

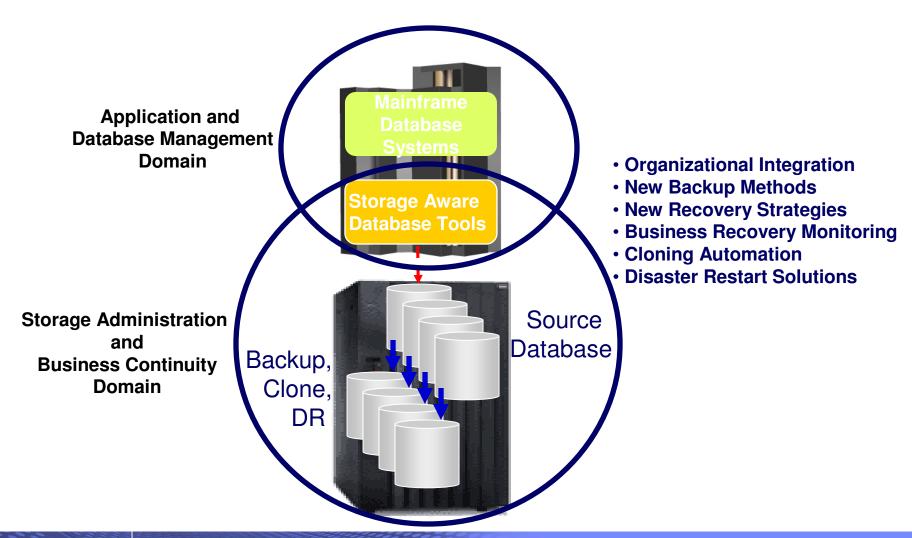
IBM Information Management

DB2 backup and recovery that ensures business resiliency

Speaker: Thomas J. Hubbard Product Specialist Manager Rocket Software tom.hubbard@rs.com

Session Agenda

- DB2 System Level Backup Overview
- DB2 System Level Backup Requirements
- DB2 Recovery Expert for z/OS Introduction
- DB2 Recovery Expert Copy Blades and Storage Vendor Support
- Implementation Planning Considerations
- Session Summarization

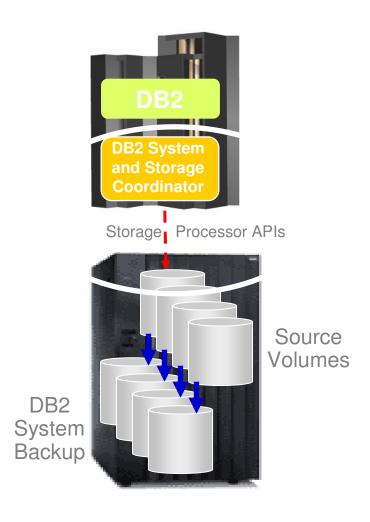


DB2 System Trends and Directions

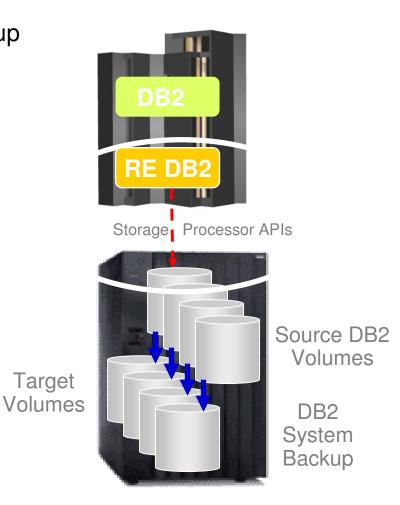
- Large DB2 systems require high availability
 - Fast and non-intrusive backup facilities are required
 - Fast recovery capabilities required to minimize down time
 - Most backup, recovery and cloning solutions do not leverage storage-based fast-replication facilities
- Storage-based fast-replication facilities are under-utilized
 - Tend to be used by storage organizations
 - Tend not to be used by database administrators (DBAs)
- Storage aware database products allow DBAs to use fastreplication in a safe and transparent manner
 - Provides fast and non-intrusive backup operations
 - Simplifies recovery operations and reduces recovery time
 - Simplifies disaster recovery procedures


