
© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
20 June 2014

IBM Worklight Foundation V6.2.0
Getting Started

Push notifications in native iOS applications

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.2

Trademarks

 IBM, the IBM logo, ibm.com, and Worklight are trademarks or registered
trademarks of International Business Machines Corporation, registered in
many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is
available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

 Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

 Other company products or service names may be trademarks or service
marks of others.

 This document may not be reproduced in whole or in part without the prior
written permission of IBM.

 See http://www.ibm.com/ibm/us/en/

About IBM®

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/ibm/us/en/

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.3

Agenda

 What are push notifications?

 Creating a Worklight native API for push notifications

 Creating and configuring an iOS native application

 Initializing WLCLient and WLPush

 Subscription management

 Notification API

 Tag-based and broadcast notification

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.4

What are push notifications?

 Push notification is the ability of a

mobile device to receive messages

that are pushed from a server.

 Notifications are received

regardless of whether the

application is running.

 Notifications can take several

forms:

– Alert: a pop-up text message

– Badge: a small badge mark that

appears next to the application

icon

– Sound alert

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.5

Agenda

 What are push notifications?

 Creating a Worklight native API for push notifications

 Creating and configuring an iOS native application

 Initializing WLCLient and WLPush

 Subscription management

 Notification API

 Tag-based and broadcast notification

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.6

Creating a Worklight native API for push notifications

 With IBM Worklight Foundation ®, native iOS applications can
communicate with a Worklight Server by using the Worklight native
API library.

 To serve a native iOS application, the Worklight Server must detect it.

 You can find the native API folder in the application folder of your
Worklight project.

 The native API folder contains a native API library and configuration
file that you must copy to your native iOS project.

 The native application contains the application-
descriptor.xml file where you can configure the application
metadata. The native application is deployed to the server.

 In this module, you learn how to generate a Worklight native API and
how to use its components in your native iOS application.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.7

Creating a Worklight native API (1 of 3)

 The Worklight native API contains several components:

The application-descriptor.xml file is used to

define application metadata and to configure

security settings to be enforced by Worklight

Server.

The worklight.plist file contains connectivity

settings to be used by a native iOS application.

Copy this file to your native iOS project.

The WorklightAPI folder is a library that you

must copy to your native iOS project.

As with any Worklight project, you create the

server configuration by modifying files under the

server\conf folder.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.8

Creating a Worklight native API (2 of 3)

1. In Worklight Studio, create a Worklight project, and add a Worklight

native API.

2. In the New Worklight Native API dialog, enter your application

name, and in the Environment field, select iOS.

3. Add the Apple Push Notification Service (APNS) p12 keys to the

root folder of the application (either apns-certificate-sandbox.p12

or apns-certificate-production.p12).

4. Right-click the Worklight native API folder and click Run As >

Deploy Native API.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.9

 Edit the worklight.plist file that holds the server configuration:

 protocol – The communication protocol to the Worklight Server
can be either http or https.

 host – The host name or IP address of the Worklight Server.

 port – The port of the Worklight Server.

 wlServerContext – The context root path of the application on the Worklight Server.

 application id – The application identifier as defined in the application-
descriptor.xml file.

 application version – The version number of the application.

 environment – The target environment of the native application (Android or iOS).

Creating a Worklight native API (3 of 3)

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.10

Agenda

 What are push notifications?

 Creating a Worklight native API for push notifications

 Creating and configuring an iOS native application

 Initializing WLCLient and WLPush

 Subscription management

 Notification API

 Tag-based and broadcast notification

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.11

Creating and configuring an iOS native application (1 of 2)

 Create an Xcode project or use an existing one.

 Copy the WorklightAPI folder and the worklight.plist file from the Eclipse

Worklight native API to the root of your native project.

