Query Management Facility

Installing and Managing QMF on
VM/ESA

Version 7

GC27-0720-00

Query Management Facility

Installing and Managing QMF on
VM/ESA

Version 7

GC27-0720-00

Note!
Before using this information and the product it supports, be sure to read the general information under

Lépmﬂmw i > .

Second Edition (September 2000)

This edition applies to Query Management Facility, a feature of Version 7 Release 1 of DATABASE 2 Server for VM
and VSE< (DB2for VM and VSE), 5697-F42, (VM environment only), and to any subsequent releases and
modifications until otherwise indicated in new editions.

This edition replaces GC26-9573-00.

© Copyright International Business Machines Corporation 1983, 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

The QMF Library . X
About This Book Y
How to Use This book. . . Xi
What You Should Know Before You Begln .LoXii
Locating Prerequisite Documentation . Xii
Part 1. Installing QMF for VM/ESA 1
Chapter 1. Introduction .3
Overview of QMF .3
QMF Objects . .3
Overview of QMF Wlth Remote Unlt of
Work. - .4
Some Terminology . .5
Overview of the Installation Process .5
Where the Objects Reside . .5
Local and Remote Installation .5
Connecting to a Remote Database from VM 5
Connecting to Workstation Database Servers
from VM . 6
Chapter 2. Planning for Installation .7
Hardware Requirements .7
Prerequisite Software . .7
Products Required to Support Remote Unlt of
Work . G 11
Virtual Storage Requwements . .12
Discontiguous Shared Segments (DCSS)
Storage Requirements . .12
Disk Storage Requirements . .12
Required DB2 for VM Knowledge. .12
DB2 for VM Requirements for QMF . .13
A PUBLIC DBSPACE is Required for
Saving Data . .13
Database CONNECT ID “Q” and
“SQLDBA” . .14
QMF SQL Install Packages . .14
Further Requirements . .14
Before You Begin . 18
Previous Releases of QMF . 18
Migration and Fallback . .18
QMF National Language Feature (NLF)
Considerations . .19

© Copyright IBM Corp. 1983, 2000

Planning for Installing QMF into a
Workstation Database Server

Chapter 3. Installing QMF 7.1 into the DB2
for VM Database
QMF Installation Flow Dlagram
The Installation Steps .
Preliminary: Read the Program Dlrectory
and Complete the QMF 7.1 Worksheet .
Step 1—Create QMF Installation Control
File: DSQ2ECTL.
Step 2—Create DB2 for VM DBSPACEs
DSQ2DBSC
Step 3—Run QMF Installatlon EXEC
DSQ2EINS
Step 4—Start QMF: DSQ2EINV
Step 5—Run the IVP for QMF Interactive
Mode : DSQZ2EIVP . .
Step 6—Installing the QMF Sample Objects
and Application Objects: DSQ2ESQD and
DSQ2ESQI
Step 7—Running the Batch Mode IVP
(Optional): DSQ2EBAT .
Step 8—Deleting Previous Versions of
QMEF (Optional): DSQ2BDEL
Step 9—Post-Installation Cleanup .
Step 10—Load QMF Database Packages to
a Remote Server (Optional): DSQ2BPKB.

Chapter 4. Installing a QMF 7.1 National
Language Feature (NLF)
NLF Installation EXECs . . .
Installing a National Language Feature .
Hardware and Program Product
Requirements
The Installation Steps .
Preliminary: Read the NLF Program
Directory and Complete the Worksheet .
Step 1—Create the QMF NLF Installation
Control File: DSQ2nCTL . .
Step 2—Run QMF NLF Installation EXEC:
DSQ2nINS
Step 3—Start QMF NLF DSQZnINV
Step 4—Run the IVP for QMF NLF
Interactive Mode: DSQ2nIVP

. 20

.21
.21
. 24
.24
. 25
. 26

. 28
. 29

. 36

.37

. 38

. 40
. 40

. 43
. 43
. 43

. 44
. 44

.44

. 45

. 46
. 47

. 48

Step 5—Install QMF NLF Sample Objects
and Application Objects: DSQ2nSQD and
DSQ2nsQl

Step 6—Run the IVP for QMF NLF Batch
Mode (Optional): DSQ2nBAT

Step 7—Post-Installation Cleanup .

. 49

. 50
. 50

Part 2. Managing QMF for VM/ESA 51

Chapter 5. Starting QMF
Before you Start QMF. . .
Establishing a Database Connectlon .
Initializing the QMF Session
Quick Start .
Setting up QMF to Run under ISPF .
Before you start QMF . .o
Starting QMF from a Menu Optlon
Starting QMF with the ISPSTART
Command
Starting QMF in Batch Mode in ISPF
Examples of Starting QMF under ISPF .
Setting up QMF to Run under CMS .
Starting QMF Directly with the DSQQMFE
Module
Starting QMF in a Batch CMS
Environment.
Examples of Starting QMF under CMS
Creating a CMS EXEC
Verify Program Modules .
Verify QMF Data Files
GDDM Considerations
DB2 for VM Considerations.

Chapter 6. Customizing Your Start
Procedure

Quick Start

Setting Default Start Values Usmg the REXX
Program DSQSCMDn . .

Naming the Program Segment .

dcssname .

DSQSDCSS .
Customizing Report Storage and Report
Performance .

Adjusting Storage for Report Data

(DSQSBSTG) . . .

Adjusting Reserved Storage Used for

Report Data (DSQSRSTG) .

Acquiring Extra Storage (DSQSPILL).

iv Installing and Managing QMF on VM

. 57
. 57
. 57
. 58
. 58
. 59
. 59
. 59

. 61
. 62
. 63
. 64

. 64

. 64
. 65
. 65
. 65
. 65
. 66
. 66

. 67
. 67
. 68
.12
.12
. 73
. 13
. 73

.74
.75

Controlling the Number of Report Rows
Retrieved for Display (DSQSIROW) .

Setting the Level of Trace Detail

(DSQSDBUG)

Controlling Initial Act|V|t|es Durlng a SeSS|on
Specifying the Location to Connect to
When Starting QMF (DSQSDBNM)
Specifying an Interactive or Noninteractive
QMF Session (DSQSMODE). .
Naming a Procedure to Run When QMF
Starts (DSQSRUN) .

Setting Printing for Double-Byte Character Set
. 90

Data (DSQSDBCS) .

Chapter 7. The QMF Session Control
Facility .
Installing or Removmg Q SYSTEM INI
Importing the Default System Initialization
Procedure. .
When Does the Q. SYSTEM INI Procedure
Run? .
Using Q. SYSTEM INI. .
Example Shipped with QMF
User Session Procedure Example .
Procedure that Displays an Object list
Security and Sharing Session Procedure.
Diagnosis Considerations

Chapter 8. Establishing QMF Support for
End Users
The role of the Q AUTHID
Quick Start
Ensuring That Users Have Access to CMS
Creating User Profiles to Enable User Access
to QMF .o
Using the Q User Proflle a SpeC|aI QMF
Profile .
Establishing a Proflle Structure for Your
Installation .
Adding a New User Proflle to the
Q.PROFILES Table .
Preventing Users Without Unlque Proflles
from Using QMF . .
Reading the Q.PROFILES Table .
Providing the Correct Profile for the
User’s Operating Environment
Updating User Profiles .
Deleting Profiles from the Q. PROFILES
Table . .

. 83

. 84

.91
.91

.91

.91
. 92
. 92
.92
. 93
. 94
. 94

. 95
. 95
. 95
. 96
. 97
. 97
. 98
. 98

. 99
. 100

. 104
. 105

. 106

Controlling Access to QMF and Database
Obijects

SQL Privileges Requwed to Access ObjECtS

Granting and Revoking SQL Privileges
Sharing QMF Objects with Other Users
Allowing Uncommitted Read . .
Setting Standards for Creating Objects .
Customizing a User’s Database Object List
Using the Default Object Lists.
Changing the Default List .
Object List Storage Requirement .
Enabling Users to Create Tables in the
Database .

Choosing and Acqumng a dbspace for the

User

Granting a User DBZ for VM RESOURCE

Authority

Enabling Users to Conflrm Table Changes

Before They are Made .
Enabling Users to Support a Chart .
Maintaining QMF Objects Using QMF
Control Tables . .

Reading the Q.OBJECT_ DIRECTORY

Table .

Reading the Q. OBJECT DATA Table

Reading the Q.OBJECT_REMARKS Table

Listing QMF Queries, Forms, and
Procedures .

Displaying QMF Quenes Forms and
Procedures . .
Transferring Ownershlp of Querles
Forms, and Procedures .

Deleting Obsolete Queries, Forms and
Procedures .

Enlarging the dbspace for the QMF Object

Control Tables .

Maintaining Tables and V|ews Usmg DBZ for
. 127
. 128

VM System Tables
Listing Tables and Views .
Transferring Ownershlp of a Table or
View .
Deleting a Table or Vlew from the
Database. .
Supporting Locally Deflned Date/Tlme
Formats .
Accessing the DXT End User Dlalogs (ISPF
Only) . .o .
Supporting the EXTRACT Command
Allocating Resources.

. 107
107
109
111

11
. 112

112

. 113
. 114
. 115

. 116

. 118

. 118

. 119
. 120

. 120

. 121
. 122

123

. 123

. 124

. 124

. 125

. 126

. 128
. 128
. 128
. 129

. 129
. 129

Allocating and Reallocating Resources
Using EXECs

Preparing the AIIocatlon EXEC
Preparing the Reallocation EXEC.
Other Allocation Methods .

Customizing the Document Editing Interface

for Users. .
Changing the Appllcatlon .

and EXEC
Placing the Q. DSQAEDZS Procedure in
the Database
Transferring Ownership to Q
Changing the Data Components .
Changing the EXECs and Macros
Customizing the QMF Edit Command .
Enabling English Support in an NLF
Environment .
Using Global Variables to Deflne the
Currency Symbol .

Chapter 9. Enabling Users to Print
Objects .
Quick start .
Printing Objects .
Deciding Whether to Use QMF or GDDM
Services for Printing . . .
Using GDDM Services to Handle Prlntlng
Choosing a GDDM Nickname for Your
Printer
Creating the Nlckname Specmcatlon
Testing the Nickname Definitions in
External Default Files
How QMF Interfaces with Your GDDM
Nickname

Using QMF’s DSQPRINT to Handle Prlntlng

Defining a Synonym for the Print Function
Key

Updating User Proflles to Enable GDDM
Printing .

. 130
. 130
. 135
. 138

. 139
. 139
Renaming the Document Interface Macros

. 139

. 139
. 140
. 140
. 142
. 143

. 144
. 145
. 147
. 147

. 148

. 149

149

. 150
. 151

. 154

. 154
155

. 156

. 156

Chapter 10. Customizing QMF Commands 159

Quick Start .
Using the Default Synonyms Prowded W|th
QMF
Displaying Prlnted Reports (DPRE)
Creating a Command Synonym Table .
Entering Command Synonym Definitions
into a Command Synonym Table.
Choosing a Verb .

Contents

. 159

. 159
. 160
. 162

. 163
. 163

\%

Choosing an Object Name 165 Generating Your Program 203

Choosing the Synonym Definition . . . 165 Writing an Edit Routine in PL/I wrthout
Activating the Synonyms 168 Language Environment (LE) 203
Minimizing Maintenance of Command How a PL/I Edit Routine Interacts Wlth
Synonym Tables 170 QMF 204

Assigning One Synonym Table to aII Compiling Your Program L . 209

Users. 170 Creating Your DSQUEDIT Module F|Ie in

Assigning Views of a Synonym Table to PL/L 210

Individual Users170 Writing an Edit Routlne in PL/I Wlth

Language Environment (LE) 211
Chapter 11. Custom|zmg QMF Function Generating Your PL/1 Program for LE 212
Keys.173 Writing an Edit Routine in COBOL without
Quick Start 173 Language Environment (LE) 213
Choosing the Keys You Want to Customlze 173 How a COBOL Edit Routine Interacts

Default Keys on Full-screen Panels . . . 174 with QMF L. 214

Default Keys on Window Panels. . . . 175 Compiling Your Program .o . 219
Creating the Function Key Table. 176 Assembling the Run Time Optlons Macro
Entering Your Function Key Definitions into (coBoLiIly.22
the Table. 177 Generating Your Program 220

Linking a Command with a Function Key 177 Writing an Edit Routine in COBOL with

Labeling the Function Key and Language Environment (LE) 221

Positioning it on the Screen 179 Generating Your COBOL Program for LE 222

Examples of Key Definitions 179 Handling Double-Byte Character Set Data 223
Identifying the Panel You Want to Customlze 181 Edit Codes for DBCS Data. 223

Full-screen Panel Identifiers 181 What the Edit Routine Receives 223

Window Panel Identifiers 181 Ensuring the Edit Routine Returns the
Activating New Function Key Def|n|t|ons 184 Right Results224
Chapter 12. Creating Your Own Edit Chapter 13. Controlling QMF Resources
Codes for QMF Forms187 Using a Governor Exit Routine Lo L 227
Quick Start . . . N - 14 Quick start 227
Choosing an Edit Code .o . 188 Using the IBM- Supplled Governor EX|t
Handling DATE, TIME, and TIMESTAMP Routine 228
Data Types 189 Activating the Default L|m|ts A |
Calling Your Exit Routme to Format the How a Governor Exit Routine Controls
Data 191 Resources 230
Passing Informatlon t0 and from the EX|t Defining Your Own Resource L|m|ts .. 233
Routine 193 Creating your own Resource Control

Fields of the Interface Control Block .. 193 Table 236

Fields That Characterize the Input Area 195 Modifying the IBM- supplled Governor EXlt

Fields That Characterize the Output Area 196 Routine or Writing Your Own. 238
Passing Control to the Exit Routine When Program Components of the Governor
QMF Terminates 197 Exit Routine . . . 239
Writing an Edit Routine in ngh Level How CMS Interacts Wlth the Governor
Assembler (HLASM) or Assembler 197 Exit Routine . . . 240

How an Assembler Edit Routine Interacts How and When QMF Calls the Governor

withCMS 198 Exit Routine . . . 241

How an Assembler Edlt Routlne Interacts Passing Resource Control Informat|on to

with QMF L. . 0199 the Governor Exit.24

Assembling Your Program ... 202

Vi Installing and Managing QMF on VM

Storing Resource Control Information for
the Duration of a QMF Session
Canceling User Activity .
Providing Messages for Canceled
Activities
Assembling and Generatrng Your Governor
Exit Routine
Assembling Your Governor EX|t
Building a Module File or Creating a
Load Library Member

Chapter 14. Customizing a Remote
Database Connection
Quick Start . .
Determining the Remote Database
Connection Needed . .
Connecting with Remote Unlt of Work
Connecting with DB2-to-DB2 Distributed
Unit of Work .
Verifying the Connections Necessary for
Remote Unit of Work .

Checking DB2 for VM Connectrons
Checking DB2 for VM Connections .
Preparing a Non-DB2 for VM Location for

Access by QMF VM Users .
Creating Command Synonym Tables
Preparing QMF to Support the DPRE
Command .
Preparing QMF to Support Other
Commands .
Creating Function Key Tables
Updating QMF Governor Control Tables
Installing the National Language Feature
in the QMF Server
Code Page Support . .
Enabling Your Users to Access a Remote
Database. . .
Updating a User’s Profrle . .
Specifying Access for Current SQL
Authorization ID .
Connecting to the Local Database
Connecting to the Remote Database.
Specifying a Location Name
Where Data Must be Located for User
Access . .
Preventing SQL Errors .
Translating User IDs .
Deleting QMF Users from Each Remote
QMF Location .

. 258
. 259

. 260

. 261
. 261

. 262

. 263

. 263

. 264

265

. 265
. 266
. 266
. 266

. 267
. 267

. 269

. 269
. 269

270

. 270
. 270

. 271
. 271

. 271
. 271
. 271
. 272

. 273
. 274
. 275

. 275

Enabling Administrator Access to Your

Location . . 275
Chapter 15. Customizing the Batch
Processing Program . 277
Quick Start . .. 277
Enabling Your Users to Use Batch Mode . . 278
Sending a Job to the CMS Batch Machine 279
Running Batch Jobs on Your Machine . . 281
Debugging a Procedure . . . 282
Using the QMF Batch Query/Procedure
Application (BATCH) . 282
MACLIBs Required . . 283
Using the Application . 283
Filling in the Prompt Panel . 283
Modifying the Batch Application. . 286
Chapter 16. Troubleshooting and Problem
Diagnosis . 289
Quick Start . . . 289
Troubleshooting Common Problems . 290
Handling Initialization Errors . . 290
Handling Warning Messages . . 291
Handling GDDM Errors During Pr|nt|ng 292
Handling QMF Errors During Printing 292
Handling CMS Command Errors . 294
Handling Display Errors . . 295
Solving Slow Performance Problems . 296
Determining the Problem Using Diagnosis
Aids . . 298
Choosing the Rrght Dragnosrs A|d for the
Symptoms . . . 298
Diagnosing Your Problem Usmg QMF
Message Support 298
Using the QMF Trace Facnlty . 300
Abend Handling . . 305
Using the QMF Interrupt FaC|I|ty . 306
Using Error Log Reports from the
Q.ERROR_LOG Table . 308
Reporting a Problem to IBM . 309
Using ServiceLink to Search for
Previously Reported Problems . 310
Working with Your IBM Support Center 312
Part 3. Appendixes . 313
Appendix A. Installation Checklists . . 315
QMF Installation Checklist. . 315
QMF NLF Installation Checklist . . 316
Contents Vil

Appendix B. QMF Objects Residing in
DB2 for VM .

Input to DSQ2EINS or DSQ2nINS
QMF User ID . .

QMF Control Tables .

Default List Views

QMF Packages.

NLF Parts

Appendix C. Migration and Fallback
Considerations
Migrating from a PreV|ous QMF Release to
QMF 7.1 . .
Global Variables and the Governor .
Use of the Invocation Procedure .
Q.VPROFILE
Multiple Releases of QMF .
Migrating to a new DB2 for VM level .
Migration and 31-Digit Decimal Support
Fallback . . .
Re-establishing the Earller Proflles .
Using Version 7 Objects Under Earlier
QMF Releases .
Using Version 7 QMF Commands Wlth
Earlier Releases .
31-Digit Decimal Support .

Appendix D. QMF Control Tables and
dbspaces Used by QMF

vili Installing and Managing QMF on VM

. 317
. 317
. 317
. 317
. 318
. 318
. 318

. 319

. 319
. 319
. 319
. 319
. 320
. 320

321

. 321
. 322

. 322
. 323
. 324

. 325

Appendix E. Notices
Trademarks .

Glossary of Terms and Acronyms

Bibliography

APPC Publications

CICS Publications.

COBOL Pubilications .

DATABASE 2 Publications .

DCF Publications .

DRDA Publications

DXT Publications .

Graphical Data Display Manager (GDDM)
Publications. - Lo
HLASM Publlcatlons

ISPF/PDF Publications .

0S/390 Publications .

PL/I Publications .

REXX Publications

ServiceLink Publications

VM Publications .

VSE Publications .

Index

. 327
. 330

. 331

. 345
. 345
. 345
. 346
. 346
. 347
. 347
. 347

. 347
. 347
. 347
. 348
. 348
. 348
. 348
. 349
. 349

. 351

The QMF Library

You can order manuals either through an IBM representative or by calling
1-800-879-2755 in the United States or any of its territories.

Introducing
QMF
Evaluating
GC27-0714
Installing Installing Installing Installing
ﬁ/l”d) and and and
: anaging Managing Managing Managing
InSta“.mg’ QMF on QMF on QMF on QMF for
planning for, 08/390 VM/ESA VSE/ESA | [Windows
administering, GC27-0719 | | GC27-0720| | GC27-0721 | | GC27-0722
and diagnosing
QMF QMF High
Messages Performance
and Codes Option User's
Guide for
0S/390

GC27-0717 SC27-0724

Using QMF Getting
QMF Reference Started
. With QMF
Using for Windows

SC27-0716 SC27-0715 SC27-0723

Developing
L QMF
Application Applications
programming
SC27-0718

(o)

Online libraries '

SK2T-0730 SK2T-6700 SK2T-2067 SK2T-0060
SSIgQO, VM, 0S/390 only VM only VSE only
VSE

© Copyright IBM Corp. 1983, 2000

X Installing and Managing QMF on VM

About This Book

Installing and Managing QMF on VM/ESA helps you install and maintain the
Query Management Facility (QMF) product under the Virtual
Machine/Enterprise System Architecture (VM/ESA®) operating system.

This book is written for VM/ESA system programmers responsible for
installing and maintaning QMF with the DB2® for VM relational database. It
is also designed for network administrators responsible for installing and
maintaining network applications. References to "Workstation Database
Servers" in this book apply to:

* DB2 Common Server V2

« DB2 Parallel Edition for AIX® V1.2
+ Dataloiner® V1.2.1 and V2

* DB2 Universal Database V5

How to Use This book

The administration and customization tasks in this book assume QMF was

installed according to procedures in Part 1, EPart 1_Installing QME for
MMZESA” on page 1.

Most of the administration and customization tasks shown in this book are
done using the QMF product itself. Therefore, before you begin the tasks in
this book, check with the system installer to see if the installation verification
procedure (IVP) has been run. If not, run the IVP yourself to ensure that QMF
is properly installed and configured for your site’s needs. The IVP is the final

step of the QMF installation process presented in Part 1, 'Part 1_Installing
QME for VMZESA” on page 1l

Most of these tasks require that you have DB2 for VM database administrator
(DBA) authority. If the program installer followed the default procedure in

Part 1, [Part 1._Installing QMFE for VMZ/ESA” an page 1, the user ID Q was

defined for you during QMF installation. This user ID has DBA authority.

Each chapter in Part 2, [‘Part 2. Managing QMF for VIM/ESA” on page 51,

includes a section called “Quick start”. Use these sections to get an overview
of how to accomplish a certain task. After you read the quick start section to
understand all the steps involved in the task, see the page indicated if you
need more information on how to perform each step.

© Copyright 1BM Corp. 1983, 2000 Xi

About This Book

What You Should Know Before You Begin

The tasks explained in this book assume you have a working knowledge of
the following products:

* VM/ESA, an operating system under which QMF runs.

* Conversational Monitor System (CMS), a environment in which QMF runs.
It manages the communication with your terminal.

* Interactive System Productivity (ISPF), a dialog manager for QMF.

* Graphical Data Display Manager (GDDM), which makes it possible for
QMF to display panels on the user’s screen and create charts.

* DATABASE2 for VM/ESA (DB2 for VM), a database manager for QMF.

 Data Extract (DXT™), a facility that can supply the DB2 load utility with
data.

* Assembler programming language, which you need if you plan to modify
the IBM-supplied governor exit routine or write one of your own. You
might also use HLASM or assembler if you plan to create your own edit
codes in assembler for QMF forms.

* PL/I, which you might use if you plan to create your own edit codes in
PL/1 for QMF forms.

+ VS COBOL Il or COBOL/370™, which you might use if you plan to create
your own edit codes in COBOL for QMF forms.

» Restructured Extended Executor (REXX) language, and
» A general knowledge of the structure and function of QMF

Publications that discuss these products are listed in [‘Bibliography” on

Additionally, you might want to become familiar with some of the end-user
functions provided by QMF. The QMF end-user functions are explained in
Using QMF. Order numbers for this and other QMF publications are listed on

page [‘The QMF | ibrary” on page ix.

Locating Prerequisite Documentation

In addition to this guide, keep the following documents ready during the
installation:

* QMF Program Directory

* QMF Preventive Service Planning (PSP) bucket

The QMF Program Directory documents how to install QMF from tape to disk.

It also documents changes to the install process after this book is published.
You'll find it packed in the shipping carton with your installation tape.

Xii Installing and Managing QMF on VM

About This Book

, explains
how to migrate objects from earlier versions and releases of QMF.

For a list of QMF publications, see [‘The QMF | ibrary” on page ix.
Publications from other IBM product families are found in the

About This Book Xili

Xiv Installing and Managing QMF on VM

Part 1. Installing QMF for VM/ESA

© Copyright IBM Corp. 1983, 2000

2 Installing and Managing QMF on VM

Chapter 1. Introduction

The Query Management Facility (QMF) is a query and report writing program
for users who have little or no data processing knowledge, as well as those
with much experience in the field. This program allows users to query data
and to generate online reports and charts based on the resulting data.

Overview of QMF

QMF runs under the IBM® Virtual Machine (VM), and accesses data through
DB2 for VM. Provided you are not using remote unit of work with QMF 7.1,
any data retrieved, updated, or deleted from the database is handled by DB2
for VM. QMF uses the Graphical Data Display Manager (GDDM®) to display
panels, and the Interactive System Productivity Facility (ISPF) to display
application panels.

If you are a Shared File System (SFS) directory user you can assume that
whenever the term “minidisk™ is used in this manual the same conditions
apply to a “SFS directory”.

QMF Objects
QMF works with the following objects:

Data Information represented by alphanumeric characters contained in
tables and formatted in reports.

Query Specifies the data you want and the action you want to perform.

Form Describes how retrieved data should be formatted into a report or
chart.

Procedure
Contains one or more QMF commands that can be run as a group.

Profile
Contains information about how to process an individual user’s
session.

These objects are brought into a temporary storage area where users can
change and display reports or charts online without actually changing the
database. When the user is satisfied with the changes, the objects can be saved
in the database, as shown in the following diagram:

© Copyright IBM Corp. 1983, 2000 3

Introduction

—VM

Terminal

Temporary
storage

A
v

DATA

QUERY
FORM
PROC
PROFILE

Database

...tables
...queries
...forms
...procedures

...profile (one
profile per
user)

Overview of QMF with Remote Unit of Work

With the remote unit of work function, QMF can access relational data in a
remote DB2 for OS/390®, DB2 for VM, DB2 for VSE, DB2 Workstation or DB2
AS/400® database server. Once connected to a location you can access the
data and QMF objects at that location in much the same way you would
access data and objects without a remote unit of work connection.

If you use the start-up program parameter DSQSDBNM or the QMF
CONNECT command to specify a remote location to connect to, all
subsequent QMF commands that access the database are directed to that

location.

QMF

A

+—> GDDM

DB2
<«—p»| forVM

A

QMF DSQSDBNM parm

Terminal

or CONNECT command

Remote
DB2 Server

Figure 1. QMF Relationship to VM, DB2 for VM, and GDDM

Note: Before you can connect to a location you must have QMF installed in
the database at that location.

4 nstalling and Managing QMF on VM

Introduction

Some Terminology

You are installing QMF Version 7 Release 1 (for brevity referred to as QMF
7.1). We also use “VnRn” to point out earlier releases of QMF: For example, a
“QMF V2R4 form” is a QMF form that was created under QMF \ersion 2
Release 4. Where “QMF” appears without a qualifier (For example, “QMF will
run on ... ”) we mean QMF 7.1.

Overview of the Installation Process

QMEF installation involves three object groups:

1. QMF load modules

2. QMF control tables, catalog views, and sample tables
3. QMF SQL packages

Where the Objects Reside
The load modules are saved into a discontiguous shared segment (DCSS) that
can be used from the VM user machines where users invoke QMF. The
control tables, catalog views, sample tables, and packages are installed in each
database that you want to access.

Local and Remote Installation

In a local installation you install QMF database objects into a DB2 for VM
database in the same system into which you are installing QMF.

In a remote installation you install QMF database objects into a DB2 database
in another system. The application requester and server are not required to
reside in the same system, but a system can be configured as both.

Connecting to a Remote Database from VM
If you plan to connect to a DB2 database from VM (with the DSQSDBNM
startup parameter or the CONNECT command) perform the following task:
* From the OS/390 system, install the QMF control tables, catalog views,
sample tables, and packages/plan in the DB2 database you want to connect
to.

Note: If you do not have QMF installed in your local DB2 for VM database
you must use the DSQSDBNM startup parameter to connect to the DB2
database during the QMF session initialization.

If you plan to connect to DB2 for VM databases from OS/390 (via the
DSQSDBNM startup parameter or the CONNECT command) perform the
following tasks:

* From OS/390, use the requester-database option to install the QMF load
modules in OS/390.

Chapter 1. Introduction 5

Introduction

* From VM, install the QMF control tables, catalog views, sample tables, and
packages/plan in the DB2 for VM database you want to connect to. You can
do this with a database-only installation.

Connecting to Workstation Database Servers from VM

After installing QMF for VM, you can connect to a workstation database
server from VM. To do so, install the QMF control tables, catalog views,
sample tables, and packages in the workstation database server you want to
connect to. You can do this with a database-only installation.

6 Installing and Managing QMF on VM

Chapter 2. Planning for Installation

This chapter describes the hardware, program products, and storage required
to install and run QMF. It presents an installation planning overview. For

installation details see FChapter 3 Installing QME 71 into the DB2 for VM

Hardware Requirements

QMF runs on any processor supported by the VM operating system and DB2
for VM. QMF can access all direct-access storage devices (DASD) supported
by VM and DB2 for VM, and all terminals supported by the Graphical Data
Display Manager (GDDM).

For information about terminals supported by the GDDM, consult the GDDM
general information manual.

In order to use the Double Byte Character Set (DBCS) you must have the IBM
5550 Kaniji workstation, or equivalent.

Prerequisite Software

The following table lists the program products with the minimum release
levels required to support QMF for VM Version 7.1. Later releases that are not
available at the QMF Version 7.1 announcement time are not supported unless
specifically stated otherwise.

Table 1. Prerequisite Software For QMF For VM/ESA Version 7.1

Required product Version and release Number
IBM VM/ESA Version 2 Release 2.0 5654-030
SQL/DS for VM Version 3 Release 5 5688-103
GDDM/VMXA or Version 2 Release 3 5684-007
GDDM/VM Version 3 Release 1.1 5684-168

The following table lists the program products with the minimum release
levels required to support optional functions for QMF for VM Version 7. Later
releases that are not available at the QMF Version 7.1 announcement time are
not supported unless specifically stated otherwise.

© Copyright IBM Corp. 1983, 2000 7

Planning for Installation

Table 2. Prerequisite software for optional functions for QMF for VM Version 7 Release

1

Product Version and release Number
ISPF Version 3 Release 2 5684-043
CHARTS (Interactive Chart Utility):

GDDM — PGF (for \ersion 2 Release 1.1 5668-812
GDDM/VMXA Version 2 Release

3) or

GDDM — PGF (for GDDM/VM Version 2 Release 1.2 5668-812

Version 3 Release 1.1)

Default editor for QMF EDIT command, display printed report application (DPRE),
ISPF command, and DXT/End User Dialogs bridge support:

ISPF/Program Development Version 3 Release 2 5684-123
Facility for VM

QMF Document Interface:

VM/SP System Product Editor

(XEDIT)
IBM OfficeVision/VM Version 1 Release 2 5684-084
ISPF/Program Development \ersion 3 Release 2 5684-123

Facility for VM

Callable Interface Programs using the callable interface can be written in:

IBM C/370 Compiler and \ersion 2 5688-187
C/370 Library \ersion 2 5688-188
IBM HLASM Version 1 Release 1 or Release 2 5696-234
VS COBOL Il Compiler and Version 1 Release 4 5688-023
Library

VS COBOL Il Compiler, Library Version 1 Release 4 5668-958
and Debugging Facility

AD/Cycle COBOL/370 Version 1 Release 1 5688-197
IBM COBOL for MVS and VM Version 1 Release 2 5688-197
AD/Cycle C/370 Compiler Version 1 Release 1 5688-216
VS FORTRAN Version 2 Release 5 5688-806

(REXX and the SAA callable
interface for FORTRAN are not
supported in the QMF/CICS
environment.)

8 Installing and Managing QMF on VM

Planning for Installation

Table 2. Prerequisite software for optional functions for QMF for VM Version 7 Release
1 (continued)

Product Version and release Number
OS PL/I Version 2 Release 2.3 5668-909
IBM PL/1 for MVS and VM Version 1 Release 1.1 5688-235
REXX: TSO Extensions Version 2 Release 1 5685-025

(TSO/E)(REXX and the SAA
callable interface for FORTRAN
are not supported in the
QMF/CICS environment.)

REXX(REXX and the SAA In VM/ESA
callable interface for FORTRAN

are not supported in the

QMF/CICS environment.)

Assembler H Version 2 Release 1 5668-962

IBM C/C++ for MVS/ESA (In Version 3 5655-121
conjunction with Language

Environment for MVS and VM

(MVS feature)).

User Edit Routines can be written in:

IBM HLASM Version 1 5696-234
VS COBOL Il Compiler and Version 1 Release 4 5688-023
Library

COBOL/370 Compiler and Version 1 Release 1 5688-197
Library

VS COBOL Il Compiler and Version 1 Release 3.1 5688-023
Library

VS COBOL Il Compiler, Library Version 1 Release 3.1 5668-958
and Debugging Facility

IBM COBOL for MVS and VM Version 1 Release 2 5688-197
OS PL/I Version 2 Release 3 5668-909
IBM PL/I1 for MVS and VM Version 1 Release 1.1 5688-235
Assembler H or standard Version 2 Release 1 5668-962
assembler

Governor Exit Routine

IBM HLASM Version 1 5696-234
QMF for Windows:
Microsoft Windows** or Version 3 Release 1

Chapter 2. Planning for Installation 9

Planning for Installation

Table 2. Prerequisite software for optional functions for QMF for VM Version 7 Release
1 (continued)

Product Version and release Number

Microsoft Windows** for Version 3 Release 1 or Release 1.1
Workgroups or

Microsoft Windows 95 or

Microsoft Windows NT

IBM APPC Networking Services Version 1
for Windows, or

Microsoft SNA Server, or Version 2, Version 2.1, or Version
211
Novell Netware for SAA, or \ersion 2

Attachmate EXTRA! APPC Client \ersion 3 Release 11

Remote Unit of Work (VM)

Connection to remote DB2 for VM on VM DRDA Application Server:

At the local DB2 for VM location:

SQL/DS for VM Version 3 Release 5 5688-103
QMF for VM \ersion 7 5697-F42
At the remote DB2 for VM

database:

SQL/DS for VM \ersion 3 Release 5 5688-103
QMF for VM Version 7 5697-F42

Connection to remote DB2 for MVS/ESA DRDA Application Server:

At the local DB2 for VM

database:

SQL/DS for VM Version 3 Release 5 5688-103

QMF for VM \ersion 7 5697-F42

At the remote DB2 for MVS/ESA

location:

DB2 for MVS Version 3 Release 1 5685-DB2
QMF for OS/390 Version 7 5675-DB2

Connection to remote DB2 for VSE DRDA Application Server:

At the local DB2 for VM location:

SQL/DS for VM Version 3 Release 5 5688-103

QMF for VM \ersion 7 5697-F42

10 Installing and Managing QMF on VM

Planning for Installation

Table 2. Prerequisite software for optional functions for QMF for VM Version 7 Release
1 (continued)

Product Version and release Number
At the remote DB2 for VSE/ESA

location:

SQL/DS for VSE Version 3 Release 5 5688-103
QMF for VSE \ersion 7 5697-F42

Connection to DB2 PE, DataJoiner, Common Server, AS/400:

At the local DB2 for VM location:

SQL/DS for VM Version 3 Release 5 5697-F42
QMF for VM \ersion 7 5697-F42

At the remote database
configured for APPC
communications:

DB2 Parallel Edition for AIX or ~ Version 1 Release 2 5765-328
Dataloiner for AlX or Version 1 Release 2 84H1212
DB2 for Windows NT or Version 2 Release 1 53H7474
DB2 for OS/2 or Version 2 Release 1 41H2114
DB2 for AIX or Version 2 Release 1 41H2128
DB2 for HP-UX or Version 2 Release 1 10H2366
DB2 for Solaris or Version 2 Release 1 10H2421
DB2 for SCO OpenServer or Version 2 Release 1 79H5359
DB2 for SINIX or Version 2 Release 1 79H4133
DB2 for AS/400 Version 4 Release 4 5769-ST1

Products Required to Support Remote Unit of Work

Remote unit of work (RUW) support is not available in all environments in
which QMF operates. For example, when running QMF in VSE/ESA, you
cannot connect to another location. However, the QMF objects stored in a VSE
DB2 database can be accessed by other QMF requesters in a Distributed
Relational Database Architecture (DRDA) network. To see if RUW is
supported in your operating environment, see the documentation for the
database you are using.

Chapter 2. Planning for Installation 11

Planning for Installation

Virtual Storage Requirements

All QMF modules (31-bit shared segment) use approximately 2.8 MB total.
User storage required to run QMF requires approximately 0.5 to 1 MB. You
can allocate storage for both purposes above 16 MB. Additional storage is
required for other applications. For example, if you run in a standard CMS
environment with ISPF and GDDM, you need approximately 6 MB.

If users generate complex reports or use CMS EXECs to run other functions
within a QMF session more storage may be required. Graphics (for example,
the CHART function) requires additional storage.

Discontiguous Shared Segments (DCSS) Storage Requirements

Reference note
Refer to the Program Directory on the I1SD tape for information on this
topic.

Disk Storage Requirements

Reference note
Refer to the Program Directory on the I1SD tape for information on this
topic.

Required DB2 for VM Knowledge

Although QMF has been designed to be installed with a minimum of DB2 for
VM knowledge, some knowledge of DB2 for VM is required.

General:

* ldentifying programs and userids through the CONNECT command.
Understand how the CONNECT command can be used to acquire DBA
authority. For more details, see DB2 Server for VSE & VM Database
Administration

* What a DBSPACE is and the meaning of a PUBLIC or PRIVATE DBSPACE.

DBSPACEs are discussed briefly in FQME DBSPACFE Requirements” o

hage 14. For more details, see DB2 Server for VSE & VM Database
Administration

12 Installing and Managing QMF on VM

Planning for Installation

* CREATE, INSERT, and GRANT SQL statements. These SQL statements are
used in the QMF installation procedure. Information on what these
statements do and how to change them is found in DB2 Server for VSE &
VM SQL Reference

* Preprocessing a program. All application programs that contain SQL
commands must be preprocessed. Information about preprocessing a
program is in DB2 Server for VSE & VM Application Programming

* The terms “remote unit of work”, “application requester”, and “application
server”,

remote unit of work
QMF supports remote unit of work. With remote unit of work you can
connect to locations that have QMF installed in either the DB2 or the
DB2 for VM database system.

application requester and server
If you use remote unit of work support to access other remote
databases, then each VM user machine that can be used to run QMF is
known as an application requester for QMF. Each database that contains
the QMF database objects is known as an application server for QMF.

* Understanding how CMS communications directories are used by DB2 for
VM.

DB2 for VM Requirements for QMF

QMF uses standard interfaces to the database. Because it supports only one
DB2 for VM database, if you want to use QMF in more than one database,
you must install QMF into each one. The QMF database installation EXECs
prompt the installer for the name of the DB2 for VM database into which
QMEF is being installed. The QMF installation EXECs then issue a DB2 for VM
SQLINIT command for the specified database.

A PUBLIC DBSPACE is Required for Saving Data
A user must have a PUBLIC DBSPACE to use the QMF SAVE DATA
command. The size of this DBSPACE can vary depending on user
requirements.

To run the QMF Installation Verification Procedure (1\VVP), this DBSPACE must
exist because the SAVE DATA command is used during the IVP. A minimal
DB2 for VM DBSPACE (128 pages) is required to run the QMF IVP.

For information on creating and assigning PUBLIC DBSPACEs, see [*Chaasing
and Acquiring a dbspace for the User” on page 118. If you have a DBSPACE

available from installing a previous version of QMF, you can use that
DBSPACE for QMF V7R1.

Chapter 2. Planning for Installation 13

Planning for Installation

14

Database CONNECT ID “Q” and “SQLDBA”

QMF uses a CONNECT ID of “Q” for all control tables, sample tables, sample
queries, and views. The installer does not need a VM userid of “Q”; however,
all installation steps that update the database issue the DB2 CONNECT
command for the userid of “Q”.

The CONNECT ID of “SQLDBA” is required to set up the CONNECT ID “Q”.
Because it was created when DB2 for VM was installed, the CONNECT ID of
“SQLDBA” should already exist in your database.

QMF SQL Install Packages

During installation, QMF runs two programs that contain SQL statements. The
DB2 for VM Database Utility (SQLDBSU) loads the database packages for
these programs (DSQCBINS and DSQCBSQL) into each database server where
QMEF is being installed.

Further Requirements

The following data base requirements exist for each database that QMF is
installed in. The sections that follow describe the items in this list.

* QMF DBSPACE requirements
There are ten DBSPACES required for QMF. They are established during
installation.

QMF must have a DBSPACE to store user tables created as a result of using
the QMF SAVE DATA command. You can use an existing DBSPACE or you
can create a new one during the installation of QMF.

* QMF control tables
There are eight QMF control tables. Each table is created in its own
DBSPACE.

* QMF catalog views
There are three QMF catalog views required for the QMF LIST command,
enabling users to list database objects that they are authorized to use.

* QMF sample tables
There are nine sample tables that are created in one DBSPACE.

* QMF SQL packages
QMF contains several SQL packages that must be loaded into each database

into which you install QMF. The packages are loaded after the QMF control
tables are created during installation.

QMF DBSPACE Requirements
DB2 for VM stores tables and indexes in tables within DBSPACEs. A

DBSPACE is a logical allocation of space in the database. A DBSPACE holds
data in 4096-byte blocks called pages. QMF requires the use of “public”
DBSPACEs, which allow multiple user access at the same time; any one user
can be doing update, insert, or delete functions.

Installing and Managing QMF on VM

Planning for Installation

Because you cannot extend DBSPACEs after they are defined, you should
overestimate the required number of pages. The penalty for overestimating
DBSPACE pages is nominal because the unused DBSPACE pages are not
stored. On the other hand, the penalty for underestimating DBSPACE pages
can be quite expensive in terms of reorganization activities required to
reestablish the data in a larger DBSPACE later.

DBSPACEs must first be created and then “acquired for use” through the use
of the DB2 ACQUIRE DBSPACE command. Because QMF issues the
ACQUIRE DBSPACE command, you must be sure you have first created the
appropriate DBSPACEs.

The DBSPACEs reguired by QMF, as well as their contents and default sizes,
are shown in

Table 3. DBSPACEs Required by QMF

DBSPACE

Name Contents Default Size
DSQTSCT1 Q.OBJECT_DIRECTORY table 256
DSQTSCT2 Q.OBJECT_REMARKS table 256
DSQTSCT3 Q.OBJECT_DATA table 5120
DSQTSPRO Q.PROFILES table 128
DSQTSSYN Q.COMMAND_SYNONYMS table 128
DSQTSLOG Q.ERROR_LOG table 128
DSQTSGOV Q.RESOURCE_TABLE table 128
DSQTSRDO Q.DSQ_RESERVED table 128
DSQ2STBT QMF sample tables 128
DSQTSDEF QMF SAVE DATA 128
Notes:

1. The default size of these DBSPACESs may not be correct for your
installation. You should evaluate the DBSPACE requirements of your
installation before creating the DBSPACEs.

2. DSQTSCT3 should be your largest DBSPACE because it contains all your
QMF queries, procedures, and forms. DBSPACEs DSQTSCT1 and
DSQTSCT2 are created and acquired with a size of one page for each 25
pages in DBSPACE DSQTSCTS3.

3. DSQTSDEF is the default name for the DBSPACE to be used by the QMF
SAVE DATA command. This DBSPACE name can be changed.

4. Do not use “SYS” as the first three characters of a DBSPACE name; “SYS”
denotes a DBSPACE reserved for DB2 system usage.

Chapter 2. Planning for Installation 15

Planning for Installation

16

5. The smallest DBSPACE size that DB2 for VM allows is 128 pages. DB2
may actually give you more pages than you request because it acquires
storage in units of 128 pages. DB2 determines the number of pages you
receive by rounding the number you specify to the next higher multiple of
128 pages.

Example: If you specify PAGES=53, DB2 acquires a block of 128 pages; if,
instead, you specify PAGES=130, DB2 acquires 256 pages.
To determine how many of the ten DBSPACES you need to create for your
installation, perform these steps:

1. Identify the number of additional DBSPACEs that you need, based on the
following considerations:

» If you are installing QMF V7R1 into a database that does not contain
any version of QMF, you need to create all ten DBSPACEs shown in

» If you have QMF V2R4 or an earlier release of QMF installed in the
same database in which you are installing QMF V7R1, you should
already have nine DBSPACES. You need to create one additional
DBSPACE for the Q.DSQ_RESERVED control table.

» If you have QMF V3R1 or a later release installed in the same database
in which you are installing QMF V7R1, no new DBSPACEs are needed.

2. Run the following query to list the DBSPACEs defined and their sizes. To
run this query, you must have DB2 for VM DBA authority or have
SELECT authority on table SYSTEM.SYSDBSPACES. Run this query using
QMF or I1SQL:

SELECT * FROM SYSTEM.SYSDBSPACES
WHERE DBSPACETYPE=1 AND OWNER="'

Notes:
1. If you plan to create DBSPACEs while installing QMF, see the discussion
in] R . ”

2. If you need to create additional DBSPACEs after QMF is installed, use the
procedures described in DB2 Server for VSE & VM Database Administration

QMF Control Tables
There are eight QMF control tables, each created in its own DB2 for VM

DBSPACE. (Separate DBSPACEs improves performance.) The contents of each
control table are:

Installing and Managing QMF on VM

Planning for Installation

Table 4. The QMF control tables
Table DB space Contents

Q.OBJECT_DIRECTORY DSQTSCT1 General information on all
queries, forms, and
procedures in the database

Q.OBJECT_REMARKS DSQTSCT2 Comments that were saved
with the queries, forms,
and procedures in the
database

Q.OBJECT_DATA DSQTSCT3 Text defining the queries,
forms, and procedures in
the database

Q.PROFILES DSQTSPRO User session profiles

Q.ERROR_LOG DSQTSLOG Information on system,
resource, and “unexpected
condition” errors

Q.COMMAND_SYNONYMS DSQTSSYN Command synonyms

Q.RESOURCE_TABLE DSQTSGOV Resource and limit values
for the QMF governor

Q.DSQ_RESERVED DSQTSRDO The information needed

during QMF initialization

QMF Catalog Views
QMF requires the following three catalog views for the QMF LIST command
and Prompted Query functions:

* Q.DSQEC_TABS_SQL is a view on the SYSTEM.SYSCATALOG and
SYSTEM.SYSTABAUTH DB2 for VM system tables.

* Q.DSQEC_COLS SQL is a view on the SYSTEM.SYSCOLUMNS and
SYSTEM.SYSTABAUTH DB2 for VM system tables.

* Q.DSQEC_QMFOBIS is a view on the QMF control tables
Q.OBJECT_DIRECTORY and Q.OBJECT_REMARKS.

QMF Sample Tables
The sample tables are placed in DBSPACE DSQ2STBT. The table contents are

described in the following list. (Each table provided by QMF contains
information on the fictional J & H Supply Company.)

Table Contains Information on:
Q.ORG

The company organization
Q.STAFF

The company personnel

Chapter 2. Planning for Installation 17

Planning for Installation

Q.APPLICANT

New candidates for hire
Q.PRODUCTS

The company’s products
Q.SALES

Sales and commissions
Q.PROJECT

Projects undertaken, by department
Q.INTERVIEW

Interviews of new hires
Q.SUPPLIER

Vendor information
Q.PARTS

Product parts data

QMF SQL Packages
QMF contains SQL packages which must be loaded into each database in

which QMF is installed. QMF V7R1 access modules contain the DSQC prefix
in the SYSTEM.SYSACCESS table. For more information on access modules
see DB2 Server for VM System Administration.

Before You Begin

18

Before you begin installing QMF V7R1, review these topics.

Previous Releases of QMF

If you have a previous version of QMF installed, you can install the new
release of QMF into a different DB2 for VM database for testing purposes, or
you can install and run both releases in the same database concurrently. If you
install QMF V7R1 in the same database as the previous release, make certain
that the sample tables of the previous release are not used during installation.

Migration and Fallback

Note: Skip this section if QMF is being installed for the first time.

Your users might need certain kinds of help before they can operate the new
release of QMF. Supplying this help is what “migration” means.

If you decide to go back to your earlier release of QMF, your V7R1 users
might need help. Supplying this help is what “fallback” means.

Migration and fallback are post-installation operations. You’ll find them

described in [*‘Appendix C. Migration and Fallback Considerations” on

. For planning purposes, you should read about them before you
begin the V7R1 installation.

Installing and Managing QMF on VM

Planning for Installation

QMF National Language Feature (NLF) Considerations

The QMF National Language Feature (NLF) is a software feature that
provides QMF users with a QMF environment tailored to a language of their
choice. NLFs enable users to enter QMF commands, view help and other
information, and perform QMF tasks in languages other than English. NLFs
are installed as separate features of QMF.

Example
When a user elects to operate QMF in a German-language environment, QMF

commands, keywords, panels, and messages are displayed in German.

A NLF does not provide any new QMF function. In general, anything users

can do in the base English-language session can be done in an NLF session,

and vice versa. For the most part, the procedures for both the base and NLF
sessions are the same; however, any special considerations for NLF users are
preceded by the phrase: if you’re using an NLF.

A QMF NLF is installed after you have installed QMF. For a description of
NLF, see ‘Chapter 4_Installing a QME 7 1 National | anguage Eeature (NI E)"l

Some names of programs and phases shown in this book have an n symbol in
them, indicating that the name can vary. If you’re using an NLF, replace all n
symbols you see in this book with the one-character national language
identifier (NLID) from [fable § that matches the NLF you installed. The table
also shows the names by which QMF recognizes each language.

Table 5. NLIDs representing QMF base (English) and National Language Features

(NLFs)
Name QMF uses for this
NLF NLID NLF
Brazilian Portuguese P PORTUGUES
Canadian French C FRANCAIS CANADIEN
Danish Q DANSK
English E ENGLISH
French F FRANCAIS
German D DEUTSCH
Italian | ITALIANO
Japanese K NIHONGO
Korean H HANGEUL
Simplified Chinese R S-CHINESE
Spanish S ESPANOL

Chapter 2. Planning for Installation 19

Planning for Installation

20

Table 5. NLIDs representing QMF base (English) and National Language Features
(NLFs) (continued)

Name QMF uses for this

NLF NLID NLF

Swedish \Y SVENSKA

Swiss French Y FRANCAIS (SUISSE)
Swiss German Z DEUTSCH (SCHWEIZ)
Uppercase English U UPPERCASE

The uppercase feature (UCF) uses the English language, but converts all text
to uppercase characters. The uppercase characters allow users working with
Katakana terminals to use the product and get English online help and
messages. Terminals equipped with Katakana support include IBM 3277, 3278,
and 3279 terminals, as well as IBM 5550 Multistations.

Planning for Installing QMF into a Workstation Database Server

In order to access remote database servers from QMF on VM, DRDA APPC
communications must be in place between VM and the remote server. VM
uses VTAM and AVS definitions for the remote server. These definitions are
accessed via the CMS COMDIR NAMES file, in which the VM gateway, DB2
remote server name, mode name, and session limits are defined for the remote
DRDA connection.

In addition, you must have a database created on the workstation database
server and you must have SYSADM authority to that database for your install
ID.

Some QMF install steps use the SQLDBSU DB2 for VM utility. Prior to
running the QMF installation EXEC (DSQ2EINS), you must install SQLDBSU
into the remote database server.

For more information about installing SQLDBSU into a remote database
server, see DB2 Server for VSE & VM Database Services Utility for IBM VM
Systems

Installing and Managing QMF on VM

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database

This chapter explains the steps for performing a database-only installation of
QMF 7.1. If you have already installed QMF 7.1 and want to install it into
another database, follow the directions in this chapter.

If you are installing QMF 7.1 for the first time, read the QMF Program
Directory first and complete the steps listed therein to unload QMF from tape
to disk. Check the program directory for modifications to the procedures
described in this chapter, then complete the steps in this chapter to complete
the QMF database installation.

The QMF installation uses the Restructured Extended Executor (REXX)
language EXECs to install QMF into the DB2 for VM database. For
information on how to use REXX, see VM System Product Interpreter Reference

Installation Considerations:

1. The QMF-supplied EXECs that install QMF into a database are designed to
prompt the installer for variable information. There is no requirement for
your installation to change the supplied installation EXECs. Every prompt
message asks for variable input, and each offers an optional “help” or
“cancel” response.

« If “help” is issued, a small abstract of the prompt request is displayed.
« If “cancel” is issued, the EXEC terminates.

2. All variables are resolved before execution of any given installation step,
which can be restarted from the beginning.

3. Several output files from the EXECs are routed to the printer. You may
want to spool your printer to “HOLD” before you start the database
installation.

QMF Installation Flow Diagram
Eigure 2 on page 22 is a flow diagram of QMF installation to help acquaint

you with the installation process before starting. You might also find the

optional 'QME Installation Checklist” on page 319 helpful in monitoring your

installation process.

© Copyright IBM Corp. 1983, 2000 21

Installing QMF 7.1

22

Installing QMF
into a database

Full QMF
installation

!

Preliminary:

install per QMF
Program Directory
and complete
worksheet

Step 1:
Create QMF
installation control

file
Step 2:

Create DB2 for VM
DBSPACE(s)

Step 3:
Run QMF install

EXEC
;

To Step 4A

Installing
load modules

Figure 2. Installation steps for QMF 7.1 (Part 1 of 3)

Installing and Managing QMF on VM

Installing QMF 7.1

From Step 3

v

Step 4A:
Tailor QMF
invocation EXEC

QMF as an ISPF dialog?

yes
no

Step 4B:
Invoke QMF
from ISPF

]

v

Step 5:
Run interactive

IVP
Step 6:
Install sample

queries and
procedures

Plan to use QMF in batch mode?

Figure 2. Installation steps for QMF 7.1 (Part 2 of 3)

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database 23

Installing QMF 7.1

Plan to use QMF in batch mode?

yes
no

Step 7:
Run batch IVP
(optional)

I
| |

If QMF 7.1 was If QMF was If QMF 7.1 was
installed in the not previously not installed in the
same DB as the installed same DB as the
previous version previous version
\ \
Step 8A: Step 8B:
Delete previous Delete previous
QMF same DB QMF different DB
Step 9:
Post-installation
clean up

Figure 2. Installation steps for QMF 7.1 (Part 3 of 3)

The Installation Steps
The installation steps are outlined on the following pages.

If you are performing a QMF 7.1 migration installation, that is, if you are
installing QMF 7.1 into a database that already has a previous level of QMF
installed, follow all the installation steps, indicating the previous QMF level
when required.

Preliminary: Read the Program Directory and Complete the QMF 7.1
Worksheet

Before beginning the installation process, read the QMF Program Directory
shipped with the ISD tape for supplementary data. The program directory
contains all steps for installing QMF from tape to disk and building the DCSS.
You must complete the steps in the program directory before doing the
installation steps in this book. Only QMF installation into DB2 for VM is
described in this book.

24 Installing and Managing QMF on VM

Installing QMF 7.1

The following worksheet lists the information you provide during QMF
installation.

Table 6. Information Required during QMF Installation (QMF 7.1 Worksheet)

Information required for: Supply data fields containing
No prior |QMF QMF in QMF in
QMF Migration | DB2 AS/400
Workstation| Server
Server

» Database/location name

+ Database type (DB2 VM, DB2 DB2VM DB2VM | DB2WS DB2400
Workstation Server, or DB2 for
AS/400)

« Prior QMF Version/Release level (if | N/A — |N/A N/A
any)

* SQLDBA CONNECT password N/7A N/A

* Q CONNECT password N/A N/A

« Default DBSPACE name for SAVE N/A N/A
DATA command (default is
DSQTSDEF)

* Number of DBSPACE pages for:
DBSPACE NAME (default)

Q.OBJECT_DATA table (5120) - N/A N/A N/A
Q.PROFILES table (128) _ N/A N/A N/A
Q.ERROR_LOG table (128) o N/A N/A N/A
Q.COMMAND_SYNONYMS table _ N/A N/A N/A
(128)

Q.RESOURCE_TABLEtable (128) _ N/A N/A N/A
SAVE DATA command (128) _ N/A N/A N/A

Use DB2WS as the database type for all workstation database servers. Use
DB2400 as the database type for DB2 AS/400 database servers.

The QMF table spaces created in workstation database servers are
system-managed. Thus, they have no default size.

Step 1—Create QMF Installation Control File: DSQ2ECTL

The QMF EXEC, DSQ2ECTL, prompts you for information that is required in
the QMF installation process.

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database 25

Installing QMF 7.1

26

To create the QMF installation control file, do the following:

1. Access the QMF distribution disk in WRITE mode.

2. Ensure that your A disk has enough room to generate temporary files.
3. Supply the information for the worksheet, if you have not yet done so.
4. Run the EXEC: DSQ2ECTL.

Prompts
You receive a series of prompts that request the information you developed

using the worksheet (Table6-on page 25).

Anytime during this process, you can enter:
* HELP on the command line for information
» CANCEL to terminate the process before completion

A file, QMFVT710E INSTALL, is created on your installation disk. It contains
the information you supplied to the previous prompts.

If an installation file already exists from a previous installation, the
information you enter is appended to this file. The previous information is
“deactivated” but saved for service purposes.

Step 2—Create DB2 for VM DBSPACEs: DSQ2DBSC

Note: Skip this step if one or more of the following are true:
* You are installing QMF into a remote database server.

* The database you are installing QMF 7.1 into has QMF 3.1 or later
already installed.

* There are sufficient public DBSPACEs available for the DB2 for VM
database of the sizes indicated in the installation worksheet (m
). You can check this by invoking ISQL and issuing the
following:

SELECT * FROM SYSTEM.SYSDBSPACES
WHERE DBSPACETYPE=1 AND OWNER="'

To create the DBSPACEs required by QMF, do the following:
1. Access the QMF distribution and production disks.

2. Ensure that the QMF installation control file QMFV710E INSTALL exists
on the distribution disk.

3. Ensure that you have an A-disk to generate a temporary file.
4. Run the EXEC: DSQ2DBSC.
This EXEC wiill:

¢ Use the QMFV710E INSTALL file on the QMF distribution disk to
determine whether or not this is a new or migration install. If this is a

Installing and Managing QMF on VM

10.
11.

12.

Installing QMF 7.1

new install, all ten DBSPACEs are created. If this is a migration from
QMF V2R4 or an earlier release, only one DBSPACE is created.

* Prompt you to enter the storage subpool you want to use.

* Create the 'dbname SQLADBSP A' file ('resid SQLADBSP A' file if the
database you are installing QMF into is V7R1) on your A-disk.
(‘dbname’ is the database name and 'resid’ is the resource ID for your
DB2 for VM database.)

Send the 'dbname SQLADBSP ' file (or 'resid' SQLADBSP file) to the
database virtual machine.

Log onto the database virtual machine and stop the database. (Typically
with the SQLEND command.)

Receive the ‘dbname SQLADBSP' (or 'resid SQLADBSP') file to the
A-disk.

Access the DB2 for VM service disk (DASD 193) as the V-disk.
Run the SQLADBSP EXEC, by entering:

SQLADBSP DB(dbname)

where dbname is the name of the DB2 for VM database. DBSPACE(S) is
added based on the information in the dbname SQLADBSP file.

You receive the following message:

dbname SQLADBSP WAS FOUND.
SHOULD THIS FILE BE USED FOR ADD DBSPACE?

Answer YES.

You receive a message inquiring whether or not you want to modify the
dbname SQLADBSP file.

* To edit the file, answer YES.

* To continue without editing, answer NO.

Release the DB2 for VM service disk (DASD 193).

Restart the database and continue with the installation, by entering:
SQLSTART DB(dbname)

where dbname is the name of the DB2 for VM database.

Run the following query using ISQL to verify that the new DBSPACESs
are available for QMF:

SELECT *~ FROM SYSTEM.SYSDBSPACES
WHERE DBSPACETYPE=1 AND OWNER="'

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database 27

Installing QMF 7.1

28

To run this query, as a minimum you need to have SELECT authority on
table SYSTEM.SYSDBSPACES, or have DB2 DBA authority, which implies
the SELECT privilege.

Step 3—Run QMF Installation EXEC: DSQ2EINS
This section describes the following topics:

Preparation

Preparing to run the installation EXEC
What the installation EXEC does
Running the installation EXEC
Installation EXEC error messages

The information you provided in Btep 1—Create QME Installation Control

Eile: DSQ2ECTL is used by the QMF installation EXEC. Before running this

EXEC:

1.
2.

You must have access to the QMF distribtuion disk in WRITE mode.
Ensure that the QMF installation control file QMFV710E INSTALL exists
on the distribution disk.

Ensure that you are linked to the DB2 for VM production minidisk in
READ mode.

You can let the printer and console continue processing unless a severe
error is found, by issuing the following CMS commands:

spool prt cont hold
spool console start cont

Ensure that you have an A-disk to generate temporary files.
If you are performing a QMF 7.1 migration installation from QMF V2R4 or

earlier, the Q.OBJECT_DATA table is unloaded during this step. Make sure
that you have enough space on your A-disk for the data file.

Assumptions for Installing QMF into a Remote Database Server
Before you attempt to install QMF on a remote database server, be sure to

complete the necessary pre-requisites described in [‘Planning for Installing

What the Installation EXEC Does
All output from the installation EXEC is routed to the virtual printer spool

file.

Substeps:

Substep 3.1: Builds the SQL commands to acquire the DB2 DBSPACEsS.
Substep 3.2: Establishes a DB2 for VM CONNECT ID of “Q”.

Substep 3.3: Reloads the QMF installation program packages.

Substep 3.4: Creates the QMF control tables and QMF catalog views.
Substep 3.5: Reloads the QMF SQL Packages into a DB2 for VM database.

Installing and Managing QMF on VM

Installing QMF 7.1

* Substep 3.6: Discards any QMF sample tables, if they exist.
* Substep 3.7: Creates the QMF 7.1 sample tables.

Running the QMF Installation EXEC
To start the installation EXEC, issue:

DSQ2EINS

Restart Procedure: If this EXEC fails, use the following procedure to restart
the EXEC and continue where you left off:

1. Determine what the problem is and fix it.

2. Rerun this EXEC with an input parameter equal to the restart value
provided in the message after the EXEC terminates.

For example, if you receive the message:

TERMINATING EXECUTION ...

TO RESTART THIS EXEC AND CONTINUE WHERE YOU LEFT OFF:
- FIX THE PROBLEM ENCOUNTERED.
- RERUN THIS EXEC WITH THE INPUT PARAMETER OF 2

You can restart the EXEC with the statement:
DSQ2EINS 2

Installation EXEC Error Messages
If you encounter a problem running the QMF installation EXEC, you need to

find the error message describing the problem. This error message may be
sent to either the console or the printer; therefore you may want to spool your
console and your printer to “HOLD”.

If you choose to spool your printer or console, be aware that you may have to
enter both of the following statements to release the file that contains the error
information:

spool prt close
spool console close

Error messages produced by the SQLDBSU EXEC are sent to the printer. If
you see a console message like “Errors processing SQLDBSU”, you should
examine the output sent to the printer. The command to transfer the printer
files to your reader, so that you can view them there, is:

TRANS PRT ALL =
Look in the DB2 Server for VM Message and Codes manual for explanations of
any error messages starting with “ARI”.

Step 4—Start QMF: DSQZ2EINV

This section describes tailoring the QMF invocation EXEC and establishing
QMF as an ISPF dialog (optional).