DB2 System Level Backup Database and Storage Integration

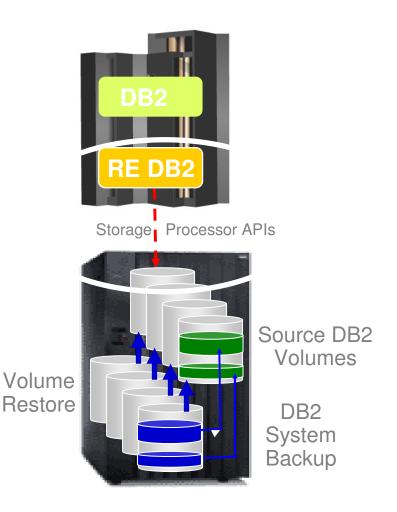
DB2 System Level Backup Data Set Layout Considerations


DB2 on z/OS System and Database Environment

DB2 Recovery Expert Functional Requirements

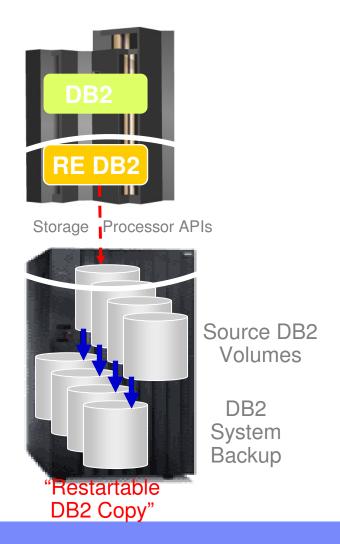

- Integrate DB2 backup, restore, and recovery process with storage-based fastreplication
- Provide easy and fast backup and restore of DB2 systems, applications, or objects
- Support common storage systems
 - IBM FlashCopy (FC)
 - EMC TimeFinder/Mirror/Clone, FC
 - HDS Shadow Image, FC
- Feature requirements include:
 - DB2 system configuration management
 - Perform system backup and recovery
 - DB2 system backup validation
 - Perform application and object recovery
 - Full metadata repository
 - Encrypted tape offload support
 - DR preparation and management

DB2 Recovery Expert Creating a System Level Backup


- Storage-based API drive backup process
- Storage-based fast-replication creates backup
 - Full DB2 system backups in seconds
 - Does not use host CPU or I/O resources
- Backup DB2 without affecting applications
 - Backup windows reduced or eliminated
 - Extends processing windows
- Data consistency ensured during backup
 - DB2 Suspend (One data-sharing member)
 - Storage-based consistency functions
 - DB2 Backup System
- Automated backup archival and recall
- One backup used for many functions
 - Reduces backup CPU, I/O, and storage utilization

DB2 Recovery Expert DB2 System and Application Recovery

- DB2 Recovery Expert restores DB2 systems or application objects from disk or tape automatically
- Faster recovery
 - Instantaneous data restore process
 - DB2 Recovery Expert coordinates storage-based restore and DB2 recovery functions
 - Parallel restore and recovery minimize application down time during recovery
 - Discovers and resolves objects in rebuild/recovery pending state
- Data set snap used for application or object recovery
- DB2 system backup for multiple purposes
 - DB2 system recovery
 - Application recovery
 - Disaster recovery



DB2 Recovery Expert Creating Image Copies

- Image copies can be generated from a DB2 Recovery Expert system level backup (SLB)
- Image copies are registered DB2 image copies
- Image copies can be used for object recovery and other operational procedures
- All image copies are created at the same point in time
 - No affect on the application for image copy creation
 - Reduces recovery scope for coordinated object recoveries
 - Reduces I/O contention caused by performing traditional IC processing during high transaction activity

