
© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

20 June 2014

IBM Worklight Foundation V6.2.0
Getting Started

Custom authenticator and login module in hybrid
applications

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.2

Trademarks

 IBM, the IBM logo, ibm.com, and Worklight are trademarks or registered
trademarks of International Business Machines Corporation, registered in
many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is
available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

 Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

 Other company products or service names may be trademarks or service
marks of others.

 This document may not be reproduced in whole or in part without the prior
written permission of IBM.

 See http://www.ibm.com/ibm/us/en/

About IBM®

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/ibm/us/en/

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.3

Agenda

 Introduction to authentication

 Configuring the authenticationConfig.xml file

 Creating a custom Java authenticator

 Creating a custom Java login module

 Creating client-side authentication components

 Examining the result

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.4

Introduction to authentication (1 of 3)
 The authentication process can be interactive:

– For example, user name and password

 Or non-interactive:

– For example, header-based authentication

 This process can involve a single step/

– For example, a simple user name/password
form)

 Or multiple steps/

– For example, it might have to add a
challenge after it issued the first passwordS.

 The definition of the authentication realm
includes the class name of an authenticator
and a reference to a login module.

 An authenticator is an entity that collects user
information.

– For example: a login form

 A login module is a server entity that validates
the retrieved user credentials and builds the
user identity.

 You configure authentication settings such as
realms, authenticators, and login modules, in
the authenticationConfig.xml file that
comes with Worklight Server.

An unauthenticated user

tries to access the resource

that is protected by an

authentication realm.

An authenticator is called to

collect user credentials,

that is, the user name and

password.

The Login module receives

the collected credentials

and validates them.

If the supplied credentials

pass validation, the Login

Module creates the User

Identity object and flags the

session as authenticated in a

specified realm.

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.5

Introduction to authentication (2 of 3)

 The authenticator, login module, and user identity instances are stored in a

session scope. Therefore they exist while the session is alive.

 You can write custom login modules and authenticators when the default

ones do not match your requirements.

 In previous modules:

– You implemented a form-based authentication and used a non-validating

login module.

– You implemented an adapter-based authentication without having to add

login modules, and ran credentials validation manually.

 In some cases, when credentials validation cannot be run at adapter level

and requires more complex code, you can implement an extra login module.

– For example: When credentials validation must be customized for a

specific enterprise; or when more information must be retrieved from each

client request, such as cookie, header, and user-agent.

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.6

Introduction to authentication (3 of 3)

 This module explains how to create a custom authenticator and a login

module:

– You learn how to implement a custom authenticator that collects the

user name and password by using a request to a predefined URL.

– You learn how to implement a custom login module that checks

credentials that are received from the authenticator.

– You learn how to define a realm that uses your custom authenticator

and login module.

– You learn how to use this realm to protect resources.

 For more information about authentication concepts, see IBM®

Worklight ® Foundation user documentation.

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.7

Agenda

 Introduction to authentication

 Configuring the authenticationConfig.xml file

 Creating a custom Java authenticator

 Creating a custom Java login module

 Creating client-side authentication components

 Examining the result

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.8

Configuring authenticationConfig.xml (1 of 2)

 Add authentication information to the authenticationConfig.xml file.

 In the <realms> section, define a realm called CustomAuthenticatorRealm.

– Make sure that it uses CustomLoginModule.

 Specify MyCustomAuthenticator as the class name. You implement it in
subsequents slides.

 In the <loginModules> section, add a loginModule called
CustomLoginModule.

 Specify MyCustomLoginModule as the class name. You implement it in
subsequent slides.

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.9

Configuring authenticationConfig.xml (2 of 2)

 In the <securityTests> section, add a security test.

 Later, you use this security test to protect the adapter procedure.
Therefore, use a <customSecurityTest> element.

 Remember the security test name because you will use in the next

slides.