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database 29

Installing QMF 7.1

30

Step 4A—Tailor the QMF Invocation EXEC: DSQZ2EINV (Optional)
The sample QMF invocation EXEC, located on the production minidisk, is

executed when a user wants to invoke QMF interactively in the VM
environment. The first part of the EXEC, DSQ2EINV, is shown in

bhage 31 You need to modify only the indicated variables to tailor the EXEC
for your installation.

Using DSQQMFE and ISPSTART: The parameter values that exist in
DSQ2EINYV are used unless you specify different values when you invoke the
EXEC. You can do this through DSQQMFE or the ISPSTART command.
Parameters values specified in this way override those set in the QMF callable
interface REXX EXEC DSQSCMDE, which is on the production minidisk.

Note: DSQZ2EINV is only a sample QMF invocation EXEC. The necessary
links to minidisks, filedefs, SQLINIT, and ISPSTART command are
described clearly in simpler QMF invocation EXECs. These execs,
DSQ2EIN1 (with ISPF) and DSQ2EIN2 (without ISPF), are located on
the production minidisk. You may find them useful in constructing
your own QMPF invocation EXEC to match your environment
requirements.

For clarification of ISPF files, see ISPF for VM Dialog Management Services and
Examples

Installing and Managing QMF on VM

Installing QMF 7.1

S R —
* *
* Sample QMF invocation EXEC *
* *
* EXEC NAME: DSQ2EINV EXEC *
* *
* Status: Version 7 Release 1 Level 0 *
* *
* Input: DB (dbname) - optional, default 'SQLDBA' *
* PGM(program) - optional, default 'DSQQMFE' *
* MODE (runmode) - optional, default 'I' *
* PROC(procedure) - optional, no default *
* CMSSUB(subset_restriction) - optional, default 'YES' =
* ISPF(use_ispf) - optional, default 'YES' *
* *
* Note: If you have any Tevel of DB2 VM, GDDM, ISPF, QMF or *
* QMF NLF already attached when you execute this exec, *
* the corresponding disk in this exec will not be linked, =*
* and the existing disk will be used. *
* *
K e e m e m e mm e m e e mm e mm e mm————————— */
parse upper arg parml parm2 parm3 parm4 parm5 parmé junk
1char = 'E' /* QMF Tanguage feature identifier x/
Ty *
* The following are the variables which may need to be tailored =*
* for your installation. *
* Note: If you are using SFS directories, replace the Tink *
* information with 'FILEPOOL:USERID.DIRNAME'. *
K e —————— */
dcssname = 'QMF710'||1char /* QMF DCSS name for ISPSTART */
sql_link = 'SQLMACH 195 195' /* DB2 VM minidisk link informationx/
gmf_link = 'P697F42A 400 400' /x QMF Production minidisk */
/* Tink information */
dbname = 'SQLDBA' /* set default database name */
program = 'DSQQMF'||1char /* set default QMF program name */
mode = 'I"' /* set default QMF run mode */
procedure = "' /* no default procedure */
subset = 'YES' /* default to CMS subset restrictionsx/
ispf = 'YES' /* link to ISPF minidisk (optional) =*/
e *
* END OF TAILORABLE VARIABLES *
K e e m e m e m e m e m e mm—————— */

Figure 3. Sample QMF Invocation EXEC (DSQ2EINV)

Notes on m:

1.

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database

31

Installing QMF 7.1

32

The correspondence between the variables on the sample exec and the
parameters on the ISPSTART command is as follows:

a. PGM is used as the PGM parameter on ISPSTART.

b. MODE is used as the DSQSMODE(M) parameter on ISPSTART.
c. PROC is used as the DSQSRUN(I) parameter on ISPSTART.

For further information on the ISPSTART command, see EStarting QMH

If you specify 'NO' for the ISPF parameter, the CMSSUB parameter is
ignored.

If you specify "YES' for the ISPF parameter or take the default (YES), either
of the following happens:

* If CMSSUB = NO, then ISPF is started via SELECT DCSS.

* If CMSSUB = YES, then ISPF is started via SELECT PGM.

When ISPF executes a SELECT PGM, the ISPF product turns on the CMS
SUBSET indicator, whereas if ISPF executes a SELECT DCSS, the ISPF
product does not turn on the indicator.

See I‘Chapter 5_Starting QME” an page 57 for further information on CMS

and non-CMS subset forms.
Following are examples of invocation statements:
* DSQ2EINV MODE(I)
This statement invokes QMF interactively. (It is normally the default.)
* DSQ2EINV MODE(B) PROC(MYPROC)
This statement runs the procedure MYPROC in batch mode.

QMF Dialog Considerations: The following considerations apply to the
QMF dialog:

¢ Virtual Machine considerations

The virtual machine size should be at least 5.0 megabytes of storage
without ISPF or 6.0 megabytes with ISPF. If a larger virtual machine size is
available, QMF uses it when the user scrolls through a report. QMF
requires that both ISPF (if used) and DB2 for VM be running in
disconnected virtual machines before it can be invoked.

Program modules

Before you invoke QMF, the DB2 for VM database, QMF’s discontiguous
shared segments, ISPF’s shared segments (if used), and GDDM'’s shared
segments or product text libraries must be available.

QMF data files

The following list describes the files used by QMF. These files are allocated

according to the recommended sizes in the DSQ2EINV EXEC. If you want
to allocate them differently, you must modify the invocation exec.

— DSQDEBUG—QMF trace dump output

Installing and Managing QMF on VM

Installing QMF 7.1

If the trace option is set to trace during initialization or during a QMF
session, QMF’s trace output is used. It is also used if QMF abnormally
terminates. This file must be allocated prior to invoking the QMF dialog.

The trace output is formatted in two different formats on the basis of the
allocated record size. If the record is greater than 120, the output is
generated in eight fullword columns; otherwise, the output is generated
in four fullword columns appropriate for viewing on a terminal. The
record format RECFM can be fixed or variable, with a block size that is a
multiple of the record size.

DSQPRINT—Print data output

The print data output contains print data that is produced by a QMF
PRINT command issued during a QMF session. This file can be allocated
by using the QMF CMS command while the QMF dialog is running or it
can be allocated prior to invoking the QMF dialog. For information on
GDDM nicknames, see GDDM support in EChapter 9_Enabling Users td
RECFM can be FBA or VBA. It is recommended that this file be allocated
with a record length (LRECL) supported by your printer device type.

DSQSPILL—Spill data file

The spill file is used when QMF runs short of virtual storage when
producing data for a report that is requested during a QMF session. This
file can be allocated by using the QMF CMS command to invoke the
CMS FILEDEF command, while the QMF dialog is running or it can be
allocated prior to invoking the QMF dialog. The spill file is a fixed
unblocked file with a record length (LRECL) of 4096.

Note: The larger the user’s spill file, the less often the user encounters
the “incomplete data” condition. For more information, see

hage 74.

DSQEDIT—Edit transfer file

This file is used whenever a QMF EDIT command is issued during a
QMF session. This file is a fixed record file with a record length (LRECL)
of 79.

DSQPNLE—QMF panel file

This file contains all the QMF panel definitions. It is created during QMF
installation.

DSQLDLIB—QMF load library
This file must be allocated to ISPLLIB and globally defined.

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database 33

Installing QMF 7.1

34

QMF-GDDM Considerations: When the QMF DCSS is built, it includes the
GDDM interface code. If you run GDDM from a DCSS, you need not access a
GDDM disk, or GDDM TXTLIBs, and you may remove the lines in the
invocation EXEC that refer to GDDM.

However, if you do not have GDDM in a DCSS, you must access the GDDM
TXTLIBSs and perform the necessary FILEDEFs. If you want to change the
release of GDDM being used by QMF, you must rebuild the QMF DCSS. See
the Program Directory for information on building the QMF DCSS.

QMF-DB2 for VM Considerations Include the Following::

* QMF supports DATE, TIME, and TIMESTAMP data types. So users can
make use of local date/time exit routines.

When planning for local date/time exit routines, it is important to keep in
mind that these are DB2 for VM exits, they are not QMF exits. For details
about how these exits are created, refer to DB2 Server for VM System
Administration

In order for QMF to use a local date/time exit, the text files containing the
date/time exits ARIUXDT and ARIUXTM must be placed on a minidisk
that is accessible to QMF when QMF starts.

If QMF is being started by DCSS mode, two relocatable module files must
be created from the existing exit text files ARIUXDT and ARIUXTM. To
create the relocatable module files issue the following CMS commands:

LOAD ARIUXDT (RLDSAVE)

GENMOD ~ ARIUXDT

LOAD ARIUXTM (RLDSAVE)

GENMOD ARIUXTM

* The QMF DCSS includes the ARIRVSTC text file, and if this file is changed

by PTFs applied to DB2 for VM or a new level of DB2 for VM, the QMF
DCSS must be re-built. See the Program Directory

QMF-DXT Considerations: If you want to start Data Extract (DXT) from
QMF, the ISPF setup for DXT should be merged with the ISPF setup of QMF.
You can do this in either of the following ways:

» Combining the QMF and DXT ISPF library FILEDEFs (concatenating the
MACLIBs under the same ISPF ddname). Give some thought to how you
want the libraries concatenated. If QMF is generally used more than DXT,
its libraries should be concatenated ahead of DXT’s.

» Using the ISPF LIBDEF service to dynamically allocate DXT’s libraries
under QMF. This can be done in lieu of, or in addition to, the merging of
the ISPF setups.

QMF provides a sample EXEC, DSQABX2L, which contains an example of
how to use LIBDEF for DXT.

Installing and Managing QMF on VM

Installing QMF 7.1

Step 4B—Invoke QMF from an ISPF Environment (Optional)
ISPF supplies a Master Application Menu as part of its installation process.

The QMF dialog can be invoked from the ISPF Master Application Menu, or
any other selection menu that you want to use. For an example of how the
ISPF Master Application Menu appears after adding QMF, see

The ISPF LIBDEF service provides applications with a dynamic method of
defining application data elements files while in an active ISPF session. For
more on the ISPF LIBDEF service, see ISPF for VM Dialog Management Services
and Examples

4 N
R L L MASTER APPLICATION MENU =-----------mmmmommee
%SELECT APPLICATION ===>_OPT +
% +USERID -
% +TIME -
% 1 +SPF - SPF PROGRAM DEVELOPMENT FACILITY +TERMINAL -
% 2 +QMF - QMF QUERY MANAGEMENT FACILITY +PF KEYS -
% 3 +QMF2 - QMF with alternate database
% P +PARMS - SPECIFY TERMINAL PARAMETERS AND LIST/LOG DEFAULTS
% X +EXIT - TERMINATE USING LIST/LOG DEFAULTS
+PRESS%END KEY+TO TERMINATE +
)INIT
)PROC

8SEL = TRANS(TRUNC (&OPT,'.')
1, 'PANEL(ISP@PRIM) NEWAPPL'
2,'CMD(DSQ2EINV) ' (Note 1)
3,'CMD(DSQ2EINV DB(SQLDBA2))" (Note 2)
/% */

/* ADD OTHER APPLICATIONS HERE =/

/* */
P, 'PANEL(ISPOPT)"'
X, 'EXIT'
7)

)END
o J

Figure 4. QMF Dialog on ISPF Master Application Menu

Notes:

1. The default database name is SQLDBA. You can modify the name within
the QMF invocation EXEC, DSQ2EINYV, to suit your installation.

2. You can specify another database name as a parameter.

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database 35

Installing QMF 7.1

36

Step 5—Run the IVP for QMF Interactive Mode : DSQ2EIVP

Note: Be sure that you have installed QMF 7.1 in the database you are going
to use, and that you are connected to that database.

The Installation Verification Procedure (I\VVP) session tests the following:

Initialization for a QMF session

The existence of QMF help panels

Importing of the initial IVP procedure

The existence of QMF control tables

The operation of the QMF database modules

The created table through the SAVE DATA command

The operation of QMF PRINT, EXPORT, IMPORT, and CMS commands

The trace facility

The QMF command interface

CoNoOr~ODNE

The IVP procedures are in the sample files on the production minidisk.

As a result of the IVP:

* A query is printed.

* Atrace is saved in a file named DSQDEBUG.

* A query is exported to a file named QMFIVP QUERY Al

* A query is imported from a file named QMFIVP QUERY Al.

* The file QMFIVP QUERY Al is erased, using the CMS command.

Step 5A—Test QMF Initialization
To run the IVP, first get to the QMF Home Panel using the DSQ2EINV sample

invocation EXEC or your own QMF invocation exec.

During the VP, you might get QMF error messages; if you do, press the Help
key to get additional information.

Step 5B—Test the Help Panel
When you have successfully initialized QMF, test for the help panel. To do

this, press the Help key from the home panel. After you are on the help panel,
press the Exit key to take you back to the home panel.

If you are running the IVP against QMF installed on a DB2 for VM server,
issue the command:

CONNECT Q (PASSWORD=xxx

where “xxx” is the value given to the Q CONNECT password when the QMF
installation control file is built.

Step 5C—Test the QMF Command Interface (ISPF Only)
To test the QMF command interface, issue the following command:

CMS DSQ2ECI1

Installing and Managing QMF on VM

Installing QMF 7.1

If this EXEC runs successfully, your QMF profile is displayed and you receive
a confirming message.

Check your profile for the correct values. For example, verify that the

DBSPACE value matches what you specified during [‘Step 1—Create QMH
Installation Control File: DSQ2ECTL” on page 25. If the DBSPACE value is not

correct, update your profile to contain the correct value before you continue.

Step 5D—Test the QMF IVP Procedure
Next, issue the command:

IMPORT PROC FROM DSQZEIVP PROC =*

Now press the Run key or issue the RUN PROC command to run the
procedure. Answer YES to all prompts. If the procedure runs successfully, you
get a message indicating this. If the procedure does not run successfully,
determine the problem by using the QMF messages and by pressing the Help
key to see the message help panels.

Restarting the IVP
The IVP can be restarted from the beginning at any time by importing and

running the starting QMF procedure. Follow the procedures from the
beginning of this step.

Step 6—Installing the QMF Sample Objects and Application Objects:
DSQ2ESQD and DSQ2ESQI

After QMF is installed and tested, you can use it to import the sample queries
(all saved with SHARE="YES’ option), batch IVP procedures, and sample
applications. The QMF procedure and queries used to import the sample
queries are on the QMF distribution minidisk (documented in the Program
Directory).

If you have a previous version of QMF installed, you must delete those
sample queries and procedures before installing QMF 7.1 queries and
procedures.

Perform the following steps to install the sample queries and procedures;

1. Start QMF if not already logged on from [Step 5—Run the VP for QMH
Inferactive Mode - DSOZEIVP™ on page 38,

2. If not done in [‘Step 5—Run the IVP for QMF Interactive Mode |
DSQ2F1VP” an page 36, and you are installing on a DB2 for VM server,

issue the command:
CONNECT Q (PASSWORD=xxx

where xxx is the password of Q.

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database 37

Installing QMF 7.1

38

3. If you have a previous version of QMF installed, delete previous sample
queries and procedures by importing and running procedure DSQ2ESQD,
as follows:

IMPORT PROC FROM DSQ2ESQD PROC =

Press the Run key or issue the RUN PROC command.

4. Install 6 sample queries and procedures by importing and running
procedure DSQ2ESQI, as follows:

IMPORT PROC FROM DSQ2ESQI PROC =
Press the Run key or issue the RUN PROC command.

Restarting the Procedure
If a failure occurs during this procedure, correct the error, then run procedure

DSQ2ESQD to delete any previously created sample queries. Then rerun
procedure DSQ2ESQI.

Step 7—Running the Batch-Mode IVP (Optional): DSQ2EBAT

If you plan to run QMF procedures in batch mode, you should run this IVP to
ensure that QMF for batch mode processing has been successfully installed.
The same files and DB2 for VM authorization used in QMF interactive mode
are also required to run QMF procedures in batch mode.

The Installation Verification Procedure (IVP) tests the following batch-mode
operations:

1. Reaching and initializing QMF
2. The existence of QMF control tables

3. The operation of the QMF database modules and issuing the SAVE DATA
command

4. The operation of the QMF PRINT, EXPORT, IMPORT, and CMS commands
and the trace facility

The IVP procedures are in the sample files on the QMF distribution minidisk.

Your CMS PROFILE EXEC should define the following files:
* A print file (DSQPRINT) for printing items

* A message file (DSQDEBUG) for commands run, error messages (if any),
and trace output

As a result of the IVP:

* A query is printed.

« A trace file is saved in a file DSQDEBUG.

* A query is exported to file “QMFIVP QUERY Al1”.

* A query is imported from file “QMFIVP QUERY Al”.

Installing and Managing QMF on VM

Installing QMF 7.1
* File “QMFIVP QUERY Al” is erased using the CMS command.

During the IVP, it is possible to get QMF error messages if there is an error.
For the text of the error messages, see the DSQDEBUG file. For more
information on these error messages, you can use the QMF HELP command
to view the message help panels. For information on how to use the message

utili% see EDi ”

DB2 for VM Authorization
If you (the installer) do not have DB2 for VM DBA authority or an

authorization ID of “Q”, the minimum DB2 for VM authorization required is:

» SELECT authority for all QMF control tables. The following are examples of
SQL GRANT statements to give SELECT authority for Q.PROFILES and
Q.ERROR_LOG:

GRANT SELECT ON Q.PROFILES TO installerid

GRANT SELECT ON Q.ERROR_LOG TO installerid
GRANT RESOURCE TO installerid

* DELETE and UPDATE authority for Q.OBJECT tables. The following are
examples of SQL GRANT statements to give all authority to the Q.OBJECT
tables:

GRANT ALL ON Q.OBJECT_DIRECTORY TO installerid

GRANT ALL ON Q.OBJECT_DATA TO installerid
GRANT ALL ON Q.OBJECT_REMARKS TO installerid

To run the batch mode IVP, use the QMF invocation EXEC specifying the
parameters for batch mode and the QMF procedure Q.DSQ2EBAT:
DSQ2EINV MODE(B) PROC(Q.DSQ2EBAT)

or
DSQ2EINV MODE(B) PROC(Q.DSQ2EBAT) CMSSUB(NO)

If QMF wasn’t installed correctly, QMF does not initialize and you receive
error messages. For the text of the error messages, see the DSQDEBUG file.
For more information on these error messages, you can use the QMF HELP
command to view the message help panels.For information on how to use the

messa%e utility, see I‘Diagnosing Your Problem Using QMF Message Support’]

Restarting the Batch IVP
This IVP starting the DSQ2EINV EXEC with the appropriate parameters.

Expected Results from Executing the Batch IVP
The output looks something like the following. (The 'hyphened' lines indicate

the beginning and ending of trace records.)

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database 39

Installing QMF 7.1

40

SET (CONFIRM=NO)
SET PERFORMED. PLEASE PROCEED.

SAVE DATA AS QMF_IVPDATA
DATA WAS SAVED AS QMF_IVPDATA IN THE DATABASE.

0K, YOUR PROCEDURE WAS RUN.

EXIT THE EXIT COMMAND TERMINATES QMF

Step 8—Deleting Previous Versions of QMF (Optional): DSQ2BDEL

Attention: Do not run this step unless you have successfully completed the
installation and testing of QMF 7.1 and no longer need the previous release.

Optionally, run the DSQ2BDEL EXEC to delete a previous version of QMF.
The DSQ2BDEL EXEC prompts for all necessary information needed to delete
QMF. Confirmation of the deletion is required before the actual deletion is
done. You must be linked to the QMF distribution disk and the DB2 VM
production disk, the DB2 database machine must be active, you must have
DRDA® connectivity to the target database, SQLDBSU must be installed in the
target database, and you must have authority to perform the database deletes.
There are two types of QMF deletions as defined below.

« If you have an earlier release of QMF installed in the same database in
which you have installed QMF 7.1, run DSQ2BDEL EXEC with the
PACKAGE option to delete the QMF database access modules of the prior
release.

« If you have an earlier release of QMF installed in a different database from
where you have installed QMF 7.1, run DSQ2BDEL EXEC with the FULL
option to drop ALL QMF DBSPACEs in addition to the database access
modules (packages) of the prior release.

Step 9—Post-Installation Cleanup

The QMF installation control file QMFV710E INSTALL resides on your QMF
distribution disk and contains the DB2 for VM CONNECT passwords for
“SQLDBA” and “Q”. This is a security exposure and should be corrected as
soon as possible. You can edit the installation control file and blank out the
password values. You may wish to change the DB2 for VM CONNECT
password for “Q” and/or REVOKE DBA authority from “Q”, especially if you
have chosen a non-trivial password for “Q” during QMF installation.

QMF uses the PROTOCOL (AUTO) option to run SQLINIT EXEC. If the
PROTOCOL (AUTO) option is not used at your machine, run SQLINIT to
change the default PROTOCOL.

Installing and Managing QMF on VM

Installing QMF 7.1

On the CMS command line, enter:
SQLINIT PROTOCOL (protocol)

where protocol is SQLDS, AUTO, or DRDA.

Congratulations! You have now completed installing the QMF product.

For information on customizing your system, see EPart 2_Managing QME fod

L1

Step 10—Load QMF Database Packages to a Remote Server (Optional):
DSQ2BPKB

In order for a QMF Version 7 Release 1 requester installation to be able to
communicate to a server, QMF 7.1 packages must be present at the server. If a
complete QMF 7.1 new or migration installation was performed at the server,
communications can be started and nothing further needs to be done.

For those servers containing QMF 3.3 or above where migration is not an
option, you can run the new install package job, DSQ2BPKB, to install QMF
V7 packages at the remote server. Then access from QMF for VM 7.1 to that
remote server is enabled. Following is a list of the DB2 servers types that are
supported from QMF for VM for remote access and the minimum
version/release required at the server.

» DB2 for OS/390 V3.1

» DB2 for VM/VSE V3.5

* DB2 Universal Database V5
» Dataloiner V2

* DB2 Common Server V2.1
» DB2 Parallel Edition V1.2

» Dataloiner V1.2

+ DB2 for AS/400 V4.4

Following is a list of the considerations for running the job (DSQ2BPKB) to
load QMF database packages to a remote server.

1. The application server must contain at least QMF 3.3. For brand new
installs, the QMF installation package and QMF control tables (at least)
must be present.

2. DRDA communications between the DB2 application requester and the
DB2 application server must be defined and operational.

3. The DB2 DRDA application server must be started.
4. The userid at the server must have administrator authority.
5. This job can be rerun.

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database 41

Installing QMF 7.1

42 Installing and Managing QMF on VM

Chapter 4. Installing a QMF 7.1 National Language Feature
(NLF)

This chapter parallels the installation steps for QMF 7.1. Where there are
significant procedural differences, this chapter explains the procedures to
follow when installing the National Language Feature. Where the job, library,
or program name differs, this chapter provides the proper names, but the
procedures you follow are in £ i i

kLM—DﬁI&hBSLQD_p&gE_ZJJ" .

NLF Installation EXECs

The QMF product ships CMS EXECs written in the Restructured Extended
Executor (REXX) language. The EXECs and control statements for each NLF
are shipped on the ISD tape for that feature. For information on how to use
REXX, see Virtual Machine/System Product Interpreter User’s Guide

The QMF NLF installation EXECs are designed to prompt the installer for
variable information. There is no requirement for your installation to change
the supplied installation EXECs. Every prompt message asks for variable
input, and each offers an optional “Help” or “Cancel” response.

* When “Help” is issued, a small abstract of the prompt request is displayed.
* When “Cancel” is issued, the EXEC stops.

Whenever a module, library, or job named in this chapter contains the letter n,

replace the n with the appropriate letter for the national language you are

installing. See your QMF NLF Program Directory or L i
i ions” for the appropriate letter to use for

your installation.

Installing a National Language Feature

When you install an NLF, a row is added to the QMF profile table
(Q.PROFILES) to support the language. This row is inserted with a userid of
SYSTEM. A unique row is added for each language that you install.

The NLF must be installed in each database you want to use it in. If you are
installing into a database that contains a prior release of QMF NLF, ensure
that the sample tables and views of the prior release are not used during the
installation process.

© Copyright IBM Corp. 1983, 2000 43

You use your national language for the QMF commands to import, export,
and run some installation procedures. See the NLF program directory for a list
of the translated books (the translated books should have the translated QMF
commands).

Hardware and Program Product Requirements

Make sure that your GDDM and ISPF (optional) environments, as well as
your controllers, terminals, and keyboards, are set up to display the national
characters of the NLF you are installing.

The Chinese, Japanese, and Korean NLFs use DBCS characters; they require

the hardware and program products shown in LC‘.ha.pJ‘.er_Z_Bla.amng_taﬂ

The Installation Steps

44

The installation steps are outlined on the following pages.

Note: You must first install the QMF 7.1 base product before you can install a
QMF National Language Feature.

The QMF 7.1 distribution and production minidisks are required for the NLF
installation.

Eigure 2 an page 22 is an overview of the installation process. The optional

EQME NI E Installation Checklist” an page 316 may be helpful in monitoring

your installation process.

Preliminary: Read the NLF Program Directory and Complete the
Worksheet

The QMF NLF program directory contains information concerning the
material and procedures associated with the installation of QMF. Because the
program directory is updated between releases of QMF, it may contain useful
information, including a description of PTF’s and APAR’s, as well as
modifications to this book. The program directory contains all the steps for
installing QMF NLF from tape to disk and building the DCSS. Only the QMF
NLF database installation into DB2 for VM is described in this book. You
must complete the steps in the program directory before doing the installation
steps in this book.

The following table shows the information that you need for NLF installation.
Use it as your worksheet.

Installing and Managing QMF on VM

Table 7. Information Required during QMF NLF Installation (QMF 7.1 Worksheet)

Information required for: Your data: QMFinDB2 |[QMFin
workstation AS/400 server
server

Database/location

Database type (DB2 VM, DB2 DB2VM DB2WS DB2400
workstation server, or DB2
AS/400 server

Prior QMF NLF level (if any) N/A N/A
Q CONNECT password N/ZA N/A
Default DBSPACE name for N/A N/A

SAVE DATA command (default
is DSQTSDEF)

Step 1—Create the QMF NLF Installation Control File: DSQ2nCTL

The QMF EXEC, DSQ2nCTL, prompts you for information required during
the NLF installation.

To create the QMF NLF installation control file, perform the following steps:

1. Access the QMF NLF distribution disk in WRITE mode

2. Ensure that your A-disk is not full (so QMF has room to generate
temporary files).

3. Fill in the worksheet shown in M, if you have not already done so.

4. Run the EXEC: DSQ2nCTL.

Prompts
You receive a series of prompts that ask you to supply the information you

developed using the worksheet. The prompts vary, depending on the previous
level of QMF, if any, installed on your system. (See EStep 1—Create QMH

=)

Anytime during this process, you can enter:
* HELP on the command line to receive more information.
» CANCEL to terminate the process before completion.

A file named QMFV710n INSTALL is created on your QMF NLF distribution
minidisk. This file contains the information you supplied to the previous
prompts.

If an installation file already exists from a previous installation, the

information you enter is appended to this file and the previous information is
deactivated.

Chapter 4. Installing a QMF 7.1 National Language Feature (NLF) 45

46

Step 2—Run QMF NLF Installation EXEC: DSQ2nINS

Before running this EXEC:

1. You must have access to the QMF NLF distribution minidisk in WRITE
mode.

2. The QMF NLF installation control file QMFV710n INSTALL must exist on
the QMF NLF distribution minidisk.

3. You must be linked to the DB2 for VM production minidisk in READ
mode.

4. The following CMS commands allow the printer and console to continue
processing unless a severe error is found.

spool prt cont hold
spool console start cont

Assumptions for Installing QMF into a Workstation Database Server
Before you attempt to install QMF on a remote database server, be sure to

complete the prerequisistes indicated in IPlanning for Installing QME into 4
Mlorkstation Datahase Server” on page 20

Running the EXEC
To start the NLF installation EXEC, issue the command:

DSQ2NINS

The QMF NLF installation EXEC obtains its input from the QMF NLF

installation control file. (See ‘'Step 1—Create the QME NI F Installation
Control File DSQ2nCTI ” an page 45.) The QMF NLF installation EXEC

performs the following steps:

1. Updates the Q.PROFILES and creates an NLF command synonyms table
called Q.COMMAND_SYNONYM_n, if you are not migrating from any
previous release of QMF.

2. Discards existing QMF NLF sample tables and creates new ones, if
required.

Restart Procedure
If this EXEC fails, use the following procedure to restart the EXEC and

continue where you left off:
1. Determine what the problem is and fix it.

2. Rerun this EXEC with an input parameter equal to the restart value
provided in the message when the EXEC terminated.

For example, if you get the message:

TERMINATING EXECUTION ...

TO RESTART THIS EXEC AND CONTINUE WHERE YOU LEFT OFF,
- FIX THE PROBLEM ENCOUNTERED

- RERUN THIS EXEC WITH THE INPUT PARAMETER OF 2

Installing and Managing QMF on VM

you can restart the EXEC with:
DSQ2nINS 2

Installation EXEC Error Messages

If you encounter a problem running the QMF installation EXEC, you need to
find the error message describing the problem. Because this error message
may be sent to either the console or the printer, you may want to spool your
console and your printer to “HOLD”.

Note: If you choose to spool your printer or console, enter the following to
release the file that contains the error information:

spool prt close
spool console close

To transfer the printer files to your reader, issue the command:
TRANS PRT ALL *

Step 3—Start QMF NLF: DSQ2nINV

Follow t‘Step 4—Start QME: DSQ2EINV an page 29, noting the differences
listed here. Recall that you can either tailor the QMF invocation EXEC (Step
4A) or invoke QMF from the ISPF environment (Step 4B).

Modify the QMF NLF invocation EXEC, DSQ2nINV, to meet the requirements
of your installation. The alterable parameters are the same as in Eﬁm
Eﬁ. Note that DSQ2nINV is only a sample NLF invocation EXEC. The
necessary links to minidisks, filedefs, SQLINIT, and the ISPSTART command
are described clearly in simpler QMF invocation EXECs. These EXECs,
DSQ2nIN1 (with ISPF) and DSQ2nIN2 (without ISPF), are located on the
production minidisk. You may find them useful in constructing your own
QMF invocation EXEC to match your environment requirements.

Step 3B—Invoking QMF from an ISPF Environment (Optional)
Follow [‘'Step 4B—Invoke QMFE from an ISPE Environment (Optional)” onl

hage 35 and make changes to the ISPF Master Application Menu as shown in

Chapter 4. Installing a QMF 7.1 National Language Feature (NLF) 47

48

Hmmmm e MASTER APPLICATION MENU ==-=-cmmmmmmmmeeeee
%SELECT APPLICATION ===>_OPT +
% +USERID -
% +TIME -
% 1 +SPF - SPF PROGRAM DEVELOPMENT FACILITY +TERMINAL -
% 2 +QMF - QMF QUERY MANAGEMENT FACILITY +PF KEYS -
% 3 +QMFn - QMF FOR NATIONAL LANGUAGE FEATURE
% P +PARMS - SPECIFY TERMINAL PARAMETERS AND LIST/LOG DEFAULTS
% X +EXIT - TERMINATE USING LIST/LOG DEFAULTS
+PRESS%END KEY+TO TERMINATE +
)INIT
)PROC
&SEL = TRANS(TRUNC (&OPT,'.')
1, 'PANEL(ISP@PRIM) NEWAPPL'
2, ' CMD(DSQ2EINV) "
3, 'CMD(DSQ2nINV) "
I */
/* ADD OTHER APPLICATIONS HERE =/
/* */
P, 'PANEL (ISPOPT)"'
X, 'EXIT'
17
)END
- J

Figure 5. ISPF Master Application Menu for National Language Feature

Step 4—Run the IVP for QMF NLF Interactive Mode: DSQ2nIVP

Note: Be sure that QMF 7.1 is installed into the database you are using.

See 'Step 5—Run the I\VP for QME Interactive Mode - DSQ2EIVP” on page 36
for information on what the IVP does. Start QMF using the NLF program,
DSQQMFn.

When you have successfully initialized QMF NLF, test for the help panel. To
do this, press the “Help” key from the home panel. After you are on the help
panel, press the “Cancel” key to take you back to the home panel.

You should then issue the command:
CONNECT Q (PASSWORD=xxx

where xxx is the value given to the CONNECT password of Q.

Installing and Managing QMF on VM

Test the QMF Command Interface
Test the command interface by issuing the following command:

CMS DSQ2nCI1

If this EXEC runs successfully, your QMF NLF profile is displayed, and you
receive a message indicating that your CMS command was successful.

Test the QMF Procedure
Run the IVP by issuing the following commands:

IMPORT PROC FROM DSQ2nIVP PROC *
RUN PROC

Answer YES to all prompts.

 If the procedure runs successfully, you receive a message indicating this.

+ If the procedure does not run successfully, determine what the problem is
by using the QMF NLF messages and message help panels.

Step 5—Install QMF NLF Sample Objects and Application Objects:
DSQ2nSQD and DSQ2nSqQl

After the QMF NLF is installed and verified, you can use the NLF to import
the sample queries and procedures for the NLF.

If you have any previous version of this QMF NLF installed, you must delete
the previous sample queries and procedures before installing QMF NLF V7
gueries and procedures.

Perform the following steps to install the sample queries and procedures:
1. Start QMF if not already logged on.
2. lIssue the command (if not done earlier):

CONNECT Q (PASSWORD=xxx

where “xxx” is the QMF CONNECT password of “Q”.

3. Delete previous sample queries and procedures. (Run this step only if you
have a previous version of this QMF NLF installed.)
Import and run the procedure DSQ2nSQD as follows:

IMPORT PROC FROM DSQ2nSQD PROC =
RUN PROC

4. Install NLF 6 sample queries and procedures, by importing and running
procedure DSQ2nSQI with the following commands:

IMPORT PROC FROM DSQ2nSQI PROC =
RUN PROC

This procedure also installs the batch mode IVP and sample application
procedures.

Chapter 4. Installing a QMF 7.1 National Language Feature (NLF) 49

50

Restarting the Procedure
If a failure occurs during this procedure, you can correct the error and run

procedure DSQ2nSQD, which deletes any previously created sample queries.
Then import and rerun procedure DSQ2nSQIl.

Step 6—Run the IVP for QMF NLF Batch Mode (Optional): DSQ2nBAT

Follow the directions for EStep 7—Running the Batch-Mode I\V/P (Qptional)]
DSQ2EBAT” on page 38.

To run the IVP, use the QMF invocation EXEC, specifying the parameters for
batch mode and the QMF procedure Q.DSQ2nBAT, by issuing either of the
following:

DSQ2nINV MODE(B) PROC(Q.DSQ2nBAT)

or
DSQ2nINV MODE(B) PROC(Q.DSQ2nBAT) CMSSUB(NO)

Step 7—Post-Installation Cleanup

The QMF installation control file, QMFV710n INSTALL, resides on the QMF
NLF production disk and contains the DB2 for VM CONNECT password for
“Q”. This file was created in B Step 1—Create the QME NILF Installation
ban.ttoJ_ELle_DSQZQCILlon_pageAH Because thls file is a potential security
exposure, you should edit the installation control file and blank out the
password. You may wish to change the DB2 for VM CONNECT password for
“Q” and/or REVOKE DBA authority from “Q”, especially if you have chosen
a non-trivial password for “Q” during QMF installation.

QMF uses the PROTOCOL (AUTO) option to run SQLINIT EXEC during Step
5. If the PROTOCOL (AUTO) option is not used at your machine, run
SQLINIT to change the default PROTOCOL.

On the CMS command line, enter:
SQLINIT PROTOCOL(protocol)

where protocol is SQLDS, AUTO, or DRDA.

Installing and Managing QMF on VM

Part 2. Managing QMF for VM/ESA

Chapter 5. Starting QMF
Before you Start QMF. .
Establishing a Database Connectlon .
Initializing the QMF Session
Quick Start .
Setting up QMF to Run under ISPF .
Before you start QMF . .o
Starting QMF from a Menu Optlon
Starting QMF with the ISPSTART
Command
PGM Form .
Program Segment Form . .
Starting QMF in Batch Mode in ISPF
Examples of Starting QMF under ISPF .
Setting up QMF to Run under CMS .
Starting QMF Directly with the DSQQMFE
Module
Starting QMF in a Batch CMS
Environment.
Examples of Starting QMF under CMS
Creating a CMS EXEC
Verify Program Modules .
Verify QMF Data Files
GDDM Considerations
DB2 for VM Considerations.

Chapter 6. Customizing Your Start
Procedure
Quick Start
Setting Default Start Values Usmg the REXX
Program DSQSCMDn . .
Naming the Program Segment .
dcssname .
DSQSDCSS
Customizing Report Storage and Report
Performance .
Adjusting Storage for Report Data
(DSQSBSTG) .

Choosing the nght Amount of V|rtual

Storage for Each User .

Performance Tradeoffs .
Adjusting Reserved Storage Used for
Report Data (DSQSRSTG) .

DSQSBSTG and DSQSRSTG Value of 0

© Copyright IBM Corp. 1983, 2000

. 57
. 57
. 57
. 58
. 58
. 59
. 59
. 59

. 61
. 61
. 62
. 62
. 63
. 64

. 64

. 64
. 65
. 65
. 65
. 65
. 66
. 66

. 67
. 67
. 68
.12
.12
. 73
.73
. 73

.73
.74

.74

74

Small Value for DSQSBSTG or Large
Value for DSQSRSTG .

Acquiring Extra Storage (DSQSPILL)
Allocating a Spill File for CMS Users.
Estimating the Space Required for a
Spill File .

Using a Spill File in a Nonlnteractlve
QMF Session. .
Solving Some Spill F|Ie Problems .

Controlling the Number of Report Rows

Retrieved for Display (DSQSIROW) .
Performance with Small DSQSIROW
Values .

Performance W|th Large DSQSIROW
Values .

Setting the Level of Trace Detall

(DSQSDBUG)

Controlling Initial Actlvmes Durlng a Sessmn
Specifying the Location to Connect to
When Starting QMF (DSQSDBNM)
Specifying an Interactive or Noninteractive
QMF Session (DSQSMODE). .
Naming a Procedure to Run When QMF
Starts (DSQSRUN) .

Running an Initial Procedure
Noninteractively
Performing Interactive QMF Work Wlth
an Initial Procedure
Passing Variable Values to an Inltlal
Procedure. .
Setting Printing for Double- Byte Character Set
Data (DSQSDBCS) .

Chapter 7. The QMF Session Control
Facility .
Installing or Removmg Q SYSTEM INI
Importing the Default System Initialization
Procedure. .
When Does the Q. SYSTEM INI Procedure
Run? .
Using Q. SYSTEM INI
Example Shipped with QMF
User Session Procedure Example .
Procedure that Displays an Object list
Security and Sharing Session Procedure.

. 75
. 75
. 76
. 76

. 78
. 18

.79

. 80

. 81

. 81

82

. 82
. 83
. 84
. 85
. 85
. 86
. 90
.91
.91
.91
.91
.92
. 92
.92

. 93
. 94

51

Diagnosis Considerations

Chapter 8. Establishing QMF Support for
End Users .

The role of the Q AUTHID

Quick Start

Ensuring That Users Have Access to CMS
Creating User Profiles to Enable User Access
to QMF .o

Using the Q User Proflle a SpeC|aI QMF

Profile .

Establishing a Proflle Structure for Your

Installation

Adding a New User Proflle to the

Q.PROFILES Table .

Preventing Users Without Unlque Proflles

from Using QMF . .

Reading the Q.PROFILES Table .

Providing the Correct Profile for the

User’s Operating Environment

Updating User Profiles .

Using the SET PROFILE Command
Using SQL UPDATE Statements .
Updating the SYSTEM Profile.
Deleting Profiles from the Q.PROFILES
Table .
Controlling Access to QMF and Database
Objects
SQL Privileges Requwed to Access ObJects
SQL Privileges Required for QMF
Commands .
SQL Privileges Requwed for Prompted
and QBE Quieries .
SQL Privileges Required for the Table
Editor. .
Granting and Revoklng SQL Pr|V|Ieges
Using the SQL GRANT Statement
Using the SQL REVOKE Statement .

Sharing QMF Objects with Other Users

Allowing Uncommitted Read . .

Setting Standards for Creating Objects .
Customizing a User’s Database Object List

Using the Default Object Lists.

Changing the Default List .

Obiject List Storage Requirement .
Enabling Users to Create Tables in the
Database . .

Choosing and Acqumng a dbspace for the

User

Using the SQL ACQUIRE Statement

52 Installing and Managing QMF on VM

.94

. 95
. 95
. 95
. 96
.97
.97
. 98
. 98

.99
. 100

. 104
. 105

105

. 105
. 106

. 106

. 107
107

. 108

. 109

. 109

109

. 110
. 110

111

11
. 112

112

. 113
. 114
. 115

. 116

. 118

118

Sizing a dbspace . .

Granting a User DB2 for VM RESOURCE

Authority

Enabling Users to Conflrm Table Changes

Before They are Made .
Enabling Users to Support a Chart .
Maintaining QMF Objects Using QMF
Control Tables .

Reading the Q. OBJECT DIRECTORY

Table . .

Reading the Q. OBJECT DATA Table

Reading the Q.OBJECT_REMARKS Table

Listing QMF Queries, Forms, and

Procedures . .

Displaying QMF Querles Forms and

Procedures .

Transferring Ownershlp of Querles

Forms, and Procedures .

Deleting Obsolete Queries, Forms and

Procedures .

Enlarging the dbspace for the QMF Object

Control Tables . .

Maintaining Tables and Vlews Usmg DBZ for
VM System Tables

Listing Tables and Views .

Transferring Ownershlp of a Table or

View .

Deleting a Table or Vlew from the

Database. .

Supporting Locally Deflned Date/Tlme
Formats .

Accessing the DXT End User Dlalogs (ISPF
Only) .

Supporting the EXTRACT Command

Allocating Resources.

Allocating and Reallocating Resources

Using EXECs

Preparing the AIIocatlon EXEC

Preparing the Reallocation EXEC.

Other Allocation Methods . .
Customizing the Document Editing Interface
for Users. .

Changing the Appllcatlon .

Renaming the Document Interface Macros

and EXEC

Placing the Q. DSQAED2S Procedure in

the Database

Transferring Ownership to Q

Changing the Data Components .

The Message Component .

. 118

. 118

. 119
. 120

. 120

. 121
. 122

123

. 123

. 124

. 124

. 125

. 126

. 127
. 128

. 128
. 128
. 128
. 129
. 129
. 129
. 130

. 130
. 135

. 138

. 139

. 139

. 139

. 139
. 140
. 140
. 140

The DCF Components .
Changing the EXECs and Macros
Changing DSQABD2Q .
Changing DSQABD?2I
Changing DSQABD2C . .
Customizing the QMF Edit Command .
Enabling English Support in an NLF
Environment .
Using Global Variables to Deflne the
Currency Symbol . o

Chapter 9. Enabling Users to Print
Objects .
Quick start .
Printing Objects
Deciding Whether to Use QMF or GDDM
Services for Printing . .
Using GDDM Services to Handle Prlntlng
Choosing a GDDM Nickname for Your
Printer .
Choosing the nght Type of GDDM
Device

Creating the Nlckname Specmcatlon
Example Nickname for a Family 2
GDDM Printer . .
Example Nickname for a Famlly 3
GDDM Printer. .
Example Nickname for a Famlly 4
GDDM Printer . .
Defining Multiple Nlcknames Wlth
One Definition. .
Examples of Nickname Def|n|t|ons .
Updating the GDDM Defaults Module
with the Nickname

Testing the Nickname Def|n|t|ons in

External Default Files

How QMF Interfaces with Your GDDM

Nickname .

Using QMF’s DSQPRINT to Handle Prlntlng

Defining a Synonym for the Print Function

Key

Updating User Proflles to Enable GDDM

Printing .

Chapter 10. Customizing QMF Commands

Quick Start .

Using the Default Synonyms Prowded Wlth

QMF

Displaying Prlnted Reports (DPRE)
Using DPRE

. 141
. 142
. 142
. 142
. 142
. 143

. 144

. 145

. 147

. 147

. 148

. 149

149

. 150

. 150
. 151

. 151

. 152

. 152

. 152
. 153

. 154

. 154

. 154
155

. 156

. 156

159
. 159

. 159
. 160
. 160

Customizing DPRE .
Creating a Command Synonym Table .
Entering Command Synonym Definitions
into a Command Synonym Table.

Choosing a Verb .

Rules for the VERB Column

Using Base QMF Verbs as Command

Synonym Verbs

Choosing an Object Name .

Choosing the Synonym Definition
Using a Procedure in the Synonym
Definition
Using Variables in the Synonym
Definition
Keying Information Into the
SYNONYM_DEFINITION Column .

Activating the Synonyms
Minimizing Maintenance of Command
Synonym Tables

Assigning One Synonym Table to aII

Users .

Assigning Vlews of a Synonym Table to

Individual Users .

Synonyms for Public or Prlvate Use

Synonyms for Public or Group Use

Synonyms Paired with an

Authorization Table .

Chapter 11. Customizing QMF Function

Keys .

Quick Start .

Choosing the Keys You Want to Customlze
Default Keys on Full-screen Panels .
Default Keys on Window Panels .

Creating the Function Key Table .

Entering Your Function Key Definitions into

the Table.

Linking a Command Wlth a Functlon Key
Labeling the Function Key and
Positioning it on the Screen
Examples of Key Definitions .
Entering a Definition for a Key on a
Full-screen Panel .
Entering a Definition for a Key ona
Window Panel .
Entering a Key Deflnltlon for a Help
or Prompt Panel

Identifying the Panel You Want to Customlze
. 181
. 181

Full-screen Panel Identifiers
Window Panel ldentifiers .

Part 2. Managing QMF for VM/ESA

. 161
. 162

. 163
. 163
. 164
. 164
. 165
. 165
. 165
. 166

. 168
. 168

. 170

. 170

. 170

170
171

171

. 173
. 173

173

. 174
. 175
. 176

. 177

177

. 179
. 179

. 179

. 180

. 181
181

53

Command Windows .
Forms Windows .
Global Variable Windows .
Help and Prompt Windows
Location Windows

Object List Windows.
Prompted Query Windows.

Activating New Function Key Definitions

Ch

Codes for QMF Forms

apter 12. Creating Your Own Edit

Quick Start .

Ch

oosing an Edit Code

Handling DATE, TIME, and TIMESTAMP
Data Types .

Ca

lling Your Exit Routlne to Format the

Data .
Passing Informatlon to and from the EX|t
Routine .

Fields of the Interface Control Block

Fields That Characterize the Input Area
How U-Type Edit Codes are
Represented in the Input Area
How V-Type Edit Codes are
Represented in the Input Area

Fields That Characterize the Output Area

Passing Control to the Exit Routine When
QMF Terminates .

Writing an Edit Routine in ngh Level
Assembler (HLASM) or Assembler .

How an Assembler Edit Routine Interacts
with CMS

How an Assembler Edlt Routme Interacts
with QMF

Assembling Your Program

Generating Your Program .

Writing an Edit Routine in PL/I Wlthout
Language Environment (LE) .

How a PL/1 Edit Routine Interacts W|th
QMF .

Compiling Your Program

Creating Your DSQUEDIT Module F|Ie in
PL/I .

Writing an Edit Routlne in PL/I W|th
Language Environment (LE)

Generating Your PL/1 Program for LE

Writing an Edit Routine in COBOL without
Language Environment (LE)

54

How a COBOL Edit Routine Interacts
with QMF

Installing and Managing QMF on VM

. 182
. 182
. 182
. 182
. 182
. 182
. 183

184

. 187
. 187
. 188
. 189
. 191

. 193
. 193

195

. 196

. 196

196

. 197
. 197
. 198
. 199
. 202
. 203
. 203

. 204

. 209

. 210

211

212

. 213

. 214

Compiling Your Program

Assembling the Run Time Optlons Macro

(coBoL) . .o

Generating Your Program . . .
Writing an Edit Routine in COBOL Wlth
Language Environment (LE) . .

Generating Your COBOL Program for LE
Handling Double-Byte Character Set Data

Edit Codes for DBCS Data .

What the Edit Routine Receives .

Data from Graphic Columns .

Data from Character Columns
Ensuring the Edit Routine Returns the
Right Results

Overflowing the ECSRSLT Fleld

Printing the Report Column

Chapter 13. Controlling QMF Resources
Using a Governor Exit Routine
Quick start .
Using the IBM- Supplled Governor EX|t
Routine .
Activating the Default L|m|ts .
How a Governor Exit Routine Controls
Resources

How the Governor Knows What the

Resource Limits Are .

How the Governor Knows When You

Reach a Resource Limit . .

What Happens When You Reach a

Resource Limit.

Defining Your Own Resource L|m|ts
Creating your own Resource Control
Table . .

VM Timer ConS|derat|ons .
Modifying the IBM-supplied Governor EX|t
Routine or Writing Your Own.

Program Components of the Governor
Exit Routine

How CMS Interacts W|th the Governor
Exit Routine

How and When QMF Calls the Governor
Exit Routine

Points at Which QMF Calls the

Governor .

What Happens Upon Entry to the

Governor Exit Routine .

Establishing Addressability for

Function Calls .

. 219

. 220
. 220

. 221

222
223

. 223
. 223
. 223
. 224
. 224

. 224
. 224

. 227

. 227

. 228
. 229

. 230

. 231

. 232

. 233
. 233

. 236
. 236

. 238

. 239

. 240

. 241

. 241

. 243

. 243

Passing Resource Control Information to
the Governor Exit. .
Structure of the DXEGOVA Control
Block . .
Addressing the Resource Control Table
Structure of the DXEXCBA Control
Block .
Storing Resource Control Informatlon for
the Duration of a QMF Session
Canceling User Activity .
Providing Messages for Canceled
Activities
Assembling and Generatmg Your Governor
Exit Routine
Assembling Your Governor EX|t
Building a Module File or Creating a
Load Library Member

Chapter 14. Customizing a Remote
Database Connection

Quick Start . .
Determining the Remote Database
Connection Needed .

Connecting with Remote Unlt of Work

Connecting with DB2-to-DB2 Distributed

Unit of Work
Specifying a Table or Vlew W|th a
Three-part Name in DB2
Directing a Query Using Three- part
Names .

Verifying the Connect|0ns Necessary for
Remote Unit of Work .

Checking DB2 for VM Connectlons
Checking DB2 for VM Connections .
Preparing a Non-DB2 for VM Location for

Access by QMF VM Users .

Creating Command Synonym Tables
Sample Remote Server Command
Synonym Table for the CMS
Environment . .

Preparing QMF to Support the DPRE

Command .

Preparing QMF to Support Other

Commands . .

Creating Function Key Tables

Updating QMF Governor Control Tables

Installing the National Language Feature

in the QMF Server

Code Page Support .

. 244

. 245
249

. 250

. 258
. 259

. 260

. 261
. 261

. 262

. 263

. 263

. 264

265

. 265
. 265
. 265
. 266
. 266
. 266
. 267
. 267
. 268

. 269

. 269
. 269

270

. 270
. 270

Restricting Use of the APPLDATA

Column 270
Avoiding Use of Some Speual
Characters 270
Enabling Your Users to Access a Remote
Database. . . . L.21
Updating a User’s Prof|le B
Specifying Access for Current SQL
Authorization ID 21
Connecting to the Local Database ... 271
Connecting to the Remote Database. . . 271
Specifying a Location Name 272
inbB2272
In DB2 for VM. 273
Where Data Must be Located for User
Access 273
Working W|th QMF Objects A
Working With Tables. 274
Preventing SQL Errors 274
Translating User IDs.275
Translating Names 275
Deleting QMF Users from Each Remote
QMF Location 275
Enabling Administrator Access to Your
Location.275

Chapter 15. Customizing the Batch

Processing Program 277
Quick Start 277
Enabling Your Users to Use Batch Mode . . 278
Sending a Job to the CMS Batch Machine 279
Running Batch Jobs on Your Machine . . . 281
Debugging a Procedure. 282
Using the QMF Batch Query/Procedure
Application (BATCH)282
MACLIBs Required283
Using the Application 283
Filling in the Prompt Panel 283
Required Entry Fields 284
Optional Entry Fields 285
Modifying the Batch Application. . . . 286
Chapter 16. Troubleshooting and Problem
Diagnosis289
Quick Start 289
Troubleshooting Common Problems .. .290
Handling Initialization Errors. 290
Handling Warning Messages 291

Handling GDDM Errors During Pr|nt|ng 292
Handling QMF Errors During Printing 292

Part 2. Managing QMF for VM/ESA 55

Handling CMS Command Errors
Using the CMS Command to Run an
EXEC . .
Issuing the CMS Command |f QMF is
Started Using ISPF
Using the DB2 for VM CONNECT
Command .
Using the DB2 for VM COMMIT
Command .

Handling Display Errors
Using the HEX Function

Using QMF-provided Hex and Blt Edlt

Codes. .
Handling Binary Data W|th
User-Written Edit Routines.

Solving Slow Performance Problems
Resetting the Data Object to Improve
Performance
Increasing the User’s Report Storage
Using REXX Function Packages .

Determining the Problem Using Diagnosis
Aids .

Choosing the nght Dlagn05|s Ald for the

Symptoms . . .
Diagnosing Your Problem Usmg QMF
Message Support . .
Determining which QMF Functlon
Issued an Error Message
Handling System Error Messages
Handling SQL Return Codes .

Using the QMF Trace Facility .
Allocating the Trace File
Starting the Trace Facility . .o
Getting the Right Level of Detail in
Your Trace Output
Tracing at the Module Level
Viewing QMF Trace Data . .
Determining the QMF Service Level
Turning Off the Trace Facility .

Abend Handling .

Using the QMF Interrupt FaC|I|ty
Creating an Interrupt .
Displaying Trace Information After
Creating an Interrupt
Error Handling

Using Error Log Reports from the

Q.ERROR_LOG Table

Reporting a Problem to IBM

Using ServiceLink to Search for

Previously Reported Problems

56 Installing and Managing QMF on VM

. 294

. 294

. 294

. 294

. 295
. 295

. 295

. 295

. 295
. 296

. 296

297

. 297

. 298

. 298

. 298

. 299
. 300
. 300
. 300
. 301
. 301

. 302
. 304
. 304

305

. 305
. 305
. 306
. 306

. 307
. 308

. 308
. 309

. 310

Working with Your IBM Support Center

312

Chapter 5. Starting QMF

This chapter describes the various methods you can use to start QMF. You can
start QMF running under ISPF or CMS, or from the QMF server.

For information about starting QMF from the callable interface, see Developing
QMF Applications

Before you Start QMF

Before you start QMF, you need to decide which environment you want QMF
to run in. The method used to start QMF depends upon the environment from
which QMF is started and whether the user wants to run QMF under ISPF.

Establishing a Database Connection

Before you start QMF, you need to establish the CMS and DB2 for VM
environment.

The DB2 for VM database program usually operates in its own virtual
machine associated with a VM logon ID. So does each QMF user. The
directories of each virtual machine can contain IUCV (Inter-User
Communications Vehicle) entries that allow the machines to communicate
with DB2 for VM. You need to ensure the compatibility between the entries
for QMF users and those for DB2 for VM.

Any combination of the following situations can exist:
Case 1: The DB2 for VM directory has IUCV ALLOW. In that case, any
other virtual machine can communicate with the DB2 for VM machine,
and nothing else need be done to allow communication.
Case 2: The QMF user’s entry has IUCV ANY. In that case, the QMF user
can communicate with any other virtual machine, including the DB2 for
VM machine.
Case 3: The QMF user’s entry has IUCV sgldsid, where sqgldsid is the user
ID of the DB2 for VM virtual machine. The QMF user can have this
directory entry in any case, and must have it if neither case 1 nor 2 holds.
Case 4: The DB2 for VM directory has an IUCV *IDENT control statement
to identify which resources it manages, and whether the resources are local
or global. A local resource can be accessed only by QMF users on the same
processor. A global resource can be accessed by QMF users on local or
remote processors.

© Copyright IBM Corp. 1983, 2000 57

Starting QMF

Setting up a user’s directory entry is a normal part of the task of providing a
VM logon ID. For instructions about it, see VM/SP Planning and System
Generation Guide and DB2 Server for VM System Administration

If your installation requires the use of QMF in different databases, you must
install QMF into each unique DB2 for VM database. Each database contains
the following:

* QMF control tables

* QMF DB2 for VM packages

* QMF sample tables and queries

* QMF views (system tables)

To install QMF into multiple databases, see tPart 1_Installing QME fod
Initializing the QMF Session
When initializing the QMF session:

* DB2 for VM user ID = VM logon ID
* QMF does an implicit connect

Quick Start
[fable 4 outlines ways you can set up QMF to start.

The n symbol in each example represents the national language identifier
(NLID). Substitute the NLID from Mahle 5 on page 19 that corresponds to the
national language in which you want to start QMF. For example, to start an
English QMF session, enter QMFE.

For more information on any of the tasks listed, see the page shown at the
right of the table.

Table 8. Options for starting QMF

To do this task: See:

To set up QMF to start with the PGM form of the ISPSTART command, enter: Page b1
ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(....)
You can also use the program segment form.

To set up QMF to start in batch mode in ISPF, enter: Page |
ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(...DSQSMODE=B,DSQSRUN=aaa.bbb)
You can also start QMF in batch mode using a EXEC.

To set up QMF to start directly with the DSQQMFE module, enter: Page B4
DSQQMFE DSQSBSTG=123456,DSQSIROW=0,DSQSRUN=SAM.PROG1
To set up QMF to start in a batch CMS environment, enter: Page B4

DSQQMFE ...DSQSMODE=B,DSQSRUN=aaa.bbb

58 Installing and Managing QMF on VM

Starting QMF

Table 8. Options for starting QMF (continued)
To do this task: See:

To create a new CMS EXEC to start QMF, you need to ensure that the program modules Page B3
and data files are available to QMF, and that GDDM and DB2 for VM considerations have
been met.

Setting up QMF to Run under ISPF

You can let users start QMF using ISPF services. You can do this in three
ways:

* ISPF has an initial dialog to which you can add QMF.

* Replace the initial dialog with one that starts QMF directly.

» Create an EXEC to start QMF as a program dialog.

You can use any of the methods to start the others. For example, you can run
an initial dialog from an EXEC.

If you are going to run QMF under ISPF, you must start the QMF program
dialog using the ISPF SELECT service. When a CMS command is used, results
are unpredictable.

Restrictions:
1. You cannot run QMF as a command dialog.

2. You cannot enter QMF from a split screen or create a split screen during a
QMF session if QMF was started as an initial dialog.

For information on ISPF, see Interactive System Productivity Facility for VM
Dialog Management Services and Examples

Before you start QMF

A FILEDEF ISPLLIB statement for DSQLDLIB LOADLIB must be in place
before QMF is started; it can be done either before or after ISPF is started, for
example:

FILEDEF ISPLLIB DISK DSQLDLIB LOADLIB * (PERM)

Starting QMF from a Menu Option
If you choose to set up a menu option to start QMF, the menu must point to

QMF, but can also point to QMF resources. Eigure 6 on page 60, which shows
a sample definition for the ISPF master application menu, illustrates how to
add an option to the menu. In this definition, Option 2 was added for
reaching QMF through an EXEC.

Chapter 5. Starting QMF 59

Starting QMF

SELECT APPLICATION ===> OPT +

%

% +USERID -

% +TIME -

% 1 +PDF - PROGRAM DEVELOPMENT FACILITY +TERMINAL -

% 2 +QMF - QMF -- English +FUNCTION KEY -
% 3 +QMFU - QMF -- Uppercase

% 4 +QMFK - QMF -- Japanese

%

%

%

% P +PARMS - SPECIFY TERMINAL PARAMETERS AND LIST/LOG DEFAULTS
% X +EXIT - TERMINATE USING LIST/LOG DEFAULTS

+PRESS%END KEY+TO TERMINATE +

%

)INIT
)PROC

&SEL = TRANS(TRUNC (&0PT,'.")
1, 'PANEL (ISP@PRIM) NEWAPPL'
2, 'PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQIROW=150)"
3, 'PGM(DSQQMFU) NEWAPPL(DSQU) PARM(DSQIROW=150)"
4,'PGM(DSQQMFK) NEWAPPL(DSQK) PARM(DSQIROW=150)"

/* */
/* ADD OTHER APPLICATIONS HERE =/
/% */

P, 'PANEL (ISPOPT) "

X, 'EXIT'

£17)

)END

Figure 6. Sample master application menu

If you're using an NLF: You can modify the definition of the Master
Applications Menu to allow users to pick the
language environment for their QMF sessions.
ﬁ is an example in which users have a choice
of beginning a QMF session in English (option 2),
Uppercase (option 3), or Japanese (option 4). The
TRANS function in the)PROC section of the panel
definition brings this about: As you can see from the

60 Installing and Managing QMF on VM

Starting QMF

figure, this function transforms options 2, 3, and 4
into the operand portions of an ISPF command that
is executed like ISPSTART (see the previous section).
The command executed invokes the appropriate
QMF module (DSQQMFE, DSQQMFU, or
DSQQMFK), and passes it the value 150 for the
DSQSIROW parameter. The DSOSIROW parameter is

discussed in ECantrolling the Number of Repori

Tip: The direct menu approach can start QMF as much as four times faster
than the EXEC approach. If you allocate all user resources through CMS
logon procedures, then the EXEC you create for the menu option has no
resources to allocate. This leaves it with a single function, starting QMF,
and you can do this without an EXEC.

Starting QMF with the ISPSTART Command

Use the ISPF command ISPSTART to develop an EXEC to enable users to start
QMF as an ISPF dialog. For example, you can enter the following statement
from the command line:

ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(...)

ISPSTART starts QMF as the new ISPF application DSQE. The QMF program
DSQQMFE must be run with an application ID of DSQE. (The national
language ID for each must be the same.)

The optional PARM operand, which passes parameter values to the QMF
program DSQQMFE, might look like this:

PARM(DSQSBSTG=256000,DSQSIROW=50,DSQSRUN=SAM. PROG1)
Parameters are discussed more fully later in this chapter.

You can start QMF with either the PGM form or program segment form of the
ISPSTART command.

PGM Form
PGM is the object of the ISPSTART command; with PGM, you specify the

QMF program DSQQMFE. To do this, enter the following statement from the
command line in CMS, or include it as a statement in an EXEC:

ISPSTART PGM(DSQQMFE)
NEWAPPL (DSQE) PARM(dcssname (DSQSBSTG=n1I,...)

When the PGM form is used, the QMF program segment is started indirectly

through the IBM-supplied program, DSQQMFE, and QMF runs in CMS subset
mode.

Chapter 5. Starting QMF 61

Starting QMF

Environmental considerations: When you start QMF using the PGM form of
the ISPSTART command, QMF runs in CMS subset mode. All subsequent
QMF processes also run in CMS subset mode.

Program Segment Form
DCSS is the ISPF keyword for the QMF program segment used by QMF when

QMEF is started with ISPSTART; dcssname is the name of the program segment
being used. To start QMF using the program segment form of ISPSTART, enter
the following statement from the command line in CMS or include it as a
statement in an EXEC:

ISPSTART DCSS(dcssname) NEWAPPL(DSQE)
PARM(DSQSBSTG=nI,...)

When the program segment form is used, the QMF program segment is
started directly. QMF can run in CMS SUBSET or CMS non-SUBSET mode
when started using a program segment (as explained in

When QMF is executed as an ISPF dialog, the QMF program DSQQMFE must
be run with an application ID of DSQE. You can find more information on the
parameters and the dcssname under EChapter 6 Customizing Your Stard

Environmental Considerations: When you start QMF using the program
segment form of the ISPSTART command, QMF runs in either CMS
non-SUBSET mode or CMS SUBSET mode. The mode depends on the calling
environment. For example, if you are running in CMS non-SUBSET mode and
start QMF using a program segment, QMF runs in non-SUBSET mode.