DB2 Recovery Expert Disaster Recovery Benefits

- DB2 Recovery Expert simplifies DB2 disaster recovery
 - System level backup for restart
 - System level backup and roll forward
- DB2 system backup is "restartable"
- DB2 Recovery Expert offsite DB2 disaster recovery support
 - Restores last SLB volumes
 - Optionally includes additional archive logs
 - DB2 recovery performed during normal initialization process
 - Disaster recovery is like restarting from a power failure
- DB2 disaster recovery becomes a tapebased disaster restart process
 - Reduced recovery time at a DR site
 - Tape-based disaster restart solutions provide similar benefits as storage-based remote replication solutions

DB2 Recovery Expert Disaster Recovery Management

Local site procedures

- Builds and submits jobs to prepare for remote site recovery
- Remote recovery jobs sent off site with archive logs

Remote site procedures

- Restore SLB at DR site
- DB2 Recovery Expert adjusts the DB2 BSDS to accommodate the recovery assets at the remote site
- DB2 Recovery Expert rolls SLB forward during DB2 restart using additional recovery assets and updated BSDS
 - Image copies
 - Archive logs

DB2 Recovery Expert Storage Benefits

- A system backup can be used for multiple functions saving storage and processing resources
 - Recovery source (various forms)
- DB2 Recovery Expert leverages fastreplication software investments for backup and restore functions
- Expose fast-replication to DBAs safely and transparently using "storage aware" database utilities
- Provides meta-data infrastructure to drive DB2 and storage processor coordination
- Provides multiple storage vendor support
 - IBM FlashCopy
 - EMC TimeFinder/Mirror/Clone/Snap, FlashCopy
 - Hitachi ShadowImage, FlashCopy
 - IBM RAMAC Virtual Array, STK SnapShot

DB2 Recovery Expert Copy Blade Support

- IBM DB2 Backup System Copy Blade
 - Supports DB2 Backup System and drives FlashCopy V2
- IBM FlashCopy Blade
 - Provides support for IBM FlashCopy V2
- IBM DFSMSdss Copy Blade
 - Invokes ADRDSSU utility to drive FlashCopy or SnapShot
- EMC TimeFinder Copy Blade
 - Supports TimeFinder/BCV/Clone/Snap (Virtual Devices)
 - EMC Consistency Technology supported
- HDS ShadowImage Copy Blade
 - Supports HDS native ShadowImage volume copy processes
 - FlashCopy emulation used for data set fast-replication

DB2 DB2 Recovery Expert User Interfaces

ISPF Interface

- Subsystem analysis and configuration
- Support for storage based system backups
- Partial system backups
- Subsystem setup
- Recovery health check

GUI Interface

- "Expert" recovery services
- DB2 Log Analysis services
 - undo or redo recoveries
 - Quiet point analysis
- Drop Recovery
- Dependency analysis
 - Optim Database Relationship Analyzer

DB2 Recovery Expert DB2 System Analysis and Configuration

- Discovers and analyzes the DB2 system and displays an interactive report showing DASD volume usage
- Provides colored alerts and warnings when detecting anything preventing a successful system backup
- Segregates DB2 log and object data to support a system backup methodology
 - Generates JCL to move DB2 data sets to appropriate volumes
 - Provides support for moving DB2 data, logs, and BSDSs
 - Provides support for renaming DB2 objects, logs, and BSDS data sets
- Automates separating DB2 data and log datasets into their own ICF catalogs

DB2 Recovery Expert Backup Validation Processes

- Ensures backups are usable for a restore process
 - All DB2 system volumes are included in the backup
 - All DB2 log volumes are included in a FULL system backup
 - User catalogs used by the DB2 system, including the log data sets, are included in backup
 - DB2 logs and object data are on separate volumes
 - FULL restore only if log structures and data are not separated
 - All source volumes are valid, online, and available
 - All target volumes are valid, offline, and available
 - Target backup volumes not in use by other backup profiles
 - All source and target volumes are the same device type