 Link the following libraries in your native iOS application:
SystemConfiguration.framework, MobileCoreServices.framework,

CoreData.framework, Security.framework, libz.dylib,

sqlcipher.framework, libc++.dylib, libstdc++.6.dylib, and

CoreLocation.framework.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.12

Creating and configuring an iOS native application (2 of 2)

 In the Build Settings:

– Add the following entry: $(SRCROOT)/WorklightAPI/include for

HEADER_SEARCH_PATH

– In the Other Linker Flags field, enter the following value: -ObjC

– In the Deployment section, for the iOS Deployment Target field, select a

value that is greater than, or equal to, 5.0.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.13

Agenda

 What are push notifications?

 Creating a Worklight native API for push notifications

 Creating and configuring an iOS native application

 Initializing WLCLient and WLPush

 Subscription management

 Notification API

 Tag-based and broadcast notification

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.14

Initializing WLClient and WLPush (1 of 4)

 Access the WLClient functionality by using

[WLClient sharedInstance] anywhere in your application.

 Initialize the connection to the server by using the

wlConnectWithDelegate method.

 For most actions, you must specify a delegate object, such as a

MyConnectListener instance in the following example:

 You learn how to create it in subsequent slides.

 Remember to import WLClient.h and WLDelegate.h in your header

file.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.1515

Initializing WLClient and WLPush (2 of 4)

 As described on the previous slide, you must supply a connection delegate (a

listener) to the methods that call Worklight Server.

 Create a delegate to be used in the wlConnectWithDelegate method and

receive the response from the Worklight Server. Name the class

MyConnectListener.

 The header file must specify that it implements the WLDelegate protocol.

 The WLDelegate protocol specifies that the class implements the following

methods:

– onSuccess (WLResponse *)response

– onFailure (WLFailResponse *)response

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.1616

 After wlConnectWithDelegate finishes, either the onSuccess method or the

onFailure method of the supplied MyConnectListener instance is called.

 In either case, the response object is sent as an argument.

 Use this object to operate data that is retrieved from the server.

Initializing WLClient and WLPush (3 of 4)

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.1717

 Access the WLPush functionality by using

[WLPush sharedInstance] anywhere in your application.

 Create an instance of onReadyToSubscribeListener.

 Set the onReadyToSubscribeListener on WLPush.

 Pass the token to WLPush.

Initializing WLClient and WLPush (4 of 4)

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.1818

Agenda

 What are push notifications?

 Creating a Worklight native API for push notifications

 Creating and configuring an iOS native application

 Initializing WLCLient and WLPush

 Subscription management

 Notification API

 Tag-based and broadcast notification

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.19

Subscription management – user subscription

 User subscription

– An entity that contains a user ID, device ID, and event source ID. The user
subscription represents the intent of the user to receive notification from a
specific event source.

 Creation

– The user subscription for an event source is created when the user
subscribes to that event source for the first time from any device.

 Deletion

– A user subscription is deleted when the user unsubscribes from that event
source from all owned devices.

 Notification

– While the user subscription exists, the Worklight Server can produce push
notifications for the subscribed user. These notifications can be delivered
by the adapter code to all or some of the devices from which the user
subscribed.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.20

Subscription management – device subscription

 A device subscription belongs to a user subscription and exists in the

scope of a specific user and event source. A user subscription can

have several device subscriptions.

 The device subscription is created when the application on a device

calls the [[WlPush sharedInstance]subscribe] method.

 The device subscription is deleted either by an application that calls

[[WlPush sharedInstance] unsubscribe] or when the push

mediator informs Worklight Server that the device is permanently not

accessible.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.2121

Agenda

 What are push notifications?

 Creating a Worklight native API for push notifications

 Creating and configuring an iOS native application

 Initializing WLCLient and WLPush

 Subscription management

 Notification API

 Tag-based and broadcast notification

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.2222

Implementation of the notification API consists of the following main steps:

 On the server side:

 Creating an event source.

 Sending notification.

 On the client side:

 Sending the token and initializing the WLPush class.

 Registering the event source.

 Subscribing/unsubscribing to the event source.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.23

Notification API: Server side (1 of 9)

 Creating an event source.