When running QMF in CMS non-SUBSET mode, you must be sure that all
programs called from within QMF, including QMF exit routines, are
relocatable. Running programs or tools that are not relocatable or that run at
specific locations in storage can cause unpredictable results when run from
within QMF.

When QMF uses the command interface, it always runs in CMS subset mode
regardless of how it is started. This means that all processes running under
QMF within the command interface are also running in CMS subset mode,
until the command interface returns control to the initial QMF program
segment, at which time QMF runs in the mode in which it was started.

Starting QMF in Batch Mode in ISPF

You can start QMF running in batch mode. You might want to start QMF in
batch mode to save resources and time.

62 Installing and Managing QMF on VM

Starting QMF

You can start QMF using ISPF with an EXEC. To start QMF from an EXEC,
place the following statement in the startup file:

ISPSTART CMD(exec_name) NEWAPPL

where exec_name is the name of the EXEC that starts QMF. The example
startup EXEC distributed with QMF is DSQ2EINV.

In the example, PARM establishes the appropriate operating mode
(DSQSMODE=B), identifies the procedure to be run (DSQSRUN=aaa.bbb), and
can include variables for that procedure.

For additional samples and information about running QMF in batch mode,
see I'Chapter 15_Customizing the Batch Pracessing Program” on page 277,
Examples of Starting QMF under ISPF

The following are some examples of starting and passing parameters to QMF
under ISPF.

+ Starting from an EXEC and specifying QMF as the initial dialog:
ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSIROW=150,DSQSRSTG=0)

This statement passes a value of 150 for DSQSIROW (number of rows
fetched before first display of report) and passes a value of 0 for
DSQSRSTG (amount of reserved storage).

+ Starting from an EXEC operating within ISPF:
ISPEXEC SELECT PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSDCSS=QMF)

This statement passes the name QMF for the QMF program segment.
+ Starting from an ISPF menu:
)PROC

&SEL = TRANS(TRUNC (&0PT,'.")
1, 'PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSPILL=NO)"

This code passes NO for DSQSPILL whenever a user selects option 1.
+ Starting from an EXEC and specifying an initial procedure:
ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSRUN=Q.IPROC(8&&&&TABLE=Q.STAFF))

This statement uses the DSQSRUN parameter:
— To specify an initial procedure, Q.IPROC, to run when QMF starts
— To pass a value, Q.STAFF, to the procedure for the variable & TABLE

The DSQSRUN parameter as specified in the preceding example results in
the following QMF command:

Chapter 5. Starting QMF 63

Starting QMF

RUN Q.IPROC(&TABLE=Q.STAFF

Setting up QMF to Run under CMS

64

In CMS, a user can start QMF in the following ways:

* By using the DSQQMFE command either with the NUCXLOAD command
or in an EXEC

* In a batch CMS environment

Note that, if you use the CONCAT option on the ISPLLIB FILEDEF statement,
you must also issue a GLOBAL LOADLIB DSQLDLIB.

Starting QMF Directly with the DSQQMFE Module

Before you enter DSQQMFE, it must be loaded as a nucleus extension with
the NUCXLOAD command:

GLOBAL LOADLIB DSQLDLIB
NUCXLOAD DSQQMFE

To run QMF independently of ISPF, use either of the following commands:
DSQQMFEdcssname (DSQSBSTG=nI,...)
DSQQMFE DSQSBSTG=nI,...

Because dcssname is optional, the second statement is also correct.

The parameters you can specify are the same as those available under ISPF.
The parameters and the dcssname are discussed later in this chapter.

When QMF is started in CMS independently of ISPF, the following return
codes are valid:

0 Execution successful

4 Warning condition occurred
8 Error condition occurred

16 Severe error occurred

Starting QMF in a Batch CMS Environment

To start QMF without using ISPF services, place the following statement in a
start job:

DSQQMFE .. .DSQSMODE=B,DSQSRUN=aaa.bbb

where 'DSQSMODE=B' establishes the appropriate operating mode and
'DSQSRUN=aaa.bbb' identifies the procedure to be run. The procedure can
include a variable as the procedure name. (It should contain the authorization
ID of the owner.)

The ellipsis represents optional parameter values that the user can include in
addition to the required DSQSMODE and DSQSRUN parameters.

Installing and Managing QMF on VM

Starting QMF

Examples of Starting QMF under CMS
The following are some examples of starting and passing parameters to QMF
operating independently of ISPF:
+ Starting from CMS:
DSQQMFE dcssname (DSQSBSTG=50000,DSQSDBUG=NONE ,DSQSMODE=B)

This statement turns on L2 tracing (DSQSDBUG=NONE), passes a value of
50 000 for DSQSBSTG (maximum storage for reports), and passes a value of
B (batch) for DSQSMODE (mode of operation).

+ Starting from an EXEC and specifying an initial procedure:
DSQQMFE DSQSRUN=Q.IPROC(&&TABLE=Q.STAFF)

This statement uses the DSQSRUN parameter:
— To specify an initial procedure, Q.IPROC, to run when QMF starts
— To pass a value, Q.STAFF, to the procedure for the variable & TABLE

The DSQSRUN parameter as specified in the preceding example results in
the following QMF command:

RUN Q.IPROC(&TABLE=Q.STAFF

Creating a CMS EXEC

To create a new CMS EXEC to start QMF, you need to ensure that the
program modules and data files are available to QMF, and that GDDM and
DB2 for VM considerations have been met.

Verify Program Modules

The DB2 for VM database, QMF’s program segments, ISPF’s shared segments
(if used), and GDDM’s shared segments or product text libraries must be
available before starting QMF. For more information about making these

modules available, see [‘Part 1_Installing QMF for VMZ/ESA” on page 1,

Verify QMF Data Files

The following list of data files is used by QMF. These files are allocated
according to the recommended sizes in the DSQ2EINV EXEC. If you want to
allocate them differently, you must modify the invocation exec.

DSQDEBUG
QMF trace dump output

DSQDEBUG cannot be allocated to a disk by using the shared file
system (SFS).

DSQPRINT
Print data output

DSQSPILL
Spill data file

Chapter 5. Starting QMF 65

Starting QMF

66

GDDM

DSQSPILL cannot be allocated to a disk by using the shared file
system (SFS). You may, instead, choose to use a temporary disk.

DSQEDIT
Edit transfer file

DSQEDIT cannot be allocated to a disk by using the shared file
system (SFS). Instead, use a temporary disk.

DSQPNLE
QMF panel file

ISPLLIB
Filedef for QMF library; contains the QMF programs (for example,
DSQLDLIB).

DSQLDLIB
QMF load library

Considerations

When the QMF DCSS is built, it includes the GDDM interface code. If you
run GDDM from a DCSS, you need not access a GDDM disk, or GDDM
TXTLIBs, and you can remove the lines in the invocation EXEC that refer to
GDDM.

If you do not have GDDM in a DCSS, you must access the GDDM TXTLIBs
and perform the necessary FILEDEFs. If you want to change the release of
GDDM being used by QMF, you must rebuild the QMF shared segment using
the DSQ2ESEG EXEC.

DB2 for VM Considerations

QMF supports DATE, TIME, and TIMESTAMP data types, so users can make
use of local date/time exit routines. For QMF to use a local date/time exit, the
text files containing the date/time exits, ARIUXDT and ARIUXTM, must be
placed on a minidisk that is accessible to QMF when QMF is started.

The QMF DCSS includes the ARIRVSTC text file, and if this file is changed by
PTFs applied to DB2 for VM or a new level of DB2 for VM, the QMF DCSS
must be rebuilt using the DSQ2ESEG EXEC.

Installing and Managing QMF on VM

Chapter 6. Customizing Your Start Procedure

This chapter describes the various methods you can use to pass parameters to

the program to help you customize a user’s QMF session.

Quick Start

frable d shows how to use the program parameters to customize aspects of the
QMF session. The command syntax in the examples applies to starting QMF
with the DSQQMFE module. If you start QMF differently, see the command

syntax in EChapter 5_Starting QME” an _page 57.

The n symbol in each example represents the national language identifier
(NLID). Substitute the NLID from [[able 5 an page 19 that corresponds to the
national language in which you want to start QMF. For example, to start an

English QMF session, enter QMFE.

For more information on any of the tasks listed, see the page shown at the

right of the table.

Table 9. Passing parameters

To do this task: See:

To name the program segment something other than the default QMF710E use the Page 3
dcssname or dsgsdcss parameters. For example to change the name to QMFNEW when

using the ISPSTART command, enter:

ISPSTART DCSS(QMFNEW)

To set limits on the amount of storage used for QMF queries and reports, use the Page 4
DSQSBSTG parameter if you want any limit other than 0. For example, to specify a limit of

1 000 000 bytes (1MB):

DSQQMFn B=1000000

To set limits on the amount of CMS storage used for QMF queries and reports, use the Page 4
DSQSRSTG parameter if you want any limit other than 0. For example, to specify a limit of

1000 000 bytes (1MB):

DSQQMFn R=1000000

To use temporary storage (a spill file) as extra storage for report data, use the DSQSPILL Page i3]
parameter. For example, enter:

DSQQMFn L=YES

To allow QMF to retrieve any number of rows other than 100 before QMF displays the Page zd

first screen of the report, use the DSQSIROW parameter. For example, to allow QMF to
retrieve 200 rows before displaying the first screen, enter:
DSQQMFn F=200

© Copyright IBM Corp. 1983, 2000

67

Customizing Your Start Procedure

Table 9. Passing parameters (continued)

To do this task: See:

To log QMF activity in the trace data, including activity before the user’s profile is Page Bi
established, use the DSQSDBUG parameter. For example, enter:
DSQQMFn T=ALL

To specify a database location to connect to when starting QMF other than the default Page B3
location, use the DSQSDBNM parameter.

DSQQMFn D=DBNAME

DSQQMFn D=DBNAME

To run QMF without user interaction (either with or without a terminal), use the Page B3
DSQSMODE parameter and specify an initial procedure using the DSQSRUN parameter. You

might also choose to use the DSQSDBNM parameter to ensure you connect to the database

location you want. For example, to do some noninteractive QMF work using the Q user ID

and an example procedure named STARTPROC, enter:

DSQQMFn M=B,D=DBNAME, I=STARTPROC

To run an initial procedure when QMF starts, use the DSQSRUN parameter. For example, Page B4
to run a procedure called STARTPROC, enter:
DSQQMFn I=STARTPROC

To use an initialization program to specify values for program parameters other than the Page kd
default values set by QMF, use the DSQSCMDn parameter. For example, enter:
DSQQMFn DSQSCMDE=NULL

To print DBCS data from non-DBCS terminals, use the DSQSDBCS parameter. For Page
example, enter:
DSQQMFn K=YES

Setting Default Start Values Using the REXX Program DSQSCMDn
Parameter name
DSQSCMDn
Short form
(no short form)
Valid values
NULL or
Default
DSQSCMDE

You can specify default values for the program parameters using an
initialization program. IBM supplies the REXX program DSQSCMDn for this
purpose. DSQSCMDn can change the default program parameter values and
can execute across environments.

68 Installing and Managing QMF on VM

Customizing Your Start Procedure

The parameter values you specify when you start QMF override the values set
in the REXX program DSQSCMDn. The parameter values you specify when a
workstation session is started override the values set in DSQSCMDn.

DSQSCMDn is valid only as a start function keyword on the START
command when QMF is started from an application program using the
callable interface.

The REXX program method must be used by programs using the callable
interface that want to run in all the SAA environments without changing their
programs.

For more information on the START command and the SAA callable interface,
see QMF Reference and Developing QMF Applications.

For CMS, QMF calls the REXX program DSQSCMDE (see Eigure 7 an page 70)

to provide values for the program parameters. This IBM-supplied program
supplies default values; by adjusting these values, you can tailor the QMF
environment for your installation.

If you do not want to provide a parameter value in DSQSCMDE, you can use
'NULL".

|— General-Use Programming Interface

Chapter 6. Customizing Your Start Procedure 69

Customizing Your Start Procedure

70

JHREXX == mm e e e e e e e e e e o
/* DSQSCMDE:

/*

/* COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM

/* 5675-DB2, 5697-F42 (C) COPYRIGHT IBM CORP.
/* 1989, 2000. (PUBLISHED)

/* ALL RIGHTS RESERVED.

/* US GOVERNMENT USERS RESTRICTED RIGHTS -

/* USE, DUPLICATION OR DISCLOSURE RESTRICTED
/* BY GSA ADP SCHEDULE CONTRACT WITH IBM CORP.
/*

/* STATUS: VERSION 7 RELEASE 1 LEVEL 0

/*

/* This REXX program returns default QMF program parameters.
/* Values returned by this program can be substituted with
/* values specified on the QMF START command.

/*

Trace Off
/* Signal ON ERROR Immediate exit upon any error condition

PARSE UPPER SOURCE CSYS .

Figure 7. Example REXX program DSQSCMDE (Part 1 of 3)

Installing and Managing QMF on VM

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

/* Customer should tailor the QMF environment by adjusting any

Customizing Your Start Procedure

/* of the following variable values. Each variable value is
/* commented indicating the environment(s) in which it is
/* effective.

/*

/* IMPORTANT:

/* A value must be specified for each one of the following
/* variables. Also each variable can only contain a single
/* value and must NOT contain a blank. Use the term NULL
/* instead of a blank value.

K m m
DSQADPAN = "1" /* CMS and TSO

DSQALANG = "E" /* CMS and TSO

DSQSBSTG = "NULL" /* CMS and TSO

DSQSDBCS = "NO" /* CMS and TSO

DSQSDBNM = "NULL" /* CMS and TSO

DSQSDBUG = "NONE" /* CMS and TSO

DSQSIROW = "100" /* CMS and TSO

DSQSMODE = "BATCH" /* CMS and TSO

DSQSPILL = "NULL" /* CMS and TSO

DSQSRSTG = "0" /* CMS and TSO

DSQSRUN = "NULL" /* CMS and TSO

DSQSDCSS = "QMF710E" /* CMS only

DSQSPLAN = "QMF710" /* TS0 only

DSQSPRID = "PRIMEID" /% TSO only

DSQSSUBS = "DSN" /* TSO only

Figure 7. Example REXX program DSQSCMDE (Part 2 of 3)

Chapter 6. Customizing Your Start Procedure

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/

71

Customizing Your Start Procedure

gy */
/* Return variables to the QMF start function. */
/* */
/* IMPORTANT: Sequence of variables in RETURN statement must NOT =*/
/* be altered. */
[e m e e e e e e */

IF CSYS = CMS THEN DO
RETURN DSQSMODE DSQSRUN DSQALANG DSQSIROW DSQSRSTG
DSQSDBCS DSQSDBUG DSQSDCSS DSQSBSTG DSQSPILL ,
DSQSDBNM DSQADPAN
END
ELSE DO
RETURN DSQSMODE DSQSRUN DSQALANG DSQSIROW DSQSRSTG
DSQSDBCS DSQSDBUG DSQSPLAN DSQSSUBS DSQSBSTG
DSQSPRID DSQSPILL DSQSDBNM DSQADPAN
END

ERROR: /* Immediate exit upon any error condition */
EXIT 12

Figure 7. Example REXX program DSQSCMDE (Part 3 of 3)

|_ End of General-Use Programming Interface

Naming the Program Segment
You can use dsqgsdcss or dcssname to name the program segment.

The name of the QMF program segment. The suggested program segment
name and default value is: QMF710E

dcssname
The syntax of dcssname is still supported in QMF.

Notes:
1. In the PGM form of the ISPSTART command ISPSTART

PGM(DSQQMFE)... (see FStarting QMEFE with the ISPSTART Command” on

), this parameter is optional provided the default DCSS name is

used.
2. In the DCSS form of the command ISPSTART DCSS(dcssname)... (see

‘Program Segment Form” on page 6d), a DCSS name must be specified.

3. If QMF is not running as an ISPF dialog, and DSQQMFE dcssname(B=n1,...)
is used to start QMF, the parameter is optional.

72 Installing and Managing QMF on VM

Customizing Your Start Procedure

DSQSDCSS

You can add DSQSDCSS to the list of parameters to be passed when starting
QMF. For example:

DSQSDCSS=QMFNEW

DSQSDCSS supports the callable interface for QMF.

Customizing Report Storage and Report Performance

When a user performs a QMF task that retrieves data from the database, the

data is returned in a default report that is stored in virtual storage. This

section explains QMF program parameters that help you customize:

* The maximum amount of storage used for report data

+ Spill storage used when virtual storage for reports is full

* How many rows of data are retrieved before QMF displays the first screen
of the report

Adjusting Storage for Report Data (DSQSBSTG)
Parameter name
DSQSBSTG
Short form
B
Valid values
From 0 to 9 999 999 bytes
Default
0

The value of DSQSBSTG provides QMF with an upper limit (in bytes) on the
storage available for report generation. It is a positive whole number ranging
in value from 0 through 9999 999. If DSQSBSTG is specified with a nonzero
value less than a QMF-determined minimum (15 to 32 kilobytes, depending
on the environment), it is increased to that minimum.

When DSQSBSTG has a value of 0, this parameter is not used; instead,
DSQSRSTG is used to specify storage. However, if both DSQSBSTG and
DSQSRSTG are specified, DSQSBSTG is used. For information on DSQSRSTG,

see the discussion in [‘Adjusting Reserved Storage Used for Report Datd

Choosing the Right Amount of Virtual Storage for Each User
Each QMF CMS region requires at least 4.5 megabytes of virtual storage.

Additional storage generally provides improved performance since QMF is
able to keep more data records in virtual storage.

Chapter 6. Customizing Your Start Procedure 73

Customizing Your Start Procedure

74

Performance Tradeoffs
You can use the DSQSPILL parameter to provide users with a spill file, which

is disk storage. If the spill file is full, QMF continues to retrieve data into
virtual storage in amounts specified by the DSQSBSTG or DSQSRSTG
parameters. Also, the user doesn’t receive any notification if there is
insufficient storage and QMF can still complete report processing. Thus, if you
do not provide enough space, performance might be poor even using a spill
file, because QMF must return to the database many times to retrieve all the
requested data. For this reason, IBM recommends that you ensure your users
have enough virtual storage for the QMF work they need to do.

You might also consider using a governor exit routine to limit rows retrieved
from the database, so that less virtual storage is used for queries and reports.
For more information about governor exit routines, see ém

bﬂnmmngmm&mgwwu—pw ” 3

Adjusting Reserved Storage Used for Report Data (DSQSRSTG)

Parameter name
DSQSRSTG
Short form
R
Valid values
From 0 to 9 999 999 bytes
Default
0

The value of this parameter is a positive whole number ranging in value from
0 through 9999 999 with a default of 0. The value can affect the running of
other programs and the generation of reports.

The first time a user generates a report during a session, QMF determines
how much storage is available in the user’s address space. The method that is
used to arrive at the total storage acquired for QMF reports depends on both
DSQSBSTG and DSQSRSTG:

* If DSQSBSTG is not specified, or is specified as 0, QMF subtracts the
amount of DSQSRSTG from the total available to determine the amount to
allow for the use of QMF reports. The remaining storage is available for
other programs, including OS/390 system services, CMS commands, REXX,
ISPF, and any other non-QMF user requirements.

» If DSQSBSTG is specified, then its value is used to determine how much
storage is acquired for QMF reports.

DSQSBSTG and DSQSRSTG Value of 0
You can specify 0 as the value for both DSQSBSTG and DSQSRSTG. In this

case, the DSQSRSTG parameter is used and no storage is reserved for other
system services. This value is probably adequate for users who never use VM

Installing and Managing QMF on VM

Customizing Your Start Procedure

system services, CMS commands, REXX, ISPF, or other non-QMF services
during QMF sessions. But a user who does use a VM system service or a CMS
command and has DSQSRSTG=0 and DSQSBSTG=0, runs the risk of failing
and possibly causing an abend because QMF does not reserve any storage for
those services. Even the most casual users might unknowingly use a
non-QMF program when they issue installation-defined QMF commands.
Such commands are performed by QMF applications, which generally make
extensive use of such non-QMF programs. Take this into account when
selecting values for DSQSRSTG and DSQSBSTG.

Small Value for DSQSBSTG or Large Value for DSQSRSTG
Requesting minimal storage for report processing can adversely affect

performance when a user is handling a report. If enough storage is not
available for the corresponding DATA object, QMF must use a spill file for
excess rows of DATA.

Acquiring Extra Storage (DSQSPILL)
Parameter name
DSQSPILL
Short form
L
Valid values
YES or NO
Default
YES

Because large amounts of report data in storage might affect the operation of
other CMS transactions, QMF allows you to allocate a spill file, which is extra
storage used when a user’s storage is full.

A spill file can improve performance in an interactive QMF session. Buffers in
memory can store data so that QMF doesn’t need to return to the database for
multiple copies of the same data. Data the user needs to view several times
need not be retrieved from the database several times; the spill file can instead
be used to store it.

You can reset the DSQSPILL parameter to NO to deactivate the spill file:
DSQQMFn L=NO

Data is written to the spill file until:

* You use the RESET DATA command to reset the data object.

* You replace the data object by running another query.

* Your query has finished (all rows requested have been retrieved) and the
data object is complete.

» Storage you defined for the spill file is full.

Chapter 6. Customizing Your Start Procedure 75

Customizing Your Start Procedure

Allocating a Spill File for CMS Users
You can allocate a spill file through a FILEDEF statement. The statement looks
like this:

FILEDEF DSQSPILL DISK DSQSPILL DATA T (LRECL 4096 RECFM F PERM'

The statement:

* Allocates the spill file to the T disk. The T disk can be a temporary disk.
The spill file cannot be allocated to a disk that is used in the CMS shared
file system (SFS).

» Specifies the DSQSPILL file with fixed-length records, one record for each
block. The records must always be unblocked. (A block is the size of a VM
page: 4096 bytes.)

For information on calculating the appropriate spill file size, see m

Estimating the Space Required for a Spill File
To accommodate QMF’s storage requirements, ensure the CMS DASD storage

is large enough to hold the individual spill files for all concurrent QMF users,
in addition to any other transaction requirements for auxiliary temporary
storage.

Use the following procedure to calculate the amount of space required for an
individual spill file. Then enlarge the virtual storage according to how many
individual spill files you’ll need to accommodate all concurrent users of QMF.

1. Calculate the width (W) of one row of the largest table that can appear
in the data object by adding field widths in bytes (use

page 77). See [fahle 11 on page 77 for sample calculations.

» All the rows of an individual table are the same width, regardless of the
data each row contains. A row cannot be wider than 32 768 bytes.

» Defined columns do not get written to the spill file.

2. If W is 4096 or less, calculate the number of rows per page (R) using R =
4096/W, and round the result down to the next lowest integer.

When W is 4096 or less, QMF fits as many rows as it can into a page,
without spanning pages.

3. If W is greater than 4096, calculate the number of pages per row (P),
using P = W/4096, and round up to the next highest integer.

When W is greater than 4096, QMF uses the minimum number of pages to
hold a row, spanning pages regardless of column boundaries. Each row
begins at the start of a page.

4. Calculate the number of pages required for the spill file, according to
the value of W:

76 Installing and Managing QMF on VM

Customizing Your Start Procedure

* If W is 4096 or less, calculate the number of pages required for the spill
file by dividing the number of rows in the table by R.

« If W is greater than 4096, calculate the number of pages required for the
spill file by multiplying the number of rows in the table by P.

Table 10. Lengths of types of fields (use to estimate spill file size)

Field Type Field Length in Bytes
CHAR(N) n+2

DATE 12

DECIMAL(n,m) (n+1)/2+2, n odd (n+2)/2+2, n even
FLOAT(21) 10

FLOAT(53) 10

GRAPHIC(n) n*2+2

INTEGER 6

SMALLINT 4

TIME 10

TIMESTAMP 28

VARCHAR(N) n+4

LONG VARCHAR
LONG VARGRAPHIC
VARGRAPHIC(n) n*2+4

If a row contains LONG VARCHAR or LONG VARGRAPHIC fields, space is
first allotted for all other fields. Then the remaining space is divided by the
number of fields, and each LONG VARCHAR or LONG VARGRAPHIC field
is truncated to that length.

frable 11 shows a sample calculation for a spill file.

Table 11. Sample row width calculation for a spill file

Content of Row Calculation Contribution to Width
Two SMALLINT columns 2x4= 8 bytes

One INTEGER column 6 bytes

One DECIMAL(3,2) column (3+1)/2+2 = 4 bytes

One DECIMAL(6,0) column (6+2)/2+2 = 6 bytes

One FLOAT column 10 bytes

One CHAR(10) column 10+2= 12 bytes

One VARCHAR(16) column 16 +4 = 20 bytes

Chapter 6. Customizing Your Start Procedure 77

Customizing Your Start Procedure

78

Table 11. Sample row width calculation for a spill file (continued)

Content of Row Calculation Contribution to Width

Total width of row 59 bytes

The following sample calculations provide two ways to calculate the spill file
space.

When R=4096/540 = 7 multiple rows/buffer:

600 000 rows 1 track 1 cylinder
------------ * —-m------ k ————------ = 571 cylinders
7 10 blocks 15 tracks

When R=6000, 2 buffers/row:

6000 rows * 2 blocks/row * 1 track 1 cylinder
--------- * ---------- = 800 cylinders
10 blocks 15 tracks

Using a Spill File in a Noninteractive QMF Session
A spill file is most useful for improving performance in an interactive QMF

session, when the DSQSMODE parameter is set to I. However, if you are
running QMF noninteractively (the DSQSMODE parameter is set to B), using
a spill file can also improve performance when multiple passes of the data are
required to produce the report. A spill file might also be necessary to
complete the data object, as when a RUN QUERY command is followed by a
SAVE DATA command.

Multiple passes of the data are required when:
* You need to print several reports with different formats for the same data.
* You use PCT, CPCT, TCPCT, or TPCT edit codes with the report.

* You print a report that requires QMF to split the pages, because the report
is wider than the print width.

For more information on noninteractive QMF sessions, see W

QMF Reference explains each of the QMF forms used to format reports and
provides examples of how to use the forms.

Solving Some Spill File Problems
If you are not using conditional formatting or column definitions (which use

REXX and have additional performance considerations), the performance you
observe is the result of accessing data in the database.

Installing and Managing QMF on VM

Customizing Your Start Procedure

If you have sufficient storage available to QMF after your data is retrieved a
first time, QMF does not need to reaccess the database to obtain rows a
second time.

If you have memory constraints and defined a DSQSPILL file, part of the
processing time is writing the data to DSQSPILL so it can be fetched later.

The performance is affected by several things:

* The value of DSQSIROW (initial number of rows to fetch). This primarily
affects the initial display of the report only.

* Whether or not you do something that requires multiple passes of the data.
(Certain usage codes, such as PCT, require that all the data be read before
the first report screen displayed.) This primarily affects the initial display of
the report only.

* The amount of memory required to hold one row of data. The effect of this
is usually small.

* Whether, when multiple passes are required, the data is fetched from the
database the second time (not all data fits in memory and DSQSPILL), or
from memory and DSQSPILL, or just from virtual memory.

* Whether you are scrolling backward or forward. Successive FORWARD
commands usually perform best. BACKWARD commands might require
starting over at the start of the answer set. This depends on the amount of
memory, how far backward you want to scroll, the complexity of the report,
and other factors.

For very large answer sets with small memory and insufficient DSQSPILL
allocation, the entire answer set might be read from row 1 to the new
current row, every time the BACKWARD command is used.

You get the best performance when there is sufficient memory to hold all data
and DSQSPILL is not used.

Although it might not reduce the total amount of resource consumed to
process your data, if you are able to get the complete answer set into virtual
memory before the first display (DSQSIROW is large), the database locks are
released and scrolling around the displayed report performs fastest. This
slows the display of the first report screen. Releasing the locks might have the
effect of improving performance for other users.

Controlling the Number of Report Rows Retrieved for Display
(DSQSIROW)
Parameter name
DSQSIROW
Short form
F

Chapter 6. Customizing Your Start Procedure 79

Customizing Your Start Procedure

80

Valid values
Any number from 0 through 9 999 999

Default
A minimum of 100 rows retrieved before first screen of report is
displayed

Use DSQSIROW to specify the maximum number of rows QMF retrieves into
the data object before displaying the first screen of the report to the user.
DSQSIROW applies only to the initial load of a new data object, created by:

» Executing queries that use SQL SELECT statements

» Displaying a database table with the QMF DISPLAY command

To determine the proper value for this parameter, use step 1 of the algorithm
in EEstimating the Space Required for a Spill File” on page 78 to estimate the
size of a block of rows for the largest table a user is likely to query. A block is
the number of rows that fit into one 4096-byte buffer.

After every block of rows is retrieved, QMF compares the total number of
retrieved rows to the value of DSQSIROW to determine whether to display
the first screen of data. For example, suppose a block in your installation is 62
rows and you set DSQSIROW to 50. QMF retrieves 62 rows of data and, upon
comparing 62 to 50, stops retrieving rows and displays the first screen of data.

Some report formatting options, such as percent (%) usage codes and
ACROSS reports, require that all the data be retrieved before QMF displays
the first screen. QMF ignores the DSQSIROW value in these situations. See
QMF Reference for more information about these formatting options.

Performance with Small DSQSIROW Values
If you use too small a value for DSQSIROW, QMF might not be able to

complete the data object before the first screen of data is displayed. An
incomplete data object causes share locks on the data, which can prevent
other users’ attempts to update the data.

Many users might be affected if a QMF control table or a part of the system

catalog is locked. You can release the locks in one of the following ways:

* Use the BOTTOM command to retrieve the remaining rows into the data
object, then release the locks.

* Use the RESET DATA command to release these locks and clear the data
object, whether or not all requested rows were retrieved.

* Use any SAVE command (for example, SAVE DATA or SAVE FORM) to
retrieve and save the remaining rows into the data object, then release the
locks.

Installing and Managing QMF on VM

Customizing Your Start Procedure

To get the best performance in a noninteractive session (when the
DSQSMODE parameter is set to B), use a value of zero for DSQSIROW unless
you want to minimize the number of open read locks while QMF is retrieving
or formatting data. See [‘Specifying an Interactive or Noninteractive QMH
Bession (DSQSMODE)” an page 83 for more information about noninteractive

QMF sessions.

Do not use DSQSIROW to limit the number of rows that QMF displays on the
screen. Although you can specify a small value, QMF retrieves enough rows
to fill the screen display in an interactive session.

Performance with Large DSQSIROW Values
If you use too large a value for DSQSIROW, QMF might take a long time to

display the first screen of data. If you set DSQSIROW higher than you set the
DSQSBSTG parameter, for example, QMF might display a message indicating
that there is insufficient storage available to satisfy the user’s request.

When storage for the partition is full, QMF stops retrieving rows or
terminates. When you plan your values for DSQSBSTG and DSQSIROW,
remember that QMF might time out waiting for storage to become available.

Setting the Level of Trace Detail (DSQSDBUG)
Parameter name
DSQSDBUG
Short form
T
Valid values
ALL or NONE
Default
NONE (no trace data)

Use DSQSDBUG to specify the level of detail at which you want to trace QMF
activity. If you specify NONE, no trace is performed unless you load a profile
with a saved value of ALL. If you specify ALL, ALL overrides the profile
value and remains at ALL.

The tracing you set using this parameter is effective until the user issues a SET
PROFILE (TRACE=value command to change it, or, in the case of NONE, until
the profile is loaded. For more information on valid trace values, see EGetting

Set DSQSDBUG to ALL when you want to trace QMF activity at the highest
level of detail, including program initialization errors and other errors that
might occur before the user’s profile is established:

DSQQMFn T=ALL

Chapter 6. Customizing Your Start Procedure 81

Customizing Your Start Procedure

When you set DSQSDBUG to NONE, the level of detail in the trace output
depends on whether the QMF session is running interactively or
noninteractively:

* In either an interactive or a noninteractive session, only system error tracing
is done during initialization, before the user’s profile is established. The
only way to turn off this initial tracing is to not allocate or define storage
for the trace data.

* In a noninteractive session, all messages and commands are traced at the
most detailed level.

explains interactive and noninteractive sessions in more detail.

After QMF starts, you can turn tracing off by using the following command:
SET PROFILE (TRACE=NONE.

You can also set more specific levels of trace detail using this command, by
replacing NONE with various values that represent different QMF functions. See

LUSLDg.th.tLQ.hAEEE&CE.E&CLhI_)ILD.D_page_ﬂQd for more information.

Controlling Initial Activities During a Session

This section explains program parameters that help you control initial QMF
activities, such as:

» Specifying a location for the connection to the database
» Starting a noninteractive session

* Running an initial procedure that does the predetermined amount of work
defined in the procedure and then exits QMF

Using the parameters explained in this section, you can customize a QMF
session to do work without user interaction, so that fewer resources are used.
For example, you might start a noninteractive session, specify a CONNECT
ID and password for the connection to the database, and run a QMF
procedure that queries an inventory table and prints a report to a file for later
analysis.

Although these parameters are most useful for noninteractive QMF sessions,
they can also be used interactively.

Specifying the Location to Connect to When Starting QMF (DSQSDBNM)
Parameter name
DSQSDBNM
Short form
D

82 Installing and Managing QMF on VM

Customizing Your Start Procedure

Valid values

Any valid database name
Default

(no default)

You can use DSQSDBNM to specify the location to which you are initially
connected for a QMF session. This location can be a remote database. You can
specify DSQSDBNM in all operating environments.

If you are setting up for a remote unit of work: The maximum length in
characters of the
DSQSDBNM value depends
on the type and release level
of the application requestor
that initiates the remote unit
of work connections. The
lengths for each release level
are shown in

Table 12. Application requester type and release level for DSQSDBNM length and
location value length

Requester type Release Maximum Length
MVS™ DB2 23 and 3.1 16
VM SQL/DS™ 3.5 only 18

Specifying an Interactive or Noninteractive QMF Session (DSQSMODE)
Parameter name
DSQSMODE
Short form
M
Valid values
B (noninteractive) or | (interactive)
Default
|

Some query and report-writing tasks users need to perform might not require
interaction with QMF. For example, a salesperson might use the same QMF
procedure every few days to query a set of tables for account status. Although
the data changes, the procedure and tasks required to access the data remain
the same.

Using the QMF program parameter DSQSMODE, you can save resources and
time by starting a noninteractive session to perform your QMF work. Your
terminal is then free for you to do other work while the transaction is
running.

Chapter 6. Customizing Your Start Procedure 83

Customizing Your Start Procedure

84

Use a value of B to start a noninteractive session:
DSQQMFn M=B,I=STARTPROC

Because a noninteractive session displays no QMF panels, use the DSQSRUN
(I) parameter to run an initial procedure that does the required QMF work

and exits the program. ENaming a Procedure to Run When QME Startd

explains this parameter in more detail.

Additionally, use the DSQSDBNM parameter to specify an ID and password
for the database connection if you do not want to use the default database
location.

Naming a Procedure to Run When QMF Starts (DSQSRUN)

Parameter name
DSQSRUN
Short form
|
Valid values
Any valid procedure name (see QMF Reference)
Default
No initial procedure is run

Use the DSQSRUN parameter to pass the name of a QMF procedure that runs
as soon as QMF starts. In a noninteractive session, use this procedure to
perform the QMF work you need to do, then exit the program.

For example, to run an initial procedure named STARTPROC, enter:
DSQQMFn I=STARTPROC

Quialify the procedure name with the SQL authorization ID of its owner if
other users are using it to start QMF. For example, if user JONES owns the
STARTPROC procedure, enter:

DSQQMFn I=JONES.STARTPROC

When you pass the name of an initial procedure, QMF issues a RUN PROC
command, which runs the procedure you name.

Important: QMF does not allow blanks in the user ID and procedure syntax.
For example, QMF doesn’t recognize:

DSQQMFn I=JONES. STARTPROC

To use a procedure name with an imbedded blank, you must
enclose the name in quotes:

DSQQMFn I=JONES.'START PROC'

Use DSQSRUN to help you:

Installing and Managing QMF on VM

Customizing Your Start Procedure

* Automate noninteractive QMF work so you can conserve resources
normally used when running interactively.

» Allow users to perform interactive QMF work within the confines of a
predefined procedure, then exit when they are finished with the work
specified in the procedure.

Running an Initial Procedure Noninteractively
To conserve resources, you can run a procedure noninteractively by using a

value of B for the DSQSMODE parameter and naming a procedure using the
DSQSRUN parameter. For example, suppose that every Monday morning, you
need to produce an inventory status report. Each Sunday night you need to
run a query that retrieves data from the same columns of a table called
INVENTORY. Your query might look something like the following query. For
this example, we’ll call this query INVENTORY_QUERY:

SELECT = FROM INVENTORY
WHERE STOCK < 20

The procedure you use to run this query and print the status report might
look something like this one. For this example, we’ll call this QMF procedure
INVENTORY_PROC:

RUN QUERY INVENTORY_QUERY

PRINT REPORT
EXIT

The procedure includes an EXIT command because, when QMF is running
noninteractively, no user is present to end the QMF session. EXIT ends the
QMF session and frees the resources being held by QMF. Always use an EXIT
command in an initial procedure that runs noninteractively.

Because the tasks involved in creating the report do not change (only the data
changes), you might use the DSQSRUN parameter to query the INVENTORY
table off-shift Sunday night and print the report, so you can have it Monday
morning:

DSQQMFn I=INVENTORY_PROC,M=B

Performing Interactive QMF Work with an Initial Procedure
You can use an initial procedure in an interactive QMF session to predefine

data access tasks for end users, making it easy for them to access only the
data they need. For example, suppose a QMF end user has the responsibility
of producing an inventory status report every Monday morning. The user
might know the value that indicates low stock but might not know exactly
how to produce the status report. In this case, you might put a variable in the
guery so that the user needs only to enter the value that indicates low stock.
We will call this query INVENTORY_QUERY.

SELECT * FROM INVENTORY
WHERE STOCK < &LOWSTOCK

Chapter 6. Customizing Your Start Procedure 85

Customizing Your Start Procedure

86

Because the user might want to view the data before printing it, your
INVENTORY_PROC procedure might not include the EXIT command:

RUN QUERY INVENTORY_QUERY

You might then use the DSQSRUN parameter without specifying the
DSQSMODE parameter, so that you start an interactive session for the user:

DSQQMFn I=INVENTORY_PROC

The INVENTORY_PROC procedure prompts the user for the &LOWSTOCK
variable value. For additional examples of how to use variables with an initial
procedure, see I‘RPassing \ariable \Values to an Initial Pracedure™ QMF
Reference explains variables in more detail.

As soon as the user provides the value, QMF displays the report and the user
can then view the report and issue a QMF PRINT command to print it.

For interactive sessions, instruct users to enter EXIT on the command line
when they are finished viewing the report. The initial procedure runs
repeatedly until an EXIT command is issued. Thus, pressing the End function
key from the report panel reruns the initial procedure; it does not display the
QMF Home panel.

Additionally, when you use the DSQSRUN parameter, ensure that the
DSQEC_RERUN_IPROC global variable is set to 0 and that the current object
is not the QMF Home panel. Developing QMF Applications provides more
information on this global variable, as well as information about how to write
procedures that help users perform QMF activities specified in predefined
procedures and applications.

Passing Variable Values to an Initial Procedure
When you supply the name of an initial procedure on the DSQSRUN

parameter, you can also supply values for variables contained in the
procedure. You can specify one or more variables and their values following
the procedure name on the DSQSRUN parameter.

Follow these rules when you specify variables for DSQSRUN:

* Put parentheses around the variable parameter list, as shown in the
examples in this section.

* Precede the variable name with an ampersand, and ensure the string is in a
variable_name=value format.

* Ensure the combined total of characters for the procedure name and the
variable parameter list is 98 characters or less.

» Separate the variable parameter specifications using a single comma, one or
more blanks, or a combination of a comma and blanks.

Installing and Managing QMF on VM

Customizing Your Start Procedure

Number of

additional
Environment ampersands Example
CMS with ISPF 1 &&variable=value
CMS without ISPF using EXEC 2 &&&variable=value
CMS with ISPF using EXEC 3 &&&&variable=value

When you specify the name of an initial procedure, QMF issues a RUN PROC
command that runs the procedure. When you use variables in your procedure,
values you supply for these variables must conform to the syntax used for
passing variables on a RUN command. For information about this syntax, see
QMF Reference.

For example, suppose you frequently need two pieces of information about
employees in your organization. One piece of information is the name of the
employee, and the other varies. You might define a query that includes
NAME and uses a variable for the other column. ﬁﬂ:—&é shows how to pass
a column name using DSQSRUN. The figure also shows how to pass a value
for the variable when you enter the DSQSRUN parameter, and shows the
RUN PROC command that QMF issues.

Query (named JONES.QUERY?2)

SELECT NAME, &COL

FROM Q.STAFF
Procedure (named JONES.PROC?2)

RUN QUERY JONES.QUERY2 (&&COL=&COL
DSQSRUN parameter

DSQQMFn I=JONES.PROC2 (&COL=YEARS)
Resulting RUN command

RUN PROC JONES.PROC2 (&COL=YEARS)

Figure 8. Passing a QMF column name using DSQSRUN

Eigure 9 on page 88 shows a similar example, but instead of passing one
column name to the procedure, it allows you to pass several, which return the

employee’s name, the department, and the employee’s salary.

Chapter 6. Customizing Your Start Procedure 87

Customizing Your Start Procedure

Query (named JONES.QUERY?3)
SELECT &COLS
FROM Q.STAFF
Procedure (named JONES.PROC3)
RUN QUERY JONES.QUERY3 (&&COLS=&COLS
DSQSRUN parameter
DSQQMFn I=JONES.PROC3(&COLS=((DEPT,NAME, SALARY))
Resulting RUN command
RUN PROC JONES.PROC3(&COLS=((DEPT,NAME,SALARY)))

Figure 9. Passing several QMF column names using DSQSRUN

The next four examples show how to pass information you normally supply
after the WHERE keyword in a query. (See QMF Reference for more
information about the WHERE keyword.)

These examples contain character strings, for which special syntax is required
because of how QMF evaluates the values when it processes the RUN PROC
command. Special characters (comma, blank, parentheses, quotes, apostrophe
or single quote, and equal sign) can also be included in the string, as shown.

For example, if you need to know the names and employee numbers of all the
managers in your organization, you might run a query like the one in
. When you pass the character string MGR on the DSQSRUN
parameter, be sure to enclose the value in single quotes.
i shows how to pass variable values that contain commas.

Query (named JONES.QUERY4)

SELECT JOB, NAME, ID

FROM Q.STAFF

WHERE JOB=&J0B
Procedure (named JONES.PROC4)

RUN QUERY JONES.QUERY4 (&&J0B=&J0B
DSQSRUN parameter

DSQQMFn I=JONES.PROC4(&JOB="MGR')
Resulting RUN command

RUN PROC JONES.PROC4 (&JOB='MGR')

Figure 10. Passing a string within single quotes using DSQSRUN

Enclose the value SAN JOSE, CA in single quotes because it contains a comma.

88 Installing and Managing QMF on VM

Customizing Your Start Procedure

Query (named JONES.QUERY5)

SELECT *

FROM Q.APPLICANT

WHERE ADDRESS=&CITY
Procedure (named JONES.PROCYS)

RUN QUERY JONES.QUERY5 (&&CITY=&CITY
DSQSRUN parameter

DSQQMFn I=JONES.PROC5(&CITY="'SAN JOSE,CA')
Resulting RUN command

RUN PROC JONES.PROC5 (&CITY='SAN JOSE,CA"')

Figure 11. Passing a comma within a string using DSQSRUN

Eigure 14 shows how to pass variable values that contain single quotes (for
example, an apostrophe in a name). When you pass the value on the
DSQSRUN parameter, be sure to enclose the value in single quotes and use
two single quotes for the apostrophe instead of one.
@% shows how to pass values for variables in two different parts of the
Query (named JONES.QUERY6)
SELECT =*
FROM Q.STAFF
WHERE NAME=8NAME
Procedure (named JONES.PROCEG6)
RUN QUERY JONES.QUERY6 (&&NAME=&NAME
DSQSRUN parameter
DSQQMFn I=JONES.PROC6 (&NAME='0"''BRIEN")
Resulting RUN command
RUN PROC JONES.PROC6 (&NAME='0''BRIEN')

Figure 12. Passing an apostrophe as part of a string using DSQSRUN
query.

Query (JONES.QUERY?7)

SELECT =*

FROM Q.STAFF

WHERE DEPT IN &DEPT

AND JOB = &JOB
Procedure (named JONES.QUERY7)

RUN JONES.QUERY7 (&&DEPT=&V1 &&JOB=&V2
DSQSRUN parameter

DSQQMFn I=JONES.PROC7 (&V1=(((10,38))) &V2='MGR')
Resulting RUN command

RUN PROC JONES.PROC7(&V1=(((10,38))) &V2='MGR')

Figure 13. Passing multiple variable parameters and values using DSQSRUN

Chapter 6. Customizing Your Start Procedure 89

Customizing Your Start Procedure

Setting Printing for Double-Byte Character Set Data (DSQSDBCS)

90

Parameter name
DSQSDBCS
Short form
K
Valid values
YES or NO
Default
NO

If you use the Uppercase or Japanese NLF, you might need to print
double-byte character set (DBCS) data. You can set the DSQSDBCS program
parameter to YES to print DBCS data from non-DBCS terminals.

For example, suppose a user you support uses an IBM 3279 display terminal
and needs to print a table (DBCSTABLE) whose nonnumeric columns contain
DBCS data. The following statement starts the Uppercase NLF from a CMS
screen and allows the user to print DBCSTABLE using a command such as
PRINT DBCSTABLE (PRINTER=DBCSPRT.

QMFU K=YES

For more information on how to establish a GDDM nickname for the

DBCSPRT printer, see [‘Chapter 9_FEnabling Users ta Print Objects” arl

Installing and Managing QMF on VM

Chapter 7. The QMF Session Control Facility

The session control facility provides a method for initializing a QMF session
by executing a specific QMF procedure when QMF is started. The name of the
QMF procedure is Q.SYSTEM_INI. With this facility, the Q.SYSTEM_INI
procedure can run any QMF command or any stored query that the user is
authorized to run, prior to the user seeing the QMF home screen.

Installing or Removing Q.SYSTEM_INI

Create and save the Q.SYSTEM_INI procedure into the database like any
other QMF procedure. The procedure must be named "SYSTEM_INI" and be
saved under the authorization ID of "Q". This QMF procedure should be
shared among all QMF users. You can make the procedure sharable by
specifying the SAVE command option "SHARE=YES". It’s also a good idea to
add a comment describing the procedure. For example:

SAVE PROC AS Q.SYSTEM_INI (SHARE=YES,COMMENT='QMF System Initialization Procedure')

Importing the Default System Initialization Procedure

QMF provides you with a procedure to import the default QMF system
initialization procedure correctly under authorization ID of "Q" and shared
between all QMF users.

Before running this procedure, ensure that the QMF command language is set
to English. To do so, set the QMF global variable DSQEC_NLFCMD_LANG to
1. When the procedure is done you can return to the presiding language by
setting QMF global variable DSQEC_NLFCMD_LANG to 0.

Issue the following commands:

IMPORT PROC FROM DSQOBINI PROC =
SAVE PROC AS Q.SYSTEM_INI (COM='DEFAULT QMF SYSTEM PROCEDURE' SHARE=YES

The sample PROC is saved in the database as Q.SYSTEM_INI PROC with
SHARE=YES.

When Does the Q.SYSTEM_INI Procedure Run?

The Q.SYSTEM_INI procedure runs just before the QMF initial procedure
specified by the DSQSRUN parameter and just after QMF has completed
initialization. All of the QMF functions available to QMF procedures are also
available for use by the Q.SYSTEM_INI procedure.

© Copyright IBM Corp. 1983, 2000 91

The QMF Session Control Facility

Using Q.SYSTEM_INI

92

Your QMF session procedure Q.SYSTEM_INI, can be as simple as setting
some QMF global variables or profile values or as complex as a complete
front end to QMF. Each user can have their own session procedure called
from, but not replacing Q.SYSTEM_INI.

Example Shipped with QMF

The sample Q.SYSTEM_INI proc provided with QMF makes SHARE=YES the
default for all users.

-- QUERY DSQOBINI
= MANAGEMENT = ccmmmmmmcmmee-
-- FACILITY

-- QMF SYSTEM INITIALIZATION PROC
-- FUNCTION: PROVIDE AN EXAMPLE QMF SYSTEM INITIALIZATION PROCEDURE
-- THAT CAN BE ADDED AFTER QMF INSTALLATION. YOU MAY MOD-
-- IFY OR REPLACE THIS PROCEDURE WITH YOUR OWN VERSION.
-- THE PROCEDURE MUST BE STORED IN THE DATABASE UNDER THE
-- NAME OF Q.SYSTEM_INI BEFORE IT WILL RUN AUTOMATICALLY.

-- THE COMMAND BELOW IS AN EXAMPLE OF ESTABLISHING A NEW DEFAULT
-- FOR THE SHARE OPTION OF THE SAVE COMMAND THAT WILL APPLY TO ALL
-- QMF USERS. (REMOVE THE LEADING COMMENT SYMBOLS "--" TO ACTIVATE
-- IT.)

-- SET GLOBAL (DSQEC_SHARE=1 -- MAKE SHARE=YES THE DEFAULT FOR ALL

Note: The actual example shipped with QMF may vary from the above example.

Figure 14. The Q.SYSTEM_INI shipped with QMF

Q.SYSTEM_INI is located in the QMF product as DSQOBINI.

User Session Procedure Example

The session procedure can call another procedure. The procedure being called
can be a user procedure that is created, owned and updated by a QMF user.
You can use the same named procedure for different users if each user has a
unique SQLID. When each user starts QMF they are running under their own
SQLID. That SQLID is the default object owner when the object owner is not
otherwise specified when accessing a QMF object or database object. For
example, the QMF session procedure Q.SYSTEM_INI, could set global
variables or company wide global variables and then call a user session

Installing and Managing QMF on VM

PROC

The QMF Session Control Facility

procedure. In the following example, the user session procedure is called

USER_INI.

Q.SYSTEM_INI

LINE 1

-- This QMF procedure example shows how to setup QMF session defaults for
-- every QMF user and then calls a user procedure called USER_INI that will set

-- indi

QMF
QMF
QMF
QMF
QMF
QMF
RUN
QMF
QMF

vidual QMF session defaults

SET GLOBAL (DSQEC_NLFCMD_LANG=1)
RESET PROC

SET PROFILE (WIDTH=80,LENGTH=66)
SET PROFILE (SPACE=COMMON)

SET GLOBAL (DSQDC_LIST_ORDER=5D)
SET GLOBAL (DSQEC_RESET RPT=1)
USER_INI

END

SET GLOBAL (DSQEC_NLFCMD_LANG=0)

-- Process English Commands

Hide Contents of this PROC

Set Default Report Page Size

Set Default Space for Save Data Command
Object List Sorted by Date Modify
Prompt for Report Completion

Run Users Session Procedure

Display QMF Home screen first

-- Return to Presiding Language

Figure 15. Q.SYSTEM_INI example that calls a user defined procedure

PROC
1

WILLIAMS.USER_INI

LINE

-- This QMF procedure example shows how to setup QMF session defaults for
-- A QMF user. The following settings replace any settings set by the

-- SYS

QMF
QMF
QMF
QMF
QMF
QMF
QMF
QMF

TEM_INI proc.

SET GLOBAL (DSQEC_NLFCMD_LANG=1)
RESET PROC

SET PROFILE (SPACE=MYSPACE)

SET PROFILE (PRINTER=MYROOM)

SET GLOBAL (DSQDC_LIST ORDER=3A)
SET GLOBAL (DSQEC_RESET_RPT=2)
SET GLOBAL (DSQEC_SHARE = 1)

SET GLOBAL (DSQEC_NLFCMD_LANG=0)

Process English Commands

Hide Contents of this PROC

Store data in MYSPACE.

Print reports at My Printer
Object List Sorted by Object Name
Always ResetReports

Always Share My QMF Objects
Return to Presiding Language

Figure 16. User session procedure example: user.USER_INI

Procedure that Displays an Object list

The following is an example of a SYSTEM_INI procedure that displays a list
of objects instead of the QMF Home screen:

Chapter 7. The QMF Session Control Facility 93

The QMF Session Control Facility

PROC Q.SYSTEM_INI LINE 1

This QMF procedure example shows how to set up QMF session defaults for
every QMF user to display a list of objects instead of the QMF Home

screen.

QMF SET GLOBAL (DSQEC_NLFCMD_LANG=1) -- Process English Commands

QMF RESET PROC -- Hide Contents of this procedure
QMF SET GLOBAL (DSQDC_LIST ORDER=3A) -- Object List sorted by object name
QMF SET GLOBAL (DSQEC_NLFCMD_LANG=0) -- Return to Presiding Language

QMF LIST ALL -- LIST OBJECTS FOR ENGLISH

Figure 17. Using Q.SYSTEM_INI to display a list of objects rather than the QMF Home screen

Security and Sharing Session Procedure

The QMF session procedure Q.SYSTEM_INI and other objects used or called
by this procedure take on the same security as any other QMF object or
database object does during a QMF session. The Q.SYSTEM_INI procedure is
not special, other than QMF tries to execute it each time a QMF session is
started. If the procedure doesn’t exist, then QMF doesn’t try to run it.

If the Q.SYSTEM _INI procedure exists but is restricted or not shared, the
result is the same as with any other QMF procedure object. If the SQLID
starting QMF is "Q”", the procedure can run. Any SQLID other than "Q"
receives a message that it is not authorized to run the procedure
"Q.SYSTEM_INI".

Diagnosis Considerations

94

The QMF session procedure Q.SYSTEM_INI is run in the same environment
as any other QMF procedure. All of the diagnosis procedures used for existing
QMF procedures can also be used for the Q.SYSTEM_INI procedure. In
addition to normal procedure execution, consider that this procedure is run
before the QMF startup procedure named in the DSQSRUN parameter when
QMEF is started. If you have session controls in the procedure specified by the
DSQSRUN parameter, consider moving them to the Q.SYSTEM_INI
procedure.

You can use the QMF L2 tracing option to see commands and messages
issued. Session procedure commands and messages are distinghished from

others. See I'Using the QMF Trace Facility” on page 30d for more information

on QMF trace options.

Installing and Managing QMF on VM

Chapter 8. Establishing QMF Support for End Users

After you start QMF and the Home panel is displayed, you can use QMF
facilities to help you customize support for end users. This chapter discusses
how to set up QMF so that your end users are able to access QMF and work
with data in the database.

The role of the Q AUTHID
QMF installation automatically grants DBA authority to the user ID Q. The
user Q owns and manages these QMF resources:
* All QMF control tables.
* The sample queries.
* The sample tables shipped with QMF. (For descriptions of the sample

tables, see QMF Reference.)

» Default views for the database object list, explained in m
For the discussions and procedures throughout this book, we assume you’re
administering QMF using the Q user ID or another ID with DBA authority.

Quick Start

Use the steps in fahle 13 to guide you in setting up and maintaining the QMF
environment for users. If you need more information, see the page shown at
the right of the table.

Table 13. Establishing QMF support for end users

To do this task: See:
Ensure users are recognized by VM by assigning them an appropriate user ID. You also Page

need to assign an authorization ID to establish QMF and DB2 for VM authorities.

Ensure users have a QMF profile either by allowing them to use the SYSTEM row of the Page ¥
Q.PROFILES table or by inserting a unique row into Q.PROFILES based on the user’s SQL
authorization ID.

Provide access to database and QMF objects your users need to work with, using SQL Page fiod
GRANT statements for tables and views, and the SHARE parameter of the QMF SAVE
command for QMF queries, forms, and procedures.

Customize a user’s database object list, using the DSQEC_TABS_SQL and Page 4
DSQEC_COLS_SQL global variables.

Customize the document editing interface in ISPF, using the IBM-supplied macro. Page fiad

© Copyright IBM Corp. 1983, 2000 95

Establishing QMF Support for End Users

Table 13. Establishing QMF support for end users (continued)

To do this task: See:
Enable users to create tables (if necessary) by assigning a private dbspace or by granting Page fiid
DB2 for VM RESOURCE authority and assigning a public dbspace.

Enable users to support a chart using the Interactive Chart Utility (ICU) of GDDM. Page f2d
Maintain your users’ queries, forms, and procedures by updating and reorganizing the Page fizd

QMF object control tables (Q.OBJECT_DIRECTORY, Q.OBJECT_DATA, and
Q.OBJECT_REMARKS).

When necessary, enlarge the dbspace for the QMF object control tables using the DB2 for Page fod
VM DBS utility UNLOAD and RELOAD commands. Recreate indexes and any views you
defined on the tables.

Maintain your users’ database tables and views by updating and reorganizing DB2 for VM Page >3

system tables.

Ensuring That Users Have Access to CMS

Provide a new user with a VM logon ID. Set up the new users as you would
an DB2 for VM user virtual machine. See DB2 Server for VM Database
Administration for more information.

To communicate with DB2 for VM, a new QMF user logging on for the first
time must give this command (assuming the user is linked to the DB2 for VM
production disk):

SQLINIT DBNAME (dbname)

where dbname is the name of the database that is being used for QMF. That
command loads two required modules to the user’s A-disk. As long as those
modules remain, and as long as the user wants to use the same database, the
command need not be reissued. You should plan to log on with the new user
ID and give the SQLINIT command for the new user.

If your users need to connect to DB2 for VM explicitly, grant them DB2 for
VM CONNECT authority:

GRANT CONNECT TO userid IDENTIFIED BY password

The QMF CONNECT command enables an individual to access DB2 for VM
using an established CONNECT ID (DB2 for VM user ID), or to connect to a
different database during a QMF session. This command is useful for running
jobs in batch mode. For information about how the CONNECT command is
used in running batch jobs, see EChapter 15 _Customizing the Batch Pracessing
Program” on page 277, For information about connecting to a different
‘Chapter 14 Customizing a Remotd

database during a QMF session, see

96 Installing and Managing QMF on VM

Establishing QMF Support for End Users

After a user has received CONNECT authority (has been assigned an DB2 for
VM user ID), the user can access DB2 for VM through the QMF CONNECT
command:

CONNECT userid (PASSWORD=password

userid Any user ID conforming to the VM logon ID syntax rules is
acceptable. However, only those IDs that have been granted access to
DB2 for VM can be used in the CONNECT command. The ID can be
embedded in double quotation marks.

DB2 for VM password
The DB2 for VM password:
* Must have no more than 8 characters
* Can be embedded in single or double quotation marks. A single
gquotation mark embedded within single quotation marks is
removed.
* Must contain no blanks (except trailing blanks)

In order for a user to use the CONNECT command, the user ID and
password must both be in SYSTEM.SYSUSERAUTH. The password need not
be the same as the one associated with the VM logon ID. As a result of a
QMF CONNECT command, the QMF profile resets to that associated with the
new DB2 for VM user ID or to the SYSTEM row default if that DB2 for VM
user ID is not represented in Q.PROFILES.

For more information about CONNECT authority, see DB2 Server for VM

Database Administration See also IRequired Entry Fields” on page 284,

Creating User

Profiles to Enable User Access to QMF

All QMF users need access to a user profile, which determines how QMF
handles individual input of specific users. Use the profile to control certain
aspects of a user’s environment, such as where printer output is routed or
whether terminal input is converted to uppercase.

Each aspect of a user’s QMF session maps to a value in a column of the
Q.PROFILES control table. Each row of the Q.PROFILES table is an individual

user profile. 'Reading the Q PROFII FS Table” on page 100 shows the
Q.PROFILES table in detail and discusses possible profile values.

Using the Q User Profile, a Special QMF Profile

QMEF installation automatically grants DBA authority to the user ID Q. The
user Q owns and manages these QMF resources:

« All QMF control tables, shown in F‘Appendix D. QMF Control Tables and
uhspaces—uw” .

* The sample tables shipped with QMF. (For descriptions of the sample
tables, see QMF Reference.)

Chapter 8. Establishing QMF Support for End Users 97

Establishing QMF Support for End Users

98

» Default views for the database object list, explained in m

For the discussions and procedures throughout this book, we assume you’re
administering QMF using the Q user ID or another ID with DBA authority.

Establishing a Profile Structure for Your Installation

Adding

Provide users with a profile using one of these methods:

* Allow users to use the default QMF profile, which is the row of the
Q.PROFILES table where the CREATOR column has a value of SYSTEM.

The Q.PROFILES table is shipped with default profile values predefined in
this row. The defaults used by this SYSTEM profile are discussed in

‘ i i . You can change these values
to create a generic profile that meets the needs of your site.

« Create a unique row in Q.PROFILES for the user, as shown in m
New User Profile to the QPRQFILES Table’ Set the CREATOR column of
Q.PROFILES to the SQL authorization ID of the user and customize other
column values according to individual needs.

You can create unique profiles for some users at your installation and allow
other users to use the SYSTEM default profile; you can also delete the
SYSTEM profile for security and tracking reasons, thus preventing those who
don’t have unique profiles from using QMF.

a New User Profile to the Q.PROFILES Table

You can use SQL INSERT queries or the QMF Table Editor (described in Using
QMF) to add new user profiles to the Q.PROFILES table. Eigure 18 on page 99
shows sample SQL that creates unique profiles for users with SQL
authorization IDs of JONES (base QMF, or English) and SCHMIDT (German
NLF). Use the TRANSLATION column of Q.PROFILES, as shown, to
distinguish between an English and an NLF environment.

The values shown in the figure are examples of profile values you can use.

See [Tahle 14 on page 101 for other valid profile values.

Installing and Managing QMF on VM

Establishing QMF Support for End Users

Base QMF (English) German NLF

INSERT INTO Q.PROFILES INSERT INTO Q.PROFILES

(CREATOR, LANGUAGE, SPACE, TRANSLATION, (CREATOR, LANGUAGE, SPACE, TRANSLATION,

PFKEYS, SYNONYMS, RESOURCE_GROUP, PFKEYS, SYNONYMS, RESOURCE_GROUP,

ENVIRONMENT) ENVIRONMENT)

VALUES ('JONES', 'PROMPTED', 'SAVEIT' VALUES ('SCHMIDT', 'MENUE', 'STUT2BER'

"ENGLISH', 'PFKEYS', 'COMMAND_SYNONYMS' '"DEUTSCH', 'DEUTASTEN'

"NONPRIME', 'CICSVSE') 'COMMAND_SYNONYM_D', 'SCHICHT'
"CICSVSE")

Figure 18. Creating a user profile

Important: Always specify a TRANSLATION value when inserting a row into
Q.PROFILES, or the TRANSLATION value defaults to a null value

and the profile row is automatically ignored. Eigure 18 shows only
a subset of all possible profile values. Use

2 for guidance in specifying

additional values.

To enroll many users, set up a template query that describes a standard
profile and uses a substitution variable value for any value that commonly
changes (such as the value for the CREATOR column) with each new user

you enroll. For more information on using substitution variables, see QMF
Reference .

If you’re using an NLF: You can establish different profiles for the same user
according to the national language environment. A
user can have a profile with one set of values in one
national language, and a profile with a different set
of values in another national language.

Preventing Users Without Unique Profiles from Using QMF

It can be difficult to track individual resource use if several people use QMF
under the common, default SYSTEM profile. To restrict use of QMF to users
who have unique profiles, delete the SYSTEM row of Q.PROFILES.

shows SQL statements that delete this row. You can also use the
Table Editor, as explained in Using QMF.