DB2 Recovery Expert System Restore DB2 System Restore and Recover Options

- Restore data and logs
 - FULL restore no recovery performed
 - Restore to copy functionality
- Point-in-time recovery
 - All data volumes restored
 - Recover entire DB2 system using logs
 - Recover to RBA or LRSN
 - Relative Byte Address (RBA)/Timestamp Utility
 - Creates and maintains a list of RBA to timestamp pairs
 - Provides the ability to select appropriate recovery timeframes based on the RBA values
 - Requires separation of logs and application data
 - Restore and recovery can be performed in parallel

DB2 Recovery Expert - Object Recovery

- Recovers objects from a system level backup
- Groups of objects can represent applications (Profiles)
- Profiles contain dataset restore and recovery options
 - Recovery JCL is generated for all included objects
 - Masking support to automatically include new objects when they are created
 - The most effective recovery plan is generated
 - Either standard DB2 restore from image copy, or data set restore from system level backup
- Supports object recovery to last quiesce point, last backup, to current, or to a specified RBA/LRSN
- Supports datasets that have moved since backup and datasets that do not exist at time of restore
- Optionally generate DB2 image copies from a SLB

DB2 Recovery Expert - Backup Offloading

- Automates archiving a system level backup to tape
- Robust tape naming facilities
 - All tape allocations are dynamic and handled automatically by DB2 Recovery Expert
- Tuning features for offload process; specifying number of subtasks, number of backups stacked on one tape, etc.
- DB2 systems and applications can be recovered from archive copy
 - DB2 Recovery Expert detects where the backup resides and performs the recovery
- Supported archival data movers:
 - IBM DFSMSdss
 - IBM DFSMShsm
 - Innovation FDR
 - Innovation FDRInstant

IBM Information Management

Implementation Planning Considerations

Implementation Planning System Level Backup Usage

- SLB used for local system recovery
 - DB2 data and recovery structure (Log and BSDS datasets) isolation required
 - DB2 system isolation may be required
 - Non-DB2 data sets will get restored when DB2 is restored
- SLB used for application or object recovery only
 - Data and recovery structure isolation is not required
- SLB used for remote disaster restart operations
 - Recovery structure isolation is not required
 - DB2 system isolation may be required
 - Non-DB2 data sets will get restored when DB2 is restored

Implementation Planning Partial System Level Backup

- Partial system level backup (PSLB) are used for object or application recovery only
 - Data set fast replication used to restore data
 - Log and data isolation not required
 - Desired application object data should be grouped on volumes as a best practice
- PSLB <u>cannot</u> be used for system recovery
 - System recovery requires all volumes in SLB
- PSLB usage
 - Large objects or applications having unique backup requirements
 - Creating image copies from a PSLB
 - Reduce disk utilization
 - Support more backup generations

Implementation Planning Backup Frequency and Space Utilization

- SLB type: Full, Data only, or Partial
- Determine optimal backup frequency
- Determine number of backups to keep online (on disk)
- Establish online backup duration requirements
 - SLB or PSLB used for IC creation may be deleted after ICs complete
- Determine offline (tape) backup requirements
 Consider incremental fast-replication options to reduce background copy time and resources
- Consider using space efficient fast-replication methods like EMC VDEVs to save space
- Consider using one set of volume targets to support multiple DB2 systems
 - Saves fast-replication target volume (DASD) requirement

Implementation Planning Copy Blade Selection

- Know your storage processing infrastructure
 - What storage processors are used (EMC, IBM, HDS)
 - What fast-replication facilities are licensed and preferred
- Determine storage blade and fast-replication facilities to use
 - DB2 Backup System Copy Blade
 - DFSMSdss Copy Blade
 - IBM FlashCopy Blade
 - EMC TimeFinder Copy Blade
 - HDS ShadowImage Copy Blade
- Know the type of consistency function is best for your environment
 - DB2 Suspend, DB2 Backup System, Storage-based consistency