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.10

Agenda

 Introduction to authentication

 Configuring the authenticationConfig.xml file

 Creating a custom Java authenticator

 Creating a custom Java login module

 Creating client-side authentication components

 Examining the result

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.11

Creating a custom Java™ authenticator (1 of 21)

 The authenticator API includes the following methods:

– void init(Map<String, String> options)

– AuthenticationResult processRequest(HttpServletRequest
request, HttpServletResponse response, boolean
isAccessToProtectedResource)

– AuthenticationResult
processAuthenticationFailure(HttpServletRequest request,
HttpServletResponse response, String errorMessage)

– AuthenticationResult
processRequestAlreadyAuthenticated(HttpServletRequest
request, HttpServletResponse response)

– Map<String, Object> getAuthenticationData()

– HttpServletRequest getRequestToProceed(HttpServletRequest
request, HttpServletResponse response, UserIdentity
userIdentity, LoginExtension... loginExtension)

– Boolean changeResponseOnSuccess (HttpServletRequest
request, HttpServletResponse response)

– WorkLightAuthenticator clone()

The init method of the

authenticator is called when the

authenticator instance is created. It

takes the parameters that are

specified in the definition of the

realm in the

authenticationConfig.xml file.

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.12

Creating a custom Java authenticator (2 of 21)

 The authenticator API includes the following methods:

– void init(Map<String, String> options)

– AuthenticationResult processRequest(HttpServletRequest
request, HttpServletResponse response, boolean
isAccessToProtectedResource)

– AuthenticationResult
processAuthenticationFailure(HttpServletRequest request,
HttpServletResponse response, String errorMessage)

– AuthenticationResult
processRequestAlreadyAuthenticated(HttpServletRequest
request, HttpServletResponse response)

– Map<String, Object> getAuthenticationData()

– HttpServletRequest getRequestToProceed(HttpServletRequest
request, HttpServletResponse response, UserIdentity
userIdentity, LoginExtension... loginExtension)

– Boolean changeResponseOnSuccess (HttpServletRequest
request, HttpServletResponse response)

– WorkLightAuthenticator clone()

The processRequest method

is called for each request from

an unauthenticated session.

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.13

 The authenticator API includes the following methods:

– void init(Map<String, String> options)

– AuthenticationResult processRequest(HttpServletRequest
request, HttpServletResponse response, boolean
isAccessToProtectedResource)

– AuthenticationResult
processAuthenticationFailure(HttpServletRequest request,
HttpServletResponse response, String errorMessage)

– AuthenticationResult
processRequestAlreadyAuthenticated(HttpServletRequest
request, HttpServletResponse response)

– Map<String, Object> getAuthenticationData()

– HttpServletRequest getRequestToProceed(HttpServletRequest
request, HttpServletResponse response, UserIdentity
userIdentity, LoginExtension... loginExtension)

– Boolean changeResponseOnSuccess (HttpServletRequest
request, HttpServletResponse response)

– WorkLightAuthenticator clone()

The
processAuthenticationFailure

method is called if the login module

returns a failure of credentials validation.

Creating a custom Java authenticator (3 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.14

 The authenticator API includes the following methods:

– void init(Map<String, String> options)

– AuthenticationResult processRequest(HttpServletRequest
request, HttpServletResponse response, boolean
isAccessToProtectedResource)

– AuthenticationResult
processAuthenticationFailure(HttpServletRequest request,
HttpServletResponse response, String errorMessage)

– AuthenticationResult
processRequestAlreadyAuthenticated(HttpServletRequest
request, HttpServletResponse response)

– Map<String, Object> getAuthenticationData()

– HttpServletRequest getRequestToProceed(HttpServletRequest
request, HttpServletResponse response, UserIdentity
userIdentity, LoginExtension... loginExtension)

– Boolean changeResponseOnSuccess (HttpServletRequest
request, HttpServletResponse response)

– WorkLightAuthenticator clone()

The
processRequestAlreadyAuthenticated

method is called for each request from an

already authenticated session.

Creating a custom Java authenticator (4 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.15

 The authenticator API includes the following methods:

– void init(Map<String, String> options)

– AuthenticationResult processRequest(HttpServletRequest
request, HttpServletResponse response, boolean
isAccessToProtectedResource)

– AuthenticationResult
processAuthenticationFailure(HttpServletRequest request,
HttpServletResponse response, String errorMessage)

– AuthenticationResult
processRequestAlreadyAuthenticated(HttpServletRequest
request, HttpServletResponse response)

– Map<String, Object> getAuthenticationData()

– HttpServletRequest getRequestToProceed(HttpServletRequest
request, HttpServletResponse response, UserIdentity
userIdentity, LoginExtension... loginExtension)

– Boolean changeResponseOnSuccess (HttpServletRequest
request, HttpServletResponse response)

– WorkLightAuthenticator clone()

The getAuthenticationData

method is used by a login module to

get the credentials that are collected

by an authenticator.