Chapter 8. Establishing QMF Support for End Users 99

Establishing QMF Support for End Users

Base QMF (English)
German NLF

DELETE FROM Q.PROFILES

DELETE FROM Q.PROFILES
WHERE CREATOR='SYSTEM'

WHERE CREATOR='SYSTEM'
AND TRANSLATION='ENGLISH'

AND TRANSLATION='DEUTSCH'

Figure 19. Restricting use of QMF to users who have unique profiles

Important: For both base QMF and NLF environments, always specify a
TRANSLATION value when deleting rows from Q.PROFILES, or
more rows (across different national language environments)
might be deleted than you intend. Additionally, always use a
WHERE clause, or all rows of Q.PROFILES are deleted.

After you delete the SYSTEM row of Q.PROFILES, create a unique profile for
every QMF user; otherwise, your users won'’t be able to use QMF. An example

of creating a unique profile is shown in Eigure 18 on page 9d.
Reading the Q.PROFILES Table
[Table 14 on page 101 shows the columns of the Q.PROFILES control table.

Each column of the table represents an aspect of a user’s QMF session you
can customize. The defaults shown are for the English QMF environment.

If you're using an NLF: Default values might be different for the English
environment and some NLFs. For example, do not
assume that the default for all NLFs is UPPER
because the English default is UPPER. The default
value for the CASE field in the German NLF is
MIXED, and might also vary for other NLFs. Browse
the DSQ2$UPO EXEC to see the default values for
each NLF. (Replace the n symbol with an NLID from

[Cahle 5 on page 19))

The Q.PROFILES table has the index Q.PROFILEX, with the attribute
UNIQUE. The keyed columns are CREATOR, TRANSLATION, and
ENVIRONMENT. No three rows can have identical values for these three
columns.

100 Installing and Managing QMF on VM

Establishing QMF Support for End Users

Table 14. Structure of the Q.PROFILES table

Column Name Data Type and Nulls Allowed Function and Possible Values
Length
CREATOR CHAR (8) No Function: Specifies the SQL authorization ID

(the user) who owns the profile.

Values: SQL authorization ID or SYSTEM
(default). The SYSTEM row is shipped with
Q.PROFILES for English and each NLF; users
who don’t have unique profile rows can use
the SYSTEM row.

CASE CHAR (18) Yes Function: Specifies whether terminal input is
converted to uppercase.

Values: UPPER (default), STRING, or MIXED.
See QMF Reference for descriptions of these
values. CASE might have a different default
for NLF users.

DECOPT CHAR (18) Yes Function: Specifies what separators QMF puts
in numeric report columns.

Values: PERIOD (default), COMMA, and
FRENCH. See QMF Reference for more
information. DECOPT is translated and might
have a different default for NLF users.

CONFIRM CHAR (18) Yes Function: Controls display of confirmation
panels.

Values: YES (default) if you want
confirmation panels displayed before database
changes; NO if you don’t. See page f1d for
information on confirming table changes.
CONFIRM might have a different default for
NLF users.

WIDTH CHAR (18) Yes Function: Controls number of printed
columns per page.

Values: 22 to 999. Default = 132.

LENGTH CHAR (18) Yes Function: Controls number of printed lines
per page.

Values: 1 to 999, or CONT if you want no
page breaks. Default = 60.

Chapter 8. Establishing QMF Support for End Users 101

Establishing QMF Support for End Users

Table 14. Structure of the Q.PROFILES table (continued)

Column Name Data Type and Nulls Allowed Function and Possible Values
Length
LANGUAGE CHAR (18) Yes Function: Controls which query language

QMF uses when creating a new query after a
RESET QUERY command is issued.

Values: SQL (default), QBE (for
Query-by-Example), or PROMPTED (for
Prompted Query). LANGUAGE might have a
different default for NLF users.

SPACE CHAR (50) Yes Function: Specifies a dbspace that holds tables
created using SAVE DATA and IMPORT
commands. In DB2 Parallel Edition, this value
refers to a NODEGROUP name. However,
QMF 7.1 refers to it as a TABLESPACE name.
Operation is not affected. DataJoiner does not
utilize tablespaces and the value for the
SPACE option is ignored in a DataJoiner
context; operation continues as if a blank
value were present.

Values: Any valid dbspace name. See

IUser” on page 114 for more information on

using dbspaces.

TRACE CHAR (18) Yes Function: Controls the level of detail in trace
output.

Values: ALL traces all functions at the most
detailed level. A character string of function
codes and numbers indicates the level of
tracing for individual QMF functions. NONE
inhibits normal levels of tracing. The default
varies depending on the value for
DSQSMODE. For example, when DSQSMODE
is B, the trace level is L2, otherwise it is
NONE. See [‘lsing the QME Trace Eacility” onl

for more information on the QMF
trace facility. See [‘Setting the | evel of Tracd
Detail (DSQSDRUG)” aon page 81 to specify a
trace value when QMF starts. Only the values
ALL and NONE are translated in NLFs.

102 Installing and Managing QMF on VM

Establishing QMF Support for End Users

Table 14. Structure of the Q.PROFILES table (continued)

Column Name Data Type and Nulls Allowed Function and Possible Values
Length
PRINTER CHAR (8) Yes Function: Controls where printer output is
routed.

Values: Use a null (default) or blank value to
route print output to a file or a printer that is
associated with the DSQPRINT FILEDEF. Use
a GDDM nickname to direct output to a
GDDM-defined printer. See

for information on choosing and specifying
values.

TRANSLATION CHAR (18) No Function: Indicates English or NLF
environment

Values: English (default) or the name of an
NLF. The right-hand column of

shows the translated names you need
to use in this column.

PFKEYS VARCHAR (31) Yes Function: Indicates the table or view (if any)
where user’s customized function key
definitions are stored.

Values: Any valid DB2 VM table or view
name. If blank or null (default), QMF’s default
keys are used. L izi

Eunction Keys” an page 173 describes how to

create this table.

SYNONYMS VARCHAR (31) Yes Function: Indicates the table or view (if any)
where user’s customized command definitions
are stored.

Values: Any valid DB2 for VM table or view
name. If blank or null (default), no customized
definitions are used. L i7i
IQME Commands” on page 159 describes how
to create this table. For NLF users, the
IBM-supplied table is named
Q.COMMAND_SYNONYM _n, where n is the
National Language ID.

Chapter 8. Establishing QMF Support for End Users 103

Establishing QMF Support for End Users

Table 14. Structure of the Q.PROFILES table (continued)

Column Name

Data Type and Nulls Allowed Function and Possible Values
Length

RESOURCE_GROUP CHAR (16) Yes Function: Controls how the governor exit

routine limits user’s resources or commands.

Values: Any valid resource group name. If
blank or null (default), QMF attempts to use
the user’s SQL authorization ID here, and the
user’s session is not governed (unless the
authorization ID is a valid resource group

name). See [‘Chapter 13 _Controlling QMH
Resources Using a Governor Exit Routine” onf
lhage 227 for more information.

MODEL

CHAR (8) Yes Function: Specifies the model for data access.

Values: Always use the value REL for this
column, indicating relational data.

ENVIRONMENT

CHAR (8) Yes Function: Indicates the operating
environment.

Values: CMS or null. If profiles are stored in
DB2 for VM but are being accessed from a
DB2 application requester, the value can be
any one of the following: TSO, CICS®, MVS,
or CICS.

Providing the Correct Profile for the User's Operating Environment

When QMF is started, it determines which users are authorized to establish a
QMF session by searching the CREATOR, ENVIRONMENT, and
TRANSLATION columns of the Q.PROFILES table. You need to add the
correct values to the user’s profile to ensure that QMF recognizes them and
starts.

QMF searches for specific profile values in the following order:

1. CREATOR=SQL ID, ENVIRONMENT=current operating environment
2. CREATOR=SQL ID, ENVIRONMENT=NULL

3. CREATOR=SYSTEM, ENVIRONMENT=current operating environment
4. CREATOR=SYSTEM, ENVIRONMENT=NULL

SQL ID is the DB2 for VM authorization ID of the user trying to log on to
QMF. DB2 for VM uses this ID to determine if the user is authorized to use
the database.

Current operating environment is CMS, CICS, CICSMVS, or TSO, when QMF is
being started from CMS, CICS, or TSO, respectively.

104 Installing and Managing QMF on VM

Establishing QMF Support for End Users

The value for current operating environment can also be CICSMVS, CICS, or TSO
if the profiles are stored in VM DB2 for VM but are being accessed from a
DB2 application requester.

QMF must find values for CREATOR and ENVIRONMENT that match one of
the pairs in the preceding list, or QMF initialization ends in an error before
the QMF Home panel is displayed.

Updating User Profiles

You can change the values in a user’s profile by using either the SET
PROFILE command or SQL UPDATE statements.

Using the SET PROFILE Command
Using this command is quicker than using SQL UPDATE statements, because

you can enter it from the QMF command line with minimal typing.

Values set using SET PROFILE remain effective only until the user’s session
ends; use the SAVE PROFILE command to save values you changed. For more
information on the SET PROFILE command and its parameters, see QMF
Reference.

Because no special SQL privileges are required to use this command, your
users can easily update their own profiles. However, they cannot use SET
PROFILE to update fields you might use to customize their QMF sessions.
These fields are PFKEYS, SYNONYMS, and RESOURCE_GROUP. You can use
SQL UPDATE statements or the QMF Table Editor to update these
Q.PROFILES fields. The Table Editor is explained in Using QMF.

Using SQL UPDATE Statements
SQL UPDATE statements can be used to update all fields of the Q.PROFILES

table, including SYNONYMS, PFKEYS, and RESOURCE_GROUP. See
for descriptions of these columns, including consequences of not
specifying their values.

For more information about how to choose values for these columns, see:

+ [‘Chapter 11 Customizing QMFE Function Keys” on page | 73

Use an SQL UPDATE query similar to the one in Eigure 20 on page 106 to

update existing user profiles. This example changes the name of the table that
stores a user’s command synonyms. On the left is an example query for user
JONES in base (English) QMF; on the right is the same query for user
SCHMIDT in the German NLF.

Chapter 8. Establishing QMF Support for End Users 105

Establishing QMF Support for End Users

106

Base QMF (English)
German NLF
UPDATE Q.PROFILES
UPDATE Q.PROFILES
SET SYNONYMS="'COMMAND_SYNONYMS'
SET SYNONYMS="'GUMMOW.XYZ'
WHERE CREATOR='JONES' AND
WHERE CREATOR='SCHMIDT' AND
TRANSLATION="ENGLISH'
TRANSLATION="DEUTSCH'

Figure 20. Updating user profiles using UPDATE query on Q.PROFILES table

Important: When running UPDATE, DELETE, and INSERT queries on the
Q.PROFILES table, always include the TRANSLATION column in
the query; otherwise, QMF applies the changes you make in all
language environments.

Updating the SYSTEM Profile
You can change the default values provided in the SYSTEM row of

Q.PROFILES. However, any user who needs different values than those you
assigned for the SYSTEM row must have a unique profile row.

For example, suppose that your system has two resource groups defined,
named PRIME and NONPRIME. Suppose PRIME is the default value for the
RESOURCE_GROUP field of the SYSTEM row in Q.PROFILES. You must
formally enroll the users who are in the NONPRIME group by giving them
unique profile rows as shown in the example in

Deleting Profiles from the Q.PROFILES Table

Periodically, you might need to delete obsolete user profiles from the
Q.PROFILES table. Delete a user profile from Q.PROFILES when you are sure
that objects created by the SQL authorization ID in that profile have been
either deleted or safely transferred to other users:

* For how to perform these tasks for QMF queries, forms, and procedures,
see [‘Mai ”

« For instructions for database tables and views, see I‘_Mam.tammg_'liables_and

When you delete a user profile, all SQL privileges the user had on objects are
deleted, as well as all privileges that user granted to other users. To ensure
other users won’t be affected, query the SYSTEM.SYSTABAUTH table to see
what SQL privileges have been granted to the user. Query the
SYSTEM.SYSUSERAUTH table to see what DB2 for VM authorities have been

granted. For sample queries you can use, see I‘Transferring Ownership of
Queries, Forms,_and Pracedures” on page 124.

Installing and Managing QMF on VM

Establishing QMF Support for End Users

Use a query similar to the one shown in m to delete a user profile.

Base QMF (English)

German NLF
DELETE FROM Q.PROFILES

DELETE FROM Q.PROFILES
WHERE CREATOR='JONES'

WHERE CREATOR='SCHMIDT'
AND TRANSLATION='ENGLISH'

AND TRANSLATION='DEUTSCH'

Figure 21. Deleting a QMF user profile

If you’re using an NLF: Include a value for the TRANSLATION column if
you want to delete the user profile in a single NLF
environment. If you don’t specify a value for
TRANSLATION, QMF deletes the profile in all NLF
environments.

If the user whose profile you deleted had a private dbspace, use the SQL
DROP DBSPACE statement from the SQL query panel if the space contains
nothing you want to save. Also, you can use the SQL DROP TABLE statement
or QMF ERASE commands if you want to delete specific QMF or database
objects. DB2 Server for VSE & VM SQL Reference explains the DROP statement.
QMF Reference explains the ERASE command.

Controlling Access to QMF and Database Objects

QMF objects, such as queries and procedures, and functions such as the Table
Editor, allow users to access and manipulate data stored in tables in the
database. Because this data might be sensitive, you might need to control
users’ access to certain objects:

* You can use SQL GRANT and REVOKE statements from QMF’s SQL guery

panel to control access to tables and views, as discussed in
Bhjects] explains privileges required to use specific QMF commands or
functions on objects.

* You can use the SHARE parameter of the QMF SAVE command to control
access to queries, forms, and procedures, as discussed in

SQL Privileges Required to Access Objects

Before users can use certain SQL statements with tables or views, you need to
grant them the SQL privileges they need. For example, if user JONES enters

Chapter 8. Establishing QMF Support for End Users 107

Establishing QMF Support for End Users

DISPLAY TABLE SALES TOTALS but does not have the SQL SELECT privilege for
the SALES_TOTALS table, QMF displays the following message:

You lack the authorization needed for this DISPLAY command.

To prevent JONES from getting this kind of error message, grant him the SQL
SELECT privilege on the SALES_TOTALS table.

Different SQL privileges are required, depending on whether the user is
executing a QMF command, running a prompted or QBE query, or using the
Table Editor.

SQL Privi Required for QMF Commands
Using , locate the QMF command your users need to use and grant

them the requwed SQL pr|V|Iege on the table or view they’re working with.
See L ? for examples of SQL
GRANT statements.

Table 15. QMF commands and their SQL equivalents

This QMF Requires this SQL privilege on objects referenced by the command:

command:

DISPLAY SELECT

table/view

DRAW SELECT

table/view

EDIT TABLE The necessary privileges depend on the Table Editor mode. See m

table/view Reguired for the Tahle Editor” on page 109 for this information.

EXPORT TABLE SELECT

table/view

IMPORT TABLE If the table exists, SELECT, DELETE, and INSERT. If the table does not exist, INSERT.

table/view Authority is also required to use the CREATE TABLE statement for the dbspace
specified in the SPACE field of the user’s profile.

PRINT SELECT

table/view

RUN query Whatever privileges are used in the query

RUN procedure

Whatever privileges are used in the commands in the procedure

SAVE DATA

If the table exists, SELECT, DELETE, and INSERT. If the table does not exist, CREATE
TABLE.

LIST table/view

SELECT

108

Not all users can_use the SAVE command to create a new table. For more
information, see

Installing and Managing QMF on VM

Establishing QMF Support for End Users

For more information on SQL privileges, such as SELECT, INSERT, UPDATE,
or DELETE, see DB2 Server for VSE & VM SQL Reference

SQL Privileges Required for Prompted and QBE Queries
Using , locate the type of query your users need and grant them the

SQL privilege on the table or view against which the query runs.

Table 16. QMF query types and their SQL equivalents

Users using this type of query: Need this SQL privilege:
PROMPTED SELECT

QBE 1. INSERT

QBE P. SELECT

QBE U. UPDATE

QBE D. DELETE

For more information on prompted or QBE queries, see Using QMF .

SQL Privileges Required for the Table Editor
Using , locate the Table Editor function your users need to use and

grant them the SQL privilege on the table or view they need to edit.

Table 17. Table Editor commands and their SQL equivalents

Users using this Table Editor function: Need this SQL privilege on tables or
views being edited:

ADD INSERT
SEARCH SELECT
CHANGE UPDATE
DELETE DELETE

For more information on the Table Editor, see Using QMF.

Granting and Revoking SQL Privileges

Users automatically own any objects they create and save in the database
(unless they create a table with a different owner). The owner of an object
automatically has all SQL privileges on objects he or she owns, and can grant
(or revoke) these privileges to other users. Anyone with DB2 for VM DBA
authority can grant or revoke SQL privileges for any object in the database.
The user Q has this authority, and is predefined to DB2 for VM during QMF
installation.

When granting or revoking privileges on objects you do not own, qualify the
object with the SQL authorization ID of the owner:

Chapter 8. Establishing QMF Support for End Users 109

Establishing QMF Support for End Users

110

JONES.ORDER_BACKLOG

Using the SQL GRANT Statement
Use the SQL GRANT statement to grant SQL SELECT, UPDATE, INSERT, and

DELETE privileges. For example, suppose user JONES needs to issue the
following command:

EDIT TABLE ORDER_BACKLOG (MODE=CHANGE

Assuming you are the owner of the table, use the statement in m to
grant JONES the SQL UPDATE privilege he needs to edit the
ORDER_BACKLOG table in change mode:

WITH GRANT OPTION indicates that JONES can grant to other users any of
GRANT UPDATE ON ORDER_BACKLOG TO JONES WITH GRANT OPTION

Figure 22. Granting SQL privileges to a single QMF user

the SQL privileges you granted him for the ORDER_BACKLOG table.

If you need to run GRANT queries often, use QMF variables in place of parts
of the query that frequently change, such as UPDATE, ORDER_BACKLOG,
and JONES. Variables are explained in QMF Reference. You might also consider
using a QMF procedure to do the task if there is more than one query. Using
QMF explains how to create procedures.

Use the keyword PUBLIC to grant SQL privileges to all QMF users. For
example, use the statement in m to grant INSERT authority on the
ORDER_BACKLOG table to all users, and allow each of those users to grant
INSERT authority to other users:

GRANT INSERT ON ORDER_BACKLOG TO PUBLIC WITH GRANT OPTION

Figure 23. Granting an SQL privilege to all QMF users

For more information of the GRANT statement, see DB2 Server for VSE & VM
SQL Reference

Important: If you grant more than one person INSERT, UPDATE, or DELETE
privileges on a database object, and two or more users try to
access that object at the same time, there might be contention for
resources, causing performance or other problems. Users editing
tables required during QMF initialization can hold locks on the
table that prevent QMF from starting for other users.

Using the SQL REVOKE Statement
Use the SQL REVOKE statement to take back privileges granted:

Installing and Managing QMF on VM

Establishing QMF Support for End Users

REVOKE UPDATE ON ORDER_BACKLOG FROM JONES

Figure 24. Revoking an SQL privilege from a QMF user

Use the PUBLIC keyword to revoke privileges from all QMF users.

DB2 for VM privileges have a cascading structure; privileges revoked from a
user are automatically revoked from any additional users to whom that user
granted them.

For more information of the REVOKE statement, see DB2 Server for VSE &
VM SQL Reference
Sharing QMF Objects with Other Users

You or any QMF user can enable access to QMF queries, forms, and
procedures, by using the SHARE parameter of the QMF SAVE command.

Specify SHARE=YES when saving an object to allow any other user to display
the query and use it in a QMF command that does not replace or erase it. For
example, the command ian saves the current query as
ORDER_QUERY and allows any other user to display and run it;

The default is defined by the global variable DSQEC_SHARE. See QMF

SAVE QUERY AS ORDER_QUERY (SHARE=YES

Figure 25. Sharing a QMF object

Reference for details.

The owner of an object can change its shared status at any time, using a
DISPLAY command followed by a SAVE command, as shown in ﬁﬂ:

DISPLAY ORDER_QUERY
SAVE QUERY AS ORDER_QUERY (SHARE=NO

Figure 26. Changing the shared status of a QMF object

For more information on the SAVE command, see QMF Reference.

Allowing Uncommitted Read

If you want your QMF session to allow uncommitted read, you can specify a
value for the global variable DSQEC_ISOLATION in the Q.SYSTEM_INI
procedure.

Chapter 8. Establishing QMF Support for End Users 111

Establishing QMF Support for End Users

Uncommitted read can be useful in a distributed environment. However,
allowing uncommitted read can introduce non-existent data into a QMF
report. Do not allow uncommitted read if your QMF reports must be free of
non-existent data.

Values can be:
0’ Isolation level UR, Uncommitted Read.
1 Isolation level CS, Cursor Stability. This is the default.

For QMF 7.1 the use of the value '0’ is only effective with the following
database servers (those supporting the SQL with-clause):

» DB2 for MVS V4 or higher
* DB2 for VM/VSE V4 or higher

Setting Standards for Creating Objects

The objects in your installation might be shared among many users, so they
should have names that indicate what the object is and how it should be
used. Encourage users to provide comments that describe for other users the
purpose of queries, forms, procedures, and tables. Tables and views require
more maintenance and administration, so consider establishing special
guidelines for creating these objects.

For information on how to create comments for QMF and database objects
using the SAVE command, see QMF Reference.

Customizing a User’s Database Object List

112

QMF users periodically need to list objects they have saved in the database, or
to view comments that show them what purpose a table serves or what type
of data a column in the table contains. The QMF LIST and DESCRIBE
commands perform these functions.

When a user issues a LIST or DESCRIBE command for a table, QMF uses a
view defined on a set of DB2 for VM system tables to obtain information
about the table. The name of this view is stored in the global variable
DSQEC_TABS_SQL. When users issue these commands for a column within a
table, QMF uses the global variable DSQEC_COLS _SQL to obtain the name of
the view.

QMF provides a set of default views, loaded during installation, that return
only the tables and column information the user is authorized to see. Because
processing for authorization takes extra time and resources, QMF also allows
you to customize the table lists and column information by creating your own
views.

Installing and Managing QMF on VM

Establishing QMF Support for End Users

Using the Default Object Lists

QMF provides default views and automatically assigns these views to the user
Q during QMF installation:

Q.DSQEC_TABS _SQL

Q.DSQEC_COLS_SQL

QMF supplies a variation of the following views when QMF is installed into
DB2 Common Servers:

Q.DSQEC_TABS_LDB2

Q.DSQEC_ALIASES

Q.DSQEC_COLS _LDB2

The view Q.DSQEC_TABS SQL selects only those database tables the user is
authorized to see. shows the type of information the view provides.
To override the default view Q.DSQEC_TABS_SQL, issue a command like this
CREATE VIEW Q.DSQEC_TABS_SQL
(OWNER, TNAME, TYPE,, SUBTYPE ,MODEL ,RESTRICTED, REMARKS,
CREATED,MODIFIED,LAST USED,LABEL,LOCATION,OWNER AT LOCATION,
NAME_AT_LOCATION)
AS SELECT
CREATOR, TNAME, 'TABLE' ,TABLETYPE,"' ',"' ',REMARKS,' '," ',' ',
TLABEL," ',' ',' !
FROM SYSTEM.SYSCATALOG, SYSTEM.SYSTABAUTH
WHERE CREATOR = TCREATOR AND TNAME=TTNAME AND GRANTEETYPE = ' ' AND
GRANTEE IN (USER,'PUBLIC');
COMMENT ON TABLE Q.DSQEC_TABS SQL IS
'"QMF VIEW FOR DB2 for VM TABLES/VIEWS LIST';
GRANT SELECT ON Q.DSQEC_TABS_SQL TO PUBLIC;

Figure 27. Default view that provides a list of tables for the LIST command

one:
SET GLOBAL (DSQEC_TABS_SQL = userid.your_local_sql_table

The view Q.DSQEC_COLS SQL selects only the column information a user is

authorized to see. Eigure 28 on page 114 shows the type of information the

view provides.

Chapter 8. Establishing QMF Support for End Users 113

Establishing QMF Support for End Users

114

CREATE VIEW Q.DSQEC_COLS_SQL
(OWNER, TNAME , CNAME , REMARKS , LABEL)
AS SELECT
CREATOR, TBNAME, CNAME , REMARKS , CLABEL
FROM SYSTEM.SYSCOLUMNS, SYSTEM.SYSTABAUTH
WHERE TCREATOR = CREATOR AND TTNAME=BNAME AND GRANTEETYPE = '
AND GRANTEE IN (USER,'PUBLIC')

Figure 28. Default view that provides column information for the DESCRIBE command

To override the default view Q.DSQEC_COLS_SQL, issue the command:
SET GLOBAL (DSQEC_COLS_SQL = userid.your_Tocal_sql_columns

Changing the Default List

Using the QMF-provided default views for your table lists and column
information might increase processing time, because DB2 for VM gathers
authorization information from the SYSTEM.SYSCATALOG and
SYSTEM.SYSCOLUMNS tables. If you don’t need the extra security provided
by these authorization checks, consider creating your own views that generate
a list of objects stored in the database.

Use a query similar to the one in m to create your own view. This
query eliminates duplicate rows in the view and, although DB2 for VM
spends more time before returning rows to QMF, there is less data transfer
between the database and the user machine, producing better performance.
You can name your customized view any name that is valid in QMF. See QMF
Reference for information on QMF naming conventions.
To override the view you created, you can issue a command similar to the
CREATE VIEW Q.DATABASE_OBJECTS

(OWNER, TNAME, TYPE, SUBTYPE ,MODEL,RESTRICTED, REMARKS,

CREATED,MODIFIED,LAST USED,LABEL,LOCATION,OWNER AT _LOCATION,

NAME_AT_LOCATION)
AS SELECT CREATOR,TNAME,
'TABLE',TABLETYPE,' ',' ',REMARKS,

TLABEL,I I,I I,I 1
FROM SYSTEM.SYSCATALOG A

WHERE TNAME IN (SELECT TTNAME

FROM SYSTEM.SYSTABAUTH
WHERE TCREATOR = A.CREATOR
AND GRANTEETYPE = ' &'
AND GRANTEE IN (USER, 'PUBLIC'))

Figure 29. Customizing your object lists using global variables

following:
SET GLOBAL (DSQEC_COLS_SQL = userid.your_local_sql_objects

Installing and Managing QMF on VM

Establishing QMF Support for End Users

If you want to create a view that shows only the tables for which a user has
privileges, but does not require a join, consider defining a view that selects
only from SYSTEM.SYSTABAUTH, but does not return values for REMARKS
or LABEL.

For other DBAs, consider creating another view similar to the default QMF
view, but that selects only from SYSTEM.SYSCATALOG for table list or
SYSTEM.SYSCOLUMNIS for column list. Then the DBAs can name this view
in the DSQEC_TABS_SQL or DSQEC_COLS_SQL global variables and access
descriptive information for any columns in the database.

Follow these rules if you’re creating a list view of your own:

* The view must have the same view column names as the corresponding
QMF-supplied view. The column names in the CREATE VIEW statement of
the alternative view can be in any order.

» All columns must have a data type of CHAR or VARCHAR. QMF returns
errors upon finding other data types.

* Do not exceed the following maximum lengths for columns in the view:
— 18 characters for TNAME, CNAME, and NAME_AT_LOCATION
— 254 characters for REMARKS
— 30 characters for LABEL
— 1 character for RESTRICTED
— 16 characters for LOCATION
— 8 characters for OWNER, TYPE, SUBTYPE, MODEL, and

OWNER_AT_LOCATION

» Always supply values for OWNER, TNAME, TYPE, and CNAME. These

columns cannot be null.

DSQEC_TABS_SQL and DSQEC_COLS_SQL are part of a set of global
variables that help you control aspects of a user’s QMF session. For more
information on using global variables in procedures, see Using QMF . For a
list of global variables and information on using them in applications, see
Developing QMF Applications.

Object List Storage Requirement

For the LIST command, there are two sets of storage requirements for each
row of the object list.

* The QMF internal RPT record collection requires:

Object OWNER key information, 50 bytes

REMARKS, up to 254 bytes

TABLE with a LABEL, up to 30 bytes

ALIAS, 42 bytes

Object information for QUERY, PROC, and FORM, 63 bytes

Chapter 8. Establishing QMF Support for End Users 115

Establishing QMF Support for End Users

* The storage to hold displayed data and control information requires 130
bytes plus the actual number of bytes for REMARKS, up to 254 bytes and
the actual number of bytes for the LABEL associated with a table, up to 30
bytes.

Enabling Users to Create Tables in the Database

116

A QMF user can create a table using any of these methods:
¢ SQL CREATE TABLE statement

Enter the SQL CREATE TABLE statement from a QMF SQL query panel or
run it from a saved query.

* QMF DISPLAY TABLE (or DISPLAY viewname) command, followed by the
SAVE DATA command

All SQL privileges on the underlying table or view are required. If the
name you specify on the SAVE DATA command is the hame of an existing
table, QMF replaces or appends the existing data object. The SAVE
command might be rejected if table attributes don’t match. For more
information on the SAVE DATA command, see QMF Reference or the online
help.

* QMF IMPORT TABLE or IMPORT VIEW command

All SQL privileges on the table or view being imported are required. If the
name the user specifies on the IMPORT command is the name of a table
that already exists, QMF replaces or appends the data in the existing table.
The IMPORT command might be rejected if table attributes don’t match.
For more information on the IMPORT command, see QMF Reference or the
online help.

Depending on the needs of your installation, you might need to create tables
for your users or enable them to create their own tables. Both methods are

shown in Mahle 18 on page 117,

Installing and Managing QMF on VM

Table 18. Creating tables in the database

Establishing QMF Support for End Users

If you’re creating tables for your users:

Step 1

Step 2

Step 3

Step 4

Step 5

Acquire a dbspace as shown in m
and define it to DB2 for VM

before its first use. Use DB2 Server for VM
Database Administration to help you decide
on a private or public dbspace.

To create the table, issue either an SQL
CREATE TABLE statement, a QMF
DISPLAY command followed by a SAVE
DATA command, or an IMPORT TABLE
command. See Using QMF for examples of
creating tables.

Create one or more indexes on the tables
you create, to improve DB2 for VM
performance. See DB2 Server for VSE &
VM SQL Reference for information on the
CREATE INDEX statement and details on
logical design of tables.

Fill the tables with data. Use the Db2 for
VM DBS Utility, QMF IMPORT commands
(for transferring small tables), or other
methods. DB2 Server for VSE & VM
Database Services Utility explains how to
use the DBS Utility. Using QMF explains
exporting and importing objects in QMF.

Grant SQL privileges for the tables to
users who need them, as discussed in
F il Tod |

Step 1

Step 2

Step 3

Step 4

Step 5

If users are creating tables themselves:

Acquire a dbspace as shown in m
and define it to DB2 for VM

before its first use. Use DB2 Server for VM
Database Administration to help you decide
on a private or public dbspace.

Assign the dbspace in the user’'s QMF
profile, using an SQL UPDATE statement
for the SPACE field. Updating profiles is
explained in F'Updating User Profiles” orl

. You can update the SYSTEM
profile if you need to change its default
values.

Grant DB2 for VM RESOURCE authority
to users creating their own tables in public
dbspaces, or acquire a private dbspace for
the user. Users automatically have all SQL
privileges on tables they create.

Provide education on the SQL CREATE
TABLE statement, QMF SAVE DATA and
IMPORT commands, and other guidelines
your site has for creating tables. See QMF
Reference for more information on these
commands.

Grant SQL privileges on any table or view
on which users issue SAVE DATA or
IMPORT commands to create new tables.
Grant at least the SELECT privilege, or
QMF can’t read the data to create a new
table.

SQL privileges for QMF functions and
commands are discussed starting in FSQIl

Brivileges Required to Access Ohjects” o
hage 101

Chapter 8. Establishing QMF Support for End Users

117

Establishing QMF Support for End Users

118

For more information on the CREATE TABLE, CREATE INDEX, and other
SQL statements related to creating tables, see DB2 Server for VSE & VM SQL
Reference

Choosing and Acquiring a dbspace for the User

A dbspace can be either private or public. Any QMF user with DB2 for VM
RESOURCE authority can create tables in a public dbspace. If the dbspace is
private, only the assignee is allowed to create tables in it. For additional
guidance on types of dbspaces, see DB2 Server for VM Database Administration

Using the SQL ACQUIRE Statement
After you decide whether a public or private dbspace best suits éour needs,

acquire the dbspace using a statement similar to the one in . You can
enter this statement from the QMF SQL query panel, then press the Run
function key to run the query.

Substitute PRIVATE for PUBLIC in the statement if you’re acquiring a private

ACQUIRE PUBLIC DBSPACE NAMED dbspacename
(PAGES = 1024)

Figure 30. Acquiring a dbspace

dbspace, and be sure to qualify dbspacename with the SQL authorization ID of
the user for whom you’re acquiring the dbspace.

Sizing a dbspace

The size of the dbspace in an acquire statement is given in pages, where one
page is 4096 bytes. If you don’t specify a page size, a default value of 128
pages is assumed. Estimate the size you need by estimating the size of the
tables the dbspace must hold, as though the tables are reports and you’re

estimating the size of a spill file to hold them. 'Estimating the Space Required

for a Spill File” on page 76 shows an algorithm for estimating the size of a
spill file.

Whatever size you choose, first search the DB2 for VM storage pools for an
existing dbspace close to the size you need. If no dbspace of convenient size
already exists, use the ADD dbspace statement to create a dbspace.
Instructions for adding dbspaces are provided in DB2 Server for VM System
Administration

Granting a User DB2 for VM RESOURCE Authority

You need to grant DB2 for VM RESOURCE authority to any user who needs
to create tables in a public dbspace. To grant a user RESOURCE authority,

issue the SQL statement shown in Eigure 31 on page 119, where userid1,

userid2, and userid3, represent SQL authorization IDs.

Installing and Managing QMF on VM

Establishing QMF Support for End Users

GRANT RESOURCE TO useridl, userid2, userid3, ...

Figure 31. SQL statements to grant RESOURCE authority to more than one user

A user with RESOURCE authority can:

* Acquire a private dbspace for his or her own use

» Create tables in a public dbspace, in addition to those created in a private
dbspace

If you want to allow a user to create tables, but need to maintain control over
how much resource is used, acquire a private dbspace for the user rather than
granting RESOURCE authority. That way, you can control the size of the
dbspace and the amount of resource used.

See DB2 Server for VM Database Administration for more information on
acquiring a dbspace and a discussion of DB2 for VM authority levels.

Enabling Users to Confirm Table Changes Before They are Made

Using the QMF Table Editor, a user can add, delete, or update information in

a database table. If the value of the CONFIRM field of a user’s QMF profile is
YES, QMF displays a panel before making database changes. This panel asks

users if they are sure they want to change the database.

To enable users to confirm their database changes, first make sure the dbspace
you chose for the user is recoverable. Because changes to DB2 for VM tables
stored in nonrecoverable dbspaces cannot be rolled back, or canceled,
answering NO on the Table Editor confirmation prompt panel for database
changes doesn’t prevent the changes to the table from taking place.

As end users become more comfortable changing data in the database, they
might not need QMF to display these confirmation panels. You can use the
following global variables to disable the panels for specific categories of
actions allowed by the Table Editor:

+ DSQCP_TEADD for the ADD category

* DSQCP_TECHG for the CHANGE category

* DSQCP_TEDEL for the DELETE category

+ DSQCP_TEEND for the END/CANCEL category

*+ DSQCP_TEMOD for the MODIFY category

The Table Editor loads values for these variables when it is initialized. The
possible values for each variable are:

0 Disables the confirmation panel for the category.
1 Enables the confirmation panel for the category.
2 (The default) Either disables or enables the panel for the category,

depending on how the SAVE keyword of the EDIT command is set:
* When SAVE=IMMEDIATE, the confirmation panel displays.

Chapter 8. Establishing QMF Support for End Users 119

Establishing QMF Support for End Users

* When SAVE=END, the confirmation panel displays for the DELETE,
MODIFY, and END/CANCEL categories, but does not display for
the ADD and CHANGE categories.

For more information about functions provided by the QMF Table Editor, see
Using QMF.

Enabling Users to Support a Chart

QMF users can create charts from their reports through the Interactive Chart
Utility (ICU)—a feature of GDDM.

From a single report, users can specify different chart forms, such as scatter
charts, pie charts, and bar charts. Users can use IBM-supplied chart forms or
create their own. In addition, they can save newly created chart forms, if they
have libraries in which to store them.

The IBM-supplied chart forms are supplied on the QMF production disk.
When the user saves a chart form, it is saved on the user’s A disk. Charts on a
user’s A disk are used before charts on the QMF production disk.

This arrangement gives each user access to both the IBM-supplied chart forms
and those the user saved. It also prevents replacement of the IBM-supplied
chart forms.

Maintaining QMF Objects Using QMF Control Tables

120

Periodically, you need to condense and reorganize the QMF control tables that
store QMF queries, forms, and procedures. Regular maintenance of the QMF
control tables might involve tasks such as transferring objects to new owners
or enlarging the dbspace for the tables when it is no longer large enough to
hold existing QMF objects.

All QMF queries, forms, and procedures are stored among three QMF control
tables:
« The Q.OBJECT DIRECTORY table, which is described in FReading thd
BLOBIECT DIRECTORY Tahle” 71
+ The Q.OBJECT DATA table, which is described in FReading thd
BLORIECT DATA Table” 7
+ The Q.OBJECT REMARKS table, which is described in FReading thd

Keep QMF and the database running efficiently by periodically listing,
displaying, or deleting QMF objects from these tables and reorganizing them
when necessary. You might also need to use the information in these tables to
transfer an object from one owner to another.

Installing and Managing QMF on VM

Establishing QMF Support for End Users

Reading the Q.OBJECT_DIRECTORY Table
This table contains a row for each QMF query, form, and procedure in the
database. The table has the index Q.OBJECT_DIRECTORYX, with the
UNIQUE attribute. The keyed columns are OWNER and NAME. No two rows
can have identical values for these columns.

The Q.OBJECT_DIRECTORY table has the structure shown in ffable 19:
Table 19. Structure of the Q.OBJECT_DIRECTORY table

Column name

Data type

Length (bytes)

Nulls allowed?

Function/values

OWNER

CHAR

8

No

Shows the SQL authorization ID
of the creator of the object.

NAME

VARCHAR

18

No

Shows the name of the object.

TYPE

CHAR

No

Shows the type of object:
FORM, PROC, or QUERY.

SUBTYPE

CHAR

Yes

Shows SQL, QBE, or
PROMPTED when TYPE is
QUERY. Null or blank if TYPE
is not QUERY.

OBJECTLEVEL

INTEGER

No

QMF uses this number to
reconstruct an object from its
defining text in the
Q.OBJECT_DATA table.

RESTRICTED

CHAR

No

YES if the object has not been
shared (using the SHARE
parameter of the QMF SAVE
command); NO if the object has
been shared with other users.

MODEL

CHAR

Yes

This value is REL, indicating
relational data.

CREATED

TIMESTAMP

Yes

Shows the timestamp value for
when an object was created.
The value is recorded after
SAVE or IMPORT commands.

MODIFIED

TIMESTAMP

Yes

Shows the timestamp value for
when an object was last
modified. The value is recorded
after SAVE or IMPORT
commands.

Chapter 8. Establishing QMF Support for End Users 121

Establishing QMF Support for End Users

Table 19. Structure of the Q.OBJECT_DIRECTORY table (continued)

Column name Data type Length (bytes) Nulls allowed? Function/values

LAST_USED DATE Yes Shows the date value for when
an object was last used. The
value is updated only once each
day the object is accessed. Note
that the LAST_USED value may
not be updated, for
performance reasons, when
using a QMF object while the
current QMF report is not yet
complete.

Reading the Q.OBJECT_DATA Table
This table contains one or more rows for each query, form, and procedure in
the database. Each row contains all or part of the defining text for one of
these objects. Objects are reconstructed from this text by combining the text
with the corresponding format number in the OBJECTLEVEL column of the
Q.OBJECT_DIRECTORY table.

The Q.OBJECT_DATA table has the index Q.OBJECT_OBJDATAX, with the
UNIQUE attribute. Keyed columns are OWNER, NAME, and SEQ.

The table has the structure shown in [fable 20:
Table 20. Structure of the Q.OBJECT_DATA table

Column name Data type Length (bytes) Nulls allowed? Function/values

OWNER CHAR 8 No Shows the SQL authorization ID
of the creator of the object.

NAME VARCHAR 18 No Shows the name of the object.

TYPE CHAR 8 No Shows the type of object:
FORM, PROC, or QUERY.

SEQ SMALLINT 2 No Indicates the sequence that this

text occupies within the entire
text of the object. For example,
if this row is the first row of
text in the object, SEQ is 1; if it
is the second, SEQ is 2, and so
on.

122 Installing and Managing QMF on VM

Establishing QMF Support for End Users

Table 20. Structure of the Q.OBJECT_DATA table (continued)

Column name Data type Length (bytes) Nulls allowed? Function/values
APPLDATA LONG 3600 (see note) Yes Contains all or a portion of text
VARCHAR (see that defines the object. Text
note) appears in an internal QMF
format. The OBJECTLEVEL
column in
Q.OBJECT_DIRECTORY defines
this format.

Note: With DatalJoiner V1.2.1 and DB2 for AlX, Parallel Edition V1.2, the data type and length for
APPLDATA are VARCHAR(3600). This is a permanent restriction for V1 SQL databases.

Reading the Q.OBJECT_REMARKS Table

This table contains one row for each query, form, and procedure in the
database. The row contains comments entered using the QMF SAVE command
when the object was created or last replaced. (See the description of the SAVE
command in QMF Reference.)

The Q.OBJECT_REMARKS table has the index Q.OBJECT_REMARKSX, with
the UNIQUE attribute. Keyed columns are OWNER and NAME.

The table has the structure shown in [able 21

Table 21. Structure of the Q.OBJECT_REMARKS table

Column name Data type Length (bytes) Nulls allowed? Function/values

OWNER CHAR 8 No Shows the SQL authorization ID
of the user who created the
object

NAME VARCHAR 18 No Shows the name of the object.

TYPE CHAR 8 No Shows the type of the object:
FORM, PROC, or QUERY.

REMARKS VARCHAR 254 Yes Contains the comment that was

saved with the object when it
was created or replaced.

Listing QMF Queries, Forms, and Procedures

To get the information you need to help you maintain the QMF environment,
you need to list the queries, forms, and procedures that QMF users have
saved in the database. With DBA authority you can list QMF objects you do

not own using the query in Eigure 32 on page 124,

Chapter 8. Establishing QMF Support for End Users 123

Establishing QMF Support for End Users

SELECT D.NAME, D.TYPE, D.SUBTYPE, D.RESTRICTED, R.REMARKS
FROM Q.OBJECT_DIRECTORY D,
Q.0BJECT_REMARKS R

WHERE D.OWNER = 'userid'
AND D.OWNER = R.OWNER
AND D.NAME = R.NAME

ORDER BY D.TYPE, D.SUBTYPE, D.RESTRICTED

Figure 32. Listing queries, forms, and procedures owned by a particular user

This query returns a list of objects sorted by type (FORM, PROC, QUERY)
and further by subtype (SQL, QBE, or PROMPTED) if TYPE is query. Enclose
the value you supply for userid in single quotation marks. Objects of each
type are further sorted by whether they’ve been shared by the owner. Shared
status is reflected in the RESTRICTED column of the Q.OBJECT_DIRECTORY
table.

Displaying QMF Queries, Forms, and Procedures

If listing the objects doesn’t provide enough information in the REMARKS
column, try displaying the object by one of the following methods:

* Connecting to the database using the user’s SQL authorization ID. For
example, to connect as user JONES who has a password of MYPW:

CONNECT JONES (PA=MYPW

Then issue the QMF DISPLAY command for each object you want to
display.

* Running the following query to share the user’s objects, then displaying
them from your own ID:
Enclose the value you supply for userid in single quotes.

UPDATE Q.0BJECT_DIRECTORY

SET RESTRICTED = 'N'
WHERE OWNER = 'userid'

Figure 33. Sharing another user’s objects with all users

Important: Run this query only if you don’t need to track which of the
user’s objects are restricted and which are not. After you run
this query, you can set RESTRICTED back to Y, but you won’t
know which objects were originally restricted.

Transferring Ownership of Queries, Forms, and Procedures
Use the queries shown in Eigure 34 on page 125 to transfer QMF objects from

one user to another. Ensure you run all three queries.

124 nstalling and Managing QMF on VM

Establishing QMF Support for End Users

Important: First make sure that the new owner has no objects saved with the
name of the object you’re transferring, or QMF replaces the
existing object with the object you transfer.

UPDATE Q.OBJECT_DIRECTORY UPDATE Q.OBJECT_REMARKS UPDATE Q.OBJECT_DATA

SET OWNER = 'newuserid' SET OWNER = 'newuserid' SET OWNER = 'newuserid'
WHERE OWNER = 'olduserid' WHERE OWNER = 'olduserid' WHERE OWNER = 'olduserid'
AND NAME IN namelist AND NAME IN namelist AND NAME IN namelist

Figure 34. Transferring QMF objects to another user

In the queries shown in m namelist is a list of the object names to be
transferred; the list must be set off by parentheses, with each name separated
by a comma and surrounded by single quotes. For example:

("QUERY1', 'QUERY2', 'FORMA', 'PROCB')

For queries or procedures that name objects qualified with the old SQL
authorization 1D, be sure to change the qualifier. For example, if you transfer
MYQUERY from BAXTER to JONES, change the name from
BAXTER.MYQUERY to JONES.MYQUERY.

Use an SQL query like the one in Eigure 33 on page 124 to change the

RESTRICTED column value to Y if you decide you want to share the object
after transferring it.

The user might also have CMS files containing queries, forms, and
procedures. You use the QMF IMPORT command to save those of interest to
other users. Using this command saves them under the current DB2 for VM
user ID, and you can then transfer their ownership to another user ID.

Deleting Obsolete Queries, Forms, and Procedures

Use the SQL in Eigure 39 to delete all of a particular user’s QMF queries,
forms, and procedures. Ensure you run all three queries, because the internal
representation of each object spans the three QMF control tables
Q.OBJECT_DIRECTORY, Q.OBJECT_DATA, and Q.OBJECT_REMARKS.
Surround values you supply for the user ID variables with single quotes.

Unpredictable results can occur if the tables are not properly updated.

DELETE FROM Q.OBJECT_DIRECTORY DELETE FROM Q.OBJECT_REMARKS DELETE FROM Q.OBJECT_DATA
WHERE OWNER = 'olduserid' WHERE OWNER = 'olduserid' WHERE OWNER = 'olduserid'

Figure 35. Deleting unnecessary objects from the QMF control tables

Chapter 8. Establishing QMF Support for End Users 125

Establishing QMF Support for End Users

126

You can also delete obsolete objects by using the date and time sorting
capabilities in Q.OBJECT_DIRECTORY. You can select every object where the
data last used was before 06/01/95 and delete all the appropriate rows from
the three control tables.

Enlarging the dbspace for the QMF Object Control Tables
Periodically, QMF objects might become too large for the dbspace that
contains the QMF object control tables Q.OBJECT_DIRECTORY,
Q.OBJECT_DATA, and Q.OBJECT_REMARKS.

Use the DB2 for VM DBS utility to enlarge the dbspace for the QMF object

control tables:

1. Archive the database, so that a backup copy is available for recovery if
you need it.

2. Unload the dbspace to a CMS sequential file using the UNLOAD dbspace
command of the DBS utility.

[Fanle 23 shows the dbspace names and default sizes for the QMF object
control tables. Dbspace names for other QMF control tables are shown in

All dbspaces for the QMF control tables are public. The sizes are given in
pages, where each page is one 4096-byte block.

Table 22. Dbspaces for control tables that store QMF objects

Dbspace Contents Default
name size
DSQTSCT1 Q.OBJECT_DIRECTORY table 256 pages
DSQTSCT2 Q.OBJECT_REMARKS table 256 pages
DSQTSCT3 Q.OBJECT_DATA table 5120 pages

3. Drop the dbspace using the DBS utility or ISQL.
4. Acquire a larger public space for the dbspace using either the DBS utility
or ISQL. For example:

ACQUIRE PUBLIC DBSPACE NAMED PUBLIC.DSQxxxxx
(PAGES=xxx, PCTFREE=25, LOCK=ROW)

5. Use the DBS utility to reload the QMF object control tables into the new
dbspace using as the input file the file you specified when you unloaded
the tables. Use the NEW keyword for the RELOAD dbspace command.

6. Recreate indexes for the reloaded tables using the DBS utility or ISQL.
Make sure that:

* The indexes are unique.

Installing and Managing QMF on VM

Establishing QMF Support for End Users

¢ The index name for the Q.OBJECT_DIRECTORY table is
OBJECT_DIRECTORYX and is keyed on the OWNER and NAME
columns.

* The index name for the Q.OBJECT_DATA table is OBJECT_OBJDATAX
and is keyed on the OWNER, NAME, and SEQ columns.

* The index name for the Q.OBJECT_REMARKS table is
OBJECT_REMARKSX and is keyed on the OWNER and NAME
columns.

7. Recreate views if the dbspaces for Q.OBJECT_DIRECTORY or
Q.OBJECT_REMARKS were dropped. For example:
To provide access to this view to all QMF users, grant SELECT authority
CREATE VIEW Q.DSQEC_QMFOBJS
(OWNER, TNAME, TYPE, SUBTYPE, MODEL, RESTRICTED, REMARKS, LABEL,
LOCATION, OWNER_AT_LOCATION, NAME_AT LOCATION)
AS SELECT
A.OWNER, A.NAME, A.TYPE, SUBTYPE, MODEL, RESTRICTED,
REMARKS, 1 |’ 1 |’ 1 |’ [
FROM Q.OBJECT_DIRECTORY A, Q.O0BJECT_REMARKS B
WHERE A.OWNER = B.OWNER AND A.NAME = B.NAME
AND (A.OWNER = USER OR RESTRICTED = 'N')

Figure 36. Recreating a view after dropping dbspaces

to PUBLIC:
GRANT SELECT ON Q.DSQEC_QMFOBJS TO PUBLIC

8. Alter the dbspace to allow the free space on occupied pages to be used.
For example:

ALTER DBSPACE PUBLIC.DSQTSCT1 (PCTFREE=5)

9. If you change the QMF control tables, reload the QMF SQL packages with
the install exec DSQ2PREP.

For more information on enlarging dbspaces, see DB2 Server for VM Database
Administration For instructions and syntax of the DBS utility and 1SQL
commands, see DB2 Server for VSE & VM Database Services Utility and DB2
Server for VSE & VM SQL Reference

Maintaining Tables and Views Using DB2 for VM System Tables

Anyone with DBA authority can access the DB2 for VM tables to list, display,
transfer, or delete tables and views. For complete information on using these
DB2 for VM system tables, see DB2 Server for VSE & VM SQL Reference

Chapter 8. Establishing QMF Support for End Users 127

Establishing QMF Support for End Users

Listing Tables and Views

The query in Eigure 37 returns a list of tables with columns TABLETYPE (R
indicates a table, V indicates a view), TNAME (tablename), DBSPACENAME,
and REMARKS.

SELECT TABLETYPE, TNAME, DBSPACENAME, REMARKS
FROM SYSTEM.SYSCATALOG
WHERE CREATOR = 'userid'
ORDER BY TABLETYPE, TNAME

Figure 37. Listing DB2 for VM tables and views owned by a particular user

Transferring Ownership of a Table or View

Transferring ownership of a table or view is not recommended.

Deleting a Table or View from the Database

Use the SQL DROP TABLE statement or the QMF ERASE command to delete
tables or views from the database. Only the creator of the table or someone
with DBA authority can delete it.

When you delete the row of the SYSTEM.SYSCATALOG table that defines the
table, all views, synonyms, and indexes associated with the table are also
deleted. Before you drop a table from the database, ensure that no other user
relies on it (for example, for command synonym or function key definitions).

For more information on erasing tables, see DB2 Server for VM Database
Administration

Supporting Locally Defined Date/Time Formats

128

QMF’s support of DATE, TIME, and TIMESTAMP data types makes it
possible for your users to use local date/time exit routines. When planning
for local date/time exits, remember that these are DB2 for VM exits, not QMF
exits. For details about how these exits are created refer to DB2 Server for VM
System Administration

For QMF to use a local date/time exit, the text files containing the date/time
exits “ARIUXDT” and “ARIUXTM” must be placed on a minidisk that is
accessible to QMF, when QMF starts. If QMF is being started using DCSS
mode, two relocatable module files must be created from the existing exit text
files “ARIUXDT” and “ARIUXTM”. To create the relocatable module files
issue the following CMS commands:

LOAD ARIUXDT (RLDSAVE)

GENMOD ARIUXDT

LOAD ARIUXTM (RLDSAVE)
GENMOD ARIUXTM

Installing and Managing QMF on VM

Establishing QMF Support for End Users

Accessing the DXT End User Dialogs (ISPF Only)

QMF’s EXTRACT command accesses IBM’s Data Extract (DXT) End User
Dialogs. With these services, users can extract data from many different
sources and load that data into DB2 for VM tables. Possible data sources
include IMS™, VSAM, physical sequential files, and tables from other DB2 for
VM systems.

If you plan to support the EXTRACT command, ensure that:
» \ersion 2 Release 5 of DXT dialogs is operating at your installation

+ All potential users of the QMF EXTRACT command have been enrolled for
DXT dialogs, and have been educated in its use

Supporting the EXTRACT Command

To support the EXTRACT command you must:
* Make files available to the users of that command
* Reallocate these files after a user ends the command

These files do not appear in the QMF Invocation EXEC that is described in
Installing and Managing QMF on OS/390. The file types can be in DXT libraries
that are common to all users, or can be files created for the individual users
when the users are enrolled in DXT.

The files are described in the Data Extract: Planning and Administration Guide
for Dialogs If you are enrolling DXT dialog users, you need to read that
document. If you are not, all you need to know about the process is included
in the following discussion.

Allocating Resources

QMF can support English, Kanji, and Uppercase (UCF) DXT dialogs. The
different DXT files that are required by these dialogs are allocated with ISPF
LIBDEF statements (more about using LIBDEF shortly). The files needed for
Version 2 Release 2 dialogs are the same for Version 2 Release 3.

[Cable 23 on page 130 shows the files required for any variety of Version 2
Release 3 dialogs. The figure identifies the files and their associated

FILEDEFs. For any given FILEDEF, the files in the table are in addition to any
files that were allocated for that FILEDEF.

The names shown in this table are the default names, provided by DXT. Your
installation might be using different names for these files.

In the table, each lowercase letter n is the language key. For DXT dialogs, the
language keys are E (English), K (Kanji), and U (Uppercase).

Chapter 8. Establishing QMF Support for End Users 129

Establishing QMF Support for End Users

130

Example: For DXT dialogs, in which the language key is E, the file name and
file type to be added to ISPMLIB is named DVRMLIBE MACLIB.

Table 23. Files needed for Version 2 Release 5 DXT

FILEDEF Default File Name/Filetype

ISPLLIB DVRLOAD TXTLIB

ISPPLIB DVRPLIBn MACLIB

ISPMLIB DVRMLIBn MACLIB

ISPSLIB DVRIJEDIn MACLIB DVRSLIBn MACLIB
ISPTLIB DVRTLIBn MACLIB DVRTADMn MACLIB
ISPTABL DVRTLIBn MACLIB

DVRDJEDI DVRIEDIn MACLIB

DVRDJEDO DVRJEDIn MACLIB

DVRDIMEX DVRIMEXn MACLIB

DVREUADD DVRTADMn MACLIB

DVRSTABL DVRTLIBn MACLIB

Allocating and Reallocating Resources Using EXECs

There are two IBM-supplied EXECs. QMF calls one of these just before the
execution of an EXTRACT command, and the other just after the execution
ends. With no modifications, these EXECs do nothing. But with suitable
changes, the first can allocate the added resources, and the second can
reallocate them.

Eigure 38 on page 132 shows an EXEC that you can use to do the necessary

allocations. It has the following advantages over adding EXEC statements to
your users’ CMS invocation EXEC:

* It can apply to every user of the EXTRACT command.

* It does the allocations ONLY when a user issues an EXTRACT command.

Preparing the Allocation EXEC

This EXEC is named DSQABX2L and is located on QMF’s production disk.
Whenever a user executes the EXTRACT command, QMF calls this EXEC
through the ISPF SELECT service. The call passes the EXEC no parameters—a
fact that is used when we consider possible EXEC modifications.

Before the EXEC can do its allocations, you must modify it. The following list
describes some modifications that might or might not be necessary, and one
modification that is mandatory:

1. Remove the first executable statement.

Installing and Managing QMF on VM

Establishing QMF Support for End Users

This is the statement EXIT 0. It ensures that the EXEC does nothing if you
aren’t supporting the EXTRACT command or are making the allocations in
some other manner.

. Set the language key.

The first thing the EXEC does is to set the DXT language key variable
(LKEY), to E for English. If your DXT product is not the English version,
you must set the language key to the proper DXT value.

. Set the object sharing variable.

If you have taken advantage of the DXT dialogs object sharing capability,
you need to set the variable OBJSHR to a value of YES. By doing this you
allocate the shared variable DVRTLIB located on the DXT production disk.
If you are not using object sharing, set the variable OBJSHR to a value of
NO. Values for this variable can either be YES or NO.

Update the disk linkage.

After setting LKEY and OBJSHR, the next thing that the EXEC does is to
link to and access the DXT production disk. You might have to alter any
or all of the following to fit your DXT installation:

* DXT production disk owner ID

¢ DXT production disk address

* DXT production disk READ password

* The QMF user’s disk access address for the DXT disk

* The QMF user’s disk access mode for the DXT disk

Modify the code as necessary.

m shows how the EXEC generates the file names for its LIBDEF
statements. These file names are the defaults. Modify the code, if
necessary, to produce the names that are used at your installation, but do
not modify the logic or return codes for failed allocations.

Chapter 8. Establishing QMF Support for End Users 131

Establishing QMF Support for End Users

132

/***/

/* REMOVE THE FOLLOWING STATEMENT TO ACTIVATE EXEC

*/

/***/

EXIT O
TRACE OFF

/***/

/* EXEC NAME: DSQABX2L

/*

/* DESCRIPTIVE NAME: DXT/END USER DIALOGS LIBRARY ALLOCATIONS
/* EXEC FOR THE QMF-DXT BRIDGE

/*

/* COPYRIGHT: 5645-DB2, 5648-A70 (C) COPYRIGHT IBM CORP.

/* 1982, 1998

/* (PubTished)

/* LICENSED MATERIAL - PROGRAM PROPERTY OF IBM

/* ALL RIGHTS RESERVED

/* U.S. GOVERNMENT USERS RESTRICTED RIGHTS

/* - USE, DUPLICATION OR DISCLOSURE RESTRICTED BY
/* GSA ADP SCHEDULE CONTRACT WITH IBM CORP.

/*

/* STATUS: VERSION 7 RELEASE 1 LEVEL 0

/*

/* FUNCTION:

/* THIS EXEC IS CALLED PRIOR TO CALLING THE DXT PRODUCT. THIS
/* EXEC ALLOWS THE USER TO ALLOCATE DXT LIBRARIES PRIOR TO
/* STARTING THE DXT PRODUCT. IF YOU ALLOCATED DXT LIBRARIES
/* PRIOR TO STARTING QMF YOU SHOULD NOT HAVE TO MODIFY THIS
/* EXEC. IN WHICH CASE THE EXEC SIMPLY EXITS WITH A ZERO

/* RETURN CODE.

/*

/* IF YOU DID NOT ALLOCATE DXT LIBRARIES PRIOR TO STARTING
/* THE QMF PRODUCT YOU WILL NEED TO ALLOCATE THEM USING THIS
/* EXEC. IF YOU ALLOCATE DXT LIBRARIES USING THIS EXEC YOU
/* WILL NEED TO CHANGE EXEC "DSQABX2F" WHICH IS EXECUTED

/* UPON COMPLETION OF THE DXT PRODUCT.

/*

/* IF YOUR DXT PRODUCT IS NOT THE ENGLISH VERSION, YOU MUST
/* SET THE LANGUAGE KEY TO THE PROPER VALUE. SEE VARIABLE

/* "LKEY" IN THIS EXEC FOR CURRENT VALUE.

/*

/* IF YOU HAVE TAKEN ADVANTAGE OF THE DXT DIALOGS OBJECT

/* SHARING CAPABILITY, YOU WILL NEED TO SET VARIABLE "OBJSHR"
/* TO A VALUE OF "YES". BY DOING THIS YOU WILL ALLOCATE THE
/* SHARED DVRTLIB LOCATED ON THE DXT PRODUCTION DISK. IF YOU
/* ARE NOT USING OBJECT SHARING, SET THE VARIABLE "OBJSHR"
/* TO A VALUE OF "NO".

