
	Create log for package
	Stringify
	Callback
	Log message tags
	Method chaining
	Pretty-print JSON objects
	Print stack traces
	Logger Android check and override
	Environment-specific settings
	JavaScript module example

	Developing hybrid applications with IBM Worklight Application Framework
	The IBM Worklight Application Framework editor

	Web and native code in iPhone, iPad, and Android
	Switching the display from the web view to a native page
	Receiving data from the web view in an Objective-C page
	Returning control to the web view from an Objective-C page
	Animating the transition from an Objective-C page to a web view
	Animating the transition from a web view to an Objective-C page
	Receiving data from the web view in a Java page
	Returning control to the web view from a Java page
	Animating the transitions from and to a Java page

	Developing hybrid applications for iOS
	Specifying the icon for an iPhone application

	Developing hybrid applications for Android
	Specifying the icon for an Android application
	Adding custom code to an Android app
	Extracting a public signing key
	Managing device orientation
	Building Android applications with Android Studio

	Developing hybrid applications for BlackBerry
	Creating an IBM Worklight BlackBerry 10 environment
	Worklight BlackBerry 10 project with WebWorks SDK 2.0

	Development guidelines for desktop and web environments
	Specifying the application taskbar for Adobe AIR applications
	Configuring the authentication for web widgets
	Writing login form files for web widgets
	Setting the size of the login screen for web widgets
	Signing Adobe AIR applications
	Signing Windows 8 apps
	Embedding widgets in predefined web pages

	Developing native applications
	Development guidelines for using native API
	Developing native applications for iOS
	Application Descriptor of Native API applications for iOS
	Client property file for iOS
	Copying files of Native API applications for iOS

	Developing native applications for Android
	Application Descriptor of Native API application for Android
	Client property file for Android
	Copying files of Native API applications for Android

	Developing native applications for Java Platform, Micro Edition
	Application Descriptor of Native API application for Java Platform, Micro Edition (Java ME)
	Client property file for Java Platform, Micro Edition (Java ME)
	Copying files of Native API applications for Java Platform, Micro Edition (Java ME)

	Accelerating application development by reusing resources
	Configuring application component and template preferences
	Application components
	Creating application components from IBM Worklight projects
	Viewing the contents of an application component
	Adding hooks to an application component
	Validating application components
	Adding application components to IBM Worklight projects
	Removing application components from IBM Worklight projects
	Troubleshooting adding and removing application components

	IBM Worklight project templates
	Creating IBM Worklight project templates
	Viewing IBM Worklight project templates
	Creating IBM Worklight projects from IBM Worklight project templates

	Building and deploying in Worklight Studio
	The Run on Worklight Development Server command
	Troubleshooting Worklight Development Server startup
	The Build All Environments command
	The Preview command
	The Build Settings and Deploy Target command
	Additional Run As menu options

	Optimizing IBM Worklight applications
	Including and excluding application features
	Application cache management in Desktop Browser and Mobile Web apps
	Managing the application Cache Manifest in Worklight Studio

	IBM Worklight application build settings
	Minification of JS and CSS files
	Concatenation of JS and CSS files

	Developing the server side of an IBM Worklight application
	Overview of IBM Worklight adapters
	The adapter XML File
	<adapter> element of the adapter XML file
	<connectivity> element of the adapter XML file
	<connectionPolicy> element of the adapter XML file
	<loadConstraints> element of the adapter XML file
	<procedure> element of the adapter XML file
	The root element of the HTTP adapter XML file
	The <connectionPolicy> element of the HTTP adapter
	The <authentication> element of the HTTP adapter
	The <proxy> element of the HTTP adapter
	The root element of the SQL adapter XML file
	The <connectionPolicy> element of the SQL adapter
	The root element of the Cast Iron adapter XML file
	The <connectionPolicy> element of the Cast Iron adapter
	The root element of the JMS adapter XML file
	The <connectionPolicy> element of the JMS adapter
	The <namingConnection> element of the JMS adapter
	The <jmsConnection> element of the JMS adapter
	The root element of the SAP Netweaver Gateway adapter XML file
	The <connectionPolicy> element of the SAP Netweaver Gateway adapter

