
Query Management Facility™

Installing and Managing QMF on
VM/ESA
Version 7

GC27-0720-00

���

Query Management Facility™

Installing and Managing QMF on
VM/ESA
Version 7

GC27-0720-00

���

Note!
Before using this information and the product it supports, be sure to read the general information under
“Appendix E. Notices” on page 327.

Second Edition (September 2000)

This edition applies to Query Management Facility, a feature of Version 7 Release 1 of DATABASE 2 Server for VM
and VSE< (DB2for VM and VSE), 5697-F42, (VM environment only), and to any subsequent releases and
modifications until otherwise indicated in new editions.

This edition replaces GC26–9573–00.

© Copyright International Business Machines Corporation 1983, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

The QMF Library ix

About This Book xi
How to Use This book. xi
What You Should Know Before You Begin . . xii
Locating Prerequisite Documentation . . . xii

Part 1. Installing QMF for VM/ESA 1

Chapter 1. Introduction 3
Overview of QMF 3

QMF Objects 3
Overview of QMF with Remote Unit of
Work 4

Some Terminology 5
Overview of the Installation Process 5

Where the Objects Reside 5
Local and Remote Installation 5
Connecting to a Remote Database from VM 5
Connecting to Workstation Database Servers
from VM 6

Chapter 2. Planning for Installation 7
Hardware Requirements 7
Prerequisite Software 7
Products Required to Support Remote Unit of
Work 11
Virtual Storage Requirements 12
Discontiguous Shared Segments (DCSS)
Storage Requirements 12
Disk Storage Requirements 12
Required DB2 for VM Knowledge. 12
DB2 for VM Requirements for QMF 13

A PUBLIC DBSPACE is Required for
Saving Data 13
Database CONNECT ID “Q” and
“SQLDBA” 14
QMF SQL Install Packages 14
Further Requirements 14

Before You Begin 18
Previous Releases of QMF 18
Migration and Fallback 18
QMF National Language Feature (NLF)
Considerations 19

Planning for Installing QMF into a
Workstation Database Server 20

Chapter 3. Installing QMF 7.1 into the DB2
for VM Database 21
QMF Installation Flow Diagram 21
The Installation Steps 24

Preliminary: Read the Program Directory
and Complete the QMF 7.1 Worksheet . . 24
Step 1—Create QMF Installation Control
File: DSQ2ECTL. 25
Step 2—Create DB2 for VM DBSPACEs:
DSQ2DBSC 26
Step 3—Run QMF Installation EXEC:
DSQ2EINS 28
Step 4—Start QMF: DSQ2EINV 29
Step 5—Run the IVP for QMF Interactive
Mode : DSQ2EIVP 36
Step 6—Installing the QMF Sample Objects
and Application Objects: DSQ2ESQD and
DSQ2ESQI 37
Step 7—Running the Batch-Mode IVP
(Optional): DSQ2EBAT 38
Step 8—Deleting Previous Versions of
QMF (Optional): DSQ2BDEL 40
Step 9—Post-Installation Cleanup 40
Step 10—Load QMF Database Packages to
a Remote Server (Optional): DSQ2BPKB. . 41

Chapter 4. Installing a QMF 7.1 National
Language Feature (NLF) 43
NLF Installation EXECs 43
Installing a National Language Feature . . . 43
Hardware and Program Product
Requirements 44
The Installation Steps 44

Preliminary: Read the NLF Program
Directory and Complete the Worksheet . . 44
Step 1—Create the QMF NLF Installation
Control File: DSQ2nCTL 45
Step 2—Run QMF NLF Installation EXEC:
DSQ2nINS 46
Step 3—Start QMF NLF: DSQ2nINV . . . 47
Step 4—Run the IVP for QMF NLF
Interactive Mode: DSQ2nIVP 48

© Copyright IBM Corp. 1983, 2000 iii

|
||

Step 5—Install QMF NLF Sample Objects
and Application Objects: DSQ2nSQD and
DSQ2nSQI 49
Step 6—Run the IVP for QMF NLF Batch
Mode (Optional): DSQ2nBAT 50
Step 7—Post-Installation Cleanup 50

Part 2. Managing QMF for VM/ESA 51

Chapter 5. Starting QMF 57
Before you Start QMF 57

Establishing a Database Connection . . . 57
Initializing the QMF Session 58

Quick Start 58
Setting up QMF to Run under ISPF 59

Before you start QMF 59
Starting QMF from a Menu Option . . . 59
Starting QMF with the ISPSTART
Command 61
Starting QMF in Batch Mode in ISPF. . . 62
Examples of Starting QMF under ISPF . . 63

Setting up QMF to Run under CMS 64
Starting QMF Directly with the DSQQMFE
Module 64
Starting QMF in a Batch CMS
Environment 64
Examples of Starting QMF under CMS . . 65

Creating a CMS EXEC 65
Verify Program Modules 65
Verify QMF Data Files 65
GDDM Considerations 66
DB2 for VM Considerations 66

Chapter 6. Customizing Your Start
Procedure 67
Quick Start 67
Setting Default Start Values Using the REXX
Program DSQSCMDn 68
Naming the Program Segment 72

dcssname 72
DSQSDCSS 73

Customizing Report Storage and Report
Performance 73

Adjusting Storage for Report Data
(DSQSBSTG) 73
Adjusting Reserved Storage Used for
Report Data (DSQSRSTG) 74
Acquiring Extra Storage (DSQSPILL). . . 75

Controlling the Number of Report Rows
Retrieved for Display (DSQSIROW) . . . 79

Setting the Level of Trace Detail
(DSQSDBUG) 81
Controlling Initial Activities During a Session 82

Specifying the Location to Connect to
When Starting QMF (DSQSDBNM) . . . 82
Specifying an Interactive or Noninteractive
QMF Session (DSQSMODE). 83
Naming a Procedure to Run When QMF
Starts (DSQSRUN) 84

Setting Printing for Double-Byte Character Set
Data (DSQSDBCS) 90

Chapter 7. The QMF Session Control
Facility 91
Installing or Removing Q.SYSTEM_INI . . . 91
Importing the Default System Initialization
Procedure 91
When Does the Q.SYSTEM_INI Procedure
Run? 91
Using Q.SYSTEM_INI 92

Example Shipped with QMF 92
User Session Procedure Example 92
Procedure that Displays an Object list . . 93

Security and Sharing Session Procedure . . . 94
Diagnosis Considerations 94

Chapter 8. Establishing QMF Support for
End Users 95
The role of the Q AUTHID 95
Quick Start 95
Ensuring That Users Have Access to CMS . . 96
Creating User Profiles to Enable User Access
to QMF 97

Using the Q User Profile, a Special QMF
Profile 97
Establishing a Profile Structure for Your
Installation 98
Adding a New User Profile to the
Q.PROFILES Table 98
Preventing Users Without Unique Profiles
from Using QMF 99
Reading the Q.PROFILES Table 100
Providing the Correct Profile for the
User’s Operating Environment 104
Updating User Profiles 105
Deleting Profiles from the Q.PROFILES
Table 106

iv Installing and Managing QMF on VM

Controlling Access to QMF and Database
Objects 107

SQL Privileges Required to Access Objects 107
Granting and Revoking SQL Privileges 109
Sharing QMF Objects with Other Users 111
Allowing Uncommitted Read 111
Setting Standards for Creating Objects . . 112

Customizing a User’s Database Object List 112
Using the Default Object Lists. 113
Changing the Default List 114
Object List Storage Requirement 115

Enabling Users to Create Tables in the
Database 116

Choosing and Acquiring a dbspace for the
User 118
Granting a User DB2 for VM RESOURCE
Authority 118
Enabling Users to Confirm Table Changes
Before They are Made 119

Enabling Users to Support a Chart 120
Maintaining QMF Objects Using QMF
Control Tables 120

Reading the Q.OBJECT_DIRECTORY
Table 121
Reading the Q.OBJECT_DATA Table . . 122
Reading the Q.OBJECT_REMARKS Table 123
Listing QMF Queries, Forms, and
Procedures 123
Displaying QMF Queries, Forms, and
Procedures 124
Transferring Ownership of Queries,
Forms, and Procedures 124
Deleting Obsolete Queries, Forms, and
Procedures 125
Enlarging the dbspace for the QMF Object
Control Tables 126

Maintaining Tables and Views Using DB2 for
VM System Tables 127

Listing Tables and Views 128
Transferring Ownership of a Table or
View 128
Deleting a Table or View from the
Database 128

Supporting Locally Defined Date/Time
Formats 128
Accessing the DXT End User Dialogs (ISPF
Only) 129

Supporting the EXTRACT Command . . 129
Allocating Resources 129

Allocating and Reallocating Resources
Using EXECs 130
Preparing the Allocation EXEC 130
Preparing the Reallocation EXEC. . . . 135
Other Allocation Methods 138

Customizing the Document Editing Interface
for Users. 139

Changing the Application 139
Renaming the Document Interface Macros
and EXEC 139
Placing the Q.DSQAED2S Procedure in
the Database 139
Transferring Ownership to Q 140
Changing the Data Components 140
Changing the EXECs and Macros . . . 142

Customizing the QMF Edit Command . . . 143
Enabling English Support in an NLF
Environment 144
Using Global Variables to Define the
Currency Symbol 145

Chapter 9. Enabling Users to Print
Objects 147
Quick start 147
Printing Objects 148
Deciding Whether to Use QMF or GDDM
Services for Printing 149
Using GDDM Services to Handle Printing 149

Choosing a GDDM Nickname for Your
Printer 150
Creating the Nickname Specification . . 151
Testing the Nickname Definitions in
External Default Files 154
How QMF Interfaces with Your GDDM
Nickname 154

Using QMF’s DSQPRINT to Handle Printing 155
Defining a Synonym for the Print Function
Key 156
Updating User Profiles to Enable GDDM
Printing 156

Chapter 10. Customizing QMF Commands 159
Quick Start 159
Using the Default Synonyms Provided with
QMF 159

Displaying Printed Reports (DPRE) . . . 160
Creating a Command Synonym Table . . . 162
Entering Command Synonym Definitions
into a Command Synonym Table. 163

Choosing a Verb 163

Contents v

Choosing an Object Name 165
Choosing the Synonym Definition . . . 165

Activating the Synonyms 168
Minimizing Maintenance of Command
Synonym Tables 170

Assigning One Synonym Table to all
Users 170
Assigning Views of a Synonym Table to
Individual Users 170

Chapter 11. Customizing QMF Function
Keys 173
Quick Start 173
Choosing the Keys You Want to Customize 173

Default Keys on Full-screen Panels . . . 174
Default Keys on Window Panels 175

Creating the Function Key Table 176
Entering Your Function Key Definitions into
the Table 177

Linking a Command with a Function Key 177
Labeling the Function Key and
Positioning it on the Screen 179
Examples of Key Definitions 179

Identifying the Panel You Want to Customize 181
Full-screen Panel Identifiers 181
Window Panel Identifiers 181

Activating New Function Key Definitions 184

Chapter 12. Creating Your Own Edit
Codes for QMF Forms 187
Quick Start 187
Choosing an Edit Code 188
Handling DATE, TIME, and TIMESTAMP
Data Types 189
Calling Your Exit Routine to Format the
Data 191
Passing Information to and from the Exit
Routine 193

Fields of the Interface Control Block . . 193
Fields That Characterize the Input Area 195
Fields That Characterize the Output Area 196

Passing Control to the Exit Routine When
QMF Terminates 197
Writing an Edit Routine in High-Level
Assembler (HLASM) or Assembler 197

How an Assembler Edit Routine Interacts
with CMS 198
How an Assembler Edit Routine Interacts
with QMF 199
Assembling Your Program 202

Generating Your Program 203
Writing an Edit Routine in PL/I without
Language Environment (LE) 203

How a PL/I Edit Routine Interacts with
QMF 204
Compiling Your Program 209
Creating Your DSQUEDIT Module File in
PL/I 210

Writing an Edit Routine in PL/I with
Language Environment (LE) 211

Generating Your PL/I Program for LE 212
Writing an Edit Routine in COBOL without
Language Environment (LE) 213

How a COBOL Edit Routine Interacts
with QMF 214
Compiling Your Program 219
Assembling the Run Time Options Macro
(COBOL II) 220
Generating Your Program 220

Writing an Edit Routine in COBOL with
Language Environment (LE) 221

Generating Your COBOL Program for LE 222
Handling Double-Byte Character Set Data 223

Edit Codes for DBCS Data 223
What the Edit Routine Receives 223
Ensuring the Edit Routine Returns the
Right Results 224

Chapter 13. Controlling QMF Resources
Using a Governor Exit Routine 227
Quick start 227
Using the IBM-Supplied Governor Exit
Routine 228

Activating the Default Limits 229
How a Governor Exit Routine Controls
Resources 230
Defining Your Own Resource Limits . . 233
Creating your own Resource Control
Table 236

Modifying the IBM-supplied Governor Exit
Routine or Writing Your Own. 238

Program Components of the Governor
Exit Routine 239
How CMS Interacts with the Governor
Exit Routine 240
How and When QMF Calls the Governor
Exit Routine 241
Passing Resource Control Information to
the Governor Exit 244

vi Installing and Managing QMF on VM

Storing Resource Control Information for
the Duration of a QMF Session 258
Canceling User Activity 259
Providing Messages for Canceled
Activities 260

Assembling and Generating Your Governor
Exit Routine 261

Assembling Your Governor Exit 261
Building a Module File or Creating a
Load Library Member 262

Chapter 14. Customizing a Remote
Database Connection 263
Quick Start 263
Determining the Remote Database
Connection Needed 264

Connecting with Remote Unit of Work 265
Connecting with DB2-to-DB2 Distributed
Unit of Work 265

Verifying the Connections Necessary for
Remote Unit of Work 266

Checking DB2 for VM Connections . . . 266
Checking DB2 for VM Connections . . . 266

Preparing a Non-DB2 for VM Location for
Access by QMF VM Users 267

Creating Command Synonym Tables . . 267
Preparing QMF to Support the DPRE
Command 269
Preparing QMF to Support Other
Commands 269
Creating Function Key Tables 269
Updating QMF Governor Control Tables 270
Installing the National Language Feature
in the QMF Server 270
Code Page Support 270

Enabling Your Users to Access a Remote
Database 271

Updating a User’s Profile 271
Specifying Access for Current SQL
Authorization ID 271
Connecting to the Local Database . . . 271
Connecting to the Remote Database. . . 271
Specifying a Location Name 272
Where Data Must be Located for User
Access 273
Preventing SQL Errors 274
Translating User IDs 275
Deleting QMF Users from Each Remote
QMF Location 275

Enabling Administrator Access to Your
Location 275

Chapter 15. Customizing the Batch
Processing Program 277
Quick Start 277
Enabling Your Users to Use Batch Mode . . 278
Sending a Job to the CMS Batch Machine 279
Running Batch Jobs on Your Machine . . . 281
Debugging a Procedure 282
Using the QMF Batch Query/Procedure
Application (BATCH) 282

MACLIBs Required 283
Using the Application 283
Filling in the Prompt Panel 283
Modifying the Batch Application. . . . 286

Chapter 16. Troubleshooting and Problem
Diagnosis 289
Quick Start 289
Troubleshooting Common Problems. . . . 290

Handling Initialization Errors 290
Handling Warning Messages 291
Handling GDDM Errors During Printing 292
Handling QMF Errors During Printing 292
Handling CMS Command Errors . . . 294
Handling Display Errors 295
Solving Slow Performance Problems . . 296

Determining the Problem Using Diagnosis
Aids 298

Choosing the Right Diagnosis Aid for the
Symptoms 298
Diagnosing Your Problem Using QMF
Message Support 298
Using the QMF Trace Facility 300
Abend Handling 305
Using the QMF Interrupt Facility . . . 306
Using Error Log Reports from the
Q.ERROR_LOG Table 308

Reporting a Problem to IBM 309
Using ServiceLink to Search for
Previously Reported Problems 310
Working with Your IBM Support Center 312

Part 3. Appendixes 313

Appendix A. Installation Checklists . . . 315
QMF Installation Checklist 315
QMF NLF Installation Checklist 316

Contents vii

Appendix B. QMF Objects Residing in
DB2 for VM 317
Input to DSQ2EINS or DSQ2nINS 317
QMF User ID 317
QMF Control Tables 317
Default List Views 318
QMF Packages 318
NLF Parts 318

Appendix C. Migration and Fallback
Considerations 319
Migrating from a Previous QMF Release to
QMF 7.1 319

Global Variables and the Governor . . . 319
Use of the Invocation Procedure 319
Q.VPROFILE 319
Multiple Releases of QMF 320

Migrating to a new DB2 for VM level . . . 320
Migration and 31-Digit Decimal Support 321

Fallback 321
Re-establishing the Earlier Profiles . . . 322
Using Version 7 Objects Under Earlier
QMF Releases 322
Using Version 7 QMF Commands with
Earlier Releases 323
31-Digit Decimal Support 324

Appendix D. QMF Control Tables and
dbspaces Used by QMF 325

Appendix E. Notices 327
Trademarks 330

Glossary of Terms and Acronyms . . . 331

Bibliography 345
APPC Publications 345
CICS Publications 345
COBOL Publications 346
DATABASE 2 Publications 346
DCF Publications 347
DRDA Publications 347
DXT Publications 347
Graphical Data Display Manager (GDDM)
Publications. 347
HLASM Publications. 347
ISPF/PDF Publications 347
OS/390 Publications 348
PL/I Publications 348
REXX Publications 348
ServiceLink Publications 348
VM Publications 349
VSE Publications 349

Index 351

viii Installing and Managing QMF on VM

The QMF Library

You can order manuals either through an IBM representative or by calling
1-800-879-2755 in the United States or any of its territories.

© Copyright IBM Corp. 1983, 2000 ix

x Installing and Managing QMF on VM

About This Book

Installing and Managing QMF on VM/ESA helps you install and maintain the
Query Management Facility (QMF) product under the Virtual
Machine/Enterprise System Architecture (VM/ESA®) operating system.

This book is written for VM/ESA system programmers responsible for
installing and maintaning QMF with the DB2® for VM relational database. It
is also designed for network administrators responsible for installing and
maintaining network applications. References to "Workstation Database
Servers" in this book apply to:
v DB2 Common Server V2
v DB2 Parallel Edition for AIX® V1.2
v DataJoiner® V1.2.1 and V2
v DB2 Universal Database V5

How to Use This book

The administration and customization tasks in this book assume QMF was
installed according to procedures in Part 1, “Part 1. Installing QMF for
VM/ESA” on page 1.

Most of the administration and customization tasks shown in this book are
done using the QMF product itself. Therefore, before you begin the tasks in
this book, check with the system installer to see if the installation verification
procedure (IVP) has been run. If not, run the IVP yourself to ensure that QMF
is properly installed and configured for your site’s needs. The IVP is the final
step of the QMF installation process presented in Part 1, “Part 1. Installing
QMF for VM/ESA” on page 1.

Most of these tasks require that you have DB2 for VM database administrator
(DBA) authority. If the program installer followed the default procedure in
Part 1, “Part 1. Installing QMF for VM/ESA” on page 1, the user ID Q was
defined for you during QMF installation. This user ID has DBA authority.

Each chapter in Part 2, “Part 2. Managing QMF for VM/ESA” on page 51,
includes a section called “Quick start”. Use these sections to get an overview
of how to accomplish a certain task. After you read the quick start section to
understand all the steps involved in the task, see the page indicated if you
need more information on how to perform each step.

© Copyright IBM Corp. 1983, 2000 xi

What You Should Know Before You Begin

The tasks explained in this book assume you have a working knowledge of
the following products:
v VM/ESA, an operating system under which QMF runs.
v Conversational Monitor System (CMS), a environment in which QMF runs.

It manages the communication with your terminal.
v Interactive System Productivity (ISPF), a dialog manager for QMF.
v Graphical Data Display Manager (GDDM), which makes it possible for

QMF to display panels on the user’s screen and create charts.
v DATABASE2 for VM/ESA (DB2 for VM), a database manager for QMF.
v Data Extract (DXT™), a facility that can supply the DB2 load utility with

data.
v Assembler programming language, which you need if you plan to modify

the IBM-supplied governor exit routine or write one of your own. You
might also use HLASM or assembler if you plan to create your own edit
codes in assembler for QMF forms.

v PL/I, which you might use if you plan to create your own edit codes in
PL/I for QMF forms.

v VS COBOL II or COBOL/370™, which you might use if you plan to create
your own edit codes in COBOL for QMF forms.

v Restructured Extended Executor (REXX) language, and
v A general knowledge of the structure and function of QMF

Publications that discuss these products are listed in “Bibliography” on
page 345.

Additionally, you might want to become familiar with some of the end-user
functions provided by QMF. The QMF end-user functions are explained in
Using QMF. Order numbers for this and other QMF publications are listed on
page “The QMF Library” on page ix.

Locating Prerequisite Documentation

In addition to this guide, keep the following documents ready during the
installation:
v QMF Program Directory
v QMF Preventive Service Planning (PSP) bucket

The QMF Program Directory documents how to install QMF from tape to disk.
It also documents changes to the install process after this book is published.
You’ll find it packed in the shipping carton with your installation tape.

About This Book

xii Installing and Managing QMF on VM

“Appendix C. Migration and Fallback Considerations” on page 319, explains
how to migrate objects from earlier versions and releases of QMF.

For a list of QMF publications, see “The QMF Library” on page ix.
Publications from other IBM product families are found in the “Bibliography”
on page 345.

About This Book

About This Book xiii

xiv Installing and Managing QMF on VM

Part 1. Installing QMF for VM/ESA

© Copyright IBM Corp. 1983, 2000 1

2 Installing and Managing QMF on VM

Chapter 1. Introduction

The Query Management Facility (QMF) is a query and report writing program
for users who have little or no data processing knowledge, as well as those
with much experience in the field. This program allows users to query data
and to generate online reports and charts based on the resulting data.

Overview of QMF

QMF runs under the IBM® Virtual Machine (VM), and accesses data through
DB2 for VM. Provided you are not using remote unit of work with QMF 7.1,
any data retrieved, updated, or deleted from the database is handled by DB2
for VM. QMF uses the Graphical Data Display Manager (GDDM®) to display
panels, and the Interactive System Productivity Facility (ISPF) to display
application panels.

If you are a Shared File System (SFS) directory user you can assume that
whenever the term “minidisk” is used in this manual the same conditions
apply to a “SFS directory”.

QMF Objects
QMF works with the following objects:

Data Information represented by alphanumeric characters contained in
tables and formatted in reports.

Query Specifies the data you want and the action you want to perform.

Form Describes how retrieved data should be formatted into a report or
chart.

Procedure
Contains one or more QMF commands that can be run as a group.

Profile
Contains information about how to process an individual user’s
session.

These objects are brought into a temporary storage area where users can
change and display reports or charts online without actually changing the
database. When the user is satisfied with the changes, the objects can be saved
in the database, as shown in the following diagram:

© Copyright IBM Corp. 1983, 2000 3

Overview of QMF with Remote Unit of Work
With the remote unit of work function, QMF can access relational data in a
remote DB2 for OS/390®, DB2 for VM, DB2 for VSE, DB2 Workstation or DB2
AS/400® database server. Once connected to a location you can access the
data and QMF objects at that location in much the same way you would
access data and objects without a remote unit of work connection.

If you use the start-up program parameter DSQSDBNM or the QMF
CONNECT command to specify a remote location to connect to, all
subsequent QMF commands that access the database are directed to that
location.

Note: Before you can connect to a location you must have QMF installed in
the database at that location.

Figure 1. QMF Relationship to VM, DB2 for VM, and GDDM

Introduction

4 Installing and Managing QMF on VM

Some Terminology

You are installing QMF Version 7 Release 1 (for brevity referred to as QMF
7.1). We also use “VnRn” to point out earlier releases of QMF: For example, a
“QMF V2R4 form” is a QMF form that was created under QMF Version 2
Release 4. Where “QMF” appears without a qualifier (For example, “QMF will
run on ... ”) we mean QMF 7.1.

Overview of the Installation Process

QMF installation involves three object groups:
1. QMF load modules
2. QMF control tables, catalog views, and sample tables
3. QMF SQL packages

Where the Objects Reside
The load modules are saved into a discontiguous shared segment (DCSS) that
can be used from the VM user machines where users invoke QMF. The
control tables, catalog views, sample tables, and packages are installed in each
database that you want to access.

Local and Remote Installation
In a local installation you install QMF database objects into a DB2 for VM
database in the same system into which you are installing QMF.

In a remote installation you install QMF database objects into a DB2 database
in another system. The application requester and server are not required to
reside in the same system, but a system can be configured as both.

Connecting to a Remote Database from VM
If you plan to connect to a DB2 database from VM (with the DSQSDBNM
startup parameter or the CONNECT command) perform the following task:
v From the OS/390 system, install the QMF control tables, catalog views,

sample tables, and packages/plan in the DB2 database you want to connect
to.

Note: If you do not have QMF installed in your local DB2 for VM database
you must use the DSQSDBNM startup parameter to connect to the DB2
database during the QMF session initialization.

If you plan to connect to DB2 for VM databases from OS/390 (via the
DSQSDBNM startup parameter or the CONNECT command) perform the
following tasks:
v From OS/390, use the requester-database option to install the QMF load

modules in OS/390.

Introduction

Chapter 1. Introduction 5

v From VM, install the QMF control tables, catalog views, sample tables, and
packages/plan in the DB2 for VM database you want to connect to. You can
do this with a database-only installation.

Connecting to Workstation Database Servers from VM
After installing QMF for VM, you can connect to a workstation database
server from VM. To do so, install the QMF control tables, catalog views,
sample tables, and packages in the workstation database server you want to
connect to. You can do this with a database-only installation.

Introduction

6 Installing and Managing QMF on VM

Chapter 2. Planning for Installation

This chapter describes the hardware, program products, and storage required
to install and run QMF. It presents an installation planning overview. For
installation details see “Chapter 3. Installing QMF 7.1 into the DB2 for VM
Database” on page 21.

Hardware Requirements

QMF runs on any processor supported by the VM operating system and DB2
for VM. QMF can access all direct-access storage devices (DASD) supported
by VM and DB2 for VM, and all terminals supported by the Graphical Data
Display Manager (GDDM).

For information about terminals supported by the GDDM, consult the GDDM
general information manual.

In order to use the Double Byte Character Set (DBCS) you must have the IBM
5550 Kanji workstation, or equivalent.

Prerequisite Software

The following table lists the program products with the minimum release
levels required to support QMF for VM Version 7.1. Later releases that are not
available at the QMF Version 7.1 announcement time are not supported unless
specifically stated otherwise.

Table 1. Prerequisite Software For QMF For VM/ESA Version 7.1

Required product Version and release Number

IBM VM/ESA Version 2 Release 2.0 5654–030

SQL/DS for VM Version 3 Release 5 5688–103

GDDM/VMXA or Version 2 Release 3 5684–007

GDDM/VM Version 3 Release 1.1 5684–168

The following table lists the program products with the minimum release
levels required to support optional functions for QMF for VM Version 7. Later
releases that are not available at the QMF Version 7.1 announcement time are
not supported unless specifically stated otherwise.

© Copyright IBM Corp. 1983, 2000 7

|
|
|
|

||

|||

|||

|||

|||

|||

|||
|

|

Table 2. Prerequisite software for optional functions for QMF for VM Version 7 Release
1

Product Version and release Number

ISPF Version 3 Release 2 5684–043

CHARTS (Interactive Chart Utility):

GDDM — PGF (for
GDDM/VMXA Version 2 Release
3) or

Version 2 Release 1.1 5668–812

GDDM — PGF (for GDDM/VM
Version 3 Release 1.1)

Version 2 Release 1.2 5668–812

Default editor for QMF EDIT command, display printed report application (DPRE),
ISPF command, and DXT/End User Dialogs bridge support:

ISPF/Program Development
Facility for VM

Version 3 Release 2 5684–123

QMF Document Interface:

VM/SP System Product Editor
(XEDIT)

IBM OfficeVision/VM Version 1 Release 2 5684–084

ISPF/Program Development
Facility for VM

Version 3 Release 2 5684–123

Callable Interface Programs using the callable interface can be written in:

IBM C/370 Compiler and Version 2 5688–187

C/370 Library Version 2 5688–188

IBM HLASM Version 1 Release 1 or Release 2 5696–234

VS COBOL II Compiler and
Library

Version 1 Release 4 5688–023

VS COBOL II Compiler, Library
and Debugging Facility

Version 1 Release 4 5668–958

AD/Cycle COBOL/370 Version 1 Release 1 5688–197

IBM COBOL for MVS and VM Version 1 Release 2 5688–197

AD/Cycle C/370 Compiler Version 1 Release 1 5688–216

VS FORTRAN

(REXX and the SAA callable
interface for FORTRAN are not
supported in the QMF/CICS
environment.)

Version 2 Release 5 5688–806

Planning for Installation

8 Installing and Managing QMF on VM

Table 2. Prerequisite software for optional functions for QMF for VM Version 7 Release
1 (continued)

Product Version and release Number

OS PL/I Version 2 Release 2.3 5668–909

IBM PL/I for MVS and VM Version 1 Release 1.1 5688–235

REXX: TSO Extensions
(TSO/E)(REXX and the SAA
callable interface for FORTRAN
are not supported in the
QMF/CICS environment.)

Version 2 Release 1 5685–025

REXX(REXX and the SAA
callable interface for FORTRAN
are not supported in the
QMF/CICS environment.)

In VM/ESA

Assembler H Version 2 Release 1 5668–962

IBM C/C++ for MVS/ESA (In
conjunction with Language
Environment for MVS and VM
(MVS feature)).

Version 3 5655–121

User Edit Routines can be written in:

IBM HLASM Version 1 5696–234

VS COBOL II Compiler and
Library

Version 1 Release 4 5688–023

COBOL/370 Compiler and
Library

Version 1 Release 1 5688–197

VS COBOL II Compiler and
Library

Version 1 Release 3.1 5688–023

VS COBOL II Compiler, Library
and Debugging Facility

Version 1 Release 3.1 5668–958

IBM COBOL for MVS and VM Version 1 Release 2 5688–197

OS PL/I Version 2 Release 3 5668–909

IBM PL/I for MVS and VM Version 1 Release 1.1 5688–235

Assembler H or standard
assembler

Version 2 Release 1 5668–962

Governor Exit Routine

IBM HLASM Version 1 5696–234

QMF for Windows:

Microsoft Windows** or Version 3 Release 1

Planning for Installation

Chapter 2. Planning for Installation 9

Table 2. Prerequisite software for optional functions for QMF for VM Version 7 Release
1 (continued)

Product Version and release Number

Microsoft Windows** for
Workgroups or

Version 3 Release 1 or Release 1.1

Microsoft Windows 95 or

Microsoft Windows NT

IBM APPC Networking Services
for Windows, or

Version 1

Microsoft SNA Server, or Version 2, Version 2.1, or Version
2.11

Novell Netware for SAA, or Version 2

Attachmate EXTRA! APPC Client Version 3 Release 11

Remote Unit of Work (VM)

Connection to remote DB2 for VM on VM DRDA Application Server:

At the local DB2 for VM location:

SQL/DS for VM Version 3 Release 5 5688–103

QMF for VM Version 7 5697-F42

At the remote DB2 for VM
database:

SQL/DS for VM Version 3 Release 5 5688–103

QMF for VM Version 7 5697-F42

Connection to remote DB2 for MVS/ESA DRDA Application Server:

At the local DB2 for VM
database:

SQL/DS for VM Version 3 Release 5 5688–103

QMF for VM Version 7 5697-F42

At the remote DB2 for MVS/ESA
location:

DB2 for MVS Version 3 Release 1 5685–DB2

QMF for OS/390 Version 7 5675-DB2

Connection to remote DB2 for VSE DRDA Application Server:

At the local DB2 for VM location:

SQL/DS for VM Version 3 Release 5 5688–103

QMF for VM Version 7 5697-F42

Planning for Installation

10 Installing and Managing QMF on VM

Table 2. Prerequisite software for optional functions for QMF for VM Version 7 Release
1 (continued)

Product Version and release Number

At the remote DB2 for VSE/ESA
location:

SQL/DS for VSE Version 3 Release 5 5688–103

QMF for VSE Version 7 5697-F42

Connection to DB2 PE, DataJoiner, Common Server, AS/400:

At the local DB2 for VM location:

SQL/DS for VM Version 3 Release 5 5697-F42

QMF for VM Version 7 5697-F42

At the remote database
configured for APPC
communications:

DB2 Parallel Edition for AIX or Version 1 Release 2 5765–328

DataJoiner for AIX or Version 1 Release 2 84H1212

DB2 for Windows NT or Version 2 Release 1 53H7474

DB2 for OS/2 or Version 2 Release 1 41H2114

DB2 for AIX or Version 2 Release 1 41H2128

DB2 for HP-UX or Version 2 Release 1 10H2366

DB2 for Solaris or Version 2 Release 1 10H2421

DB2 for SCO OpenServer or Version 2 Release 1 79H5359

DB2 for SINIX or Version 2 Release 1 79H4133

DB2 for AS/400 Version 4 Release 4 5769–ST1

Products Required to Support Remote Unit of Work

Remote unit of work (RUW) support is not available in all environments in
which QMF operates. For example, when running QMF in VSE/ESA, you
cannot connect to another location. However, the QMF objects stored in a VSE
DB2 database can be accessed by other QMF requesters in a Distributed
Relational Database Architecture (DRDA) network. To see if RUW is
supported in your operating environment, see the documentation for the
database you are using.

Planning for Installation

Chapter 2. Planning for Installation 11

Virtual Storage Requirements

All QMF modules (31-bit shared segment) use approximately 2.8 MB total.
User storage required to run QMF requires approximately 0.5 to 1 MB. You
can allocate storage for both purposes above 16 MB. Additional storage is
required for other applications. For example, if you run in a standard CMS
environment with ISPF and GDDM, you need approximately 6 MB.

If users generate complex reports or use CMS EXECs to run other functions
within a QMF session more storage may be required. Graphics (for example,
the CHART function) requires additional storage.

Discontiguous Shared Segments (DCSS) Storage Requirements

Reference note
Refer to the Program Directory on the ISD tape for information on this
topic.

Disk Storage Requirements

Reference note
Refer to the Program Directory on the ISD tape for information on this
topic.

Required DB2 for VM Knowledge

Although QMF has been designed to be installed with a minimum of DB2 for
VM knowledge, some knowledge of DB2 for VM is required.

General:
v Identifying programs and userids through the CONNECT command.