Implementation Planning Disaster Restart Considerations

- SLB should contain DB2 data only
 - Can contain other data that is restarted together
 - Recovering DB2 and other data together may require using a storage based consistency function to create the SLB
 - Cannot roll forward if DB2 and other data require consistency
- Use disaster recovery profiles to prepare for roll forward recovery at the DR site
 - Disaster recovery profiles specify options on how to copy log data for DR site, etc.
 - Ensure RE's Disaster Recovery PDS is taken offsite with archive logs and image copies
 - Reduces Recovery Point Objectives (RPO)

IBM Copy Blades

IBM FlashCopy Blade

- Provides support for IBM FlashCopy V2
- Dataset FlashCopy support for fast object / application recovery
- ANTRQST calls issued to drive FlashCopy volume commands (fast performance)
- Requires Set Log Suspend
- Supports IBM, EMC, HDS FlashCopy products

IBM DFSMSdss Copy Blade

- ADRDSSU utility invoked to perform volume copies
- Fast replication (preferred) is used Will support non fast replication DASD
- Dataset FlashCopy support for fast object / application recovery
- Slower than using ANTRQST in native FlashCopy blade
- Requires Set Log Suspend
- Supports FlashCopy (IBM, EMC, HDS), SnapShot (STK, RAMAC Virtual Array)

IBM Copy Blades (Cont)

IBM DB2 Backup System Copy Blade

- Executes the DB2 Backup System Utility
- Does not require DB2 Set Log Suspend
- Incremental FlashCopy support
- Uses IBM FlashCopy V2 (IBM, EMC, HDS)
- DB2 RE advantages for using DB2 System Backup Utility
 - Provides backup validation features on top of DB2 system backup
 - Manages DB2 system backup process through one ISPF interface.
 - Automates the system restore process making it less error prone.
 - Provides fail safe object recovery even if files have been moved or deleted.
 - Provides for use of system backup at DR site
 - Create image copies from the system backup
 - Produces and stores detail and summary reports on each backup.

DB2 System Level Backup Operational Advantages

- Perform DB2 backups instantly
- Fast restore and parallel recovery reduces recovery time
- Reduce backup, recovery, and administration costs
 - Reduce host CPU and I/O resource utilization
- Simplify disaster recovery procedures
- DB2 and storage system integration used to drive fastreplication capabilities
 - Leverage storage processors and fast-replication investments
 - IBM, EMC, HDS, STK
 - Expose fast-replication capabilities to the DBAs safely and transparently using "storage aware" database utilities
- Requires a sophisticated infrastructure and meta-data to manage the DB2 and storage processor coordination

Volume-level backup with DB2 BACKUP SYSTEM

- BACKUP SYSTEM provides an easy and non-disruptive way for fast volume-level backup
 - Use FlashCopy API to backup DB2 data and logs
 - No need to suspend the logs
 - Backup and recovery are managed by DB2 and DFSMShsm
- Backups can be taken on DASD and/or tapes
 - -DB2 v9
- These volume-based backups can be used for
 - Point in time recovery of an entire subsystem or data sharing group (RESTORE SYSTEM)
 - DB2 object recovery (RECOVER)
 - -DB2 v9

Prerequisites

- Hardware
 - DASD control units that support Flashcopy APIs
 - FlashCopy V2 is strongly recommended Allows 'source' and 'target' to be across LSS boundary and is about 10x faster
- Software
 - -z/OS 1.5 DFSMShsm and DB2 V8 for z/OS
 - BACKUP SYSTEM and RESTORE SYSTEM
 - -z/OS 1.8 DFSMShsm and DB2 9 for z/OS
 - Ability to recover at the object level using system-level backups
 - Tape support for BACKUP SYSTEM and RESTORE SYSTEM
 - Incremental FlashCopy support (APAR PK41001)
- People
 - Strong collaboration between DB2 and Storage teams