– Declare a notification event source in the adapter JavaScript™ code at a
global level (outside any JavaScript function).

– name – A name by which the event source is referenced.

– onDeviceSubscribe – An adapter function that is called when the
request for user subscription is received.

– onDeviceUnsubscribe – An adapter function that is called when the
request for user unsubscription is received.

– securityTest – A security test from the
authenticationConfig.xml file that is used to protect the event
source.

Notifications are pushed by the back end Notifications are polled from the back end

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.24

Notification API: Server side (2 of 9)

 Creating an event source (continued).

– Declare a notification event source in the adapter JavaScript code at a
global level (outside any JavaScript function).

– poll – a method for notification retrieval. The following parameters are
mandatory:

• interval – The polling interval in seconds.

• onPoll – The polling implementation, which is an adapter function to be called at
specified intervals.

Notifications are pushed by the back end Notifications are polled from the back end

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.25

Notification API: Server side (3 of 9)

 Sending a notification.

As described

previously, notifications

can be either polled

from the back end or

pushed by the back

end. In this sample, a

submitNotification

adapter function is

called by a back end as

an external API to send

notifications.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.26

Notification API: Server side (4 of 9)

 Sending a notification (continued).

– Obtain notification data.

The

submitNotification

function receives the

userId, to which it

sends notification, and

the notificationText.

These arguments are

provided by a back

end, which calls this

function.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.27

Notification API: Server side (5 of 9)

 Sending a notification (continued).

– Retrieve the active user and use it to get the user subscription data.

A user subscription object contains the

information about all of the user’s

subscriptions. Each user subscription

can have several device subscriptions.

The object structure is as follows:

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.28

Notification API: Server side (6 of 9)

 Sending a notification (continued).

– Retrieve the user subscription data.

If the user has no

subscriptions for the specified

event source, a null object is

returned.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.29

Notification API: Server side (7 of 9)

 Sending a notification (continued).

– Retrieve the user subscription data.

Separate subscription data

for each of the user’s

devices can be obtained

by using the

getDeviceSubscriptions

method. The result is an

array of objects with the

following structure:

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.30

Notification API: Server side (8 of 9)

 Sending a notification (continued).

– Send notification to the user device or devices.

The notifyAllDevices method

sends notification to all the

devices that are subscribed to

the user. Custom properties can

be sent in the payload object.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.31

Notification API: Server side (9 of 9)

 The following notification methods of the WL.Server class are

available:

 Use notifyAllDevices(userSubscription, options) to

send notification to all user devices, as explained in the previous slide.

 Use notifyDevice(userSubscription, device, options to

send notification to a specific device that belongs to a specific

userSubscription.

 Use notifyDeviceSubscription(deviceSubscription,

options)to send the notification to a specific device.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.3232

Sending token to client and initializing WLPush

 The user must initialize the WLPush sharedInstance in the app
ViewController load method.

 The user must add this method to the app delegate to get the token.

– The token that is received by this method must be passed to the WLPush
method. [[WLPush sharedInstance] setTokenFromClient]:

Notification API: Client side (1 of 5)

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.3333

Event Source – registration

1. Register an event source within the application.

IBM Worklight Foundation provides the customizable

onReadyToSubscribe function that is used to register an event source.

2. Set up your onReadyToSubscribe function in Listener, which implements

WLOnReadyToSubscribeListener. This function is called when the

authentication finishes.

Notification API: Client side (2 of 5)

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.3434

Subscribing to the event source

Prerequisite: To subscribe, a user must authenticate.

 To subscribe to the event source, use the following API.

– [[WLPush sharedInstance] subscribe] takes the following
parameters:

• An alias, as declared in [[WLPush sharedInstance]
registerEventSourceCallback]

• Optional onSuccess delegate

• Optional onFailure delegate

– Delegates receive a response object if one is required.

Notification API: Client side (3 of 5)

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.35

Notification API: Client side (4 of 5)

Unsubscribing from an event source

– To unsubscribe from the event source, use the following API.