Creating a custom Java authenticator (5 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.16

 The authenticator API includes the following methods:

– void init(Map<String, String> options)

– AuthenticationResult processRequest(HttpServletRequest
request, HttpServletResponse response, boolean
isAccessToProtectedResource)

– AuthenticationResult
processAuthenticationFailure(HttpServletRequest request,
HttpServletResponse response, String errorMessage)

– AuthenticationResult
processRequestAlreadyAuthenticated(HttpServletRequest
request, HttpServletResponse response)

– Map<String, Object> getAuthenticationData()

– HttpServletRequest getRequestToProceed(HttpServletRequest
request, HttpServletResponse response, UserIdentity
userIdentity, LoginExtension... loginExtension)

– Boolean changeResponseOnSuccess (HttpServletRequest
request, HttpServletResponse response)

– WorkLightAuthenticator clone()

The getRequestToProceed

method is called only after the login

module successfully validates the

credentials that were collected by

an authenticator.

The getRequestToProceed

method has been deprecated since

IBM Worklight V5.0.0.3.

Creating a custom Java authenticator (6 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.17

 The authenticator API includes the following methods:

– void init(Map<String, String> options)

– AuthenticationResult processRequest(HttpServletRequest
request, HttpServletResponse response, boolean
isAccessToProtectedResource)

– AuthenticationResult
processAuthenticationFailure(HttpServletRequest request,
HttpServletResponse response, String errorMessage)

– AuthenticationResult
processRequestAlreadyAuthenticated(HttpServletRequest
request, HttpServletResponse response)

– Map<String, Object> getAuthenticationData()

– HttpServletRequest getRequestToProceed(HttpServletRequest
request, HttpServletResponse response, UserIdentity
userIdentity, LoginExtension... loginExtension)

– Boolean changeResponseOnSuccess (HttpServletRequest
request, HttpServletResponse response)

– WorkLightAuthenticator clone()

The changeResponseOnSuccess

method is called after authentication

success. It is used to add data to

the response after the

authentication is successful.

Creating a custom Java authenticator (7 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.18

 The authenticator API includes the following methods:

– void init(Map<String, String> options)

– AuthenticationResult processRequest(HttpServletRequest
request, HttpServletResponse response, boolean
isAccessToProtectedResource)

– AuthenticationResult
processAuthenticationFailure(HttpServletRequest request,
HttpServletResponse response, String errorMessage)

– AuthenticationResult
processRequestAlreadyAuthenticated(HttpServletRequest
request, HttpServletResponse response)

– Map<String, Object> getAuthenticationData()

– HttpServletRequest getRequestToProceed(HttpServletRequest
request, HttpServletResponse response, UserIdentity
userIdentity, LoginExtension... loginExtension)

– Boolean changeResponseOnSuccess (HttpServletRequest
request, HttpServletResponse response)

– WorkLightAuthenticator clone()

The clone method is used to

create a deep copy of class

members.

Creating a custom Java authenticator (8 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.19

 Create a MyCustomAuthenticator class in the server\java folder.

 Make sure that this class implements the WorkLightAuthenticator

interface.

 Add the authenticationData map to your authenticator to hold the

credentials information.

– This object is retrieved and used by a login module.

Creating a custom Java authenticator (9 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.20

 You must add a dependency on server runtime libraries to use

server-related classes, for example, HttpServletRequest.

 Right-click your Worklight project and select Properties.

 Select Java Build Path → Libraries and click Add Library.

 Select Server Runtime and click Next.

 You see a list of server runtimes that are installed in your Eclipse.

 Select one and click Finish.

 Click OK.

Creating a custom Java authenticator (10 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.21

 The init method is called when the authenticator is created.

 As its parameter, this method takes the map of options that is

specified in a realm definition in the authenticationConfig.xml file.

 The clone method of the authenticator creates a deep copy of the

object members.

Creating a custom Java authenticator (11 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.22

 The processRequest method is called for each unauthenticated

request to collect credentials.

The processRequest() method takes the

request, response, and

isAccessToProtectedResource

arguments. The method might retrieve data

from a request and write data to a

response, and must return a specific
AuthenticationResult status as

described in subsequent slides.