Preparation of the DB2 Environment

- All volumes containing DB2 data sets must be SMS managed
 - Including the DB2 catalog/directory, logs and BSDS, and all user data
- DB2 logs and BSDS must be separated from the rest of the DB2 data sets
 - Own pool of volumes
 - Own ICF user catalog
 - Defined in a separate SMS storage group
- Special care should be taken to ensure that the ICF user catalogs stay synchronized with the data
 - Must have separate ICF user catalogs for data and logs
 - ICF user catalog(s) for data must reside in the data copy pool
 - ICF user catalog for logs must reside in the log copy pool
 - Do not share ICF user catalog with non-DB2 data

SMS Definitions

COPYPOOL

- -SMS construct introduced in z/OS 1.5
- Set of SMS storage groups maximum 256 storage groups
- Has a VERSIONS attribute to specify the number of copy versions to be maintained on DASD – maximum is 85
- Each DB2 system can only have two SMS copy pools
 - Database copy pool (DSN\$location_name\$DB)
 - Log copy pool (DSN\$location_name\$LG)

SMS Definitions ...

COPYPOOL BACKUP

- New storage group type
- Contains the candidate target volumes for DFSMShsm fast replication requests
- Must contain enough <u>eligible</u> target volumes to satisfy the needs of the specified number of copy pool versions
- An <u>eligible</u> target volume must meet the following requirements:
 - Have the same track format as the source volume
 - Be the exact size of the source volume
 - For FlashCopy:
 - Not be a primary or secondary volume in an XRC volume pair
 - For FlashCopy Version 1:
 - Reside in the same LSS as the source volume
 - At the time of the backup, not be in a FlashCopy relationship

Additional Considerations

- DFSMShsm does not support the migration of data sets within a copy pool, although it is not explicitly prevented.
 - Recovering a copy pool or a volume within a copy pool from which data was migrated will cause data loss
 - Data set migration must be prevented in the SMS definitions
- SMS extend or overflow storage groups
 - Should only be utilised by storage groups containing DB2 data sets
 - Must all be contained within the data copy pool

EMC Copy Blades

EMC TimeFinder Copy Blade

- TimeFinder/BCV
- TimeFinder/Clone
- EMC Consistency Technology support
- TimeFinder Data Set Snap facility to perform fast replication application / object restores.
- EMC Virtual Devices
 - Allows multiple backups with reduced storage utilization
- Incremental Copy Support
- Set Log Suspend performed on one data sharing member when backing up a data sharing group.

Hitachi Data Systems Copy Blades

- ShadowImage Copy Blade
 - Supports HDS native ShadowImage volume copy processes
 - Invoked using FlashCopy backup profile
 - Checks shadow_image field in RE parm lib
 - N RE drives FlashCopy
 - Y RE drives Shadowlmage
 - Incremental Copy Support
 - Requires DB2 Set Log Suspend
 - Can support a DB2 that is on both HDS and IBM storage using native methods (ShadowImage and FlashCopy)
 - HDS data set FlashCopy emulation used for fast replication object / application restores.

DB2 Recovery Expert Summary of Benefits

- Simplifies and automates a DB2 SLB methodology
 - Leverages storage-based fast-replication
 - Fast, non-intrusive, and reduces CPU, I/O and storage utilization
- DB2 SLBs can be used for DB2 system, application, or table and index space recovery
 - Parallel recovery reduces system and database recovery time
- DB2 image copies can be created from a SLB
 - Simplifies DB2 backup and recovery strategies
- DB2 SLBs simplify disaster recovery procedures
 - Transforms DB2 DR procedures into a disaster restart process
- Less skills required to implement advanced DB2 backup, recover, and disaster recovery solutions

Q & A