Figure 38. EXEC to allocate DXT CMS files (DSQABX2L) (Part 1 of 4)

Installing and Managing QMF on VM

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Establishing QMF Support for End Users

/% */
/* INPUT: NONE */
/% */
/* OUTPUT: NONE x/
/* */
/* EXIT CONDITIONS: NONE */
/% */
/* ABEND CODE: VALUE - NONE */
/* */
/* EXTERNAL REFERENCES: */
/* ROUTINES: NONE */
/* DATA AREAS: NONE */
/* */
/% CHANGE ACTIVITY: NONE */
/* */
R R R T e e Ty
/*=END-OF =SPECIFICATION= %% %k sk s kok ok ek ok ok % Kkkkkkkhkkkhkkhhkkhhkrkhhkxk/
R R R T T T e I ey
/* SET DXT PRODUCT LANGUAGE CODE AND OBJECT SHARING */
R R R S e Ty
LKEY = 'E' /* SET ENGLISH LANGUAGE KEY */
0BJSHR = 'NO' /* SET OBJECT SHARING VARIABLE =/
R e T T Y
/* LINK TO DXT PRODUCTION DISK */
R R T e Ty
OWNERID = 'DXT' /* DXT PRODUCTION DISK OWER ID =/
OWNER_ADDRESS = '191' /* DXT PRODUCTION DISK ADDRESS =*/
PW = 'DXTREAD' /* DXT PRODUCTION DISK READ PW =/
USER_ADDRESS = '291' /* ACCESS ADDRESS OF USER */
UMODE = 'p! /* ACCESS FILE MODE OF USER */

ADDRESS CMS 'SET CMSTYPE HT'

ADDRESS COMMAND 'CP LINK' OWNERID OWNER_ADDRESS USER_ADDRESS 'RR' PW
IF RC ~= 0 THEN EXIT RC

ADDRESS CMS 'ACCESS' USER_ADDRESS UMODE

IF RC == 0 THEN EXIT RC

ADDRESS CMS 'SET CMSTYPE RT'

/***/

/* SET ISPF ERRORS TO RETURN TO THIS EXEC */

[FkFkkk kg kk ko kk ko kkkkkkhkkk ko kk ko kk ok k kK kA FERRRKKII KK HARERKK*H KKK *xk [
ADDRESS ISPEXEC 'CONTROL ERRORS RETURN'
IF RC == 0 THEN EXIT RC

Figure 38. EXEC to allocate DXT CMS files (DSQABX2L) (Part 2 of 4)

Chapter 8. Establishing QMF Support for End Users

133

Establishing QMF Support for End Users

/***/

/* ISPF LIBDEF STATEMENTS FOR DXT FOLLOW: */

/***/

LIBS = 'DVRLOAD TXTLIB' UMODE
ADDRESS ISPEXEC 'LIBDEF ISPXLIB FILE ID('LIBS')'
IF RC == 0 THEN EXIT RC

LIBS = 'DVRPLIB'LKEY' MACLIB' UMODE
ADDRESS ISPEXEC 'LIBDEF ISPPLIB FILE ID('LIBS')'
IF RC == 0 THEN EXIT RC

LIBS = 'DVRMLIB'LKEY' MACLIB' UMODE
ADDRESS ISPEXEC 'LIBDEF ISPMLIB FILE ID('LIBS')'
IF RC == 0 THEN EXIT RC

LIBS = 'DVRJEDI'LKEY' MACLIB A , DVRSLIB'LKEY' MACLIB' UMODE
ADDRESS ISPEXEC 'LIBDEF ISPSLIB FILE ID('LIBS")"
IF RC == 0 THEN EXIT RC

LIBS = 'DVRTLIB'LKEY' MACLIB A , DVRTADM'LKEY' MACLIB' UMODE
ADDRESS ISPEXEC 'LIBDEF ISPTLIB FILE ID('LIBS')"
IF RC == 0 THEN EXIT RC

ADDRESS ISPEXEC 'LIBDEF ISPTABL FILE ID(DVRTLIB'LKEY' MACLIB A) '
IF RC == 0 THEN EXIT RC

IF OBJSHR = 'NO' THEN
DO
ADDRESS ISPEXEC 'LIBDEF DVRDJEDI FILE ID(DVRJEDI'LKEY' MACLIB A)'
IF RC == 0 THEN EXIT RC
END
ELSE
DO
ADDRESS ISPEXEC 'LIBDEF DVRDJEDI FILE ID(DVRJEDI'LKEY' MACLIB 'UMODE')'
IF RC == 0 THEN EXIT RC
END

Figure 38. EXEC to allocate DXT CMS files (DSQABX2L) (Part 3 of 4)

134 Installing and Managing QMF on VM

Establishing QMF Support for End Users

ADDRESS ISPEXEC 'LIBDEF DVRDJEDO FILE ID(DVRJEDI'LKEY' MACLIB A)'
IF RC == 0 THEN EXIT RC

ADDRESS ISPEXEC 'LIBDEF DVRDIMEX FILE ID(DVRIMEX'LKEY' MACLIB A)'
IF RC == 0 THEN EXIT RC

ADDRESS ISPEXEC 'LIBDEF DVREUADD FILE ID(DVRTADM'LKEY' MACLIB' UMODE ')'
IF RC == 0 THEN EXIT RC

IF OBJSHR = 'YES' THEN
DO
ADDRESS ISPEXEC 'LIBDEF DVRSTABL FILE ID(DVRTLIB'LKEY' MACLIB' UMODE ')'
IF RC == 0 THEN EXIT RC
END

EXIT 0

Figure 38. EXEC to allocate DXT CMS files (DSQABX2L) (Part 4 of 4)

Preparing the Reallocation EXEC

The EXEC is shown in Eigure 39 on page 136. It is named DSQABX2F and is
located on the QMF production disk. QMF calls this EXEC through the ISPF

SELECT service, right after the execution of the EXTRACT command. It is
called to reallocate QMF libraries if the ISPF LIBDEF function was used to
allocate DXT libraries. The call passes the EXEC no parameters, just as the call
to the allocating EXEC passes that EXEC no parameters.

Before the EXEC can work properly for your users, you might need to modify
it. If you allocated all your DXT libraries before you started QMF or ISPF, you
should not modify this EXEC. It then exits without performing any library
reallocation.

If you allocated QMF libraries using the ISPF LIBDEF function, you must
execute this EXEC to reallocate the QMF libraries because they were replaced
by DXT library definitions when the EXEC DSQABX2L was executed.

Possible modifications to the EXEC are:
* Remove the first executable statement.

This is the statement EXIT 0. It ensures that the EXEC does nothing if you
aren’t supporting the EXTRACT command or are making the allocations in
some other manner.

* |If necessary, change the DXT disk address.

The first thing the EXEC does is to release the DXT production disk. You
need to modify the statement USER_ADDRESS = '291' depending on the
changes you made when updating the disk linkage to DXT when executing

the EXEC DSQABX2L (see I‘Preparing the Allocation EXEC” on page 130).

Chapter 8. Establishing QMF Support for End Users 135

Establishing QMF Support for End Users

136

/***/

/* REMOVE THE FOLLOWING STATEMENT TO ACTIVATE EXEC

/***/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

EXIT 0

TRACE OFF
/***/
/* EXEC NAME: DSQABX2F
/*
/* DESCRIPTIVE NAME: DXT/END USER DIALOGS LIBRARY FREE
/* EXEC FOR THE QMF-DXT BRIDGE
/*
/* COPYRIGHT: 5645-DB2, 5648-A70 (C) COPYRIGHT IBM CORP.
/* 1982, 1998
/* (PubTlished)
/* LICENSED MATERIAL - PROGRAM PROPERTY OF IBM
/* ALL RIGHTS RESERVED
/* U.S. GOVERNMENT USERS RESTRICTED RIGHTS
/* - USE, DUPLICATION OR DISCLOSURE RESTRICTED BY
/* GSA ADP SCHEDULE CONTRACT WITH IBM CORP.
/*
/* STATUS: VERSION 7 RELEASE 1 LEVEL 0

Figure 39. EXEC to reallocate DXT CMS files (DSQABX2F) (Part 1 of 3)

Installing and Managing QMF on VM

*/

Establishing QMF Support for End Users

/* FUNCTION: */
/* */
/* THIS EXEC IS CALLED WHEN THE DXT PRODUCT HAS ENDED. THIS */
/% EXEC IS USED TO FREE ANY ALLOCATIONS MADE BY THE EXEC */
/* "DSQABX2L" AND REALLOCATE QMF LIBRARIES IF THE "LIBDEF" */
/* FUNCTION WAS USED TO ALLOCATE DXT PRODUCT LIBRARIES. */
/* */
/* IF YOU ALLOCATED ALL OF YOUR DXT LIBRARIES BEFORE YOU */
/* STARTED QMF OR ISPF, YOU SHOULD NOT MODIFY THIS EXEC. */
/* THE EXEC THAT IS DISTRIBUTED BY THE QMF PRODUCT EXITS */
/% AND PERFORMS NO LIBRARY ALLOCATION. */
/* */
/* IF YOU ALLOCATED QMF LIBRARIES USING "LIBDEF", YOU MUST */
/* USE THIS EXEC TO RE-ALLOCATE THE QMF LIBRARIES BECAUSE */
/* THEY WERE REPLACED BY DXT LIBRARY DEFINITIONS WHEN EXEC */
/* "DSQABX2L" WAS EXECUTED. */
/% */
/* IF YOUR QMF PRODUCT IS NOT THE ENGLISH VERSION, YOU MUST =*/
/% SET THE LANGUAGE KEY TO THE PROPER VALUE. SEE VARIABLE */
/% "LKEY" IN THIS EXEC FOR CURRENT VALUE. */
/* */
/* INPUT: NONE x/
/% 5/
/* OUTPUT: NONE */
/+ */
/* EXIT CONDITIONS: NONE */
/* */
/* ABEND CODE: VALUE - NONE */
/* */
/* EXTERNAL REFERENCES: */
/* ROUTINES: NONE */
/% DATA AREAS: NONE */
/* */
/* CHANGE ACTIVITY: NONE */
/* */
/*** """"""""""" ***/

/*-END-OF -SPECIFICATION-**%%%%kkkkkkkkhkhhhkrhhhrhhhrkhhhrhhhhhhhhrhhrrs/

/***/

/* SET QMF PRODUCT LANGUAGE CODE */
[HF ke ke ke ok ko ko ok ko ko ok ko ok ko ok ko ke ke ke ko ok ko ok ko ok ko kR ke ko
LKEY = 'E' /* SET ENGLISH LANGUAGE KEY */

Figure 39. EXEC to reallocate DXT CMS files (DSQABX2F) (Part 2 of 3)

Chapter 8. Establishing QMF Support for End Users

137

Establishing QMF Support for End Users

/***/

/* RELEASE DXT PRODUCTION DISK */
[Hkdk ko ko ko ko ko ko ko ko ko ko ko ko ko ko kR kR Rk ke k
USER_ADDRESS = '291' /* SET ADDRESS OF DXT DISK */

ADDRESS CMS 'SET CMSTYPE HT'
ADDRESS CMS 'RELEASE' USER_ADDRESS ' (DET)'
ADDRESS CMS 'SET CMSTYPE RT'

T ——— e 5k 5o 36 e ek ok ok ok ok ok ok o e ok ok ok ok ok o I ————————

/* SET ISPF ERRORS TO RETURN TO THIS EXEC */

[ek ke ke ko ko ko ok ko ko ok ko ok ko ko ko ko ke ok ok ko ke ke ke ok
ADDRESS ISPEXEC 'CONTROL ERRORS RETURN'
IF RC == O THEN EXIT RC

/***/

/* RE-ALLOCATE QMF LIBRARIES USING ISPF LIBDEF FUNCTION */

/***/

LIBS = 'ADMRLIB TXTLIB = , ADMPLIB TXTLIB = , ADMGLIB TXTLIB = '
ADDRESS ISPEXEC 'LIBDEF ISPXLIB FILE ID('LIBS')'
IF RC == 0 THEN EXIT RC

LIBS = 'DSQPLIB'LKEY' MACLIB = '
ADDRESS ISPEXEC 'LIBDEF ISPPLIB FILE ID('LIBS')'
IF RC == 0 THEN EXIT RC

LIBS = 'DSQMLIB'LKEY' MACLIB * '
ADDRESS ISPEXEC 'LIBDEF ISPMLIB FILE ID('LIBS')'
IF RC == 0 THEN EXIT RC

LIBS = 'DSQSLIBE MACLIB = '
ADDRESS ISPEXEC 'LIBDEF ISPSLIB FILE ID('LIBS')"'
IF RC == 0 THEN EXIT RC

EXIT O

Figure 39. EXEC to reallocate DXT CMS files (DSQABX2F) (Part 3 of 3)

Other Allocation Methods

Previously, we recommended that you use the EXEC for the DXT allocations
and mentioned certain advantages for doing this. If you elect to use some
other method of allocation, don’t modify the EXEC. The unmodified EXEC
won’t interfere with your alternative method of allocation.

138 Installing and Managing QMF on VM

Establishing QMF Support for End Users

Customizing the Document Editing Interface for Users

|— General-Use Programming Interface

The document interface is an IBM-supplied macro for the ISPF/PDF and
XEDIT editors. Using this macro, you can insert a QMF report into a
document while the document is being edited. The report can be created
before the editing session begins. More importantly, you can create the report
at the time the macro is issued, in a QMF session that the macro starts.

I_ End of General-Use Programming Interface

Before you use this macro, you can change it in various ways. Some of these
changes are required, while others are optional. This section discusses the
changes, both required and optional. To use the document interface, you
should also see Using QMF.

If you’re using an NLF: You also want to customize the NLF version of the
document interface.

Changing the Application
Change the application by changing one or more of its components. The
components that you can change are located as follows:
* The EXECs and macros are on the QMF production disk.
* The other components are on the QMF distribution disk.

Renaming the Document Interface Macros and EXEC

The ISPF/PDF macro component DSQAED2P is the macro that users call
when they use the document interface. Give the macro a name that has more
significance to your users. (Renaming this component has no affect on the
other components.) IBM recommends the name GETQMF ISREDIT. This is the
name used for the macro in this publication and in Using QMF. In addition,
the following should also be renamed:

DSQAED2X (an XEDIT macro), to GETQMF XEDIT

DSQAED2E (a REXX EXEC), to GETQMF EXEC

You should rename a copy rather than the original. You can place each
renamed copy on the production disk where the original resides.
Placing the Q.DSQAED2S Procedure in the Database

The Q.DSQAED?2S procedure is on the production disk. As the user Q, you
can place it in the database by entering the following QMF commands:
IMPORT PROC FROM DSQAED2S PROC fm

SAVE PROC AS DSQAED2S (SHARE=YES

where fm is the QMF production disk.

Chapter 8. Establishing QMF Support for End Users 139

Establishing QMF Support for End Users

140

If you're using an NLF: Save DSQAND?2S using the language key identifier
for the language you want.

Transferring Ownership to Q

If you cannot use QMF as the user Q, you can still issue these commands;
however, the procedure is stored in the database under your own
authorization ID, rather under Q. To give it the proper name, you must
transfer its ownership to Q. You can do this by executing the following
commands:

RUN Q.DSQOBSQI (&T=Q.0BJECT_DIRECTORY, &N='DSQAED2S'

RUN Q.DSQOBSQI (&T=Q.0BJECT_DATA, &N='DSQAED2S'

RUN Q.DSQOBSQI (&T=Q.0BJECT_REMARKS, &N='DSQAED2S'

These commands execute an IBM-supplied parameterized query named
Q.DSQOBSQI. Each execution updates one of the QMF control tables. For
these executions to be successful, you must have UPDATE authority on the
three control tables, or some DB2 for VM authority that implies UPDATE
authority.

If, for some reason, you cannot use the query Q.DSQOBSQI, you can create a
copy of it and use the copy instead. The copy would look like this:
UPDATE Q.&T

SET OWNER = 'Q'
WHERE NAME = &N AND OWNER = USER

Changing the Data Components

There are five data components, all in the QMF distribution disk. Unlike the
EXECs and macros, these components contain neither logic nor executable
commands. Instead, they contain information that can appear in messages or
in the users’ reports. You can modify these components in either of the
following ways:

* You can retain the changed components on the distribution disk.

If you do, change the names of the original components, and give the
changed components the original names.

* You can place the changed components on a new minidisk.

If you do, you must ensure that in the search order the new minidisk is
accessed before the old one.

The Message Component
One of the five data components is named DSQAEDOL. This component

contains:

* The messages that can appear on a user’s screen while the user is operating
the document interface

» Keywords for certain QMF commands

Installing and Managing QMF on VM

Establishing QMF Support for End Users
Do not change this component.

If you’re using an NLF: The DSQANDOL component is on the NLF
distribution list and the messages are in the language
set in the user’s profile.

The DCF Components
The DCF (Document Composition Facility) is a licensed IBM program. It is a

text processing system that supports the use of computers in preparing
documents for printing. If your installation uses this program, you might
want to change the remaining four data components. These components,
known as the DCF components, contain DCF control statements. For more on
DCF, see Document Composition Facility: General Information

A user can tell the document interface that the current document is formatted
by DCF. In response, the document interface adds DCF control statements to
the user’s inserted report. Wherever these statements appear, they consist of
all the records in one or another of the DCF components. You can change any
or all of the records in a component. The components, and what they supply,
are as follows:

DSQABDO1: Supplies statements inserted just before the report. In the
IBM-supplied component, these are:

.* QMF Document Interface heading control:
.SA

.RH SUP

.RF SUP

.HS 0

.FS 0

.TM 0.5I

.BM 0

.DC CONT OFF

.FO OFF

DSQABDO2: Supplies statements inserted just after each page footing. In the
IBM-supplied component, the single furnished statement is:

.* QMF Document Interface page footing control:

DSQABDO3: Supplies a statements inserted just before each page heading. In
the IBM-supplied component, these are:

.PA NOSTART
.* QMF Document Interface page heading control:

DSQABDO04: Supplies statements inserted just after the end of the report. In
the IBM-supplied component, these are:

.* QMF Document Interface footing control:
.RE
.* QMF REPORT END

Chapter 8. Establishing QMF Support for End Users 141

Establishing QMF Support for End Users

142

Changing the EXECs and Macros

As mentioned earlier, these components are all on the QMF production disk.
If you change a component, change a copy, not the original, and place the
copy on a minidisk that is accessed before the production disk.

If the document interface is issued from a current ISPF session then that
session needs to have built the QMF and ISPF definitions for the ISPF libraries
(the ones beginning with ISP). This is illustrated in DSQABD2I and Installing
and Managing QMF on VM/ESA .

Changing DSQABD2Q

With the document interface, a user operating outside QMF can begin a QMF
session. In that session, the user creates the report to be inserted into the
current document. DSQABD2Q does the file definitions (FILEDEFs) for this
session. Make whatever modifications to the EXEC you think necessary. For
example, you might need to add FILEDEFs for files peculiar to your
installation or you might have to change the links and accesses to the QMF,
GDDM, and DB2 for VM disks.

Observe that some of these FILEDEFs involve GDDM files. The document
interface does not itself use these files, but the user might find this necessary.

If you’re using an NLF: Make a separate copy of DSQABD2Q to link to the
QMF NLF production disk. Do not rename this
EXEC.

Changing DSQABD2I
Ensure that the link and access to the ISPF/PDF disk is correct.

Changing DSQABD2C
This is the final component to be discussed. It can be modified as shown:

* Change the statement:
FILEDEF DSQPRINT PRINTER (LRECL 131 BLKSIZE 131 RECFM FBA)
* Change the statement:

ADDRESS ISPEXEC 'SELECT PGM(DSQQMF'LANG_CHAR')' ,
'PARM (DSQSRUN="'PROC_NAME') NEWAPPL(DSQ'LANG_CHAR')"

This statement invokes QMF with the default DCSS name. (LANG_CHAR has
the value E.) If the default DCSS is not being used, put the name in the
PARM operand. For example, if you want to change the default DCSS name
to QMFXXX, then the modified PARM operand would look like:
"PARM(QMFXXX (DSQSRUN="PROC_NAME'))...

* Change the statement:

ADDRESS COMMAND 'EXEC ISPSTART PGM(DSQQMF'LANG_CHAR')',
'PARM(DSQSRUN="'PROC_NAME') NEWAPPL'

Installing and Managing QMF on VM

Establishing QMF Support for End Users

This statement invokes QMF with the default DCSS name. (LANG_CHAR has
the value E.) If the default DCSS is not being used, put the name in the
PARM operand. For example, if you want to change the default DCSS name
to QMFXXX, then the modified PARM operand would look like;

' PARM(QMFXXX (DSQSRUN="PROC_NAME')) ...

If you’re using an NLF: Make a separate copy of DSQABD2C to specify the
NLF DCSS name in the ISPSTART and SELECT QMF
invocation statements. Do not rename this EXEC.

Customizing the QMF Edit Command

With the EDIT command, you can modify QMF queries and procedures with
an editor. One of these editors is the ISPF/PDF editor (provided QMF is
started as an ISPF dialog). Other editors can also be used if supported at your
site.

The following procedure assumes that you use an editor that can be invoked
by an EXEC operating under ISPF. The EDIT TABLE command calls the Table
Editor and does not require a text editor.

To make an editor available for the EDIT command:

1. Write an EXEC to invoke the editor, given the name of the file to be
edited. This file name, which is the only parameter passed to the EXEC, is
passed as a positional parameter.

QMF calls the EXEC, XYZEDIT, with the following command (USERA FILE
A1 is the file name, file type, and file mode of the file to be edited):
XYZEDIT USERA FILE Al

2. Allocate the file USERA FILE Al using the FILEDEF command specifying
the file name of DSQEDIT. (The FILEDEF needs to be allocated prior to
invoking the editor. Therefore, the FILEDEF needs to be part of the QMF
invocation process or a FILEDEF needs to be established before invoking
the EDIT command.)

3. Instruct the users on how to invoke the editor through the EDIT
command. A command would look like this:

EDIT yyyyy (EDITOR=XXXXXXXX)

where yyyyy is either PROC or QUERY. (Only the current procedure or
guery can be edited.) xxxxxxxx is the name of the EXEC created to invoke
the editor. For more on the EDIT command, see QMF Reference .

The file you use can also be used for the ISPF/PDF editor. It’s possible it

might also be used for another editor that you want to support for the EDIT
command.

Chapter 8. Establishing QMF Support for End Users 143

Establishing QMF Support for End Users

Important: If you edit a procedure or query, and the resulting object is too
large to fit in QMF’s work area, QMF truncates the object and
displays an error message. QMF saves the entire object, however,
in a file associated with the FILEDEF DSQEDIT. (Remember that
the edit transfer file described by the DSQEDIT filedef cannot be
allocated to a disk that is used in the CMS shared file system
(SFS).) To bring the object into QMF, the user needs to issue a
RESET DATA command. This information, including the file name
of the saved object, is provided in the message help for the error
message associated with this condition.

Enabling English Support in an NLF Environment

144

Every NLF has a complete set of translated verbs, keywords, messages, and
panels for QMF. The global variable DSQEC_NLFCMD_LANG allows you to
change the language in which the user enters commands.

Set DSQEC_NLFCMD_LANG to 1 to allow users to enter commands only in
English.

The default value, 0, allows users to enter commands and keywords only in
the national language of the current session, except for the following
commands:

SET

GET

INTERACT

MESSAGE

START

QMF allows you to enter these commands in either English or the NLF,
regardless of how you set DSQEC_NLFCMD_LANG.

Use the DSQEC_FORM_LANG variable to enable users working in an NLF
environment to store their form objects in the English language. The
LANGUAGE option on the SAVE, EXPORT, and IMPORT commands allows
users to specify the national language of the saved form. The values for this
option are ENGLISH and SESSION, and are controlled by the global variable
DSQEC_FORM_LANG.

Set DSQEC_FORM_LANG to 0 to use the language of the current session as
the national language of the saved form.

The default value is 1, which specifies English as the language of the saved
form.

Installing and Managing QMF on VM

Establishing QMF Support for End Users

If the user specifies the LANGUAGE keyword on the IMPORT or EXPORT
command, that value overrides the current value of the
DSQEC_FORM_LANG variable.

To change the national language displayed during a QMF session, the QMF
user must end the current QMF session and begin another. You cannot change
the language from within the QMF session.

Using Global Variables to Define the Currency Symbol

If you require a currency symbol that is not represented on the keyboard, you
can specify the currency symbol by using the HEX value in a Procedure with
Logic. For example, the following PROC will set the currency symbol to HEX
"OF":

/% %/

"SET GLOBAL (DSQDC_CURRENCY =" '9F'X

If trailing blanks are needed for the currency symbol, you can put the
currency symbol in single quotes as follows:

SET GLOBAL (DSQDC_CURRENCY = 'FR '

You can use the command in either the command line or in a linear PROC.

Chapter 8. Establishing QMF Support for End Users 145

146 Installing and Managing QMF on VM

Chapter 9. Enabling Users to Print Objects

QMF end users frequently need to print data they retrieve from the database.
This data might be in the format of a report, a chart, a database table, or some
other QMF or database object.

How you set up printing for your end users depends on what type of printer
you have and which QMF objects you need to print. This chapter helps you
decide whether it’s most efficient for you to handle printing using QMF
services or Graphical Data Display Manager (GDDM) services. It also
provides instructions on how to print objects using either method.

If you need to print double-byte character set (DBCS) data, you can use the
DSQSDBCS program parameter when you start QMF to allow users to print

DBCS data from non-DBCS terminals. See ESetting Printing for Dauble-Bytd
Character Set Data (DSQSDRCS)” on page 90 for more information.

Quick start

Use [fanle 24 to guide you in printing QMF objects to a print or display
device. If you need more information on any of the steps, see the page listed
at the right of the table.

If you receive errors during printing, see ‘Traubleshooting Common
Problems” on page 290 to help you solve the problem.

Table 24. Printing QMF objects

To do this task:

See:

Use the QMF PRINT command or a command synonym to print a QMF object. How QMF Pages flad
prints the object depends on what type of object you’re trying to print. and (54

Choose either QMF services or GDDM services to handle printing, or combine the two to Page flad
suit your needs. GDDM can print to any device that supports the display of graphics. QMF
prints using DSQPRINT.

To print using GDDM services: Define a GDDM nickname for your printer and update the Page flad
GDDM defaults module ADMADFV with the nickname.

To print using QMF’s DSQPRINT: Allocate DSQPRINT using a FILEDEF that points to the Page fisd
file or output class QMF uses for printing.

Update the LENGTH and WIDTH values in the user’s profile to specify a page size. To Page fisd
activate GDDM services for printing, provide a valid nickname for the PRINTER field in

Q.PROFILES.

© Copyright IBM Corp. 1983, 2000 147

Enabling Users to Print Objects

Printing Objects

The rules for printing QMF and database objects vary, depending on the type
of object.

summarizes the requirements for each object.

Table 25. Summary of print requirements for QMF and database objects

Object type Nickname GDDM gets control Where output is routed

required when...

Chart Yes GDDM ICU always gets Output is controlled by GDDM. For more
control when the PRINT information, see GDDM Installation and System
command is issued. Management for VM for GDDM 2.3 or GDDM

System Customization and Administration for
GDDM 3.1.

Form Yes GDDM always gets Output is controlled by GDDM. For more
control when the PRINT information, see GDDM Installation and System
command is issued. Management for VM for GDDM 2.3 or GDDM

System Customization and Administration for
GDDM 3.1.

QBE query No Only if the nickname is Output goes to the device associated with the
supplied on the PRINT GDDM nickname or the ddname DSQPRINT.
command or in profile.

Procedure No Only if the nickname is Output goes to the device associated with the
supplied on the PRINT GDDM nickname or the ddname DSQPRINT.
command or in profile.

Profile No Only if the nickname is Output goes to the device associated with the
supplied on the PRINT GDDM nickname or the ddname DSQPRINT.
command or in profile.

Prompted Yes GDDM always gets Output is controlled by GDDM. For more

query control when the PRINT information, see GDDM Installation and System
command is issued. Management for VM for GDDM 2.3 or GDDM

System Customization and Administration for
GDDM 3.1.

Report No Only if the nickname is Output goes to the device associated with the
supplied on PRINT GDDM nickname or the ddname DSQPRINT.
command or in the
profile.

SQL query No Only if the nickname is Output goes to the device associated with the
supplied on the PRINT GDDM nickname or the ddname DSQPRINT.
command or in the
profile.

Table No Only if the nickname is Output goes to the device associated with the
supplied on the PRINT GDDM nickname or the ddname DSQPRINT.
command or in the
profile.

148 Installing and Managing QMF on VM

Enabling Users to Print Objects

Deciding Whether to Use QMF or GDDM Services for Printing

Whether you print using GDDM services or QMF services depends on what
type of objects you need to print and what types of printers and other
resources are available to you. Use this section to help you decide which
method suits your needs.

If you need to print charts, forms, or prompted queries, use GDDM.

QMF uses GDDM services to display these objects; GDDM must be used to
print these objects as well. If you don’t use GDDM services, you can print
only reports, tables, QBE and SQL queries, procedures, and the QMF
profile.

If your site is set up to route output to named printers, use GDDM services
for printing.

GDDM allows you to link a name with a physical device. If you do not use

GDDM and use exclusively QMF services, you need to print objects by
allocating a FILEDEF for DSQPRINT.

Both QMF and GDDM handle printer input asynchronously, which means
that QMF can return messages indicating that the object is printed before it is
actually printed.

Using GDDM Services to Handle Printing

Important: The explanations in this section apply only if you’re using the

GDDM default values shipped with the GDDM product. For more
information on changing these values, see one of the following:
GDDM Installation and System Management for VM (for GDDM 2.3)
GDDM System Customization and Administration (for GDDM 3.1)

To use GDDM services for printing QMF objects, you need to:
1. Choose a GDDM nickname for the print device, as explained in E-Chaasing

7

Nicknames enable you to predefine complex print or display devices to
simplify the work of your end users. Nicknames define device
characteristics that indicate to GDDM how to format and direct your
printed output to a file or printer. Nicknames can define both local and
remote devices.

Update the ADMDEFS PROFILE file or the GDDM defaults module,
ADMADFV with the specifications of your nlckname This is explained in

Update the PRINTER field of the user’s row in the Q.PROFILES table, as

exglamed in ElUpdating User Profiles to Enable GDDM Printing” on

Chapter 9. Enabling Users to Print Objects 149

Enabling Users to Print Objects

150

Choosing a GDDM Nickname for Your Printer

When a user enters a printer name on the PRINTER keyword of the QMF
PRINT command, GDDM first searches the ADMDEFS PROFILE file and then
the defaults module, ADMADFYV, for a matching nickname that defines how
and where to direct the output. GDDM uses nicknames to recognize all the
devices with which it can communicate (including terminals).

When printing with GDDM, you don’t need a matching FILEDEF for your
printer nicknames. GDDM places the output from your PRINT command in a
file called xxxxxxxx ADMLIST or xxxxxxxx ADMPRINT, where xxxxxxxx is the
printer nickname you used.

You can enter a nonexistent printer nickname, and GDDM simply places the
output in a zzzz ADMPRINT file on your A-disk, where zzzz is the
nonexistent printer nickname you used. However, the formatting of the
output in that situation is unpredictable, so do not use nonexistent nicknames.

GDDM printing determines whether an ADMLIST or ADMPRINT file is
created, depending on the device token specified in the nickname. System
printer output is placed in ADMLIST; queued printer output is placed in
ADMPRINT.

Choosing the Right Type of GDDM Device

The printer nickname you use depends on the type of device:

* Family 1 devices specify auxiliary devices attached to a workstation using
GDDM-PCLK or GDDM-0S/2® Link. A Family 1 device can also include
display devices, such as 3270 data-stream terminals. A printer directly
attached to a user ID can be accessed as a Family 1 printer from that user
ID.

» Family 2 devices include devices such as IBM 3270 terminals and queued
printers.

* Family 3 devices are system printers that support the ANSI code of
carriage control characters.

» Family 4 devices are advanced function printers for which you need to use
the ADMOPUV utility to print output. This utility is provided by GDDM.

This chapter explains how to define nicknames for Family 1, 2, and 3 devices.
For more information on how to set up a nickname for a Family 4 printer and
use the ADMOPUV utility, see GDDM System Customization and Administration
for GDDM 3.1 or GDDM Installation and System Management for VM for
GDDM 2.3. These publications also provide more information on each type of
GDDM device.

Installing and Managing QMF on VM

Enabling Users to Print Objects

Creating the Nickname Specification

To create a nickname, you can add the nickname to your PROFILE ADMDEFS
file. GDDM looks at this file first. If the nickname is not found, GDDM looks
in the external default module, ADMADFV, in which you define a GDDM
ADMMNICK specification.

Use the format shown in w for your ADMMNICK specification.

ADMMNICK NAME=nickname,TOFAM=family type,DEVTOK=device_token

Figure 40. Using the ADMMNICK specification to define a nickname

* Use NAME to indicate a 1-character to 8-character printer nickname to use
with the QMF PRINT command. For example, if MYPRTR is the nickname,
users can enter the command: PRINT REPORT (PRINTER=MYPRTR. NAME can
be a single name, a list of names separated by commas, or a name with a
leading or trailing ? character used as a wild card to send output to
multiple printers that have similar names.

* Use TOFAM to indicate the type of device you're using. GDDM recognizes
four families of devices, and handles each differently.

* Use DEVTOK to indicate a valid GDDM device token, which uniquely
identifies a device and its print configuration (for example, a 3820 printer
that prints 60 rows by 85 columns, 6 lines per inch). For a list of valid
device tokens, see:

GDDM System Customization and Administration for GDDM 3.1
GDDM Installation and System Management for VM for GDDM 2.3

A unique label can be added to the syntax. For example, GDDMPRTL1 is a
possible label for the nickname definition.

GDDMPRT1 ADMMNICK NAME=MYPRINT,TOFAM=3,DEVTOK=ADMKSYSP

Example Nickname for a Family 2 GDDM Printer
To define the nickname GRAPHIC for a Family 2 GDDM Erinter, you might

use an ADMMNICK specification similar to the one in . This
specification is for a Family 2 GDDM printer (use TOFAM=1 for a Family 1
GDDM printer). It uses the device token R87S, an example of a token for a
remotely attached 3287 printer.

ADMMNICK NAME=GRAPHIC,TOFAM=2,DEVTOK=R87S, TONAME=GRAP

Figure 41. Using the ADMMNICK specification to define a nickname for a Family 2 printer

Chapter 9. Enabling Users to Print Objects 151

Enabling Users to Print Objects

152

After you create your nickname, a file with type ADMPRINT is created on
your A-disk. This file has a file name of the printer that was supplied on
input to the DSOPEN call. You can then print the ADMPRINT file using the
ADMOPUV utility.

For more information about ADMOPUYV, see GDDM System Customization and
Administration

Example Nickname for a Family 3 GDDM Printer
To define the nickname 370PRINT for a Family 3 GDDM Erinter, you might

use an ADMMNICK specification similar to the one in

ADMMNICK NAME=370PRINT,TOFAM=3,DEVTOK=R87S

Figure 42. Using the ADMMNICK specification to define a nickname for a Family 3 printer

After you create your nickname, a file with type ADMLIST is created. You can
then send the formatted file to the printer you have chosen.

Example Nickname for a Family 4 GDDM Printer
To define the nickname 3900PRNT for a Family 4 GDDM Erinter, you might

use an ADMMNICK specification similar to the one in

ADMMNICK NAME=3900PRNT,TOFAM=4,DEVTOK=R87S

Figure 43. Using the ADMMNICK specification to define a nickname for a Family 4 printer

After you create your nickname, a file with type ADMIMAGE is created. You
can spool the file to PSF/VM automatically if you have the CPSPOOL
processing option set. For more information about Family 4 printing, see
GDDM System Customization and Administration

Defining Multiple Nicknames with One Definition
You can use a single nickname to define multiple printer addresses by

including the wild card ? in your nickname definition, like this:
ADMMNICK TOFAM=3,NAME=MYPRINT?,PROCOPT=((PRINTCTL,0))

The nickname MYPRINT? allows you to route print output to printers named
MYPRINT1, MYPRINT2, MYPRINTA, and so on. For example, when you
enter:

PRINT REPORT (PRINTER=MYPRINT2

GDDM uses the nickname definition for the MYPRINT? nickname to direct the
output from the PRINT command to the printer named MYPRINT2.

Installing and Managing QMF on VM

Enabling Users to Print Objects

Examples of Nickname Definitions
This section shows examples of nicknames you might use for Family 1, 2, or 3

devices. For an example of defining nicknames for Family 4 devices, see

IExample Nickname for a Family 4 GDDM Printer” on page 152 or the

following manuals:

GDDM System Customization and Administration for GDDM 3.1
GDDM Installation and System Management for VM for GDDM 2.3

3800, 3812, or 3820 printer, 6 lines per inch: Use the following definition to
define the nickname GDDMPRT1 for a Family 3 printer:

GDDMPRT1 ADMMNICK TOFAM=3,DEVTOK=S3800N6 ,NAME=MYPRINT1

3800, 3812, or 3820 printer, 8 lines per inch: Use the following definition to
define the nickname GDDMPRT2 for a Family 3 printer:

GDDMPRT2 ADMMNICK TOFAM=3,DEVTOK=S3800N8,NAME=MYPRINT2

Non-3800 system printer, 132 columns, 8 lines per inch: Use the following
definition to define the nickname GDDMPRT3 for a Family 3 printer:
GDDMPRT3 ADMMNICK TOFAM=3,DEVTOK=S1403W8,NAME=MYPRINT3

A remotely attached 3287 (suitable for printing charts): Use the following
definition to define the nickname GDDMPRT4 for a Family 2 printer:
GDDMPRT4 ADMMNICK TOFAM=2,DEVTOK=R87,NAME=MYPRINT4

Any destination without print control options: Use the following
definition to define the nickname GDDMPRTS5 for a Family 3 printer:
GDDMPRT5 ADMMNICK TOFAM=3,PROCOPT=((PRINTCLTL,0)),NAME=MYPRINT5

The PROCOPT parameter specifies processing options using a print control
(PRINTCTL) keyword, which allows you to specify a number of print control
options. For example, you can use PRINTCTL to specify a page heading to be
printed, the number of copies to print, and the width of margins. The zero
in this example suppresses page headings.

Attention: If the print file has RECFM=F, GDDM printing changes the
DCB of the file from RECFM=F to RECFM=V.

For a list of print control options and how to use them, see GDDM System
Customization and Administration for GDDM 3.1 or GDDM Installation and
System Management for VM for GDDM 2.3.

A PC printer using GDDM-PCLK (for DOS users): Use the following
definition to define the nickname PCPRINT for a Family 1 printer:

GDDMPRT6 ADMMNICK TOFAM=1,FAM=0,NAME=PCPRINT,TONAME=(+*,ADMPCPRT)
where * indicates the user’s current device or the default value.
To print to a PC printer connected to DOS, GDDM-PCLK must be installed

on your workstation.

Chapter 9. Enabling Users to Print Objects 153

Enabling Users to Print Objects

154

* A PC printer using GDDM-OS/2 Link (for OS/2 users): Use the following
definition to define the nickname GDDMOS2P for a Family 1 printer:

GDDMPRT7 ADMMNICK TOFAM=1,FAM=0,NAME=PMPRINT, TONAME=(*,ADMPMOP)
where * indicates the user’s current device or the default value.

To print to a PC printer connected to OS/2, ensure GDDM-0S/2 Link is
installed on your workstation.

Updating the GDDM Defaults Module with the Nickname
In CMS, the ADMMNICK nickname specifications reside in the GDDM

external defaults module ADMADFV, which is supplied with the GDDM
product. The default module also contains default values for the GDDM
product. The module is stored as a file with a type ASSEMBLE.

To update the modules with your nickname specification:
1. Copy the GDDM source file to your own storage.
2. Edit the source file to add the nickname.

3. Enter your ADMMNICK specification after the ADMMDFT statements in
the module.

4. Reassemble and replace the changed default module.

For more information on the defaults modules, see:
* GDDM System Customization and Administration for GDDM 3.1
* GDDM Installation and System Management for VM for GDDM 2.3

Testing the Nickname Definitions in External Default Files

Test your nickname definitions by placing them in an external default file
named ADMDEFS PROFILE and printing with them until you are satisfied
they are working correctly. Then you can assemble them into the external
default module named ADMADEFYV. Testing the nickname definitions requires
access to the minidisks containing these files. The external default file can be
placed on any minidisk normally accessed when using QMF (for example, the
GDDM minidisks, which are accessed when using QMF).

GDDM uses external default modules more efficiently than files to find a
given nickname.

How QMF Interfaces with Your GDDM Nickname

QMEF interfaces with GDDM nicknames through the standard interface
provided by GDDM, which issues a call that allows QMF to open a GDDM
print file.

The following defaults are provided by QMF on the DSOPEN call when the
PRINT command begins:

Installing and Managing QMF on VM

Enabling Users to Print Objects

* The device type is set to Family 2

* The device token is set to *

* No processing options are in place (PROCOPT is set to zero)
* The only entry in the name list is the nickname

The print operation is carried out one page at a time using the ASCPUT and
FSFRCE GDDM services. When printing is complete, QMF closes the print
operation with a DSDROP statement.

Using QMF's DSQPRINT to Handle Printing

You can use DSQPRINT to print a report, table, SQL or QBE query, procedure,
or your profile.

DSQPRINT is a special printer destination that QMF uses when you don’t
supply a printer name on the command line or in the user profile to print a
report, table, SQL or QBE query, procedure, or the profile. DSQPRINT must be
allocated using a FILEDEF that points to the file or output class QMF uses for
printing. The FILEDEF is part of your QMF startup exec or is run from a
QMEF session using the QMF CMS command. You must allocate DSQPRINT
before running the QMF PRINT command.

To add your printed output to PRINT FILE A, use the following syntax:

"FILEDEF DSQPRINT DISK PRINT FILE A (LRECL 133 BLKSIZE 133 RECFM V PERM",
"DISP MOD"

The use of DISP MOD ensures that each PRINT command adds the latest
print output to the end of the file, instead of overwriting the results of the
previous PRINT command.

To route your output to a printer, use this syntax:
"FILEDEF DSQPRINT PRINTER (LRECL 121 BLKSIZE 121 RECFM VBA PERM"

If you're using ISPF: You can use the QMF-supplied DPRE (Display Printed
Report) command synonym to view the effects of the
width and length values you have specified without
having to print the report. This is applicable only when
using DSQPRINT. For more information on DPRE, see

t‘Displaying Printed Reports (DPRF)” on page 160 and
QMF Reference.

Chapter 9. Enabling Users to Print Objects 155

Enabling Users to Print Objects

Defining a Synonym for the Print Function Key

Here is a customization technique that allows a user to print an object without
exiting QMF. The first two steps of this technique show how to define a
command synonym for printing, the final step shows how to customize your
Print function key. This technique can be used to invoke a local print utility
when the Print function key is pressed.

1. Create a REXX EXEC that locally prints the current object. Here is a
sample, called PRTQMF, using the QMF callable interface:
/* PRTQMF REXX EXEC for Tocal print utility called MPRINT */

CALL DSQCIX "PRINT PROC (PRINTER=MYPRINT1"
mprint MYPRINT1 ADMLIST A

This example assumes you have a MYPRINT1 nickname defined and that
it creates a file with a file type of ADMLIST.

Some QMF users prefer to bypass the PRINT command and simply export
the object for local printing. In this case your EXEC looks something like;
/% PRTQMF REXX EXEC for local DSPRINT =/
CALL DSQCIX "EXPORT PROC TO MYPROC"
mprint MYPROC PROC A

2. Create a QMF command synonym for printing. Here is a sample query
that creates a command synonym PRTQMF to execute the PRTQMF EXEC.
INSERT INTO COMMAND SYNONYMS (VERB, SYNONYM DEFINITION, REMARKS)
VALUES ('PRTQMF','CMS PRTQMF','Print QMF Proc')

3. You can now customize a function key on the procedure panel to use this
command synonym. You need to customize a key for each panel. A query
to customize function key 4 on the procedure panel would look like this:

INSERT INTO PFKY_TABLE (PANEL,ENTRY_TYPE,NUMBER,PF SETTING)
VALUES('PROC','K"', 4, 'PRTQMF')

This example assumes that the user’s profile has the PFKEYS column
value set to PFKY_TABLE, the name of the function key customization
table. (After running the query, QMF must be restarted to implement the
function key change.)

Updating User Profiles to Enable GDDM Printing

156

When a user enters a QMF PRINT command, QMF references the LENGTH,
WIDTH, and PRINTER fields of the user’s row in the Q.PROFILES table. Use
these fields of the profile to specify the size and destination for the user’s
output.

To activate GDDM services for printing, specify a default GDDM printer
nickname in the PRINTER column of the profile. Ensure the values you
supply for LENGTH and WIDTH are the same as the width and length

Installing and Managing QMF on VM

Enabling Users to Print Objects

specified by the device token in the ADMMNICK specification. Also ensure
the printer name you use matches one of the entries in the ADMADFV
defaults module. If a nickname isn’t found, the file nickname ADMPRINT is
created.

If you don’t specify a printer name in the profile and the user tries to print a
chart, form, or prompted query without specifying a printer name, QMF
displays the message Please supply a nickname for your printer. Pressing
Enter displays a prompt for a printer name. Instruct users to enter a printer
name that matches one of the entries in the nickname file.

If the PRINTER field in the user’s profile does not contain a GDDM
nickname, QMF services are used for printing. You can specify defaults for
LENGTH and WIDTH even if PRINTER is blank.

If you specified a default GDDM printer name in your profile but you want to
use QMF services for printing, supply a blank value for the PRINTER
keyword to override the GDDM printer nickname in the user’s profile:

PRINT REPORT (PRINTER=' '

Chapter 9. Enabling Users to Print Objects 157

Enabling Users to Print Objects

158 Installing and Managing QMF on VM

Chapter 10. Customizing QMF Commands

QMF command synonyms help you customize the base set of QMF

commands by allowing you to define your own terms and link them to QMF
or CMS commands. A synonym might simply be another word for a QMF or
CMS command, or it can be a term that does the work of several commands.

After you create a command synonym, QMF end users can enter the synonym
on the command line in the same way they normally enter a QMF command.

Quick Start

Follow the steps in [Table 24 to create a command synonym. If you need more
information on any step, see the page listed at the right.

Table 26. Creating synonyms for QMF commands

To do this task:

See:

Use the default synonyms provided with QMF to display a printed report, run a batch Page fi=d
query or procedure, customize a report layout, or leave QMF in interactive mode and bridge

to ISPF.

Create a command synonym table that has the columns VERB, OBJECT, and Page T
SYNONYM_DEFINITION. The table links the synonyms you choose with the commands or
procedures they represent.

Enter synonyms and their definitions into the table. VERB and OBJECT store your Page fted
synonym; SYNONYM_DEFINITION is the command or procedure that runs when you enter
the synonym. Follow the guidelines for valid verbs, object names, and synonym definitions.

Activate the synonyms for users. Update the SYNONYMS field of the user’s row in Page fied
Q.PROFILES with the name of the synonym table. Then instruct users to reconnect to the
database to initialize the new synonyms.

Minimize maintenance of your site’s command synonym tables by creating a single Page fizd
synonym table for all users or by creating different types of views on the synonym table.

Using the Default Synonyms Provided with QMF

QMF provides four applications that can be used as installation-defined
commands. After installation, the application synonyms appear in the
Q.COMMAND_SYNONYMS table. Users with access to this table can invoke
these applications by entering the appropriate synonym as if it were a QMF
command.

© Copyright IBM Corp. 1983, 2000 159

Customizing QMF Commands

160

Display Printed Report
Synonym is DPRE. Displays the user’s current report just as it would
be printed. For information on customizing DPRE, see

Batch Query/Procedure
Synonym is BATCH. Lets the user run a query or procedure in batch
mode rather than running it interactively. For more information on
this application, see LIsi

Layout Form
Synonym is LAYOUT. Lets the user tailor reports without having to
run a query. For an example of how to use this application, see Using
QMF . For information on the command’s syntax, see QMF Reference.

Bridge to ISPF
Synonym is ISPF. Lets the user temporarily leave QMF in
interactive-mode and “bridge” to ISPF/PDF. The user then conducts
an ISPF/PDF session independently of QMF. After the session is
ended, the user is returned to QMF, at the point where the ISPF
command was issued. For more on the ISPF application, see Using
QMFand Developing QMF Applications.

ISPF considerations:

1. For the first three applications, QMF must be started under ISPF.

2. The synonym ISPF is valid only if QMF is started as an ISPF dialog. If
QMF is not started as an ISPF dialog and the user wants to use ISPF, the
user can issue the command CMS ISPSTART.

Displaying Printed Reports (DPRE)

You might notice that a printed report doesn’t look exactly as it did on a
screen. For example, the displayed report is treated as a single page, even
with one or more page breaks in the printed report.

The differences between the printed report and its displayed version are
largely cosmetic: the facts and figures on the screen and those on the printed
page are the same. However, the differences can be important. (For more
detailed information about the differences, see Using QMF.) Because of this,
IBM supplies the QMF application called DPRE to display the report as it
would look when printed. After QMF is installed, the application can be
invoked using a command stored in the Q.COMMAND_SYNONYMS table.
The application is shared for everyone’s use.

Using DPRE
To use DPRE, you load the DATA object with the report data and the FORM

object with the appropriate form, then issue the command:
DPRE

Installing and Managing QMF on VM

Customizing QMF Commands

The application then generates the printer output and displays it through the
ISPF browse facility. After you finish browsing, the printer output disappears.

If you’re using an NLF: Issue the translated command synonym for DPRE to
display printed reports. For example, the translated
German command synonym for DPRE is AGB. For
the translated command synonym for DPRE in the
other language environments, see the
Q.COMMAND_SYNONYM _n control table or the
translated QMF Reference.

Report Parameters: The LENGTH parameter for the report being browsed is
taken from PROFILE. The WIDTH parameter specified in PROFILE is used if
it is less than 132 (lIrecl); otherwise, a width of 132 (Irecl) is used because this
is the length specified in the CMS FILEDEF statement for DSQPRINT. If 132 is
too small, the CMS FILEDEF statement for DSQPRINT can be changed to
accommodate a larger width.

Performance Considerations: The design of QMF encourages users to
develop their printed reports by alternately modifying the FORM panels and
displaying REPORT, until the report suits the user’s needs. With DPRE, the
user can now alternate changing the FORM panel and browsing the tentative
report with DPRE. Users should be aware, however, that the second method
of development is expensive relative to the first, and should be used sparingly
when resources are at a premium.

When printing large tables, all the rows of the report are fetched before the
report is displayed.

Responding to Errors: DSQPRINT is the name of the file that receives output
from QMF PRINT commands in which PRINTER=""is either expressed or
implied. When a user runs DPRE, DSQPRINT is redefined as the file holding
the material to be browsed. If an error stops the execution, this definition
might still be in effect after the run terminates.

Customizing DPRE

Important: When making modifications to any file, first rename it and be sure
to keep backup copies of original and modified files.

You can change the parameters that DSQPRINT has when DPRE ends
normally. This is controlled by statements in the QMF procedure DSQAER2P
which is invoked by the DPRE command synonym. This statement:

Print_opts = "LRECL 121 RECFM FBA BLKSIZE 1210"
Address COMMAND "FILEDEF DSQPRINT PRINTER ("Print_opts

Chapter 10. Customizing QMF Commands 161

Customizing QMF Commands

changes the record format (LRECL) from 133 to 121, and changes the block
size (BLKSIZE) from 1330 to 1210.

Creating a Command Synonym Table

When a user starts a QMF session, QMF loads a command synonym table
whose name you specify in the SYNONYMS field of the user’s profile. When
you enter a command, QMF first checks the synonym table for a match. If
there is no match, QMF assumes the command is a base QMF command.
When you enter the letters QMF in front of any command, QMF automatically
assumes the command is a base QMF command and does not check the
synonym table for a match.

Use the following procedure to create a command synonym table. Then see

1. If necessary, acquire or add a dbspace to hold the command synonyms

table. Eigure 30 on page 118 shows how to acquire a dbspace. If you need

to add a dbspace, see DB2 Server for VM System Administration

2. From the QMF SQL query panel, run an SQL CREATE TABLE statement
similar to the one inhﬁpﬂ to create the table. Substitute your own
table name in place of COMMAND_SYNONYMS and your own dbspace
name for DBSPACEL. Type the other portions of the query exactly as
shown.

CREATE TABLE COMMAND_SYNONYMS
(VERB CHAR(18) NOT NULL,
OBJECT VARCHAR(31),
SYNONYM_DEFINITION VARCHAR(254) NOT NULL)
IN DBSPACEL

Figure 44. Creating a command synonym table

The VERB and OBJECT columns store your synonym. The
SYNONYM_DEFINITION column stores the command or procedure that
runs when you enter the synonym.

The columns can be in any order, and you can add a column for
comments so users know what function each synonym performs.

3. Add comments to the SYSTEM.SYSCATALOG table that describe the
table’s purpose. The following is an example for the
COMMAND_SYNONYMS table created with the query in Eigure 44.

COMMENT ON TABLE COMMAND_SYNONYMS IS 'SYNONYMS FOR RESEARCH DEPT'

The phrase 'SYNONYMS FOR RESEARCH DEPT' appears in the
REMARKS column of the SYSTEM.SYSCATALOG table.

162 Installing and Managing QMF on VM

Customizing QMF Commands

4. Create an index to maximize performance at initialization time, when
QMF processes the command synonym table. Use a statement similar to
the following:

CREATE UNIQUE INDEX SYNONYMS_INDEX
ON COMMAND_SYNONYMS (VERB, OBJECT)

Index both the VERB and OBJECT columns with the UNIQUE keyword to
prevent duplicate synonym definitions. If you choose not to use the
UNIQUE keyword, QMF allows duplicate synonyms in the table; QMF
uses the first synonym it locates in the table and displays a warning
message on the QMF Home panel after initialization.

Entering Command Synonym Definitions into a Command Synonym Table

After you create a command synonym table, use an SQL INSERT statement
similar to the one in w to enter your synonyms into the table. You can

also use the Table Editor to update the table, as explained in Using QMF.

After it is activated according to the procedure described in

INSERT INTO COMMAND_SYNONYMS (VERB,0BJECT,SYNONYM DEFINITION)
VALUES('COMPUTE', 'MONTHLY_ SALES', 'RUN PROC JONES.SALES FIGURES')

Figure 45. Creating a command synonym definition

Bynonyms” an page 164, the synonym COMPUTE MONTHLY_SALES runs a

QMEF linear procedure called SALES_FIGURES, owned by user JONES.

The query in m shows an example of a synonym that has no entry in
the object column:
After it is activated, the synonym EXECUTE runs the query currently in the

INSERT INTO COMMAND_SYNONYMS (VERB,SYNONYM DEFINITION)
VALUES ('EXECUTE', 'RUN QUERY')

Figure 46. Creating a command synonym definition

QMF temporary storage area.

The synonyms in Figures k5 and k&6 follow guidelines that allow QMF to
process each synonym correctly. The rest of this section explains these
guidelines, which you need to follow to ensure that QMF correctly processes
your entries for the VERB, OBJECT, and SYNONYM_DEFINITION columns in
the table.

Choosing a Verb

Every command synonym definition must have a verb. Only the object name
is optional.

Chapter 10. Customizing QMF Commands 163

Customizing QMF Commands

164

The verb is your own word for the QMF RUN command or CMS command
stored in the SYNONYM_DEFINITION column. For example, you might
create the synonym COMPUTE for the QMF base verb RUN if your company
has financial analysts who run only procedures that return financial results.

Rules for the VERB Column
Ensure entries in the VERB column of the synonym table:

* Are 1 to 18 characters long.

* Do not contain blanks.

* Do not include the verb QMF (other base QMF commands are allowed).

* Have an alphabetic or national character as the first character. (In English,
national characters are #, @, and $.)

Characters after the first letter can be alphabetic, national characters, decimal
digits, or the underscore. No other characters are allowed.

Some examples that demonstrate these rules are shown in the following list.
QMF ignores rows that have invalid entries in the VERB column, and displays
a warning message.

Valid Verbs:
Invalid Verbs:
COMPUTE
DO SALES (Blanks not allowed unless surrounded by double quotes)
DISPLAY
ADJ%AGE (% not allowed)
PRINT
PRINT_PRODUCTIVITY_TOTALS (more than 18 characters)

Using Base QMF Verbs as Command Synonym Verbs
You can use base QMF commands, such as PRINT, as synonyms. For example,

you might choose to define a synonym that automatically routes print output
to a GDDM-defined printer.

When you define a synonym that is also a base QMF command, instruct users
to precede the command with the letters QMF when they want to use the
base QMF command. For example, the synonym DISPLAY might represent a
synonym definition that executes the QMF command RUN PROC
SALES_REPORT. The SALES_REPORT procedure runs a query and prints a
report on a GDDM-defined printer. Users who forget to enter QMF in front of
DISPLAY might get a formatted, printed report of data they didn’t necessarily
want. Using base verbs in verb-object synonyms has a similar impact.

Some base QMF commands must be followed by a parameter. For example,
you need to follow the IMPORT command with an object type, such as
TABLE. If you are using a verb such as IMPORT in a verb-object pair, choose
an object name that is not one of these parameters to prevent users from

Installing and Managing QMF on VM

Customizing QMF Commands

inadvertently running the synonym. For other base commands you use, see
the syntax diagrams in QMF Reference to find out if the command requires a
parameter.

Choosing an Object Name

An object nhame is optional in a command synonym. When you do use an
object name, however, ensure users specify both the verb and the object name;
otherwise, QMF can’t find a match in the synonym table.

Entries in the OBJECT column must follow these rules:

* Must be 1 to 18 characters long

* Must conform to rules for naming DB2 for VM tables

* Must be surrounded by double quotes if the object name has blanks or
other special characters. (Both QMF and the database manager remove the
double quotes when the name is processed.)

Some examples of valid and invalid objects are shown in the following list.

Valid Obijects:

Invalid Objects:
PFKEYS

80CAT (first character is numeric)
MONTH_2_REPORT

ADJ%AGE (% not allowed)
“User x”.“Net Sales”

JANUARY_PRODUCTIVITY (over 18 characters)
“Net Sales”

JONES GROSS (double quotes required for blanks)

Choosing the Synonym Definition
The synonym definition is the QMF command or procedure that runs when
the user enters the command synonym. An entry in the
SYNONYM_DEFINITION column can include:

* A RUN command that calls a QMF procedure or query. For example, RUN
PROC JONES.SALES_DATA might be a synonym definition for the
command synonym COMPUTE MONTHLY_SALES.

* A CMS command that starts a QMF procedure.

Your synonym definition can even include both types of commands if the
definition runs a QMF linear procedure.

For information about developing complex applications to run in a command
synonym, see Developing QMF Applications

Using a Procedure in the Synonym Definition
Your synonym definition can include a procedure that does the work of

several QMF commands. For example, the linear procedure in
performs the following tasks:

Chapter 10. Customizing QMF Commands 165

Customizing QMF Commands

166

1. Runs the following query, called SALES_DATA, which creates a report that
shows all the customers handled by sales representative number 20:
SELECT QUANTITY, CUSTNO

FROM Q.SALES
WHERE SALESREPNO = 20

2. Routes the report from QMF to a file.
3. Runs a QMF procedure to route the report to a predefined print
destination.

Your definition for a synonym that runs this procedure might look similar to
-- Procedure name: SALES_PROC

RUN QUERY SALES DATA

CMS FILEDEF DSQPRINT DISK MYPRT FILE A (LRECL 75 BLKSIZE 75 RECFM F

PRINT REPORT (PRINTER=' '

Figure 47. Sample procedure to run using a command synonym

the one in m

SYNONYM
VERB OBJECT DEFINITION
SHOW SALES RUN PROC SALES_PROC

Figure 48. Using a command synonym to run a procedure

If you're using an NLF: Make sure that the QMF commands in the queries,
forms, and other objects included in the procedure
are translated before you use the command synonym
that calls the procedure. Also ensure these
components are suitable for the NLF you’re using.
Unless your procedure sets the
DSQEC_NLFCMD_LANG variable to 1, ensure the
commands are translated before you use the
command synonym. The DSQEC NLFCMD_LANG

variable is discussed in FEnahling English Suppart id
an NI F Fnvironment” on page 144

Using Variables in the Synonym Definition
You can use variables in the synonym definition to pass values for like-named

variables present in objects (such as queries) named in the definition. For

example, Eigure 49 on page 167 shows a definition that passes the value

Q.STAFF for the table name, which is evaluated when MYQUERY runs.

Installing and Managing QMF on VM

Customizing QMF Commands

SYNONYM
VERB OBJECT DEFINITION
EXECUTE - RUN QUERY MYQUERY (&&TABLENAME=Q.STAFF

Figure 49. Using variables in command synonym definitions

MYQUERY might look something like:
SELECT * FROM &TABLENAME

Ampersands are doubled in a variable name in the synonym definition
because they become single ampersands when QMF executes the RUN
command.

Use double ampersands in the synonym definition for all variables except the
variable &ALL. &ALL is a special QMF variable that allows you to enter
variable values when you enter the synonym, rather than including them in
the synonym definition. When you use the variable &ALL in a synonym
definition, QMF uses as variable values any information you enter to the right
of the synonym. You can use the variable &ALL to show where the
information is located within the synonym definition.

The synonym definition in m shows an example of a synonym defined

using &ALL.

The query named STAFFQUERY might look something like the following:
SYNONYM

VERB OBJECT DEFINITION

SHOW_INFO - RUN QUERY STAFFQUERY (8&ALL)

Figure 50. Using the variable &ALL in a command synonym definition

SELECT * FROM Q.STAFF
WHERE DEPT=&DEPT and JOB=&EMPLOYEE_JOB

After activating the SHOW _INFO synonym defined in the preceding example,
you can enter the following statement from the QMF command line to display
information about all the managers in Department 10:

SHOW_INFO &DEPT=10 &EMPLOYEE_JOB='MGR'

Rules for &ALL: When you use the variable &ALL in a synonym definition:

* Use &ALL only once in a synonym definition.

* Always write &ALL in uppercase.

* Never follow &ALL with a number or letter.

* Any value you substitute for &ALL must be syntactically correct when
QMF evaluates the entire command. For more information on syntax of
QMF commands, see QMF Reference.

Chapter 10. Customizing QMF Commands 167

Customizing QMF Commands

If a user does not supply a value following the command synonym, QMF
substitutes a null value for &ALL. In the synonym definition shown in

Eigure 50 on page 167, QMF prompts the user for values for the &DEPT and
&EMPLOYEE_JOB variables if the user enters SHOW _INFO by itself on the

command line.

Keying Information Into the SYNONYM_DEFINITION Column
Follow these guidelines when keying your synonym definitions into the

synonym table:

Add single quotes around a variable in your synonym definition.

Single quotes around a variable eliminate the need for the user to add
guotes to the command synonym when running a query. For example,
&ALL has single quotes in this synonym definition:

RUN MYQUERY (&&NAMEVALUE='&ALL'

If you search for the name O’BRIEN, you do not need to enter '0'BRIEN',
because QMF does this for you.

Enter base verbs and keywords in uppercase.
Literal information in the synonym definition is not converted to uppercase.

Quialify all object names if their owners are different from the SQL
authorization ID of the user who uses the synonym.

QMF leaves names unqualified when searching for a synonym that contains
the object name specified. For example, if your synonym definition includes
a query named MY_SALES owned by user ID JONES, ensure that the object
name in the synonym definition reads JONES.MY_SALES. Otherwise,
JONES is the only user that can use that command synonym.

Use only capital letters for letters that lie outside of delimited identifiers.

If QMF converts user input (the synonym) to uppercase and the synonym
definition is in lowercase, QMF can’t find the synonym definition that
matches the synonym the user entered. The CASE value of the user’s QMF
profile controls whether input is converted to uppercase. Use the SET
PROFILE command to change the CASE value. This command is explained
in QMF Reference.

Activating the Synonyms

168

To activate the command synonym table for your users:
1. Update the SYNONYMS field of the user’s profile with the proper

command synonym table name.

For example, to assign the COMMAND_SYNONYMS table to the user
JONES in the English language and the table GUMMOW.XYZ to the user

Installing and Managing QMF on VM

Customizing QMF Commands

SCHMIDT in the German NLF environment, use the query in m :

Base QMF (English)

German NLF
UPDATE Q.PROFILES

UPDATE Q.PROFILES
SET SYNONYMS='COMMAND_SYNONYMS'

SET SYNONYMS='GUMMOW.XYZ"
WHERE CREATOR='JONES'

WHERE CREATOR='SCHMIDT'
AND TRANSLATION='ENGLISH'

AND TRANSLATION='DEUTSCH'
AND ENVIRONMENT='CMS'

AND ENVIRONMENT='CMS'

Figure 51. Activating a user's QMF command synonyms

Important: Always specify a value for TRANSLATION when you’re
updating Q.PROFILES, or you might change more rows than
you intend.

The query in m applies to users who are already enrolled in QMF.
You can use a similar query to update the SYSTEM profile. If you are
enrolling a new user, use an INSERT query similar to the one shown in
Eigure 18 on page 9d.

2. Grant the SQL SELECT privilege to PUBLIC so that assigned users can
access the synonyms. For example:
GRANT SELECT ON COMMAND_SYNONYMS TO PUBLIC

If you are using a view on a synonym table rather than the table itself,
grant SELECT on only the view to prevent users from accessing synonyms
not meant for their use. Views are discussed in EMinimizi i

3. Instruct users to use the QMF CONNECT command to reconnect to the
database to activate the new synonyms. For example, user JONES who has
the password MYPW needs to enter:

CONNECT JONES (PA=MYPW

Each time you make a change to the table, instruct users to reconnect to
the database to activate the changes you made.