Understand how the CONNECT command can be used to acquire DBA
authority. For more details, see DB2 Server for VSE & VM Database
Administration

v What a DBSPACE is and the meaning of a PUBLIC or PRIVATE DBSPACE.
DBSPACEs are discussed briefly in “QMF DBSPACE Requirements” on
page 14. For more details, see DB2 Server for VSE & VM Database
Administration

Planning for Installation

12 Installing and Managing QMF on VM

v CREATE, INSERT, and GRANT SQL statements. These SQL statements are
used in the QMF installation procedure. Information on what these
statements do and how to change them is found in DB2 Server for VSE &
VM SQL Reference

v Preprocessing a program. All application programs that contain SQL
commands must be preprocessed. Information about preprocessing a
program is in DB2 Server for VSE & VM Application Programming

v The terms “remote unit of work”, “application requester”, and “application
server”.

remote unit of work
QMF supports remote unit of work. With remote unit of work you can
connect to locations that have QMF installed in either the DB2 or the
DB2 for VM database system.

application requester and server
If you use remote unit of work support to access other remote
databases, then each VM user machine that can be used to run QMF is
known as an application requester for QMF. Each database that contains
the QMF database objects is known as an application server for QMF.

v Understanding how CMS communications directories are used by DB2 for
VM.

DB2 for VM Requirements for QMF

QMF uses standard interfaces to the database. Because it supports only one
DB2 for VM database, if you want to use QMF in more than one database,
you must install QMF into each one. The QMF database installation EXECs
prompt the installer for the name of the DB2 for VM database into which
QMF is being installed. The QMF installation EXECs then issue a DB2 for VM
SQLINIT command for the specified database.

A PUBLIC DBSPACE is Required for Saving Data
A user must have a PUBLIC DBSPACE to use the QMF SAVE DATA
command. The size of this DBSPACE can vary depending on user
requirements.

To run the QMF Installation Verification Procedure (IVP), this DBSPACE must
exist because the SAVE DATA command is used during the IVP. A minimal
DB2 for VM DBSPACE (128 pages) is required to run the QMF IVP.

For information on creating and assigning PUBLIC DBSPACEs, see “Choosing
and Acquiring a dbspace for the User” on page 118. If you have a DBSPACE
available from installing a previous version of QMF, you can use that
DBSPACE for QMF V7R1.

Planning for Installation

Chapter 2. Planning for Installation 13

|
|
|
|

Database CONNECT ID “Q” and “SQLDBA”
QMF uses a CONNECT ID of “Q” for all control tables, sample tables, sample
queries, and views. The installer does not need a VM userid of “Q”; however,
all installation steps that update the database issue the DB2 CONNECT
command for the userid of “Q”.

The CONNECT ID of “SQLDBA” is required to set up the CONNECT ID “Q”.
Because it was created when DB2 for VM was installed, the CONNECT ID of
“SQLDBA” should already exist in your database.

QMF SQL Install Packages
During installation, QMF runs two programs that contain SQL statements. The
DB2 for VM Database Utility (SQLDBSU) loads the database packages for
these programs (DSQCBINS and DSQCBSQL) into each database server where
QMF is being installed.

Further Requirements
The following data base requirements exist for each database that QMF is
installed in. The sections that follow describe the items in this list.
v QMF DBSPACE requirements

There are ten DBSPACEs required for QMF. They are established during
installation.
QMF must have a DBSPACE to store user tables created as a result of using
the QMF SAVE DATA command. You can use an existing DBSPACE or you
can create a new one during the installation of QMF.

v QMF control tables

There are eight QMF control tables. Each table is created in its own
DBSPACE.

v QMF catalog views

There are three QMF catalog views required for the QMF LIST command,
enabling users to list database objects that they are authorized to use.

v QMF sample tables

There are nine sample tables that are created in one DBSPACE.
v QMF SQL packages

QMF contains several SQL packages that must be loaded into each database
into which you install QMF. The packages are loaded after the QMF control
tables are created during installation.

QMF DBSPACE Requirements
DB2 for VM stores tables and indexes in tables within DBSPACEs. A
DBSPACE is a logical allocation of space in the database. A DBSPACE holds
data in 4096-byte blocks called pages. QMF requires the use of “public”
DBSPACEs, which allow multiple user access at the same time; any one user
can be doing update, insert, or delete functions.

Planning for Installation

14 Installing and Managing QMF on VM

|
|
|
|

Because you cannot extend DBSPACEs after they are defined, you should
overestimate the required number of pages. The penalty for overestimating
DBSPACE pages is nominal because the unused DBSPACE pages are not
stored. On the other hand, the penalty for underestimating DBSPACE pages
can be quite expensive in terms of reorganization activities required to
reestablish the data in a larger DBSPACE later.

DBSPACEs must first be created and then “acquired for use” through the use
of the DB2 ACQUIRE DBSPACE command. Because QMF issues the
ACQUIRE DBSPACE command, you must be sure you have first created the
appropriate DBSPACEs.

The DBSPACEs required by QMF, as well as their contents and default sizes,
are shown in Table 3.

Table 3. DBSPACEs Required by QMF

DBSPACE
Name Contents Default Size

DSQTSCT1 Q.OBJECT_DIRECTORY table 256

DSQTSCT2 Q.OBJECT_REMARKS table 256

DSQTSCT3 Q.OBJECT_DATA table 5120

DSQTSPRO Q.PROFILES table 128

DSQTSSYN Q.COMMAND_SYNONYMS table 128

DSQTSLOG Q.ERROR_LOG table 128

DSQTSGOV Q.RESOURCE_TABLE table 128

DSQTSRDO Q.DSQ_RESERVED table 128

DSQ2STBT QMF sample tables 128

DSQTSDEF QMF SAVE DATA 128

Notes:

1. The default size of these DBSPACEs may not be correct for your
installation. You should evaluate the DBSPACE requirements of your
installation before creating the DBSPACEs.

2. DSQTSCT3 should be your largest DBSPACE because it contains all your
QMF queries, procedures, and forms. DBSPACEs DSQTSCT1 and
DSQTSCT2 are created and acquired with a size of one page for each 25
pages in DBSPACE DSQTSCT3.

3. DSQTSDEF is the default name for the DBSPACE to be used by the QMF
SAVE DATA command. This DBSPACE name can be changed.

4. Do not use “SYS” as the first three characters of a DBSPACE name; “SYS”
denotes a DBSPACE reserved for DB2 system usage.

Planning for Installation

Chapter 2. Planning for Installation 15

5. The smallest DBSPACE size that DB2 for VM allows is 128 pages. DB2
may actually give you more pages than you request because it acquires
storage in units of 128 pages. DB2 determines the number of pages you
receive by rounding the number you specify to the next higher multiple of
128 pages.
Example: If you specify PAGES=53, DB2 acquires a block of 128 pages; if,
instead, you specify PAGES=130, DB2 acquires 256 pages.

To determine how many of the ten DBSPACEs you need to create for your
installation, perform these steps:
1. Identify the number of additional DBSPACEs that you need, based on the

following considerations:
v If you are installing QMF V7R1 into a database that does not contain

any version of QMF, you need to create all ten DBSPACEs shown in
Table 3 on page 15.

v If you have QMF V2R4 or an earlier release of QMF installed in the
same database in which you are installing QMF V7R1, you should
already have nine DBSPACES. You need to create one additional
DBSPACE for the Q.DSQ_RESERVED control table.

v If you have QMF V3R1 or a later release installed in the same database
in which you are installing QMF V7R1, no new DBSPACEs are needed.

2. Run the following query to list the DBSPACEs defined and their sizes. To
run this query, you must have DB2 for VM DBA authority or have
SELECT authority on table SYSTEM.SYSDBSPACES. Run this query using
QMF or ISQL:
SELECT * FROM SYSTEM.SYSDBSPACES

WHERE DBSPACETYPE=1 AND OWNER=''

Notes:

1. If you plan to create DBSPACEs while installing QMF, see the discussion
in “Step 2—Create DB2 for VM DBSPACEs: DSQ2DBSC” on page 26.

2. If you need to create additional DBSPACEs after QMF is installed, use the
procedures described in DB2 Server for VSE & VM Database Administration

QMF Control Tables
There are eight QMF control tables, each created in its own DB2 for VM
DBSPACE. (Separate DBSPACEs improves performance.) The contents of each
control table are:

Planning for Installation

16 Installing and Managing QMF on VM

|
|
|

|
|
|
|

|
|

Table 4. The QMF control tables

Table DB space Contents

Q.OBJECT_DIRECTORY DSQTSCT1 General information on all
queries, forms, and
procedures in the database

Q.OBJECT_REMARKS DSQTSCT2 Comments that were saved
with the queries, forms,
and procedures in the
database

Q.OBJECT_DATA DSQTSCT3 Text defining the queries,
forms, and procedures in
the database

Q.PROFILES DSQTSPRO User session profiles

Q.ERROR_LOG DSQTSLOG Information on system,
resource, and “unexpected
condition” errors

Q.COMMAND_SYNONYMS DSQTSSYN Command synonyms

Q.RESOURCE_TABLE DSQTSGOV Resource and limit values
for the QMF governor

Q.DSQ_RESERVED DSQTSRDO The information needed
during QMF initialization

QMF Catalog Views
QMF requires the following three catalog views for the QMF LIST command
and Prompted Query functions:
v Q.DSQEC_TABS_SQL is a view on the SYSTEM.SYSCATALOG and

SYSTEM.SYSTABAUTH DB2 for VM system tables.
v Q.DSQEC_COLS_SQL is a view on the SYSTEM.SYSCOLUMNS and

SYSTEM.SYSTABAUTH DB2 for VM system tables.
v Q.DSQEC_QMFOBJS is a view on the QMF control tables

Q.OBJECT_DIRECTORY and Q.OBJECT_REMARKS.

QMF Sample Tables
The sample tables are placed in DBSPACE DSQ2STBT. The table contents are
described in the following list. (Each table provided by QMF contains
information on the fictional J & H Supply Company.)

Table Contains Information on:
Q.ORG

The company organization
Q.STAFF

The company personnel

Planning for Installation

Chapter 2. Planning for Installation 17

Q.APPLICANT
New candidates for hire

Q.PRODUCTS
The company’s products

Q.SALES
Sales and commissions

Q.PROJECT
Projects undertaken, by department

Q.INTERVIEW
Interviews of new hires

Q.SUPPLIER
Vendor information

Q.PARTS
Product parts data

QMF SQL Packages
QMF contains SQL packages which must be loaded into each database in
which QMF is installed. QMF V7R1 access modules contain the DSQC prefix
in the SYSTEM.SYSACCESS table. For more information on access modules
see DB2 Server for VM System Administration.

Before You Begin

Before you begin installing QMF V7R1, review these topics.

Previous Releases of QMF
If you have a previous version of QMF installed, you can install the new
release of QMF into a different DB2 for VM database for testing purposes, or
you can install and run both releases in the same database concurrently. If you
install QMF V7R1 in the same database as the previous release, make certain
that the sample tables of the previous release are not used during installation.

Migration and Fallback

Note: Skip this section if QMF is being installed for the first time.

Your users might need certain kinds of help before they can operate the new
release of QMF. Supplying this help is what “migration” means.

If you decide to go back to your earlier release of QMF, your V7R1 users
might need help. Supplying this help is what “fallback” means.

Migration and fallback are post-installation operations. You’ll find them
described in “Appendix C. Migration and Fallback Considerations” on
page 319. For planning purposes, you should read about them before you
begin the V7R1 installation.

Planning for Installation

18 Installing and Managing QMF on VM

|
|
|
|

|

|
|
|
|
|

|
|

|
|
|
|

QMF National Language Feature (NLF) Considerations
The QMF National Language Feature (NLF) is a software feature that
provides QMF users with a QMF environment tailored to a language of their
choice. NLFs enable users to enter QMF commands, view help and other
information, and perform QMF tasks in languages other than English. NLFs
are installed as separate features of QMF.

Example
When a user elects to operate QMF in a German-language environment, QMF
commands, keywords, panels, and messages are displayed in German.

A NLF does not provide any new QMF function. In general, anything users
can do in the base English-language session can be done in an NLF session,
and vice versa. For the most part, the procedures for both the base and NLF
sessions are the same; however, any special considerations for NLF users are
preceded by the phrase: if you’re using an NLF.

A QMF NLF is installed after you have installed QMF. For a description of
NLF, see “Chapter 4. Installing a QMF 7.1 National Language Feature (NLF)”
on page 43.

Some names of programs and phases shown in this book have an n symbol in
them, indicating that the name can vary. If you’re using an NLF, replace all n
symbols you see in this book with the one-character national language
identifier (NLID) from Table 5 that matches the NLF you installed. The table
also shows the names by which QMF recognizes each language.

Table 5. NLIDs representing QMF base (English) and National Language Features
(NLFs)

NLF NLID
Name QMF uses for this
NLF

Brazilian Portuguese P PORTUGUES

Canadian French C FRANCAIS CANADIEN

Danish Q DANSK

English E ENGLISH

French F FRANCAIS

German D DEUTSCH

Italian I ITALIANO

Japanese K NIHONGO

Korean H HANGEUL

Simplified Chinese R S-CHINESE

Spanish S ESPANOL

Planning for Installation

Chapter 2. Planning for Installation 19

Table 5. NLIDs representing QMF base (English) and National Language Features
(NLFs) (continued)

NLF NLID
Name QMF uses for this
NLF

Swedish V SVENSKA

Swiss French Y FRANCAIS (SUISSE)

Swiss German Z DEUTSCH (SCHWEIZ)

Uppercase English U UPPERCASE

The uppercase feature (UCF) uses the English language, but converts all text
to uppercase characters. The uppercase characters allow users working with
Katakana terminals to use the product and get English online help and
messages. Terminals equipped with Katakana support include IBM 3277, 3278,
and 3279 terminals, as well as IBM 5550 Multistations.

Planning for Installing QMF into a Workstation Database Server
In order to access remote database servers from QMF on VM, DRDA APPC
communications must be in place between VM and the remote server. VM
uses VTAM and AVS definitions for the remote server. These definitions are
accessed via the CMS COMDIR NAMES file, in which the VM gateway, DB2
remote server name, mode name, and session limits are defined for the remote
DRDA connection.

In addition, you must have a database created on the workstation database
server and you must have SYSADM authority to that database for your install
ID.

Some QMF install steps use the SQLDBSU DB2 for VM utility. Prior to
running the QMF installation EXEC (DSQ2EINS), you must install SQLDBSU
into the remote database server.

For more information about installing SQLDBSU into a remote database
server, see DB2 Server for VSE & VM Database Services Utility for IBM VM
Systems

Planning for Installation

20 Installing and Managing QMF on VM

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database

This chapter explains the steps for performing a database-only installation of
QMF 7.1. If you have already installed QMF 7.1 and want to install it into
another database, follow the directions in this chapter.

If you are installing QMF 7.1 for the first time, read the QMF Program
Directory first and complete the steps listed therein to unload QMF from tape
to disk. Check the program directory for modifications to the procedures
described in this chapter, then complete the steps in this chapter to complete
the QMF database installation.

The QMF installation uses the Restructured Extended Executor (REXX)
language EXECs to install QMF into the DB2 for VM database. For
information on how to use REXX, see VM System Product Interpreter Reference

Installation Considerations:

1. The QMF-supplied EXECs that install QMF into a database are designed to
prompt the installer for variable information. There is no requirement for
your installation to change the supplied installation EXECs. Every prompt
message asks for variable input, and each offers an optional “help” or
“cancel” response.
v If “help” is issued, a small abstract of the prompt request is displayed.
v If “cancel” is issued, the EXEC terminates.

2. All variables are resolved before execution of any given installation step,
which can be restarted from the beginning.

3. Several output files from the EXECs are routed to the printer. You may
want to spool your printer to “HOLD” before you start the database
installation.

QMF Installation Flow Diagram

Figure 2 on page 22 is a flow diagram of QMF installation to help acquaint
you with the installation process before starting. You might also find the
optional “QMF Installation Checklist” on page 315 helpful in monitoring your
installation process.

© Copyright IBM Corp. 1983, 2000 21

|
|
|

|
|
|
|
|

Figure 2. Installation steps for QMF 7.1 (Part 1 of 3)

Installing QMF 7.1

22 Installing and Managing QMF on VM

Figure 2. Installation steps for QMF 7.1 (Part 2 of 3)

Installing QMF 7.1

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database 23

The Installation Steps

The installation steps are outlined on the following pages.

If you are performing a QMF 7.1 migration installation, that is, if you are
installing QMF 7.1 into a database that already has a previous level of QMF
installed, follow all the installation steps, indicating the previous QMF level
when required.

Preliminary: Read the Program Directory and Complete the QMF 7.1
Worksheet

Before beginning the installation process, read the QMF Program Directory
shipped with the ISD tape for supplementary data. The program directory
contains all steps for installing QMF from tape to disk and building the DCSS.
You must complete the steps in the program directory before doing the
installation steps in this book. Only QMF installation into DB2 for VM is
described in this book.

Figure 2. Installation steps for QMF 7.1 (Part 3 of 3)

Installing QMF 7.1

24 Installing and Managing QMF on VM

The following worksheet lists the information you provide during QMF
installation.

Table 6. Information Required during QMF Installation (QMF 7.1 Worksheet)

Information required for: Supply data fields containing __________

No prior
QMF

QMF
Migration

QMF in
DB2
Workstation
Server

QMF in
AS/400
Server

v Database/location name ________ ________ ________ ________

v Database type (DB2 VM, DB2
Workstation Server, or DB2 for
AS/400)

DB2VM DB2VM DB2WS DB2400

v Prior QMF Version/Release level (if
any)

N/A ________ N/A N/A

v SQLDBA CONNECT password ________ ________ N/A N/A

v Q CONNECT password ________ ________ N/A N/A

v Default DBSPACE name for SAVE
DATA command (default is
DSQTSDEF)

________ ________ N/A N/A

v Number of DBSPACE pages for:

DBSPACE NAME (default)

Q.OBJECT_DATA table (5120) ____ N/A N/A N/A

Q.PROFILES table (128) ____ N/A N/A N/A

Q.ERROR_LOG table (128) ____ N/A N/A N/A

Q.COMMAND_SYNONYMS table
(128)

____ N/A N/A N/A

Q.RESOURCE_TABLEtable (128) ____ N/A N/A N/A

SAVE DATA command (128) ____ N/A N/A N/A

Use DB2WS as the database type for all workstation database servers. Use
DB2400 as the database type for DB2 AS/400 database servers.

The QMF table spaces created in workstation database servers are
system-managed. Thus, they have no default size.

Step 1—Create QMF Installation Control File: DSQ2ECTL
The QMF EXEC, DSQ2ECTL, prompts you for information that is required in
the QMF installation process.

Installing QMF 7.1

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database 25

|

||

||

||
|
|
|
|
|
|
|

|
|
|

|||||

|
|
|

||||

|
|

||||

|||||

|||||

|
|
|

||||

|

|

||||

|||||

|||||

|||||

|
|
||||

|||||

|||||
|

|
|

To create the QMF installation control file, do the following:
1. Access the QMF distribution disk in WRITE mode.
2. Ensure that your A disk has enough room to generate temporary files.
3. Supply the information for the worksheet, if you have not yet done so.
4. Run the EXEC: DSQ2ECTL.

Prompts
You receive a series of prompts that request the information you developed
using the worksheet (Table 6 on page 25).

Anytime during this process, you can enter:
v HELP on the command line for information
v CANCEL to terminate the process before completion

A file, QMFV710E INSTALL, is created on your installation disk. It contains
the information you supplied to the previous prompts.

If an installation file already exists from a previous installation, the
information you enter is appended to this file. The previous information is
“deactivated” but saved for service purposes.

Step 2—Create DB2 for VM DBSPACEs: DSQ2DBSC

Note: Skip this step if one or more of the following are true:
v You are installing QMF into a remote database server.
v The database you are installing QMF 7.1 into has QMF 3.1 or later

already installed.
v There are sufficient public DBSPACEs available for the DB2 for VM

database of the sizes indicated in the installation worksheet (Table 6
on page 25). You can check this by invoking ISQL and issuing the

following:
SELECT * FROM SYSTEM.SYSDBSPACES

WHERE DBSPACETYPE=1 AND OWNER=''

To create the DBSPACEs required by QMF, do the following:
1. Access the QMF distribution and production disks.
2. Ensure that the QMF installation control file QMFV710E INSTALL exists

on the distribution disk.
3. Ensure that you have an A-disk to generate a temporary file.
4. Run the EXEC: DSQ2DBSC.

This EXEC will:
v Use the QMFV710E INSTALL file on the QMF distribution disk to

determine whether or not this is a new or migration install. If this is a

Installing QMF 7.1

26 Installing and Managing QMF on VM

|
|

|
|

|
|

new install, all ten DBSPACEs are created. If this is a migration from
QMF V2R4 or an earlier release, only one DBSPACE is created.

v Prompt you to enter the storage subpool you want to use.
v Create the 'dbname SQLADBSP A' file ('resid SQLADBSP A' file if the

database you are installing QMF into is V7R1) on your A-disk.
('dbname' is the database name and 'resid' is the resource ID for your
DB2 for VM database.)

5. Send the 'dbname SQLADBSP ' file (or 'resid' SQLADBSP file) to the
database virtual machine.

6. Log onto the database virtual machine and stop the database. (Typically
with the SQLEND command.)

7. Receive the 'dbname SQLADBSP' (or 'resid SQLADBSP') file to the
A-disk.

8. Access the DB2 for VM service disk (DASD 193) as the V-disk.
9. Run the SQLADBSP EXEC, by entering:

SQLADBSP DB(dbname)

where dbname is the name of the DB2 for VM database. DBSPACE(s) is
added based on the information in the dbname SQLADBSP file.

You receive the following message:
dbname SQLADBSP WAS FOUND.
SHOULD THIS FILE BE USED FOR ADD DBSPACE?

Answer YES.

You receive a message inquiring whether or not you want to modify the
dbname SQLADBSP file.
v To edit the file, answer YES.
v To continue without editing, answer NO.

10. Release the DB2 for VM service disk (DASD 193).
11. Restart the database and continue with the installation, by entering:

SQLSTART DB(dbname)

where dbname is the name of the DB2 for VM database.
12. Run the following query using ISQL to verify that the new DBSPACEs

are available for QMF:
SELECT * FROM SYSTEM.SYSDBSPACES

WHERE DBSPACETYPE=1 AND OWNER=''

Installing QMF 7.1

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database 27

|
|

|
|
|
|

To run this query, as a minimum you need to have SELECT authority on
table SYSTEM.SYSDBSPACES, or have DB2 DBA authority, which implies
the SELECT privilege.

Step 3—Run QMF Installation EXEC: DSQ2EINS
This section describes the following topics:
v Preparing to run the installation EXEC
v What the installation EXEC does
v Running the installation EXEC
v Installation EXEC error messages

Preparation
The information you provided in Step 1—Create QMF Installation Control
File: DSQ2ECTL is used by the QMF installation EXEC. Before running this
EXEC:
1. You must have access to the QMF distribtuion disk in WRITE mode.
2. Ensure that the QMF installation control file QMFV710E INSTALL exists

on the distribution disk.
3. Ensure that you are linked to the DB2 for VM production minidisk in

READ mode.
4. You can let the printer and console continue processing unless a severe

error is found, by issuing the following CMS commands:
spool prt cont hold
spool console start cont

5. Ensure that you have an A-disk to generate temporary files.
If you are performing a QMF 7.1 migration installation from QMF V2R4 or
earlier, the Q.OBJECT_DATA table is unloaded during this step. Make sure
that you have enough space on your A-disk for the data file.

Assumptions for Installing QMF into a Remote Database Server
Before you attempt to install QMF on a remote database server, be sure to
complete the necessary pre-requisites described in “Planning for Installing
QMF into a Workstation Database Server” on page 20.

What the Installation EXEC Does
All output from the installation EXEC is routed to the virtual printer spool
file.

Substeps:
v Substep 3.1: Builds the SQL commands to acquire the DB2 DBSPACEs.
v Substep 3.2: Establishes a DB2 for VM CONNECT ID of “Q”.
v Substep 3.3: Reloads the QMF installation program packages.
v Substep 3.4: Creates the QMF control tables and QMF catalog views.
v Substep 3.5: Reloads the QMF SQL Packages into a DB2 for VM database.

Installing QMF 7.1

28 Installing and Managing QMF on VM

|
|

v Substep 3.6: Discards any QMF sample tables, if they exist.
v Substep 3.7: Creates the QMF 7.1 sample tables.

Running the QMF Installation EXEC
To start the installation EXEC, issue:
DSQ2EINS

Restart Procedure: If this EXEC fails, use the following procedure to restart
the EXEC and continue where you left off:
1. Determine what the problem is and fix it.
2. Rerun this EXEC with an input parameter equal to the restart value

provided in the message after the EXEC terminates.

For example, if you receive the message:
TERMINATING EXECUTION ...
TO RESTART THIS EXEC AND CONTINUE WHERE YOU LEFT OFF:

- FIX THE PROBLEM ENCOUNTERED.
- RERUN THIS EXEC WITH THE INPUT PARAMETER OF 2

You can restart the EXEC with the statement:
DSQ2EINS 2

Installation EXEC Error Messages
If you encounter a problem running the QMF installation EXEC, you need to
find the error message describing the problem. This error message may be
sent to either the console or the printer; therefore you may want to spool your
console and your printer to “HOLD”.

If you choose to spool your printer or console, be aware that you may have to
enter both of the following statements to release the file that contains the error
information:

spool prt close
spool console close

Error messages produced by the SQLDBSU EXEC are sent to the printer. If
you see a console message like “Errors processing SQLDBSU”, you should
examine the output sent to the printer. The command to transfer the printer
files to your reader, so that you can view them there, is:

TRANS PRT ALL *

Look in the DB2 Server for VM Message and Codes manual for explanations of
any error messages starting with “ARI”.

Step 4—Start QMF: DSQ2EINV
This section describes tailoring the QMF invocation EXEC and establishing
QMF as an ISPF dialog (optional).

Installing QMF 7.1

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database 29

Step 4A—Tailor the QMF Invocation EXEC: DSQ2EINV (Optional)
The sample QMF invocation EXEC, located on the production minidisk, is
executed when a user wants to invoke QMF interactively in the VM
environment. The first part of the EXEC, DSQ2EINV, is shown in Figure 3 on
page 31. You need to modify only the indicated variables to tailor the EXEC
for your installation.

Using DSQQMFE and ISPSTART: The parameter values that exist in
DSQ2EINV are used unless you specify different values when you invoke the
EXEC. You can do this through DSQQMFE or the ISPSTART command.
Parameters values specified in this way override those set in the QMF callable
interface REXX EXEC DSQSCMDE, which is on the production minidisk.

Note: DSQ2EINV is only a sample QMF invocation EXEC. The necessary
links to minidisks, filedefs, SQLINIT, and ISPSTART command are
described clearly in simpler QMF invocation EXECs. These execs,
DSQ2EIN1 (with ISPF) and DSQ2EIN2 (without ISPF), are located on
the production minidisk. You may find them useful in constructing
your own QMF invocation EXEC to match your environment
requirements.

For clarification of ISPF files, see ISPF for VM Dialog Management Services and
Examples

Installing QMF 7.1

30 Installing and Managing QMF on VM

Notes on Figure 3:

1.

/*--*
* *
* Sample QMF invocation EXEC *
* *
* EXEC NAME: DSQ2EINV EXEC *
* *
* Status: Version 7 Release 1 LeveL 0 *
* *
* Input: DB(dbname) - optional, default 'SQLDBA' *
* PGM(program) - optional, default 'DSQQMFE' *
* MODE(runmode) - optional, default 'I' *
* PROC(procedure) - optional, no default *
* CMSSUB(subset_restriction) - optional, default 'YES' *
* ISPF(use_ispf) - optional, default 'YES' *
* *
* Note: If you have any level of DB2 VM, GDDM, ISPF, QMF or *
* QMF NLF already attached when you execute this exec, *
* the corresponding disk in this exec will not be linked, *
* and the existing disk will be used. *
* *
--/

parse upper arg parm1 parm2 parm3 parm4 parm5 parm6 junk

lchar = 'E' /* QMF language feature identifier */

/*--*
* The following are the variables which may need to be tailored *
* for your installation. *
* Note: If you are using SFS directories, replace the link *
* information with 'FILEPOOL:USERID.DIRNAME'. *
--/

dcssname = 'QMF710'||lchar /* QMF DCSS name for ISPSTART */
sql_link = 'SQLMACH 195 195' /* DB2 VM minidisk link information*/
qmf_link = 'P697F42A 400 400' /* QMF Production minidisk */

/* link information */
dbname = 'SQLDBA' /* set default database name */
program = 'DSQQMF'||lchar /* set default QMF program name */
mode = 'I' /* set default QMF run mode */
procedure = '' /* no default procedure */
subset = 'YES' /* default to CMS subset restrictions*/
ispf = 'YES' /* link to ISPF minidisk (optional) */

/*--*
* END OF TAILORABLE VARIABLES *
--/

Figure 3. Sample QMF Invocation EXEC (DSQ2EINV)

Installing QMF 7.1

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database 31

The correspondence between the variables on the sample exec and the
parameters on the ISPSTART command is as follows:
a. PGM is used as the PGM parameter on ISPSTART.
b. MODE is used as the DSQSMODE(M) parameter on ISPSTART.
c. PROC is used as the DSQSRUN(I) parameter on ISPSTART.

For further information on the ISPSTART command, see “Starting QMF
with the ISPSTART Command” on page 61.

2. If you specify 'NO' for the ISPF parameter, the CMSSUB parameter is
ignored.
If you specify 'YES' for the ISPF parameter or take the default (YES), either
of the following happens:
v If CMSSUB = NO, then ISPF is started via SELECT DCSS.
v If CMSSUB = YES, then ISPF is started via SELECT PGM.

When ISPF executes a SELECT PGM, the ISPF product turns on the CMS
SUBSET indicator, whereas if ISPF executes a SELECT DCSS, the ISPF
product does not turn on the indicator.

See “Chapter 5. Starting QMF” on page 57 for further information on CMS
and non-CMS subset forms.

3. Following are examples of invocation statements:
v DSQ2EINV MODE(I)

This statement invokes QMF interactively. (It is normally the default.)
v DSQ2EINV MODE(B) PROC(MYPROC)

This statement runs the procedure MYPROC in batch mode.

QMF Dialog Considerations: The following considerations apply to the
QMF dialog:
v Virtual Machine considerations

The virtual machine size should be at least 5.0 megabytes of storage
without ISPF or 6.0 megabytes with ISPF. If a larger virtual machine size is
available, QMF uses it when the user scrolls through a report. QMF
requires that both ISPF (if used) and DB2 for VM be running in
disconnected virtual machines before it can be invoked.

v Program modules
Before you invoke QMF, the DB2 for VM database, QMF’s discontiguous
shared segments, ISPF’s shared segments (if used), and GDDM’s shared
segments or product text libraries must be available.

v QMF data files
The following list describes the files used by QMF. These files are allocated
according to the recommended sizes in the DSQ2EINV EXEC. If you want
to allocate them differently, you must modify the invocation exec.
– DSQDEBUG—QMF trace dump output

Installing QMF 7.1

32 Installing and Managing QMF on VM

If the trace option is set to trace during initialization or during a QMF
session, QMF’s trace output is used. It is also used if QMF abnormally
terminates. This file must be allocated prior to invoking the QMF dialog.
The trace output is formatted in two different formats on the basis of the
allocated record size. If the record is greater than 120, the output is
generated in eight fullword columns; otherwise, the output is generated
in four fullword columns appropriate for viewing on a terminal. The
record format RECFM can be fixed or variable, with a block size that is a
multiple of the record size.

– DSQPRINT—Print data output
The print data output contains print data that is produced by a QMF
PRINT command issued during a QMF session. This file can be allocated
by using the QMF CMS command while the QMF dialog is running or it
can be allocated prior to invoking the QMF dialog. For information on
GDDM nicknames, see GDDM support in “Chapter 9. Enabling Users to
Print Objects” on page 147.
RECFM can be FBA or VBA. It is recommended that this file be allocated
with a record length (LRECL) supported by your printer device type.

– DSQSPILL—Spill data file
The spill file is used when QMF runs short of virtual storage when
producing data for a report that is requested during a QMF session. This
file can be allocated by using the QMF CMS command to invoke the
CMS FILEDEF command, while the QMF dialog is running or it can be
allocated prior to invoking the QMF dialog. The spill file is a fixed
unblocked file with a record length (LRECL) of 4096.

Note: The larger the user’s spill file, the less often the user encounters
the “incomplete data” condition. For more information, see
“Customizing Report Storage and Report Performance” on
page 73.

– DSQEDIT—Edit transfer file
This file is used whenever a QMF EDIT command is issued during a
QMF session. This file is a fixed record file with a record length (LRECL)
of 79.

– DSQPNLE—QMF panel file
This file contains all the QMF panel definitions. It is created during QMF
installation.

– DSQLDLIB—QMF load library
This file must be allocated to ISPLLIB and globally defined.

Installing QMF 7.1

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database 33

QMF-GDDM Considerations: When the QMF DCSS is built, it includes the
GDDM interface code. If you run GDDM from a DCSS, you need not access a
GDDM disk, or GDDM TXTLIBs, and you may remove the lines in the
invocation EXEC that refer to GDDM.

However, if you do not have GDDM in a DCSS, you must access the GDDM
TXTLIBSs and perform the necessary FILEDEFs. If you want to change the
release of GDDM being used by QMF, you must rebuild the QMF DCSS. See
the Program Directory for information on building the QMF DCSS.

QMF-DB2 for VM Considerations Include the Following::

v QMF supports DATE, TIME, and TIMESTAMP data types. So users can
make use of local date/time exit routines.
When planning for local date/time exit routines, it is important to keep in
mind that these are DB2 for VM exits, they are not QMF exits. For details
about how these exits are created, refer to DB2 Server for VM System
Administration

In order for QMF to use a local date/time exit, the text files containing the
date/time exits ARIUXDT and ARIUXTM must be placed on a minidisk
that is accessible to QMF when QMF starts.
If QMF is being started by DCSS mode, two relocatable module files must
be created from the existing exit text files ARIUXDT and ARIUXTM. To
create the relocatable module files issue the following CMS commands:

LOAD ARIUXDT (RLDSAVE)
GENMOD ARIUXDT
LOAD ARIUXTM (RLDSAVE)
GENMOD ARIUXTM

v The QMF DCSS includes the ARIRVSTC text file, and if this file is changed
by PTFs applied to DB2 for VM or a new level of DB2 for VM, the QMF
DCSS must be re-built. See the Program Directory

QMF-DXT Considerations: If you want to start Data Extract (DXT) from
QMF, the ISPF setup for DXT should be merged with the ISPF setup of QMF.
You can do this in either of the following ways:
v Combining the QMF and DXT ISPF library FILEDEFs (concatenating the

MACLIBs under the same ISPF ddname). Give some thought to how you
want the libraries concatenated. If QMF is generally used more than DXT,
its libraries should be concatenated ahead of DXT’s.

v Using the ISPF LIBDEF service to dynamically allocate DXT’s libraries
under QMF. This can be done in lieu of, or in addition to, the merging of
the ISPF setups.

QMF provides a sample EXEC, DSQABX2L, which contains an example of
how to use LIBDEF for DXT.

Installing QMF 7.1

34 Installing and Managing QMF on VM

Step 4B—Invoke QMF from an ISPF Environment (Optional)
ISPF supplies a Master Application Menu as part of its installation process.
The QMF dialog can be invoked from the ISPF Master Application Menu, or
any other selection menu that you want to use. For an example of how the
ISPF Master Application Menu appears after adding QMF, see Figure 4.