Reminder: the authenticator collects the

credentials for a login module; it does not

validate them.

Creating a custom Java authenticator (12 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.23

 The processRequest method is called for each unauthenticated

request to collect credentials.

The application sends an authentication

request to a specific URL. This request

URL contains a

my_custom_auth_request_url

component, which is used by the

authenticator to make sure that this

request is an authentication request. It

is recommended to have a different

URL component in every authenticator.

Creating a custom Java authenticator (13 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.24

 The processRequest method is called for each unauthenticated

request to collect credentials.

The authenticator retrieves

the user name and password

that are passed as request

parameters.

Creating a custom Java authenticator (14 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.25

 The processRequest method is called for each unauthenticated

request to collect credentials.

The authenticator checks the

credentials for basic validity, creates
an authenticationData object,

and returns SUCCESS. SUCCESS

means only that the credentials were

successfully collected; after that, the

login module is called to validate the

credentials.

Creating a custom Java authenticator (15 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.26

 The processRequest method is called for each unauthenticated

request to collect credentials.

If a problem occurs with the received

credentials, the authenticator adds an error

message to the response and returns

CLIENT_INTERACTION_REQUIRED. The

client must still supply authentication data.

Creating a custom Java authenticator (16 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.27

 The processRequest method is called for each unauthenticated

request to collect credentials.

The
isAccessToProtectedResource

argument specifies whether an

access attempt was made to a

protected resource. If not, the method
returns REQUEST_NOT_RECOGNIZED,

which means that the authenticator

treatment is not required, and can

proceed with the request as is.

Creating a custom Java authenticator (17 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.28

 The processRequest() method is called for each unauthenticated

request to collect credentials.

If the request made to a protected

resource does not contain

authentication data, the authenticator
adds an authStatus:required

property to the response, and also

returns a
CLIENT_INTERACTION_REQUIRED

status.

Creating a custom Java authenticator (18 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.29

 The authenticator getAuthenticationData method is used by a login

module to get collected credentials.

 After the authenticated session is established, all requests are
transported through the changeResponseOnSuccess and

processRequestAlreadyAuthenticated methods.

 You can use these methods to retrieve data from requests and to update

responses.

Creating a custom Java authenticator (19 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.30

 The changeResponseOnSuccess method is called after credentials are

successfully validated by the login module.

 You can use this method to modify the response before you return it to the client.

 This method must return true if the response was modified, false otherwise.

 Use it to notify a client application about the authentication success.

Creating a custom Java authenticator (20 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.31

 The processRequestAlreadyAuthenticated method returns

AuthenticationResult objects for authenticated requests.

 If the login module returns an authentication failure, the
processAuthenticationFailure method is called. This method writes an

error message to a response body, and returns the
CLIENT_INTERACTION_REQUIRED status.

Creating a custom Java authenticator (21 of 21)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.32

Agenda

 Introduction to authentication

 Configuring the authenticationConfig.xml files

 Creating a custom Java authenticator

 Creating a custom Java login module

 Creating client-side authentication components

 Examining the result

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.33

Creating a custom Java login module (1 of 20)

 The login module API includes the following methods:

– void init(Map<String, String> options)

– boolean login(Map<String, Object>

authenticationData)

– UserIdentity createIdentity(String loginModule)

– void logout()

– void abort()

– WorkLightAuthLoginModule clone()
The init method of the login module is

called when the login module instance

is created. This method receives the

options that are specified in the login

module definition of the

authenticationConfig.xml file.

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.34

Creating a custom Java login module (2 of 20)

 The login module API is:

– void init(Map<String, String> options)

– boolean login(Map<String, Object>

authenticationData)

– UserIdentity createIdentity(String loginModule)

– void logout()

– void abort()

– WorkLightAuthLoginModule clone()

The login method of the login module

is used to validate the credentials that

are collected by the authenticator.

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.35

 The login module API is:

– void init(Map<String, String> options)

– boolean login(Map<String, Object>

authenticationData)

– UserIdentity createIdentity(String loginModule)

– void logout()

– void abort()

– WorkLightAuthLoginModule clone()

The createIdentity method of the

login module is used to create a
userIdentity object after validation

of the credentials succeeds.