See [able 13 on page 99 for how to grant a user authority to connect to the
database. Users who do not have DB2 for VM CONNECT authority can

end the current QMF session and start another to activate the synonyms.

Chapter 10. Customizing QMF Commands 169

Customizing QMF Commands

Command synonyms follow the same rules for abbreviation as QMF
commands. Any abbreviation must indicate a unigue QMF command or
command synonym. For example, the minimum valid abbreviation for the
synonym EXECUTE is EXE. If you enter only EX, QMF can’t distinguish the
command synonym EXECUTE from the base QMF command EXPORT. See
QMF Reference for the proper abbreviations for QMF commands.

Minimizing Maintenance of Command Synonym Tables

170

The command synonym table is initialized before the QMF Home panel is
displayed. If you notice that QMF initialization time is increasing, you might
need to reorganize the command synonym table. To monitor the table’s
statistics, refer to DB2 Server for VM Database Administration

To minimize the time you spend maintaining users’ command synonym
tables, consider either assigning one synonym table to all users or assigning a
variety of different views of the same table. Both methods are discussed in
this section.

Assigning One Synonym Table to all Users

The more command synonym tables you create for individual users, the more
time you spend on maintenance. One way to reduce maintenance is to create
a single command synonym table and assign it to every user. The query in
m assigns to every user of base (English) QMF a table named
COMMAND_SYNONYMS.

UPDATE Q.PROFILES
SET SYNONYMS='Q.COMMAND_SYNONYMS'
WHERE TRANSLATION='ENGLISH' and ENVIRONMENT='CMS'

Figure 52. Assigning a single command synonym table to all QMF users

Assigning Views of a Synonym Table to Individual Users

To enable users to have synonyms unique to their needs and still keep table
maintenance at an acceptable level, consider creating several views of one
synonym table, and assigning the views to individual users or groups of
users. There are three types of views you can create.

Synonyms for Public or Private Use
If you have few synonyms that are used by individuals, consider creating and

assigning a view that flags each synonym for either public use (by all users)
or private use (by individual users):

1. Add an AUTHID column to the synonym table when you create the table.
A null value in the AUTHID column indicates a public synonym; a user
ID in the AUTHID column indicates a private synonym. You can have
many entries for the same synonym, each assigned to a different user.

Installing and Managing QMF on VM

Customizing QMF Commands

2. Use a query similar to that in m to create a view on the synonym
table. This query allows a user (indicated by userid in the figure) to use
all public synonyms in the table and any synonyms assigned privately to
his or her SQL authorization ID.

CREATE VIEW SYNVIEW (VERB,OBJECT,SYNONYM_DEFINITION)
AS SELECT VERB, OBJECT, SYNONYM_DEFINITION
FROM COMMAND_SYNONYMS
WHERE AUTHID='userid' OR AUTHID IS NULL

Figure 53. Creating a view that controls individual and public use of synonyms

Synonyms for Public or Group Use
If you support a large group of end users, consider creating and assigning a

view that flags certain synonyms to be used by certain groups of users.

The synonym table used to create the view contains a single row for each
synonym that belongs to a user group, and a single row for each public
synonym. AUTHID is either null or has a value that uniquely identifies the
user group.

1. Add an AUTHID column to the synonym table if it doesn’t have one.

2. Use a query similar to the one in w to create the view on the
synonym table. All users in the DEPTDO02 group can use all public
synonyms in the table and any synonyms assigned specifically to the
group.

CREATE VIEW GROUPVIEW (VERB,OBJECT,SYNONYM DEFINITION)
AS SELECT VERB, OBJECT, SYNONYM_DEFINITION
FROM COMMAND_SYNONYMS
WHERE AUTHID='DEPTDO2' OR AUTHID IS NULL

Figure 54. Creating a view that controls group and public use of synonyms

Synonyms Paired with an Authorization Table
Consider creating a separate table that holds in one column SQL authorization

IDs and in the other column the values of a key. If the keyed value for a
particular SQL authorization ID matches a keyed value in a row of the
command synonym table, the synonym described in that row is available to
the user.

Use a query similar to the one in Eigure 55 on page 172 to implement this

method of maintaining command synonyms. The query creates a view called
KEYVIEW on the table COMMAND_SYNONYMS, incorporating in the view
only the synonyms that have keyed matches between
COMMAND_SYNONYMS and the auxiliary table, KEYTABLE.

Chapter 10. Customizing QMF Commands 171

CREATE VIEW KEYVIEW (VERB,0BJECT,SYNONYM DEFINITION)
AS SELECT VERB, OBJECT, SYNONYM_DEFINITION
FROM COMMAND_SYNONYMS
WHERE AUTHID IS NULL OR AUTHID IN
(SELECT KEYS FROM KEYTABLE WHERE USER=userid)

Figure 55. Creating a view that uses an extra table to control use of synonyms

172 Installing and Managing QMF on VM

Chapter 11. Customizing QMF Function Keys

The default settings and labels for function keys on each QMF panel describe
a common set of QMF tasks that end users are likely to perform. Because
every site’s needs are unique, however, QMF provides a way for you to
customize both the label that displays on the screen and the command QMF
executes when a user presses the key.

Quick Start

Follow the steps in ffable 27 to customize a default QMF function key. If you
need more information on any step, see the page listed at the right of the
table.

Table 27. Customizing QMF function keys

To do this task:

See:

Choose the panels and function keys you want to customize. You can change function key Page iz3
settings on all panels except table editor panels and database status panels. Your flexibility in
customizing the keys depends on what type of panel you choose.

Create a table to hold the customized definitions of your function keys. Include at least Page izd
four columns: PANEL, ENTRY_TYPE, NUMBER, and PF_SETTING. These columns have

information about the command QMF issues when the key is pressed and the label text that

is displayed beside the key number on the screen.

Insert your customized key definitions into the function key table. To insert a definition, Page iz
reference the panel ID of the panel you’re customizing; the QMF command issued when the

key is pressed; the text displayed on the screen next to the number of the key; and where

the key is positioned on the screen.

Activate the new function key definitions by updating the PFKEYS field of the user’s row Page fiad
in Q.PROFILES with the name of the function key table you created.

Choosing the Keys You Want to Customize

QMF function keys appear on two types of panels: primary panels, which are
full-screen panels such as FORM.MAIN and REPORT; and secondary panels,
which appear as window dialog panels. Help, prompt, and Prompted Query
panels are examples of secondary panels.

The tables in FDefault Keys an Full-screen Panels” an page 174 show the

default QMF function key labels and commands for both full-screen and
window panels; use them to decide which function keys you want to change.

© Copyright IBM Corp. 1983, 2000 173

Customizing QMF Function Keys

You cannot customize function keys on Table Editor panels. On other panels,
you can choose QMF or installation-defined commands to associate with any
function key label you modify.

Default Keys on Full-screen Panels

Key Executed command
Backward BACKWARD
Cancel CANCEL
Change CHANGE
Chart DISPLAY CHART or SHOW CHART
Check CHECK
Clear CLEAR
Command SHOW COMMAND
Comments SWITCH COMMENTS
Delete DELETE
Describe DESCRIBE
Draw DRAW
Edit Table EDIT TABLE
End END
Enlarge ENLARGE
Form DISPLAY FORM or SHOW FORM
Forward FORWARD
Help HELP
Insert INSERT
Left LEFT
List LIST
Print PRINT
Proc DISPLAY PROC or SHOW PROC
Profile DISPLAY PROFILE
Query DISPLAY QUERY or SHOW QUERY
Reduce REDUCE
Refresh REFRESH
Report DISPLAY REPORT or
SHOW REPORT
Retrieve RETRIEVE
Right RIGHT

174 nstalling and Managing QMF on VM

Customizing QMF Function Keys

Key Executed command

Run RUN QUERY or RUN PROC
Save SAVE PROFILE

Show SHOW

Show Field SHOW FIELD

Show SQL SHOW SQL

Sort SORT

Specify SPECIFY

Specify View SPECIFY VIEW

Default Keys on Window Panels

Key Executed command
Attribute SPECIFY ATTRIBUTES
Backward BACKWARD

Cancel CANCEL

Clear CLEAR

Command SHOW COMMAND
Comments SWITCH COMMENTS
Condition SPECIFY CONDITION
Delete DELETE

Describe DESCRIBE

End END

Exit END

Forward FORWARD

Help HELP

Index HELP INDEX

Keys HELP KEYS

List LIST

Menu HELP MENU

More Help HELP MORE

Next Column

NEXT COLUMN

Next Definition

NEXT DEFINITION

Previous Column

PREVIOUS COLUMN

Previous Definition

PREVIOUS DEFINITION

Chapter 11. Customizing QMF Function Keys

175

Customizing QMF Function Keys

Key Executed command
Refresh REFRESH

Show Entity SHOW ENTITY
Show Field SHOW FIELD
Show View SHOW VIEW

Sort SORT

Specify Attributes

SPECIFY ATTRIBUTES

Specify Condition

SPECIFY CONDITION

Switch

HELP SWITCH

On the global variable list panel, RESET GLOBAL is the command executed
when the Delete key is pressed.

For more information on the commands associated with these function keys,

see QMF Reference.

Creating the Function Key Table

After you decide which function keys you want to customize, follow these
steps to create a table that links your customized function key definitions with

176

the appropriate panels:

1. Use an SQL CREATE TABLE statement similar to the one shown in
to create the table. Substitute your own name for MY_PFKEYS
and your own dbspace for DBSPACEL.

CREATE TABLE MY PFKEYS
(PANEL
ENTRY_TYPE
NUMBER
PF_SETTING
IN DBSPACEL

CHAR(18) NOT NULL,
CHAR(1) NOT NULL,
SMALLINT NOT NULL,
VARCHAR (254))

Figure 56. Creating a function key table

For information on acquiring a dbspace to hold the table, see FChaasing

and Acquiring a dbspace for the User” on page 118. For information on

creating a new dbspace, see DB2 Server for VM Database Administration
2. Add comments to the SYSTEM.SYSCATALOG table using an SQL

statement similar to the following:

COMMENT ON TABLE MY_PFKEYS IS 'PF KEYS RESERVED FOR FINANCIAL ANALYSTS'

Installing and Managing QMF on VM

Customizing QMF Function Keys

The phrase PF KEYS RESERVED FOR FINANCIAL ANALYSTS appears in the
REMARKS column of the SYSTEM.SYSCATALOG table. For more
information on adding comments to the system catalog, see DB2 Server for
VM Database Administration

3. Create an index using an SQL statement similar to the following:

CREATE UNIQUE INDEX MY_PFKEYSX
ON MY_PFKEYS (PANEL, ENTRY_TYPE, NUMBER)

Use the UNIQUE keyword to index the PANEL, ENTRY_TYPE, and
NUMBER columns to ensure that no two rows of the table can be
identical.

If you choose not to use the UNIQUE keyword, QMF allows duplicate key
definitions. QMF displays warning messages on the Home panel if it finds
more than one key definition for the same key, and writes information
about the warning messages to the user’s trace data. Multiple key
definitions for window panels cause no messages; QMF uses the last
definition it finds.

Entering Your

Linking

Function Key Definitions into the Table

You can use SQL INSERT statements or the QMF Table Editor to insert
customized key definitions into the function key table. Each function key
definition spans two rows in the table:

* One row specifies the command QMF issues when a user presses the key.
» The other row specifies the label text that appears on the screen.

Enter both rows for each key you want to customize. A function key
command without an associated label doesn’t appear on the user’s screen.
Similarly, a label with no associated command is inactive.

The next two sections discuss the values you need to enter for each row.

a Command with a Function Key

Each function key on a QMF panel is linked with a QMF command that
executes when the function key is pressed. To ensure your customized
function keys also work this way, make sure one of the two rows you enter

into the table has the values shown in [ahle 28 on page 178.

Chapter 11. Customizing QMF Function Keys 177

Customizing QMF Function Keys

Table 28. Values to customize your function key table

Column Value Information
PANEL ID of the QMF EEull-screen Panel ldentifiers” on page 181 shows the IDs you
panel you’re need to use for full-screen panels. [Window Panel 1dentifiers” ad
customizing shows the IDs you need to use for specific window
panels.
If you want to define the same set of keys to appear on every
panel in a class of window panels, use the class ID shown at the
bottom of the tables. For example, to customize the Specify
panel of a Forms window, use the panel ID FOSPEC if you want
the Specify panel to have different keys than the rest of the
panels in the forms class. Otherwise, use the panel ID FOXXXX,
which characterizes all panels in that class.
Changes you make using a class ID apply to all panels
customized by that class ID. Help and prompt windows don’t
have a set of unique IDs; they can be customized using only
class IDs.
ENTRY_TYPE K K indicates that this row defines the command QMF issues
when the key is pressed.
NUMBER Number of the For example, if you’re changing the definition for PF5, enter a 5
function key you’re in this column.
customizing
PF_SETTING Text of the Make sure this command is appropriate for the panel on which

command that runs
when the key is
pressed

it appears. For example, the ENLARGE command is appropriate
for only the QUERY panel in a QBE query. Because QMF doesn’t
check if the command is appropriate for the panel until the user
presses the key, test each of your new function keys before your
end users need them.

Enter the command in uppercase, because QMF does not
convert terminal input to uppercase when it retrieves the
commands associated with function keys. The command won’t
run if this value is lowercase and the CASE field of the user’s
profile has the value UPPER.

Ensure that each panel you customize has a key set to END or
CANCEL. Without a key defined to one of these commands,
users might not be able to exit the panel.

If you’re using an NLF: Ensure the underlying command has the correct

national language translation; additionally, it’s
helpful if the label text for each key is written in the
language of the NLF you’re using.

178 Installing and Managing QMF on VM

Customizing QMF Function Keys

Labeling the Function Key and Positioning it on the Screen

The function keys on each QMF panel have labels next to the function key
numbers. To ensure the label appears on the screen, you need to add a second
row to the table. In this row, make sure the columns of the function key table
have the values shown in

Table 29. Values to label your function key table

Column Value Information

PANEL ID of the QMF This is the same ID you used for the first row of the definition,
panel you’'re explained in ELinking a Command with a Function Key” onf
customizing hage 177

ENTRY_TYPE L L indicates that the row defines the label associated with the

function key.

NUMBER Number of the row If you are customizing a window or help panel, NUMBER
where the key represents the number of the function key (as it does in the first
appears on the row you added to the table in ELinking a Command with a
display, if you are Eunction Key” on page 177). For example, on the Home panel,
customizing a PF5 appears in row 1 and PF12 appears in row 2.
full-screen panel.

PF_SETTING Text of the function For full-screen panels, QMF displays on the screen exactly what

key labels you enter in this column, and does not adjust for spacing. For
example, if you're customizing the QMF Home panel, you need
to enter all the keys that appear on that panel, whether or not
you customized them. QMF does not automatically fill in the
default key settings for keys you choose not to customize. See
for an example.

For window panels, you need to type only the label of the key

in this column. See Eigure 58 on page 180 and Eiguire 59 ad

for examples.

Examples of Key Definitions

Use the examples in this section to see how to enter a complete function key
definition for each type of QMF panel. The examples show how to update a
full-screen panel, a window panel, and a help panel.

The examples shown use panel IDs from the tables in Fldentifying the Panel
lYou Want to Customize” on page 181. Use these tables to get the proper

values for the PANEL column of the function key table.

Entering a Definition for a Key %I

Use the SQL queries shown in to change PF2 on the
Home panel from EDIT TABLE to IMPORT. Identify the Home panel with the
panel ID HOME, and indicate with the number 2 (in the first query shown) that

you want to customize the command executed when a user presses PF2.

Chapter 11. Customizing QMF Function Keys 179

Customizing QMF Function Keys

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES('HOME', 'K', 2, 'IMPORT')

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES('HOME','L"',1,'1=Help 2=Import 3=End 4=Show 5=Chart 6=Query"')

Figure 57. Changing a function key for a QMF command on the Home panel

180

The QMF Home panel now displays Import for PF2:

Type command on command line or use function keys. For help, press PF1l or type
HELP.

1=Help 2=Import 3=End 4=Show 5=Chart 6=Query
7=Retrieve 8=Edit Table 9=Form 10=Proc 11=Profile 12=Report
0K, cursor positioned.

COMMAND ===>

In the PF_SETTING column of the second query, be sure to type exactly what
appears in the top row of keys on the Home panel, even if you haven’t
customized each key. For example, if you specify only the word Import in the
PF_SETTING column for the second query, the Home panel looks like this:

Type command on command line or use function keys. For help, press PFl or type
HELP.

Import

7=Retrieve 8=Edit Table 9=Form 10=Proc 11=Profile 12=Report
0K, cursor positioned.

COMMAND ===>

Entering a Definition for a Key on a Window Panel
The SQL queries in myadd a PF3 key to the Tables panel in Prompted

Query. The function key executes the CANCEL command, and is labeled
CancelMe.

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES('QPTABL', 'K', 3, 'CANCEL')

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES('QPTABL', 'L', 3, 'CancelMe')

Figure 58. Changing a function key on the Specify panel of Prompted Query

Installing and Managing QMF on VM

Customizing QMF Function Keys

Entering a Key Definition for a Help or Prompt Panel
The SQL queries in [Eigure 59 add a PF13 key to all help panels. The function

key executes the CANCEL command, and is labeled CancelMe.

All help and prompt panels are customized using a single class ID. Because
INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES ('HEXXXX', 'K', 13, 'CANCEL')

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES ('HEXXXX', 'L', 13, 'CancelMe')

Figure 59. Changing a function key on a help panel or prompt panel

any changes you make to one panel in the class appear on all panels that are
defined with that class ID, ensure changes you make to one help or prompt
panel are appropriate for all the help and prompt panels in that class.

Identifying the Panel You Want to Customize

Use the tables in this section to help you determine what ID to enter in the
PANEL column of your function key table. The panel ID appears in the upper
left corner of the panel, when the global variable DSQDC_SHOW_PANID is
set to 1, using the following command:

SET GLOBAL (DSQDC_SHOW_PANID=1

Full-screen Panel Identifiers

The full-screen panel identifiers are listed in w Enter the identifiers in
the PANEL column of the function key table exactly as they are shown here.

PROMPTED QUERY FORM.BREAK1 FORM. COLUMNS

SQL QUERY FORM.BREAK2 FORM.CONDITIONS
QBE QUERY FORM.BREAK3 FORM.DETAIL
PROC FORM.BREAK4 FORM. FINAL
PROFILE FORM.BREAK5 FORM.MAIN
REPORT FORM.BREAK6 FORM.OPTIONS
GLOBALS FORM.CALC FORM. PAGE

HOME

Figure 60. Full-screen panel identifiers

Window Panel Identifiers

Use the tables in this section to reference window panel IDs. If you set the
global variable DSQDC_SHOW_PANID to display the panel IDs, you’ll notice
that each ID shown in these tables is prefaced by 4 characters when it appears
on the screen.

Window panels not named in the tables do not have unique panel I1Ds, and
can be customized using the class ID shown at the bottom of each table. All

Chapter 11. Customizing QMF Function Keys 181

Customizing QMF Function Keys

class IDs have the character string XXXX in them. These characters are not
variable characters; they are actually part of the ID.

Command Windows

Panel Identifier Title or Description
COENTR Command Entry
COXXXX Command Window Class

Forms Windows

Panel Identifier Title or Description
FOALIG Alignment

FODFIN Definition

FOSPEC Specify

FOXXXX Form Window Class

Global Variable Windows

Panel Identifier Title or Description

GLADVA Add Variables

GLSHVA Show Variables

GLXXXX Global Variables Window Class

Help and Prompt Windows

Panel Identifier Title or Description
HEXXXX Help Window Class
PRXXXX Prompt Window Class

Location Windows

Panel Identifier Title or Description

PLLOCA Location Window List

Object List Windows

Panel Identifier Title or Description

OBDESC Object Description

182 Installing and Managing QMF on VM

Customizing QMF Function Keys

Panel Identifier Title or Description
OBLIAC Obiject List: Action
OBLIMU Object List: Multi-selection
OBLISI Object List: Single-selection
OBSORT Object List Sort

OBXXXX Object List Window Class

Prompted Query Windows

Panel lIdentifier Title or Description

QPCDCH Condition Connector - Change
QPCDIT Condition Connector

QPCOCH Column - Change

QPCODE Column Description

QPCOFU Column Summary Function Items
QPCOFU Column Summary Functions
QPCOLI Column Names List

QPCOLU Columns

QPDUCH Duplicate Rows - Change
QPDUPL Duplicate Rows

QPEXPR Expression

QPJOCO Join Columns

QPJOTA Join Tables

QPROBE Rows - Between

QPROCH Rows - Change (left side)
QPROCT Rows - Containing

QPROC1 Rows - Comparison Operators 1
QPROC2 Rows - Comparison Operators 2
QPROEN Rows - Ending With

QPROEQ Rows - Equal To

QPROGQ Rows - Greater Than or Equal To
QPROGR Rows - Greater Than

QPROLQ Rows - Less Than or Equal To
QPROLS Rows - Less Than

QPROST Rows - Starting With

Chapter 11. Customizing QMF Function Keys 183

Customizing QMF Function Keys

Panel Identifier Title or Description
QPROWS Rows (Row Conditions)
QPSHFI Show Field

QPSHSQ Show SQL

QPSOCH Sort - Change

QPSORT Sort

QPSPEC Specify

QPTABL Tables

QPXXXX PQ Window Class

Activating New Function Key Definitions

184

To enable users to use the customized function key definitions you created:

1. Update the PFKEYS field of the user’s profile with the name of your
function key definitions table.

For example, use a query like the one in m to assign to English
QMF user JONES the table MY_PFKEYS, and to German NLF user
SCHMIDT the table MEIN_PFKY. Always include a value for the
TRANSLATION and ENVIRONMENT columns in a query that updates
the Q.PROFILES table.

Base QMF (English)

German NLF
UPDATE Q.PROFILES

UPDATE Q.PROFILES
SET PFKEYS = 'MY_PFKEYS'

SET PFKEYS = 'MEIN_PFKY'
WHERE CREATOR='JONES'

WHERE CREATOR='SCHMIDT'
AND TRANSLATION = 'ENGLISH'

AND TRANSLATION = 'DEUTSCH'
AND ENVIRONMENT = 'CMS'

AND ENVIRONMENT = 'CMS'

Figure 61. Making customized function keys accessible to a user

2. Grant the SQL SELECT privilege to users who need to access the table.

To allow any user to whom the table is assigned to use it, grant the
SELECT privilege to PUBLIC. For example:

GRANT SELECT ON MY_PFKEYS TO PUBLIC

Installing and Managing QMF on VM

Customizing QMF Function Keys

To minimize maintenance of function keys at your site, you can assign a
view of the table. Grant the SELECT privilege on only the view to prevent
users from accessing function keys not meant for their use.

The procedures for assigning views of a function key table are the same as
those for command synonym tables, discussed in

i " . Use the
strategies discussed in that section to decide whether to assign a table or a
view to individual users or groups of users.
Instruct users to reconnect to the database to initialize a QMF session with
the new function key definitions.

For example, user JONES who has the password MYPW needs to enter:
CONNECT JONES (PA=MYPW

Each time you make a change to the table, instruct users to reconnect to
the database to activate the changes you made.

See [Tahle 13 on page 93 for how to grant a user authority to connect to the
database. Users who do not have DB2 for VM CONNECT authority can

end the current QMF session and start another to activate the new
function keys.

Chapter 11. Customizing QMF Function Keys 185

Customizing QMF Function Keys

186 Installing and Managing QMF on VM

Chapter 12. Creating Your Own Edit Codes for QMF Forms

Note: This chapter contains General Use Programming Interface and
Associated Guidance Information.

QMF forms help users control the format of data returned from the database.
Use edit codes in the EDIT column of the MAIN and COLUMNS panels of
the QMF form to format report data in different ways. For example, use a
decimal edit code for a column that returns salary data. This edit code
formats the numeric data into a decimal with a currency symbol.

If the edit codes supplied by QMF do not meet the report editing needs of
your site, you can use the information in this chapter to create your own edit
codes to be used in the EDIT column of the FORM.MAIN and
FORM.COLUMNS panels. QMF Reference shows the edit codes supplied with
QMF.

This chapter also shows you how to write an edit exit routine in either
assembler, PL/1, or COBOL, to format the data described by your edit code.
QMF provides both a standard interface to your edit exit routine and a
sample edit exit program you can use as a starting point for writing your
own.

QMF supports edit routines in 31-bit or 24-bit AMODE or RMODE; however,
some versions of some supported languages do not support 31-bit addressing.

Before you begin the tasks in this chapter, consider reviewing the sections of
QMF Referencethat describe QMF’s functions for report formatting and edit
codes.

Quick Start

Use the steps in Mahle 3d to guide you in creating a user edit exit routine. If
you need more information on any step, see the page listed at the right of the
table.

Table 30. Creating a user edit exit routine

To do this task:

See:

Decide what you want your routine to do and choose an edit code that identifies the Page
routine. Use either Uxxxx or Vxxxx for your edit code, where xxxx is zero to four letters
with no embedded blanks or null values.

© Copyright IBM Corp. 1983, 2000 187

Creating Your Own Edit Codes for QMF Forms

Table 30. Creating a user edit exit routine (continued)

To do this task: See:
Request that your exit routine format the data by using fields of the IBM-supplied interface Page flad
control block.

Accept parameters from and return formatted results to the exit routine using the standard Page f193
input and output fields provided in the interface control block.

Request that control pass to your edit exit routine when QMF terminates by setting a Page a7
termination switch in a field of the interface control block. You might pass control to the edit

exit routine if the routine needs to perform cleanup activities, such as releasing storage.

To write your edit exit routine in assembler, start with the sample assembler program Page a7

provided by IBM. After you write your program, assemble and generate the program.

To write your edit exit routine in PL/I, start with the sample PL/I program provided by Page ka3
IBM. After you write your program, compile and generate the program and define it to

CMS.

To write your edit exit routine in COBOL, start with the sample COBOL program Page YE
provided by IBM. After you write your program, compile and generate the program and

define it to CMS. COBOL refers to VS COBOL II, COBOL/370, and IBM COBOL for OS/390

and VM unless otherwise stated.

Choosing an Edit Code

Create either a Uxxxx or a Vxxxx edit code to be handled by your edit exit
routine. For U codes, data passed to the edit routine has the internal database
representation of the source data. For V codes, numeric data is converted to a
character string, and this character string is passed to the edit program.

Both codes can indicate processing for either character or numeric data. U and
V must be in uppercase. Replace xxxx with zero to four characters (letters,
digits, or special characters) that can be entered from a terminal; embedded
blanks or nulls are not allowed. The following examples show valid U-type
and V-type edit codes:

Ul UAB42 V_1 VX%5

When the source data is character, codes of either type are equally easy to
process. If the formatting requires arithmetic operations, consider using U
codes for numeric sources; otherwise, use V-codes. If the data type is extended
floating point, ensure that the programming language supports it. For
example, VS COBOL Il doesn’t handle extended floating point data. In this
case, IBM recommends using V codes.

For V-codes containing numeric data, QMF converts the data to character
format and then calls the user edit routine. The length of the converted
number varies depending upon its original data type, as shown in

188 Installing and Managing QMF on VM

Creating Your Own Edit Codes for QMF Forms

Table 31. How QMF converts numeric data according to data type

If data type of original QMEF converts it to this length:

numeric data is:

Small integer 5

Integer 11

Decimal Equal to the precision of the original data (raised to an
odd number if the original data is even)

Floating point 15 or more depending on the base 10 exponent

Extended floating point 30 or more depending on the base 10 exponent

You need not restrict an edit code to the processing of numeric data, or to the
processing of character data. The sample edit routines supplied with QMF
process one edit code for both numeric and character data.

If the CASE field of a user’s profile has the value UPPER or STRING, QMF
converts all input entered from the terminal to uppercase, and the edit code
might not be recognized. If your edit code is written to accept edit codes in
mixed case, enter the edit codes when case is set to mixed.

Handling DATE, TIME, and TIMESTAMP Data Types

If your installation supports date/time data types, you can format columns
with data types of DATE, TIME, and TIMESTAMP. This enables your users to
use local date/time exit routines. For more information about these data
types, see Using QMF.

You need to remember that these are DB2 for VM exits, not QMF exits. For
details about how these exits are created refer to DB2 Server for VM System
Administration

In order for QMF to use a local date/time exit, the text files containing the
date/time exits, ARIUXDT and ARIUXTM, must be placed on a minidisk that
is accessible to QMF, when QMF starts. If QMF is being started in program
segment mode, you must create two relocatable module files from the existing
exit text files, ARIUXDT and ARIUXTM. To create the relocatable module files,
issue the following CMS commands:

LOAD ARIUXDT (RLDSAVE)

GENMOD ARIUXDT

LOAD ARIUXTM (RLDSAVE)
GENMOD ARIUXTM

Your edit routine can format data from these columns, just as it can format
data from columns of the other data types. The one difference is that the

Chapter 12. Creating Your Own Edit Codes for QMF Forms 189

Creating Your Own Edit Codes for QMF Forms

190

value to be formatted, which appears in the control block field ECSINP, is
always passed as a character string, whether the code to be processed is a U
code or a V code. The format of the string is described in

Table 32. Formatting DATE, TIME, and TIMESTAMP data

Data type Form of the string
DATE data yyyy-mm-dd where:
yyyy Specifies the year. It is always a four-digit
number.
mm Specifies the month (01 for January, ... 12 for
December). It is always a two-digit number that
can contain a leading zero.
dd Specifies the day of the month. It is always a
two-digit number that can contain a leading
Zero.
The dashes (-) represent true dashes.
For example, 1990-12-12 is the date December 12, 1990.
TIME data hh.mm.ss where:

hh Specifies the hour (based on a 24-hour clock,
from 00 to 23). It is always a two-digit number
that can contain a leading zero.

mm Specifies the minute. It is always a two-digit
number that can contain a leading zero.
ss Specifies the second. It is always a two-digit

number that can contain a leading zero.
The periods represent true periods.

For example, 13.08.36 is 1:08 P.M. and 36 seconds in the
notation commonly used in the United States.

TIMESTAMP data

yyyy-mm-dd-hh.mm.ss.nnnnnn where:
yyyy-mm-dd
Specifies the date in the same way it does for
DATE data.
hh.mm.ss
Specifies the time of day in the same way it
does for TIME data.
nnnnnn
Specifies a six-digit number that extends the
count of seconds (ss) down to the nearest
microsecond.
For example, 1990-12-12-13.08.36.123456 is 1:08 P.M. and
36.123456 seconds on December 12, 1990, in the notation
commonly used in the United States.

For the data types available, see the ECSINTYP field in [[able 33 on page 193.

Installing and Managing QMF on VM

Creating Your Own Edit Codes for QMF Forms

Calling Your Exit Routine to Format the Data

m shows how QMF and your edit exit routine work together to format
data using the edit codes you define.

SQL/DS QMF QMF

Data Form Report
== User- i
= MF > _
= I(ﬁterface written I?q{\glr:face ——

— | = Control |—» | Edit —> |Control |T* |=——=

= Block Exit Block e
= Routine —_—

Figure 62. How a user edit routine works with QMF

When you enter your own code in a column of FORM.MAIN or
FORM.COLUMNS, QMF passes certain characteristics of the data into the first
interface control block shown in m These characteristics reside in
specific fields of the control block, which are discussed in

Interface Control Block™ an page 193. QMF also passes into the input area the

data to be formatted and an output area that holds the formatted result.

IBM supplies three different versions of a sample edit exit routine. One

version is for assembler (named DSQUXDTA), one is for PL/1 (named

DSQUXDTP), and the other is for COBOL (nhamed DSQUXDTC). The sample

program supports two edit codes:

VSS Adds dashes to a social security number or a character string.

UDN Transforms a department number into its department name, using a
table internal to the program.

The sample program is commented so you can more easily see how a user
edit routine works. You can use the sample as a template for creating your
own program.

QMF supplies a user edit routine in the form of a relocatable module file and
a text file (both called DSQUEDIT), which are located on the QMF production
disk. Delete or rename the QMF-supplied module and text file DSQUEDIT
when you are ready to use your edit routine.

If the programming language you are using supports creation of a relocatable
module file, create a module file for the edit routine.

Note: The use of a relocatable module file facilitates user edit code
development because a module file on the user’s “A” disk can be tested
without renaming or deleting the QMF-supplied user edit routine from
the QMF production disk. This reduces the impact on other QMF users.

Chapter 12. Creating Your Own Edit Codes for QMF Forms 191

Creating Your Own Edit Codes for QMF Forms

192

Once you have written and assembled or compiled your edit routine, you
need to consider the method of making your routine available to QMF for
execution. The user edit routine can be executed in text or module format.
The use of a relocatable CMS module file is the preferred method of
generating a user edit routine.

When QMF is started, QMF attempts to load the edit routine as follows:
1. Issue CMS NUCXLOAD for DSQUEDIT.

NUCXLOAD loads a CMS module file that has relocation information
saved, or as a member of an OS load library.

2. Issue OS LOAD (SVC 8) for DSQUEDIT.
If use of NUCXLOAD is not successful, QMF then issues an OS LOAD

(SVC 8). OS LOAD loads a text file, a member of a TXTLIB, or a member
of an OS load library.

Different versions of the interface control block are used for assembler, PL/I,
and COBOL edit routines. However, the fields of the control block and the
input they contain are the same regardless of the programming language the
routine is written in. m shows this general structure.

QMF Main Module QMF Edit Exit Module
DSQQMF DSQUEDIT (CMS)
Call o
P Return
- Control
Programs

(IBM-supplied)

DSQUXDT
User edit exit
program

Figure 63. General program structure for edit routines

Installing and Managing QMF on VM

Creating Your Own Edit Codes for QMF Forms

Passing Information to and from the Exit Routine

To format the data returned from the database, QMF calls your edit exit
routine and passes information through fields of the interface control block.
Information is also passed to and from the exit routine using the input and
output areas, which contain the database data to be formatted and
information about where to put the formatted result.

The data to be formatted can be a column value, the result of a built-in
function, a defined column, a calculation, or a value represented by a variable
in a heading, a footing, or a final-summary line.

Upon receiving control for formatting, your edit routine takes the parameters
in the following list.

* The interface control block.
* The value of ECSINPT, the data from the input area to be formatted.

* The value of ECSRSLT, the output area containing the formatted result.
ECSRSLEN contains the amount of storage actually passed to this output
area on each call. The result cannot be column wrapped.

Important: Do not use more memory in the output area than is indicated in
the ECSRSLEN field, or results might be unpredictable.

ECSINPT, ECSRSLT, and ECSRSLEN are fields of the interface control block,
explained in

Fields of the Interface Control Block

Use the fields of the interface control block to pass information to and from
your exit routine. Although there are separate interface control blocks that
work with assembler, PL/1, or COBOL, the fields of the interface control block
are standard regardless of the programmin% language your edit exit routine is
written in. These fields are shown in . Unless otherwise stated, each
field relates to all formatting calls.

These same fields appear in each sample program (one for each programming
language supported) shipped with QMF. You can include these field names in
your own source program. The QMF production disk contains the sample
programs.

Table 33. Fields of the QMF interface control block

Name Contents

ECSDECPT Contains the current decimal point symbol as determined by the DECOPT option of
PROFILE (period or comma).

ECSECODE Contains the user edit code.

Chapter 12. Creating Your Own Edit Codes for QMF Forms 193

Creating Your Own Edit Codes for QMF Forms

Table 33. Fields of the QMF interface control block (continued)

Name Contents

ECSERRET Contains a zero at the point of call. Set this to a nonzero return code to record an
error. Use one of the values in the following list for an error of the indicated type:
Number

Error
99101 Unrecognized edit code
99102 Improper input data type for edit code
99103 Invalid input value for item to be formatted
99104 Item to be formatted is too short
99105 Not enough room for result in ECSRSLT (result is too wide for the space
allotted)
Error codes listed (and their associated messages and help panels) are specific to the
error. For any other code, a general error message, with a general backup Help panel,
is displayed.

ECSFREQ Holds E for a formatting call, T for a termination call.

ECSINLEN Contains the length, in bytes, of the value to be formatted.

ECSINNUL Holds an N if the value to be formatted is null.

ECSINPRC Contains the precision of the value to be formatted. Applies only to U-type codes
when the data type is DECIMAL, or to V-type codes when the character string to be
formatted was derived from numeric data.

ECSINSCL Contains the scale of the value to be formatted. Applies only to U-type codes when
the data type is DECIMAL, or to V-type codes when the character string to be
formatted was derived from numeric data.

ECSINSGN Holds the sign of a converted numeric value (blank or -). Applies only to V-codes

when the character string to be formatted was derived from numeric data.

194 Installing and Managing QMF on VM

Creating Your Own Edit Codes for QMF Forms

Table 33. Fields of the QMF interface control block (continued)

Name Contents
ECSINTYP Indicates, in database terms, how the value to be formatted is represented. Applies to
edit codes of every type. Values can be:
384 DATE data type
388 TIME data type
392 TIMESTAMP data type
448 VARCHAR data type
452 CHAR data type
456 LONG VARCHAR data type
464 VARGRAPHIC data type
468 GRAPHIC data type
472 LONG VARGRAPHIC data type
480 FLOAT data type
484 DECIMAL data type
496 INTEGER data type
500 SMALLINT data type
940 Extended floating point data type
The extended floating point data type is not supported by the database (or by
COBOL); it is limited to functions such as AVERAGE and STDEV. Extended floating
point values are precise to more than 30 digits.
ECSNAME Contains the name of the control block, which is DXEECS. Serves as an eye catcher in
storage dumps.
ECSRQMF Set this to T to request a termination call.
ECSRSLEN Contains the length of the output area, in bytes.
ECSTHSEP Contains the thousands separator as determined by the DECOPT option of PROFILE
(blank or a comma).
ECSUSERS A 256-byte scratchpad area where your exit routine can record information that

persists from one call to the next. On the first call after the edit routine is loaded, this
field contains binary zeros.

Fields That Characterize the Input Area

Restriction: This section does not apply to values from DATE, TIME, and
TIMESTAMP columns. For information on values for those types,

see EHandling DATE _TIME _and TIMESTAMP Data Types” ad
hage 18d

During a session, the subprogram DSQUXDT might need to service many
different edit codes. If it does, consider making your routine an executive
routine, which does nothing but analyze the edit codes passed to it and then
invokes an appropriate routine to do the actual formatting. The design makes
the source code easier to read and easier to modify when new user edit codes
are devised.

Chapter 12. Creating Your Own Edit Codes for QMF Forms 195

Creating Your Own Edit Codes for QMF Forms

In addition to the fields in the interface control block, your edit exit routine
receives, in the input field, information about the data to be formatted.

The value to be formatted appears in the field ECSINPT. How it is
represented depends on two factors:

¢ Whether the value to be formatted is numeric or character, as determined
by the ECSINTYP field.

* Whether the edit code is a U code or a V code, as determined by the
ECSECODE field.

How U-Type Edit Codes are Represented in the Input Area
Numeric values are represented in internal database format. For example, if

ECSINTYP is equal to 496 (INTEGER data type), the value is a full-word
integer. If it is 484 (DECIMAL data type), the value is in decimal format. Scale
and precision in the decimal format are in the ECSINSCL and ECSINPRC
fields. Length (in bytes) is in ECSINLEN.

Numeric data from defined columns, calculations, and summary values is
returned as extended floating point values, a data type not explicitly
supported by DB2 for VM. The length (16 bytes) is in the ECSINLEN field.

Character or graphic values are represented in their internal, character-string
format, with one exception: for variable-length strings (for example,
VARCHAR data type), only the string itself appears and not the preceding
length field. For all character values, the string length (in bytes) is in the
ECSINLEN field.

How V-Type Edit Codes are Represented in the Input Area
Numeric values are represented by a numeric character string. The length is

contained in the field ECSINLEN. Leading or trailing zeros fill out the string
if required.

The string contains no sign or decimal point. Instead, the sign appears as a
blank or a minus sign in the field ECSINSGN, and the position of the decimal
point is in the field ECSINSCL. For example, suppose that the string in
ECSINPT is 12345, that ECSINSGN is blank, and that ECSINSCL is equal to 3;
then the value represented is +12.345.

Character or graphic values are represented in their character string. For all
character values, the string length (in bytes) is in the ECSINLEN field.

Fields That Characterize the Output Area

The ECSRSLT field receives the formatted output in the form of a character
string that completely fills the field. Upon input, this field is always blank.
The length of this field (in bytes) is in ECSRSLEN. QMF blanks out ECSRSLT
before calling the edit routine.

196 Installing and Managing QMF on VM

Creating Your Own Edit Codes for QMF Forms

Passing Control to the Exit Routine When QMF Terminates

Use the ECSRQMEF field of the control block to indicate that you want your
exit routine to receive control whenever QMF terminates. The ECSRQMF
value should be updated the first time the edit exit routine receives control.

When your edit exit routine receives control upon termination of QMF, the
parameters passed to the routine are the control block, the input area, and the
output area. Only the control block contains usable information.

Writing an Edit Routine in High-Level Assembler (HLASM) or Assembler
The QMF edit exit interface for assembler consists of these parts:
 Interface control block, which is shipped with QMF as DXEECSA
» Control program, which is shipped with QMF as DSQUXIA
* Your edit exit program, which is named DSQUXDT
m shows the program structure of an assembler edit exit routine for

CMS.
The IBM-supplied sample edit program for assembler, DSQUXDTA, is located

QMF Main Module QMF Edit Exit Module

DSQQMF DSQUEDIT
Call Entry: DSQUXIA

A4

Return

A

QMF Control
Program
IBM-supplied
DSQUXIA

DSQUXDT
User edit exit
program
DSQUXDT

Figure 64. Program structure of an assembler edit exit routine

in the QMF production disk. The sample program is commented so that you
can modify it to suit your needs. If you plan to use this example program,
copy it to your program library and change its name to DSQUXDT. Near the
bottom of this file is a COPY statement for DXEECSA, which is a member of
DSQUSERE MACLIB. It is DXEECSA that defines the input fields, giving
them the names we are using in this chapter.

Chapter 12. Creating Your Own Edit Codes for QMF Forms 197

Creating Your Own Edit Codes for QMF Forms

198

How an Assembler Edit Routine Interacts with CMS

Linkage obeys the standard IBM calling conventions:
* The address of a parameter list is passed in register 1, as shown in

Register 1 Address List

DXEECSA
On Entry to
User Exit >

Input Data

—L' Result Buffer

Figure 65. Registers of the program interface in assembler

* The parameter list contains three 4-byte addresses. The addresses point to:
— The control block
— The value to be formatted
— The storage reserved for the formatted results

* Registers 13 and 14 point to the caller’s save area and the return point.

In the example program, the addresses are placed in registers 8, 9, and 10
through the statements:
ECSPTR EQU R10
L ECSPTR,0(R1)
USING DXEECS,ECSPTR
ECSINPTP EQU R9
L ECSINPTP,4(R1)
USING ECSINPT,ECSINPTP
ECSRSLTP EQU R8
L ECSRSLTP,8(R1)
USING ECSRSLT,ECSRSLTP

The USING statements refer to the DSECTs defined in DXEECSA. These
define the three parameters and their input-field components (see

It follows that registers 10, 9, and 8 point, respectively, at the control block,
the value to be formatted, and the storage reserved for the formatted results.

Return control to QMF using the standard convention by restoring the
registers to their value at the time of the call, and returning to the address in
register 14.

Installing and Managing QMF on VM

Creating Your Own Edit Codes for QMF Forms

How an Assembler Edit Routine Interacts with QMF
The interface control block between QMF and the user edit interface
DSQUXDT is DXEECS. It contains the user’s edit code, identifies the source
data and the target location for the edited result, and provides a scratchpad
area for the user edit routine’s use. This control block is persistent between
calls to the user edit routine. The scratchpad area is not modified by QMF
after the initial invocation of the exit routine.

Eigure 66 on page 200 shows the DXEECS control block for assembler.

Chapter 12. Creating Your Own Edit Codes for QMF Forms 199

Creating Your Own Edit Codes for QMF Forms

200

B o o T T R R T T R S R e S R R e L 2 E L L e

F Ok 3k X X F ok 3k kX X ok 3k 3k X Xk ok 3k X X X X X X F X X *

DXEECS
ECSNAME

ECSEDCTL
ECSFREQ

ECSFEDIT
ECSFTERM

*

* % X X

*

ECSPAD10

CONTROL BLOCK NAME: DXEECS (ASSEMBLER VERSION)

FUNCTION:

THIS IS THE INTERFACE CONTROL BLOCK BETWEEN QMF AND
THE USER EDITING INTERFACE, DSQUEDIT (TSO/CMS), OR

DSQUECIC (CICS).

IT CONTAINS THE USER'S EDIT CODE, IDENTIFIES THE SOURCE
DATA AND THE TARGET LOCATION FOR THE EDITED RESULT

AND PROVIDES A SCRATCHPAD AREA FOR THE USER EDIT
ROUTINE'S USE.

THIS CONTROL BLOCK IS PERSISTENT BETWEEN CALLS TO THE

USER EDIT ROUTINE.

THE SCRATCHPAD AREA WILL NOT BE MODIFIED BY QMF AFTER
THE INITIAL INVOCATION OF THE EXIT ROUTINE.

STATUS: VERSION 7 RELEASE 1 LEVEL 0O

INNER CONTROL BLOCKS: NONE

CHANGE ACTIVITY:

CHANGE DATE:

DSECT

DS CL8
SPACE

DS XL40

ORG ECSEDCTL
DS CL1

EQU C'E'

EQU C'T

DS CL3

ECSECODE DS CL5

L I T T T R N R B T I N R

kkhkkkhkhkhhkhkkkhhkrrhkkx

-- CONTROL BLOCK IDENTIFICATION

-- EDIT CONTROL

----- FUNCTION REQUEST

EDIT FUNCTION

TERMINATE FUNCTION
(TO FREE RESOURCES... QMF
WILL CALL THE USER EDIT
ROUTINE FOR THIS FUNCTION
ONLY IF THE USER EDIT ROUTINE
HAS PREVIOUSLY REQUESTED IT.
SEE ECSRQMF BELOW.)

----- RESERVED FIELD

————— EDIT CODE FROM FORM OBJECT

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000

Figure 66. User edit routine field definitions for assembler DXEECS control block (Part 1 of 3)

Installing and Managing QMF on VM

ECSPAD20
ECSDECPT

*

*
ECSTHSEP
*

*
ECSPAD30
ECSQMF

ECSINDTA

ECSINTYP
*

ECSFLT
ECSDEC
ECSINT
ECSSINT
ECSVCHR
ECSFCHR
ECSLCHR
ECSVG
ECSFG
ECSLG
ECSDATE
ECSTIME
ECSTS
ECSFLTX
*
ECSINLEN
ECSINPRC

*
*

*

*
ECSINSCL
*

*

*

*
ECSINSGN
*
ECSPLUS
ECSMINUS
*
ECSINNUL
ECSNULL

*

Figure 66.

DS
DS

DS

DS
SPACE
DS
ORG
DS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

DS
DS

EQU
EQU

DS
EQU

CL3
CL1

CL1

XL16

ECSINDTA

F

480
484
496
500
448
452
456
464
468
472
384
388
392
940

F
H

CL1

C [

Creating Your Own Edit Codes for QMF Forms

————— RESERVED FIELD 00049000
----- SYMBOL FOR DECIMAL POINT 00050000
(AS DEFINED BY DECIMAL OPTION IN 00051000
CURRENT PROFILE OBJECT 00052000

----- SYMBOL FOR THOUSANDS SEPARATOR 00053000
(AS DEFINED BY DECIMAL OPTION IN 00054000
CURRENT PROFILE OBJECT 00055000

————— RESERVED FIELD 00056000
----- AREA RESERVED FOR QMF'S USE 00057000
00058000

-- DESCRIPTION OF THE INPUT DATA 00059000
00060000

————— DATA TYPE OF THE INPUT AS IT 00061000
EXISTS IN THE DATA BASE. 00062000
——————— FLOATING POINT DATA TYPE CODE 00063000
------- DECIMAL DATA TYPE CODE 00064000
------- INTEGER DATA TYPE CODE 00065000
——————— SMALL INTEGER DATA TYPE CODE 00066000
------- VARCHAR DATA TYPE CODE 00067000
——————— (FIXED) CHARACTER DATA TYPE CODE 00068000
------- LONG VARCHAR DATA TYPE CODE 00069000
------- VARGRAPHIC DATA TYPE CODE 00070000

------- (FIXED) GRAPHIC DATA TYPE CODE 00071000
------- LONG VARGRAPHIC DATA TYPE CODE 00072000

------- DATE DATA TYPE CODE 00073000
------- TIME DATA TYPE CODE 00074000
------- TIMESTAMP DATA TYPE CODE 00075000
------- EXTENDED FLOATING PT CODE 00076000

00077000
----- LENGTH OF INPUT DATA 00078000

----- PRECISION OF INPUT DATA IF IT IS 00079000
DECIMAL DATA TYPE (U-TYPE EDIT CODE) 00080000
OR IF IT WAS ANY NUMERIC DATA TYPE 00081000

(V-TYPE EDIT CODE)... 00082000
ZERO OTHERWISE 00083000
----- SCALE OF INPUT DATA IF IT IS 00084000

DECIMAL DATA TYPE (U-TYPE EDIT CODE) 00085000
OR IF IT WAS ANY NUMERIC DATA TYPE 00086000

(V-TYPE EDIT CODE)... 00087000

ZERO OTHERWISE 00088000

————— SIGN OF CONVERTED NUMERIC DATA 00089000
(V-TYPE EDIT CODE ONLY)... 00090000
-------- POSITIVE SIGN 00091000
———————— NEGATIVE SIGN 00092000
00093000

————— NULL INPUT DATA INDICATOR 00094000
-------- INPUT DATA IS NULL 00095000
00096000

User edit routine field definitions for assembler DXEECS control block (Part 2 of 3)

Chapter 12. Creating Your Own Edit Codes for QMF Forms 201

Creating Your Own Edit Codes for QMF Forms

202

ECSPAD40
ECSRSDTA

ECSRSLEN

*
*

ECSPAD50
ECSUCTL

ECSERRET
ECSERRO1
ECSERRO2
ECSERRO3
ECSERRO4
ECSERRO5
*
ECSRQMF
ECSRTERM

*
*

ECSPAD60
ECSUSERS

ECSINPT
ECSINPTC

ECSINSIN
ECSININT
ECSINFLT

ECSRSLT
ECSRSLTC

DS
SPACE
DS
ORG
DS

DS
SPACE
DS
ORG
DS
EQU
EQU
EQU
EQU
EQU

DS
EQU

DS
SPACE
DS
SPACE
DSECT
DS
ORG
DS
ORG
DS
ORG
DS
SPACE
DSECT
DS

CL10

XL16
ECSRSDTA
F

CL12

XL16
ECSUCTL
F

99101
99102
99103
99104
99105

CL1
CITI

CL11

CL256
2

CL32767
ECSINPTC
H
ECSINPTC
F
ECSINPTC
D

2

CL32767

————— RESERVED FIELD
-- DESCRIPTION OF THE RESULT BUFFER
----- LENGTH OF RESULT AREA
(EQUIVALENT TO COLUMN WIDTH IN THE
FORM OBJECT
————— RESERVED FIELD
-- USER CONTROL AREA
----- EDIT ROUTINE ERROR RETURN CODE
———————— UNRECOGNIZED EDIT CODE
-------- IMPROPER INPUT DATA TYPE
———————— INVALID INPUT DATA VALUE
-------- INPUT DATA LENGTH IS TOO SHORT
-------- RESULT BUFF LENGTH IS TOO SHORT
----- REQUEST FOR QMF
________ REQUEST INVOCATION FOR
TERMINATION FUNCTION
----- RESERVED FIELD
-- USER SCRATCH PAD AREA

-- EDIT ROUTINE INPUT DATA
----- CHARACTER STRING

————— SMALL INTEGER
————— INTEGER
————— FLOATING POINT

-- EDIT ROUTINE RESULT BUFFER
————— CHARACTER STRING

00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000
00114000
00115000
00116000
00117000
00118000
00119000
00120000
00121000
00122000
00123000
00124000
00125000
00126000
00127000
00128000
00129000
00130000
00131000
00132000
00133000

Figure 66. User edit routine field definitions for assembler DXEECS control block (Part 3 of 3)

Assembling Your Program
Before you assemble your program, ensure that you can access the
IBM-supplied control block DXEECSA, which is located in the QMF library
“DSQUSERE MACLIB” on the QMF production disk. You need to access the
QMF production disk and issue the CMS command GLOBAL MACLIB for the
QMF macro library. For example:

GLOBAL MACLIB DSQUSERE

Assemble your edit program, DSQUXDT, using HLASM or the assembler
supplied with CMS.

Installing and Managing QMF on VM

Creating Your Own Edit Codes for QMF Forms

Generating Your Program

Before you create the DSQUEDIT module file to generate your program,
ensure that you can access the IBM-supplied control module (DSQUXIA).
DSQUXIA is located on the QMF production disk. You need to access this
disk prior to creating the module file.

To create the DSQUEDIT module file, use the CMS LOAD and GENMOD

commands as follows:

1. Load the text files that make up the DSQUEDIT module.
The DSQUEDIT module must be relocatable. To be relocatable, the module
must be loaded with RLD entries. You do this by specifying the RLDSAVE
option on the CMS LOAD command. The entry point to the DSQUEDIT
module must be DSQUXIA. Issue the following CMS LOAD command:

LOAD DSQUXIA DSQUXDT (RLDSAVE RESET DSQUXIA)

You can run your edit routine in either 24-bit or 31-bit addressing mode.
QMF manages address switching as required. You can specify 31-bit
addressing on the CMS LOAD command. For example:

LOAD DSQUXIA DSQUXDT (RLDSAVE RESET DSQUXIA AMODE 31 RMODE ANY)
2. Generate the DSQUEDIT module.

Issue the CMS GENMOD command to generate the DSQUEDIT module
from the text files just loaded by the CMS LOAD command:

GENMOD DSQUEDIT (AMODE 31 RMODE ANY)

Once the user edit routine is tested it can be placed on the QMF production
disk or user disk that is available when you start QMF.

Writing an Edit Routine in PL/I without Language Environment (LE)

The QMF edit exit interface for PL/I consists of these parts:

* A control program, which is shipped with QMF as DSQUXIP
* A control module, which is shipped with QMF as DSQUPLI
* A control block, which is shipped with QMF as DXEECSP

* Your edit exit program, which is named DSQUXDT

Eigure 67 on page 204 shows the program structure of a PL/1 edit exit routine
for CMS.

Chapter 12. Creating Your Own Edit Codes for QMF Forms 203

Creating Your Own Edit Codes for QMF Forms

204

QMF Main Module QMF Edit Exit Module

DSQQMF DSQUEDIT
Call Entry: DSQUXIP

v

Return QMF Control
Program
IBM-supplied
DSQUXIP
DSQUPLI

A

DSQUXDT
User edit exit
program
DSQUXDT

Figure 67. Program structure of a PL/I edit exit routine

The IBM-supplied sample edit program for PL/1, DSQUXDTP, is located on
the QMF production disk. The sample program is commented so that you can
modify it to suit your needs. If you plan to use the sample program, copy it
to your program library and change its name to DSQUXDT. If you build your
own routine instead, note that within the source is an %INCLUDE statement for
DXEECSP, which is a member of DSQUSERE MACLIB. It is DXEECSP that
defines the input fields, giving them the names we are using in this chapter. It
is best to include this in your own edit routine.

How a PL/I Edit Routine Interacts with QMF

Linkage begins with the PROCEDURE statement:

DSQUXDT:
PROCEDURE (DXEECSF,ECSINPTF,ECSRSLTF) ...;

Passed through this statement are the control block (DXEECSF), the value to
be formatted (ECSINPTF), and the storage set aside for the formatted result
(ECSRSLTF). At this point, you can expect to find declarations defining
DXEECSF as a structure, and defining ECSINPTF and ECSRSLTF as character
strings. Instead, you find the statement:
DECLARE (DXEECSF,

ECSINPTF,

ECSRSLTF)
BINARY FIXED, ...

which defines the three parameters as fullword integers. This is because the
calling program itself, in order to avoid the overhead of locators and

Installing and Managing QMF on VM

Creating Your Own Edit Codes for QMF Forms

descriptors, represents the parameters in its call to DSQUXDT as fullword
integers. QMF doesn’t know in what language the calling program is written,
so the parameters are passed in the same way as they are for assembler.

In the sample program, the actual parameter descriptions appear in the
previously mentioned block of definitions comprising DXEECSP (Eigure 63).
The declaration for the control block begins with:

DECLARE
1 DXEECSP BASED(ECSPTR)

The statements defining the other two parameters are:

DECLARE
ECSINPT CHARACTER(32767)
BASED(ECSINPTP), ... and
DECLARE
ECSRSLT CHARACTER(32767)
BASED(ECSRSLTP) ;

Thus, the parameters are defined as based storage. To complete the linkage,
the pointers are set to the appropriate addresses at the start of the procedural
logic section:

ECSPTR = ADDR(DXEECSF);
ECSINPTP = ADDR(ECSINPTF);
ECSRSLTP = ADDR(ECSRSLTF);

The interface control block between QMF and the user edit interface
DSQUEDIT is DXEECS. It contains the user’s edit code, identifies the source
data and the target location for the edited result, and provides a scratchpad
area for the user edit routine’s use. This control block is persistent between
calls to the user edit routine. The scratchpad area is nhot modified by QMF
after the initial invocation of the exit routine.

Return control to QMF using a standard RETURN statement.

Eigure 68 on page 206 shows the DXEECS control block for PL/1.

Chapter 12. Creating Your Own Edit Codes for QMF Forms 205

Creating Your Own Edit Codes for QMF Forms

206

/**/
/% */
/* CONTROL BLOCK NAME: DXEECS (PLI VERSION) */
/* */
/* FUNCTION: */
/* */
/* THIS IS THE INTERFACE CONTROL BLOCK BETWEEN QMF AND */
/* THE USER EDITING ROUTINE INTERFACE, DSQUEDIT (TSO/CMS). =/
/* OR DSQUECIC (CICS). */
/* */
/* IT CONTAINS THE USER'S EDIT CODE, IDENTIFIES THE SOURCE */
/* DATA AND THE TARGET LOCATION FOR THE EDITED RESULT */
/* AND PROVIDES A SCRATCHPAD AREA FOR THE USER EDIT */
/* ROUTINE'S USE. */
/% */
/* THIS CONTROL BLOCK IS PERSISTENT BETWEEN CALLS TO THE =/
/* USER EDIT ROUTINE. */
/* */
/* THE SCRATCHPAD AREA WILL NOT BE MODIFIED BY QMF AFTER */
/* THE INITIAL INVOCATION OF THE EXIT ROUTINE. */
/% */
/* */
/* STATUS: VERSION 7 RELEASE 1 LEVEL 0 */
/* */
/* INNER CONTROL BLOCKS: NONE */
/* */
/* CHANGE ACTIVITY: x/
/% */
/* CHANGE DATE: x/
/% */
[Fk K kkk ok kok ok kk ok dk ok ok ke ok ok ok ok kh e e e L Kkkkkkkhkkhhkkkhkk [
DECLARE
1 DXEECS BASED(ECSPTR), /* EDIT ROUTINE INFORMATION */
3 ECSNAME CHARACTER(8), /* CONTROL BLOCK IDENTIFICATION =/
3 ECSEDCTL, /* EDIT CONTROL */
5 ECSFREQ CHARACTER(1), /* FUNCTION REQUEST
(CODES ARE DEFINED BELOW) */
5 ECSPAD10 CHARACTER(3), /* RESERVED FIELD */
5 ECSECODE CHARACTER(5), /* EDIT CODE FROM FORM OBJECT */
5 ECSPAD20 CHARACTER(3), /* RESERVED FIELD */
5 ECSDECPT CHARACTER(1), /* SYMBOL FOR DECIMAL POINT
(AS DEFINED BY DECIMAL OPTION
IN CURRENT PROFILE OBJECT) =/
5 ECSTHSEP CHARACTER(1), /* SYMBOL FOR THOUSANDS SEPARATOR
(AS DEFINED BY DECIMAL OPTION
Figure 68. User edit routine field definitions for PL/I DXEECS control block (Part 1 of 4)

Installing and Managing QMF on VM

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000

5 ECSPAD30
5 ECSQMF

3 ECSINDTA,
5 ECSINTYP

5 ECSINLEN
5 ECSINPRC

5 ECSINSCL

5 ECSINSGN

5 ECSINNUL

5 ECSPAD40

3 ECSRSDTA,

5 ECSRSLEN

5 ECSPAD50

3 ECSUCTL,
5 ECSERRET

5 ECSRQMF

5 ECSPAD60O

Creating Your Own Edit Codes for QMF Forms

CHARACTER(6) ,
CHARACTER(20) ,

FIXED BINARY(31),

FIXED BINARY(31),
FIXED BINARY(15),

FIXED BINARY(15),

CHARACTER(1),

CHARACTER(1),

CHARACTER(10),

FIXED BINARY(31),

CHARACTER(12),

FIXED BINARY(31),
CHARACTER(1),

CHARACTER(11),

3 ECSUSERS CHARACTER(256);

/*
/*

/*
/*

/*
/*

/*

/*

/*

/*

IN CURRENT PROFILE OBJECT) =*/ 00048000

RESERVED FIELD */ 00049000
AREA RESERVED FOR QMF'S USE */ 00050000
00051000

DESCRIPTION OF THE INPUT DATA*/ 00052000
DATA TYPE OF THE INPUT AS 00053000

IT EXISTS IN THE DATA BASE 00054000
(SEE CODES DEFINED BELOW) */ 00055000
LENGTH OF INPUT DATA */ 00056000
PRECISION OF INPUT DATA IF 00057000

IS IT DECIMAL DATA TYPE 00058000
(U-TYPE EDIT CODE) OR 00059000

IF IT WAS ANY NUMERIC 00060000

DATA TYPE (V-TYPE EDIT 00061000

CODE)... 00062000
ZERO OTHERWISE */ 00063000
SCALE OF INPUT DATA IF 00064000

IS IT DECIMAL DATA TYPE 00065000
(U-TYPE EDIT CODE) OR 00066000
IF IT WAS ANY NUMERIC 00067000
DATA TYPE (V-TYPE EDIT 00068000

CODE)... 00069000

ZERO OTHERWISE */ 00070000

SIGN (V-TYPE EDIT ONLY) 00071000
SEE VALUES DEFINED 00072000

BELOW */ 00073000

NULL INPUT DATA INDICATOR 00074000
SEE VALUE DEFINED 00075000

BELOW */ 00076000
RESERVED FIELD */ 00077000
DESCRIPTION OF THE RESULT 00078000
BUFFER */ 00079000
LENGTH (EQUIVALENT TO 00080000
COLUMN WIDTH IN THE 00081000

FORM OBJECT) */ 00082000
RESERVED FIELD */ 00083000
00084000

USER CONTROL AREA */ 00085000

EDIT ROUTINE ERROR RETURN CODE 00086000
(SEE CODES DEFINED BELOW) */ 00087000

REQUEST FOR QMF 00088000
(SEE CODE(S) DEFINED BELOW =*/ 00089000
RESERVED FIELD */ 00090000
00091000

USER SCRATCH PAD AREA */ 00092000

Figure 68. User edit routine field definitions for PL/I| DXEECS control block (Part 2 of 4)

Chapter 12. Creating Your Own Edit Codes for QMF Forms 207

Creating Your Own Edit Codes for QMF Forms

208

DECLARE
ECSINPT CHARACTER(32767)
BASED(ECSINPTP),
ECSINSIN FIXED BINARY(15)
BASED(ECSINPTP),
ECSININT FIXED BINARY(31)
BASED(ECSINPTP),
ECSINFLT FLOAT BINARY(53)
BASED(ECSINPTP) ;

DECLARE
ECSRSLT CHARACTER(32767)
BASED (ECSRSLTP) ;

DECLARE
(ECSPTR,
ECSINPTP,
ECSRSLTP
) POINTER;

DECLARE (

ECSINT INITIAL(496),
ECSSINT INITIAL(500),
ECSFLT INITIAL(480),
ECSVCHR INITIAL(448),
ECSFCHR INITIAL(452),
ECSLCHR INITIAL(456),
ECSVG INITIAL(464),
ECSFG INITIAL(468),
ECSLG INITIAL(472),
ECSDEC INITIAL(484),
ECSDATE INITIAL(384),
ECSTIME INITIAL(388),
ECSTS INITIAL(392),
ECSFLTX INITIAL(940)
) FIXED BINARY(31) STATIC;

DECLARE (

/*
/*

/*
/*
/*

/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/* FUNCTION REQUEST CONSTANTS

INPUT DATA PARAMETER...
CHARACTER INPUT DATA

SMALL INTEGER INPUT DATA
INTEGER INPUT DATA
FLOATING POINT INPUT DATA

RESULT BUFFER PARAMETER...
EDIT ROUTINE RESULT BUFFER

MUST CONTAIN DXEECS ADDRESS
MUST CONTAIN ECSINPT ADDRESS
MUST CONTAIN ECSRSLT ADDRESS

DATA TYPE CONSTANTS:
(SEE ECSINTYP ABOVE)

INTEGER
SMALL INTEGER
FLOATING POINT

VARYING CHARACTER
FIXED CHARACTER
VERY LONG CHARACTER
VARYING GRAPHIC

FIXED GRAPHIC

VERY LONG GRAPHIC

DECIMAL
DATE

TIME
TIMESTAMP

EXTENDED FLOATING POINT

*

/

*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Figure 68. User edit routine field definitions for PL/I DXEECS control block (Part 3 of 4)

Installing and Managing QMF on VM

00093000
00094000
00095000
00096000
00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000
00114000
00115000
00116000
00117000
00118000
00119000
00120000
00121000
00122000
00123000
00124000
00125000
00126000
00127000
00128000
00129000
00130000
00131000
00132000
00133000
00134000

ECSFEDIT
ECSFTERM

) CHARACTER(1) STATIC;

DECLARE (

ECSPLUS
ECSMINUS

) CHARACTER(1) STATIC;

DECLARE (

ECSNULL

) CHARACTER(1) STATIC;

DECLARE (

ECSRTERM

) CHARACTER(1) STATIC;

DECLARE (
ECSERRO1
ECSERRO2
ECSERRO3
ECSERRO4

ECSERRO5

) FIXED BINARY(31) STATIC;

Creating Your Own Edit Codes for QMF Forms

INITIAL('E'),
INITIAL('T')

INITIAL(' '),
INITIAL('-")

INITIAL('N')

INITIAL('T')

INITIAL(99101),
INITIAL(99102),

INITIAL(99103),
INITIAL(99104),

INITIAL(99105)

/*
/*

/*

/*
/*

/*
/*

/*
/*

/*

/*
/*
/*
/*
/*
/*
/*
/*

(SEE ECSFREQ ABOVE)

EDIT

TERMINATE
(TO FREE RESOURCES...
QMF WILL CALL THE USER
EDIT ROUTINE FOR THIS
FUNCTION ONLY IF THE
USER EDIT ROUTINE HAS
PREVIOUSLY REQUESTED
IT.)