The ISPF LIBDEF service provides applications with a dynamic method of
defining application data elements files while in an active ISPF session. For
more on the ISPF LIBDEF service, see ISPF for VM Dialog Management Services
and Examples

Notes:

1. The default database name is SQLDBA. You can modify the name within
the QMF invocation EXEC, DSQ2EINV, to suit your installation.

2. You can specify another database name as a parameter.

%------------------------ MASTER APPLICATION MENU --------------------
%SELECT APPLICATION ===>_OPT +
% +USERID -
% +TIME -
% 1 +SPF - SPF PROGRAM DEVELOPMENT FACILITY +TERMINAL -
% 2 +QMF - QMF QUERY MANAGEMENT FACILITY +PF KEYS -
% 3 +QMF2 - QMF with alternate database
%
%
%
%
%
%
%
%
% P +PARMS - SPECIFY TERMINAL PARAMETERS AND LIST/LOG DEFAULTS
% X +EXIT - TERMINATE USING LIST/LOG DEFAULTS
%
+PRESS%END KEY+TO TERMINATE +
%
)INIT
)PROC
&SEL = TRANS(TRUNC (&OPT,'.')

1,'PANEL(ISP@PRIM) NEWAPPL'
2,'CMD(DSQ2EINV)' (Note 1)
3,'CMD(DSQ2EINV DB(SQLDBA2))' (Note 2)

/* */
/* ADD OTHER APPLICATIONS HERE */
/* */

P,'PANEL(ISPOPT)'
X,'EXIT'

' ',' '
*,'?')

)END

Figure 4. QMF Dialog on ISPF Master Application Menu

Installing QMF 7.1

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database 35

Step 5—Run the IVP for QMF Interactive Mode : DSQ2EIVP

Note: Be sure that you have installed QMF 7.1 in the database you are going
to use, and that you are connected to that database.

The Installation Verification Procedure (IVP) session tests the following:
1. Initialization for a QMF session
2. The existence of QMF help panels
3. Importing of the initial IVP procedure
4. The existence of QMF control tables
5. The operation of the QMF database modules
6. The created table through the SAVE DATA command
7. The operation of QMF PRINT, EXPORT, IMPORT, and CMS commands
8. The trace facility
9. The QMF command interface

The IVP procedures are in the sample files on the production minidisk.

As a result of the IVP:
v A query is printed.
v A trace is saved in a file named DSQDEBUG.
v A query is exported to a file named QMFIVP QUERY A1.
v A query is imported from a file named QMFIVP QUERY A1.
v The file QMFIVP QUERY A1 is erased, using the CMS command.

Step 5A—Test QMF Initialization
To run the IVP, first get to the QMF Home Panel using the DSQ2EINV sample
invocation EXEC or your own QMF invocation exec.

During the IVP, you might get QMF error messages; if you do, press the Help
key to get additional information.

Step 5B—Test the Help Panel
When you have successfully initialized QMF, test for the help panel. To do
this, press the Help key from the home panel. After you are on the help panel,
press the Exit key to take you back to the home panel.

If you are running the IVP against QMF installed on a DB2 for VM server,
issue the command:
CONNECT Q (PASSWORD=xxx

where “xxx” is the value given to the Q CONNECT password when the QMF
installation control file is built.

Step 5C—Test the QMF Command Interface (ISPF Only)
To test the QMF command interface, issue the following command:
CMS DSQ2ECI1

Installing QMF 7.1

36 Installing and Managing QMF on VM

If this EXEC runs successfully, your QMF profile is displayed and you receive
a confirming message.

Check your profile for the correct values. For example, verify that the
DBSPACE value matches what you specified during “Step 1—Create QMF
Installation Control File: DSQ2ECTL” on page 25. If the DBSPACE value is not
correct, update your profile to contain the correct value before you continue.

Step 5D—Test the QMF IVP Procedure
Next, issue the command:
IMPORT PROC FROM DSQ2EIVP PROC *

Now press the Run key or issue the RUN PROC command to run the
procedure. Answer YES to all prompts. If the procedure runs successfully, you
get a message indicating this. If the procedure does not run successfully,
determine the problem by using the QMF messages and by pressing the Help
key to see the message help panels.

Restarting the IVP
The IVP can be restarted from the beginning at any time by importing and
running the starting QMF procedure. Follow the procedures from the
beginning of this step.

Step 6—Installing the QMF Sample Objects and Application Objects:
DSQ2ESQD and DSQ2ESQI

After QMF is installed and tested, you can use it to import the sample queries
(all saved with SHARE=‘YES’ option), batch IVP procedures, and sample
applications. The QMF procedure and queries used to import the sample
queries are on the QMF distribution minidisk (documented in the Program
Directory).

If you have a previous version of QMF installed, you must delete those
sample queries and procedures before installing QMF 7.1 queries and
procedures.

Perform the following steps to install the sample queries and procedures:
1. Start QMF if not already logged on from “Step 5—Run the IVP for QMF

Interactive Mode : DSQ2EIVP” on page 36.
2. If not done in “Step 5—Run the IVP for QMF Interactive Mode :

DSQ2EIVP” on page 36, and you are installing on a DB2 for VM server,
issue the command:
CONNECT Q (PASSWORD=xxx

where xxx is the password of Q.

Installing QMF 7.1

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database 37

3. If you have a previous version of QMF installed, delete previous sample
queries and procedures by importing and running procedure DSQ2ESQD,
as follows:
IMPORT PROC FROM DSQ2ESQD PROC *

Press the Run key or issue the RUN PROC command.
4. Install 6 sample queries and procedures by importing and running

procedure DSQ2ESQI, as follows:
IMPORT PROC FROM DSQ2ESQI PROC *

Press the Run key or issue the RUN PROC command.

Restarting the Procedure
If a failure occurs during this procedure, correct the error, then run procedure
DSQ2ESQD to delete any previously created sample queries. Then rerun
procedure DSQ2ESQI.

Step 7—Running the Batch-Mode IVP (Optional): DSQ2EBAT
If you plan to run QMF procedures in batch mode, you should run this IVP to
ensure that QMF for batch mode processing has been successfully installed.
The same files and DB2 for VM authorization used in QMF interactive mode
are also required to run QMF procedures in batch mode.

The Installation Verification Procedure (IVP) tests the following batch-mode
operations:
1. Reaching and initializing QMF
2. The existence of QMF control tables
3. The operation of the QMF database modules and issuing the SAVE DATA

command
4. The operation of the QMF PRINT, EXPORT, IMPORT, and CMS commands

and the trace facility

The IVP procedures are in the sample files on the QMF distribution minidisk.

Your CMS PROFILE EXEC should define the following files:
v A print file (DSQPRINT) for printing items
v A message file (DSQDEBUG) for commands run, error messages (if any),

and trace output

As a result of the IVP:
v A query is printed.
v A trace file is saved in a file DSQDEBUG.
v A query is exported to file “QMFIVP QUERY A1”.
v A query is imported from file “QMFIVP QUERY A1”.

Installing QMF 7.1

38 Installing and Managing QMF on VM

v File “QMFIVP QUERY A1” is erased using the CMS command.

During the IVP, it is possible to get QMF error messages if there is an error.
For the text of the error messages, see the DSQDEBUG file. For more
information on these error messages, you can use the QMF HELP command
to view the message help panels. For information on how to use the message
utility, see “Diagnosing Your Problem Using QMF Message Support” on
page 298.

DB2 for VM Authorization
If you (the installer) do not have DB2 for VM DBA authority or an
authorization ID of “Q”, the minimum DB2 for VM authorization required is:
v SELECT authority for all QMF control tables. The following are examples of

SQL GRANT statements to give SELECT authority for Q.PROFILES and
Q.ERROR_LOG:
GRANT SELECT ON Q.PROFILES TO installerid
GRANT SELECT ON Q.ERROR_LOG TO installerid
GRANT RESOURCE TO installerid

v DELETE and UPDATE authority for Q.OBJECT tables. The following are
examples of SQL GRANT statements to give all authority to the Q.OBJECT
tables:
GRANT ALL ON Q.OBJECT_DIRECTORY TO installerid
GRANT ALL ON Q.OBJECT_DATA TO installerid
GRANT ALL ON Q.OBJECT_REMARKS TO installerid

To run the batch mode IVP, use the QMF invocation EXEC specifying the
parameters for batch mode and the QMF procedure Q.DSQ2EBAT:
DSQ2EINV MODE(B) PROC(Q.DSQ2EBAT)

or
DSQ2EINV MODE(B) PROC(Q.DSQ2EBAT) CMSSUB(NO)

If QMF wasn’t installed correctly, QMF does not initialize and you receive
error messages. For the text of the error messages, see the DSQDEBUG file.
For more information on these error messages, you can use the QMF HELP
command to view the message help panels.For information on how to use the
message utility, see “Diagnosing Your Problem Using QMF Message Support”
on page 298.

Restarting the Batch IVP
This IVP starting the DSQ2EINV EXEC with the appropriate parameters.

Expected Results from Executing the Batch IVP
The output looks something like the following. (The 'hyphened' lines indicate
the beginning and ending of trace records.)

Installing QMF 7.1

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database 39

YOU MAY ENTER A COMMAND.

RUN PROC Q.DSQ2EBAT

SET (CONFIRM=NO)
SET PERFORMED. PLEASE PROCEED....
SAVE DATA AS QMF_IVPDATA
DATA WAS SAVED AS QMF_IVPDATA IN THE DATABASE....
OK, YOUR PROCEDURE WAS RUN.

EXIT THE EXIT COMMAND TERMINATES QMF

Step 8—Deleting Previous Versions of QMF (Optional): DSQ2BDEL
Attention: Do not run this step unless you have successfully completed the
installation and testing of QMF 7.1 and no longer need the previous release.

Optionally, run the DSQ2BDEL EXEC to delete a previous version of QMF.
The DSQ2BDEL EXEC prompts for all necessary information needed to delete
QMF. Confirmation of the deletion is required before the actual deletion is
done. You must be linked to the QMF distribution disk and the DB2 VM
production disk, the DB2 database machine must be active, you must have
DRDA® connectivity to the target database, SQLDBSU must be installed in the
target database, and you must have authority to perform the database deletes.
There are two types of QMF deletions as defined below.
v If you have an earlier release of QMF installed in the same database in

which you have installed QMF 7.1, run DSQ2BDEL EXEC with the
PACKAGE option to delete the QMF database access modules of the prior
release.

v If you have an earlier release of QMF installed in a different database from
where you have installed QMF 7.1, run DSQ2BDEL EXEC with the FULL
option to drop ALL QMF DBSPACEs in addition to the database access
modules (packages) of the prior release.

Step 9—Post-Installation Cleanup
The QMF installation control file QMFV710E INSTALL resides on your QMF
distribution disk and contains the DB2 for VM CONNECT passwords for
“SQLDBA” and “Q”. This is a security exposure and should be corrected as
soon as possible. You can edit the installation control file and blank out the
password values. You may wish to change the DB2 for VM CONNECT
password for “Q” and/or REVOKE DBA authority from “Q”, especially if you
have chosen a non-trivial password for “Q” during QMF installation.

QMF uses the PROTOCOL (AUTO) option to run SQLINIT EXEC. If the
PROTOCOL (AUTO) option is not used at your machine, run SQLINIT to
change the default PROTOCOL.

Installing QMF 7.1

40 Installing and Managing QMF on VM

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

On the CMS command line, enter:
SQLINIT PROTOCOL(protocol)

where protocol is SQLDS, AUTO, or DRDA.

Congratulations! You have now completed installing the QMF product.

For information on customizing your system, see “Part 2. Managing QMF for
VM/ESA” on page 51.

Step 10—Load QMF Database Packages to a Remote Server (Optional):
DSQ2BPKB

In order for a QMF Version 7 Release 1 requester installation to be able to
communicate to a server, QMF 7.1 packages must be present at the server. If a
complete QMF 7.1 new or migration installation was performed at the server,
communications can be started and nothing further needs to be done.

For those servers containing QMF 3.3 or above where migration is not an
option, you can run the new install package job, DSQ2BPKB, to install QMF
V7 packages at the remote server. Then access from QMF for VM 7.1 to that
remote server is enabled. Following is a list of the DB2 servers types that are
supported from QMF for VM for remote access and the minimum
version/release required at the server.
v DB2 for OS/390 V3.1
v DB2 for VM/VSE V3.5
v DB2 Universal Database V5
v DataJoiner V2
v DB2 Common Server V2.1
v DB2 Parallel Edition V1.2
v DataJoiner V1.2
v DB2 for AS/400 V4.4

Following is a list of the considerations for running the job (DSQ2BPKB) to
load QMF database packages to a remote server.
1. The application server must contain at least QMF 3.3. For brand new

installs, the QMF installation package and QMF control tables (at least)
must be present.

2. DRDA communications between the DB2 application requester and the
DB2 application server must be defined and operational.

3. The DB2 DRDA application server must be started.
4. The userid at the server must have administrator authority.
5. This job can be rerun.

Installing QMF 7.1

Chapter 3. Installing QMF 7.1 into the DB2 for VM Database 41

|
|

|
|
|
|

|
|
|
|
|
|

|

|

|

|

|

|

|

|

|
|

|
|
|

|
|

|

|

|

Installing QMF 7.1

42 Installing and Managing QMF on VM

Chapter 4. Installing a QMF 7.1 National Language Feature
(NLF)

This chapter parallels the installation steps for QMF 7.1. Where there are
significant procedural differences, this chapter explains the procedures to
follow when installing the National Language Feature. Where the job, library,
or program name differs, this chapter provides the proper names, but the
procedures you follow are in “Chapter 3. Installing QMF 7.1 into the DB2 for
VM Database” on page 21.

NLF Installation EXECs

The QMF product ships CMS EXECs written in the Restructured Extended
Executor (REXX) language. The EXECs and control statements for each NLF
are shipped on the ISD tape for that feature. For information on how to use
REXX, see Virtual Machine/System Product Interpreter User’s Guide

The QMF NLF installation EXECs are designed to prompt the installer for
variable information. There is no requirement for your installation to change
the supplied installation EXECs. Every prompt message asks for variable
input, and each offers an optional “Help” or “Cancel” response.
v When “Help” is issued, a small abstract of the prompt request is displayed.
v When “Cancel” is issued, the EXEC stops.

Whenever a module, library, or job named in this chapter contains the letter n,
replace the n with the appropriate letter for the national language you are
installing. See your QMF NLF Program Directory or “QMF National Language
Feature (NLF) Considerations” on page 19 for the appropriate letter to use for
your installation.

Installing a National Language Feature

When you install an NLF, a row is added to the QMF profile table
(Q.PROFILES) to support the language. This row is inserted with a userid of
SYSTEM. A unique row is added for each language that you install.

The NLF must be installed in each database you want to use it in. If you are
installing into a database that contains a prior release of QMF NLF, ensure
that the sample tables and views of the prior release are not used during the
installation process.

© Copyright IBM Corp. 1983, 2000 43

|

You use your national language for the QMF commands to import, export,
and run some installation procedures. See the NLF program directory for a list
of the translated books (the translated books should have the translated QMF
commands).

Hardware and Program Product Requirements

Make sure that your GDDM and ISPF (optional) environments, as well as
your controllers, terminals, and keyboards, are set up to display the national
characters of the NLF you are installing.

The Chinese, Japanese, and Korean NLFs use DBCS characters; they require
the hardware and program products shown in “Chapter 2. Planning for
Installation” on page 7.

The Installation Steps

The installation steps are outlined on the following pages.

Note: You must first install the QMF 7.1 base product before you can install a
QMF National Language Feature.

The QMF 7.1 distribution and production minidisks are required for the NLF
installation.

Figure 2 on page 22 is an overview of the installation process. The optional
“QMF NLF Installation Checklist” on page 316 may be helpful in monitoring
your installation process.

Preliminary: Read the NLF Program Directory and Complete the
Worksheet

The QMF NLF program directory contains information concerning the
material and procedures associated with the installation of QMF. Because the
program directory is updated between releases of QMF, it may contain useful
information, including a description of PTF’s and APAR’s, as well as
modifications to this book. The program directory contains all the steps for
installing QMF NLF from tape to disk and building the DCSS. Only the QMF
NLF database installation into DB2 for VM is described in this book. You
must complete the steps in the program directory before doing the installation
steps in this book.

The following table shows the information that you need for NLF installation.
Use it as your worksheet.

44 Installing and Managing QMF on VM

|

|
|

|

|

Table 7. Information Required during QMF NLF Installation (QMF 7.1 Worksheet)

Information required for: Your data: QMF in DB2
workstation
server

QMF in
AS/400 server

Database/location ________ ________ ________

Database type (DB2 VM, DB2
workstation server, or DB2
AS/400 server

DB2VM DB2WS DB2400

Prior QMF NLF level (if any) ________ N/A N/A

Q CONNECT password ________ N/A N/A

Default DBSPACE name for
SAVE DATA command (default
is DSQTSDEF)

________ N/A N/A

Step 1—Create the QMF NLF Installation Control File: DSQ2nCTL
The QMF EXEC, DSQ2nCTL, prompts you for information required during
the NLF installation.

To create the QMF NLF installation control file, perform the following steps:
1. Access the QMF NLF distribution disk in WRITE mode
2. Ensure that your A-disk is not full (so QMF has room to generate

temporary files).
3. Fill in the worksheet shown in Table 7, if you have not already done so.
4. Run the EXEC: DSQ2nCTL.

Prompts
You receive a series of prompts that ask you to supply the information you
developed using the worksheet. The prompts vary, depending on the previous
level of QMF, if any, installed on your system. (See “Step 1—Create QMF
Installation Control File: DSQ2ECTL” on page 25.)

Anytime during this process, you can enter:
v HELP on the command line to receive more information.
v CANCEL to terminate the process before completion.

A file named QMFV710n INSTALL is created on your QMF NLF distribution
minidisk. This file contains the information you supplied to the previous
prompts.

If an installation file already exists from a previous installation, the
information you enter is appended to this file and the previous information is
deactivated.

Chapter 4. Installing a QMF 7.1 National Language Feature (NLF) 45

||

|||
|
|

|
|

||||

|
|
|

|||

||||

||||

|
|
|

|||

|

|

Step 2—Run QMF NLF Installation EXEC: DSQ2nINS
Before running this EXEC:
1. You must have access to the QMF NLF distribution minidisk in WRITE

mode.
2. The QMF NLF installation control file QMFV710n INSTALL must exist on

the QMF NLF distribution minidisk.
3. You must be linked to the DB2 for VM production minidisk in READ

mode.
4. The following CMS commands allow the printer and console to continue

processing unless a severe error is found.
spool prt cont hold
spool console start cont

Assumptions for Installing QMF into a Workstation Database Server
Before you attempt to install QMF on a remote database server, be sure to
complete the prerequisistes indicated in “Planning for Installing QMF into a
Workstation Database Server” on page 20.

Running the EXEC
To start the NLF installation EXEC, issue the command:

DSQ2nINS

The QMF NLF installation EXEC obtains its input from the QMF NLF
installation control file. (See “Step 1—Create the QMF NLF Installation
Control File: DSQ2nCTL” on page 45.) The QMF NLF installation EXEC
performs the following steps:
1. Updates the Q.PROFILES and creates an NLF command synonyms table

called Q.COMMAND_SYNONYM_n, if you are not migrating from any
previous release of QMF.

2. Discards existing QMF NLF sample tables and creates new ones, if
required.

Restart Procedure
If this EXEC fails, use the following procedure to restart the EXEC and
continue where you left off:
1. Determine what the problem is and fix it.
2. Rerun this EXEC with an input parameter equal to the restart value

provided in the message when the EXEC terminated.

For example, if you get the message:
TERMINATING EXECUTION ...
TO RESTART THIS EXEC AND CONTINUE WHERE YOU LEFT OFF,
- FIX THE PROBLEM ENCOUNTERED
- RERUN THIS EXEC WITH THE INPUT PARAMETER OF 2

46 Installing and Managing QMF on VM

you can restart the EXEC with:
DSQ2nINS 2

Installation EXEC Error Messages
If you encounter a problem running the QMF installation EXEC, you need to
find the error message describing the problem. Because this error message
may be sent to either the console or the printer, you may want to spool your
console and your printer to “HOLD”.

Note: If you choose to spool your printer or console, enter the following to
release the file that contains the error information:

spool prt close
spool console close

To transfer the printer files to your reader, issue the command:
TRANS PRT ALL *

Step 3—Start QMF NLF: DSQ2nINV
Follow “Step 4—Start QMF: DSQ2EINV” on page 29, noting the differences
listed here. Recall that you can either tailor the QMF invocation EXEC (Step
4A) or invoke QMF from the ISPF environment (Step 4B).

Step 3A—Tailor the QMF Invocation EXEC: DSQ2nINV
Follow “Step 4A—Tailor the QMF Invocation EXEC: DSQ2EINV (Optional)”
on page 30.

Modify the QMF NLF invocation EXEC, DSQ2nINV, to meet the requirements
of your installation. The alterable parameters are the same as in Figure 3 on
page 31. Note that DSQ2nINV is only a sample NLF invocation EXEC. The
necessary links to minidisks, filedefs, SQLINIT, and the ISPSTART command
are described clearly in simpler QMF invocation EXECs. These EXECs,
DSQ2nIN1 (with ISPF) and DSQ2nIN2 (without ISPF), are located on the
production minidisk. You may find them useful in constructing your own
QMF invocation EXEC to match your environment requirements.

Step 3B—Invoking QMF from an ISPF Environment (Optional)
Follow “Step 4B—Invoke QMF from an ISPF Environment (Optional)” on
page 35 and make changes to the ISPF Master Application Menu as shown in
Figure 5 on page 48.

Chapter 4. Installing a QMF 7.1 National Language Feature (NLF) 47

Step 4—Run the IVP for QMF NLF Interactive Mode: DSQ2nIVP

Note: Be sure that QMF 7.1 is installed into the database you are using.

See “Step 5—Run the IVP for QMF Interactive Mode : DSQ2EIVP” on page 36
for information on what the IVP does. Start QMF using the NLF program,
DSQQMFn.

When you have successfully initialized QMF NLF, test for the help panel. To
do this, press the “Help” key from the home panel. After you are on the help
panel, press the “Cancel” key to take you back to the home panel.

You should then issue the command:
CONNECT Q (PASSWORD=xxx

where xxx is the value given to the CONNECT password of Q.

%------------------------ MASTER APPLICATION MENU --------------------
%SELECT APPLICATION ===>_OPT +
% +USERID -
% +TIME -
% 1 +SPF - SPF PROGRAM DEVELOPMENT FACILITY +TERMINAL -
% 2 +QMF - QMF QUERY MANAGEMENT FACILITY +PF KEYS -
% 3 +QMFn - QMF FOR NATIONAL LANGUAGE FEATURE
%
%
%
%
%
%
%
%
% P +PARMS - SPECIFY TERMINAL PARAMETERS AND LIST/LOG DEFAULTS
% X +EXIT - TERMINATE USING LIST/LOG DEFAULTS
%
+PRESS%END KEY+TO TERMINATE +
%
)INIT
)PROC
&SEL = TRANS(TRUNC (&OPT,'.')

1,'PANEL(ISP@PRIM) NEWAPPL'
2,'CMD(DSQ2EINV)'

3,'CMD(DSQ2nINV)'
/* */
/* ADD OTHER APPLICATIONS HERE */
/* */

P,'PANEL(ISPOPT)'
X,'EXIT'

' ',' '
*,'?')

)END

Figure 5. ISPF Master Application Menu for National Language Feature

48 Installing and Managing QMF on VM

Test the QMF Command Interface
Test the command interface by issuing the following command:
CMS DSQ2nCI1

If this EXEC runs successfully, your QMF NLF profile is displayed, and you
receive a message indicating that your CMS command was successful.

Test the QMF Procedure
Run the IVP by issuing the following commands:
IMPORT PROC FROM DSQ2nIVP PROC *
RUN PROC

Answer YES to all prompts.
v If the procedure runs successfully, you receive a message indicating this.
v If the procedure does not run successfully, determine what the problem is

by using the QMF NLF messages and message help panels.

Step 5—Install QMF NLF Sample Objects and Application Objects:
DSQ2nSQD and DSQ2nSQI

After the QMF NLF is installed and verified, you can use the NLF to import
the sample queries and procedures for the NLF.

If you have any previous version of this QMF NLF installed, you must delete
the previous sample queries and procedures before installing QMF NLF V7
queries and procedures.

Perform the following steps to install the sample queries and procedures:
1. Start QMF if not already logged on.
2. Issue the command (if not done earlier):

CONNECT Q (PASSWORD=xxx

where “xxx” is the QMF CONNECT password of “Q”.
3. Delete previous sample queries and procedures. (Run this step only if you

have a previous version of this QMF NLF installed.)
Import and run the procedure DSQ2nSQD as follows:
IMPORT PROC FROM DSQ2nSQD PROC *
RUN PROC

4. Install NLF 6 sample queries and procedures, by importing and running
procedure DSQ2nSQI with the following commands:
IMPORT PROC FROM DSQ2nSQI PROC *
RUN PROC

This procedure also installs the batch mode IVP and sample application
procedures.

Chapter 4. Installing a QMF 7.1 National Language Feature (NLF) 49

Restarting the Procedure
If a failure occurs during this procedure, you can correct the error and run
procedure DSQ2nSQD, which deletes any previously created sample queries.
Then import and rerun procedure DSQ2nSQI.

Step 6—Run the IVP for QMF NLF Batch Mode (Optional): DSQ2nBAT
Follow the directions for “Step 7—Running the Batch-Mode IVP (Optional):
DSQ2EBAT” on page 38.

To run the IVP, use the QMF invocation EXEC, specifying the parameters for
batch mode and the QMF procedure Q.DSQ2nBAT, by issuing either of the
following:
DSQ2nINV MODE(B) PROC(Q.DSQ2nBAT)

or
DSQ2nINV MODE(B) PROC(Q.DSQ2nBAT) CMSSUB(NO)

Step 7—Post-Installation Cleanup
The QMF installation control file, QMFV710n INSTALL, resides on the QMF
NLF production disk and contains the DB2 for VM CONNECT password for
“Q”. This file was created in “Step 1—Create the QMF NLF Installation
Control File: DSQ2nCTL” on page 45. Because this file is a potential security
exposure, you should edit the installation control file and blank out the
password. You may wish to change the DB2 for VM CONNECT password for
“Q” and/or REVOKE DBA authority from “Q”, especially if you have chosen
a non-trivial password for “Q” during QMF installation.

QMF uses the PROTOCOL (AUTO) option to run SQLINIT EXEC during Step
5. If the PROTOCOL (AUTO) option is not used at your machine, run
SQLINIT to change the default PROTOCOL.

On the CMS command line, enter:
SQLINIT PROTOCOL(protocol)

where protocol is SQLDS, AUTO, or DRDA.

50 Installing and Managing QMF on VM

Part 2. Managing QMF for VM/ESA

Chapter 5. Starting QMF 57
Before you Start QMF 57

Establishing a Database Connection . . . 57
Initializing the QMF Session 58

Quick Start 58
Setting up QMF to Run under ISPF 59

Before you start QMF 59
Starting QMF from a Menu Option . . . 59
Starting QMF with the ISPSTART
Command 61

PGM Form 61
Program Segment Form 62

Starting QMF in Batch Mode in ISPF. . . 62
Examples of Starting QMF under ISPF . . 63

Setting up QMF to Run under CMS 64
Starting QMF Directly with the DSQQMFE
Module 64
Starting QMF in a Batch CMS
Environment 64
Examples of Starting QMF under CMS . . 65

Creating a CMS EXEC 65
Verify Program Modules 65
Verify QMF Data Files 65
GDDM Considerations 66
DB2 for VM Considerations 66

Chapter 6. Customizing Your Start
Procedure 67
Quick Start 67
Setting Default Start Values Using the REXX
Program DSQSCMDn 68
Naming the Program Segment 72

dcssname 72
DSQSDCSS 73

Customizing Report Storage and Report
Performance 73

Adjusting Storage for Report Data
(DSQSBSTG) 73

Choosing the Right Amount of Virtual
Storage for Each User 73
Performance Tradeoffs 74

Adjusting Reserved Storage Used for
Report Data (DSQSRSTG) 74

DSQSBSTG and DSQSRSTG Value of 0 74

Small Value for DSQSBSTG or Large
Value for DSQSRSTG 75

Acquiring Extra Storage (DSQSPILL). . . 75
Allocating a Spill File for CMS Users. . 76
Estimating the Space Required for a
Spill File 76
Using a Spill File in a Noninteractive
QMF Session 78
Solving Some Spill File Problems . . . 78

Controlling the Number of Report Rows
Retrieved for Display (DSQSIROW) . . . 79

Performance with Small DSQSIROW
Values 80
Performance with Large DSQSIROW
Values 81

Setting the Level of Trace Detail
(DSQSDBUG) 81
Controlling Initial Activities During a Session 82

Specifying the Location to Connect to
When Starting QMF (DSQSDBNM) . . . 82
Specifying an Interactive or Noninteractive
QMF Session (DSQSMODE). 83
Naming a Procedure to Run When QMF
Starts (DSQSRUN) 84

Running an Initial Procedure
Noninteractively 85
Performing Interactive QMF Work with
an Initial Procedure 85
Passing Variable Values to an Initial
Procedure 86

Setting Printing for Double-Byte Character Set
Data (DSQSDBCS) 90

Chapter 7. The QMF Session Control
Facility 91
Installing or Removing Q.SYSTEM_INI . . . 91
Importing the Default System Initialization
Procedure 91
When Does the Q.SYSTEM_INI Procedure
Run? 91
Using Q.SYSTEM_INI 92

Example Shipped with QMF 92
User Session Procedure Example 92
Procedure that Displays an Object list . . 93

Security and Sharing Session Procedure . . . 94

© Copyright IBM Corp. 1983, 2000 51

Diagnosis Considerations 94

Chapter 8. Establishing QMF Support for
End Users 95
The role of the Q AUTHID 95
Quick Start 95
Ensuring That Users Have Access to CMS . . 96
Creating User Profiles to Enable User Access
to QMF 97

Using the Q User Profile, a Special QMF
Profile 97
Establishing a Profile Structure for Your
Installation 98
Adding a New User Profile to the
Q.PROFILES Table 98
Preventing Users Without Unique Profiles
from Using QMF 99
Reading the Q.PROFILES Table 100
Providing the Correct Profile for the
User’s Operating Environment 104
Updating User Profiles 105

Using the SET PROFILE Command 105
Using SQL UPDATE Statements . . . 105
Updating the SYSTEM Profile. . . . 106

Deleting Profiles from the Q.PROFILES
Table 106

Controlling Access to QMF and Database
Objects 107

SQL Privileges Required to Access Objects 107
SQL Privileges Required for QMF
Commands 108
SQL Privileges Required for Prompted
and QBE Queries 109
SQL Privileges Required for the Table
Editor. 109

Granting and Revoking SQL Privileges 109
Using the SQL GRANT Statement . . 110
Using the SQL REVOKE Statement . . 110

Sharing QMF Objects with Other Users 111
Allowing Uncommitted Read 111
Setting Standards for Creating Objects . . 112

Customizing a User’s Database Object List 112
Using the Default Object Lists. 113
Changing the Default List 114
Object List Storage Requirement 115

Enabling Users to Create Tables in the
Database 116

Choosing and Acquiring a dbspace for the
User 118

Using the SQL ACQUIRE Statement 118

Sizing a dbspace 118
Granting a User DB2 for VM RESOURCE
Authority 118
Enabling Users to Confirm Table Changes
Before They are Made 119

Enabling Users to Support a Chart 120
Maintaining QMF Objects Using QMF
Control Tables 120

Reading the Q.OBJECT_DIRECTORY
Table 121
Reading the Q.OBJECT_DATA Table . . 122
Reading the Q.OBJECT_REMARKS Table 123
Listing QMF Queries, Forms, and
Procedures 123
Displaying QMF Queries, Forms, and
Procedures 124
Transferring Ownership of Queries,
Forms, and Procedures 124
Deleting Obsolete Queries, Forms, and
Procedures 125
Enlarging the dbspace for the QMF Object
Control Tables 126

Maintaining Tables and Views Using DB2 for
VM System Tables 127

Listing Tables and Views 128
Transferring Ownership of a Table or
View 128
Deleting a Table or View from the
Database 128

Supporting Locally Defined Date/Time
Formats 128
Accessing the DXT End User Dialogs (ISPF
Only) 129

Supporting the EXTRACT Command . . 129
Allocating Resources 129
Allocating and Reallocating Resources
Using EXECs 130
Preparing the Allocation EXEC 130
Preparing the Reallocation EXEC. . . . 135
Other Allocation Methods 138

Customizing the Document Editing Interface
for Users. 139

Changing the Application 139
Renaming the Document Interface Macros
and EXEC 139
Placing the Q.DSQAED2S Procedure in
the Database 139
Transferring Ownership to Q 140
Changing the Data Components 140

The Message Component 140

52 Installing and Managing QMF on VM

The DCF Components 141
Changing the EXECs and Macros . . . 142

Changing DSQABD2Q 142
Changing DSQABD2I 142
Changing DSQABD2C 142

Customizing the QMF Edit Command . . . 143
Enabling English Support in an NLF
Environment 144
Using Global Variables to Define the
Currency Symbol 145

Chapter 9. Enabling Users to Print
Objects 147
Quick start 147
Printing Objects 148
Deciding Whether to Use QMF or GDDM
Services for Printing 149
Using GDDM Services to Handle Printing 149

Choosing a GDDM Nickname for Your
Printer 150

Choosing the Right Type of GDDM
Device 150

Creating the Nickname Specification . . 151
Example Nickname for a Family 2
GDDM Printer 151
Example Nickname for a Family 3
GDDM Printer 152
Example Nickname for a Family 4
GDDM Printer 152
Defining Multiple Nicknames with
One Definition 152
Examples of Nickname Definitions . . 153
Updating the GDDM Defaults Module
with the Nickname 154

Testing the Nickname Definitions in
External Default Files 154
How QMF Interfaces with Your GDDM
Nickname 154

Using QMF’s DSQPRINT to Handle Printing 155
Defining a Synonym for the Print Function
Key 156
Updating User Profiles to Enable GDDM
Printing 156

Chapter 10. Customizing QMF Commands 159
Quick Start 159
Using the Default Synonyms Provided with
QMF 159

Displaying Printed Reports (DPRE) . . . 160
Using DPRE 160

Customizing DPRE 161
Creating a Command Synonym Table . . . 162
Entering Command Synonym Definitions
into a Command Synonym Table. 163

Choosing a Verb 163
Rules for the VERB Column 164
Using Base QMF Verbs as Command
Synonym Verbs 164

Choosing an Object Name 165
Choosing the Synonym Definition . . . 165

Using a Procedure in the Synonym
Definition 165
Using Variables in the Synonym
Definition 166
Keying Information Into the
SYNONYM_DEFINITION Column . . 168