	Creating an IBM Worklight adapter
	Generating adapters with the services discovery wizard
	Invocation of generated SOAP adapters

	Adapter invocation service
	Implementing adapter procedures
	The Rhino container

	Encoding a SOAP XML envelope
	Calling Java code from a JavaScript adapter
	Features of Worklight Studio
	Procedure invocation
	Invoking a back-end service
	Deploying an adapter
	JMS adapters
	Connecting JMS adapters to a Liberty profile server
	Connecting a Worklight JMS adapter to WebSphere MQ

	JSONStore overview
	JSONStore features comparison
	Enabling JSONStore
	JSONStore document
	JSONStore collection
	JSONStore store
	JSONStore search fields
	JSONStore queries
	Store internals
	JSONStore asynchronicity, callbacks, and promises
	Chain JSONStore functions and concurrency
	JSONStore events
	JSONStore errors
	JSONStore error codes
	JSONStore support
	JSONStore performance
	JSONStore multiple user support
	JSONStore security
	Worklight adapter integration for JSONStore
	IBM Worklight adapter wizard

	Troubleshooting JSONStore and data synchronization

	Push notification
	Possible IBM Worklight push notification architectures
	Setting up push notifications
	Setting up push notifications for Android
	Setting up push notifications for iOS
	Setting up push notifications for Windows Phone 8

	Subscribing to push notifications
	Web-based SMS subscription
	Sending push notifications to the device
	Sending SMS push notifications to the device
	Sending push notifications from WebSphere Application Server – IBM DB2
	Configuring a polling event source to send push notifications
	Using two-way SMS communication

	IBM Worklight security framework
	IBM Worklight Security Overview
	Security Tests
	Authentication realms
	Authenticators and Login Modules
	The authentication configuration file
	Configuring IBM Worklight web application authorization
	Configuring authenticators and realms
	Basic authenticator
	Form-based authenticator
	Header authenticator
	Persistent cookie authenticator
	Adapter-based authentication
	LTPA authenticator
	Configuring login modules
	Non-validating login module
	Single identity login module
	Header login module
	WASLTPAModule login module
	LDAP login module
	Mobile device authentication
	Configuring and implementing device provisioning
	Implementing client-side components for custom device provisioning
	Implementing server-side components for custom device provisioning
	Device single sign-on (SSO)
	Configuring device single sign-on
	IBM Worklight application authenticity overview
	User certificate authentication realm
	Troubleshooting authenticity problems

	Developing globalized hybrid applications
	Globalization in JavaScript frameworks
	Dojo globalization framework
	jQuery Mobile globalization plug-in
	Sencha Touch globalization plug-in

	Globalization mechanisms in IBM Worklight
	Globalization of web services
	Globalization of push notifications

	Developing accessible applications
	Location services
	Platform support for location services
	Location services permissions
	Triggers
	Setting an acquisition policy
	Working with geofences and triggers
	Differentiating between indoor areas
	Securing server resources based on location
	Tracking the current location of devices
	Keeping the application running in the background
	Testing hybrid location service applications with MBS
	Mobile browser simulator geolocation widget
	Mobile browser simulator network widget
	Location scenarios

	Client-side log capture
	Server preparation for uploaded log data
	Client-side logging in client apps

	Chapter 9. API reference
	IBM Worklight client-side API
	JavaScript client-side API
	The options Object
	The WL.ClientMessages object

	Objective-C client-side API for native iOS apps
	Java client-side API for native Android apps
	Java client-side API for Java ME apps

	IBM Worklight server-side API
	JavaScript server-side API
	Java server-side API

	Internal IBM Worklight database tables
	HTTP Interface of the production server

	Chapter 10. Deploying IBM Worklight projects
	Deploying IBM Worklight applications to test and production environments
	Deploying an application from development to a test or production environment
	Building a project WAR file with Ant
	Deploying the project WAR file
	Deploying, updating, and undeploying a Worklight Server by using the Server Configuration Tool
	Ant tasks for deploying a project WAR file and configuring an application server
	Creating and configuring the databases
	Deploying a project WAR file and configuring the application server