PLUS/MINUS SIGN CONSTANTS
(SEE ECSINSGN ABOVE)
INPUT DATA IS POSITIVE
INPUT DATA IS NEGATIVE

NULL INDICATION CONSTANT
(SEE ECSINNUL ABOVE)
INPUT DATA IS NULL

REQUEST-FOR-QMF CONSTANTS
(SEE ECSRQMF ABOVE)
REQUEST QMF TO INVOKE
USER EDIT ROUTINE FOR
TERMINATION FUNCTION

QMF-DEFINED ERROR RETURN CODE
CONSTANTS

(SEE ECSERRET ABOVE)
UNRECOGNIZED EDIT CODE
IMPROPER INPUT DATA TYPE FOR
REQUESTED EDIT EDIT CODE
INVALID INPUT DATA VALUE
RECEIVED

LENGTH OF INPUT DATA IS TOO
SHORT

LENGTH OF RESULT BUFFER IS
TOO SHORT

*/ 00135000
*/ 00136000
00137000
00138000
00139000
00140000
00141000
00142000
00143000
*/ 00144000
00145000
00146000
00147000
00148000
*/ 00149000
*/ 00150000
*/ 00151000
00152000
00153000
00154000
00155000
*/ 00156000
*/ 00157000
00158000
00159000
00160000
00161000
*/ 00162000
00163000
00164000
*/ 00165000
00166000
00167000
00168000
00169000
00170000
*/ 00171000
*/ 00172000
*/ 00173000
*/ 00174000
*/ 00175000
*/ 00176000
*/ 00177000
*/ 00178000
*/ 00179000
*/ 00180000
00181000

Figure 68. User edit routine field definitions for PL/I| DXEECS control block (Part 4 of 4)

Compiling Your Program

Before compiling your program, ensure that you can access the IBM-supplied
control block DXEECSP. DXEECSP is located in the QMF library DSQUSERE

Chapter 12. Creating Your Own Edit Codes for QMF Forms

209

Creating Your Own Edit Codes for QMF Forms

210

MACLIB on the QMF production disk. You need to access the QMF and PL/I
production disks. You also need to make the macro libraries available to the
PL/1 compiler by issuing a CMS GLOBAL MACLIB command. For example:

GLOBAL MACLIB DSQUSERE PLICOMP

To compile your edit program, DSQUXDT, your edit program must not use
the procedure option MAIN.

Compile without including the STAE or SPIE macros. To do this, add the
following statement to your PL/I program:

DCL PLIXOPT CHAR(15) VAR INIT('NOSTAE,NOSPIE') STATIC EXTERNAL;

If you're using PL/I Version 2: Use the PL/1 SYSTEM(MVS) compile-time
option. QMF expects the MVS style of
parameter list when running in CMS.

Compile the IBM-supplied program, DSQUPLI, using the same options as
used for DSQUXDT, except that DSQUPLI specifies the procedure option
MAIN.

Creating Your DSQUEDIT Module File in PL/I

Before you can create your DSQUEDIT module file, ensure that you can
access the IBM-supplied control module (DSQUXIP). DSQUXIP is located on
the QMF production disk. You need to access this disk prior to creating the
module file.

To create the DSQUEDIT module file, use the CMS LOAD and GENMOD
commandes:

1. Load the text files that make up the DSQUEDIT module.

The DSQUEDIT module must be relocatable. To be relocatable, the module
must be loaded with RLD entries. You do this by specifying the RLDSAVE
option on the CMS LOAD command. The entry point to the DSQUEDIT
module must be DSQUXIP. PL/I text libraries must be made available by
issuing a CMS GLOBAL TXTLIB command. Issue the following CMS
commands:

GLOBAL TXTLIB IBMLIB PLILIB
LOAD DSQUXIP DSQUXDT DSQUPLI (RLDSAVE RESET DSQUXIP)

You can run your edit routine in either 24-bit or 31-bit addressing mode.
QMF manages address switching as required. You can specify 31-bit
addressing on the CMS LOAD command. For example:

GLOBAL TXTLIB IBMLIB PLILIB

LOAD DSQUXIP DSQUXDT DSQUPLI
(RLDSAVE RESET DSQUXIP AMODE 31 RMODE ANY)

2. Generate the DSQUEDIT module.

Installing and Managing QMF on VM

Creating Your Own Edit Codes for QMF Forms

Issue the CMS GENMOD command to generate the DSQUEDIT module
from the text files just loaded by the CMS LOAD command:

GENMOD DSQUEDIT

Once the user edit routine is tested, it can replace the DSQUEDIT module file
on the QMF production disk or user disk that is available when starting QMF.
In order to use the PL/1 user edit routine, the PL/I production disk and
run-time libraries need to be available when you start QMF.

When running under ISPF and starting QMF using the PGM form of
ISPSTART, the PL/1 run-time load libraries must be specified using a CMS
FILEDEF command for ISPLLIB. For guidelines and considerations about PL/I
programs running in ISPF, see ISPF for VM Dialog Management Services and
Examples

When running without ISPF, or running under ISPF and starting QMF using
the program segment form of ISPSTART, the PL/I run-time load libraries
must be specified using a CMS GLOBAL LOADLIB command.

For detailed information on how to compile and make run-time libraries
available for PL/I, see PL/I Programming Guide

Writing an Edit Routine in PL/l with Language Environment (LE)

The QMF edit exit interface for PL/lin VM for LE consists of these parts:
 Interface control block, which is shipped with QMF as DXEECSP

* Control program, which is shipped with QMF as DSQUXILE

* Your edit exit program, which is named DSQUXDT

* LE Preinitialization Service program, which is named CEEPIPI

Eigure 69 on page 212 shows the program structure of a PL/1 edit exit routine
for CMS.

Chapter 12. Creating Your Own Edit Codes for QMF Forms 211

Creating Your Own Edit Codes for QMF Forms

212

QMF Main Module QMF Edit Exit Module

DSQQMF DSQUEDIT
Call Entry: DSQUXILE

v

Return QMF Control
Program
IBM-supplied
DSQUXILE

A

Standard call
to LE

CEEPIPI
User edit exit
program
DSQUXDT

Figure 69. Program structure of a PL/I edit exit routine with LE

Generating Your PL/I Program for LE

Before you can create your DSQUEDIT module file, ensure that you can

access the IBM-supplied module (DSQUXILE). DSQUXILE is located on the

QMF production disk. You need to access this disk prior to creating the

modaule file. To create the DSQUEDIT module file , use the CMS LOAD and

GENMOD commands as follows:
1. Load the text files that make up the DSQUEDIT module.
The DSQUEDIT module must be relocatable. To be relocatabale, the

module must be loaded with RLD entries. You do this by specifying the
RLDSAVE option on the CMS/LOAD command. The entry point to the
DSQUEDIT module must be DSQUXILE. LE text libraries must be made
available by issuing a CMS GLOBAL TXTLIB command. Issue the
following CMS command:

GLOBAL TXTLIB SCEELKED
LOAD DSQUXILE DSQUXDT (RLDSAVE RESET DSQUXILE

You can run your edit routine in either 24-bit or 31-bit addressing mode.
QMF manages address switching as required. You can specify 31-bit
addressing on the CMS LOAD command. For example:

GLOBAL TXTLIB SCEELKED
LOAD DSQUXILE DSQUXDT (RLDSAVE RESET DSQUXILE AMODE 31 RMODE ANY

2. Generate the DSQUEDIT module.

Installing and Managing QMF on VM

Creating Your Own Edit Codes for QMF Forms

Issue the CMS GENMOD command to generate the DSQUEDIT module
from the text files just loaded by the CMS LOAD command:

GENMOD DSQUEDIT

Writing an Edit Routine in COBOL without Language Environment (LE)

COBOL refers to VS COBOL Il, COBOL/370, and IBM COBOL for OS/390
and VM unless otherwise stated.

The QMF edit exit interface for COBOL consists of these parts:

* Interface control block, which is supplied by IBM as DXEECSC
» Control program, which is supplied by IBM as DSQUXIC

» Control macro, which is supplied by IBM as IGZOPT

» Control module, which is supplied by IBM as IGZERRE

* Your edit exit program, which is named DSQUXDT

m shows the structure of a COBOL edit exit routine in CMS.
The IBM-supplied sample edit exit program, DSQUXDTC, is commented so

QMF Main Module QMF Edit Exit Module

DSQQMF DSQUEDIT
Call Entry: DSQUXIC

A4

Return QMF Control
Program
IBM-supplied
DSQUXIC
IGZEOPT
IGZERRE

A

Standard
COBOL call

DSQUXDT
User edit exit
program
DSQUXDT

Figure 70. Program structure of a COBOL edit exit routine

that you can browse it online, print it, or modify it to suit your needs. If you
plan to use this program, copy it to your program library and change its
name to DSQUXDT. If you plan to write your own user edit routine, note that
this routine contains a COPY statement for DXEECSC, which is a member of
DSQUSERE MACLIB. It is DXEECSC that defines the input fields, giving

Chapter 12. Creating Your Own Edit Codes for QMF Forms 213

Creating Your Own Edit Codes for QMF Forms

214

them the names we are using in this chapter. You can include DXEECSC in
your own user edit routine. A listing of the module appears in Eigure 71 od

How a COBOL Edit Routine Interacts with QMF

The following statement begins the mainline logic:
PROCEDURE DIVISION USING DXEECS, ECSINPT, ECSRSLT

In this example, DXEECS is the name of the control block, ECSINPT is the
name of the value to be formatted, and ECSRSLT is the name of the area
reserved for the formatted result. The fields within these parameters are
defined in DXEECSC.

The interface control block between QMF and the user edit interface
DSQUXDT is DXEECS. It contains the user’s edit code and provides a
scratchpad area for the user edit routine’s use. This control block is persistent
between calls to the user edit routine. The scratchpad area is not modified by
QMF after the initial invocation of the edit routine.

Return control to QMF with a GOBACK statement.

Eigure 71 on page 219 shows the DXEECS control block for COBOL.

Installing and Managing QMF on VM

Creating Your Own Edit Codes for QMF Forms

R R R e R S R T R R S R R e L 2 R L R e

CONTROL BLOCK NAME: DXEECS (COBOL VERSION)

FUNCTION:
THIS IS THE INTERFACE CONTROL BLOCK BETWEEN QMF AND
THE USER EDITING INTERFACE, DSQUEDIT (TSO/CMS), OR
DSQUECIC (CICS).
IT CONTAINS THE USER'S EDIT CODE, IDENTIFIES THE SOURCE
DATA AND THE TARGET LOCATION FOR THE EDITED RESULT
AND PROVIDES A SCRATCHPAD AREA FOR THE USER EDIT
ROUTINE'S USE.

THIS CONTROL BLOCK IS PERSISTENT BETWEEN CALLS TO THE
USER EDIT ROUTINE.

THE SCRATCHPAD AREA WILL NOT BE MODIFIED BY QMF AFTER
THE INITIAL INVOCATION OF THE EXIT ROUTINE.

NOTE: THIS FILE IS DESIGNED TO BE COPIED INTO THE LINKAGE
SECTION OF THE USER EDIT ROUTINE.

STATUS: VERSION 7 RELEASE 1 LEVEL 0

INNER CONTROL BLOCKS: NONE

CHANGE ACTIVITY: NEW CONTROL BLOCK

CHANGE DATE:

L R R S R I N I N R T R . S S I
L R R S T T T I N R R R N

B R R R R R S R R S R R R R R R R R R R R R R R R T R

01 DXEECS.
02 ECSNAME PICTURE X(8).
* -- CONTROL BLOCK IDENTIFICATION

02 ECSEDCTL.
* -- EDIT CONTROL

03 ECSFREQ PICTURE X(1).
* -- FUNCTION REQUEST

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000

Figure 71. User edit routine field definitions for COBOL version of DXEECS control block (Part 1 of

5)

Chapter 12. Creating Your Own Edit Codes for QMF Forms 215

Creating Your Own Edit Codes for QMF Forms

216

88 ECS-EDIT-

FUNCTION VALUE "E".

88 ECS-TERMINATE-FUNCTION VALUE "T".

ECSPAD10
ECSECODE
ECSPAD20

ECSDECPT

ECSTHSEP

ECSPAD30

ECSQMF

02 ECSINDTA.

*
*
*
*
*

03
*

03
*

03
*

03
*
*
*

03
*
*
*

03
*

03
*
*

03
*
*

03
*

03

ECSINTYP

---- TERMINATE FUNCTION TO FREE RESOURCES.
QMF WILL CALL THE USER EDIT ROUTINE
FOR THIS FUNCTION ONLY IF THE USER
EDIT ROUTINE HAS PREVIOUSLY REQUESTED

IT. (SEE ECSRQMF BELOW.)
PICTURE X(3).
-- RESERVED FIELD
PICTURE X(5).
-- EDIT CODE FROM FORM OBJECT
PICTURE X(3).
-- RESERVED FIELD
PICTURE X(1).
-- SYMBOL FOR DECIMAL POINT
-- (AS DEFINED BY DECIMAL OPTION IN
-~ CURRENT PROFILE OBJECT
PICTURE X(1).
-~ SYMBOL FOR THOUSANDS SEPARATOR
-- (AS DEFINED BY DECIMAL OPTION IN
-~ CURRENT PROFILE OBJECT
PICTURE X(6).
-~ RESERVED FIELD
PICTURE X(20).
-- AREA RESERVED FOR QMF'S USE

-- DESCRIPTION OF THE INPUT DATA
PICTURE S9(9) COMPUTATIONAL.

-- DATA TYPE OF THE INPUT AS IT
-- EXISTS IN THE DATA BASE.

88 ECS-FLOATING-POINT VALUE IS +480.

88 ECS-DECIMAL VALUE IS +484.
88 ECS-INTEGER VALUE IS +496.
88 ECS-SMALL-INTEGER VALUE IS +500.
88 ECS-VARCHAR VALUE IS +448.
88 ECS-FIXED-CHAR VALUE IS +452.
88 ECS-LONG-VARCHAR VALUE IS +456.
88 ECS-VARG VALUE IS +464.
88 ECS-FIXED-G VALUE IS +468.
88 ECS-LONG-VARG VALUE IS +472.
88 ECS-DATE VALUE IS +384.
88 ECS-TIME VALUE IS +388.
88 ECS-TIMESTAMP VALUE IS +392.

88 ECS-EXT-FLOATING-POINT VALUE IS +940

ECSINLEN

ECSINPRC

PICTURE S9(5) USAGE IS COMPUTATIONAL.

-- LENGTH OF INPUT DATA

PICTURE S9(2) USAGE IS COMPUTATIONAL.

00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000
00090000
00091000
00092000
00093000
00094000

Figure 71. User edit routine field definitions for COBOL version of DXEECS control block (Part 2 of

5)

Installing and Managing QMF on VM

* %k ok kX

* ok X X

*

Creating Your Own Edit Codes for QMF Forms

03 ECSINSCL

03 ECSINSGN

-- PRECISION OF INPUT DATA IF IT IS

-- DECIMAL DATA TYPE (U-TYPE EDIT CODE)

-- OR IF IT WAS ANY NUMERIC DATA TYPE
-- (V-TYPE EDIT CODE)...

-- ZERO OTHERWISE.

PICTURE S9(2) USAGE IS COMPUTATIONAL.
-- SCALE OF INPUT DATA IF IT IS

-- DECIMAL DATA TYPE (U-TYPE EDIT CODE)

-- OR IF IT WAS ANY NUMERIC DATA TYPE
-- (V-TYPE EDIT CODE)...

-~ ZERO OTHERWISE.

PICTURE X(1).

-- SIGN OF CONVERTED NUMERIC DATA

-~ (V-TYPE EDIT CODE ONLY)...

88 ECS-POSITIVE VALUE " ".
88 ECS-NEGATIVE VALUE "-".

03 ECSINNUL

PICTURE X(1).
-- NULL INPUT DATA INDICATOR

88 ECS-NULL-DATA VALUE "N".

03 ECSPAD40

02 ECSRSDTA.

03 ECSRSLEN

03 ECSPAD50

02 ECSUCTL.

03 ECSERRET

03 ECSRQMF

03 ECSPAD60

02 ECSUSERS.

PICTURE X(10).
-~ RESERVED FIELD

-- DESCRIPTION OF THE RESULT BUFFER

PICTURE S9(5) USAGE IS COMPUTATIONAL.
-- LENGTH OF RESULT AREA

-- (EQUIVALENT TO COLUMN WIDTH IN THE
-- FORM OBJECT

PICTURE X(12).

-- RESERVED FIELD

-- USER CONTROL AREA

PICTURE S9(9) USAGE IS COMPUTATIONAL.
-- EDIT ROUTINE ERROR RETURN CODE

(SEE QMF-DEFINED ERROR CODES BELOW).

PICTURE X(1).
-- REQUEST FOR QMF
(SEE CODE(S) DEFINED BELOW.)
PICTURE X(11).
-~ RESERVED FIELD

00095000
00096000
00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000
00114000
00115000
00116000
00117000
00118000
00119000
00120000
00121000
00122000
00123000
00124000
00125000
00126000
00127000
00128000
00129000
00130000
00131000
00132000
00133000
00134000
00135000
00136000
00137000
00138000
00139000
00140000
00141000

Figure 71. User edit routine field definitions for COBOL version of DXEECS control block (Part 3 of

5)

Chapter 12. Creating Your Own Edit Codes for QMF Forms 217

Creating Your Own Edit Codes for QMF Forms

218

-- USER SCRATCH PAD AREA

03 ECSUSERS-ARRAY

*kkkkkkk
01 ECSINPT.
02 ECSINPTC
02 ECSINPT-ARRAY

PICTURE X(1)
OCCURS 256 TIMES.

-- EDIT ROUTINE INPUT DATA

PICTURE X(32767).
REDEFINES ECSINPTC
PICTURE X(1)

OCCURS 32767 TIMES.

02 ECSINPT-INTEGER-OVL

REDEFINES ECSINPTC.

03 ECSINPT-INTEGER

03 FILLER

PICTURE $9(9)

USAGE IS COMPUTATIONAL.
PICTURE X(1)

OCCURS 32763 TIMES.

02 ECSINPT-SMALL-INTEGER-OVL

REDEFINES ECSINPTC.

03 ECSINPT-SMALL-INTEGER

03 FILLER

PICTURE S9(4)

USAGE IS COMPUTATIONAL.
PICTURE X(1)

OCCURS 32765 TIMES.

02 ECSINPT-FLOATING-POINT-OVL

REDEFINES ECSINPTC.

03 ECSINPT-FLOATING-POINT

03 FILLER

USAGE IS COMPUTATIONAL-2.
PICTURE X(1)
OCCURS 32759 TIMES.

00142000
00143000
00144000
00145000
00146000
00147000
00148000
00149000
00150000
00151000
00152000
00153000
00154000
00155000
00156000
00157000
00158000
00159000
00160000
00161000
00162000
00163000
00164000
00165000
00166000
00167000
00168000
00169000
00170000
00171000
00172000
00173000
00174000

Figure 71. User edit routine field definitions for COBOL version of DXEECS control block (Part 4 of

5)

Installing and Managing QMF on VM

*kkkkkkx

01 ECSRSLT.

Creating Your Own Edit Codes for QMF Forms

-- EDIT ROUTINE RESULT BUFFER

02 ECSRSLT-ARRAY PICTURE X(1)

OCCURS 1 TO 32767 TIMES

DEPENDING ON ECSRSLEN.

B R R R R R R S R T R R T R T T S R R T e

EE T

THE DATA DEFINITIONS BELOW ARE FOR DOCUMENTATION
PURPOSES ONLY SINCE COBOL DOES NOT ALLOW LINKAGE
SECTION DATA DEFINITIONS TO HAVE VALUE CLAUSES

* Ok Sk X X

R R R R R R T R e S R R R L R R R E e

*kkkkkkx
*

-- QMF-DEFINED VALUES FOR ECSERRET
(SEE ABOVE).

%77 ECS-UNKNOWN-EDIT-CODE

*
*

PICTURE $9(9)

*77 ECS-IMPROPER-DATA-TYPE

PICTURE S9(9)

*77 ECS-INVALID-DATA-VALUE

PICTURE S9(9)

%77 ECS-INPUT-DATA-TOO-SHORT

PICTURE S9(9)

%77 ECS-RESULT-BUFFER-TOO-SHORT

*kkkkkkx
*

PICTURE S9(9)

VALUE
USAGE

VALUE
USAGE

VALUE
USAGE

VALUE
USAGE

VALUE
USAGE

IS
IS

IS
IS

IS
IS

IS
IS

IS
IS

+99101

COMPUTATIONAL.

+99102

COMPUTATIONAL.

+99103

COMPUTATIONAL.

+99104

COMPUTATIONAL.

+99105

COMPUTATIONAL.

-- POSSIBLE REQUEST-FOR-QMF CODES
(SEE ECSRQMF ABOVE).

*77 ECS-CALL-FOR-TERMINATE

*

PICTURE X(1)

VALUE IS "T".

00175000
00176000
00177000
00178000
00179000
00180000
00181000
00182000
00183000
00184000
00185000
00186000
00187000
00188000
00189000
00190000
00191000
00192000
00193000
00194000
00195000
00196000
00197000
00198000
00199000
00200000
00201000
00202000
00203000
00204000
00205000
00206000
00207000
00208000
00209000
00210000
00211000
00212000
00213000

Figure 71. User edit routine field definitions for COBOL version of DXEECS control block (Part 5 of

5)

Compiling Your Program

To create a CMS module file from COBOL source code, ensure that you can
access the IBM-supplied control block DXEECSC. DXEECSC is located in the
QMF library DSQUSERE MACLIB on the QMF production disk. You need to
access the QMF and COBOL production disks. You also need to make the
macro libraries available to the COBOL compiler by issuing a CMS GLOBAL
MACLIB command. For example:

Chapter 12. Creating Your Own Edit Codes for QMF Forms 219

Creating Your Own Edit Codes for QMF Forms

220

GLOBAL MACLIB DSQUSERE VSC2MAC

DXEECSC, as distributed by IBM, uses quotation marks (“”’) to delimit
character literals. If your program uses apostrophes (’), you must either
change DXEECSC as distributed by IBM or copy the structure to your
program, changing quotes to apostrophes.

You can compile your program using the options:

COBOL I1:
LIB, NODYNAM, OBJECT, RENT, RES

COBOL/370 and IBM COBOL for OS/390 and VM:
LIB, NODYNAM, OBJECT, RENT

Assembling the Run Time Options Macro (COBOL II)

Use the C2CUSTL EXEC provided by IBM to assemble IGZOPT. Follow the
prompts and add option STAE=NO to the IGZEOPT ASSEMBLE file. The new or
changed option file is replaced in VSC2LTXT TXTLIB and VSC2LOAD
LOADLIB, or in another TXTLIB and LOADLIB that you specify. Refer to VS
COBOL Il Installation and Customization for CMS for more information about
assembling run time options.

Generating Your Program

Before you can create the module file, ensure that you can access the
IBM-supplied control module (DSQUXIC). DSQUXIC is located on the QMF
production disk. You need to access this disk prior to creating the module file.

To create the DSQUEDIT module file, use the CMS LOAD and GENMOD
commands as follows:

1. Load the text files that make up the DSQUEDIT module.

The DSQUEDIT module must be relocatable. To be relocatable, the module
must be loaded with RLD entries. You do this by specifying the RLDSAVE
option on the CMS LOAD command. The entry point to the DSQUEDIT
module must be DSQUXIC. COBOL text libraries must be made available
by issuing a CMS GLOBAL TEXTLIB command. Issue the following CMS
commands:

GLOBAL TXTLIB VSC2LTXT
LOAD DSQUXIC DSQUXDT (RLDSAVE RESET DSQUXIC)

You can run your edit routine in either 24-bit or 31-bit addressing mode.
QMF manages address switching as required. You can specify 31-bit
addressing on the CMS LOAD command. For example:

GLOBAL TXTLIB VSC2LTXT

LOAD DSQUXIC DSQUXDT
(RLDSAVE RESET DSQUXIC AMODE 31 RMODE ANY)

Installing and Managing QMF on VM

Creating Your Own Edit Codes for QMF Forms

2. lIssue the CMS GENMOD command to generate the DSQUEDIT module
from the text files just loaded by the CMS LOAD command:

GENMOD DSQUEDIT (AMODE 31 RMODE ANY)

Once the user edit routine is tested, it can replace the DSQUEDIT module file
on the QMF production disk or user disk that is available when you start
QMF. In order to use the COBOL user edit routine, the COBOL production
disk and run-time libraries need to be available when you start QMF.

When running under ISPF and starting QMF using the PGM form of
ISPSTART, the COBOL run-time load libraries must be specified using a CMS
FILEDEF command for ISPLLIB. For guidelines and considerations about
COBOL programs running in ISPF, see ISPF for VM Dialog Management
Services and Examples

When running without ISPF, or running under ISPF and starting QMF using
the program segment form of ISPSTART, the COBOL run-time load libraries
must be specified using a CMS GLOBAL LOADLIB command.

For detailed information on how to compile and make run-time libraries
available for COBOL, see VS COBOL Il Application Programming Guide.

Writing an Edit Routine in COBOL with Language Environment (LE)

The QMF edit exit interface for COBOL in VM for LE consists of these parts:
* Interface control block, which is supplied with QMF as DXEECSP

* Control program, which is shipped with QMF as DSQUXILE

* Your edit exit program, which is named DSQUXDT

* LE Preinitialization Service program, which is named CEEPIPI

Eigure 72 on page 222 shows the structure of a COBOL edit exit routine in
CMS.

Chapter 12. Creating Your Own Edit Codes for QMF Forms 221

Creating Your Own Edit Codes for QMF Forms

222

QMF Main Module QMF Edit Exit Module

DSQQMF DSQUEDIT
Call Entry: DSQUXILE

v

Return

A

QMF Control
Program
IBM-supplied
DSQUXILE

Standard
call to LE

CEEPIPI
User edit exit
program
DSQUXDT

Figure 72. Program structure of a COBOL edit exit routine with LE

Generating Your COBOL Program for LE
Before you can create the module file, ensure that you can access the

IBM-supplied control module (DSQUXILE). DSQUXILE is located on the QMF
production disk. You need to access this disk prior to creating the module file.

To create the DSQUEDIT module file , use the CMS LOAD and GENMOD
commands as follows:

1. Load the text files that make up the DSQUEDIT module.

The DSQUEDIT module must be relocatable. To be relocatabale, the
module must be loaded with RLD entries. You do this by specifying the
RLDSAVE option on the CMS/LOAD command. The entry point to the
DSQUEDIT module must be DSQUXILE. LE text libraries must be made
available by issuing a CMS GLOBAL TXTLIB command. Issue the
following CMS command:

GLOBAL TXTLIB SCEELKED
LOAD DSQUXILE DSQUXDT (RLDSAVE RESET DSQUXILE

You can run your edit routine in either 24-bit or 31-bit addressing mode.

QMF manages address switching as required. You can specify 31-bit
addressing on the CMS LOAD command. For example:

Installing and Managing QMF on VM

Creating Your Own Edit Codes for QMF Forms

GLOBAL TXTLIB SCEELKED
LOAD DSQUXILE DSQUXDT (RLDSAVE RESET DSQUXILE AMODE 31 RMODE ANY

2. Generate the DSQUEDIT module.

Issue the CMS GENMOD command to generate the DSQUEDIT module
from the text files just loaded by the CMS LOAD command:

GENMOD DSQUEDIT

Handling Double-Byte Character Set Data

Double-byte character set (DBCS) data can appear in character columns or in
columns with a graphic data type (GRAPHIC, VARGRAPHIC, and LONG
VARGRAPHIC). If you need to devise edit routines that process this type of
data, read this section.

Among the characters represented by the Japanese DBCS are Latin characters
and Katakana characters. A Latin character has these characteristics:

* The first (leftmost) byte of the character has the value X'42'

* The second byte of the character contains the EBCDIC equivalent

A Katakana character has these characteristics:
* The first byte of the character contains X'43'
* The second byte contains the EBCDIC equivalent

Edit Codes for DBCS Data

You can use either Uxxxx or Vxxxx edit codes for DBCS data. The data that
the edit routine receives is the same.

What the Edit Routine Receives

The data to be formatted is in the field ECSINPT, and the length of that data,
in bytes, is in ECSINLEN. What you find in ECSINPT depends to some extent
on where the data originates. More precisely, it depends on whether the
column containing that data is a character column or one with a graphic data

type.

Data from Graphic Columns
If the data to be formatted is from a column with a graphic data type, then

the text in ECSINPT consists of this data preceded by one shift character and
followed by another. Both shift characters are single bytes. For DBCS
terminals, shift characters mark the start and end of a string of DBCS
characters.

So denotes the shift character that introduces a DBCS string, and Si denotes
the one that marks its end. So has the value X'OE'. Si has the value X'OF'.

The shift characters are included in the data length recorded in ECSINLEN.
Thus, the length appearing in ECSINLEN is always greater by two than the

Chapter 12. Creating Your Own Edit Codes for QMF Forms 223

Creating Your Own Edit Codes for QMF Forms

224

length of the actual data. Because the data is presumably a string of DBCS
characters, its length (in bytes) is always an even number.

Data from Character Columns
If the data to be processed comes from a character column, then the data in

ECSINPT is just a copy of the column data. Unlike data from a graphic
column, this data can hold single-byte characters and shift characters, as well
as DBCS characters. To locate DBCS characters, you must search for the So
and Si characters that bracket the DBCS strings. If there are no So or Si
characters in ECSINPT, the string contains no DBCS data. For example,
ECSINPT contains the following string:

ccccSodedededededededeSiccSodededededeSi

Here, c, d, and e stand for any possible byte, while So and Si are shift bytes.
From the placement of the shift bytes, you can see that every occurrence of ¢
represents a single-byte character, and that every occurrence of de represents a
DBCS character.

Single-byte characters can represent Latin letters, Arabic numerals, and special
characters such as plus signs and parentheses. For Japanese DBCS, they can
also be Katakana characters. Some bytes meant to represent lowercase Latin
might be displayed as Katakana symbols. You might have to devise edit codes
that distinguish between columns containing lowercase English and those
containing Katakana.

Ensuring the Edit Routine Returns the Right Results

Return the results in the ECSRSLT field, with trailing blanks for unused bytes.
Make the results readable to the user’s screen. This means that the resulting
DBCS and EBCDIC characters must have the appropriate representations, and
that the beginning and end of any string of DBCS characters are marked by So
and Si characters.

Overflowing the ECSRSLT Field
Be careful not to overflow the ECSRSLT field, whose length is contained in

the ECSRSLEN field. If your results do not fit, truncate them on the right. If
the last character represented in the truncated results is a DBCS character, be
certain to retain its rightmost byte, and to follow that character with an Si
character.

Printing the Report Column
QMF copies the ECSRSLT field into the corresponding report column. The

result is exactly as wide as the report column. If you don’t specify
ALIGNMENT for data, the data is aligned exactly as you typed it.

How the report device represents what you return depends on the specific
device. For some terminals, the following rules apply:

Installing and Managing QMF on VM

Creating Your Own Edit Codes for QMF Forms

 If the report is displayed on the screen, the Si and So characters embedded
in a user’s results also appear on the terminal.

* The Si and So characters appear either as blanks or as special symbols.
There is one special symbol for Si and another for So.

* Blanks appear instead of the symbols unless the user presses a certain
combination of keys.

For other devices, the rules can be slightly different.
Instructions for using DBCS characters in the online help say not to use
certain DBCS characters in queries and QMF commands. The same restriction

does not apply to the formatted data returned by an edit routine. Any
legitimate DBCS character can be returned in the ECSRSLT field.

Chapter 12. Creating Your Own Edit Codes for QMF Forms 225

226 Installing and Managing QMF on VM

Chapter 13. Controlling QMF Resources Using a Governor

Exit Routine

Note: This chapter contains General Use Programming Interface and

Associated Guidance Information.

A governor exit routine helps you limit end-user activity and control use of
computer resources at your installation. IBM supplies a governor exit routine
with QMF, with default limits for the amount of time spent executing a QMF

command or for the number of rows a user can retrieve from the database.

You can use this default exit routine, or use assembler to modify the routine

or write one of your own.

Quick start

Use the steps in ffable 34 to guide you in setting up and using a governor exit
routine. If you need more information on any step, see the page listed at the

right of the table.

Table 34. Using a governor exit routine

To do this task:

See:

To prompt users when the number of database rows retrieved reaches 25 000, and
cancel data retrieval when the number reaches 100 000, turn the governor on by setting
the INTVAL field of Q.RESOURCE_VIEW to 0 (where RESOURCE_GROUP=SYSTEM and
RESOURCE_OPTION=SCOPE). Then update the RESOURCE_GROUP field of the user’s
profile to SYSTEM, and reconnect to the database.

Page b2d

To prompt users when 15 minutes of real time has elapsed and cancel data when 60
minutes of real time has elapsed, turn the governor on by setting the INTVAL field of
Q.RESOURCE_VIEW to 0 (where RESOURCE_GROUP=SYSTEM and
RESOURCE_OPTION=SCOPE). Then update the RESOURCE_GROUP field of the user’s
profile to SYSTEM, and reconnect to the database.

Page b2d

To set up the governor exit routine to use database row limits other than the defaults
of 25000 and 100 000, add new rows to Q.RESOURCE_TABLE that define the points at
which you want to warn the user (optional) and cancel data retrieval. Turn the governor
on and update the user’s profile as explained in step b232.

Page 23

To limit activities other than the number of rows retrieved from the database, use
assembler to modify the IBM-supplied governor exit routine or write a routine of your
own.

Page bad

If you modify the IBM-supplied governor exit routine or write your own routine,
assemble and generate the routine.

Page b&1l

© Copyright IBM Corp. 1983, 2000

227

Controlling QMF Resources Using a Governor Exit Routine

Using the IBM-Supplied Governor Exit Routine

The governor exit routine supplied by IBM controls how many rows a user
can retrieve from the database or how much time is spent running a QMF
command. The governor exit routine is shipped with two predefined values
for the number of rows:

* A row prompt value warns users when the number of rows retrieved
reaches 25000, at which time the user sees the message shown in

DSQUNOOG QMF governor prompt:
Command has fetched 25000 rows of data.

=> To continue QMF command press the "ENTER" key.
=> To cancel QMF command type "CANCEL" then press the "ENTER" key
=> To turn off prompting type "NOPROMPT" then press the "ENTER" key

Figure 73. Message displ rce limit is approaching. The n symbol in the figure
represents an NLID from

* A row limit value cancels data retrieval when 100 000 rows have been
retrieved, if the user presses the Enter key in response to the message in
. When the IBM-supplied governor cancels data retrieval, the user
sees the message shown in &ﬁ:

Gow Timit exceeded! Your command canceled by QMF governor.)

Figure 74. Message displayed when a resource limit is exceeded

When running a procedure, you might get a message that your procedure was
canceled, rather than the message in m For example, if your procedure
contains a command that requires the report to complete (such as ERASE),
you receive the message shown in mﬁ

Grocedure canceled.)

Figure 75. Message displayed when a procedure is canceled

Users using the SYSTEM profile, discussed in [‘Establishing a Profile Structurd
for Your Installation” on page 94, are already set up to use these default

values of 25 000 and 100 000. To activate the default values for users with

unique profiles, see E*Activating the Default Limits” on page 229,

228 Installing and Managing QMF on VM

Controlling QMF Resources Using a Governor Exit Routine

The governor exit routine also has predefined values for the time spent
running a QMF command:

« A time prompt value warns users when the real time for the cycle has
reached 15 minutes at which time the user sees the message shown in

DSQUnOO QMF governor prompt:
Command has executed for 15 minutes.

=> To continue QMF command press the "ENTER" key.
=> To cancel QMF command type "CANCEL" then press the "ENTER" key
=> To turn off prompting type "NOPROMPT" then press the "ENTER" key

Figure 76. Message displayed when a resource limit is approaching. The n symbol in the figure
represents an NLID from

+ A time prompt value cancels the command when 60 minutes of real time
has been used during the cycle.

If you want to define your own limits for when the user is warned and when

data retrieval is canceled, see [‘Defining Your Own Resource | imits” orl

Activating the Default Limits
Follow this procedure to set up the governor exit routine to warn a user when
the number of rows retrieved from the database reaches 25 000 and to cancel
the QMF activity when the number of rows retrieved reaches 100 000:

1. Run the query shown in m from the SQL query panel:

UPDATE Q.RESOURCE_VIEW

SET INTVAL=0

WHERE RESOURCE_OPTION='SCOPE' AND
RESOURCE_GROUP="'SYSTEM'

Figure 77. Activating default values for the IBM-supplied governor

2. Set a value of SYSTEM for the RESOURCE_GROUP field of the user’s

profile. For example, the UPDATE statements in Eigure 78 on page 230

activate default values for user JONES (using English QMF) and user
SCHMIDT (using German QMF).

Important: Always specify a value for the TRANSLATION column, or you
might change more rows in Q.PROFILES than you intend.

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 229

Controlling QMF Resources Using a Governor Exit Routine

230

Base QMF (English)
German NLF
UPDATE Q.PROFILES
UPDATE Q.PROFILES
SET RESOURCE_GROUP = 'SYSTEM'
SET RESOURCE_GROUP = 'SYSTEM'
WHERE CREATOR='JONES' AND
WHERE CREATOR='SCHMIDT' AND
TRANSLATION="ENGLISH'
TRANSLATION="DEUTSCH'

Figure 78. Updating a user’s resource group

For more information on how to create a new user profile in the

Q.PROFILES table, see [‘Creating User Profiles to Fnable User Access ta
QME” on page 97.

3. Instruct the user to reconnect to the database to activate the new values.
For example, user JONES, who has the password MYPW, enters the
following command:

CONNECT JONES (PA=MYPW

Each time you make a change to the table, instruct users to reconnect to
the database to activate the changes you made.

See [fable 13 on page 95 for how to grant a user authority to connect to the
database. Users who do not have DB2 for VM CONNECT authority can

end the current QMF session and begin another to activate the new
resource group.

tHow a Gavernar Exit Rautine Controls Resaurces’ explains how the
governor uses the information in the Q.RESOURCE_VIEW and the
Q.PROFILES table to control resources.

If you want to define row limits other than the defaults of 25 000 and 100 000,
read E‘How a Governor Exit Routine Controls Resources’. Then see the

procedure in EDefining Your Own Resource | imits” on page 233,

How a Governor Exit Routine Controls Resources

The governor uses two types of information to control resources:

* Information about the resource limits you set for a user, defined in a
resource control table called Q. RESOURCE_TABLE.

» Information about the state of the user’s session, which tells the governor
how close the user’s activity is coming to the resource limits defined for the
resource group the user is in. This information is passed to the governor
exit routine in the IBM-supplied control blocks DXEGOVA and DXEXCBA.

Installing and Managing QMF on VM

RESOURCE
GROUP

SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM

Controlling QMF Resources Using a Governor Exit Routine

How the Governor Knows What the Resource Limits Are

Each row of the IBM-supplied Q.RESOURCE_TABLE contains:

* The name of a resource group (RESOURCE_GROUP), which characterizes one or
more users whose activities you want to govern in the same manner.

* The name of the resource (RESOURCE_OPTION) you want to limit for the group
of users named in RESOURCE_GROUP.

* Values (INTVAL, FLOATVAL, or CHARVAL) that define the limit for the resource
option. Resource options can have integer values, floating-point values, or
character values.

Table 35 on page 237 shows the structure of the Q.RESOURCE_TABLE as it is
shipped by IBM. Q.RESOURCE_TABLE has the index Q.RESOURCE_INDEX,
with the UNIQUE attribute. Keyed columns are RESOURCE_GROUP and
RESOURCE_OPTION.

The Q.RESOURCE_TABLE is shipped by IBM with a predefined resource
group called SYSTEM. The SYSTEM resource group has six predefined
resource options, as shown in . Use the CHARVAL column to
indicate the limits defined in each row, as shown.

RESOURCE

OPTION INTVAL FLOATVAL CHARVAL

SCOPE 0 - INDICATE WHETHER GOVERNOR IS ACTIVE
ROWLIMIT 100000 - CANCEL AFTER FETCHING 100000 ROWS
ROWPROMPT 25000 - PROMPT USER AFTER FETCHING 25000 ROWS
TIMELIMIT 3600 - CANCEL AFTER 60 MINUTES

TIMEPROMPT 900 - PROMPT USER AFTER 15 MINUTES
TIMECHECK 900 - 15 MINUTE INTERVAL BETWEEN TIME CHECK

Figure 79. Default resource group and options for the IBM-supplied governor exit

SCOPE =0
Activates governing for a particular resource group.

ROWLIMIT = 100000
If the user decides to continue when warned, the governor exit
routine cancels data retrieval activities after 100 000 rows are
retrieved. (Retrieval is for FETCH only.) ROWLIMIT is dependent on
the buffer size; therefore, more than 100 000 rows can be retrieved if
the buffer holds a number of rows not divisible by 100 000.

ROWPROMPT = 25000
Warns the user when 25 000 database rows have been retrieved.

TIMELIMIT = 3600
If the user decides to continue when warned, the governor exit
routine cancels the command after 60 minutes have elapsed.

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 231

Controlling QMF Resources Using a Governor Exit Routine

232

TIMELIMIT is checked at TIMECHECK intervals; therefore, more than
60 minutes can elapse if the TIMECHECK interval is set at an interval
not divisible by 60.

TIMEPROMPT = 900
Warns the user when 15 minutes have elapsed.

TIMECHECK = 900
Specifies 15 minutes of real time between time checks for prompting
or canceling.

IBM also supplies a view of this table, called Q.RESOURCE_VIEW, that
includes all five columns of Q.RESOURCE_TABLE. Each time QMF calls the
governor exit routine, QMF passes to the routine the resource control
information stored in Q.RESOURCE_VIEW. The governor exit routine uses
this resource information to help determine when the user reaches a resource
limit.

How the Governor Knows When You Reach a Resource Limit
On a call to the governor exit routine, QMF queries Q.RESOURCE_VIEW,

which shows what resource limits are defined in the resource control table for
the resource group to which the user belongs. To determine the resource
group, QMF checks the value of the RESOURCE_GROUP field of the user’s
row in the Q.PROFILES table and checks Q.RESOURCE_VIEW for a matching
value.

QMF uses two control blocks, DXEGOVA and DXEXCBA, to pass information
to the governor exit routine. The DXEGOVA control block contains
information from Q.RESOURCE_VIEW about the limits you set for each user.
The DXEXCBA control block contains information about the activities the user
is performing in the current QMF session, which tells the governor how close
the user is coming to the resource limits.

Eigure 80 on page 233 shows how the governor limits use of resources.

Installing and Managing QMF on VM

Controlling QMF Resources Using a Governor Exit Routine

QMF Governor
. Function Interface Exit
QMF Session cg)is Ctrl. Blocks Routine

Session start/end DXEGOVA

Command start/end

DB start/end
"Think time" start/end

. DXEXCBA
Command cancellation

Figure 80. How a governor exit routine works with QMF

QMEF calls the governor exit routine at a number of different points within the
QMF session, as shown in m These calls are called function calls. For

more |nformat|on about function calls, see FPaints at Which QME Calls thd

What Happens When You Reach a Resource Limit
When the resource control information QMF passes to the governor exit

routine indicates that a resource limit has been reached, the IBM-supplied
governor exit routine calls the QMF cancellation service to cancel the QMF
activité the user tried to perform, and the user sees the message in

If you use the default limits for number of rows as discussed in m
m the IBM-supplied governor exit routine also displays a
warning before canceling the activity, as shown in Eigure 73 on page 228. See
tDefining Your Qwn Resource | imits’] for how to activate this warning if you

are not using the default values for the number of rows retrieved.

The IBM-supplied governor exit routine resets its count of the number of rows
upon returning control to QMF, so that the number of rows is not cumulative
across calls to the governor.

Defining Your Own Resource Limits

This section explains how to create a new resource group, for which the
resource is the number of rows retrieved from the database and the time
processing a command. If you want to define resource limits other than the
number of rows or real time allowed, you need to modify the IBM-supplied
governor exit routine or write an exit routine of your own. See m%h

for more information on the facilities you can use.

Use the following procedure to add a resource group to the resource control
table. This procedure adds a resource group named GROUP1, where the

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 233

Controlling QMF Resources Using a Governor Exit Routine

234

governor prompts a user in GROUP1 when the number of rows reaches
10000, and cancels the user’s activity when the number of rows reaches 15000.
The governor also prompts a user when the real time reaches 10 minutes, and
cancels the user’s activity when the real time reaches 45 minutes. The
procedure also shows an example of how to add a user to a resource group.

1. Run the query in Eigure 81 to set the number of rows at which the user is
warned of the approaching resource limit.

If you don’t want to warn users when they are approaching their limit for
the number of rows, skip to Step B.

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION,INTVAL)
VALUES('GROUP1', 'ROWPROMPT',10000)

Figure 81. Activating prompting for row limit

2. Run the query in w to set the number of rows at which the
governor cancels the user’s activity.

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION,INTVAL)
VALUES('GROUP1', 'ROWLIMIT',15000)

Figure 82. Activating cancellation of activities when user reaches row limit

3. Run the query in m to set the real time that elapses before the user
is warned of the approaching resource limit.

If you don’t want to warn users when they are approaching their limit for
the time elapsed, skip to step d.

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION, INTVAL)
VALUES ('GROUP1', 'TIMEPROMPT',600)
Figure 83. Activating prompting for time limit

4. Run the query in Eigure 84 to set the time that can elapse before the
governor cancels the user’s activity.

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION,INTVAL)
VALUES('GROUP1','TIMELIMIT',2700)

Figure 84. Activating cancelation of activities when user reaches time limit

5. Run the query in Eigure 85 on page 2319 to set the time between intervals

when the governor checks the user’s activity.

Installing and Managing QMF on VM

Controlling QMF Resources Using a Governor Exit Routine

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION,INTVAL)
VALUES('GROUP1', 'TIMECHECK' ,600)

Figure 85. Activating time interval check

6. Run the query shown in Eigure 8d to turn on governing for the GROUP1
resource group.

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION,INTVAL)
VALUES('GROUP1', 'SCOPE',0)

Figure 86. Turning on the governor for a particular resource group

SCOPE is a resource option that activates or deactivates governing. Each
resource group in the Q.RESOURCE_TABLE must have a
RESOURCE_OPTION called SCOPE, and SCOPE must have a
corresponding INTVAL of zero, or the resource group is not governed. Set
INTVAL to 1 to deactivate governing.

7. Run a query similar to the one in w to add user JONES to the
GROUP1 resource group in the English QMF environment.

UPDATE Q.PROFILES
SET RESOURCE_GROUP="'GROUP1'
WHERE CREATOR='JONES' AND
TRANSLATION="ENGLISH'

Figure 87. Updating a user's resource group

If you’re using an NLF: Use a similar query to update a user’s profile in
an NLF environment, but use a TRANSLATION

value from [[ahle 5 on page 19.

8. Instruct the user whose profile you updated to reconnect to the database
to initialize the resource values. For example, user JONES, who has the
password MYPW, can enter:

CONNECT JONES (PA=MYPW

Each time you make a change to the table, instruct users to reconnect to
the database to activate the changes you made.

See [ahle 13 on page 99 for how to grant a user authority to connect to the
database. Users who do not have DB2 for VM CONNECT authority can

end the current QMF session and begin another to activate the new
resource group.

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 235

Controlling QMF Resources Using a Governor Exit Routine

236

Creating your own Resource Control Table

You can create your own table or rename the Q. RESOURCE_TABLE. You can
also include additional columns in the table you create, if
Q.RESOURCE_VIEW is the view defined in this table, and if the table

includes all of the columns shown in [able 35 on page 237.

w shows an example of SQL statements you might use to create a table
called MY_RESOURCES. Substitute your own table, column, and dbspace
names in the query. Before creating a new table, ensure you erase the
Q.RESOURCE_TABLE from the database, because Q.RESOURCE_VIEW is
defined in this table;

DROP TABLE Q.RESOURCE_TABLE

Dropping the Q.RESOURCE_TABLE also drops Q.RESOURCE_VIEW from the
database, so you need to recreate both the table and the view, as shown in

Eigure 88 and Eigure 89.

CREATE TABLE MY_RESOURCES
(GROUP_NAME CHAR(16) NOT NULL,
CONSTRAINT CHAR(16) NOT NULL,
INTEGER INTEGER,
FLOAT_VALUE FLOAT,

CHARACTER VARCHAR (80))

IN DBSPACE1

Figure 88. Creating a resource control table or renaming Q.RESOURCE_TABLE

Always recreate Q.RESOURCE_VIEW if you decide to use a table other than
Q.RESOURCE_TABLE or decide to give Q.RESOURCE_TABLE a different
name, because QMF queries the view, not the table, to obtain resource control
information to pass to the governor exit routine.

Eigure 8d shows how to redefine Q.RESOURCE_VIEW as a view on the new
table, MY_RESOURCES. Substitute your own table and column names for
those in the figure.

CREATE VIEW Q.RESOURCE_VIEW
(RESOURCE_GROUP, RESOURCE_OPTION, INTVAL, FLOATVAL, CHARVAL)
AS SELECT GROUPNAME, CONSTRAINT, INTEGER, FLOAT_VALUE, CHARACTER
FROM MY_RESOURCES

Figure 89. Redefining the Q.RESOURCE_VIEW

VM Timer Considerations
If you plan to use the governor timer options (TIMEPROMPT, TIMELIMIT, or

TIMECHECK), you should be aware that the TIME option in VM is
implemented in QMF by using the STIMER macro as simulated by VM. How

Installing and Managing QMF on VM

Controlling QMF Resources Using a Governor Exit Routine

the QMF timer operates depends on the release of VM you are using and how
your system environment options are set. The basic design of the QMF
governor in VM requires the use of elapsed time. Elapsed time is derived
from the amount of virtual CPU run time and virtual wait time.

The time routine is executed when a timer interrupt occurs. The time duration
is specified by the TIMECHECK value. When a TIMEPROMPT value is
specified and that value has expired, the time routine issues a TPUT to send
instructions to the user followed by a TGET to receive the user’s response.
Because the timer exit can gain control at any point during QMF execution or,
in some cases, during processes called by QMF, the state of the environment is
unknown.

If you are unsure of the operation or behavior of your environment, use the
ROWPROMPT option instead of the TIMEPROMPT option. The following is a
list of known restrictions which affect the use and operation of the
TIMEPROMPT option:

* Do not use the QMF attention handler in conjunction with the
TIMEPROMPT option.

If you interrupt QMF using the attention key, the timer routine might
acquire control of the system while the attention handler is waiting for
instructions from the user. If this happens, the existing attention TGET is
replaced by the TGET of the timer routine. This in turn usually generates a
CMS ABEND.

* When using the TIMEPROMPT option, specify a value of at least five
minutes (300 seconds).
QMF might return status information to your terminal using ISPF or
GDDM. The results of using the TIMEPROMPT option during ISPF or
GDDM execution are unpredictable. Specifying a value of at least 300
seconds for the TIMEPROMPT option reduces the risk of these
incompatibility problems.

Table 35. Structure of the Q. RESOURCE_TABLE table

Column name Data type Length Nulls allowed? Function/values
(bytes)
RESOURCE_GROUP CHAR 16 No Contains the name of the

resource group. Update the
RESOURCE_GROUP field of the
user’s row in Q.PROFILES to
activate governing for that user.

RESOURCE_OPTION CHAR 16 No Your own name for a resource

you want to monitor.

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 237

Controlling QMF Resources Using a Governor Exit Routine

Table 35. Structure of the Q. RESOURCE_TABLE table (continued)

Column name Data type Length Nulls allowed? Function/values
(bytes)

INTVAL INTEGER Yes Reflects resource limit for
resource options that have
integer values. For example,
number of rows retrieved from
the database is a resource that
has an integer value.

FLOATVAL FLOAT Yes Reflects resource limit for
resource options that have
floating point values.
FLOATVAL is null for the
IBM-supplied governor.

CHARVAL VARCHAR 80 Yes Reflects resource limit for
resource options that have
character values. For example,
you might establish a
DAY_OF_WEEK resource option
and assign MONDAY to
CHARVAL so that QMF users
can log on to QMF only on
Mondays. CHARVAL is used as
a comment column in the
IBM-supplied governor.

Modifying the IBM-supplied Governor Exit Routine or Writing Your Own

If you decide to govern resources other than the number of rows returned
from the database, you need to modify the IBM-supplied governor exit
routine or write your own by doing the following:

1. Establish addressablllty to the exit routine for the points at Whlch QMF
calls the routine.
explains this step.
2. Pass resource control information to the governor eX|t routine and store
this information. i

Exit” on page 244 explains this step.

3. Establish addressability to the QMF cancellation service to cancel activities.

E'Canceling User Activity” on page 259 explains this step.

4. Establish addressability to the QMF message serV|ce to provide messages
for activities that have been canceled.

Wctivities” on page 260 explains this step.

238 Installing and Managing QMF on VM

Controlling QMF Resources Using a Governor Exit Routine

5. Assemble and generate your governor exit routine, whether you modified
the IBM-supplied governor exit routine or wrote your own.

and Generating Your Gavernor Exit Routine” on page 261 explains this

step.

Program Components of the Governor Exit Routine
Before you begin modifying or writing your own governor exit routine, you

need to know the names of the governor exit routine components and what
purpose each component serves.

franle 34 shows these components, whose names vary according to which
language you installed (English or an NLF). Replace the n symbol in the

component names in with the NLID (from ahle 5 on page 19) that

matches the NLF you’re using.

Table 36. English (base product) and NLF components for the IBM-supplied governor

exit routine

Member Library Function

Name

DSQUNGV2 PRODUCTION DISK Text file and member of load library
DSQUNGV2 PRODUCTION DISK Source code for governor exit routine.
DXEGOVA DSQUSERE MACLIB DSECT for the DXEGOVA control block.
DXEXCBA DSQUSERE MACLIB DSECT for the DXEXCBA control block.
DXEUNGV2 DSQUSERE MACLIB Contains text and related definitions for

the governor exit routine prompts and
cancellation message.

You can find these members in the libraries as shown in the table.

If you’re using an NLF: You can govern resources in an NLF session as well
as an English QMF session, by using different
versions of the member DSQUNGV?2 for each
language environment. For example, if you have
both English and German QMF installed, use the
phase DSQUEGV?2 for English and the phase
DSQUDGV?2 for German.

You can share the resource control table (Q.RESOURCE_TABLE or one you
create yourself) and the Q.RESOURCE_VIEW between language
environments, just as the Q.PROFILES table can contain profiles for English or
any NLF.

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 239

Controlling QMF Resources Using a Governor Exit Routine

How CMS Interacts with the Governor Exit Routine

At the start of a user’s session, QMF loads the governor into the user’s virtual
storage. For performance reasons, an assembler call interface is used between
QMF and the governor exit routine. The governor exit routine must provide
fast performance because, depending on which resources you are trying to
control, it might be called on every row retrieved from the database.

After loading the governor, QMF calls it once during session initialization. On
this call, the governor should initialize itself for the user’'s QMF session.
Toward this end, QMF passes to the governor the rows in the resource control
table for the user’s resource group. Resource groups and control tables were

described in EHow the Governor Knows What the Resaurce Limits Are” on

Within QMF are exits, each marking the beginning or end of some activity.
When control reaches one of these exits, QMF calls the governor. The first
such exit is the one, just described, for the governor’s initialization. The last is
part of session termination. On this last call, the governor can do whatever is
needed for its own termination. It might, for instance, release storage it no
longer needs.

Between the first and last calls, QMF can call the governor many times from
many different exits. Some of these calls, for example, precede the execution
of a QMF command. The types of calls are described in detail in

m shows the program structure of a governor exit routine:

QMF Main Module QMF Edit Exit Module
DSQQMF DSQUNGV2
Assembler call » Entry: DSQUNGV2
DSQUNGV2
Assembler return < Governor

Exit Program

Figure 90. CMS processing that interacts QMF with the governor exit

240 Installing and Managing QMF on VM

Controlling QMF Resources Using a Governor Exit Routine

How and When QMF Calls the Governor Exit Routine

QMF issues standard assembler CALL statements to the governor exit routine.
The term function calls describes the points during the QMF session when
these CALL statements are issued.

Points at Which QMF Calls the Governor
Function calls to the governor exit routine either precede or follow a specific

type of QMF activity. For example, QMF passes control to the governor exit
before and after running a command.

* At the beginning and end of a QMF session

QMEF calls the governor exit routine during initialization for a QMF session,
after the governor exit routine is loaded into the user’s virtual storage. The
governor initializes itself for the session using the resource control
information contained in rows passed from QMF’s query of
Q.RESOURCE_VIEW.

The governor exit routine is also called just before the session ends, when it
can perform whatever is needed to discontinue its activities for the user’s
session. For example, it can release virtual storage.

» After a new connection is made to the database

When a user issues the CONNECT command, the Q.PROFILES table and
the resource control table are re-initialized. The governor is called because
the resource control values might have changed if a different CONNECT ID
was used. All unfinished database operations are completed before the
connection is made.

Although the governor exit routine cannot cancel a connection to the
database, you can write statements in your own routine that cancel the
user’s session on the next activity, if the resource information passed to the
governor indicates that the user is not allowed to use QMF.

» Before and after running a command

QMF calls the governor before and after running all commands. There can
be several calls for the start of commands before a call for the completion of
a command. For example, a RUN PROC command results in two “start
command” calls and two “end command” calls when there is a RUN
QUERY command embedded in the procedure.

» Before database activity starts and when it ends

QMF calls the governor just before it begins a variety of database
operations, such as PREPARE, OPEN, and FETCH; QMF also calls the
governor upon completing any database activity.

When QMF retrieves data, it fits the maximum number of rows possible
into a buffer that has a minimum size of 4K. QMF calls the governor once
upon retrieving the first row into the buffer and once upon either filling the
buffer or reaching the end of the table, whichever comes first.

The following QMF commands always force database activity:

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 241

Controlling QMF Resources Using a Governor Exit Routine

— DISPLAY table commands

— The EDIT TABLE command for the Table Editor

— The ERASE command for a table

— The EXPORT TABLE command

— The IMPORT command to a table

— The PRINT command for a table or view

— The RUN QUERY command (for all types of queries)

— The SAVE DATA command (which forces an implicit CREATE TABLE
query)

— Scrolling commands that result in retrieving data when a report is being
displayed

— Data retrieval operations (fetch operations)

» Before and after the user makes a choice

At various points in a session, QMF waits for users to make decisions. The
time QMF spends waiting is known as think time.

QMEF calls the governor before performing an operation that leads to think
time, such as displaying a panel for a user-entered selection. As soon as the
user enters a response and ends the period of think time, QMF calls the
governor.

Any of the following activities leads to think time:

— Displaying a QMF panel between running commands

— Displaying help panels

— Displaying confirmation prompt panels; for example, when the user is

about to erase something by issuing the SAVE command that replaces
the object

— Displaying command prompt panels; for example, when the user enters
DISPLAY ?
— Displaying the LIST prompt panel
— Displaying the GDDM interactive chart utility panels for QMF charting
functions
— Running EDIT PROC or EDIT QUERY functions
* At initiation of an abnormal ending

QMEF calls the governor just before it initiates an abnormal ending. The
governor can then perform the cleanup necessary before the abend
processing begins. The actions might be similar to those during the session
end.

For the IBM-supplied governor exit routine, QMF uses the GOVFUNCT field
of the DXEGOVA control block to pass information about the type of function
call. The fields of this control block are explained in

242 Installing and Managing QMF on VM

Controlling QMF Resources Using a Governor Exit Routine

Each type of function call has a specific value for the GOVFUNCT field. These

values are shown in Eigure 92 on page 244,

What Happens Upon Entry to the Governor Exit Routine
QMF calls the governor exit routine by branching to the address of the entry

point DSQUNGV2. Upon entry to the governor exit routine:

* Register 1 contains the address for the parameter list. w shows the
contents of Register 1 on a call to the governor.