Activating the Synonyms 168
Minimizing Maintenance of Command
Synonym Tables 170

Assigning One Synonym Table to all
Users 170
Assigning Views of a Synonym Table to
Individual Users 170

Synonyms for Public or Private Use 170
Synonyms for Public or Group Use 171
Synonyms Paired with an
Authorization Table 171

Chapter 11. Customizing QMF Function
Keys 173
Quick Start 173
Choosing the Keys You Want to Customize 173

Default Keys on Full-screen Panels . . . 174
Default Keys on Window Panels 175

Creating the Function Key Table 176
Entering Your Function Key Definitions into
the Table 177

Linking a Command with a Function Key 177
Labeling the Function Key and
Positioning it on the Screen 179
Examples of Key Definitions 179

Entering a Definition for a Key on a
Full-screen Panel 179
Entering a Definition for a Key on a
Window Panel 180
Entering a Key Definition for a Help
or Prompt Panel 181

Identifying the Panel You Want to Customize 181
Full-screen Panel Identifiers 181
Window Panel Identifiers 181

Part 2. Managing QMF for VM/ESA 53

Command Windows 182
Forms Windows 182
Global Variable Windows 182
Help and Prompt Windows 182
Location Windows 182
Object List Windows 182
Prompted Query Windows. 183

Activating New Function Key Definitions 184

Chapter 12. Creating Your Own Edit
Codes for QMF Forms 187
Quick Start 187
Choosing an Edit Code 188
Handling DATE, TIME, and TIMESTAMP
Data Types 189
Calling Your Exit Routine to Format the
Data 191
Passing Information to and from the Exit
Routine 193

Fields of the Interface Control Block . . 193
Fields That Characterize the Input Area 195

How U-Type Edit Codes are
Represented in the Input Area . . . 196
How V-Type Edit Codes are
Represented in the Input Area . . . 196

Fields That Characterize the Output Area 196
Passing Control to the Exit Routine When
QMF Terminates 197
Writing an Edit Routine in High-Level
Assembler (HLASM) or Assembler 197

How an Assembler Edit Routine Interacts
with CMS 198
How an Assembler Edit Routine Interacts
with QMF 199
Assembling Your Program 202
Generating Your Program 203

Writing an Edit Routine in PL/I without
Language Environment (LE) 203

How a PL/I Edit Routine Interacts with
QMF 204
Compiling Your Program 209
Creating Your DSQUEDIT Module File in
PL/I 210

Writing an Edit Routine in PL/I with
Language Environment (LE) 211

Generating Your PL/I Program for LE 212
Writing an Edit Routine in COBOL without
Language Environment (LE) 213

How a COBOL Edit Routine Interacts
with QMF 214

Compiling Your Program 219
Assembling the Run Time Options Macro
(COBOL II) 220
Generating Your Program 220

Writing an Edit Routine in COBOL with
Language Environment (LE) 221

Generating Your COBOL Program for LE 222
Handling Double-Byte Character Set Data 223

Edit Codes for DBCS Data 223
What the Edit Routine Receives 223

Data from Graphic Columns 223
Data from Character Columns . . . 224

Ensuring the Edit Routine Returns the
Right Results 224

Overflowing the ECSRSLT Field . . . 224
Printing the Report Column 224

Chapter 13. Controlling QMF Resources
Using a Governor Exit Routine 227
Quick start 227
Using the IBM-Supplied Governor Exit
Routine 228

Activating the Default Limits 229
How a Governor Exit Routine Controls
Resources 230

How the Governor Knows What the
Resource Limits Are 231
How the Governor Knows When You
Reach a Resource Limit 232
What Happens When You Reach a
Resource Limit 233

Defining Your Own Resource Limits . . 233
Creating your own Resource Control
Table 236

VM Timer Considerations 236
Modifying the IBM-supplied Governor Exit
Routine or Writing Your Own. 238

Program Components of the Governor
Exit Routine 239
How CMS Interacts with the Governor
Exit Routine 240
How and When QMF Calls the Governor
Exit Routine 241

Points at Which QMF Calls the
Governor 241
What Happens Upon Entry to the
Governor Exit Routine 243
Establishing Addressability for
Function Calls 243

54 Installing and Managing QMF on VM

Passing Resource Control Information to
the Governor Exit 244

Structure of the DXEGOVA Control
Block 245
Addressing the Resource Control Table 249
Structure of the DXEXCBA Control
Block 250

Storing Resource Control Information for
the Duration of a QMF Session 258
Canceling User Activity 259
Providing Messages for Canceled
Activities 260

Assembling and Generating Your Governor
Exit Routine 261

Assembling Your Governor Exit 261
Building a Module File or Creating a
Load Library Member 262

Chapter 14. Customizing a Remote
Database Connection 263
Quick Start 263
Determining the Remote Database
Connection Needed 264

Connecting with Remote Unit of Work 265
Connecting with DB2-to-DB2 Distributed
Unit of Work 265

Specifying a Table or View with a
Three-part Name in DB2 265
Directing a Query Using Three-part
Names 265

Verifying the Connections Necessary for
Remote Unit of Work 266

Checking DB2 for VM Connections . . . 266
Checking DB2 for VM Connections . . . 266

Preparing a Non-DB2 for VM Location for
Access by QMF VM Users 267

Creating Command Synonym Tables . . 267
Sample Remote Server Command
Synonym Table for the CMS
Environment 268

Preparing QMF to Support the DPRE
Command 269
Preparing QMF to Support Other
Commands 269
Creating Function Key Tables 269
Updating QMF Governor Control Tables 270
Installing the National Language Feature
in the QMF Server 270
Code Page Support 270

Restricting Use of the APPLDATA
Column 270
Avoiding Use of Some Special
Characters 270

Enabling Your Users to Access a Remote
Database 271

Updating a User’s Profile 271
Specifying Access for Current SQL
Authorization ID 271
Connecting to the Local Database . . . 271
Connecting to the Remote Database. . . 271
Specifying a Location Name 272

In DB2 272
In DB2 for VM. 273

Where Data Must be Located for User
Access 273

Working with QMF Objects 273
Working With Tables 274

Preventing SQL Errors 274
Translating User IDs 275

Translating Names 275
Deleting QMF Users from Each Remote
QMF Location 275

Enabling Administrator Access to Your
Location 275

Chapter 15. Customizing the Batch
Processing Program 277
Quick Start 277
Enabling Your Users to Use Batch Mode . . 278
Sending a Job to the CMS Batch Machine 279
Running Batch Jobs on Your Machine . . . 281
Debugging a Procedure 282
Using the QMF Batch Query/Procedure
Application (BATCH) 282

MACLIBs Required 283
Using the Application 283
Filling in the Prompt Panel 283

Required Entry Fields 284
Optional Entry Fields 285

Modifying the Batch Application. . . . 286

Chapter 16. Troubleshooting and Problem
Diagnosis 289
Quick Start 289
Troubleshooting Common Problems. . . . 290

Handling Initialization Errors 290
Handling Warning Messages 291
Handling GDDM Errors During Printing 292
Handling QMF Errors During Printing 292

Part 2. Managing QMF for VM/ESA 55

Handling CMS Command Errors . . . 294
Using the CMS Command to Run an
EXEC 294
Issuing the CMS Command if QMF is
Started Using ISPF 294
Using the DB2 for VM CONNECT
Command 294
Using the DB2 for VM COMMIT
Command 295

Handling Display Errors 295
Using the HEX Function 295
Using QMF-provided Hex and Bit Edit
Codes. 295
Handling Binary Data with
User-Written Edit Routines. 295

Solving Slow Performance Problems . . 296
Resetting the Data Object to Improve
Performance 296
Increasing the User’s Report Storage 297
Using REXX Function Packages . . . 297

Determining the Problem Using Diagnosis
Aids 298

Choosing the Right Diagnosis Aid for the
Symptoms 298
Diagnosing Your Problem Using QMF
Message Support 298

Determining which QMF Function
Issued an Error Message 299
Handling System Error Messages . . 300
Handling SQL Return Codes 300

Using the QMF Trace Facility 300
Allocating the Trace File 301
Starting the Trace Facility 301
Getting the Right Level of Detail in
Your Trace Output 302
Tracing at the Module Level 304
Viewing QMF Trace Data 304
Determining the QMF Service Level 305
Turning Off the Trace Facility 305

Abend Handling 305
Using the QMF Interrupt Facility . . . 306

Creating an Interrupt 306
Displaying Trace Information After
Creating an Interrupt 307
Error Handling 308

Using Error Log Reports from the
Q.ERROR_LOG Table 308

Reporting a Problem to IBM 309
Using ServiceLink to Search for
Previously Reported Problems 310

Working with Your IBM Support Center 312

56 Installing and Managing QMF on VM

Chapter 5. Starting QMF

This chapter describes the various methods you can use to start QMF. You can
start QMF running under ISPF or CMS, or from the QMF server.

For information about starting QMF from the callable interface, see Developing
QMF Applications

Before you Start QMF

Before you start QMF, you need to decide which environment you want QMF
to run in. The method used to start QMF depends upon the environment from
which QMF is started and whether the user wants to run QMF under ISPF.

Establishing a Database Connection
Before you start QMF, you need to establish the CMS and DB2 for VM
environment.

The DB2 for VM database program usually operates in its own virtual
machine associated with a VM logon ID. So does each QMF user. The
directories of each virtual machine can contain IUCV (Inter-User
Communications Vehicle) entries that allow the machines to communicate
with DB2 for VM. You need to ensure the compatibility between the entries
for QMF users and those for DB2 for VM.

Any combination of the following situations can exist:
Case 1: The DB2 for VM directory has IUCV ALLOW. In that case, any
other virtual machine can communicate with the DB2 for VM machine,
and nothing else need be done to allow communication.
Case 2: The QMF user’s entry has IUCV ANY. In that case, the QMF user
can communicate with any other virtual machine, including the DB2 for
VM machine.
Case 3: The QMF user’s entry has IUCV sqldsid, where sqldsid is the user
ID of the DB2 for VM virtual machine. The QMF user can have this
directory entry in any case, and must have it if neither case 1 nor 2 holds.
Case 4: The DB2 for VM directory has an IUCV *IDENT control statement
to identify which resources it manages, and whether the resources are local
or global. A local resource can be accessed only by QMF users on the same
processor. A global resource can be accessed by QMF users on local or
remote processors.

© Copyright IBM Corp. 1983, 2000 57

Setting up a user’s directory entry is a normal part of the task of providing a
VM logon ID. For instructions about it, see VM/SP Planning and System
Generation Guide and DB2 Server for VM System Administration

If your installation requires the use of QMF in different databases, you must
install QMF into each unique DB2 for VM database. Each database contains
the following:
v QMF control tables
v QMF DB2 for VM packages
v QMF sample tables and queries
v QMF views (system tables)

To install QMF into multiple databases, see “Part 1. Installing QMF for
VM/ESA” on page 1.

Initializing the QMF Session
When initializing the QMF session:
v DB2 for VM user ID = VM logon ID
v QMF does an implicit connect

Quick Start

Table 8 outlines ways you can set up QMF to start.

The n symbol in each example represents the national language identifier
(NLID). Substitute the NLID from Table 5 on page 19 that corresponds to the
national language in which you want to start QMF. For example, to start an
English QMF session, enter QMFE.

For more information on any of the tasks listed, see the page shown at the
right of the table.

Table 8. Options for starting QMF

To do this task: See:

To set up QMF to start with the PGM form of the ISPSTART command, enter:
ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(....)
You can also use the program segment form.

Page 61

To set up QMF to start in batch mode in ISPF, enter:
ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(...DSQSMODE=B,DSQSRUN=aaa.bbb)
You can also start QMF in batch mode using a EXEC.

Page 62

To set up QMF to start directly with the DSQQMFE module, enter:
DSQQMFE DSQSBSTG=123456,DSQSIROW=0,DSQSRUN=SAM.PROG1

Page 64

To set up QMF to start in a batch CMS environment, enter:
DSQQMFE ...DSQSMODE=B,DSQSRUN=aaa.bbb

Page 64

Starting QMF

58 Installing and Managing QMF on VM

Table 8. Options for starting QMF (continued)

To do this task: See:

To create a new CMS EXEC to start QMF, you need to ensure that the program modules
and data files are available to QMF, and that GDDM and DB2 for VM considerations have
been met.

Page 65

Setting up QMF to Run under ISPF

You can let users start QMF using ISPF services. You can do this in three
ways:
v ISPF has an initial dialog to which you can add QMF.
v Replace the initial dialog with one that starts QMF directly.
v Create an EXEC to start QMF as a program dialog.

You can use any of the methods to start the others. For example, you can run
an initial dialog from an EXEC.

If you are going to run QMF under ISPF, you must start the QMF program
dialog using the ISPF SELECT service. When a CMS command is used, results
are unpredictable.

Restrictions:

1. You cannot run QMF as a command dialog.
2. You cannot enter QMF from a split screen or create a split screen during a

QMF session if QMF was started as an initial dialog.

For information on ISPF, see Interactive System Productivity Facility for VM
Dialog Management Services and Examples

Before you start QMF
A FILEDEF ISPLLIB statement for DSQLDLIB LOADLIB must be in place
before QMF is started; it can be done either before or after ISPF is started, for
example:

FILEDEF ISPLLIB DISK DSQLDLIB LOADLIB * (PERM)

Starting QMF from a Menu Option
If you choose to set up a menu option to start QMF, the menu must point to
QMF, but can also point to QMF resources. Figure 6 on page 60, which shows
a sample definition for the ISPF master application menu, illustrates how to
add an option to the menu. In this definition, Option 2 was added for
reaching QMF through an EXEC.

Starting QMF

Chapter 5. Starting QMF 59

|
|
|

|

|

If you’re using an NLF: You can modify the definition of the Master
Applications Menu to allow users to pick the
language environment for their QMF sessions.
Figure 6 is an example in which users have a choice
of beginning a QMF session in English (option 2),
Uppercase (option 3), or Japanese (option 4). The
TRANS function in the)PROC section of the panel
definition brings this about: As you can see from the

%------------------------ MASTER APPLICATION MENU --------------------
%SELECT APPLICATION ===>_OPT +
% +USERID -
% +TIME -
% 1 +PDF - PROGRAM DEVELOPMENT FACILITY +TERMINAL -
% 2 +QMF - QMF -- English +FUNCTION KEY -
% 3 +QMFU - QMF -- Uppercase
% 4 +QMFK - QMF -- Japanese
%
%
%
%
%
%
%
%
%
%
%
% P +PARMS - SPECIFY TERMINAL PARAMETERS AND LIST/LOG DEFAULTS
% X +EXIT - TERMINATE USING LIST/LOG DEFAULTS
%
+PRESS%END KEY+TO TERMINATE +
%
)INIT
)PROC

&SEL = TRANS(TRUNC (&OPT,'.')
1,'PANEL(ISP@PRIM) NEWAPPL'
2,'PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQIROW=150)'
3,'PGM(DSQQMFU) NEWAPPL(DSQU) PARM(DSQIROW=150)'
4,'PGM(DSQQMFK) NEWAPPL(DSQK) PARM(DSQIROW=150)'

/* */
/* ADD OTHER APPLICATIONS HERE */
/* */

P,'PANEL(ISPOPT)'
X,'EXIT'

' ',' '
*,'?')

)END

Figure 6. Sample master application menu

Starting QMF

60 Installing and Managing QMF on VM

figure, this function transforms options 2, 3, and 4
into the operand portions of an ISPF command that
is executed like ISPSTART (see the previous section).
The command executed invokes the appropriate
QMF module (DSQQMFE, DSQQMFU, or
DSQQMFK), and passes it the value 150 for the
DSQSIROW parameter. The DSQSIROW parameter is
discussed in “Controlling the Number of Report
Rows Retrieved for Display (DSQSIROW)” on
page 79.

Tip: The direct menu approach can start QMF as much as four times faster
than the EXEC approach. If you allocate all user resources through CMS
logon procedures, then the EXEC you create for the menu option has no
resources to allocate. This leaves it with a single function, starting QMF,
and you can do this without an EXEC.

Starting QMF with the ISPSTART Command
Use the ISPF command ISPSTART to develop an EXEC to enable users to start
QMF as an ISPF dialog. For example, you can enter the following statement
from the command line:
ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(...)

ISPSTART starts QMF as the new ISPF application DSQE. The QMF program
DSQQMFE must be run with an application ID of DSQE. (The national
language ID for each must be the same.)

The optional PARM operand, which passes parameter values to the QMF
program DSQQMFE, might look like this:
PARM(DSQSBSTG=256000,DSQSIROW=50,DSQSRUN=SAM.PROG1)

Parameters are discussed more fully later in this chapter.

You can start QMF with either the PGM form or program segment form of the
ISPSTART command.

PGM Form
PGM is the object of the ISPSTART command; with PGM, you specify the
QMF program DSQQMFE. To do this, enter the following statement from the
command line in CMS, or include it as a statement in an EXEC:
ISPSTART PGM(DSQQMFE)
NEWAPPL(DSQE) PARM(dcssname(DSQSBSTG=n1,...)

When the PGM form is used, the QMF program segment is started indirectly
through the IBM-supplied program, DSQQMFE, and QMF runs in CMS subset
mode.

Starting QMF

Chapter 5. Starting QMF 61

Environmental considerations: When you start QMF using the PGM form of
the ISPSTART command, QMF runs in CMS subset mode. All subsequent
QMF processes also run in CMS subset mode.

Program Segment Form
DCSS is the ISPF keyword for the QMF program segment used by QMF when
QMF is started with ISPSTART; dcssname is the name of the program segment
being used. To start QMF using the program segment form of ISPSTART, enter
the following statement from the command line in CMS or include it as a
statement in an EXEC:
ISPSTART DCSS(dcssname) NEWAPPL(DSQE)

PARM(DSQSBSTG=n1,...)

When the program segment form is used, the QMF program segment is
started directly. QMF can run in CMS SUBSET or CMS non-SUBSET mode
when started using a program segment (as explained in Environmental
Considerations).

When QMF is executed as an ISPF dialog, the QMF program DSQQMFE must
be run with an application ID of DSQE. You can find more information on the
parameters and the dcssname under “Chapter 6. Customizing Your Start
Procedure” on page 67.

Environmental Considerations: When you start QMF using the program
segment form of the ISPSTART command, QMF runs in either CMS
non-SUBSET mode or CMS SUBSET mode. The mode depends on the calling
environment. For example, if you are running in CMS non-SUBSET mode and
start QMF using a program segment, QMF runs in non-SUBSET mode.

When running QMF in CMS non-SUBSET mode, you must be sure that all
programs called from within QMF, including QMF exit routines, are
relocatable. Running programs or tools that are not relocatable or that run at
specific locations in storage can cause unpredictable results when run from
within QMF.

When QMF uses the command interface, it always runs in CMS subset mode
regardless of how it is started. This means that all processes running under
QMF within the command interface are also running in CMS subset mode,
until the command interface returns control to the initial QMF program
segment, at which time QMF runs in the mode in which it was started.

Starting QMF in Batch Mode in ISPF
You can start QMF running in batch mode. You might want to start QMF in
batch mode to save resources and time.

Starting QMF

62 Installing and Managing QMF on VM

You can start QMF using ISPF with an EXEC. To start QMF from an EXEC,
place the following statement in the startup file:
ISPSTART CMD(exec_name) NEWAPPL

where exec_name is the name of the EXEC that starts QMF. The example
startup EXEC distributed with QMF is DSQ2EINV.

In the example, PARM establishes the appropriate operating mode
(DSQSMODE=B), identifies the procedure to be run (DSQSRUN=aaa.bbb), and
can include variables for that procedure.

For additional samples and information about running QMF in batch mode,
see “Chapter 15. Customizing the Batch Processing Program” on page 277.

Examples of Starting QMF under ISPF
The following are some examples of starting and passing parameters to QMF
under ISPF.
v Starting from an EXEC and specifying QMF as the initial dialog:

ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSIROW=150,DSQSRSTG=0)

This statement passes a value of 150 for DSQSIROW (number of rows
fetched before first display of report) and passes a value of 0 for
DSQSRSTG (amount of reserved storage).

v Starting from an EXEC operating within ISPF:
ISPEXEC SELECT PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSDCSS=QMF)

This statement passes the name QMF for the QMF program segment.
v Starting from an ISPF menu:

)PROC

&SEL = TRANS(TRUNC (&OPT,'.')
1,'PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSPILL=NO)'
.
.
.

This code passes NO for DSQSPILL whenever a user selects option 1.
v Starting from an EXEC and specifying an initial procedure:

ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSRUN=Q.IPROC(&&&&TABLE=Q.STAFF))

This statement uses the DSQSRUN parameter:
– To specify an initial procedure, Q.IPROC, to run when QMF starts
– To pass a value, Q.STAFF, to the procedure for the variable &TABLE

The DSQSRUN parameter as specified in the preceding example results in
the following QMF command:

Starting QMF

Chapter 5. Starting QMF 63

RUN Q.IPROC(&TABLE=Q.STAFF

Setting up QMF to Run under CMS

In CMS, a user can start QMF in the following ways:
v By using the DSQQMFE command either with the NUCXLOAD command

or in an EXEC
v In a batch CMS environment

Note that, if you use the CONCAT option on the ISPLLIB FILEDEF statement,
you must also issue a GLOBAL LOADLIB DSQLDLIB.

Starting QMF Directly with the DSQQMFE Module
Before you enter DSQQMFE, it must be loaded as a nucleus extension with
the NUCXLOAD command:

GLOBAL LOADLIB DSQLDLIB
NUCXLOAD DSQQMFE

To run QMF independently of ISPF, use either of the following commands:
DSQQMFEdcssname(DSQSBSTG=n1,...)
DSQQMFE DSQSBSTG=n1,...

Because dcssname is optional, the second statement is also correct.

The parameters you can specify are the same as those available under ISPF.
The parameters and the dcssname are discussed later in this chapter.

When QMF is started in CMS independently of ISPF, the following return
codes are valid:
0 Execution successful
4 Warning condition occurred
8 Error condition occurred
16 Severe error occurred

Starting QMF in a Batch CMS Environment
To start QMF without using ISPF services, place the following statement in a
start job:
DSQQMFE ...DSQSMODE=B,DSQSRUN=aaa.bbb

where 'DSQSMODE=B' establishes the appropriate operating mode and
'DSQSRUN=aaa.bbb' identifies the procedure to be run. The procedure can
include a variable as the procedure name. (It should contain the authorization
ID of the owner.)

The ellipsis represents optional parameter values that the user can include in
addition to the required DSQSMODE and DSQSRUN parameters.

Starting QMF

64 Installing and Managing QMF on VM

|
|

Examples of Starting QMF under CMS
The following are some examples of starting and passing parameters to QMF
operating independently of ISPF:
v Starting from CMS:

DSQQMFE dcssname(DSQSBSTG=50000,DSQSDBUG=NONE,DSQSMODE=B)

This statement turns on L2 tracing (DSQSDBUG=NONE), passes a value of
50 000 for DSQSBSTG (maximum storage for reports), and passes a value of
B (batch) for DSQSMODE (mode of operation).

v Starting from an EXEC and specifying an initial procedure:
DSQQMFE DSQSRUN=Q.IPROC(&&TABLE=Q.STAFF)

This statement uses the DSQSRUN parameter:
– To specify an initial procedure, Q.IPROC, to run when QMF starts
– To pass a value, Q.STAFF, to the procedure for the variable &TABLE

The DSQSRUN parameter as specified in the preceding example results in
the following QMF command:
RUN Q.IPROC(&TABLE=Q.STAFF

Creating a CMS EXEC

To create a new CMS EXEC to start QMF, you need to ensure that the
program modules and data files are available to QMF, and that GDDM and
DB2 for VM considerations have been met.

Verify Program Modules
The DB2 for VM database, QMF’s program segments, ISPF’s shared segments
(if used), and GDDM’s shared segments or product text libraries must be
available before starting QMF. For more information about making these
modules available, see “Part 1. Installing QMF for VM/ESA” on page 1.

Verify QMF Data Files
The following list of data files is used by QMF. These files are allocated
according to the recommended sizes in the DSQ2EINV EXEC. If you want to
allocate them differently, you must modify the invocation exec.

DSQDEBUG
QMF trace dump output

DSQDEBUG cannot be allocated to a disk by using the shared file
system (SFS).

DSQPRINT
Print data output

DSQSPILL
Spill data file

Starting QMF

Chapter 5. Starting QMF 65

DSQSPILL cannot be allocated to a disk by using the shared file
system (SFS). You may, instead, choose to use a temporary disk.

DSQEDIT
Edit transfer file

DSQEDIT cannot be allocated to a disk by using the shared file
system (SFS). Instead, use a temporary disk.

DSQPNLE
QMF panel file

ISPLLIB
Filedef for QMF library; contains the QMF programs (for example,
DSQLDLIB).

DSQLDLIB
QMF load library

GDDM Considerations
When the QMF DCSS is built, it includes the GDDM interface code. If you
run GDDM from a DCSS, you need not access a GDDM disk, or GDDM
TXTLIBs, and you can remove the lines in the invocation EXEC that refer to
GDDM.

If you do not have GDDM in a DCSS, you must access the GDDM TXTLIBs
and perform the necessary FILEDEFs. If you want to change the release of
GDDM being used by QMF, you must rebuild the QMF shared segment using
the DSQ2ESEG EXEC.

DB2 for VM Considerations
QMF supports DATE, TIME, and TIMESTAMP data types, so users can make
use of local date/time exit routines. For QMF to use a local date/time exit, the
text files containing the date/time exits, ARIUXDT and ARIUXTM, must be
placed on a minidisk that is accessible to QMF when QMF is started.

The QMF DCSS includes the ARIRVSTC text file, and if this file is changed by
PTFs applied to DB2 for VM or a new level of DB2 for VM, the QMF DCSS
must be rebuilt using the DSQ2ESEG EXEC.

Starting QMF

66 Installing and Managing QMF on VM

Chapter 6. Customizing Your Start Procedure

This chapter describes the various methods you can use to pass parameters to
the program to help you customize a user’s QMF session.

Quick Start

Table 9 shows how to use the program parameters to customize aspects of the
QMF session. The command syntax in the examples applies to starting QMF
with the DSQQMFE module. If you start QMF differently, see the command
syntax in “Chapter 5. Starting QMF” on page 57.

The n symbol in each example represents the national language identifier
(NLID). Substitute the NLID from Table 5 on page 19 that corresponds to the
national language in which you want to start QMF. For example, to start an
English QMF session, enter QMFE.

For more information on any of the tasks listed, see the page shown at the
right of the table.

Table 9. Passing parameters

To do this task: See:

To name the program segment something other than the default QMF710E use the
dcssname or dsqsdcss parameters. For example to change the name to QMFNEW when
using the ISPSTART command, enter:
ISPSTART DCSS(QMFNEW)

Page 72

To set limits on the amount of storage used for QMF queries and reports, use the
DSQSBSTG parameter if you want any limit other than 0. For example, to specify a limit of
1 000 000 bytes (1MB):
DSQQMFn B=1000000

Page 73

To set limits on the amount of CMS storage used for QMF queries and reports, use the
DSQSRSTG parameter if you want any limit other than 0. For example, to specify a limit of
1 000 000 bytes (1MB):
DSQQMFn R=1000000

Page 74

To use temporary storage (a spill file) as extra storage for report data, use the DSQSPILL
parameter. For example, enter:
DSQQMFn L=YES

Page 75

To allow QMF to retrieve any number of rows other than 100 before QMF displays the
first screen of the report, use the DSQSIROW parameter. For example, to allow QMF to
retrieve 200 rows before displaying the first screen, enter:
DSQQMFn F=200

Page 79

© Copyright IBM Corp. 1983, 2000 67

Table 9. Passing parameters (continued)

To do this task: See:

To log QMF activity in the trace data, including activity before the user’s profile is
established, use the DSQSDBUG parameter. For example, enter:
DSQQMFn T=ALL

Page 81

To specify a database location to connect to when starting QMF other than the default
location, use the DSQSDBNM parameter.
DSQQMFn D=DBNAME
DSQQMFn D=DBNAME

Page 82

To run QMF without user interaction (either with or without a terminal), use the
DSQSMODE parameter and specify an initial procedure using the DSQSRUN parameter. You
might also choose to use the DSQSDBNM parameter to ensure you connect to the database
location you want. For example, to do some noninteractive QMF work using the Q user ID
and an example procedure named STARTPROC, enter:
DSQQMFn M=B,D=DBNAME,I=STARTPROC

Page 83

To run an initial procedure when QMF starts, use the DSQSRUN parameter. For example,
to run a procedure called STARTPROC, enter:
DSQQMFn I=STARTPROC

Page 84

To use an initialization program to specify values for program parameters other than the
default values set by QMF, use the DSQSCMDn parameter. For example, enter:
DSQQMFn DSQSCMDE=NULL

Page 68

To print DBCS data from non-DBCS terminals, use the DSQSDBCS parameter. For
example, enter:
DSQQMFn K=YES

Page 90

Setting Default Start Values Using the REXX Program DSQSCMDn
Parameter name

DSQSCMDn
Short form

(no short form)
Valid values

NULL or
Default

DSQSCMDE

You can specify default values for the program parameters using an
initialization program. IBM supplies the REXX program DSQSCMDn for this
purpose. DSQSCMDn can change the default program parameter values and
can execute across environments.

Customizing Your Start Procedure

68 Installing and Managing QMF on VM

The parameter values you specify when you start QMF override the values set
in the REXX program DSQSCMDn. The parameter values you specify when a
workstation session is started override the values set in DSQSCMDn.

DSQSCMDn is valid only as a start function keyword on the START
command when QMF is started from an application program using the
callable interface.

The REXX program method must be used by programs using the callable
interface that want to run in all the SAA environments without changing their
programs.

For more information on the START command and the SAA callable interface,
see QMF Reference and Developing QMF Applications.

For CMS, QMF calls the REXX program DSQSCMDE (see Figure 7 on page 70)
to provide values for the program parameters. This IBM-supplied program
supplies default values; by adjusting these values, you can tailor the QMF
environment for your installation.

If you do not want to provide a parameter value in DSQSCMDE, you can use
'NULL'.

General-Use Programming Interface

Customizing Your Start Procedure

Chapter 6. Customizing Your Start Procedure 69

/*REXX ---*/
/* DSQSCMDE: */
/* */
/* COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM */
/* 5675-DB2, 5697-F42 (C) COPYRIGHT IBM CORP. */
/* 1989, 2000. (PUBLISHED) */
/* ALL RIGHTS RESERVED. */
/* US GOVERNMENT USERS RESTRICTED RIGHTS - */
/* USE, DUPLICATION OR DISCLOSURE RESTRICTED */
/* BY GSA ADP SCHEDULE CONTRACT WITH IBM CORP. */
/* */
/* STATUS: VERSION 7 RELEASE 1 LEVEL 0 */
/* */
/* This REXX program returns default QMF program parameters. */
/* Values returned by this program can be substituted with */
/* values specified on the QMF START command. */
/* */
/*--*/

Trace Off
/* Signal ON ERROR Immediate exit upon any error condition */

PARSE UPPER SOURCE CSYS .

Figure 7. Example REXX program DSQSCMDE (Part 1 of 3)

Customizing Your Start Procedure

70 Installing and Managing QMF on VM

/*---*/
/* Customer should tailor the QMF environment by adjusting any */
/* of the following variable values. Each variable value is */
/* commented indicating the environment(s) in which it is */
/* effective. */
/* */
/* IMPORTANT: */
/* A value must be specified for each one of the following */
/* variables. Also each variable can only contain a single */
/* value and must NOT contain a blank. Use the term NULL */
/* instead of a blank value. */
/*---*/
DSQADPAN = "1" /* CMS and TSO */
DSQALANG = "E" /* CMS and TSO */
DSQSBSTG = "NULL" /* CMS and TSO */
DSQSDBCS = "NO" /* CMS and TSO */
DSQSDBNM = "NULL" /* CMS and TSO */
DSQSDBUG = "NONE" /* CMS and TSO */
DSQSIROW = "100" /* CMS and TSO */
DSQSMODE = "BATCH" /* CMS and TSO */
DSQSPILL = "NULL" /* CMS and TSO */
DSQSRSTG = "0" /* CMS and TSO */
DSQSRUN = "NULL" /* CMS and TSO */

DSQSDCSS = "QMF710E" /* CMS only */

DSQSPLAN = "QMF710" /* TSO only */
DSQSPRID = "PRIMEID" /* TSO only */
DSQSSUBS = "DSN" /* TSO only */

Figure 7. Example REXX program DSQSCMDE (Part 2 of 3)

Customizing Your Start Procedure

Chapter 6. Customizing Your Start Procedure 71

End of General-Use Programming Interface

Naming the Program Segment

You can use dsqsdcss or dcssname to name the program segment.

The name of the QMF program segment. The suggested program segment
name and default value is: QMF710E

dcssname
The syntax of dcssname is still supported in QMF.

Notes:

1. In the PGM form of the ISPSTART command ISPSTART
PGM(DSQQMFE)... (see “Starting QMF with the ISPSTART Command” on
page 61), this parameter is optional provided the default DCSS name is
used.

2. In the DCSS form of the command ISPSTART DCSS(dcssname)... (see
“Program Segment Form” on page 62), a DCSS name must be specified.

3. If QMF is not running as an ISPF dialog, and DSQQMFE dcssname(B=n1,...)
is used to start QMF, the parameter is optional.

/*---*/
/* Return variables to the QMF start function. */
/* */
/* IMPORTANT: Sequence of variables in RETURN statement must NOT */
/* be altered. */
/*---*/

IF CSYS = CMS THEN DO
RETURN DSQSMODE DSQSRUN DSQALANG DSQSIROW DSQSRSTG ,

DSQSDBCS DSQSDBUG DSQSDCSS DSQSBSTG DSQSPILL ,
DSQSDBNM DSQADPAN

END
ELSE DO

RETURN DSQSMODE DSQSRUN DSQALANG DSQSIROW DSQSRSTG ,
DSQSDBCS DSQSDBUG DSQSPLAN DSQSSUBS DSQSBSTG ,
DSQSPRID DSQSPILL DSQSDBNM DSQADPAN

END

ERROR: /* Immediate exit upon any error condition */
EXIT 12

Figure 7. Example REXX program DSQSCMDE (Part 3 of 3)

Customizing Your Start Procedure

72 Installing and Managing QMF on VM

DSQSDCSS
You can add DSQSDCSS to the list of parameters to be passed when starting
QMF. For example:
DSQSDCSS=QMFNEW

DSQSDCSS supports the callable interface for QMF.

Customizing Report Storage and Report Performance

When a user performs a QMF task that retrieves data from the database, the
data is returned in a default report that is stored in virtual storage. This
section explains QMF program parameters that help you customize:
v The maximum amount of storage used for report data
v Spill storage used when virtual storage for reports is full
v How many rows of data are retrieved before QMF displays the first screen

of the report

Adjusting Storage for Report Data (DSQSBSTG)
Parameter name

DSQSBSTG
Short form

B
Valid values

From 0 to 9 999 999 bytes
Default

0

The value of DSQSBSTG provides QMF with an upper limit (in bytes) on the
storage available for report generation. It is a positive whole number ranging
in value from 0 through 9 999 999. If DSQSBSTG is specified with a nonzero
value less than a QMF-determined minimum (15 to 32 kilobytes, depending
on the environment), it is increased to that minimum.