Creating a custom Java login module (3 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.36

 The login module API is:

– void init(Map<String, String> options)

– boolean login(Map<String, Object>

authenticationData)

– UserIdentity createIdentity(String loginModule)

– void logout()

– void abort()

– WorkLightAuthLoginModule clone()

The logout and abort methods are

used to clean up cached data after a

logout or authentication aborts.

Creating a custom Java login module (4 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.37

 The login module API is:

– void init(Map<String, String> options)

– boolean login(Map<String, Object>

authenticationData)

– UserIdentity createIdentity(String loginModule)

– void logout()

– void abort()

– WorkLightLoginModule clone()

The clone method is used to create a

deep copy of the class members.

Creating a custom Java login module (5 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.38

 Create a MyCustomLoginModule class in the server\java folder.

 Make sure that this class implements the

WorkLightAuthLoginModule interface.

 Add two private class members, USERNAME and PASSWORD, to hold

the user credentials

Creating a custom Java login module (6 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.39

 The init method is called when the login module instance is created.

As its parameter, it takes the map of options that are specified in a

login module definition in the authenticationConfig.xml file.

 The clone method of the login module creates a deep copy of the

object members.

Creating a custom Java login module (7 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.40

 The login method is called after the authenticator returns the SUCCESS

status.

When called, the login

method gets an
authenticationData object

from the authenticator.

Creating a custom Java login module (8 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.41

 The login method is called after the authenticator returns the SUCCESS

status.

The login method retrieves

the user name and password

that the authenticator

previously stored.

Creating a custom Java login module (9 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.42

 The login method is called after the authenticator returns the SUCCESS

status.

In this example, the login module

validates the credentials against

hardcoded values. You can

implement your own validation
rules. The login method returns

true if the credentials are valid.

Creating a custom Java login module (10 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.43

 The login method is called after the authenticator returns the SUCCESS

status.

If the validation fails, the login method can either

return false or throw a RuntimeException. The

exception string is returned to the authenticator as an
errorMessage parameter.

Creating a custom Java login module (11 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.44

 The createIdentity method is called when the login method returns

true. It is used to create an authenticated user identity object.

After the login method returns

true, the createIdentity

method is called. It is used to
create a UserIdentity object.

You can store your own custom

attributes in it to use later in Java or

adapter code.

Creating a custom Java login module (12 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.45

 The createIdentity method is called when the login method returns

true. It is used to create an authenticated user identity object.

The UserIdentity object contains user

information. Its constructor is:
public UserIdentity(String loginModule,

String name,

String displayName,

Set<String> roles,

Map<String, Object> attributes,

Object credentials)

Creating a custom Java login module (13 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.46

 The createIdentity method is called when the login method returns

true. It is used to create an authenticated user identity object.

The UserIdentity object contains user

information. Its constructor is:
public UserIdentity(String loginModule,

String name,

String displayName,

Set<String> roles,

Map<String, Object> attributes,

Object credentials)

Login module

name to set user

for

Creating a custom Java login module (14 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.47

 The createIdentity method is called when the login method returnq

true. It is used to create an authenticated user identity object.

The UserIdentity object contains user

information. Its constructor is:
public UserIdentity(String loginModule,

String name,

String displayName,

Set<String> roles,

Map<String, Object> attributes,

Object credentials)

A unique user

identifier

Creating a custom Java login module (15 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.48

 The createIdentity method is called when the login method returns

true. It is used to create an authenticated user identity object.

The UserIdentity object contains user

information. Its constructor is:
public UserIdentity(String loginModule,

String name,

String displayName,

Set<String> roles,

Map<String, Object> attributes,

Object credentials)

User display name

Creating a custom Java login module (16 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.49

 The createIdentity method is called when the login method returns

true. It is used to create an authenticated user identity object.

The UserIdentity object contains user

information. Its constructor is:
public UserIdentity(String loginModule,

String name,

String displayName,

Set<String> roles,

Map<String, Object> attributes,

Object credentials)

User Java security

roles

Creating a custom Java login module (17 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.50

 The createIdentity method is called when the login method returns

true. It is used to create an authenticated user identity object.

The UserIdentity object contains user

information. Its constructor is:
public UserIdentity(String loginModule,

String name,

String displayName,

Set<String> roles,

Map<String, Object> attributes,

Object credentials)

Custom user

attributes

Creating a custom Java login module (18 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.51

 The createIdentity method is called when the login method

returned true. It is used to create an authenticated user identity object.