The parameter list contains two addresses: The address of the DXEXCBA
control block and the address of the DXEGOVA control block.

Register 1 Address List

> | DXEXCBA

(on entry to
governor exit)

v

DXEGOVA

Figure 91. Contents of Register 1 on a call to the governor exit routine

* Register 13 contains the address of the QMF save area
» Register 14 contains the return address
* Register 15 contains the address of the entry point (DSQUNGV2)

Establishing Addressability for Function Calls
Because QMF always branches to an entry point named DSQUNGV2 when it

calls the governor, you can’t use this entry point to determine the type of
function call; instead, use the GOVFUNCT field of the DXEGOVA control
block.

In the IBM-supplied governor exit routine, GOVFUNCT contains a character
value that identifies the type of function call. This character value, in turn,
equates to a 1-byte binary integer from 1 to 10. For example, on a function call
for the start of a QMF session, the value of GOVFUNCT is GOVINIT, which
equates to a numeric value of X'1".

Both character and numeric values for each type of function call are shown in

Eigure 92 on page 244 (If you need more information about the activity that
occurs at each function call, see ‘Paints at Which QMF Calls the Gavernor” onl
hage 241)

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 243

Controlling QMF Resources Using a Governor Exit Routine

GOVINIT EQU 1 —-mem--- INITIALIZATION OF SESSION
GOVTERM EQU 2 =mmem--- TERMINATION OF SESSION
GOVSCMD EQU 3 mmmmeee- START COMMAND

GOVECMD EQU 4 mmmee--- END COMMAND

GOVCONN EQU 5 —mmeeee- CONNECT COMMAND

GOVSDBAS EQU 6 —mm----- START DATA BASE

GOVEDBAS EQU 7 =mmeemme- END DATA BASE

GOVSACTV EQU 8 ===mmme- SUSPEND QMF ACTIVITY
GOVRACTV EQU 9 ===mm--- RESUME QMF ACTIVITY
GOVABEND EQU 16 —mmem--- QMF ABEND OPERATION

Figure 92. Character and numeric values for the GOVFUNCT field of DXEGOVA

To improve performance in your own exit routine, you can follow the
convention the IBM-supplied governor uses, and equate the values of
GOVFUNCT with binary numbers by using a branch table. QMF uses the
branch table to find the addresses to branch to for each type of function call.

m shows an example of some code that identifies branch addresses for
the IBM-supplied governor.

XR RO7,R0O7 ZERO REGISTER 7

IC RO7,GOVFUNCT IDENTIFY EXIT TYPE

SLL RO7,2 DETERMINE BRANCH TABLE OFFSET
LA R15,FUNBTAB(RO7) GET BRANCH TABLE ADDRESS

L R15,0(R15) GET BRANCHING ADDRESS

BALR R14,R15 BRANCH TO THE APPROPRIATE CODE

FUNBTAB DS OF
DC A(BYPASS) VALUE "0" - UNUSED
DC A(INIT) VALUE "1" - QMF INITIALIZATION

Figure 93. Identifying the type of function call and branching to the appropriate address

Because the governor program runs on the same program level as the main
QMF program, ensure you preserve the QMF environment at every function
call.

Use the standard assembler RETURN statement to return control to QMF after
every call.

Passing Resource Control Information to the Governor Exit

If you have not done so already, read the following sections, which describe
how to set up resource control information in a format the governor can use:

244 Installing and Managing QMF on VM

Controlling QMF Resources Using a Governor Exit Routine

QMF passes resource control information using two control blocks named
DXEGOVA and DXEXCBA. These are shown in Eigure 94 on page 244 and
Eigure 96 on page 256. Their addresses are passed to the governor on every
function call. The DSECT DXEXCBA (shipped as DXEXCBA) and the DSECT
DXEGOVA (shipped as DXEGOVA) are located in the DSQUSERE MACLIB.
Include these DSECTs in your program using the assembler COPY statement.

Structure of the DXEGOVA Control Block
The DXEGOVA control block passes to the governor exit routine information

about a user’s resource constraints. This information is located in a resource

control view called Q.RESOURCE VIEW. See EHow the Gaovernor Knows
What the Resaurce Limits Are” an page 231 for more information on how this

view is used.

ffanble 37 provides the name of each field in the DXEGOVA control block, with
its data type and purpose. Each data type is listed as it appears in the DS
statement that defines the field in the DSECT. For example, for the
GOVOROWS field, the letter F indicates that this field contains a full-word
integer. The DS statement for GOVOROWS appears as GOVOROWS DS F.

The layout of the control blocks and the information they contain is the same
for QMF support in all operating environments. Therefore, some of the
information shown in the control blocks might not apply to QMF in the
VM/ESA environment because it is used in only OS/390 or VSE/ESA
operating environments.

Table 37. Fields of the DXEGOVA interface control block to the governor

Field Data Purpose
Type
GOVCADDR A Contains the address to branch to for canceling an activity.
The code to use this field appears in m

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 245

Controlling QMF Resources Using a Governor Exit Routine

246

Table 37. Fields of the DXEGOVA interface control block to the governor (continued)

Field Data
Type

Purpose

GOVFUNCT XL1

Indicates the type of function call. Possible values are:

* GOVINIT (session initialization); GOVTERM (session
termination)

* GOVSCMD (start command); GOVECMD (end
command)

* GOVCONN (connect command)

* GOVSDBAS (start database retrieval operation);
GOVEDBAS (end database retrieval operation)

*« GOVSACTYV (suspend QMF activity for user think time);
GOVRACTV (resume QMF activity)

« GOVABEND (exit for abnormal ending)

Code to use this field appears in FEstablishing
Ead TRV on Call el

GOVGROUP CL16

Contains the name of the user’s resource group. This value
can change after a CONNECT command, when QMF
initializes the Q.RESOURCE_TABLE and the EE.PROFILES
table. For more on resource groups, read

page23il

GOVNAME CL8

Contains the name of the control block (DXEGOVA). This
value does not change during a session. It can serve as an
eye catcher in a dump of virtual storage.

GOVOROWS F

Contains the number of rows for the user’s resource group
in the resource control table. This value can change after a
CONNECT command.

GOVRESC 10XL128

Contains information from the resource control table. This

information is divided into 10 contiguous blocks of storage

that are structured like DSECT GOVRESCT. A block

contains information about one of the rows for the user’s

resource group in the QMF resource control table.

« If the resource group has less than 10 rows, unused
blocks are those at the end of the field.

« If the resource group has more than 10 rows, use the
field named GOVNEXTR (in the GOVRESCT DSECT) to
access additional rows.

All blocks are part of a chain, as described in m
the Resource Control Table” on page 249, The value of this

field does not change during a session.

Installing and Managing QMF on VM

Controlling QMF Resources Using a Governor Exit Routine

Table 37. Fields of the DXEGOVA interface control block to the governor (continued)

Field Data Purpose
Type

GOVRESCT DSECT Describes the block of storage containing information on
one of the user’s rows of the resource control table. All such
blocks are linked together in a chain discussed in
t‘Addressing the Resource Control Table” on page 249. The
following fields are within the block:

GOVOPTN(CL16)
Contains the value in the RESOURCE_OPTION
column of the resource control table. Blocks in the
chain are ordered alphabetically on the content of
this field.
GOVNULLI(H)
Null indicator for INTVAL column.
GOVINTVL(F)
Value of INTVAL column.
GOVNULLF(H)
Null indicator for FLOATVAL column.
GOVFLOAT(D)
Value of FLOATVAL column.
GOVNULLC(H)
Null indicator for CHARVAL column.
GOVCHLEN(H)
Length of data in CHARVAL column.
GOVCHAR(CLS80)
Value in CHARVAL column.
GOVNEXTR(A)
Points to the block of data for the next resource
table row. Contains zero if this is the last row.

Any null indicator in the structure is zero when its
corresponding column value isn’t null. If the column value
is null, the indicator is not zero.

GOVSQLCA A Address of the SQL communications area (SQLCA), which
holds information about the SQL SELECT query on the
resource control view (Q.RESOURCE_VIEW).

GOVSQLRC F Return code from the SQL SELECT query on the resource
control view (Q.RESOURCE_VIEW). If it is nonzero, the
query failed and no rows are passed to the governor.

GOVUSERS CL2048 Scratchpad area, retained between session calls. QMF does
not change this value.

Eigure 94 on page 248 shows the structure of the DXEGOVA control block.

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 247

Controlling QMF Resources Using a Governor Exit Routine

B o o T T R R T T R S R e S R R e L 2 E L L e 00001000

* * 00002000
* CONTROL BLOCK NAME: DXEGOVA * 00003000
* * 00004000
* FUNCTION: * 00005000
* * 00006000
* THIS IS THE INTERFACE CONTROL BLOCK BETWEEN QMF AND * 00007000
* THE GOVERNOR EXIT ROUTINE. * 00008000
* * 00009000
* STATUS: VERSION 7 RELEASE 1 LEVEL O * 00010000
* * 00011000
* INNER CONTROL BLOCKS: NONE * 00012000
* * 00013000
* CHANGE ACTIVITY: NA * 00014000
* * 00015000
* CHANGE DATE: NA * 00016000
* * 00017000
KAKKKKRIKRIFRARI IR ARIFRARI IR AR I IR AR I IR AR I IR AR IR R AR h I h**Fxhxhkxxxrxxxxxx%x 00018000
* 00019000
DXEGOVA DSECT 00020000

DS 0D 00021000
GOVNAME DS CL8 -- CONTROL BLOCK IDENTIFICATION 00022000

SPACE 00023000
GOVEXCTL DS XL72 -- EXIT CONTROL 00024000

ORG GOVEXCTL 00025000
GOVFUNCT DS D FUNCTION CODE 00026000
GOVINIT EQU 1 —mmmme- INITIALIZATION OF SESSION 00027000
GOVTERM EQU 2 —mmmmm-- TERMINATION OF SESSION 00028000
GOVSCMD EQU 3 mmmmmee- START COMMAND 00029000
GOVECMD EQU 4 —mmmme- END COMMAND 00030000
GOVCONN EQU 5 mmmmmme- CONNECT COMMAND 00031000
GOVSDBAS EQU 6 —mmmm--- START DATA BASE 00032000
GOVEDBAS EQU 7 mmmmmme- END DATA BASE 00033000
GOVSACTV EQU 8 —mmmmm-- SUSPEND QMF ACTIVITY 00034000
GOVRACTV EQU 9 —mmmmm-- RESUME QMF ACTIVITY 00035000
GOVABEND EQU 106 —-mmm--- QMF ABEND OPERATION 00036000
GOVPAD10O DS cLz e RESERVED FIELD 00037000

SPACE 00038000
GOVCADDR DS A —eee ADDR TO BRANCH TO FOR CANCELLATION 00039000

SPACE 00040000
GOVOROWS DS F e NUMBER OF OPTION ROWS RETRIEVED 00041000

SPACE 00042000
GOVSQLRC DS F e RESOURCE TABLE SQL RETURN CODE 00043000

SPACE 00044000
GOVSQLCA DS A e ADDRESS OF SQLCA FOR ERROR CONDITION 00045000

SPACE 00046000
GOVGROUP DS cLle 0 ----- GROUP NAME 00047000
GOVPAD20 DS cL32 == RESERVED FIELD 00048000

Figure 94. The DXEGOVA control block (Part 1 of 2)

248 Installing and Managing QMF on VM

Controlling QMF Resources Using a Governor Exit Routine

SPACE 00049000
GOVUCTL DS XL304 -- USER CONTROL AREA 00050000

ORG GOVUCTL 00051000
GOVUSERS DS CL2048 ----- USER SCRATCH PAD AREA 00052000
GOVPAD30 DS cL48 ----- RESERVED FIELD 00053000

SPACE 00054000

DS 0D 00055000
GOVRESC DS 10XL128 -- RESOURCE CONTROL TABLE 00056000

ORG ~ GOVRESC 00057000
GOVRESCT DSECT -- RESOURCE CONTROL TABLE MAPPING 00058000

DS 0D 00059000
GOVOPTN DS cLte ----- RESOURCE OPTION 00060000
GOVNULLI DS H —ee- INTEGER NULL INDICATOR 00061000
GOVPAD40 DS Lz =me-- RESERVED FIELD 00062000
GOVINTVL DS F - INTEGER OPTION REPRESENTATION 00063000
GOVNULLF DS H =eee- FLOATING POINT NULL INDICATOR 00064000
GOVPAD50 DS cLe 0 ----- RESERVED FIELD 00065000
GOVFLOAT DS D eee-- FLOATING POINT OPTION REPRESENTATION 00066000
GOVNULLC DS H =eee- CHARACTER NULL INDICATOR 00067000
GOVCHLEN DS H - LENGTH OF THE CHARACTER OPTION 00068000
GOVCHAR DS cLso -=--- CHARACTER OPTION REPRESENTATION 00069000
GOVNEXTR DS A e POINTER TO NEXT RESOURCE CONTROL ROW 00070000

Figure 94. The DXEGOVA control block (Part 2 of 2)

Addressing the Resource Control Table
The GOVGROUP field of the DXEGOVA control block holds the value of the

RESOURCE_GROUP column of Q.RESOURCE_VIEW, the view defined on the
resource control table.

All information about the user’s resource options is stored in blocks; there is
one block for each of the user’s resource options you decide to monitor.

The first block defines the first resource option and is stored in the DXEGOVA
control block as the DSECT GOVRESCT. This DSECT is shown in the last part
of Eigure 94 The address of this DSECT is defined in the DXEGOVA field
GOVRESC. You can establish addressability to the GOVRESC field in your
own routine using the address of the GOVRESCT DSECT.

Negative half-word integers in the DSECT represent null values entered for
INTVAL, CHARVAL, or FLOATVAL in the Q.RESOURCE_VIEW; zero or
positive half-words indicate a value in that column of Q.RESOURCE_VIEW.

The blocks that store the resource control information form a chain in which a
pointer in one block points to the beginning of the next block (the next
resource option) in the chain. For example, the GOVNEXTR DS statement in
the GOVRESCT DSECT in Eigure 94 contains the address of the next block in
the chain of resource control information. Each block in the chain has a

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 249

Controlling QMF Resources Using a Governor Exit Routine

250

GOVNEXTR DS statement. In the final block, the GOVNEXTR DS statement
contains zeros to mark the end of the user’s resource control information.

Eigure 95 shows a part of the code for the IBM-supplied governor that
processes the blocks of resource control information. In this code, GOVRESC
points to the GOVRESCT DSECT.

L

LTR

BZ

LA

USING
LOOK4RES DS

LTR

BZ

L
B
ENDRESST DS

DXEGOVA DSECT

GOVRESC DS
ORG

GOVRESCT DSECT

GOVNEXTR DS

RO8,GOVOROWS
RO8,R08
ENDRESST
RO5,GOVRESC
GOVRESC,R05
OH

RO5,R05
ENDRESST

RO5,GOVNEXTR
LOOK4RES
OH

10XL128
GOVRESC

A

Figure 95. Resource initialization

GET NUMBER OF RESOURCE TABLE ROWS
ANY RESOURCE TABLE ROWS?

NO, SKIP RESOURCE INITIALIZATION
GET ADDRESS OF 1ST RESOURCE ROW
BASE RESOURCE RECORD ENTRY

MAIN LOOP THRU RESOURCE ROWS

ANY MORE RESOURCE TABLE ROWS?

NO, END RESOURCE INITIALIZATION

GET ADDRESS ON NEXT RESOURCE ROW
BEGIN NEXT ITERATION
-- BRANCH HERE WHEN FINISHED READING ALL ROWS

-- RESOURCE CONTROL TABLE

-- DSECT FOR RESOURCE ROW

-- POINTER TO NEXT RESOURCE ROW

Structure of the DXEXCBA Control Block
The DXEXCBA control block passes to the governor exit routine information

about the state of the QMF session upon entry to the governor. The governor
combines this information with information on resource limits (contained in

DXEGOVA) to determine when the resource limits are exceeded and when to
cancel the user’s activity.

Installing and Managing QMF on VM

Controlling QMF Resources Using a Governor Exit Routine

For example, you can define a resource option that does not allow user
JONES to use the EDIT TABLE command. You can then write your governor
exit routine so that, if the XCBQRYP field of the DXEXCBA control block
indicates an EDIT TABLE command, the governor exit calls the QMF
cancelation service to cancel the command.

frable 33 provides the name of each field in the control block, with its data
type and purpose. Each data type is listed as it appears in the DS statement
that defines the field in the DSECT.

The layout of the control blocks and the information they contain is the same
for QMF support in all operating environments. Therefore, some of the
information shown in the control blocks might not apply to QMF in the
VM/ESA environment because it is used in only OS/390 or VSE/ESA
operating environments.

Table 38. Fields of the DXEXCBA interface control block to the governor

Field Data Purpose
Type
XCBACTIV CcL1 Indicates the current type of database activity. Applies only

when rows are being retrieved for the current data object.
Does not apply when rows are retrieved for an IMPORT
command. Possible values are:

OPEN being run

FETCH being run

PREPARE being run

DESCRIBE being run

CLOSE being run

g~ wWwN -

This field changes whenever the type of database activity
changes. You can use the value when the governor receives
control asynchronously.

XCBAIACT CcL1 Tells whether the current command is running interactively:
1 Interactive
0 Noninteractive (batch)

Interactive commands display prompt and status panels.
This field changes value on any function call for the start of
the command,; it is reset to zero when the command
completes.

XCBAUTH CL8 Contains the user’s SQL authorization ID. This field can
change on a CONNECT command.

XCBCAN cL1 Indicates whether the user or the governor requested
cancelation of the current command. The field is set to 1 if
cancelation is requested. Zero indicates that no cancelation
was requested. This field is reset to zero before the function
call for the command’s termination.

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 251

Controlling QMF Resources Using a Governor Exit Routine

252

Table 38. Fields of the DXEXCBA interface control block to the governor (continued)

Field

Data
Type

Purpose

XCBCLOC

CL18

Contains the current location name.

XCBCMDL

F

Contains the length of the string containing the command
to be run. This is the string addressed by XCBCMDP field.
This field changes values when XCBCMDL changes values.

XCBCMDP

Points to the string containing the command to be run. This
field is reset when QMF validates a command at some
point before the function call for the start of the command.

The field is reset to zeros before the function call when the
command completes. You might need to take this into
account for asynchronous processing. If a command
synonym is being run, it appears here.

XCBCVERB

CL18

Holds the verb of the current command. This field changes
value on the function call for the start of a command. The
value does not change between calls.

XCBDBMG

CL1

Identifies the database manager. This value is set to 1 for
DB2 for VM, and to 2 for DB2.

XCBEMODE

CL1

Indicates the current mode of the QMF session:
1 Interactive

2 Noninteractive (batch or server)

Thls value does not change durlng a sessmn See

(DSQSMOQDE)” on page 83 for more information on starting

a noninteractive session.

XCBERRET

Contains the return code to be used in the default
cancelatlon message. For more mformatlon on this message,
see [m

page 26d.

XCBINCI
(ISPF only)

CL1

Indicates if the current command is being run through the
command interface. The field is set to 1 when it is; zero
when it isn’t. For more information about the command
interface, see Developing QMF Applications.

XCBINPRC

CL1

Tells the governor where a command is being run: 1
indicates it is running in a procedure or LIST command; 0
indicates it is being run another way.

XCBKPARM

CL1

Tells the governor how the DSQSDBCS program parameter
is set. The value does not change during a session. Possible
values are: 0 for Latin letters; 1 for double-byte character
set (DBCS) data. See I‘Setting Printing for Double-Bytd
Character Set Data (DSQSDBCS)” on page 9d for more

information about this parameter.

Installing and Managing QMF on VM

Controlling QMF Resources Using a Governor Exit Routine

Table 38. Fields of the DXEXCBA interface control block to the governor (continued)

Field

Data
Type

Purpose

XCBLOGM

CL1

Indicates if QMF should log a message in the QMF trace
data set. Use a value of 1 to log the message, and 0 to not
Iog the message. Message logging is descrlbed in

Using the QMF trace facility is described in Flising thd

XCBMGTXT

CL78

Contains the text for a message. The message can be logged
in the QMF trace data, displayed on the screen, or both. For
more information on how thls field is used, see

XCBMSGNO
(ISPF only)

CL8

Contains the message ID for an ISPF message definition.
The field can be used for a message to be logged in the
DSQDEBUG file, displayed on a user’s screen, or both. For
more information about XCBMSGNO use, see

| 5 | oo]

XCBNAME

CL8

Contains the control block name (DXEXCBA). Can serve as
an eye catcher in a dump of virtual storage. This value does
not change during a session.

XCBNLANG

CL1

Identifies NLFs being used. (For a list of NLIDs used, see

[Table 5 on page 19.) Value does not change during a session.

XCBPANEL
(ISPF only)

CL8

Contains the panel ID for the message help panel for a
cancelation message. For more information about

XCBPANEL use, see EProviding Messages for Canceled
lActivities” on page 260,

XCBPLAN

CL8

Contains the application plan ID for QMF. This value does
not change during a session.

XCBQCE

Contains the decimal equivalent of the value of the
SQLDERRD(4) field in the SQLCA returned from DB2 for
VM. The integer part of this decimal appears in the
database status (“relative cost estimate”) panel. The value is
set to zero on the function call when the command finishes
running. The field contains zeros if the operation is not a
data retrieval query. The query cost estimate is not available
from SQL V1, DB2 Parallel Edition V1.2, or Dataloiner
v1.2.1. In these environments the value is set to 1.

XCBQERR

CL1

Tells whether a QMF error occurred since the previous
function call: 0 indicates no error occurred; 1 indicates an
error occurred.

XCBQMF

CL10

Identifies the current release of QMF. This value is QMF
V7R1.0, and does not change during a session.

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 253

Controlling QMF Resources Using a Governor Exit Routine

Table 38. Fields of the DXEXCBA interface control block to the governor (continued)

Field Data
Type

Purpose

XCBQRYP A

Contains the address of a copy of the query that QMF
passes to the database for execution. The governor inspects
the query upon a call to start database activity (before any
data retrieval) and determines whether to cancel the
activity. The address is set to zero either at the beginning of
the session or when the data object is reset or imported to
temporary storage.

This field contains information only when data retrieval is
requested through one of the commands in the following
list; no information is provided for queries on DB2 for VM
system tables or QMF control tables.
DISPLAY TABLE

EDIT TABLE
ERASE TABLE

EXPORT TABLE
IMPORT TABLE

PRINT TABLE
RUN QUERY

SAVE DATA

XCBREFR CL1

Indicates whether QMF refreshes the screen after returning
from the governor; 1 indicates a refresh; 0 indicates no
refresh.

If your governor displays any screen information, set this
field to 1.

XCBRELN CL2

Identifies the QMF release level. For QMF VM/ESA V7R1,
this is 12. The value does not change during a session.

XCBRGRP CL16

Contains the name of the user’s resource group. This value
can change after a CONNECT command.

XCBROWSF F

Reflects the number of rows retrieved into the data object.
Initially zero, this field changes value whenever more rows
are retrieved. All data retrieval is counted whether data is
retrieved from the database or imported from CMS files.

QMF does not reset this field, but the governor can. For
example, if your governor exit routine monitors the number
of database rows retrieved, you can set this field to zero on
the function call for the end of the command that began the
data retrieval.

254 Installing and Managing QMF on VM

Controlling QMF Resources Using a Governor Exit Routine

Table 38. Fields of the DXEXCBA interface control block to the governor (continued)

Field

Data
Type

Purpose

XCBSYST

CL1

Identifies the current operating system. The value does not
change during a session, and is usually set to 4, indicating
CMS. Possible values are:
1 for CMS (VM/SP)

3 for TSO (MVS/XA™ or MVS/ESA™)
4 for CMS (VM/XA or VM/ESA)

5 for CICS (VSE/ESA™, MVS/ESA, or MVS/XA)
For information on why the other values here can be valid

for QMF VM/ESA V7, see ‘Providing the Correct Profild
[for the User’s Operating Fnvironment” on page 104

XCBTRACE

CL1

Contains a value for the level of detail at which user exit
activity is traced. Possible values are 0 (least detail), 1, or 2
(most detail). Using this value in a governor is discussed in

At the start of a session, the value of the TRACE field from
the user’s QMF profile is used here. After that, the value
changes only when the user changes the value of the
TRACE option. For more information on tracing, see

XCBUSER

CL8

Contains the users VM logon ID.

XCBUSERS

CL2048

Scratchpad area in which you can store results you want
the governor to save from one call to the next. It is initially
set to blanks. QMF does not change this value.

Eigure 96 an page 2568 shows the structure of the DXEXCBA control block.

[Cable 38 on page 251 provides more information on each field in the control

block.

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 255

Controlling QMF Resources Using a Governor Exit Routine

256

EE R
* *
* CONTROL BLOCK NAME: DXEXCBA *
* *
* FUNCTION: *
* *
* THIS IS THE INTERFACE CONTROL BLOCK BETWEEN QMF AND *
* EXIT ROUTINES. *
* *
* STATUS: VERSION 7 RELEASE 1 LEVEL 0 *
* *
* INNER CONTROL BLOCKS: NONE *
* *
* CHANGE ACTIVITY: *
* *
* *
EE R R R R R L R R R R R R R XK *hhkhhhhhhhhhhhhhhhhkhhhhdhd* XKk kA khkhkdhhhkhhhhhhhhkhkh*k
*
DXEXCBA DSECT

DS 0D
XCBNAME DS CL8 -~ CONTROL BLOCK IDENTIFICATION

SPACE
XCBEXCTL DS XL190 -- EXIT CONTROL

ORG XCBEXCTL
XCBAUTH DS CL8 =——--- AUTHORIZATION ID
XCBUSER DS CL8 =—---- USER ID
XCBPLAN DS CL8 =—mm-- PLAN ID

SPACE
XCBQMF DS CL1® —---- CURRENT VERSION/RELEASE

SPACE
XCBRELN DS CL2 =mme- QMF RELEASE LEVEL

SPACE
XCBTRACE DS CL1 =mme- QMF EXIT TRACE LEVEL
XCBTOFF EQU C'0' —mmmeee- NO TRACING
XCBTPART EQU C'l' cmmeme- PARTIAL TRACING
XCBTFULL EQU C'2' cmmemme- FULL TRACING

SPACE
XCBSYST DS CLl —---- OPERATING SYSTEM
XCBSYSTX EQU C'3' —mmeeee- MVS/ESA or XA (TSO,APPC, native)
XCBSYSTV EQU C'4' —mmeeme- CMS/VM/ESA
XCBSYSTY EQU C'5' —mmemee- CICS (MVS or VSE)

SPACE
XCBPAD1O DS CL4& =—mme- RESERVED FIELD

SPACE
XCBNLANG DS CL1 =—--- CURRENT NATIONAL LANGUAGE

SPACE
XCBKPARM DS CL1 —mme- SETTING OF K PARAMETER
XCBKPARN EQU C'0' —mmemee- LATIN
XCBKPARY EQU C'l' cmmeeme- DBCS

SPACE

Figure 96. The DXEXCBA control block (Part 1 of 3)

Installing and Managing QMF on VM

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000

XCBDBMG

XCBDBMGS
XCBDBMGD
XCBDBMGW

XCBEMODE
XCBIACTV
XCBBATCH

XCBAIACT
XCBAIACY
XCBAIACN

XCBINCI
XCBINCIY
XCBINCIN

XCBINPRC
XCBPRCY
XCBPRCN

XCBCVERB

XCBCAN
XCBCANN
XCBCANY

XCBACTIV
XCBOPEN
XCBFETCH
XCBPREP
XCBDESCR
XCBCLOSE
XCBEXEC
XCBEXECI
XCBPAD20

XCBRGRP
XCBPAD30

XCBCMDP

*
XCBCMDL
XCBQCE

XCBROWSF

*

Controlling QMF Resources Using a Governor Exit Routine

DS
EQU
EQU
EQU
SPACE
DS
EQU
EQU
SPACE
DS
EQU
EQU
SPACE
DS
EQU
EQU
SPACE
DS
EQU
EQU
SPACE
DS
SPACE
DS
EQU
EQU
SPACE
DS
EQU
EQU
EQU
EQU
EQU
EQU
EQU
DS
SPACE
DS

DS
SPACE
DS

SPACE
DS
SPACE
DS
SPACE
DS

SPACE

cLr e DATA BASE MANAGER 00051000
o LS DB2 FOR VM/VSE 00052000
O DB2 FOR 0S/390 00053000
C'3'" memmme- WORKSTATION DB2 00054000
00055000

cLr e CURRENT EXECUTION MODE 00056000
C'1" emmeee- INTERACTIVE MODE 00057000
C'2'" emmmme- BATCH MODE 00058000
00059000

cLr e CURRENT INTERACT MODE 00060000
C'1' memmeee- INTERACTIVE EXECUTION 00061000
(o c L NOT INTERACTIVE EXECUTION 00062000
00063000

cLr e CURRENT COMMAND INTERFACE STATE 00064000
C'l'" mmmmmee- COMMAND INTERFACE ACTIVE 00065000
(oLl S — COMMAND INTERFACE NOT ACTIVE 00066000
00067000

cLr e PROCEDURE OR LIST CMD EXEC STATE 00068000
c'lt' emeeee- RUNNING A PROCEDURE OR LIST CMD 00069000
c'o' memmmee- NOT RUNNING PROCEDURE OR LIST CMD 00070000
00071000

cLi8 —---- CURRENT COMMAND VERB 00072000
00073000

cLr e CANCEL CURRENT COMMAND INDICATOR 00074000
c'o' —emmeee- NO CANCELLATION 00075000
c'lt" emmeeee- CANCELLATION IN PROGRESS 00076000
00077000

cLr e TYPE OF DATA BASE ACTIVITY 00078000
C'1' mmmeee- OPEN 00079000
c'2' memmee- FETCH 00080000
ol R — PREPARE 00081000
C'4" o DESCRIBE 00082000
C'5' mmmmmee- CLOSE 00083000
C'6' mmmmmee- EXECUTE 00084000
C'7" mmmmmee- EXECUTE IMMEDIATE 00085000
cL9y —---- RESERVED FIELD 00086000
00087000

(oI5 - J———— RESOURCE GROUP NAME 00088000
cL22 - RESERVED FIELD 00089000
00090000

A e POINTER TO ORIGINAL COMMAND STRING 00091000
-------- WILL NOT CONTAIN PROMPT VALUES 00092000

00093000

F emeea ORIGINAL COMMAND STRING LENGTH 00094000
00095000

F e QUERY COST ESTIMATE VALUE 00096000
00097000

F aeee DATA BASE ROWS FETCHED FROM SOURCE 00098000
-------- SET BY QMF; EXIT MAY RESET 00099000

00100000

Figure 96. The DXEXCBA control block (Part 2 of 3)

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 257

Controlling QMF Resources Using a Governor Exit Routine

258

XCBQERR
XCBQERRN
XCBQERRY
XCBCLOC
XCBPAD40O

XCBQRYP

*

XCBUCTL

XCBERRET
XCBMGTXT
XCBMSGNO
XCBPANEL
XCBLOGM

XCBLOGMN
XCBLOGMY
XCBREFR

XCBREFRN
XCBREFRY
XCBPAD50

XCBUSERS
XCBPAD60O

DS
EQU
EQU
DS

DS
SPACE
DS

SPACE
DS
ORG
DS

DS

DS

DS

DS
EQU
EQU
DS
EQU
EQU
DS
SPACE
DS

DS

cLr e QMF ERROR INDICATOR
ce' memeeee- NO QMF ERROR DETECTED
(O R QMF ERROR DETECTED
cLig e CURRENT LOCATION NAME
cL4r - RESERVED FIELD
L POINTER TO SQL QUERY
———————— QUERY LENGTH IS FIRST HALFWORD
XL432 -- USER CONTROL AREA
XCBUCTL
[EXIT ERROR RETURN CODE
cLvg 0 —me-- EXIT ERROR MESSAGE TEXT
cLs - ISPF MESSAGE NUMBER
cLs e ISPF MESSAGE HELP PANEL
cLr - LOG MESSAGE INDICATOR
ce' memeeee- QMF SHOULD NOT LOG MESSAGE
[T QMF SHOULD LOG MESSAGE
[REFRESH SCREEN INDICATOR
(S QMF DOES NOT HAVE TO REFRESH SCR
(O QMF SHOULD REFRESH SCREEN
CL28 - RESERVED FIELD
CL2048 -- USER SCRATCH PAD AREA
cL48 0 ----- RESERVED FIELD

Figure 96. The DXEXCBA control block (Part 3 of 3)

&rbl;

Storing Resource Control Information for the Duration of a QMF Session

00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000
00114000
00115000
00116000
00117000
00118000
00119000
00120000
00121000
00122000
00123000
00124000
00125000

You can use the information passed to the governor on the first call of a
session for subsequent calls to the governor routine. You can use the 2048-byte
scratchpad areas provided in the DXEGOVA and DXEXCBA control blocks to
obtain the necessary storage to hold the resource control information. These
fields can contain any information you need to store. The information persists
from one call to the governor to the next (if a CONNECT call doesn’t change

it).

The IBM-supplied governor uses the code shown in Eigure 97 to address
GOVUSERS, the scratchpad area in the DXEGOVA control block. You can use
similar code to address the XCBUSERS scratchpad area in the DXEXCBA

control block, by replacing GOVUSERS in the following example with

XCBUSERS.

LA
USING

WORKPTR,GOVUSERS
WORK, WORKPTR

Figure 97. Establishing addressability to the governor scratchpad area

Installing and Managing QMF on VM

Controlling QMF Resources Using a Governor Exit Routine

In Eigure 97 on page 258, WORK is the name of a DSECT, and WORKPTR is
equated to general register 4. The WORK DSECT contains the definition for
the fields that hold the information in the scratchpad areas.

The governor might also issue GETMAIN macros to obtain needed storage.

Canceling User Activity

When users reach their resource limits, you can call the QMF cancellation
service to cancel user activity. For example, your governor exit routine might
cancel the following:

* A QMF session during a function call at the start of a QMF session

* The current command during a number of different function calls, and any
commands that start database activity

* Asynchronous commands when a timer is active

The code for canceling either of the first two activities is contained in the
source program DSQUNGV2. To have your governor call the QMF cancellation
service to cancel an activity, branch to the address that appears in the
DXEGOVA control block field named GOVCADDR. Eﬁh shows the
statements that establish addressability to the QMF cancellation service. Before
you use these statements to pass control from the governor exit routine to
QMF, ensure that Register 13 points to a save area for the governor so that
QMF can restore the state of the governor upon returning control.

L R15,GOVCADDR
BALR R14,R15

Figure 98. Calling the QMF cancellation service

The cancellation routine returns control to the point addressed by Register 14
(in this case, the command that follows the BALR command). Register 15
contains a return code of 0 if QMF accepted the request to cancel, and a
return code of 100 if the governor requested a cancel when QMF was inactive.

To cancel QMF commands using asynchronous processing, the IBM-supplied
governor uses a timer macro, which returns control to a timer routine. The
timer routine tests whether to cancel the current command. If the command is
to be canceled, it carries out the cancellation. The tests are based on real time
and the number of rows fetched for the current DATA object. The tests can
also be based on the user’s response to a cancellation prompt. Your VM
system should be running with the value for the CP TIMER set to REAL.

The timer routine is the CSECT named TIMEX in the source code for the

IBM-supplied governor. The source code is the member DSQUNGV2 on the
production disk.

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 259

Controlling QMF Resources Using a Governor Exit Routine

260

Making an asynchronous cancellation call is very much like pressing PA1.
Cancellation might not be immediate, and it might be impossible. Before the
cancellation takes place, control can return to the governor.

Providing Messages for Canceled Activities

You can use the QMF message service to display a message to users after
their commands are canceled, by using the following fields of the DXEXCBA
control block:

XCBMGTXT
Contains the message text.

XCBERRET
Contains the error return code.

XCBMSGNO
Contains the message ID for an ISPF message definition.

XCBPANEL
Contains the panel ID for an ISPF message help panel definition.

Upon entry to the governor, XCBMGTXT contains blanks, and XCBERRET
contains binary zeros. The value of XCBERRET determines what message is
displayed on the screen:

* If you want to use the message 0K, command canceled, leave the zero value
in XCBERRET.

* |If you want to use the message A governor exit cancel occurred with
return code xxxxx, use a nonzero value for XCBERRET; this nonzero value
appears in the message in place of xxxxx.

If QMF initialization is canceled by the governor exit, the messages discussed
for XCBMGTXT and XCBERRET appear in the user’s trace data rather than on
the screen.

Set XCBLOGM to 1 to log a message in the user’s trace data for any function
call in your own governor exit routine. If the value of XCBERRET is nonzero,
the IBM-supplied governor logs cancellation messages in the user’s trace data
by setting the XCBLOGM field of the DXEXCBA control block to a value of 1.

The trace facility writes messages to the DSQDEBUG file at a level of detail
determined by the value of the XCBTRACE field of the DXEXCBA control
block. Use a value of zero for XCBTRACE if you don’t want messages to be
logged (although initialization errors are logged unless you don’t allocate a
trace data set). Use a value of 1 or 2 in the U-setting of the trace option to get
trace output. For additional details on using the QMF trace facility, see

the-QM-F—Iﬂace—EaCM—pagw ” .

Installing and Managing QMF on VM

Controlling QMF Resources Using a Governor Exit Routine

An ISPF message definition can contain long message text and can designate a
panel ID. To use the long text for a message and the designated panel for
Help, fill XCBMSGNO with the message ID of the message definition and
leave XCBMGTXT and XCBPANEL blank. If no HELP panel was designated

in the message definition, the user receives no message help.

To override the long-message specification in a message definition, place the
new message text in XCBMGTXT. To override the panel specification, place
the new panel ID in XCBPANEL. Placing a panel ID in XCBPANEL also
provides message HELP when the message definition doesn’t specify a panel.

Leave XCBMSGNO blank if there is no relevant ISPF message definition. Then
place the message text in XCBMGTXT, and the HELP panel ID, if any, in
XCBPANEL. Leaving XCBPANEL blank, in this case, leaves the user without
message help.

The governor can log messages in the ISPF log file. It can do this through the
ISPF LOG service discussed in ISPF for VM Dialog Management Services and
Examples.

Messages do not appear on screen if the command is run in batch or
noninteractively from a QMF application.

The IBM-supplied governor does not log messages for termination function
calls.

Assembling and Generating Your Governor Exit Routine

Whether you’re modifying the IBM-supplied governor exit routine or writing
a routine of your own, you need to create a CMS module.

If you’re migrating from an earlier QMF release: Starting QMF from ISPF
with PGM or DCSS form
no longer has an effect on
how to create the governor
module.

Assembling Your Governor Exit
The IBM-supplied governor is written for the H or HLASM assembler. To use
the IBM-supplied governor, IBM supplies governor control blocks (DXEGOVA
and DXEXCBA) in DSQUSERE MACLIB, which is located on the QMF
production disk.

If you assemble the IBM-supplied governor, you need to issue a global maclib

command for the following libraries:
1. DSQUSERE

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 261

Controlling QMF Resources Using a Governor Exit Routine

2. OSMACRO

3. TSOMAC

For example,

governor:

Address
Address
Address
Address

CMS
CMS
CMS
CMS

use the following statements to assemble the QMF-supplied

"PRODUCT HLASM"

"PRODUCT QMF"

"GLOBAL MACLIB DSQUSERE DMSSP CMSLIB OSMACRO TSOMAC "
"HLASM DSQUEGV2"

Building a Module File or Creating a Load Library Member

After you assemble your governor, a TEXT file is created. You then need to
build a relocatable module file named DSQUEGV?2 or create a member of a
CMS LOADLIB.

Important: If you are using your own governor, the DSQUEGV?2 file can run
in 31-bit addressing mode. If you are using the IBM-supplied
governor, DSQUEGV2 must run in 24-bit mode.

For example, use the following REXX statements to build a module file for the
IBM-supplied governor:

Address CMS "LOAD DSQUEGV2 (RLDSAVE AMODE 24 RMODE 24"
Address CMS "GENMOD DSQUEGV2"

If you choose to create a member of a CMS LOADLIB:
1. Create a SYSLIN file that contains the following statements:

INCLUDE DSQUEGV2
ENTRY

2. Allocate the SYSLIN and INCLUDE files using the following CMS
commands:

FILEDEF SYSLIN DISK SYSLIN CONTROL A
FILEDEF DSQUEGV2 DISK DSQUEGVZ2 TEXT A

3. Create the module as a member of a new or existing CMS load library
using the following CMS command:

LKED DSQUEGV2 (NCAL LET REUS NAME DSQUEGV2 LIBE USERLIB)

DSQUEGVZ2

262 Installing and Managing QMF on VM

Chapter 14. Customizing a Remote Database Connection

You can customize a remote database connection to allow your users to query
relational data on remote systems and build reports or charts to present the
data on their local system. You can establish connections to any of the DB2 for
0S/390 or DB2 for VM databases within a distributed network. (QMF users
cannot connect to OS/400® locations.) You can establish this connection
during QMF initialization or from within a QMF session. You can establish
connections between like (for example, DB2 to DB2) and unlike (for example,
DB2 for OS/390 to DB2 for VM) locations.

QMF enables you to access remote data through the distributed database
solutions as implemented by both DB2 for OS/390 and DB2 for VM. Those
solutions are based on Distributed Relational Database Architecture (DRDA)™.
DRDA is an open set of protocols and formats enabling transparent access to
local and remote data belonging to like or unlike relational database
management systems (RDBMSs).

When your users are connected to a remote location, all the SQL statements
within their applications are directed to that database for processing. They can
access the data and QMF objects at that location’s database in much the same
way they access data and objects without a remote unit of work connection.
QMF continues to use programs that reside at the same system in which QMF
is executing. This type of distributed connection is called remote unit of work.

(For a schematic diagram, see Eigure 99 on page 264))

Quick Start

[fable 3d outlines how you can customize a remote database connection for
your users.

For more information on any of the tasks listed, see the page shown at the
right of the table.

Table 39. Customizing a remote database connection
To do this task: See:

Determine the type of database connections your users need depending on which database Page bed
they need to access.

Verify the connections required for remote unit of work. Page bed

Prepare the remote location for access by your users. Page bed

© Copyright IBM Corp. 1983, 2000 263

Customizing a Remote Database Connection

Table 39. Customizing a remote database connection (continued)
To do this task: See:

Enable your users to access a remote database by preparing the user profiles and the Page bzi
database location involved.

Enable access to your location for other DBAs to set up remote unit of work from their Page b7d
location to yours.

Determining the Remote Database Connection Needed

In DB2 for VM, you can use remote unit of work connections to another DB2
for VM database or to a remote DB2 database application server.

Remote unit of work and distributed unit of work can be used together. (For a
schematic diagram, see Eigure od)

Remote unit of work

DB2 for VM DB2 for VM
Application Application
Requestor Server

Remote unit of work and distributed unit of work

DB2 for VM DB2 DB2
Application Application Secondary
Requestor Server Server

DB2
Secondary
Server

DB2
Secondary
Server

Figure 99. Distributed connection types using remote unit of work and distributed unit of work from
QMF/VM

Notes:

1. The application requester is the database management system (DBMS)
code that handles the QMF end of the distributed connection.

264 Installing and Managing QMF on VM

Customizing a Remote Database Connection

2. The application server is the DBMS code that supports requests from
application requesters and in QMF is called the current location.

3. The secondary server supports requests from the application server and
does not use Distributed Relational Database (DRDA) database support
protocols.

See DRDA Connectivity Guide for more information.

Connecting with Remote Unit of Work

Using remote unit of work, you can connect to and access relational data at a
remote DB2 location or a remote DB2 for VM location. The remote location is
called the server. When connected to the server, you can access the data and
QMF objects at that location as you would access the data and objects without
a remote unit of work connection.

Connecting with DB2-to-DB2 Distributed Unit of Work

From a DB2 for VM database, you can connect to a DB2 database. From there,
you can connect to another DB2 database and set up a DB2-to-DB2 connection
using distributed unit of work. With distributed unit of work, the application
program need not connect to a different database when it accesses data from
another location. Instead, the application specifies the other location within a
three-part name in a query or QMF command.

Specifying a Table or View with a Three-part Name in DB2
If you are connected to a DB2 subsystem that has distributed data support,

you can specify a table or view with a three-part name. QMF remains
connected to a single DB2 location, and this location sends all SQL statements
that use three-part names (or aliases for them) to the DB2 location referred to
in the three-part name. That location then processes the SQL statement.

Restrictions: The following restrictions apply when referring to a table or
view using a three-part name:

* From a remote DB2 server, you cannot reference a local object using a
three-part name.

* When DB2 for VM is the current location:
— The location in the three-part name must match the current location name
(the name of the application server to which the QMF session is
currently connected).

- QMF commands, prompted query, and QBE do not support three-part
names.

Directing a Query Using Three-part Names
Establishing a connection to a specified location constitutes most of

remote-unit-of-work support. If that connection is made, QMF functions
largely as it did before remote-unit-of-work support. Consequently, three-part

Chapter 14. Customizing a Remote Database Connection 265

Customizing a Remote Database Connection

name support is still provided. If the current location is a DB2 location that
supports three-part names, SQL statements using three-part names can direct
a query to yet another DB2 location.

Verifying the Connections Necessary for Remote Unit of Work

266

To ensure that the users can access a remote system, connections between the
local and remote systems must be in place.

Checking DB2 for VM Connections

To connect from DB2 for VM to a remote system, you need to ensure that the
remote systems have been defined (their LU names are registered).

When an DB2 for VM application requests data from a remote system, DB2
for VM searches the VM Communications Directory to find information about
the remote system. You need to check that the following items are available to
DB2 for VM:

» Gateway name—Ilocal logical unit (LU) name

* Remote LU name

* Remote transaction program name (TPN)

* Conversation security level required by the application server

» User ID identifying application requester at the application server

» Password authorizing application requester at the application server

* Mode name describing session characteristics to use to communicate with
the application server

* RDB_NAME

For the DB2 application server to process distributed database requests, check
for the following information:

* The application server is defined to the local communication subsystem.
* The necessary security is in place.

For more information about the DB2 for VM connections necessary for remote
unit of work, see DRDA Connectivity Guide

Checking DB2 for VM Connections

To connect from DB2 to a remote system, you need to ensure that the remote
systems have been defined.

When a DB2 application requests data from a remote system, DB2 searches
the communications database tables to find information about the remote
system. You need to check that the following items are available to DB2:

* Logical unit (LU) name and transaction program name (TPN)

Installing and Managing QMF on VM

Customizing a Remote Database Connection

VTAM® must contain the LU name for each server
* Network security information required by the remote site
* Session limits and mode names used to communicate with the remote site

For the DB2 application server to process distributed database requests, check
for the following information:

* The application server is defined to the local communication subsystem
» Each potential secondary server destination is defined
* The necessary security is in place

For more information about the DB2 connections necessary for remote unit of
work, see DRDA Connectivity Guide

Preparing a Non-DB2 for VM Location for Access by QMF VM Users

For users to access the remote location, you must:

* Create command synonym tables

* Prepare QMF to support the DPRE command

* Prepare QMF to support other commands

» Create function key tables, if necessary

* Update QMF governor control tables, if necessary

+ Install the National Language feature in the QMF server, if necessary

Tip on naming conventions: Develop consistent naming conventions for the
objects stored in a location. Your users then
know where any particular object is located. If
you establish and use a haming convention as
described, you and your users can easily:

+ List all objects of the same application at a given location

+ List all objects of the same application in all locations

Creating Command Synonym Tables

You need to create command synonym tables in the remote locations to
provide your users with commands that work remotely. The commands
operate in the environment at which the users are logged on; therefore, users
logged on in VM and connected to a remote DB2 database cannot use QMF
commands that are defined as CMS commands.

You can create a Q.COMMAND_SYN_CMS table in the non-OS/390 location,
to be used when your CMS users are connected to that location.

You create these tables as you do any other command synonym table. Be sure
to include the name of the synonym table in the Q.PROFILES table. For more
information about using the Q.PROFILES table, see L i

Chapter 14. Customizing a Remote Database Connection 267

Customizing a Remote Database Connection

Sample Remote Server Command Synonym Table for the CMS
Environment

If you have QMF installed in a workstation database server, this synonym
table is provided for you. If QMF is installed in a DB2 for VM server, the
synonym table is not provided.

The statements shown in Eigure 100 are examples of how to define a
command synonym table in a non-OS/390 remote data base server for the
CMS environment.

CREATE TABLE Q.COMMAND_SYN_CMS

("VERB" CHAR(18) NOT NULL,
"OBJECT" VARCHAR(31),
"SYNONYM_DEFINITION" VARCHAR(254) NOT NULL,
"REMARKS" VARCHAR (254))

IN DSQDBCTL.DSQTSSYN;

COMMENT ON TABLE Q.COMMAND_SYN_CMS IS
'QMF CMS COMMAND SYNONYM TABLE';

COMMENT ON COLUMN Q.COMMAND_SYN_CMS.VERB IS
'"NAME OF THE VERB';

COMMENT ON COLUMN Q.COMMAND_SYN_CMS.OBJECT IS
'"NAME OF THE OBJECT';

COMMENT ON COLUMN Q.COMMAND_SYN_CMS.SYNONYM_DEFINITION IS
'"DEFINITION OF SYNONYM';

COMMENT ON COLUMN Q.COMMAND_SYN_CMS.REMARKS IS
"OPTIONAL COMMENTS ABOUT SYNONYM';

CREATE UNIQUE INDEX Q.COMMAND_SYN_CMSX ON Q.COMMAND_SYN_CMS
("VERB" ASC , "OBJECT" ASC)
USING VCAT QMFCAT
SUBPAGES 8
CLOSE NO;

GRANT SELECT ON Q.COMMAND_SYN_CMS TO PUBLIC;

INSERT INTO Q.COMMAND_SYN_CMS
VALUES ('DPRE',NULL, 'RUN Q.DSQAER2P',
'QMF DISPLAY PRINTED REPORT APPLICATION');
INSERT INTO Q.COMMAND_SYN_CMS
VALUES (' ISPF',NULL, 'CMS DSQAEZ2P',
'QMF ISPF BRIDGE APPLICATION');
INSERT INTO Q.COMMAND_SYN_CMS
VALUES ('BATCH' ,NULL, 'CMS DSQABB21 DXYEABVP',
'QMF BATCH APPLICATION');
INSERT INTO Q.COMMAND_SYN_CMS
VALUES (" IRM',NULL,CMS DSQAEILP P('8ALL'')",
'QMF IRM BRIDGE APPLICATION');
INSERT INTO Q.COMMAND_SYN_CMS
VALUES (' LAYOUT' ,NULL, 'CMS DSQAELOA',
'QMF LAYOUT APPLICATION');

Figure 100. Sample command synonym table

268 Installing and Managing QMF on VM

Customizing a Remote Database Connection

Preparing QMF to Support the DPRE Command

To allow remote users to issue the DPRE command at a remote location, you
must copy the OS/390 procedure to the VM system or the VM procedure to
the OS/390 system. The DPRE command procedure for CMS VM s
Q.DSQAER2P and for TSO 0S/390 is DSQAER1P.

To copy the procedures:

1. Connect to one location.

2. Display the procedure.

3. Connect to the other location.
4. Save the procedure.

Preparing QMF to Support Other Commands
You must have a command synonym table at your current location to define
QMF Command Synonyms for the commands that use objects there. The
following types of commands use objects at your current location:
+ Commands that refer to QMF objects (CONVERT QUERY)
+ Commands that read information from tables (DRAW)
+ Commands that modify tables (EDIT TABLE)

+ Commands that list tables you are authorized to use at that location (LIST
TABLES)

« Commands that display a list (LIST TABLES)

Some commands use programs or files from the location in which QMF is
executing, requiring a command synonym table at a remote location. The type
of commands that run at the remote location are:

* System-specific

* IMPORT/EXPORT commands

Because of this, your users need a command synonym table for each location,
and you must add all the commands (and the objects referenced by them)
from the Q.COMMAND_SYNONYMS table to the database where the
commands run.

Creating Function Key Tables

If you have customized function keys for your local users, you must copy the
function key tables to the remote location.

To provide the tables:

1. Display the table.

2. Connect to the other database.

3. Type the SAVE DATA command.
4. Create any indexes.

Chapter 14. Customizing a Remote Database Connection 269

Customizing a Remote Database Connection

270

5. Grant SELECT authority.

Updating QMF Governor Control Tables

If necessary, update QMF governor control tables at the remote location. The
governor limitations at the remote location are the limits used during remote
work, because those are the resources being accessed.

Installing the National Language Feature in the QMF Server

If you’re using an NLF, you also add the National Language feature to the
QMF remote location, because it must be at both the requester and the server.
For the users to access the National Language feature, you must:

1. Prepare Q.PROFILES for NLF.

2. Create a command synonym table for NLF.

Code Page Support

Both DB2 and DB2 for VM can handle character translation between
application requesters and servers that are on different systems and use
different code pages.

To process character strings coming from an unlike database, you must set up
the CCSID conversion rules properly for both the application requester and
the application server. Define the proper CCSID translation pair at the server
for the application server to recognize the character string sent from the
application requester.

The decision to translate depends on whether an entire string (for example,
data from a CHAR or VARCHAR column) must be translated.

For CHAR or VARCHAR columns:

¢ |If the column is defined FOR BIT DATA, then its contents are not
translated.

¢ |If the column is defined FOR SBCS DATA or FOR MIXED DATA, then its
contents are translated.

For more information on FOR BIT DATA, FOR SBCS DATA, and FOR MIXED
DATA parameters, see DB2 REXX SQL for VM/ESA Reference

Restricting Use of the APPLDATA Column
QMF uses the VARCHAR column APPLDATA (of Q.OBJECT_DATA) to hold

the definitions of its procedures, queries, and forms. The definitions of QMF
objects contain some data that must not be translated. Therefore, the
APPLDATA column is not classified as containing translatable character data,
and is defined as FOR BIT DATA.

Avoiding Use of Some Special Characters
Between systems on which QMF can execute and access data, the number of

characters that require translation depends on the code pages used at the

Installing and Managing QMF on VM

Customizing a Remote Database Connection

application requester and server locations. The list of characters that require
translation includes the not sign (-), and the vertical bar (]), as well as any
other characters that require translation between the code pages of your
requester and server locations.

Because the characters in QMF objects do not get translated, if code pages in
the application requester and server are different, avoid using ~ and |.

Enabling Your Users to Access a Remote Database

QMF V7R1 supports remote unit of work access between different databases.
You can go between different DB2 for VM databases, between different DB2
databases, or between DB2 for VM and DB2 for OS/390 databases.

Updating a User’s Profile

You need to update users’ Q.PROFILES tables if they need access to a remote
workstation. Update the Q.PROFILES table as explained in

Some profile values are attributes of your QMF session (query type and the
LANGUAGE parameter, for example), others (SPACE parameter, for example)
are related to the current location.

You can set up different rows in a single profile table for a specific user (for
access from CMS, TSO, or CICS). You can do this with the ENVIRONMENT
column to give values that apply to the QMF operating environment, with
values that must be unique for the location on which the profile is stored.

Specifying Access for Current SQL Authorization 1D
Your users’ CURRENT SQLID is not in effect after a connection to a different
location. So, if they need to use the same CURRENT SQLID with multiple
DB2 application servers from a single QMF session, they might have to reset
the CURRENT SQLID after they connect to each server. For more information,
see QMF Reference.

Connecting to the Local Database
In CMS, QMF connects to DB2 for VM when you run the SQLINIT EXEC to
specify which database to access when QMF issues SQL statements. The EXEC
runs before you invoke QMF, and loads two required modules to the user’s A
disk. As long as those modules remain, and as long as the user wants to use
the same database, the EXEC need not be rerun.

Connecting to the Remote Database

You can provide your users with different methods of connecting to a remote
location from a QMF session. You can set up one or more of the following
methods:

* Using the program parameter DSQSDBNM

Chapter 14. Customizing a Remote Database Connection 271

Customizing a Remote Database Connection

272

Use this parameter to connect to a remote location when you initialize a
QMF session. For more information on the DSQSDBNM parameter,

L‘Specifying the | ocation to Connect to When Starting QMFE (DSQSDBNM)’]

bn page 8.

* Using the QMF CONNECT command

Use this command to connect to a remote location during the QMF session.

This command lets you connect to a different location within your
distributed network during a QMF session.

You can issue the command from:

— The callable or command interface

— The command line

— Within a procedure (linear or with logic)

For more information on the command, the command parameters, and a
list of considerations for using the command, see QMF Reference. For more
information on procedures and the callable or command interface, see
Developing QMF Applications.

* You can also create a procedure to establish the connection and add a
command to the Q.SYNONYMS table to run the procedure. Your users can
then enter the command to connect to a remote database.

Specifying a Location Name

QMF uses SQL to access a relational database. In remote unit of work, the
application requester takes a CONNECT request and establishes a connection
with the remote database management system. In distributed unit of work,
the application requester “receives” the SQL request and routes it to the
appropriate distributed unit of work server.

QMF uses the term location name to denote the DBMS to which it is connected.
You can use the location name to connect to a database system or to qualify a

table name. For example, an SQL table named SAN_JOSE.JONES.TABLE5 is
managed by the database management system (DBMS), whose location name
is SAN_JOSE.

In DB2

The location name refers to an entire subsystem. Servers that are accessible to a

DB2 subsystem are defined in the communication database.

If you’re using three-part names: When you are using both remote unit of
work and distributed unit of work, the
locations you can access with three-part
names are accessible to the current
application server, which must be a DB2
location.

Installing and Managing QMF on VM

Customizing a Remote Database Connection

In DB2 for VM
The location name refers to an entire DB2 for VM database machine and is

cataloged in the CMS communications directory.

Where Data Must be Located for User Access

Commands and queries that access data, such as DISPLAY TABLE tablename,
are directed to the current location, unless the current location is DB2 and
tablename is a three-part name (or an alias for that name) that refers to a DB2
subsystem other than the current location.

Working with QMF Objects
QMF objects (queries, procedures, and forms) that are retrieved from or stored

into the database must reside at the current location; that is, the location you
are connected to. This is identical to QMF without remote-unit-of-work
support: objects reside at the same location as tables that are accessed without
three-part names.

To ensure that, when you save data, procedures, queries, and forms at the
current location, you have sufficient database resource, do the following at
that location: Routinely monitor your default tablespace (if you connect to a
DB2 location) or default dbspace (if you connect to an DB2 for VM location),
and the QMF object tables (Q.OBJECT_DIRECTORY, Q.OBJECT_DATA, and
Q.OBJECT_REMARKS).

Some QMF objects stored in the database can refer to programs that QMF
must invoke. These programs include:

* User edit routines
* REXX programs in support of procedures with logic and report calculations

* Local date and time routines invoked in support of local date and time edit
codes

* QMF procedures that contain CMS, CICS, or TSO commands

These procedures must be written to ensure that no attempt is made to
execute CMS commands in an TSO environment or TSO commands in a
CMS environment.

* An EXEC or CLIST that causes a program to execute QMF commands
through the callable or command interface

These programs must reside at the same system in which QMF is executing
(the system that you log on to), because these programs can contain operating
system commands that cannot be run successfully or with the expected results
by that system. Consequently, that system can be different from the system in
which the database (and hence the QMF objects) resides. For an example of
this, see Using QMF and Developing QMF Applications.

Chapter 14. Customizing a Remote Database Connection 273

Customizing a Remote Database Connection

274

You might want to use QMF objects when the application requester and
application server are on systems with different code pages. For important

restrictions, see I‘Cade Page Support” on page 270,

Working With Tables
You cannot use a three-part name in data definition statements. However, if

you first connect to a location with remote unit of work, you can issue data
definition statements such as CREATE and GRANT at that location. You can
grant privileges on a table that resides at the current server to users at other
locations by using the GRANT clause PUBLIC AT ALL LOCATIONS.

Preventing SQL Errors

SQL errors generally involve the difference between the SQL supported by the
like DBMS for your operating environment and the SQL you need to use
when connected to an unlike DBMS. To avoid such errors, remember to use
the SQL supported by the application server.

For example, if QMF is executing in OS/390 and your current location is DB2
for VM, the syntax you use in an SQL query must be the syntax supported by
DB2 for VM. For example, using the 'IN' clause for the CREATE TABLE
command, the following (DB2 for VM) syntax is acceptable:

CREATE TABLE ... IN DSP3

The corresponding syntax in DB2 for VM is unacceptable:
CREATE TABLE ... IN DATABASE DSQ3

The SQL statement completion information (the SQLCODE) contains the
information returned by the current location. If you are using QMF on
0S/390, because you might be accustomed to the SQL syntax and information
returned by DB2.

If you want QMF query portability, use SQL syntax supported by SAA. This
allows the greatest degree of portability between DRDA application
implementations.

The following database management issues can affect QMF:

* Some application requester environments can limit the SQL statements
available to the application. For example, a DB2 application requester
running under CICS is not allowed to update resources at a remote
application server.

* An application program must be sensitive to where tables, views, and QMF
objects reside within the network, because remote unit of work is limited to
a single database management system within a single unit of work.

Restriction: You cannot issue a join for two tables stored at different
locations.

Installing and Managing QMF on VM

Customizing a Remote Database Connection

* The user edit routines and governor exit modules residing at the location
where QMF is operating are used for your QMF sessions.

« After connecting to a location, the profile, resource control table, synonyms,
and function keys are initialized to the values at that location.

Translating User IDs

Because the user ID of a database user might be translated to another user ID
when the user connects to another location, the database administrator might
need to define a translated user ID.

Translating Names
When you connect to a location (DB2 for OS/390 or VM), your primary user

ID might be translated. To understand how translation is set up, refer to your
DBMS manuals or contact your database administrator.

Why Name Translation Might be Necessary: Your one-to-eight character
user ID must be unique within a particular operating system, but might not
be unique throughout the Systems Network Architecture (SNA) network.

To eliminate naming conflicts, distributed database systems support the
following name translation schemes:

Outbound name translation
Allows the application requester to translate the end user’s name
before sending it to the destination in the SNA network.

Inbound name translation
Allows the application server to translate the end user’s name it
receives from its SNA partner.

Deleting QMF Users from Each Remote QMF Location

After deleting a user’s objects from the local QMF, you need to delete the
user’s objects from each remote location accessed by that user. If you are the
QMF administrator for the other remote locations, you can delete the remote
objects in the same way you deleted the local objects. If you are not the QMF
administrator for the remote locations, you need to request the other
administrator to delete the objects for the user ID.

Enabling Administrator Access to Your Location

If there are different QMF administrators for each QMF location, you must
enable some access to your location for other administrators, so they can set
up remote unit of work from their location.

You must:
* Grant them select authority on QMF requester control tables

Chapter 14. Customizing a Remote Database Connection 275

Customizing a Remote Database Connection

* Install the governor routine into the QMF requester to prevent remote users
from using all your resources

276 Installing and Managing QMF on VM

Chapter 15. Customizing the Batch Processing Program

As a QMF administrator, you might need to advise and assist batch mode
users. You might also want to run your own procedures in batch mode. This
chapter describes how you can use the QMF batch mode.

To enable your users to use batch mode, you need to give them the proper
authority. Your users can then use batch mode to run procedures
independently of a session and issue commands interactively while the
procedure is running. The batch procedure might not run immediately. It
might wait to run after the user’s QMF session ends.

You and your users can create batch procedures to be run and saved in