When DSQSBSTG has a value of 0, this parameter is not used; instead,
DSQSRSTG is used to specify storage. However, if both DSQSBSTG and
DSQSRSTG are specified, DSQSBSTG is used. For information on DSQSRSTG,
see the discussion in “Adjusting Reserved Storage Used for Report Data
(DSQSRSTG)” on page 74.

Choosing the Right Amount of Virtual Storage for Each User
Each QMF CMS region requires at least 4.5 megabytes of virtual storage.
Additional storage generally provides improved performance since QMF is
able to keep more data records in virtual storage.

Customizing Your Start Procedure

Chapter 6. Customizing Your Start Procedure 73

Performance Tradeoffs
You can use the DSQSPILL parameter to provide users with a spill file, which
is disk storage. If the spill file is full, QMF continues to retrieve data into
virtual storage in amounts specified by the DSQSBSTG or DSQSRSTG
parameters. Also, the user doesn’t receive any notification if there is
insufficient storage and QMF can still complete report processing. Thus, if you
do not provide enough space, performance might be poor even using a spill
file, because QMF must return to the database many times to retrieve all the
requested data. For this reason, IBM recommends that you ensure your users
have enough virtual storage for the QMF work they need to do.

You might also consider using a governor exit routine to limit rows retrieved
from the database, so that less virtual storage is used for queries and reports.
For more information about governor exit routines, see “Chapter 13.
Controlling QMF Resources Using a Governor Exit Routine” on page 227.

Adjusting Reserved Storage Used for Report Data (DSQSRSTG)
Parameter name

DSQSRSTG
Short form

R
Valid values

From 0 to 9 999 999 bytes
Default

0

The value of this parameter is a positive whole number ranging in value from
0 through 9 999 999 with a default of 0. The value can affect the running of
other programs and the generation of reports.

The first time a user generates a report during a session, QMF determines
how much storage is available in the user’s address space. The method that is
used to arrive at the total storage acquired for QMF reports depends on both
DSQSBSTG and DSQSRSTG:
v If DSQSBSTG is not specified, or is specified as 0, QMF subtracts the

amount of DSQSRSTG from the total available to determine the amount to
allow for the use of QMF reports. The remaining storage is available for
other programs, including OS/390 system services, CMS commands, REXX,
ISPF, and any other non-QMF user requirements.

v If DSQSBSTG is specified, then its value is used to determine how much
storage is acquired for QMF reports.

DSQSBSTG and DSQSRSTG Value of 0
You can specify 0 as the value for both DSQSBSTG and DSQSRSTG. In this
case, the DSQSRSTG parameter is used and no storage is reserved for other
system services. This value is probably adequate for users who never use VM

Customizing Your Start Procedure

74 Installing and Managing QMF on VM

system services, CMS commands, REXX, ISPF, or other non-QMF services
during QMF sessions. But a user who does use a VM system service or a CMS
command and has DSQSRSTG=0 and DSQSBSTG=0, runs the risk of failing
and possibly causing an abend because QMF does not reserve any storage for
those services. Even the most casual users might unknowingly use a
non-QMF program when they issue installation-defined QMF commands.
Such commands are performed by QMF applications, which generally make
extensive use of such non-QMF programs. Take this into account when
selecting values for DSQSRSTG and DSQSBSTG.

Small Value for DSQSBSTG or Large Value for DSQSRSTG
Requesting minimal storage for report processing can adversely affect
performance when a user is handling a report. If enough storage is not
available for the corresponding DATA object, QMF must use a spill file for
excess rows of DATA.

Acquiring Extra Storage (DSQSPILL)
Parameter name

DSQSPILL
Short form

L
Valid values

YES or NO
Default

YES

Because large amounts of report data in storage might affect the operation of
other CMS transactions, QMF allows you to allocate a spill file, which is extra
storage used when a user’s storage is full.

A spill file can improve performance in an interactive QMF session. Buffers in
memory can store data so that QMF doesn’t need to return to the database for
multiple copies of the same data. Data the user needs to view several times
need not be retrieved from the database several times; the spill file can instead
be used to store it.

You can reset the DSQSPILL parameter to NO to deactivate the spill file:
DSQQMFn L=NO

Data is written to the spill file until:
v You use the RESET DATA command to reset the data object.
v You replace the data object by running another query.
v Your query has finished (all rows requested have been retrieved) and the

data object is complete.
v Storage you defined for the spill file is full.

Customizing Your Start Procedure

Chapter 6. Customizing Your Start Procedure 75

Allocating a Spill File for CMS Users
You can allocate a spill file through a FILEDEF statement. The statement looks
like this:
FILEDEF DSQSPILL DISK DSQSPILL DATA T (LRECL 4096 RECFM F PERM'

The statement:
v Allocates the spill file to the T disk. The T disk can be a temporary disk.

The spill file cannot be allocated to a disk that is used in the CMS shared
file system (SFS).

v Specifies the DSQSPILL file with fixed-length records, one record for each
block. The records must always be unblocked. (A block is the size of a VM
page: 4096 bytes.)

For information on calculating the appropriate spill file size, see “Estimating
the Space Required for a Spill File”.

Estimating the Space Required for a Spill File
To accommodate QMF’s storage requirements, ensure the CMS DASD storage
is large enough to hold the individual spill files for all concurrent QMF users,
in addition to any other transaction requirements for auxiliary temporary
storage.

Use the following procedure to calculate the amount of space required for an
individual spill file. Then enlarge the virtual storage according to how many
individual spill files you’ll need to accommodate all concurrent users of QMF.
1. Calculate the width (W) of one row of the largest table that can appear

in the data object by adding field widths in bytes (use Table 10 on
page 77). See Table 11 on page 77 for sample calculations.
v All the rows of an individual table are the same width, regardless of the

data each row contains. A row cannot be wider than 32 768 bytes.
v Defined columns do not get written to the spill file.

2. If W is 4096 or less, calculate the number of rows per page (R) using R =
4096/W, and round the result down to the next lowest integer.
When W is 4096 or less, QMF fits as many rows as it can into a page,
without spanning pages.

3. If W is greater than 4096, calculate the number of pages per row (P),
using P = W/4096, and round up to the next highest integer.
When W is greater than 4096, QMF uses the minimum number of pages to
hold a row, spanning pages regardless of column boundaries. Each row
begins at the start of a page.

4. Calculate the number of pages required for the spill file, according to
the value of W:

Customizing Your Start Procedure

76 Installing and Managing QMF on VM

v If W is 4096 or less, calculate the number of pages required for the spill
file by dividing the number of rows in the table by R.

v If W is greater than 4096, calculate the number of pages required for the
spill file by multiplying the number of rows in the table by P.

Table 10. Lengths of types of fields (use to estimate spill file size)

Field Type Field Length in Bytes

CHAR(n) n+2

DATE 12

DECIMAL(n,m) (n+1)/2+2, n odd (n+2)/2+2, n even

FLOAT(21) 10

FLOAT(53) 10

GRAPHIC(n) n*2+2

INTEGER 6

SMALLINT 4

TIME 10

TIMESTAMP 28

VARCHAR(n) n+4

LONG VARCHAR

LONG VARGRAPHIC

VARGRAPHIC(n) n*2+4

If a row contains LONG VARCHAR or LONG VARGRAPHIC fields, space is
first allotted for all other fields. Then the remaining space is divided by the
number of fields, and each LONG VARCHAR or LONG VARGRAPHIC field
is truncated to that length.

Table 11 shows a sample calculation for a spill file.

Table 11. Sample row width calculation for a spill file

Content of Row Calculation Contribution to Width

Two SMALLINT columns 2 x 4 = 8 bytes

One INTEGER column 6 bytes

One DECIMAL(3,2) column (3+1)/2+2 = 4 bytes

One DECIMAL(6,0) column (6+2)/2+2 = 6 bytes

One FLOAT column 10 bytes

One CHAR(10) column 10 + 2 = 12 bytes

One VARCHAR(16) column 16 + 4 = 20 bytes

Customizing Your Start Procedure

Chapter 6. Customizing Your Start Procedure 77

Table 11. Sample row width calculation for a spill file (continued)

Content of Row Calculation Contribution to Width

Total width of row 59 bytes

The following sample calculations provide two ways to calculate the spill file
space.

When R=4096/540 = 7 multiple rows/buffer:
600 000 rows 1 track 1 cylinder
------------ * --------- * ---------- = 571 cylinders

7 10 blocks 15 tracks

When R=6000, 2 buffers/row:
6000 rows * 2 blocks/row * 1 track 1 cylinder

--------- * ---------- = 800 cylinders
10 blocks 15 tracks

Using a Spill File in a Noninteractive QMF Session
A spill file is most useful for improving performance in an interactive QMF
session, when the DSQSMODE parameter is set to I. However, if you are
running QMF noninteractively (the DSQSMODE parameter is set to B), using
a spill file can also improve performance when multiple passes of the data are
required to produce the report. A spill file might also be necessary to
complete the data object, as when a RUN QUERY command is followed by a
SAVE DATA command.

Multiple passes of the data are required when:
v You need to print several reports with different formats for the same data.
v You use PCT, CPCT, TCPCT, or TPCT edit codes with the report.
v You print a report that requires QMF to split the pages, because the report

is wider than the print width.

For more information on noninteractive QMF sessions, see “Specifying an
Interactive or Noninteractive QMF Session (DSQSMODE)” on page 83.

QMF Reference explains each of the QMF forms used to format reports and
provides examples of how to use the forms.

Solving Some Spill File Problems
If you are not using conditional formatting or column definitions (which use
REXX and have additional performance considerations), the performance you
observe is the result of accessing data in the database.

Customizing Your Start Procedure

78 Installing and Managing QMF on VM

If you have sufficient storage available to QMF after your data is retrieved a
first time, QMF does not need to reaccess the database to obtain rows a
second time.

If you have memory constraints and defined a DSQSPILL file, part of the
processing time is writing the data to DSQSPILL so it can be fetched later.

The performance is affected by several things:
v The value of DSQSIROW (initial number of rows to fetch). This primarily

affects the initial display of the report only.
v Whether or not you do something that requires multiple passes of the data.

(Certain usage codes, such as PCT, require that all the data be read before
the first report screen displayed.) This primarily affects the initial display of
the report only.

v The amount of memory required to hold one row of data. The effect of this
is usually small.

v Whether, when multiple passes are required, the data is fetched from the
database the second time (not all data fits in memory and DSQSPILL), or
from memory and DSQSPILL, or just from virtual memory.

v Whether you are scrolling backward or forward. Successive FORWARD
commands usually perform best. BACKWARD commands might require
starting over at the start of the answer set. This depends on the amount of
memory, how far backward you want to scroll, the complexity of the report,
and other factors.
For very large answer sets with small memory and insufficient DSQSPILL
allocation, the entire answer set might be read from row 1 to the new
current row, every time the BACKWARD command is used.

You get the best performance when there is sufficient memory to hold all data
and DSQSPILL is not used.

Although it might not reduce the total amount of resource consumed to
process your data, if you are able to get the complete answer set into virtual
memory before the first display (DSQSIROW is large), the database locks are
released and scrolling around the displayed report performs fastest. This
slows the display of the first report screen. Releasing the locks might have the
effect of improving performance for other users.

Controlling the Number of Report Rows Retrieved for Display
(DSQSIROW)

Parameter name
DSQSIROW

Short form
F

Customizing Your Start Procedure

Chapter 6. Customizing Your Start Procedure 79

Valid values
Any number from 0 through 9 999 999

Default
A minimum of 100 rows retrieved before first screen of report is
displayed

Use DSQSIROW to specify the maximum number of rows QMF retrieves into
the data object before displaying the first screen of the report to the user.
DSQSIROW applies only to the initial load of a new data object, created by:
v Executing queries that use SQL SELECT statements
v Displaying a database table with the QMF DISPLAY command

To determine the proper value for this parameter, use step 1 of the algorithm
in “Estimating the Space Required for a Spill File” on page 76 to estimate the
size of a block of rows for the largest table a user is likely to query. A block is
the number of rows that fit into one 4096-byte buffer.

After every block of rows is retrieved, QMF compares the total number of
retrieved rows to the value of DSQSIROW to determine whether to display
the first screen of data. For example, suppose a block in your installation is 62
rows and you set DSQSIROW to 50. QMF retrieves 62 rows of data and, upon
comparing 62 to 50, stops retrieving rows and displays the first screen of data.

Some report formatting options, such as percent (%) usage codes and
ACROSS reports, require that all the data be retrieved before QMF displays
the first screen. QMF ignores the DSQSIROW value in these situations. See
QMF Reference for more information about these formatting options.

Performance with Small DSQSIROW Values
If you use too small a value for DSQSIROW, QMF might not be able to
complete the data object before the first screen of data is displayed. An
incomplete data object causes share locks on the data, which can prevent
other users’ attempts to update the data.

Many users might be affected if a QMF control table or a part of the system
catalog is locked. You can release the locks in one of the following ways:
v Use the BOTTOM command to retrieve the remaining rows into the data

object, then release the locks.
v Use the RESET DATA command to release these locks and clear the data

object, whether or not all requested rows were retrieved.
v Use any SAVE command (for example, SAVE DATA or SAVE FORM) to

retrieve and save the remaining rows into the data object, then release the
locks.

Customizing Your Start Procedure

80 Installing and Managing QMF on VM

To get the best performance in a noninteractive session (when the
DSQSMODE parameter is set to B), use a value of zero for DSQSIROW unless
you want to minimize the number of open read locks while QMF is retrieving
or formatting data. See “Specifying an Interactive or Noninteractive QMF
Session (DSQSMODE)” on page 83 for more information about noninteractive
QMF sessions.

Do not use DSQSIROW to limit the number of rows that QMF displays on the
screen. Although you can specify a small value, QMF retrieves enough rows
to fill the screen display in an interactive session.

Performance with Large DSQSIROW Values
If you use too large a value for DSQSIROW, QMF might take a long time to
display the first screen of data. If you set DSQSIROW higher than you set the
DSQSBSTG parameter, for example, QMF might display a message indicating
that there is insufficient storage available to satisfy the user’s request.

When storage for the partition is full, QMF stops retrieving rows or
terminates. When you plan your values for DSQSBSTG and DSQSIROW,
remember that QMF might time out waiting for storage to become available.

Setting the Level of Trace Detail (DSQSDBUG)
Parameter name

DSQSDBUG
Short form

T
Valid values

ALL or NONE
Default

NONE (no trace data)

Use DSQSDBUG to specify the level of detail at which you want to trace QMF
activity. If you specify NONE, no trace is performed unless you load a profile
with a saved value of ALL. If you specify ALL, ALL overrides the profile
value and remains at ALL.

The tracing you set using this parameter is effective until the user issues a SET
PROFILE (TRACE=value command to change it, or, in the case of NONE, until
the profile is loaded. For more information on valid trace values, see “Getting
the Right Level of Detail in Your Trace Output” on page 302.

Set DSQSDBUG to ALL when you want to trace QMF activity at the highest
level of detail, including program initialization errors and other errors that
might occur before the user’s profile is established:
DSQQMFn T=ALL

Customizing Your Start Procedure

Chapter 6. Customizing Your Start Procedure 81

When you set DSQSDBUG to NONE, the level of detail in the trace output
depends on whether the QMF session is running interactively or
noninteractively:
v In either an interactive or a noninteractive session, only system error tracing

is done during initialization, before the user’s profile is established. The
only way to turn off this initial tracing is to not allocate or define storage
for the trace data.

v In a noninteractive session, all messages and commands are traced at the
most detailed level.

“Specifying an Interactive or Noninteractive QMF Session (DSQSMODE)” on
page 83 explains interactive and noninteractive sessions in more detail.

After QMF starts, you can turn tracing off by using the following command:
SET PROFILE (TRACE=NONE.

You can also set more specific levels of trace detail using this command, by
replacing NONE with various values that represent different QMF functions. See
“Using the QMF Trace Facility” on page 300 for more information.

Controlling Initial Activities During a Session

This section explains program parameters that help you control initial QMF
activities, such as:
v Specifying a location for the connection to the database
v Starting a noninteractive session
v Running an initial procedure that does the predetermined amount of work

defined in the procedure and then exits QMF

Using the parameters explained in this section, you can customize a QMF
session to do work without user interaction, so that fewer resources are used.
For example, you might start a noninteractive session, specify a CONNECT
ID and password for the connection to the database, and run a QMF
procedure that queries an inventory table and prints a report to a file for later
analysis.

Although these parameters are most useful for noninteractive QMF sessions,
they can also be used interactively.

Specifying the Location to Connect to When Starting QMF (DSQSDBNM)
Parameter name

DSQSDBNM
Short form

D

Customizing Your Start Procedure

82 Installing and Managing QMF on VM

Valid values
Any valid database name

Default
(no default)

You can use DSQSDBNM to specify the location to which you are initially
connected for a QMF session. This location can be a remote database. You can
specify DSQSDBNM in all operating environments.

If you are setting up for a remote unit of work: The maximum length in
characters of the
DSQSDBNM value depends
on the type and release level
of the application requestor
that initiates the remote unit
of work connections. The
lengths for each release level
are shown in Table 12.

Table 12. Application requester type and release level for DSQSDBNM length and
location value length

Requester type Release Maximum Length

MVS™ DB2 2.3 and 3.1 16

VM SQL/DS™ 3.5 only 18

Specifying an Interactive or Noninteractive QMF Session (DSQSMODE)
Parameter name

DSQSMODE
Short form

M
Valid values

B (noninteractive) or I (interactive)
Default

I

Some query and report-writing tasks users need to perform might not require
interaction with QMF. For example, a salesperson might use the same QMF
procedure every few days to query a set of tables for account status. Although
the data changes, the procedure and tasks required to access the data remain
the same.

Using the QMF program parameter DSQSMODE, you can save resources and
time by starting a noninteractive session to perform your QMF work. Your
terminal is then free for you to do other work while the transaction is
running.

Customizing Your Start Procedure

Chapter 6. Customizing Your Start Procedure 83

Use a value of B to start a noninteractive session:
DSQQMFn M=B,I=STARTPROC

Because a noninteractive session displays no QMF panels, use the DSQSRUN
(I) parameter to run an initial procedure that does the required QMF work
and exits the program. “Naming a Procedure to Run When QMF Starts
(DSQSRUN)” explains this parameter in more detail.

Additionally, use the DSQSDBNM parameter to specify an ID and password
for the database connection if you do not want to use the default database
location.

Naming a Procedure to Run When QMF Starts (DSQSRUN)
Parameter name

DSQSRUN
Short form

I
Valid values

Any valid procedure name (see QMF Reference)
Default

No initial procedure is run

Use the DSQSRUN parameter to pass the name of a QMF procedure that runs
as soon as QMF starts. In a noninteractive session, use this procedure to
perform the QMF work you need to do, then exit the program.

For example, to run an initial procedure named STARTPROC, enter:
DSQQMFn I=STARTPROC

Qualify the procedure name with the SQL authorization ID of its owner if
other users are using it to start QMF. For example, if user JONES owns the
STARTPROC procedure, enter:
DSQQMFn I=JONES.STARTPROC

When you pass the name of an initial procedure, QMF issues a RUN PROC
command, which runs the procedure you name.

Important: QMF does not allow blanks in the user ID and procedure syntax.
For example, QMF doesn’t recognize:
DSQQMFn I=JONES. STARTPROC

To use a procedure name with an imbedded blank, you must
enclose the name in quotes:
DSQQMFn I=JONES.'START PROC'

Use DSQSRUN to help you:

Customizing Your Start Procedure

84 Installing and Managing QMF on VM

v Automate noninteractive QMF work so you can conserve resources
normally used when running interactively.

v Allow users to perform interactive QMF work within the confines of a
predefined procedure, then exit when they are finished with the work
specified in the procedure.

Running an Initial Procedure Noninteractively
To conserve resources, you can run a procedure noninteractively by using a
value of B for the DSQSMODE parameter and naming a procedure using the
DSQSRUN parameter. For example, suppose that every Monday morning, you
need to produce an inventory status report. Each Sunday night you need to
run a query that retrieves data from the same columns of a table called
INVENTORY. Your query might look something like the following query. For
this example, we’ll call this query INVENTORY_QUERY:
SELECT * FROM INVENTORY
WHERE STOCK < 20

The procedure you use to run this query and print the status report might
look something like this one. For this example, we’ll call this QMF procedure
INVENTORY_PROC:
RUN QUERY INVENTORY_QUERY
PRINT REPORT
EXIT

The procedure includes an EXIT command because, when QMF is running
noninteractively, no user is present to end the QMF session. EXIT ends the
QMF session and frees the resources being held by QMF. Always use an EXIT
command in an initial procedure that runs noninteractively.

Because the tasks involved in creating the report do not change (only the data
changes), you might use the DSQSRUN parameter to query the INVENTORY
table off-shift Sunday night and print the report, so you can have it Monday
morning:
DSQQMFn I=INVENTORY_PROC,M=B

Performing Interactive QMF Work with an Initial Procedure
You can use an initial procedure in an interactive QMF session to predefine
data access tasks for end users, making it easy for them to access only the
data they need. For example, suppose a QMF end user has the responsibility
of producing an inventory status report every Monday morning. The user
might know the value that indicates low stock but might not know exactly
how to produce the status report. In this case, you might put a variable in the
query so that the user needs only to enter the value that indicates low stock.
We will call this query INVENTORY_QUERY.
SELECT * FROM INVENTORY
WHERE STOCK < &LOWSTOCK

Customizing Your Start Procedure

Chapter 6. Customizing Your Start Procedure 85

Because the user might want to view the data before printing it, your
INVENTORY_PROC procedure might not include the EXIT command:
RUN QUERY INVENTORY_QUERY

You might then use the DSQSRUN parameter without specifying the
DSQSMODE parameter, so that you start an interactive session for the user:
DSQQMFn I=INVENTORY_PROC

The INVENTORY_PROC procedure prompts the user for the &LOWSTOCK
variable value. For additional examples of how to use variables with an initial
procedure, see “Passing Variable Values to an Initial Procedure”. QMF
Reference explains variables in more detail.

As soon as the user provides the value, QMF displays the report and the user
can then view the report and issue a QMF PRINT command to print it.

For interactive sessions, instruct users to enter EXIT on the command line
when they are finished viewing the report. The initial procedure runs
repeatedly until an EXIT command is issued. Thus, pressing the End function
key from the report panel reruns the initial procedure; it does not display the
QMF Home panel.

Additionally, when you use the DSQSRUN parameter, ensure that the
DSQEC_RERUN_IPROC global variable is set to 0 and that the current object
is not the QMF Home panel. Developing QMF Applications provides more
information on this global variable, as well as information about how to write
procedures that help users perform QMF activities specified in predefined
procedures and applications.

Passing Variable Values to an Initial Procedure
When you supply the name of an initial procedure on the DSQSRUN
parameter, you can also supply values for variables contained in the
procedure. You can specify one or more variables and their values following
the procedure name on the DSQSRUN parameter.

Follow these rules when you specify variables for DSQSRUN:
v Put parentheses around the variable parameter list, as shown in the

examples in this section.
v Precede the variable name with an ampersand, and ensure the string is in a

variable_name=value format.
v Ensure the combined total of characters for the procedure name and the

variable parameter list is 98 characters or less.
v Separate the variable parameter specifications using a single comma, one or

more blanks, or a combination of a comma and blanks.

Customizing Your Start Procedure

86 Installing and Managing QMF on VM

Environment

Number of
additional

ampersands Example

CMS with ISPF 1 &&variable=value

CMS without ISPF using EXEC 2 &&&variable=value

CMS with ISPF using EXEC 3 &&&&variable=value

When you specify the name of an initial procedure, QMF issues a RUN PROC
command that runs the procedure. When you use variables in your procedure,
values you supply for these variables must conform to the syntax used for
passing variables on a RUN command. For information about this syntax, see
QMF Reference.

For example, suppose you frequently need two pieces of information about
employees in your organization. One piece of information is the name of the
employee, and the other varies. You might define a query that includes
NAME and uses a variable for the other column. Figure 8 shows how to pass
a column name using DSQSRUN. The figure also shows how to pass a value
for the variable when you enter the DSQSRUN parameter, and shows the
RUN PROC command that QMF issues.

Figure 9 on page 88 shows a similar example, but instead of passing one
column name to the procedure, it allows you to pass several, which return the
employee’s name, the department, and the employee’s salary.

Query (named JONES.QUERY2)
SELECT NAME, &COL
FROM Q.STAFF

Procedure (named JONES.PROC2)
RUN QUERY JONES.QUERY2 (&&COL=&COL

DSQSRUN parameter
DSQQMFn I=JONES.PROC2(&COL=YEARS)

Resulting RUN command
RUN PROC JONES.PROC2 (&COL=YEARS)

Figure 8. Passing a QMF column name using DSQSRUN

Customizing Your Start Procedure

Chapter 6. Customizing Your Start Procedure 87

The next four examples show how to pass information you normally supply
after the WHERE keyword in a query. (See QMF Reference for more
information about the WHERE keyword.)

These examples contain character strings, for which special syntax is required
because of how QMF evaluates the values when it processes the RUN PROC
command. Special characters (comma, blank, parentheses, quotes, apostrophe
or single quote, and equal sign) can also be included in the string, as shown.

For example, if you need to know the names and employee numbers of all the
managers in your organization, you might run a query like the one in
Figure 10. When you pass the character string MGR on the DSQSRUN
parameter, be sure to enclose the value in single quotes.
Figure 11 on page 89 shows how to pass variable values that contain commas.

Enclose the value SAN JOSE, CA in single quotes because it contains a comma.

Query (named JONES.QUERY3)
SELECT &COLS
FROM Q.STAFF

Procedure (named JONES.PROC3)
RUN QUERY JONES.QUERY3 (&&COLS=&COLS

DSQSRUN parameter
DSQQMFn I=JONES.PROC3(&COLS=((DEPT,NAME, SALARY))

Resulting RUN command
RUN PROC JONES.PROC3(&COLS=((DEPT,NAME,SALARY)))

Figure 9. Passing several QMF column names using DSQSRUN

Query (named JONES.QUERY4)
SELECT JOB, NAME, ID
FROM Q.STAFF
WHERE JOB=&JOB

Procedure (named JONES.PROC4)
RUN QUERY JONES.QUERY4 (&&JOB=&JOB

DSQSRUN parameter
DSQQMFn I=JONES.PROC4(&JOB='MGR')

Resulting RUN command
RUN PROC JONES.PROC4 (&JOB='MGR')

Figure 10. Passing a string within single quotes using DSQSRUN

Customizing Your Start Procedure

88 Installing and Managing QMF on VM

Figure 12 shows how to pass variable values that contain single quotes (for
example, an apostrophe in a name). When you pass the value on the
DSQSRUN parameter, be sure to enclose the value in single quotes and use
two single quotes for the apostrophe instead of one.
Figure 13 shows how to pass values for variables in two different parts of the

query.

Query (named JONES.QUERY5)
SELECT *
FROM Q.APPLICANT
WHERE ADDRESS=&CITY

Procedure (named JONES.PROC5)
RUN QUERY JONES.QUERY5 (&&CITY=&CITY

DSQSRUN parameter
DSQQMFn I=JONES.PROC5(&CITY='SAN JOSE,CA')

Resulting RUN command
RUN PROC JONES.PROC5 (&CITY='SAN JOSE,CA')

Figure 11. Passing a comma within a string using DSQSRUN

Query (named JONES.QUERY6)
SELECT *
FROM Q.STAFF
WHERE NAME=&NAME

Procedure (named JONES.PROC6)
RUN QUERY JONES.QUERY6 (&&NAME=&NAME

DSQSRUN parameter
DSQQMFn I=JONES.PROC6(&NAME='O''BRIEN')

Resulting RUN command
RUN PROC JONES.PROC6 (&NAME='O''BRIEN')

Figure 12. Passing an apostrophe as part of a string using DSQSRUN

Query (JONES.QUERY7)
SELECT *
FROM Q.STAFF
WHERE DEPT IN &DEPT
AND JOB = &JOB

Procedure (named JONES.QUERY7)
RUN JONES.QUERY7 (&&DEPT=&V1 &&JOB=&V2

DSQSRUN parameter
DSQQMFn I=JONES.PROC7(&V1=(((10,38))) &V2='MGR')

Resulting RUN command
RUN PROC JONES.PROC7(&V1=(((10,38))) &V2='MGR')

Figure 13. Passing multiple variable parameters and values using DSQSRUN

Customizing Your Start Procedure

Chapter 6. Customizing Your Start Procedure 89

Setting Printing for Double-Byte Character Set Data (DSQSDBCS)
Parameter name

DSQSDBCS
Short form

K
Valid values

YES or NO
Default

NO

If you use the Uppercase or Japanese NLF, you might need to print
double-byte character set (DBCS) data. You can set the DSQSDBCS program
parameter to YES to print DBCS data from non-DBCS terminals.

For example, suppose a user you support uses an IBM 3279 display terminal
and needs to print a table (DBCSTABLE) whose nonnumeric columns contain
DBCS data. The following statement starts the Uppercase NLF from a CMS
screen and allows the user to print DBCSTABLE using a command such as
PRINT DBCSTABLE (PRINTER=DBCSPRT.
QMFU K=YES

For more information on how to establish a GDDM nickname for the
DBCSPRT printer, see “Chapter 9. Enabling Users to Print Objects” on
page 147.

Customizing Your Start Procedure

90 Installing and Managing QMF on VM

Chapter 7. The QMF Session Control Facility

The session control facility provides a method for initializing a QMF session
by executing a specific QMF procedure when QMF is started. The name of the
QMF procedure is Q.SYSTEM_INI. With this facility, the Q.SYSTEM_INI
procedure can run any QMF command or any stored query that the user is
authorized to run, prior to the user seeing the QMF home screen.

Installing or Removing Q.SYSTEM_INI

Create and save the Q.SYSTEM_INI procedure into the database like any
other QMF procedure. The procedure must be named ″SYSTEM_INI″ and be
saved under the authorization ID of ″Q″. This QMF procedure should be
shared among all QMF users. You can make the procedure sharable by
specifying the SAVE command option ″SHARE=YES″. It’s also a good idea to
add a comment describing the procedure. For example:
SAVE PROC AS Q.SYSTEM_INI (SHARE=YES,COMMENT='QMF System Initialization Procedure')

Importing the Default System Initialization Procedure

QMF provides you with a procedure to import the default QMF system
initialization procedure correctly under authorization ID of ″Q″ and shared
between all QMF users.

Before running this procedure, ensure that the QMF command language is set
to English. To do so, set the QMF global variable DSQEC_NLFCMD_LANG to
1. When the procedure is done you can return to the presiding language by
setting QMF global variable DSQEC_NLFCMD_LANG to 0.

Issue the following commands:
IMPORT PROC FROM DSQ0BINI PROC *
SAVE PROC AS Q.SYSTEM_INI (COM='DEFAULT QMF SYSTEM PROCEDURE' SHARE=YES

The sample PROC is saved in the database as Q.SYSTEM_INI PROC with
SHARE=YES.

When Does the Q.SYSTEM_INI Procedure Run?

The Q.SYSTEM_INI procedure runs just before the QMF initial procedure
specified by the DSQSRUN parameter and just after QMF has completed
initialization. All of the QMF functions available to QMF procedures are also
available for use by the Q.SYSTEM_INI procedure.

© Copyright IBM Corp. 1983, 2000 91

Using Q.SYSTEM_INI

Your QMF session procedure Q.SYSTEM_INI, can be as simple as setting
some QMF global variables or profile values or as complex as a complete
front end to QMF. Each user can have their own session procedure called
from, but not replacing Q.SYSTEM_INI.

Example Shipped with QMF
The sample Q.SYSTEM_INI proc provided with QMF makes SHARE=YES the
default for all users.

Q.SYSTEM_INI is located in the QMF product as DSQ0BINI.

User Session Procedure Example
The session procedure can call another procedure. The procedure being called
can be a user procedure that is created, owned and updated by a QMF user.
You can use the same named procedure for different users if each user has a
unique SQLID. When each user starts QMF they are running under their own
SQLID. That SQLID is the default object owner when the object owner is not
otherwise specified when accessing a QMF object or database object. For
example, the QMF session procedure Q.SYSTEM_INI, could set global
variables or company wide global variables and then call a user session

--
-- QUERY D S Q 0 B I N I
-- MANAGEMENT ---------------
-- FACILITY
--
-- Q M F S Y S T E M I N I T I A L I Z A T I O N P R O C
-- ----- ----------- --------------------------- -------
--
-- FUNCTION: PROVIDE AN EXAMPLE QMF SYSTEM INITIALIZATION PROCEDURE
-- THAT CAN BE ADDED AFTER QMF INSTALLATION. YOU MAY MOD-
-- IFY OR REPLACE THIS PROCEDURE WITH YOUR OWN VERSION.
--
-- THE PROCEDURE MUST BE STORED IN THE DATABASE UNDER THE
-- NAME OF Q.SYSTEM_INI BEFORE IT WILL RUN AUTOMATICALLY.
-- ------------
--
-- THE COMMAND BELOW IS AN EXAMPLE OF ESTABLISHING A NEW DEFAULT
-- FOR THE SHARE OPTION OF THE SAVE COMMAND THAT WILL APPLY TO ALL
-- QMF USERS. (REMOVE THE LEADING COMMENT SYMBOLS "--" TO ACTIVATE
-- IT.)
--
-- SET GLOBAL (DSQEC_SHARE=1 -- MAKE SHARE=YES THE DEFAULT FOR ALL

Note: The actual example shipped with QMF may vary from the above example.

Figure 14. The Q.SYSTEM_INI shipped with QMF

The QMF Session Control Facility

92 Installing and Managing QMF on VM

procedure. In the following example, the user session procedure is called
USER_INI.

Procedure that Displays an Object list
The following is an example of a SYSTEM_INI procedure that displays a list
of objects instead of the QMF Home screen:

PROC Q.SYSTEM_INI LINE 1

-- This QMF procedure example shows how to setup QMF session defaults for
-- every QMF user and then calls a user procedure called USER_INI that will set
-- individual QMF session defaults
--

QMF SET GLOBAL (DSQEC_NLFCMD_LANG=1) -- Process English Commands
QMF RESET PROC -- Hide Contents of this PROC
QMF SET PROFILE (WIDTH=80,LENGTH=66) -- Set Default Report Page Size
QMF SET PROFILE (SPACE=COMMON) -- Set Default Space for Save Data Command
QMF SET GLOBAL (DSQDC_LIST_ORDER=5D) -- Object List Sorted by Date Modify
QMF SET GLOBAL (DSQEC_RESET_RPT=1) -- Prompt for Report Completion
RUN USER_INI -- Run Users Session Procedure
QMF END -- Display QMF Home screen first
QMF SET GLOBAL (DSQEC_NLFCMD_LANG=0) -- Return to Presiding Language

Figure 15. Q.SYSTEM_INI example that calls a user defined procedure

PROC WILLIAMS.USER_INI LINE
1

-- This QMF procedure example shows how to setup QMF session defaults for
-- A QMF user. The following settings replace any settings set by the
-- SYSTEM_INI proc.