The UserIdentity object contains user

information. Its constructor is:
public UserIdentity(String loginModule,

String name,

String displayName,

Set<String> roles,

Map<String, Object> attributes,

Object credentials)

Sensitive user

credentials that are

not to be persisted.

Creating a custom Java login module (19 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.52

 The logout and abort methods are used to clean up class members

after the user logs out or aborts the authentication flow.

Creating a custom Java login module (20 of 20)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.53

Agenda

 Introduction to authentication

 Configuring the authenticationConfig.xml file

 Creating a custom Java authenticator

 Creating a custom Java login module

 Creating client-side authentication components

 Examining the result

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.54

Creating client-side authentication components
(1 of 13)

 Create a Worklight application.

 The application consists of two main <div> elements:

– The <div id=“AppBody”> element is used to display the

application content.

– The <div id=“AuthBody”> element is used for authentication

forms.

 When authentication is required, the application hides AppBody and

shows AuthBody. When authentication is complete, it does the

opposite.

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.55

 Start by creating an <AppBody> element.

 It has a basic structure and functions.

 Buttons are used to call the getSecretData procedure and to log

out.

Creating client-side authentication components
(2 of 13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.56

 AuthBody contains the following elements:

– Username and password input fields

– Login and Cancel buttons

 AuthBody is styled as display:none because it must not be

displayed before the server requests the authentication.

Creating client-side authentication components
(3 of 13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.57

 The following API describes how to create the challenge handler and implement

its functionality:

Use
WL.Client.createChallengeHandler to

create a challenge handler object. Supply a

realm name as a parameter.

Create a challenge handler to define a customized authentication flow. In

your challenge handler, do not add code that modifies the user interface

when this modification is not related to the authentication flow.

Creating client-side authentication components
(4 of 13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.58

 The following API describes how to create the challenge handler and

implement its functionality:

The isCustomResponse function of the

challenge handler is called each time a response

is received from the server.

It is used to detect whether the response contains

data that is related to this challenge handler. It

must return true or false.

Creating client-side authentication components
(5 of 13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.59

 The following API describes how to create the challenge handler and

implement its functionality.

If isCustomResponse returns true, the

framework calls the handleChallenge function.

This function is used to perform required actions,

such as hide application screen and show login

screen.

Creating client-side authentication components
(6 of 13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.60

 In addition to the methods that the developer must implement, the challenge
handler contains functionality that the developer might want to use:

– Use submitLoginForm to send collected credentials to a specific
URL. The developer can also specify request parameters, headers, and
callback.

– Use submitSuccess to notify the Worklight framework that the
authentication finished successfully. The Worklight framework then
automatically issues the original request that triggered the
authentication.

– Use submitFailure to notify the Worklight framework that the
authentication completed with a failure. The Worklight framework then
disposes of the original request that triggered the authentication

* Note: Attach each of these functions to its object. For example:
myChallengeHandler.submitSucces()

 You use these functions during the implementation of the challenge handler
in the next slides.

Creating client-side authentication components
(7 of 13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.61

 Create a challenge handler.

If the challenge JSON block
contains the authStatus

property, return true, otherwise

return false.

Creating client-side authentication components
(8 of 13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.62

 Create a challenge handler.

If the authStatus property equals

“required”, show the login form, clean up

the password input field, and display the

error message if applicable.

Creating client-side authentication components
(9 of 13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.63

 Create a challenge handler.

if authStatus equals “complete”, hide

the login screen, return to the

application, and notify the Worklight

framework that authentication completed

successfully.

Creating client-side authentication components
(10 of 13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.64

 Create a challenge handler.

Clicking a login button triggers the

function that collects the user name

and password from HTML input fields

and submits them to server. You can

set request headers here and specify

callback functions.

Creating client-side authentication components
(11 of 13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.65

 Create a challenge handler.

Clicking a cancel button hides

authBody, shows appBody, and

notifies the Worklight framework

that authentication failed.

Creating client-side authentication components
(12 of 13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.66

 Create a challenge handler.

The callback function checks the

response for the containing

server challenge once again. If

the challenge is found, the
handleChallenge function is

called again.