	Configuration of IBM Worklight applications on the server
	Configuring the Worklight Server location
	IBM Worklight database setup for development mode
	Testing the Worklight Console login screen
	Push notification settings
	Analytics
	SSL certificate keystore setup
	Miscellaneous Settings
	Storing properties in encrypted format
	Obsolete properties
	Declaring and using configuration properties
	Configuring an IBM Worklight project in production by using JNDI environment entries
	SMS gateway configuration

	Ant tasks for building and deploying applications and adapters
	Building applications and adapters
	Deploying applications and adapters

	Deploying applications and adapters to Worklight Server
	Administering adapters and apps in Worklight Console
	Deploying apps
	Deleting apps
	Exporting adapter configuration files
	Deploying adapters
	Modifying adapters
	Deleting adapters

	Worklight Security and LTPA overview
	Worklight security configuration
	Worklight Security and LTPA
	Supported configurations for LTPA
	Advanced security features
	Topologies and use cases

	High availability
	Clustering
	Configuring the load balancer
	Adding a node to the cluster
	Firewalls
	Disaster Recovery Site

	Updating IBM Worklight apps in production

	Deploying to the cloud by using IBM PureApplication System and IBM SmartCloud Orchestrator
	Installing IBM Worklight support for cloud deployment
	Installing the IBM Mobile Application Platform Pattern Type
	Installing custom IBM Worklight database workload standards
	Installing IBM Worklight support for cloud deployment from the command line
	Installation of IBM Mobile Application Platform Pattern Extension for Worklight Studio

	Working with the IBM Mobile Application Platform Pattern Type
	Composition and components
	Importing the sample IBM Worklight virtual application pattern
	Creating an IBM Mobile Application Platform Pattern
	Integrating with Tivoli Directory Server
	Performing operations on running IBM Worklight Virtual Application Pattern instances
	Upgrading IBM Mobile Application Platform Pattern

	Working with IBM Mobile Application Platform Pattern Extension for Worklight Studio
	Specifying cloud environment preferences in Worklight Studio
	Deploying an IBM Worklight project to IBM PureApplication System or IBM SmartCloud Orchestrator
	Displaying the Worklight Console URL for a deployed IBM Worklight project
	Integration with Tivoli Directory Server

	Building and deploying IBM Worklight virtual applications by using the command line interface
	Building an IBM Worklight virtual application
	Deploying an IBM Worklight virtual application

	Deployment of the Application Center on IBM PureApplication System
	Deploying the Application Center on IBM PureApplication System

	Chapter 11. Administering IBM Worklight applications
	Administering IBM Worklight applications with Worklight Console
	Direct updates of app versions to mobile devices
	Direct updates of app versions to desktop apps
	Locking an application
	Remotely disabling application connectivity
	Displaying a notification message on application startup
	Defining administrator messages from Worklight Console in multiple languages
	Controlling authenticity testing for an app

	Administering push notifications with the Worklight Console
	Application Center
	Concept of the Application Center
	Specific platform requirements
	General architecture
	Preliminary information
	Preparations for using the mobile client
	Importing and building the project (Android, iOS, Windows Phone)
	Android, iOS, Windows Phone: for experts
	Importing and building the project (BlackBerry)
	BlackBerry: for experts
	Deploying the mobile client in the Application Center

	Push notifications of application updates
	Configuring push notifications for application updates
	Configuring the Application Center server for connection to Google Cloud Messaging
	Configuring the Application Center server for connection to Apple Push Notification Services
	Building a version of the mobile client that does not depend on the GCM API

	The Application Center console
	Starting the Application Center console
	Troubleshooting a corrupt login page (Apache Tomcat)
	Application Management
	Adding a mobile application
	Adding an application from a public app store
	Application properties
	Editing application properties
	Downloading an application file
	Viewing application reviews
	User and group management
	Access control
	Managing access control
	Device Management
	Application enrollment tokens in Windows Phone 8
	Signing out of the Application Center console