--
QMF SET GLOBAL (DSQEC_NLFCMD_LANG=1) -- Process English Commands
QMF RESET PROC -- Hide Contents of this PROC
QMF SET PROFILE (SPACE=MYSPACE) -- Store data in MYSPACE.
QMF SET PROFILE (PRINTER=MYROOM) -- Print reports at My Printer
QMF SET GLOBAL (DSQDC_LIST_ORDER=3A) -- Object List Sorted by Object Name
QMF SET GLOBAL (DSQEC_RESET_RPT=2) -- Always ResetReports
QMF SET GLOBAL (DSQEC_SHARE = 1) -- Always Share My QMF Objects
QMF SET GLOBAL (DSQEC_NLFCMD_LANG=0) -- Return to Presiding Language

Figure 16. User session procedure example: user.USER_INI

The QMF Session Control Facility

Chapter 7. The QMF Session Control Facility 93

Security and Sharing Session Procedure

The QMF session procedure Q.SYSTEM_INI and other objects used or called
by this procedure take on the same security as any other QMF object or
database object does during a QMF session. The Q.SYSTEM_INI procedure is
not special, other than QMF tries to execute it each time a QMF session is
started. If the procedure doesn’t exist, then QMF doesn’t try to run it.

If the Q.SYSTEM_INI procedure exists but is restricted or not shared, the
result is the same as with any other QMF procedure object. If the SQLID
starting QMF is ″Q″, the procedure can run. Any SQLID other than ″Q″
receives a message that it is not authorized to run the procedure
″Q.SYSTEM_INI″.

Diagnosis Considerations

The QMF session procedure Q.SYSTEM_INI is run in the same environment
as any other QMF procedure. All of the diagnosis procedures used for existing
QMF procedures can also be used for the Q.SYSTEM_INI procedure. In
addition to normal procedure execution, consider that this procedure is run
before the QMF startup procedure named in the DSQSRUN parameter when
QMF is started. If you have session controls in the procedure specified by the
DSQSRUN parameter, consider moving them to the Q.SYSTEM_INI
procedure.

You can use the QMF L2 tracing option to see commands and messages
issued. Session procedure commands and messages are distinghished from
others. See “Using the QMF Trace Facility” on page 300 for more information
on QMF trace options.

PROC Q.SYSTEM_INI LINE 1

-- This QMF procedure example shows how to set up QMF session defaults for
-- every QMF user to display a list of objects instead of the QMF Home
-- screen.
--

QMF SET GLOBAL (DSQEC_NLFCMD_LANG=1) -- Process English Commands
QMF RESET PROC -- Hide Contents of this procedure
QMF SET GLOBAL (DSQDC_LIST_ORDER=3A) -- Object List sorted by object name
QMF SET GLOBAL (DSQEC_NLFCMD_LANG=0) -- Return to Presiding Language
QMF LIST ALL -- LIST OBJECTS FOR ENGLISH

Figure 17. Using Q.SYSTEM_INI to display a list of objects rather than the QMF Home screen

The QMF Session Control Facility

94 Installing and Managing QMF on VM

Chapter 8. Establishing QMF Support for End Users

After you start QMF and the Home panel is displayed, you can use QMF
facilities to help you customize support for end users. This chapter discusses
how to set up QMF so that your end users are able to access QMF and work
with data in the database.

The role of the Q AUTHID

QMF installation automatically grants DBA authority to the user ID Q. The
user Q owns and manages these QMF resources:
v All QMF control tables.
v The sample queries.
v The sample tables shipped with QMF. (For descriptions of the sample

tables, see QMF Reference.)
v Default views for the database object list, explained in “Customizing a

User’s Database Object List” on page 112.

For the discussions and procedures throughout this book, we assume you’re
administering QMF using the Q user ID or another ID with DBA authority.

Quick Start

Use the steps in Table 13 to guide you in setting up and maintaining the QMF
environment for users. If you need more information, see the page shown at
the right of the table.

Table 13. Establishing QMF support for end users

To do this task: See:

Ensure users are recognized by VM by assigning them an appropriate user ID. You also
need to assign an authorization ID to establish QMF and DB2 for VM authorities.

Page 96

Ensure users have a QMF profile either by allowing them to use the SYSTEM row of the
Q.PROFILES table or by inserting a unique row into Q.PROFILES based on the user’s SQL
authorization ID.

Page 97

Provide access to database and QMF objects your users need to work with, using SQL
GRANT statements for tables and views, and the SHARE parameter of the QMF SAVE
command for QMF queries, forms, and procedures.

Page 107

Customize a user’s database object list, using the DSQEC_TABS_SQL and
DSQEC_COLS_SQL global variables.

Page 112

Customize the document editing interface in ISPF, using the IBM-supplied macro. Page 139

© Copyright IBM Corp. 1983, 2000 95

Table 13. Establishing QMF support for end users (continued)

To do this task: See:

Enable users to create tables (if necessary) by assigning a private dbspace or by granting
DB2 for VM RESOURCE authority and assigning a public dbspace.

Page 116

Enable users to support a chart using the Interactive Chart Utility (ICU) of GDDM. Page 120

Maintain your users’ queries, forms, and procedures by updating and reorganizing the
QMF object control tables (Q.OBJECT_DIRECTORY, Q.OBJECT_DATA, and
Q.OBJECT_REMARKS).

Page 120

When necessary, enlarge the dbspace for the QMF object control tables using the DB2 for
VM DBS utility UNLOAD and RELOAD commands. Recreate indexes and any views you
defined on the tables.

Page 126

Maintain your users’ database tables and views by updating and reorganizing DB2 for VM
system tables.

Page 127

Ensuring That Users Have Access to CMS

Provide a new user with a VM logon ID. Set up the new users as you would
an DB2 for VM user virtual machine. See DB2 Server for VM Database
Administration for more information.

To communicate with DB2 for VM, a new QMF user logging on for the first
time must give this command (assuming the user is linked to the DB2 for VM
production disk):
SQLINIT DBNAME (dbname)

where dbname is the name of the database that is being used for QMF. That
command loads two required modules to the user’s A-disk. As long as those
modules remain, and as long as the user wants to use the same database, the
command need not be reissued. You should plan to log on with the new user
ID and give the SQLINIT command for the new user.

If your users need to connect to DB2 for VM explicitly, grant them DB2 for
VM CONNECT authority:
GRANT CONNECT TO userid IDENTIFIED BY password

The QMF CONNECT command enables an individual to access DB2 for VM
using an established CONNECT ID (DB2 for VM user ID), or to connect to a
different database during a QMF session. This command is useful for running
jobs in batch mode. For information about how the CONNECT command is
used in running batch jobs, see “Chapter 15. Customizing the Batch Processing
Program” on page 277. For information about connecting to a different
database during a QMF session, see “Chapter 14. Customizing a Remote
Database Connection” on page 263.

Establishing QMF Support for End Users

96 Installing and Managing QMF on VM

After a user has received CONNECT authority (has been assigned an DB2 for
VM user ID), the user can access DB2 for VM through the QMF CONNECT
command:
CONNECT userid (PASSWORD=password

userid Any user ID conforming to the VM logon ID syntax rules is
acceptable. However, only those IDs that have been granted access to
DB2 for VM can be used in the CONNECT command. The ID can be
embedded in double quotation marks.

DB2 for VM password
The DB2 for VM password:
v Must have no more than 8 characters
v Can be embedded in single or double quotation marks. A single

quotation mark embedded within single quotation marks is
removed.

v Must contain no blanks (except trailing blanks)

In order for a user to use the CONNECT command, the user ID and
password must both be in SYSTEM.SYSUSERAUTH. The password need not
be the same as the one associated with the VM logon ID. As a result of a
QMF CONNECT command, the QMF profile resets to that associated with the
new DB2 for VM user ID or to the SYSTEM row default if that DB2 for VM
user ID is not represented in Q.PROFILES.

For more information about CONNECT authority, see DB2 Server for VM
Database Administration See also “Required Entry Fields” on page 284.

Creating User Profiles to Enable User Access to QMF

All QMF users need access to a user profile, which determines how QMF
handles individual input of specific users. Use the profile to control certain
aspects of a user’s environment, such as where printer output is routed or
whether terminal input is converted to uppercase.

Each aspect of a user’s QMF session maps to a value in a column of the
Q.PROFILES control table. Each row of the Q.PROFILES table is an individual
user profile. “Reading the Q.PROFILES Table” on page 100 shows the
Q.PROFILES table in detail and discusses possible profile values.

Using the Q User Profile, a Special QMF Profile
QMF installation automatically grants DBA authority to the user ID Q. The
user Q owns and manages these QMF resources:
v All QMF control tables, shown in “Appendix D. QMF Control Tables and

dbspaces Used by QMF” on page 325.
v The sample tables shipped with QMF. (For descriptions of the sample

tables, see QMF Reference.)

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 97

v Default views for the database object list, explained in “Customizing a
User’s Database Object List” on page 112.

For the discussions and procedures throughout this book, we assume you’re
administering QMF using the Q user ID or another ID with DBA authority.

Establishing a Profile Structure for Your Installation
Provide users with a profile using one of these methods:
v Allow users to use the default QMF profile, which is the row of the

Q.PROFILES table where the CREATOR column has a value of SYSTEM.
The Q.PROFILES table is shipped with default profile values predefined in
this row. The defaults used by this SYSTEM profile are discussed in
“Reading the Q.PROFILES Table” on page 100. You can change these values
to create a generic profile that meets the needs of your site.

v Create a unique row in Q.PROFILES for the user, as shown in “Adding a
New User Profile to the Q.PROFILES Table”. Set the CREATOR column of
Q.PROFILES to the SQL authorization ID of the user and customize other
column values according to individual needs.

You can create unique profiles for some users at your installation and allow
other users to use the SYSTEM default profile; you can also delete the
SYSTEM profile for security and tracking reasons, thus preventing those who
don’t have unique profiles from using QMF.

Adding a New User Profile to the Q.PROFILES Table
You can use SQL INSERT queries or the QMF Table Editor (described in Using
QMF) to add new user profiles to the Q.PROFILES table. Figure 18 on page 99
shows sample SQL that creates unique profiles for users with SQL
authorization IDs of JONES (base QMF, or English) and SCHMIDT (German
NLF). Use the TRANSLATION column of Q.PROFILES, as shown, to
distinguish between an English and an NLF environment.

The values shown in the figure are examples of profile values you can use.
See Table 14 on page 101 for other valid profile values.

Establishing QMF Support for End Users

98 Installing and Managing QMF on VM

Important: Always specify a TRANSLATION value when inserting a row into
Q.PROFILES, or the TRANSLATION value defaults to a null value
and the profile row is automatically ignored. Figure 18 shows only
a subset of all possible profile values. Use “Reading the
Q.PROFILES Table” on page 100 for guidance in specifying
additional values.

To enroll many users, set up a template query that describes a standard
profile and uses a substitution variable value for any value that commonly
changes (such as the value for the CREATOR column) with each new user
you enroll. For more information on using substitution variables, see QMF
Reference .

If you’re using an NLF: You can establish different profiles for the same user
according to the national language environment. A
user can have a profile with one set of values in one
national language, and a profile with a different set
of values in another national language.

Preventing Users Without Unique Profiles from Using QMF
It can be difficult to track individual resource use if several people use QMF
under the common, default SYSTEM profile. To restrict use of QMF to users
who have unique profiles, delete the SYSTEM row of Q.PROFILES. Figure 19
on page 100 shows SQL statements that delete this row. You can also use the
Table Editor, as explained in Using QMF.

Base QMF (English) German NLF

INSERT INTO Q.PROFILES INSERT INTO Q.PROFILES
(CREATOR, LANGUAGE, SPACE, TRANSLATION, (CREATOR, LANGUAGE, SPACE, TRANSLATION,
PFKEYS, SYNONYMS, RESOURCE_GROUP, PFKEYS, SYNONYMS, RESOURCE_GROUP,
ENVIRONMENT) ENVIRONMENT)
VALUES ('JONES', 'PROMPTED', 'SAVEIT' VALUES ('SCHMIDT', 'MENUE', 'STUT2BER'
'ENGLISH', 'PFKEYS', 'COMMAND_SYNONYMS' 'DEUTSCH', 'DEUTASTEN'
'NONPRIME', 'CICSVSE') 'COMMAND_SYNONYM_D', 'SCHICHT'

'CICSVSE')

Figure 18. Creating a user profile

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 99

Important: For both base QMF and NLF environments, always specify a
TRANSLATION value when deleting rows from Q.PROFILES, or
more rows (across different national language environments)
might be deleted than you intend. Additionally, always use a
WHERE clause, or all rows of Q.PROFILES are deleted.

After you delete the SYSTEM row of Q.PROFILES, create a unique profile for
every QMF user; otherwise, your users won’t be able to use QMF. An example
of creating a unique profile is shown in Figure 18 on page 99.

Reading the Q.PROFILES Table
Table 14 on page 101 shows the columns of the Q.PROFILES control table.
Each column of the table represents an aspect of a user’s QMF session you
can customize. The defaults shown are for the English QMF environment.

If you’re using an NLF: Default values might be different for the English
environment and some NLFs. For example, do not
assume that the default for all NLFs is UPPER
because the English default is UPPER. The default
value for the CASE field in the German NLF is
MIXED, and might also vary for other NLFs. Browse
the DSQ2$UPO EXEC to see the default values for
each NLF. (Replace the n symbol with an NLID from
Table 5 on page 19.)

The Q.PROFILES table has the index Q.PROFILEX, with the attribute
UNIQUE. The keyed columns are CREATOR, TRANSLATION, and
ENVIRONMENT. No three rows can have identical values for these three
columns.

Base QMF (English)
German NLF

DELETE FROM Q.PROFILES
DELETE FROM Q.PROFILES

WHERE CREATOR='SYSTEM'
WHERE CREATOR='SYSTEM'

AND TRANSLATION='ENGLISH'
AND TRANSLATION='DEUTSCH'

Figure 19. Restricting use of QMF to users who have unique profiles

Establishing QMF Support for End Users

100 Installing and Managing QMF on VM

Table 14. Structure of the Q.PROFILES table

Column Name Data Type and
Length

Nulls Allowed Function and Possible Values

CREATOR CHAR (8) No Function: Specifies the SQL authorization ID
(the user) who owns the profile.

Values: SQL authorization ID or SYSTEM
(default). The SYSTEM row is shipped with
Q.PROFILES for English and each NLF; users
who don’t have unique profile rows can use
the SYSTEM row.

CASE CHAR (18) Yes Function: Specifies whether terminal input is
converted to uppercase.

Values: UPPER (default), STRING, or MIXED.
See QMF Reference for descriptions of these
values. CASE might have a different default
for NLF users.

DECOPT CHAR (18) Yes Function: Specifies what separators QMF puts
in numeric report columns.

Values: PERIOD (default), COMMA, and
FRENCH. See QMF Reference for more
information. DECOPT is translated and might
have a different default for NLF users.

CONFIRM CHAR (18) Yes Function: Controls display of confirmation
panels.

Values: YES (default) if you want
confirmation panels displayed before database
changes; NO if you don’t. See page 119 for
information on confirming table changes.
CONFIRM might have a different default for
NLF users.

WIDTH CHAR (18) Yes Function: Controls number of printed
columns per page.

Values: 22 to 999. Default = 132.

LENGTH CHAR (18) Yes Function: Controls number of printed lines
per page.

Values: 1 to 999, or CONT if you want no
page breaks. Default = 60.

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 101

Table 14. Structure of the Q.PROFILES table (continued)

Column Name Data Type and
Length

Nulls Allowed Function and Possible Values

LANGUAGE CHAR (18) Yes Function: Controls which query language
QMF uses when creating a new query after a
RESET QUERY command is issued.

Values: SQL (default), QBE (for
Query-by-Example), or PROMPTED (for
Prompted Query). LANGUAGE might have a
different default for NLF users.

SPACE CHAR (50) Yes Function: Specifies a dbspace that holds tables
created using SAVE DATA and IMPORT
commands. In DB2 Parallel Edition, this value
refers to a NODEGROUP name. However,
QMF 7.1 refers to it as a TABLESPACE name.
Operation is not affected. DataJoiner does not
utilize tablespaces and the value for the
SPACE option is ignored in a DataJoiner
context; operation continues as if a blank
value were present.

Values: Any valid dbspace name. See
“Choosing and Acquiring a dbspace for the
User” on page 118 for more information on
using dbspaces.

TRACE CHAR (18) Yes Function: Controls the level of detail in trace
output.

Values: ALL traces all functions at the most
detailed level. A character string of function
codes and numbers indicates the level of
tracing for individual QMF functions. NONE
inhibits normal levels of tracing. The default
varies depending on the value for
DSQSMODE. For example, when DSQSMODE
is B, the trace level is L2, otherwise it is
NONE. See “Using the QMF Trace Facility” on
page 300 for more information on the QMF
trace facility. See “Setting the Level of Trace
Detail (DSQSDBUG)” on page 81 to specify a
trace value when QMF starts. Only the values
ALL and NONE are translated in NLFs.

Establishing QMF Support for End Users

102 Installing and Managing QMF on VM

Table 14. Structure of the Q.PROFILES table (continued)

Column Name Data Type and
Length

Nulls Allowed Function and Possible Values

PRINTER CHAR (8) Yes Function: Controls where printer output is
routed.

Values: Use a null (default) or blank value to
route print output to a file or a printer that is
associated with the DSQPRINT FILEDEF. Use
a GDDM nickname to direct output to a
GDDM-defined printer. See “Chapter 9.
Enabling Users to Print Objects” on page 147
for information on choosing and specifying
values.

TRANSLATION CHAR (18) No Function: Indicates English or NLF
environment

Values: English (default) or the name of an
NLF. The right-hand column of Table 5 on
page 19 shows the translated names you need
to use in this column.

PFKEYS VARCHAR (31) Yes Function: Indicates the table or view (if any)
where user’s customized function key
definitions are stored.

Values: Any valid DB2 VM table or view
name. If blank or null (default), QMF’s default
keys are used. “Chapter 11. Customizing QMF
Function Keys” on page 173 describes how to
create this table.

SYNONYMS VARCHAR (31) Yes Function: Indicates the table or view (if any)
where user’s customized command definitions
are stored.

Values: Any valid DB2 for VM table or view
name. If blank or null (default), no customized
definitions are used. “Chapter 10. Customizing
QMF Commands” on page 159 describes how
to create this table. For NLF users, the
IBM-supplied table is named
Q.COMMAND_SYNONYM_n, where n is the
National Language ID.

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 103

Table 14. Structure of the Q.PROFILES table (continued)

Column Name Data Type and
Length

Nulls Allowed Function and Possible Values

RESOURCE_GROUP CHAR (16) Yes Function: Controls how the governor exit
routine limits user’s resources or commands.

Values: Any valid resource group name. If
blank or null (default), QMF attempts to use
the user’s SQL authorization ID here, and the
user’s session is not governed (unless the
authorization ID is a valid resource group
name). See “Chapter 13. Controlling QMF
Resources Using a Governor Exit Routine” on
page 227 for more information.

MODEL CHAR (8) Yes Function: Specifies the model for data access.

Values: Always use the value REL for this
column, indicating relational data.

ENVIRONMENT CHAR (8) Yes Function: Indicates the operating
environment.

Values: CMS or null. If profiles are stored in
DB2 for VM but are being accessed from a
DB2 application requester, the value can be
any one of the following: TSO, CICS®, MVS,
or CICS.

Providing the Correct Profile for the User’s Operating Environment
When QMF is started, it determines which users are authorized to establish a
QMF session by searching the CREATOR, ENVIRONMENT, and
TRANSLATION columns of the Q.PROFILES table. You need to add the
correct values to the user’s profile to ensure that QMF recognizes them and
starts.

QMF searches for specific profile values in the following order:
1. CREATOR=SQL ID, ENVIRONMENT=current operating environment
2. CREATOR=SQL ID, ENVIRONMENT=NULL
3. CREATOR=SYSTEM, ENVIRONMENT=current operating environment
4. CREATOR=SYSTEM, ENVIRONMENT=NULL

SQL ID is the DB2 for VM authorization ID of the user trying to log on to
QMF. DB2 for VM uses this ID to determine if the user is authorized to use
the database.

Current operating environment is CMS, CICS, CICSMVS, or TSO, when QMF is
being started from CMS, CICS, or TSO, respectively.

Establishing QMF Support for End Users

104 Installing and Managing QMF on VM

The value for current operating environment can also be CICSMVS, CICS, or TSO
if the profiles are stored in VM DB2 for VM but are being accessed from a
DB2 application requester.

QMF must find values for CREATOR and ENVIRONMENT that match one of
the pairs in the preceding list, or QMF initialization ends in an error before
the QMF Home panel is displayed.

Updating User Profiles
You can change the values in a user’s profile by using either the SET
PROFILE command or SQL UPDATE statements.

Using the SET PROFILE Command
Using this command is quicker than using SQL UPDATE statements, because
you can enter it from the QMF command line with minimal typing.

Values set using SET PROFILE remain effective only until the user’s session
ends; use the SAVE PROFILE command to save values you changed. For more
information on the SET PROFILE command and its parameters, see QMF
Reference.

Because no special SQL privileges are required to use this command, your
users can easily update their own profiles. However, they cannot use SET
PROFILE to update fields you might use to customize their QMF sessions.
These fields are PFKEYS, SYNONYMS, and RESOURCE_GROUP. You can use
SQL UPDATE statements or the QMF Table Editor to update these
Q.PROFILES fields. The Table Editor is explained in Using QMF.

Using SQL UPDATE Statements
SQL UPDATE statements can be used to update all fields of the Q.PROFILES
table, including SYNONYMS, PFKEYS, and RESOURCE_GROUP. See Table 14
on page 101 for descriptions of these columns, including consequences of not
specifying their values.

For more information about how to choose values for these columns, see:
v “Chapter 10. Customizing QMF Commands” on page 159
v “Chapter 11. Customizing QMF Function Keys” on page 173
v “Chapter 13. Controlling QMF Resources Using a Governor Exit Routine”

on page 227

Use an SQL UPDATE query similar to the one in Figure 20 on page 106 to
update existing user profiles. This example changes the name of the table that
stores a user’s command synonyms. On the left is an example query for user
JONES in base (English) QMF; on the right is the same query for user
SCHMIDT in the German NLF.

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 105

Important: When running UPDATE, DELETE, and INSERT queries on the
Q.PROFILES table, always include the TRANSLATION column in
the query; otherwise, QMF applies the changes you make in all
language environments.

Updating the SYSTEM Profile
You can change the default values provided in the SYSTEM row of
Q.PROFILES. However, any user who needs different values than those you
assigned for the SYSTEM row must have a unique profile row.

For example, suppose that your system has two resource groups defined,
named PRIME and NONPRIME. Suppose PRIME is the default value for the
RESOURCE_GROUP field of the SYSTEM row in Q.PROFILES. You must
formally enroll the users who are in the NONPRIME group by giving them
unique profile rows as shown in the example in Figure 18 on page 99.

Deleting Profiles from the Q.PROFILES Table
Periodically, you might need to delete obsolete user profiles from the
Q.PROFILES table. Delete a user profile from Q.PROFILES when you are sure
that objects created by the SQL authorization ID in that profile have been
either deleted or safely transferred to other users:
v For how to perform these tasks for QMF queries, forms, and procedures,

see “Maintaining QMF Objects Using QMF Control Tables” on page 120.
v For instructions for database tables and views, see “Maintaining Tables and

Views Using DB2 for VM System Tables” on page 127.

When you delete a user profile, all SQL privileges the user had on objects are
deleted, as well as all privileges that user granted to other users. To ensure
other users won’t be affected, query the SYSTEM.SYSTABAUTH table to see
what SQL privileges have been granted to the user. Query the
SYSTEM.SYSUSERAUTH table to see what DB2 for VM authorities have been
granted. For sample queries you can use, see “Transferring Ownership of
Queries, Forms, and Procedures” on page 124.

Base QMF (English)
German NLF

UPDATE Q.PROFILES
UPDATE Q.PROFILES

SET SYNONYMS='COMMAND_SYNONYMS'
SET SYNONYMS='GUMMOW.XYZ'

WHERE CREATOR='JONES' AND
WHERE CREATOR='SCHMIDT' AND

TRANSLATION='ENGLISH'
TRANSLATION='DEUTSCH'

Figure 20. Updating user profiles using UPDATE query on Q.PROFILES table

Establishing QMF Support for End Users

106 Installing and Managing QMF on VM

Use a query similar to the one shown in Figure 21 to delete a user profile.

If you’re using an NLF: Include a value for the TRANSLATION column if
you want to delete the user profile in a single NLF
environment. If you don’t specify a value for
TRANSLATION, QMF deletes the profile in all NLF
environments.

If the user whose profile you deleted had a private dbspace, use the SQL
DROP DBSPACE statement from the SQL query panel if the space contains
nothing you want to save. Also, you can use the SQL DROP TABLE statement
or QMF ERASE commands if you want to delete specific QMF or database
objects. DB2 Server for VSE & VM SQL Reference explains the DROP statement.
QMF Reference explains the ERASE command.

Controlling Access to QMF and Database Objects

QMF objects, such as queries and procedures, and functions such as the Table
Editor, allow users to access and manipulate data stored in tables in the
database. Because this data might be sensitive, you might need to control
users’ access to certain objects:
v You can use SQL GRANT and REVOKE statements from QMF’s SQL query

panel to control access to tables and views, as discussed in “Granting and
Revoking SQL Privileges” on page 109. “SQL Privileges Required to Access
Objects” explains privileges required to use specific QMF commands or
functions on objects.

v You can use the SHARE parameter of the QMF SAVE command to control
access to queries, forms, and procedures, as discussed in “Sharing QMF
Objects with Other Users” on page 111.

SQL Privileges Required to Access Objects
Before users can use certain SQL statements with tables or views, you need to
grant them the SQL privileges they need. For example, if user JONES enters

Base QMF (English)
German NLF

DELETE FROM Q.PROFILES
DELETE FROM Q.PROFILES

WHERE CREATOR='JONES'
WHERE CREATOR='SCHMIDT'

AND TRANSLATION='ENGLISH'
AND TRANSLATION='DEUTSCH'

Figure 21. Deleting a QMF user profile

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 107

DISPLAY TABLE SALES_TOTALS but does not have the SQL SELECT privilege for
the SALES_TOTALS table, QMF displays the following message:
You lack the authorization needed for this DISPLAY command.

To prevent JONES from getting this kind of error message, grant him the SQL
SELECT privilege on the SALES_TOTALS table.

Different SQL privileges are required, depending on whether the user is
executing a QMF command, running a prompted or QBE query, or using the
Table Editor.

SQL Privileges Required for QMF Commands
Using Table 15, locate the QMF command your users need to use and grant
them the required SQL privilege on the table or view they’re working with.
See “Granting and Revoking SQL Privileges” on page 109 for examples of SQL
GRANT statements.

Table 15. QMF commands and their SQL equivalents

This QMF
command:

Requires this SQL privilege on objects referenced by the command:

DISPLAY
table/view

SELECT

DRAW
table/view

SELECT

EDIT TABLE
table/view

The necessary privileges depend on the Table Editor mode. See “SQL Privileges
Required for the Table Editor” on page 109 for this information.

EXPORT TABLE
table/view

SELECT

IMPORT TABLE
table/view

If the table exists, SELECT, DELETE, and INSERT. If the table does not exist, INSERT.
Authority is also required to use the CREATE TABLE statement for the dbspace
specified in the SPACE field of the user’s profile.

PRINT
table/view

SELECT

RUN query Whatever privileges are used in the query

RUN procedure Whatever privileges are used in the commands in the procedure

SAVE DATA If the table exists, SELECT, DELETE, and INSERT. If the table does not exist, CREATE
TABLE.

LIST table/view SELECT

Not all users can use the SAVE command to create a new table. For more
information, see “Enabling Users to Create Tables in the Database” on
page 116.

Establishing QMF Support for End Users

108 Installing and Managing QMF on VM

For more information on SQL privileges, such as SELECT, INSERT, UPDATE,
or DELETE, see DB2 Server for VSE & VM SQL Reference

SQL Privileges Required for Prompted and QBE Queries
Using Table 16, locate the type of query your users need and grant them the
SQL privilege on the table or view against which the query runs.

Table 16. QMF query types and their SQL equivalents

Users using this type of query: Need this SQL privilege:

PROMPTED SELECT

QBE I. INSERT

QBE P. SELECT

QBE U. UPDATE

QBE D. DELETE

For more information on prompted or QBE queries, see Using QMF .

SQL Privileges Required for the Table Editor
Using Table 17, locate the Table Editor function your users need to use and
grant them the SQL privilege on the table or view they need to edit.

Table 17. Table Editor commands and their SQL equivalents

Users using this Table Editor function: Need this SQL privilege on tables or
views being edited:

ADD INSERT

SEARCH SELECT

CHANGE UPDATE

DELETE DELETE

For more information on the Table Editor, see Using QMF.

Granting and Revoking SQL Privileges
Users automatically own any objects they create and save in the database
(unless they create a table with a different owner). The owner of an object
automatically has all SQL privileges on objects he or she owns, and can grant
(or revoke) these privileges to other users. Anyone with DB2 for VM DBA
authority can grant or revoke SQL privileges for any object in the database.
The user Q has this authority, and is predefined to DB2 for VM during QMF
installation.

When granting or revoking privileges on objects you do not own, qualify the
object with the SQL authorization ID of the owner:

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 109

JONES.ORDER_BACKLOG

Using the SQL GRANT Statement
Use the SQL GRANT statement to grant SQL SELECT, UPDATE, INSERT, and
DELETE privileges. For example, suppose user JONES needs to issue the
following command:
EDIT TABLE ORDER_BACKLOG (MODE=CHANGE

Assuming you are the owner of the table, use the statement in Figure 22 to
grant JONES the SQL UPDATE privilege he needs to edit the
ORDER_BACKLOG table in change mode:
WITH GRANT OPTION indicates that JONES can grant to other users any of

the SQL privileges you granted him for the ORDER_BACKLOG table.

If you need to run GRANT queries often, use QMF variables in place of parts
of the query that frequently change, such as UPDATE, ORDER_BACKLOG,
and JONES. Variables are explained in QMF Reference. You might also consider
using a QMF procedure to do the task if there is more than one query. Using
QMF explains how to create procedures.

Use the keyword PUBLIC to grant SQL privileges to all QMF users. For
example, use the statement in Figure 23 to grant INSERT authority on the
ORDER_BACKLOG table to all users, and allow each of those users to grant
INSERT authority to other users:

For more information of the GRANT statement, see DB2 Server for VSE & VM
SQL Reference

Important: If you grant more than one person INSERT, UPDATE, or DELETE
privileges on a database object, and two or more users try to
access that object at the same time, there might be contention for
resources, causing performance or other problems. Users editing
tables required during QMF initialization can hold locks on the
table that prevent QMF from starting for other users.

Using the SQL REVOKE Statement
Use the SQL REVOKE statement to take back privileges granted:

GRANT UPDATE ON ORDER_BACKLOG TO JONES WITH GRANT OPTION

Figure 22. Granting SQL privileges to a single QMF user

GRANT INSERT ON ORDER_BACKLOG TO PUBLIC WITH GRANT OPTION

Figure 23. Granting an SQL privilege to all QMF users

Establishing QMF Support for End Users

110 Installing and Managing QMF on VM

Use the PUBLIC keyword to revoke privileges from all QMF users.

DB2 for VM privileges have a cascading structure; privileges revoked from a
user are automatically revoked from any additional users to whom that user
granted them.

For more information of the REVOKE statement, see DB2 Server for VSE &
VM SQL Reference

Sharing QMF Objects with Other Users
You or any QMF user can enable access to QMF queries, forms, and
procedures, by using the SHARE parameter of the QMF SAVE command.

Specify SHARE=YES when saving an object to allow any other user to display
the query and use it in a QMF command that does not replace or erase it. For
example, the command in Figure 25 saves the current query as
ORDER_QUERY and allows any other user to display and run it:
The default is defined by the global variable DSQEC_SHARE. See QMF

Reference for details.

The owner of an object can change its shared status at any time, using a
DISPLAY command followed by a SAVE command, as shown in Figure 26:

For more information on the SAVE command, see QMF Reference.

Allowing Uncommitted Read
If you want your QMF session to allow uncommitted read, you can specify a
value for the global variable DSQEC_ISOLATION in the Q.SYSTEM_INI
procedure.

REVOKE UPDATE ON ORDER_BACKLOG FROM JONES

Figure 24. Revoking an SQL privilege from a QMF user

SAVE QUERY AS ORDER_QUERY (SHARE=YES

Figure 25. Sharing a QMF object

DISPLAY ORDER_QUERY
SAVE QUERY AS ORDER_QUERY (SHARE=NO

Figure 26. Changing the shared status of a QMF object

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 111

Uncommitted read can be useful in a distributed environment. However,
allowing uncommitted read can introduce non-existent data into a QMF
report. Do not allow uncommitted read if your QMF reports must be free of
non-existent data.

Values can be:

'0' Isolation level UR, Uncommitted Read.

'1' Isolation level CS, Cursor Stability. This is the default.

For QMF 7.1 the use of the value ’0’ is only effective with the following
database servers (those supporting the SQL with-clause):
v DB2 for MVS V4 or higher
v DB2 for VM/VSE V4 or higher

Setting Standards for Creating Objects
The objects in your installation might be shared among many users, so they
should have names that indicate what the object is and how it should be
used. Encourage users to provide comments that describe for other users the
purpose of queries, forms, procedures, and tables. Tables and views require
more maintenance and administration, so consider establishing special
guidelines for creating these objects.

For information on how to create comments for QMF and database objects
using the SAVE command, see QMF Reference.

Customizing a User’s Database Object List

QMF users periodically need to list objects they have saved in the database, or
to view comments that show them what purpose a table serves or what type
of data a column in the table contains. The QMF LIST and DESCRIBE
commands perform these functions.

When a user issues a LIST or DESCRIBE command for a table, QMF uses a
view defined on a set of DB2 for VM system tables to obtain information
about the table. The name of this view is stored in the global variable
DSQEC_TABS_SQL. When users issue these commands for a column within a
table, QMF uses the global variable DSQEC_COLS_SQL to obtain the name of
the view.

QMF provides a set of default views, loaded during installation, that return
only the tables and column information the user is authorized to see. Because
processing for authorization takes extra time and resources, QMF also allows
you to customize the table lists and column information by creating your own
views.