Creating client-side authentication components
(13 of 13)

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.67

Agenda

 Introduction to authentication

 Configuring the authenticationConfig.xml file

 Creating a custom Java authenticator

 Creating a custom Java login module

 Creating client-side authentication components

 Examining the result

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.68

Examining the Result

 You can find the sample for this training module in the Getting Started page of

the IBM Worklight Foundation documentation website at

http://www.ibm.com/mobile-docs

 Enter wluser and 12345 as the user credentials

http://www.ibm.com/mobile-docs

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.69

Notices

 Permission for the use of these publications is granted subject to these terms and conditions.

 This information was developed for products and services offered in the U.S.A.

 IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that only

that IBM product, program, or service may be used. Any functionally equivalent product, program, or

service that does not infringe any IBM intellectual property right may be used instead. However, it is the

user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

 IBM may have patents or pending patent applications covering subject matter described in this document.

The furnishing of this document does not grant you any license to these patents. You can send license

inquiries, in writing, to:

– IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

 For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual

Property Department in your country or send inquiries, in writing, to:

– Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

 The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer

of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

 This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication. IBM

may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

 Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

 IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

 Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this one)

and (ii) the mutual use of the information which has been exchanged, should contact:

– IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

USA

 Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

 The licensed program described in this document and all licensed material available for it are provided by

IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any

equivalent agreement between us.

 Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

COPYRIGHT LICENSE:

 This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

 Each copy or any portion of these sample programs or any derivative work, must include a copyright notice

as follows:

– © (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

Privacy Policy Considerations

 IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies

or other technologies to collect product usage information, to help improve the end user experience, to

tailor interactions with the end user or for other purposes. In many cases no personally identifiable

information is collected by the Software Offerings. Some of our Software Offerings can help enable you to

collect personally identifiable information. If this Software Offering uses cookies to collect personally

identifiable information, specific information about this offering’s use of cookies is set forth below.

 Depending upon the configurations deployed, this Software Offering may use session cookies that collect

session information (generated by the application server). These cookies contain no personally identifiable

information and are required for session management. Additionally, persistent cookies may be randomly

generated to recognize and manage anonymous users. These cookies also contain no personally

identifiable information and are required.

 If the configurations deployed for this Software Offering provide you as customer the ability to collect

personally identifiable information from end users via cookies and other technologies, you should seek

your own legal advice about any laws applicable to such data collection, including any requirements for

notice and consent. For more information about the use of various technologies, including cookies, for

these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy

Statement at http://www.ibm.com/privacy/details the sections entitled “Cookies, Web Beacons and Other

Technologies” and the “IBM Software Products and Software-as-a-Service Privacy Statement” at

http://www.ibm.com/software/info/product-privacy.

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.70

Support and comments

 For the entire IBM Worklight documentation set, training material and online forums where you can post questions, see the IBM website at:

– http://www.ibm.com/mobile-docs

 Support

– Software Subscription and Support (also referred to as Software Maintenance) is included with licenses purchased through Passport
Advantage and Passport Advantage Express. For additional information about the International Passport Advantage Agreement and the
IBM International Passport Advantage Express Agreement, visit the Passport Advantage website at:

• http://www.ibm.com/software/passportadvantage

– If you have a Software Subscription and Support in effect, IBM provides you assistance for your routine, short duration installation and
usage (how-to) questions, and code-related questions. For additional details, consult your IBM Software Support Handbook at:

• http://www.ibm.com/support/handbook

 Comments

– We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy, organization, subject
matter, or completeness of this document. The comments you send should pertain to only the information in this manual or product and
the way in which the information is presented.

– For technical questions and information about products and prices, please contact your IBM branch office, your IBM business partner,
or your authorized remarketer.

– When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes
appropriate without incurring any obligation to you. IBM or any other organizations will only use the personal information that you supply
to contact you about the issues that you state.

– Thank you for your support.

– Submit your comments in the IBM Worklight Developer Edition support community at:

• https://www.ibm.com/developerworks/mobile/worklight/connect.html

– If you would like a response from IBM, please provide the following information:

• Name

• Address

• Company or Organization

• Phone No.

• Email address

http://www.ibm.com/mobile-docs
http://www.ibm.com/software/passportadvantage
http://www.ibm.com/support/handbook
https://www.ibm.com/developerworks/mobile/worklight/connect.html

© Copyright International Business Machines Corporation 2012, 2014. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

13 June 2014

Thank You