– [[WLPush sharedInstance] unsubscribe] takes the following
parameters:

– An alias, as declared in
WL.Client.Push.registerEventSourceCallback

– Optional onSuccess delegate

– Optional onFailure delegate

– Delegates receive a response object if one is required.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.36

Notification API Client side (5 of 5)

 More client side methods:

– [[WLPush sharedInstance]isPushSupported] – Returns true if
push notifications are supported by the platform, or false otherwise.

– [[WlPush sharedInstance]isSubscribed:alias] – Returns
whether the currently logged-in user is subscribed to a specified event
source alias.

 When a push notification is received by a device, the
didReceiveRemoteNotification method is called in the app delegate.

 If the application was in background mode (or inactive) when the push
notification arrived, this callback is called when the application returns to the
foreground.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.3737

Receiving a procedure response

 You can find the sample for this training
module in the Getting Started page of the
IBM Worklight Foundation documentation
website at
http://www.ibm.com/mobile-docs.

 The sample contains two projects:

– PushNotificationsNative.zip contains a
Worklight native API to be deployed to your
Worklight server.

– iOSNativePush.zip contains a native iOS
application that uses a Worklight native API
library to communicate with the Worklight
server.

 Make sure to update the wlclient.plist
file in iOSNativeApp with the relevant
server settings.

http://www.ibm.com/mobile-docs

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.3838

Agenda

 What are push notifications?

 Creating a Worklight native API for push notifications

 Creating and configuring an iOS native application

 Initializing WLCLient and WLPush

 Subscription management

 Notification API

 Tag-based and broadcast notification

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.39

Tag-based notification

 Tags represent topics of interest to the user and provide users the

ability to receive notifications according to the chosen interest.

 This notification type enables devices to send and receive messages

that are filtered by tags.

 To start receiving tag-based notifications, the device must first

subscribe to a push notification tag in an application.

 Tags are defined in the application-descriptor.xml file:

 Such notification is targeted to all devices that are subscribed to a tag in an

application.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.40

Tag-based notification

 Client-side methods:

– [[WLPush sharedInstance]subscribeTag:tagName

:options)]

Subscribes the device to the specified tag name.

– [[WLPush sharedInstance]unsubscribeTag:tagName

:options)]

Unsubscribes the device from the specified tag name.

– [WLPush sharedInstance]isTagSubscribed:tagName]

Returns whether the device is subscribed to a specified tag name.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.41

Tag-based notification

For more information about tag-based notification, see Tag-based

notification in IBM Worklight Foundation user documentation.

http://ibm.biz/knowctrSSZH4A_6.2.0/com.ibm.worklight.dev.doc/devref/t_tag-based_notifications_setting_up.html

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.42

Broadcast notification

 Broadcast notification is enabled by default for any push-enabled
Worklight application. A subscription to a reserved tag, Push.ALL, is

created for every device.

 Broadcast notification can be disabled by unsubscribing to the
reserved tag Push.ALL.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.43

Broadcast notification

For more information about broadcast notification, see Broadcast

notifications in IBM Worklight Foundation user documentation.

http://ibm.biz/knowctrSSZH4A_6.2.0/com.ibm.worklight.dev.doc/devref/c_push_notif_broadcast.html

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.44

Common API for tag-based and broadcast notifications
(1 of 2)

 Client-side API:

– When a notification is received by a device, the

didReceiveRemoteNotification method in the app delegate is called.

userInfo - A JSON block that contains the payload field. This field

holds other data that is sent from the Worklight server. It also contains

the tag name for tag and broadcast notification. The tag name appears
in the tag element. For broadcast notification, the default tag name is

Push.ALL.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.45

Common API for tag-based and broadcast notifications
(2 of 2)

 Server-side API:

– WL.Server.sendMessage(applicationId,notificationOptions)

This method submits a notification based on the specified target

parameters and takes two mandatory parameters:

• applicationId - The name of the Worklight application.

• notificationOptions - A JSON block that contains message

properties.