Establishing QMF Support for End Users

112 Installing and Managing QMF on VM

Using the Default Object Lists
QMF provides default views and automatically assigns these views to the user
Q during QMF installation:

Q.DSQEC_TABS_SQL
Q.DSQEC_COLS_SQL

QMF supplies a variation of the following views when QMF is installed into
DB2 Common Servers:

Q.DSQEC_TABS_LDB2
Q.DSQEC_ALIASES
Q.DSQEC_COLS_LDB2

The view Q.DSQEC_TABS_SQL selects only those database tables the user is
authorized to see. Figure 27 shows the type of information the view provides.
To override the default view Q.DSQEC_TABS_SQL, issue a command like this

one:
SET GLOBAL (DSQEC_TABS_SQL = userid.your_local_sql_table

The view Q.DSQEC_COLS_SQL selects only the column information a user is
authorized to see. Figure 28 on page 114 shows the type of information the
view provides.

CREATE VIEW Q.DSQEC_TABS_SQL
(OWNER,TNAME,TYPE,SUBTYPE,MODEL,RESTRICTED,REMARKS,
CREATED,MODIFIED,LAST_USED,LABEL,LOCATION,OWNER_AT_LOCATION,
NAME_AT_LOCATION)
AS SELECT

CREATOR,TNAME,'TABLE',TABLETYPE,' ',' ',REMARKS,' ',' ',' ',
TLABEL,' ',' ',' '

FROM SYSTEM.SYSCATALOG, SYSTEM.SYSTABAUTH
WHERE CREATOR = TCREATOR AND TNAME=TTNAME AND GRANTEETYPE = ' ' AND

GRANTEE IN (USER,'PUBLIC');
COMMENT ON TABLE Q.DSQEC_TABS_SQL IS

'QMF VIEW FOR DB2 for VM TABLES/VIEWS LIST';
GRANT SELECT ON Q.DSQEC_TABS_SQL TO PUBLIC;

Figure 27. Default view that provides a list of tables for the LIST command

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 113

To override the default view Q.DSQEC_COLS_SQL, issue the command:
SET GLOBAL (DSQEC_COLS_SQL = userid.your_local_sql_columns

Changing the Default List
Using the QMF-provided default views for your table lists and column
information might increase processing time, because DB2 for VM gathers
authorization information from the SYSTEM.SYSCATALOG and
SYSTEM.SYSCOLUMNS tables. If you don’t need the extra security provided
by these authorization checks, consider creating your own views that generate
a list of objects stored in the database.

Use a query similar to the one in Figure 29 to create your own view. This
query eliminates duplicate rows in the view and, although DB2 for VM
spends more time before returning rows to QMF, there is less data transfer
between the database and the user machine, producing better performance.
You can name your customized view any name that is valid in QMF. See QMF
Reference for information on QMF naming conventions.
To override the view you created, you can issue a command similar to the

following:
SET GLOBAL (DSQEC_COLS_SQL = userid.your_local_sql_objects

CREATE VIEW Q.DSQEC_COLS_SQL
(OWNER,TNAME,CNAME,REMARKS,LABEL)

AS SELECT
CREATOR,TBNAME,CNAME,REMARKS,CLABEL
FROM SYSTEM.SYSCOLUMNS, SYSTEM.SYSTABAUTH
WHERE TCREATOR = CREATOR AND TTNAME=BNAME AND GRANTEETYPE = ' '

AND GRANTEE IN (USER,'PUBLIC')

Figure 28. Default view that provides column information for the DESCRIBE command

CREATE VIEW Q.DATABASE_OBJECTS
(OWNER,TNAME,TYPE,SUBTYPE,MODEL,RESTRICTED,REMARKS,
CREATED,MODIFIED,LAST_USED,LABEL,LOCATION,OWNER_AT_LOCATION,
NAME_AT_LOCATION)

AS SELECT CREATOR,TNAME,
'TABLE',TABLETYPE,' ',' ',REMARKS,

TLABEL,' ',' ',' '
FROM SYSTEM.SYSCATALOG A

WHERE TNAME IN (SELECT TTNAME
FROM SYSTEM.SYSTABAUTH
WHERE TCREATOR = A.CREATOR

AND GRANTEETYPE = ' &'
AND GRANTEE IN (USER, 'PUBLIC'))

Figure 29. Customizing your object lists using global variables

Establishing QMF Support for End Users

114 Installing and Managing QMF on VM

If you want to create a view that shows only the tables for which a user has
privileges, but does not require a join, consider defining a view that selects
only from SYSTEM.SYSTABAUTH, but does not return values for REMARKS
or LABEL.

For other DBAs, consider creating another view similar to the default QMF
view, but that selects only from SYSTEM.SYSCATALOG for table list or
SYSTEM.SYSCOLUMNS for column list. Then the DBAs can name this view
in the DSQEC_TABS_SQL or DSQEC_COLS_SQL global variables and access
descriptive information for any columns in the database.

Follow these rules if you’re creating a list view of your own:
v The view must have the same view column names as the corresponding

QMF-supplied view. The column names in the CREATE VIEW statement of
the alternative view can be in any order.

v All columns must have a data type of CHAR or VARCHAR. QMF returns
errors upon finding other data types.

v Do not exceed the following maximum lengths for columns in the view:
– 18 characters for TNAME, CNAME, and NAME_AT_LOCATION
– 254 characters for REMARKS
– 30 characters for LABEL
– 1 character for RESTRICTED
– 16 characters for LOCATION
– 8 characters for OWNER, TYPE, SUBTYPE, MODEL, and

OWNER_AT_LOCATION
v Always supply values for OWNER, TNAME, TYPE, and CNAME. These

columns cannot be null.

DSQEC_TABS_SQL and DSQEC_COLS_SQL are part of a set of global
variables that help you control aspects of a user’s QMF session. For more
information on using global variables in procedures, see Using QMF . For a
list of global variables and information on using them in applications, see
Developing QMF Applications.

Object List Storage Requirement
For the LIST command, there are two sets of storage requirements for each
row of the object list.
v The QMF internal RPT record collection requires:

– Object OWNER key information, 50 bytes
– REMARKS, up to 254 bytes
– TABLE with a LABEL, up to 30 bytes
– ALIAS, 42 bytes
– Object information for QUERY, PROC, and FORM, 63 bytes

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 115

v The storage to hold displayed data and control information requires 130
bytes plus the actual number of bytes for REMARKS, up to 254 bytes and
the actual number of bytes for the LABEL associated with a table, up to 30
bytes.

Enabling Users to Create Tables in the Database

A QMF user can create a table using any of these methods:
v SQL CREATE TABLE statement

Enter the SQL CREATE TABLE statement from a QMF SQL query panel or
run it from a saved query.

v QMF DISPLAY TABLE (or DISPLAY viewname) command, followed by the
SAVE DATA command
All SQL privileges on the underlying table or view are required. If the
name you specify on the SAVE DATA command is the name of an existing
table, QMF replaces or appends the existing data object. The SAVE
command might be rejected if table attributes don’t match. For more
information on the SAVE DATA command, see QMF Reference or the online
help.

v QMF IMPORT TABLE or IMPORT VIEW command
All SQL privileges on the table or view being imported are required. If the
name the user specifies on the IMPORT command is the name of a table
that already exists, QMF replaces or appends the data in the existing table.
The IMPORT command might be rejected if table attributes don’t match.
For more information on the IMPORT command, see QMF Reference or the
online help.

Depending on the needs of your installation, you might need to create tables
for your users or enable them to create their own tables. Both methods are
shown in Table 18 on page 117.

Establishing QMF Support for End Users

116 Installing and Managing QMF on VM

Table 18. Creating tables in the database
If you’re creating tables for your users: If users are creating tables themselves:

Step 1 Acquire a dbspace as shown in Figure 30
on page 118 and define it to DB2 for VM
before its first use. Use DB2 Server for VM
Database Administration to help you decide
on a private or public dbspace.

Step 1 Acquire a dbspace as shown in Figure 30
on page 118 and define it to DB2 for VM

before its first use. Use DB2 Server for VM
Database Administration to help you decide
on a private or public dbspace.

Step 2 To create the table, issue either an SQL
CREATE TABLE statement, a QMF
DISPLAY command followed by a SAVE
DATA command, or an IMPORT TABLE
command. See Using QMF for examples of
creating tables.

Step 2 Assign the dbspace in the user’s QMF
profile, using an SQL UPDATE statement
for the SPACE field. Updating profiles is
explained in “Updating User Profiles” on
page 105. You can update the SYSTEM
profile if you need to change its default
values.

Step 3 Create one or more indexes on the tables
you create, to improve DB2 for VM
performance. See DB2 Server for VSE &
VM SQL Reference for information on the
CREATE INDEX statement and details on
logical design of tables.

Step 3 Grant DB2 for VM RESOURCE authority
to users creating their own tables in public
dbspaces, or acquire a private dbspace for
the user. Users automatically have all SQL
privileges on tables they create.

Step 4 Fill the tables with data. Use the Db2 for
VM DBS Utility, QMF IMPORT commands
(for transferring small tables), or other
methods. DB2 Server for VSE & VM
Database Services Utility explains how to
use the DBS Utility. Using QMF explains
exporting and importing objects in QMF.

Step 4 Provide education on the SQL CREATE
TABLE statement, QMF SAVE DATA and
IMPORT commands, and other guidelines
your site has for creating tables. See QMF
Reference for more information on these
commands.

Step 5 Grant SQL privileges for the tables to
users who need them, as discussed in
“SQL Privileges Required to Access
Objects” on page 107.

Step 5 Grant SQL privileges on any table or view
on which users issue SAVE DATA or
IMPORT commands to create new tables.
Grant at least the SELECT privilege, or
QMF can’t read the data to create a new
table.

SQL privileges for QMF functions and
commands are discussed starting in “SQL
Privileges Required to Access Objects” on
page 107.

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 117

For more information on the CREATE TABLE, CREATE INDEX, and other
SQL statements related to creating tables, see DB2 Server for VSE & VM SQL
Reference

Choosing and Acquiring a dbspace for the User
A dbspace can be either private or public. Any QMF user with DB2 for VM
RESOURCE authority can create tables in a public dbspace. If the dbspace is
private, only the assignee is allowed to create tables in it. For additional
guidance on types of dbspaces, see DB2 Server for VM Database Administration

Using the SQL ACQUIRE Statement
After you decide whether a public or private dbspace best suits your needs,
acquire the dbspace using a statement similar to the one in Figure 30. You can
enter this statement from the QMF SQL query panel, then press the Run
function key to run the query.
Substitute PRIVATE for PUBLIC in the statement if you’re acquiring a private

dbspace, and be sure to qualify dbspacename with the SQL authorization ID of
the user for whom you’re acquiring the dbspace.

Sizing a dbspace
The size of the dbspace in an acquire statement is given in pages, where one
page is 4096 bytes. If you don’t specify a page size, a default value of 128
pages is assumed. Estimate the size you need by estimating the size of the
tables the dbspace must hold, as though the tables are reports and you’re
estimating the size of a spill file to hold them. “Estimating the Space Required
for a Spill File” on page 76 shows an algorithm for estimating the size of a
spill file.

Whatever size you choose, first search the DB2 for VM storage pools for an
existing dbspace close to the size you need. If no dbspace of convenient size
already exists, use the ADD dbspace statement to create a dbspace.
Instructions for adding dbspaces are provided in DB2 Server for VM System
Administration

Granting a User DB2 for VM RESOURCE Authority
You need to grant DB2 for VM RESOURCE authority to any user who needs
to create tables in a public dbspace. To grant a user RESOURCE authority,
issue the SQL statement shown in Figure 31 on page 119, where userid1,
userid2, and userid3, represent SQL authorization IDs.

ACQUIRE PUBLIC DBSPACE NAMED dbspacename
(PAGES = 1024)

Figure 30. Acquiring a dbspace

Establishing QMF Support for End Users

118 Installing and Managing QMF on VM

A user with RESOURCE authority can:
v Acquire a private dbspace for his or her own use
v Create tables in a public dbspace, in addition to those created in a private

dbspace

If you want to allow a user to create tables, but need to maintain control over
how much resource is used, acquire a private dbspace for the user rather than
granting RESOURCE authority. That way, you can control the size of the
dbspace and the amount of resource used.

See DB2 Server for VM Database Administration for more information on
acquiring a dbspace and a discussion of DB2 for VM authority levels.

Enabling Users to Confirm Table Changes Before They are Made
Using the QMF Table Editor, a user can add, delete, or update information in
a database table. If the value of the CONFIRM field of a user’s QMF profile is
YES, QMF displays a panel before making database changes. This panel asks
users if they are sure they want to change the database.

To enable users to confirm their database changes, first make sure the dbspace
you chose for the user is recoverable. Because changes to DB2 for VM tables
stored in nonrecoverable dbspaces cannot be rolled back, or canceled,
answering NO on the Table Editor confirmation prompt panel for database
changes doesn’t prevent the changes to the table from taking place.

As end users become more comfortable changing data in the database, they
might not need QMF to display these confirmation panels. You can use the
following global variables to disable the panels for specific categories of
actions allowed by the Table Editor:
v DSQCP_TEADD for the ADD category
v DSQCP_TECHG for the CHANGE category
v DSQCP_TEDEL for the DELETE category
v DSQCP_TEEND for the END/CANCEL category
v DSQCP_TEMOD for the MODIFY category

The Table Editor loads values for these variables when it is initialized. The
possible values for each variable are:
0 Disables the confirmation panel for the category.
1 Enables the confirmation panel for the category.
2 (The default) Either disables or enables the panel for the category,

depending on how the SAVE keyword of the EDIT command is set:
v When SAVE=IMMEDIATE, the confirmation panel displays.

GRANT RESOURCE TO userid1, userid2, userid3, ...

Figure 31. SQL statements to grant RESOURCE authority to more than one user

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 119

v When SAVE=END, the confirmation panel displays for the DELETE,
MODIFY, and END/CANCEL categories, but does not display for
the ADD and CHANGE categories.

For more information about functions provided by the QMF Table Editor, see
Using QMF.

Enabling Users to Support a Chart

QMF users can create charts from their reports through the Interactive Chart
Utility (ICU)—a feature of GDDM.

From a single report, users can specify different chart forms, such as scatter
charts, pie charts, and bar charts. Users can use IBM-supplied chart forms or
create their own. In addition, they can save newly created chart forms, if they
have libraries in which to store them.

The IBM-supplied chart forms are supplied on the QMF production disk.
When the user saves a chart form, it is saved on the user’s A disk. Charts on a
user’s A disk are used before charts on the QMF production disk.

This arrangement gives each user access to both the IBM-supplied chart forms
and those the user saved. It also prevents replacement of the IBM-supplied
chart forms.

Maintaining QMF Objects Using QMF Control Tables

Periodically, you need to condense and reorganize the QMF control tables that
store QMF queries, forms, and procedures. Regular maintenance of the QMF
control tables might involve tasks such as transferring objects to new owners
or enlarging the dbspace for the tables when it is no longer large enough to
hold existing QMF objects.

All QMF queries, forms, and procedures are stored among three QMF control
tables:
v The Q.OBJECT_DIRECTORY table, which is described in “Reading the

Q.OBJECT_DIRECTORY Table” on page 121
v The Q.OBJECT_DATA table, which is described in “Reading the

Q.OBJECT_DATA Table” on page 122
v The Q.OBJECT_REMARKS table, which is described in “Reading the

Q.OBJECT_REMARKS Table” on page 123

Keep QMF and the database running efficiently by periodically listing,
displaying, or deleting QMF objects from these tables and reorganizing them
when necessary. You might also need to use the information in these tables to
transfer an object from one owner to another.

Establishing QMF Support for End Users

120 Installing and Managing QMF on VM

Reading the Q.OBJECT_DIRECTORY Table
This table contains a row for each QMF query, form, and procedure in the
database. The table has the index Q.OBJECT_DIRECTORYX, with the
UNIQUE attribute. The keyed columns are OWNER and NAME. No two rows
can have identical values for these columns.

The Q.OBJECT_DIRECTORY table has the structure shown in Table 19:

Table 19. Structure of the Q.OBJECT_DIRECTORY table

Column name Data type Length (bytes) Nulls allowed? Function/values

OWNER CHAR 8 No Shows the SQL authorization ID
of the creator of the object.

NAME VARCHAR 18 No Shows the name of the object.

TYPE CHAR 8 No Shows the type of object:
FORM, PROC, or QUERY.

SUBTYPE CHAR 8 Yes Shows SQL, QBE, or
PROMPTED when TYPE is
QUERY. Null or blank if TYPE
is not QUERY.

OBJECTLEVEL INTEGER 4 No QMF uses this number to
reconstruct an object from its
defining text in the
Q.OBJECT_DATA table.

RESTRICTED CHAR 1 No YES if the object has not been
shared (using the SHARE
parameter of the QMF SAVE
command); NO if the object has
been shared with other users.

MODEL CHAR 8 Yes This value is REL, indicating
relational data.

CREATED TIMESTAMP Yes Shows the timestamp value for
when an object was created.
The value is recorded after
SAVE or IMPORT commands.

MODIFIED TIMESTAMP Yes Shows the timestamp value for
when an object was last
modified. The value is recorded
after SAVE or IMPORT
commands.

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 121

Table 19. Structure of the Q.OBJECT_DIRECTORY table (continued)

Column name Data type Length (bytes) Nulls allowed? Function/values

LAST_USED DATE Yes Shows the date value for when
an object was last used. The
value is updated only once each
day the object is accessed. Note
that the LAST_USED value may
not be updated, for
performance reasons, when
using a QMF object while the
current QMF report is not yet
complete.

Reading the Q.OBJECT_DATA Table
This table contains one or more rows for each query, form, and procedure in
the database. Each row contains all or part of the defining text for one of
these objects. Objects are reconstructed from this text by combining the text
with the corresponding format number in the OBJECTLEVEL column of the
Q.OBJECT_DIRECTORY table.

The Q.OBJECT_DATA table has the index Q.OBJECT_OBJDATAX, with the
UNIQUE attribute. Keyed columns are OWNER, NAME, and SEQ.

The table has the structure shown in Table 20:

Table 20. Structure of the Q.OBJECT_DATA table

Column name Data type Length (bytes) Nulls allowed? Function/values

OWNER CHAR 8 No Shows the SQL authorization ID
of the creator of the object.

NAME VARCHAR 18 No Shows the name of the object.

TYPE CHAR 8 No Shows the type of object:
FORM, PROC, or QUERY.

SEQ SMALLINT 2 No Indicates the sequence that this
text occupies within the entire
text of the object. For example,
if this row is the first row of
text in the object, SEQ is 1; if it
is the second, SEQ is 2, and so
on.

Establishing QMF Support for End Users

122 Installing and Managing QMF on VM

Table 20. Structure of the Q.OBJECT_DATA table (continued)

Column name Data type Length (bytes) Nulls allowed? Function/values

APPLDATA LONG
VARCHAR (see
note)

3600 (see note) Yes Contains all or a portion of text
that defines the object. Text
appears in an internal QMF
format. The OBJECTLEVEL
column in
Q.OBJECT_DIRECTORY defines
this format.

Note: With DataJoiner V1.2.1 and DB2 for AIX, Parallel Edition V1.2, the data type and length for
APPLDATA are VARCHAR(3600). This is a permanent restriction for V1 SQL databases.

Reading the Q.OBJECT_REMARKS Table
This table contains one row for each query, form, and procedure in the
database. The row contains comments entered using the QMF SAVE command
when the object was created or last replaced. (See the description of the SAVE
command in QMF Reference.)

The Q.OBJECT_REMARKS table has the index Q.OBJECT_REMARKSX, with
the UNIQUE attribute. Keyed columns are OWNER and NAME.

The table has the structure shown in Table 21:

Table 21. Structure of the Q.OBJECT_REMARKS table

Column name Data type Length (bytes) Nulls allowed? Function/values

OWNER CHAR 8 No Shows the SQL authorization ID
of the user who created the
object

NAME VARCHAR 18 No Shows the name of the object.

TYPE CHAR 8 No Shows the type of the object:
FORM, PROC, or QUERY.

REMARKS VARCHAR 254 Yes Contains the comment that was
saved with the object when it
was created or replaced.

Listing QMF Queries, Forms, and Procedures
To get the information you need to help you maintain the QMF environment,
you need to list the queries, forms, and procedures that QMF users have
saved in the database. With DBA authority you can list QMF objects you do
not own using the query in Figure 32 on page 124.

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 123

This query returns a list of objects sorted by type (FORM, PROC, QUERY)
and further by subtype (SQL, QBE, or PROMPTED) if TYPE is query. Enclose
the value you supply for userid in single quotation marks. Objects of each
type are further sorted by whether they’ve been shared by the owner. Shared
status is reflected in the RESTRICTED column of the Q.OBJECT_DIRECTORY
table.

Displaying QMF Queries, Forms, and Procedures
If listing the objects doesn’t provide enough information in the REMARKS
column, try displaying the object by one of the following methods:
v Connecting to the database using the user’s SQL authorization ID. For

example, to connect as user JONES who has a password of MYPW:
CONNECT JONES (PA=MYPW

Then issue the QMF DISPLAY command for each object you want to
display.

v Running the following query to share the user’s objects, then displaying
them from your own ID:
Enclose the value you supply for userid in single quotes.

Important: Run this query only if you don’t need to track which of the
user’s objects are restricted and which are not. After you run
this query, you can set RESTRICTED back to Y, but you won’t
know which objects were originally restricted.

Transferring Ownership of Queries, Forms, and Procedures
Use the queries shown in Figure 34 on page 125 to transfer QMF objects from
one user to another. Ensure you run all three queries.

SELECT D.NAME, D.TYPE, D.SUBTYPE, D.RESTRICTED, R.REMARKS
FROM Q.OBJECT_DIRECTORY D,

Q.OBJECT_REMARKS R
WHERE D.OWNER = 'userid'

AND D.OWNER = R.OWNER
AND D.NAME = R.NAME

ORDER BY D.TYPE, D.SUBTYPE, D.RESTRICTED

Figure 32. Listing queries, forms, and procedures owned by a particular user

UPDATE Q.OBJECT_DIRECTORY
SET RESTRICTED = 'N'
WHERE OWNER = 'userid'

Figure 33. Sharing another user’s objects with all users

Establishing QMF Support for End Users

124 Installing and Managing QMF on VM

Important: First make sure that the new owner has no objects saved with the
name of the object you’re transferring, or QMF replaces the
existing object with the object you transfer.

In the queries shown in Figure 34, namelist is a list of the object names to be
transferred; the list must be set off by parentheses, with each name separated
by a comma and surrounded by single quotes. For example:
('QUERY1','QUERY2','FORMA','PROCB')

For queries or procedures that name objects qualified with the old SQL
authorization ID, be sure to change the qualifier. For example, if you transfer
MYQUERY from BAXTER to JONES, change the name from
BAXTER.MYQUERY to JONES.MYQUERY.

Use an SQL query like the one in Figure 33 on page 124 to change the
RESTRICTED column value to Y if you decide you want to share the object
after transferring it.

The user might also have CMS files containing queries, forms, and
procedures. You use the QMF IMPORT command to save those of interest to
other users. Using this command saves them under the current DB2 for VM
user ID, and you can then transfer their ownership to another user ID.

Deleting Obsolete Queries, Forms, and Procedures
Use the SQL in Figure 35 to delete all of a particular user’s QMF queries,
forms, and procedures. Ensure you run all three queries, because the internal
representation of each object spans the three QMF control tables
Q.OBJECT_DIRECTORY, Q.OBJECT_DATA, and Q.OBJECT_REMARKS.
Surround values you supply for the user ID variables with single quotes.

Unpredictable results can occur if the tables are not properly updated.

UPDATE Q.OBJECT_DIRECTORY UPDATE Q.OBJECT_REMARKS UPDATE Q.OBJECT_DATA
SET OWNER = 'newuserid' SET OWNER = 'newuserid' SET OWNER = 'newuserid'
WHERE OWNER = 'olduserid' WHERE OWNER = 'olduserid' WHERE OWNER = 'olduserid'
AND NAME IN namelist AND NAME IN namelist AND NAME IN namelist

Figure 34. Transferring QMF objects to another user

DELETE FROM Q.OBJECT_DIRECTORY DELETE FROM Q.OBJECT_REMARKS DELETE FROM Q.OBJECT_DATA
WHERE OWNER = 'olduserid' WHERE OWNER = 'olduserid' WHERE OWNER = 'olduserid'

Figure 35. Deleting unnecessary objects from the QMF control tables

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 125

You can also delete obsolete objects by using the date and time sorting
capabilities in Q.OBJECT_DIRECTORY. You can select every object where the
data last used was before 06/01/95 and delete all the appropriate rows from
the three control tables.

Enlarging the dbspace for the QMF Object Control Tables
Periodically, QMF objects might become too large for the dbspace that
contains the QMF object control tables Q.OBJECT_DIRECTORY,
Q.OBJECT_DATA, and Q.OBJECT_REMARKS.

Use the DB2 for VM DBS utility to enlarge the dbspace for the QMF object
control tables:
1. Archive the database, so that a backup copy is available for recovery if

you need it.
2. Unload the dbspace to a CMS sequential file using the UNLOAD dbspace

command of the DBS utility.
Table 22 shows the dbspace names and default sizes for the QMF object
control tables. Dbspace names for other QMF control tables are shown in
“Appendix D. QMF Control Tables and dbspaces Used by QMF” on
page 325.
All dbspaces for the QMF control tables are public. The sizes are given in
pages, where each page is one 4096-byte block.

Table 22. Dbspaces for control tables that store QMF objects

Dbspace
name

Contents Default
size

DSQTSCT1 Q.OBJECT_DIRECTORY table 256 pages

DSQTSCT2 Q.OBJECT_REMARKS table 256 pages

DSQTSCT3 Q.OBJECT_DATA table 5120 pages

3. Drop the dbspace using the DBS utility or ISQL.
4. Acquire a larger public space for the dbspace using either the DBS utility

or ISQL. For example:
ACQUIRE PUBLIC DBSPACE NAMED PUBLIC.DSQxxxxx

(PAGES=xxx, PCTFREE=25, LOCK=ROW)

5. Use the DBS utility to reload the QMF object control tables into the new
dbspace using as the input file the file you specified when you unloaded
the tables. Use the NEW keyword for the RELOAD dbspace command.

6. Recreate indexes for the reloaded tables using the DBS utility or ISQL.
Make sure that:
v The indexes are unique.

Establishing QMF Support for End Users

126 Installing and Managing QMF on VM

v The index name for the Q.OBJECT_DIRECTORY table is
OBJECT_DIRECTORYX and is keyed on the OWNER and NAME
columns.

v The index name for the Q.OBJECT_DATA table is OBJECT_OBJDATAX
and is keyed on the OWNER, NAME, and SEQ columns.

v The index name for the Q.OBJECT_REMARKS table is
OBJECT_REMARKSX and is keyed on the OWNER and NAME
columns.

7. Recreate views if the dbspaces for Q.OBJECT_DIRECTORY or
Q.OBJECT_REMARKS were dropped. For example:
To provide access to this view to all QMF users, grant SELECT authority

to PUBLIC:
GRANT SELECT ON Q.DSQEC_QMFOBJS TO PUBLIC

8. Alter the dbspace to allow the free space on occupied pages to be used.
For example:
ALTER DBSPACE PUBLIC.DSQTSCT1 (PCTFREE=5)

9. If you change the QMF control tables, reload the QMF SQL packages with
the install exec DSQ2PREP.

For more information on enlarging dbspaces, see DB2 Server for VM Database
Administration For instructions and syntax of the DBS utility and ISQL
commands, see DB2 Server for VSE & VM Database Services Utility and DB2
Server for VSE & VM SQL Reference

Maintaining Tables and Views Using DB2 for VM System Tables

Anyone with DBA authority can access the DB2 for VM tables to list, display,
transfer, or delete tables and views. For complete information on using these
DB2 for VM system tables, see DB2 Server for VSE & VM SQL Reference

CREATE VIEW Q.DSQEC_QMFOBJS
(OWNER, TNAME, TYPE, SUBTYPE, MODEL, RESTRICTED, REMARKS, LABEL,
LOCATION, OWNER_AT_LOCATION, NAME_AT_LOCATION)

AS SELECT
A.OWNER, A.NAME, A.TYPE, SUBTYPE, MODEL, RESTRICTED,

REMARKS, ' ', ' ', ' ', ' '
FROM Q.OBJECT_DIRECTORY A, Q.OBJECT_REMARKS B
WHERE A.OWNER = B.OWNER AND A.NAME = B.NAME
AND (A.OWNER = USER OR RESTRICTED = 'N')

Figure 36. Recreating a view after dropping dbspaces

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 127

Listing Tables and Views
The query in Figure 37 returns a list of tables with columns TABLETYPE (R
indicates a table, V indicates a view), TNAME (tablename), DBSPACENAME,
and REMARKS.

Transferring Ownership of a Table or View
Transferring ownership of a table or view is not recommended.

Deleting a Table or View from the Database
Use the SQL DROP TABLE statement or the QMF ERASE command to delete
tables or views from the database. Only the creator of the table or someone
with DBA authority can delete it.

When you delete the row of the SYSTEM.SYSCATALOG table that defines the
table, all views, synonyms, and indexes associated with the table are also
deleted. Before you drop a table from the database, ensure that no other user
relies on it (for example, for command synonym or function key definitions).

For more information on erasing tables, see DB2 Server for VM Database
Administration

Supporting Locally Defined Date/Time Formats

QMF’s support of DATE, TIME, and TIMESTAMP data types makes it
possible for your users to use local date/time exit routines. When planning
for local date/time exits, remember that these are DB2 for VM exits, not QMF
exits. For details about how these exits are created refer to DB2 Server for VM
System Administration

For QMF to use a local date/time exit, the text files containing the date/time
exits “ARIUXDT” and “ARIUXTM” must be placed on a minidisk that is
accessible to QMF, when QMF starts. If QMF is being started using DCSS
mode, two relocatable module files must be created from the existing exit text
files “ARIUXDT” and “ARIUXTM”. To create the relocatable module files
issue the following CMS commands:

LOAD ARIUXDT (RLDSAVE)
GENMOD ARIUXDT
LOAD ARIUXTM (RLDSAVE)
GENMOD ARIUXTM

SELECT TABLETYPE, TNAME, DBSPACENAME, REMARKS
FROM SYSTEM.SYSCATALOG
WHERE CREATOR = 'userid'
ORDER BY TABLETYPE, TNAME

Figure 37. Listing DB2 for VM tables and views owned by a particular user

Establishing QMF Support for End Users

128 Installing and Managing QMF on VM

Accessing the DXT End User Dialogs (ISPF Only)

QMF’s EXTRACT command accesses IBM’s Data Extract (DXT) End User
Dialogs. With these services, users can extract data from many different
sources and load that data into DB2 for VM tables. Possible data sources
include IMS™, VSAM, physical sequential files, and tables from other DB2 for
VM systems.

If you plan to support the EXTRACT command, ensure that:
v Version 2 Release 5 of DXT dialogs is operating at your installation
v All potential users of the QMF EXTRACT command have been enrolled for

DXT dialogs, and have been educated in its use

Supporting the EXTRACT Command
To support the EXTRACT command you must:
v Make files available to the users of that command
v Reallocate these files after a user ends the command

These files do not appear in the QMF Invocation EXEC that is described in
Installing and Managing QMF on OS/390. The file types can be in DXT libraries
that are common to all users, or can be files created for the individual users
when the users are enrolled in DXT.

The files are described in the Data Extract: Planning and Administration Guide
for Dialogs If you are enrolling DXT dialog users, you need to read that
document. If you are not, all you need to know about the process is included
in the following discussion.

Allocating Resources
QMF can support English, Kanji, and Uppercase (UCF) DXT dialogs. The
different DXT files that are required by these dialogs are allocated with ISPF
LIBDEF statements (more about using LIBDEF shortly). The files needed for
Version 2 Release 2 dialogs are the same for Version 2 Release 3.

Table 23 on page 130 shows the files required for any variety of Version 2
Release 3 dialogs. The figure identifies the files and their associated
FILEDEFs. For any given FILEDEF, the files in the table are in addition to any
files that were allocated for that FILEDEF.

The names shown in this table are the default names, provided by DXT. Your
installation might be using different names for these files.

In the table, each lowercase letter n is the language key. For DXT dialogs, the
language keys are E (English), K (Kanji), and U (Uppercase).

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 129

Example: For DXT dialogs, in which the language key is E, the file name and
file type to be added to ISPMLIB is named DVRMLIBE MACLIB.

Table 23. Files needed for Version 2 Release 5 DXT

FILEDEF Default File Name/Filetype

ISPLLIB DVRLOAD TXTLIB

ISPPLIB DVRPLIBn MACLIB

ISPMLIB DVRMLIBn MACLIB

ISPSLIB DVRJEDIn MACLIB DVRSLIBn MACLIB

ISPTLIB DVRTLIBn MACLIB DVRTADMn MACLIB

ISPTABL DVRTLIBn MACLIB

DVRDJEDI DVRJEDIn MACLIB

DVRDJEDO DVRJEDIn MACLIB

DVRDIMEX DVRIMEXn MACLIB

DVREUADD DVRTADMn MACLIB

DVRSTABL DVRTLIBn MACLIB

Allocating and Reallocating Resources Using EXECs
There are two IBM-supplied EXECs. QMF calls one of these just before the
execution of an EXTRACT command, and the other just after the execution
ends. With no modifications, these EXECs do nothing. But with suitable
changes, the first can allocate the added resources, and the second can
reallocate them.

Figure 38 on page 132 shows an EXEC that you can use to do the necessary
allocations. It has the following advantages over adding EXEC statements to
your users’ CMS invocation EXEC:
v It can apply to every user of the EXTRACT command.
v It does the allocations ONLY when a user issues an EXTRACT command.

Preparing the Allocation EXEC
This EXEC is named DSQABX2L and is located on QMF’s production disk.
Whenever a user executes the EXTRACT command, QMF calls this EXEC
through the ISPF SELECT service. The call passes the EXEC no parameters—a
fact that is used when we consider possible EXEC modifications.

Before the EXEC can do its allocations, you must modify it. The following list
describes some modifications that might or might not be necessary, and one
modification that is mandatory:
1. Remove the first executable statement.

Establishing QMF Support for End Users

130 Installing and Managing QMF on VM

This is the statement EXIT 0. It ensures that the EXEC does nothing if you
aren’t supporting the EXTRACT command or are making the allocations in
some other manner.

2. Set the language key.
The first thing the EXEC does is to set the DXT language key variable
(LKEY), to E for English. If your DXT product is not the English version,
you must set the language key to the proper DXT value.

3. Set the object sharing variable.
If you have taken advantage of the DXT dialogs object sharing capability,
you need to set the variable OBJSHR to a value of YES. By doing this you
allocate the shared variable DVRTLIB located on the DXT production disk.
If you are not using object sharing, set the variable OBJSHR to a value of
NO. Values for this variable can either be YES or NO.

4. Update the disk linkage.
After setting LKEY and OBJSHR, the next thing that the EXEC does is to
link to and access the DXT production disk. You might have to alter any
or all of the following to fit your DXT installation:
v DXT production disk owner ID
v DXT production disk address
v DXT production disk READ password
v The QMF user’s disk access address for the DXT disk
v The QMF user’s disk access mode for the DXT disk

5. Modify the code as necessary.
Figure 38 shows how the EXEC generates the file names for its LIBDEF
statements. These file names are the defaults. Modify the code, if
necessary, to produce the names that are used at your installation, but do
not modify the logic or return codes for failed allocations.