	Command-line tool for uploading or deleting an application
	Using the stand-alone tool to upload an application
	Using the stand-alone tool to delete an application
	Using the stand-alone tool to clear the LDAP cache
	Ant task for uploading or deleting an application

	Publishing Worklight applications to the Application Center
	The mobile client
	Installing the client on an Android mobile device
	Installing the client on an iOS mobile device
	Installing the client on a BlackBerry mobile device
	Installing the client on Windows Phone 8
	The Login view
	Views in the Application Center client
	Installing an application on an Android device
	Installing an application on an iOS device
	Installing an application on a Windows Phone device
	Installing an application on a BlackBerry device
	Installing applications through public app stores
	Removing an installed application
	Showing details of a specific application version
	Updating an application
	Reverting an installed application
	Marking or unmarking a favorite app
	Submitting a review for an installed application
	Viewing reviews

	Advanced information for BlackBerry users

	Federal standards support in IBM Worklight
	FDCC and USGCB support
	FIPS 140-2 support
	Enabling FIPS 140-2
	Configure FIPS 140-2 mode for HTTPS and JSONStore encryption
	Configuring FIPS 140-2 for existing applications
	Avoiding an archive build failure with the FIPS 140-2 optional feature on iOS

	Chapter 12. Monitoring and mobile operations
	Logging and monitoring mechanisms
	Vitality queries for checking server health
	Configuring logging in the development server

	Analytics
	Comparison of operational analytics and reports features
	IBM Worklight analytics components
	IBM SmartCloud Analytics Embedded
	Enabling analytics
	Enabling analytic data for new applications
	Enabling analytic data for existing applications
	Analytics event types
	Analytics tab in the Worklight Console
	Analytics data flow
	Managing data throughput and accumulation
	Logging additional data
	Troubleshooting analytics

	Reports database
	Using raw data reports
	Device usage reports
	Predefined BIRT Reports
	Installing BIRT on Apache Tomcat
	Installing BIRT on WebSphere Application Server Liberty Profile
	Installing BIRT on WebSphere Application Server Full Profile
	Configuring BIRT reports for your application server by using Ant
	Manually configuring BIRT Reports for your application server
	BIRT in Eclipse
	Notification reports database schema

	IBM Tealeaf CX integration
	Accumulating data on IBM Tealeaf CX Mobile and IBM SmartCloud Analytics Embedded
	Accumulating data on IBM Tealeaf CX Mobile only
	Troubleshooting IBM Tealeaf CX integration

	Mobile application management
	User to device mapping and control
	Device access management in the Worklight Console
	Enabling the device access management features
	Performance implications for the server

	User certificate authentication
	User certificate authentication overview
	Protecting resources with user certificate authentication
	User certificate authentication on the server
	SSL configuration
	PKI bridge configuration
	WebSphere Application Server and Liberty profile requirements
	Updating the server authentication configuration

	User certificate authentication on the client
	Configuring user certificate authentication for a group of applications

	Troubleshooting the User Certificate Authentication feature

	License tracking
	Configuring your license tracking details
	License Tracking report

	Chapter 13. Integrating with other IBM products
	Introduction to IBM Worklight integration options
	Integration with Cast Iron
	Integration with reverse proxy
	Authentication at the gateway
	Header-based authentication
	LTPA-based authentication

	IBM Endpoint Manager for Mobile Devices overview
	Managing end points with IBM Endpoint Manager
	Using WebSphere DataPower as a push notification proxy
	Useful links

	Chapter 14. Migrating from the WebSphere Application Server Feature Pack
	Migration scenarios
	Migrating an application that uses the client programming model
	Migrating an application that uses the server programming model
	Considerations for applications that use JAX-RS, JSON-RPC, or proxying
	Example: Migrating the Dojo showcase sample

	Chapter 15. Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	P
	R
	S
	T
	V
	W
	X

	Chapter 16. Notices
	Chapter 17. Support and comments
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