– For a full list of message properties, see the IBM Worklight

Foundation user documentation.

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.46

Notices

 Permission for the use of these publications is granted subject to these terms and conditions.

 This information was developed for products and services offered in the U.S.A.

 IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that only

that IBM product, program, or service may be used. Any functionally equivalent product, program, or

service that does not infringe any IBM intellectual property right may be used instead. However, it is the

user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

 IBM may have patents or pending patent applications covering subject matter described in this document.

The furnishing of this document does not grant you any license to these patents. You can send license

inquiries, in writing, to:

– IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

 For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual

Property Department in your country or send inquiries, in writing, to:

– Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

 The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer

of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

 This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication. IBM

may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

 Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

 IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

 Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this one)

and (ii) the mutual use of the information which has been exchanged, should contact:

– IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

USA

 Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

 The licensed program described in this document and all licensed material available for it are provided by

IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any

equivalent agreement between us.

 Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

COPYRIGHT LICENSE:

 This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

 Each copy or any portion of these sample programs or any derivative work, must include a copyright notice

as follows:

– © (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

Privacy Policy Considerations

 IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies

or other technologies to collect product usage information, to help improve the end user experience, to

tailor interactions with the end user or for other purposes. In many cases no personally identifiable

information is collected by the Software Offerings. Some of our Software Offerings can help enable you to

collect personally identifiable information. If this Software Offering uses cookies to collect personally

identifiable information, specific information about this offering’s use of cookies is set forth below.

 Depending upon the configurations deployed, this Software Offering may use session cookies that collect

session information (generated by the application server). These cookies contain no personally identifiable

information and are required for session management. Additionally, persistent cookies may be randomly

generated to recognize and manage anonymous users. These cookies also contain no personally

identifiable information and are required.

 If the configurations deployed for this Software Offering provide you as customer the ability to collect

personally identifiable information from end users via cookies and other technologies, you should seek

your own legal advice about any laws applicable to such data collection, including any requirements for

notice and consent. For more information about the use of various technologies, including cookies, for

these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy

Statement at http://www.ibm.com/privacy/details the sections entitled “Cookies, Web Beacons and Other

Technologies” and the “IBM Software Products and Software-as-a-Service Privacy Statement” at

http://www.ibm.com/software/info/product-privacy.

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.47

Support and comments

 For the entire IBM Worklight documentation set, training material and online forums where you can post questions, see the IBM website at:

– http://www.ibm.com/mobile-docs

 Support

– Software Subscription and Support (also referred to as Software Maintenance) is included with licenses purchased through Passport
Advantage and Passport Advantage Express. For additional information about the International Passport Advantage Agreement and the
IBM International Passport Advantage Express Agreement, visit the Passport Advantage website at:

• http://www.ibm.com/software/passportadvantage

– If you have a Software Subscription and Support in effect, IBM provides you assistance for your routine, short duration installation and
usage (how-to) questions, and code-related questions. For additional details, consult your IBM Software Support Handbook at:

• http://www.ibm.com/support/handbook

 Comments

– We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy, organization, subject
matter, or completeness of this document. The comments you send should pertain to only the information in this manual or product and
the way in which the information is presented.

– For technical questions and information about products and prices, please contact your IBM branch office, your IBM business partner,
or your authorized remarketer.

– When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes
appropriate without incurring any obligation to you. IBM or any other organizations will only use the personal information that you supply
to contact you about the issues that you state.

– Thank you for your support.

– Submit your comments in the IBM Worklight Developer Edition support community at:

• https://www.ibm.com/developerworks/mobile/worklight/connect.html

– If you would like a response from IBM, please provide the following information:

• Name

• Address

• Company or Organization

• Phone No.

• Email address

http://www.ibm.com/mobile-docs
http://www.ibm.com/software/passportadvantage
http://www.ibm.com/support/handbook
https://www.ibm.com/developerworks/mobile/mobileforum.html

© Copyright International Business Machines Corporation 2011, 2014. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
20 June 2014

Thank You