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 131

/***/
/* REMOVE THE FOLLOWING STATEMENT TO ACTIVATE EXEC */
/***/
EXIT 0
TRACE OFF
/***/
/* EXEC NAME: DSQABX2L */
/* */
/* DESCRIPTIVE NAME: DXT/END USER DIALOGS LIBRARY ALLOCATIONS */
/* EXEC FOR THE QMF-DXT BRIDGE */
/* */
/* COPYRIGHT: 5645-DB2, 5648-A70 (C) COPYRIGHT IBM CORP. */
/* 1982, 1998 */
/* (Published) */
/* LICENSED MATERIAL - PROGRAM PROPERTY OF IBM */
/* ALL RIGHTS RESERVED */
/* U.S. GOVERNMENT USERS RESTRICTED RIGHTS */
/* - USE, DUPLICATION OR DISCLOSURE RESTRICTED BY */
/* GSA ADP SCHEDULE CONTRACT WITH IBM CORP. */
/* */
/* STATUS: VERSION 7 RELEASE 1 LEVEL 0 */
/* */
/* FUNCTION: */
/* THIS EXEC IS CALLED PRIOR TO CALLING THE DXT PRODUCT. THIS */
/* EXEC ALLOWS THE USER TO ALLOCATE DXT LIBRARIES PRIOR TO */
/* STARTING THE DXT PRODUCT. IF YOU ALLOCATED DXT LIBRARIES */
/* PRIOR TO STARTING QMF YOU SHOULD NOT HAVE TO MODIFY THIS */
/* EXEC. IN WHICH CASE THE EXEC SIMPLY EXITS WITH A ZERO */
/* RETURN CODE. */
/* */
/* IF YOU DID NOT ALLOCATE DXT LIBRARIES PRIOR TO STARTING */
/* THE QMF PRODUCT YOU WILL NEED TO ALLOCATE THEM USING THIS */
/* EXEC. IF YOU ALLOCATE DXT LIBRARIES USING THIS EXEC YOU */
/* WILL NEED TO CHANGE EXEC "DSQABX2F" WHICH IS EXECUTED */
/* UPON COMPLETION OF THE DXT PRODUCT. */
/* */
/* IF YOUR DXT PRODUCT IS NOT THE ENGLISH VERSION, YOU MUST */
/* SET THE LANGUAGE KEY TO THE PROPER VALUE. SEE VARIABLE */
/* "LKEY" IN THIS EXEC FOR CURRENT VALUE. */
/* */
/* IF YOU HAVE TAKEN ADVANTAGE OF THE DXT DIALOGS OBJECT */
/* SHARING CAPABILITY, YOU WILL NEED TO SET VARIABLE "OBJSHR" */
/* TO A VALUE OF "YES". BY DOING THIS YOU WILL ALLOCATE THE */
/* SHARED DVRTLIB LOCATED ON THE DXT PRODUCTION DISK. IF YOU */
/* ARE NOT USING OBJECT SHARING, SET THE VARIABLE "OBJSHR" */
/* TO A VALUE OF "NO". */

Figure 38. EXEC to allocate DXT CMS files (DSQABX2L) (Part 1 of 4)

Establishing QMF Support for End Users

132 Installing and Managing QMF on VM

/* */
/* INPUT: NONE */
/* */
/* OUTPUT: NONE */
/* */
/* EXIT CONDITIONS: NONE */
/* */
/* ABEND CODE: VALUE - NONE */
/* */
/* EXTERNAL REFERENCES: */
/* ROUTINES: NONE */
/* DATA AREAS: NONE */
/* */
/* CHANGE ACTIVITY: NONE */
/* */
/***/
/*-END-OF-SPECIFICATION-**/

/***/
/* SET DXT PRODUCT LANGUAGE CODE AND OBJECT SHARING */
/***/
LKEY = 'E' /* SET ENGLISH LANGUAGE KEY */
OBJSHR = 'NO' /* SET OBJECT SHARING VARIABLE */

/***/
/* LINK TO DXT PRODUCTION DISK */
/***/
OWNERID = 'DXT' /* DXT PRODUCTION DISK OWER ID */
OWNER_ADDRESS = '191' /* DXT PRODUCTION DISK ADDRESS */
PW = 'DXTREAD' /* DXT PRODUCTION DISK READ PW */
USER_ADDRESS = '291' /* ACCESS ADDRESS OF USER */
UMODE = 'P' /* ACCESS FILE MODE OF USER */

ADDRESS CMS 'SET CMSTYPE HT'
ADDRESS COMMAND 'CP LINK' OWNERID OWNER_ADDRESS USER_ADDRESS 'RR' PW
IF RC ¬= 0 THEN EXIT RC
ADDRESS CMS 'ACCESS' USER_ADDRESS UMODE
IF RC ¬= 0 THEN EXIT RC
ADDRESS CMS 'SET CMSTYPE RT'

/***/
/* SET ISPF ERRORS TO RETURN TO THIS EXEC */
/***/
ADDRESS ISPEXEC 'CONTROL ERRORS RETURN'

IF RC ¬= 0 THEN EXIT RC

Figure 38. EXEC to allocate DXT CMS files (DSQABX2L) (Part 2 of 4)

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 133

/***/
/* ISPF LIBDEF STATEMENTS FOR DXT FOLLOW: */
/***/

LIBS = 'DVRLOAD TXTLIB' UMODE
ADDRESS ISPEXEC 'LIBDEF ISPXLIB FILE ID('LIBS')'

IF RC ¬= 0 THEN EXIT RC

LIBS = 'DVRPLIB'LKEY' MACLIB' UMODE
ADDRESS ISPEXEC 'LIBDEF ISPPLIB FILE ID('LIBS')'

IF RC ¬= 0 THEN EXIT RC

LIBS = 'DVRMLIB'LKEY' MACLIB' UMODE
ADDRESS ISPEXEC 'LIBDEF ISPMLIB FILE ID('LIBS')'

IF RC ¬= 0 THEN EXIT RC

LIBS = 'DVRJEDI'LKEY' MACLIB A , DVRSLIB'LKEY' MACLIB' UMODE
ADDRESS ISPEXEC 'LIBDEF ISPSLIB FILE ID('LIBS')'

IF RC ¬= 0 THEN EXIT RC

LIBS = 'DVRTLIB'LKEY' MACLIB A , DVRTADM'LKEY' MACLIB' UMODE
ADDRESS ISPEXEC 'LIBDEF ISPTLIB FILE ID('LIBS')'

IF RC ¬= 0 THEN EXIT RC

ADDRESS ISPEXEC 'LIBDEF ISPTABL FILE ID(DVRTLIB'LKEY' MACLIB A) '
IF RC ¬= 0 THEN EXIT RC

IF OBJSHR = 'NO' THEN
DO
ADDRESS ISPEXEC 'LIBDEF DVRDJEDI FILE ID(DVRJEDI'LKEY' MACLIB A)'

IF RC ¬= 0 THEN EXIT RC
END
ELSE
DO
ADDRESS ISPEXEC 'LIBDEF DVRDJEDI FILE ID(DVRJEDI'LKEY' MACLIB 'UMODE')'

IF RC ¬= 0 THEN EXIT RC
END

Figure 38. EXEC to allocate DXT CMS files (DSQABX2L) (Part 3 of 4)

Establishing QMF Support for End Users

134 Installing and Managing QMF on VM

Preparing the Reallocation EXEC
The EXEC is shown in Figure 39 on page 136. It is named DSQABX2F and is
located on the QMF production disk. QMF calls this EXEC through the ISPF
SELECT service, right after the execution of the EXTRACT command. It is
called to reallocate QMF libraries if the ISPF LIBDEF function was used to
allocate DXT libraries. The call passes the EXEC no parameters, just as the call
to the allocating EXEC passes that EXEC no parameters.

Before the EXEC can work properly for your users, you might need to modify
it. If you allocated all your DXT libraries before you started QMF or ISPF, you
should not modify this EXEC. It then exits without performing any library
reallocation.

If you allocated QMF libraries using the ISPF LIBDEF function, you must
execute this EXEC to reallocate the QMF libraries because they were replaced
by DXT library definitions when the EXEC DSQABX2L was executed.

Possible modifications to the EXEC are:
v Remove the first executable statement.

This is the statement EXIT 0. It ensures that the EXEC does nothing if you
aren’t supporting the EXTRACT command or are making the allocations in
some other manner.

v If necessary, change the DXT disk address.
The first thing the EXEC does is to release the DXT production disk. You
need to modify the statement USER_ADDRESS = '291' depending on the
changes you made when updating the disk linkage to DXT when executing
the EXEC DSQABX2L (see “Preparing the Allocation EXEC” on page 130).

ADDRESS ISPEXEC 'LIBDEF DVRDJEDO FILE ID(DVRJEDI'LKEY' MACLIB A)'
IF RC ¬= 0 THEN EXIT RC

ADDRESS ISPEXEC 'LIBDEF DVRDIMEX FILE ID(DVRIMEX'LKEY' MACLIB A)'
IF RC ¬= 0 THEN EXIT RC

ADDRESS ISPEXEC 'LIBDEF DVREUADD FILE ID(DVRTADM'LKEY' MACLIB' UMODE ')'
IF RC ¬= 0 THEN EXIT RC

IF OBJSHR = 'YES' THEN
DO
ADDRESS ISPEXEC 'LIBDEF DVRSTABL FILE ID(DVRTLIB'LKEY' MACLIB' UMODE ')'

IF RC ¬= 0 THEN EXIT RC
END

EXIT 0

Figure 38. EXEC to allocate DXT CMS files (DSQABX2L) (Part 4 of 4)

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 135

/***/
/* REMOVE THE FOLLOWING STATEMENT TO ACTIVATE EXEC */
/***/
EXIT 0
TRACE OFF
/***/
/* EXEC NAME: DSQABX2F */
/* */
/* DESCRIPTIVE NAME: DXT/END USER DIALOGS LIBRARY FREE */
/* EXEC FOR THE QMF-DXT BRIDGE */
/* */
/* COPYRIGHT: 5645-DB2, 5648-A70 (C) COPYRIGHT IBM CORP. */
/* 1982, 1998 */
/* (Published) */
/* LICENSED MATERIAL - PROGRAM PROPERTY OF IBM */
/* ALL RIGHTS RESERVED */
/* U.S. GOVERNMENT USERS RESTRICTED RIGHTS */
/* - USE, DUPLICATION OR DISCLOSURE RESTRICTED BY */
/* GSA ADP SCHEDULE CONTRACT WITH IBM CORP. */
/* */
/* STATUS: VERSION 7 RELEASE 1 LEVEL 0 */

Figure 39. EXEC to reallocate DXT CMS files (DSQABX2F) (Part 1 of 3)

Establishing QMF Support for End Users

136 Installing and Managing QMF on VM

/* FUNCTION: */
/* */
/* THIS EXEC IS CALLED WHEN THE DXT PRODUCT HAS ENDED. THIS */
/* EXEC IS USED TO FREE ANY ALLOCATIONS MADE BY THE EXEC */
/* "DSQABX2L" AND REALLOCATE QMF LIBRARIES IF THE "LIBDEF" */
/* FUNCTION WAS USED TO ALLOCATE DXT PRODUCT LIBRARIES. */
/* */
/* IF YOU ALLOCATED ALL OF YOUR DXT LIBRARIES BEFORE YOU */
/* STARTED QMF OR ISPF, YOU SHOULD NOT MODIFY THIS EXEC. */
/* THE EXEC THAT IS DISTRIBUTED BY THE QMF PRODUCT EXITS */
/* AND PERFORMS NO LIBRARY ALLOCATION. */
/* */
/* IF YOU ALLOCATED QMF LIBRARIES USING "LIBDEF", YOU MUST */
/* USE THIS EXEC TO RE-ALLOCATE THE QMF LIBRARIES BECAUSE */
/* THEY WERE REPLACED BY DXT LIBRARY DEFINITIONS WHEN EXEC */
/* "DSQABX2L" WAS EXECUTED. */
/* */
/* IF YOUR QMF PRODUCT IS NOT THE ENGLISH VERSION, YOU MUST */
/* SET THE LANGUAGE KEY TO THE PROPER VALUE. SEE VARIABLE */
/* "LKEY" IN THIS EXEC FOR CURRENT VALUE. */
/* */
/* INPUT: NONE */
/* */
/* OUTPUT: NONE */
/* */
/* EXIT CONDITIONS: NONE */
/* */
/* ABEND CODE: VALUE - NONE */
/* */
/* EXTERNAL REFERENCES: */
/* ROUTINES: NONE */
/* DATA AREAS: NONE */
/* */
/* CHANGE ACTIVITY: NONE */
/* */
/***/
/*-END-OF-SPECIFICATION-**/

/***/
/* SET QMF PRODUCT LANGUAGE CODE */
/***/
LKEY = 'E' /* SET ENGLISH LANGUAGE KEY */

Figure 39. EXEC to reallocate DXT CMS files (DSQABX2F) (Part 2 of 3)

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 137

Other Allocation Methods
Previously, we recommended that you use the EXEC for the DXT allocations
and mentioned certain advantages for doing this. If you elect to use some
other method of allocation, don’t modify the EXEC. The unmodified EXEC
won’t interfere with your alternative method of allocation.

/***/
/* RELEASE DXT PRODUCTION DISK */
/***/
USER_ADDRESS = '291' /* SET ADDRESS OF DXT DISK */

ADDRESS CMS 'SET CMSTYPE HT'
ADDRESS CMS 'RELEASE' USER_ADDRESS '(DET)'
ADDRESS CMS 'SET CMSTYPE RT'

/***/
/* SET ISPF ERRORS TO RETURN TO THIS EXEC */
/***/
ADDRESS ISPEXEC 'CONTROL ERRORS RETURN'

IF RC ¬= 0 THEN EXIT RC

/***/
/* RE-ALLOCATE QMF LIBRARIES USING ISPF LIBDEF FUNCTION */
/***/

LIBS = 'ADMRLIB TXTLIB * , ADMPLIB TXTLIB * , ADMGLIB TXTLIB * '
ADDRESS ISPEXEC 'LIBDEF ISPXLIB FILE ID('LIBS')'

IF RC ¬= 0 THEN EXIT RC

LIBS = 'DSQPLIB'LKEY' MACLIB * '
ADDRESS ISPEXEC 'LIBDEF ISPPLIB FILE ID('LIBS')'

IF RC ¬= 0 THEN EXIT RC

LIBS = 'DSQMLIB'LKEY' MACLIB * '
ADDRESS ISPEXEC 'LIBDEF ISPMLIB FILE ID('LIBS')'

IF RC ¬= 0 THEN EXIT RC

LIBS = 'DSQSLIBE MACLIB * '
ADDRESS ISPEXEC 'LIBDEF ISPSLIB FILE ID('LIBS')'

IF RC ¬= 0 THEN EXIT RC

EXIT 0

Figure 39. EXEC to reallocate DXT CMS files (DSQABX2F) (Part 3 of 3)

Establishing QMF Support for End Users

138 Installing and Managing QMF on VM

Customizing the Document Editing Interface for Users

General-Use Programming Interface

The document interface is an IBM-supplied macro for the ISPF/PDF and
XEDIT editors. Using this macro, you can insert a QMF report into a
document while the document is being edited. The report can be created
before the editing session begins. More importantly, you can create the report
at the time the macro is issued, in a QMF session that the macro starts.

End of General-Use Programming Interface

Before you use this macro, you can change it in various ways. Some of these
changes are required, while others are optional. This section discusses the
changes, both required and optional. To use the document interface, you
should also see Using QMF.

If you’re using an NLF: You also want to customize the NLF version of the
document interface.

Changing the Application
Change the application by changing one or more of its components. The
components that you can change are located as follows:
v The EXECs and macros are on the QMF production disk.
v The other components are on the QMF distribution disk.

Renaming the Document Interface Macros and EXEC
The ISPF/PDF macro component DSQAED2P is the macro that users call
when they use the document interface. Give the macro a name that has more
significance to your users. (Renaming this component has no affect on the
other components.) IBM recommends the name GETQMF ISREDIT. This is the
name used for the macro in this publication and in Using QMF. In addition,
the following should also be renamed:

DSQAED2X (an XEDIT macro), to GETQMF XEDIT
DSQAED2E (a REXX EXEC), to GETQMF EXEC

You should rename a copy rather than the original. You can place each
renamed copy on the production disk where the original resides.

Placing the Q.DSQAED2S Procedure in the Database
The Q.DSQAED2S procedure is on the production disk. As the user Q, you
can place it in the database by entering the following QMF commands:
IMPORT PROC FROM DSQAED2S PROC fm
SAVE PROC AS DSQAED2S (SHARE=YES

where fm is the QMF production disk.

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 139

If you’re using an NLF: Save DSQAnD2S using the language key identifier
for the language you want.

Transferring Ownership to Q
If you cannot use QMF as the user Q, you can still issue these commands;
however, the procedure is stored in the database under your own
authorization ID, rather under Q. To give it the proper name, you must
transfer its ownership to Q. You can do this by executing the following
commands:
RUN Q.DSQ0BSQI (&T=Q.OBJECT_DIRECTORY, &N='DSQAED2S'
RUN Q.DSQ0BSQI (&T=Q.OBJECT_DATA, &N='DSQAED2S'
RUN Q.DSQ0BSQI (&T=Q.OBJECT_REMARKS, &N='DSQAED2S'

These commands execute an IBM-supplied parameterized query named
Q.DSQ0BSQI. Each execution updates one of the QMF control tables. For
these executions to be successful, you must have UPDATE authority on the
three control tables, or some DB2 for VM authority that implies UPDATE
authority.

If, for some reason, you cannot use the query Q.DSQ0BSQI, you can create a
copy of it and use the copy instead. The copy would look like this:
UPDATE Q.&T
SET OWNER = 'Q'
WHERE NAME = &N AND OWNER = USER

Changing the Data Components
There are five data components, all in the QMF distribution disk. Unlike the
EXECs and macros, these components contain neither logic nor executable
commands. Instead, they contain information that can appear in messages or
in the users’ reports. You can modify these components in either of the
following ways:
v You can retain the changed components on the distribution disk.

If you do, change the names of the original components, and give the
changed components the original names.

v You can place the changed components on a new minidisk.
If you do, you must ensure that in the search order the new minidisk is
accessed before the old one.

The Message Component
One of the five data components is named DSQAED0L. This component
contains:
v The messages that can appear on a user’s screen while the user is operating

the document interface
v Keywords for certain QMF commands

Establishing QMF Support for End Users

140 Installing and Managing QMF on VM

Do not change this component.

If you’re using an NLF: The DSQAnD0L component is on the NLF
distribution list and the messages are in the language
set in the user’s profile.

The DCF Components
The DCF (Document Composition Facility) is a licensed IBM program. It is a
text processing system that supports the use of computers in preparing
documents for printing. If your installation uses this program, you might
want to change the remaining four data components. These components,
known as the DCF components, contain DCF control statements. For more on
DCF, see Document Composition Facility: General Information

A user can tell the document interface that the current document is formatted
by DCF. In response, the document interface adds DCF control statements to
the user’s inserted report. Wherever these statements appear, they consist of
all the records in one or another of the DCF components. You can change any
or all of the records in a component. The components, and what they supply,
are as follows:

DSQABD01: Supplies statements inserted just before the report. In the
IBM-supplied component, these are:
.* QMF Document Interface heading control:
.SA
.RH SUP
.RF SUP
.HS 0
.FS 0
.TM 0.5I
.BM 0
.DC CONT OFF
.FO OFF

DSQABD02: Supplies statements inserted just after each page footing. In the
IBM-supplied component, the single furnished statement is:
.* QMF Document Interface page footing control:

DSQABD03: Supplies a statements inserted just before each page heading. In
the IBM-supplied component, these are:
.PA NOSTART
.* QMF Document Interface page heading control:

DSQABD04: Supplies statements inserted just after the end of the report. In
the IBM-supplied component, these are:
.* QMF Document Interface footing control:
.RE
.* QMF REPORT END

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 141

Changing the EXECs and Macros
As mentioned earlier, these components are all on the QMF production disk.
If you change a component, change a copy, not the original, and place the
copy on a minidisk that is accessed before the production disk.

If the document interface is issued from a current ISPF session then that
session needs to have built the QMF and ISPF definitions for the ISPF libraries
(the ones beginning with ISP). This is illustrated in DSQABD2I and Installing
and Managing QMF on VM/ESA .

Changing DSQABD2Q
With the document interface, a user operating outside QMF can begin a QMF
session. In that session, the user creates the report to be inserted into the
current document. DSQABD2Q does the file definitions (FILEDEFs) for this
session. Make whatever modifications to the EXEC you think necessary. For
example, you might need to add FILEDEFs for files peculiar to your
installation or you might have to change the links and accesses to the QMF,
GDDM, and DB2 for VM disks.

Observe that some of these FILEDEFs involve GDDM files. The document
interface does not itself use these files, but the user might find this necessary.

If you’re using an NLF: Make a separate copy of DSQABD2Q to link to the
QMF NLF production disk. Do not rename this
EXEC.

Changing DSQABD2I
Ensure that the link and access to the ISPF/PDF disk is correct.

Changing DSQABD2C
This is the final component to be discussed. It can be modified as shown:
v Change the statement:

FILEDEF DSQPRINT PRINTER (LRECL 131 BLKSIZE 131 RECFM FBA)

v Change the statement:
ADDRESS ISPEXEC 'SELECT PGM(DSQQMF'LANG_CHAR')' ,

'PARM (DSQSRUN='PROC_NAME') NEWAPPL(DSQ'LANG_CHAR')'

This statement invokes QMF with the default DCSS name. (LANG_CHAR has
the value E.) If the default DCSS is not being used, put the name in the
PARM operand. For example, if you want to change the default DCSS name
to QMFXXX, then the modified PARM operand would look like:
'PARM(QMFXXX(DSQSRUN='PROC_NAME'))...

v Change the statement:
ADDRESS COMMAND 'EXEC ISPSTART PGM(DSQQMF'LANG_CHAR')',

'PARM(DSQSRUN='PROC_NAME') NEWAPPL'

Establishing QMF Support for End Users

142 Installing and Managing QMF on VM

This statement invokes QMF with the default DCSS name. (LANG_CHAR has
the value E.) If the default DCSS is not being used, put the name in the
PARM operand. For example, if you want to change the default DCSS name
to QMFXXX, then the modified PARM operand would look like:
'PARM(QMFXXX(DSQSRUN='PROC_NAME'))...

If you’re using an NLF: Make a separate copy of DSQABD2C to specify the
NLF DCSS name in the ISPSTART and SELECT QMF
invocation statements. Do not rename this EXEC.

Customizing the QMF Edit Command

With the EDIT command, you can modify QMF queries and procedures with
an editor. One of these editors is the ISPF/PDF editor (provided QMF is
started as an ISPF dialog). Other editors can also be used if supported at your
site.

The following procedure assumes that you use an editor that can be invoked
by an EXEC operating under ISPF. The EDIT TABLE command calls the Table
Editor and does not require a text editor.

To make an editor available for the EDIT command:
1. Write an EXEC to invoke the editor, given the name of the file to be

edited. This file name, which is the only parameter passed to the EXEC, is
passed as a positional parameter.
QMF calls the EXEC, XYZEDIT, with the following command (USERA FILE
A1 is the file name, file type, and file mode of the file to be edited):
XYZEDIT USERA FILE A1

2. Allocate the file USERA FILE A1 using the FILEDEF command specifying
the file name of DSQEDIT. (The FILEDEF needs to be allocated prior to
invoking the editor. Therefore, the FILEDEF needs to be part of the QMF
invocation process or a FILEDEF needs to be established before invoking
the EDIT command.)

3. Instruct the users on how to invoke the editor through the EDIT
command. A command would look like this:
EDIT yyyyy (EDITOR=xxxxxxxx)

where yyyyy is either PROC or QUERY. (Only the current procedure or
query can be edited.) xxxxxxxx is the name of the EXEC created to invoke
the editor. For more on the EDIT command, see QMF Reference .

The file you use can also be used for the ISPF/PDF editor. It’s possible it
might also be used for another editor that you want to support for the EDIT
command.

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 143

Important: If you edit a procedure or query, and the resulting object is too
large to fit in QMF’s work area, QMF truncates the object and
displays an error message. QMF saves the entire object, however,
in a file associated with the FILEDEF DSQEDIT. (Remember that
the edit transfer file described by the DSQEDIT filedef cannot be
allocated to a disk that is used in the CMS shared file system
(SFS).) To bring the object into QMF, the user needs to issue a
RESET DATA command. This information, including the file name
of the saved object, is provided in the message help for the error
message associated with this condition.

Enabling English Support in an NLF Environment

Every NLF has a complete set of translated verbs, keywords, messages, and
panels for QMF. The global variable DSQEC_NLFCMD_LANG allows you to
change the language in which the user enters commands.

Set DSQEC_NLFCMD_LANG to 1 to allow users to enter commands only in
English.

The default value, 0, allows users to enter commands and keywords only in
the national language of the current session, except for the following
commands:

SET
GET
INTERACT
MESSAGE
START

QMF allows you to enter these commands in either English or the NLF,
regardless of how you set DSQEC_NLFCMD_LANG.

Use the DSQEC_FORM_LANG variable to enable users working in an NLF
environment to store their form objects in the English language. The
LANGUAGE option on the SAVE, EXPORT, and IMPORT commands allows
users to specify the national language of the saved form. The values for this
option are ENGLISH and SESSION, and are controlled by the global variable
DSQEC_FORM_LANG.

Set DSQEC_FORM_LANG to 0 to use the language of the current session as
the national language of the saved form.

The default value is 1, which specifies English as the language of the saved
form.

Establishing QMF Support for End Users

144 Installing and Managing QMF on VM

If the user specifies the LANGUAGE keyword on the IMPORT or EXPORT
command, that value overrides the current value of the
DSQEC_FORM_LANG variable.

To change the national language displayed during a QMF session, the QMF
user must end the current QMF session and begin another. You cannot change
the language from within the QMF session.

Using Global Variables to Define the Currency Symbol

If you require a currency symbol that is not represented on the keyboard, you
can specify the currency symbol by using the HEX value in a Procedure with
Logic. For example, the following PROC will set the currency symbol to HEX
'9F':
/* */
"SET GLOBAL (DSQDC_CURRENCY =" '9F'X

If trailing blanks are needed for the currency symbol, you can put the
currency symbol in single quotes as follows:
SET GLOBAL (DSQDC_CURRENCY = 'FR '

You can use the command in either the command line or in a linear PROC.

Establishing QMF Support for End Users

Chapter 8. Establishing QMF Support for End Users 145

146 Installing and Managing QMF on VM

Chapter 9. Enabling Users to Print Objects

QMF end users frequently need to print data they retrieve from the database.
This data might be in the format of a report, a chart, a database table, or some
other QMF or database object.

How you set up printing for your end users depends on what type of printer
you have and which QMF objects you need to print. This chapter helps you
decide whether it’s most efficient for you to handle printing using QMF
services or Graphical Data Display Manager (GDDM) services. It also
provides instructions on how to print objects using either method.

If you need to print double-byte character set (DBCS) data, you can use the
DSQSDBCS program parameter when you start QMF to allow users to print
DBCS data from non-DBCS terminals. See “Setting Printing for Double-Byte
Character Set Data (DSQSDBCS)” on page 90 for more information.

Quick start

Use Table 24 to guide you in printing QMF objects to a print or display
device. If you need more information on any of the steps, see the page listed
at the right of the table.

If you receive errors during printing, see “Troubleshooting Common
Problems” on page 290 to help you solve the problem.

Table 24. Printing QMF objects

To do this task: See:

Use the QMF PRINT command or a command synonym to print a QMF object. How QMF
prints the object depends on what type of object you’re trying to print.

Pages 148
and 156

Choose either QMF services or GDDM services to handle printing, or combine the two to
suit your needs. GDDM can print to any device that supports the display of graphics. QMF
prints using DSQPRINT.

Page 149

To print using GDDM services: Define a GDDM nickname for your printer and update the
GDDM defaults module ADMADFV with the nickname.

Page 149

To print using QMF’s DSQPRINT: Allocate DSQPRINT using a FILEDEF that points to the
file or output class QMF uses for printing.

Page 155

Update the LENGTH and WIDTH values in the user’s profile to specify a page size. To
activate GDDM services for printing, provide a valid nickname for the PRINTER field in
Q.PROFILES.

Page 156

© Copyright IBM Corp. 1983, 2000 147

Printing Objects

The rules for printing QMF and database objects vary, depending on the type
of object. Table 25 summarizes the requirements for each object.

Table 25. Summary of print requirements for QMF and database objects

Object type Nickname
required

GDDM gets control
when...

Where output is routed

Chart Yes GDDM ICU always gets
control when the PRINT
command is issued.

Output is controlled by GDDM. For more
information, see GDDM Installation and System
Management for VM for GDDM 2.3 or GDDM
System Customization and Administration for
GDDM 3.1.

Form Yes GDDM always gets
control when the PRINT
command is issued.

Output is controlled by GDDM. For more
information, see GDDM Installation and System
Management for VM for GDDM 2.3 or GDDM
System Customization and Administration for
GDDM 3.1.

QBE query No Only if the nickname is
supplied on the PRINT
command or in profile.

Output goes to the device associated with the
GDDM nickname or the ddname DSQPRINT.

Procedure No Only if the nickname is
supplied on the PRINT
command or in profile.

Output goes to the device associated with the
GDDM nickname or the ddname DSQPRINT.

Profile No Only if the nickname is
supplied on the PRINT
command or in profile.

Output goes to the device associated with the
GDDM nickname or the ddname DSQPRINT.

Prompted
query

Yes GDDM always gets
control when the PRINT
command is issued.

Output is controlled by GDDM. For more
information, see GDDM Installation and System
Management for VM for GDDM 2.3 or GDDM
System Customization and Administration for
GDDM 3.1.

Report No Only if the nickname is
supplied on PRINT
command or in the
profile.

Output goes to the device associated with the
GDDM nickname or the ddname DSQPRINT.

SQL query No Only if the nickname is
supplied on the PRINT
command or in the
profile.

Output goes to the device associated with the
GDDM nickname or the ddname DSQPRINT.

Table No Only if the nickname is
supplied on the PRINT
command or in the
profile.

Output goes to the device associated with the
GDDM nickname or the ddname DSQPRINT.

Enabling Users to Print Objects

148 Installing and Managing QMF on VM

Deciding Whether to Use QMF or GDDM Services for Printing

Whether you print using GDDM services or QMF services depends on what
type of objects you need to print and what types of printers and other
resources are available to you. Use this section to help you decide which
method suits your needs.
v If you need to print charts, forms, or prompted queries, use GDDM.

QMF uses GDDM services to display these objects; GDDM must be used to
print these objects as well. If you don’t use GDDM services, you can print
only reports, tables, QBE and SQL queries, procedures, and the QMF
profile.

v If your site is set up to route output to named printers, use GDDM services
for printing.
GDDM allows you to link a name with a physical device. If you do not use
GDDM and use exclusively QMF services, you need to print objects by
allocating a FILEDEF for DSQPRINT.

Both QMF and GDDM handle printer input asynchronously, which means
that QMF can return messages indicating that the object is printed before it is
actually printed.

Using GDDM Services to Handle Printing

Important: The explanations in this section apply only if you’re using the
GDDM default values shipped with the GDDM product. For more
information on changing these values, see one of the following:

v GDDM Installation and System Management for VM (for GDDM 2.3)
v GDDM System Customization and Administration (for GDDM 3.1)

To use GDDM services for printing QMF objects, you need to:
1. Choose a GDDM nickname for the print device, as explained in “Choosing

a GDDM Nickname for Your Printer” on page 150.
Nicknames enable you to predefine complex print or display devices to
simplify the work of your end users. Nicknames define device
characteristics that indicate to GDDM how to format and direct your
printed output to a file or printer. Nicknames can define both local and
remote devices.

2. Update the ADMDEFS PROFILE file or the GDDM defaults module,
ADMADFV, with the specifications of your nickname. This is explained in
“Updating the GDDM Defaults Module with the Nickname” on page 154.

3. Update the PRINTER field of the user’s row in the Q.PROFILES table, as
explained in “Updating User Profiles to Enable GDDM Printing” on
page 156.

Enabling Users to Print Objects

Chapter 9. Enabling Users to Print Objects 149

Choosing a GDDM Nickname for Your Printer
When a user enters a printer name on the PRINTER keyword of the QMF
PRINT command, GDDM first searches the ADMDEFS PROFILE file and then
the defaults module, ADMADFV, for a matching nickname that defines how
and where to direct the output. GDDM uses nicknames to recognize all the
devices with which it can communicate (including terminals).

When printing with GDDM, you don’t need a matching FILEDEF for your
printer nicknames. GDDM places the output from your PRINT command in a
file called xxxxxxxx ADMLIST or xxxxxxxx ADMPRINT, where xxxxxxxx is the
printer nickname you used.

You can enter a nonexistent printer nickname, and GDDM simply places the
output in a zzzz ADMPRINT file on your A-disk, where zzzz is the
nonexistent printer nickname you used. However, the formatting of the
output in that situation is unpredictable, so do not use nonexistent nicknames.

GDDM printing determines whether an ADMLIST or ADMPRINT file is
created, depending on the device token specified in the nickname. System
printer output is placed in ADMLIST; queued printer output is placed in
ADMPRINT.

Choosing the Right Type of GDDM Device
The printer nickname you use depends on the type of device:
v Family 1 devices specify auxiliary devices attached to a workstation using

GDDM-PCLK or GDDM-OS/2® Link. A Family 1 device can also include
display devices, such as 3270 data-stream terminals. A printer directly
attached to a user ID can be accessed as a Family 1 printer from that user
ID.

v Family 2 devices include devices such as IBM 3270 terminals and queued
printers.

v Family 3 devices are system printers that support the ANSI code of
carriage control characters.

v Family 4 devices are advanced function printers for which you need to use
the ADMOPUV utility to print output. This utility is provided by GDDM.

This chapter explains how to define nicknames for Family 1, 2, and 3 devices.
For more information on how to set up a nickname for a Family 4 printer and
use the ADMOPUV utility, see GDDM System Customization and Administration
for GDDM 3.1 or GDDM Installation and System Management for VM for
GDDM 2.3. These publications also provide more information on each type of
GDDM device.

Enabling Users to Print Objects

150 Installing and Managing QMF on VM

Creating the Nickname Specification
To create a nickname, you can add the nickname to your PROFILE ADMDEFS
file. GDDM looks at this file first. If the nickname is not found, GDDM looks
in the external default module, ADMADFV, in which you define a GDDM
ADMMNICK specification.

Use the format shown in Figure 40 for your ADMMNICK specification.

v Use NAME to indicate a 1-character to 8-character printer nickname to use
with the QMF PRINT command. For example, if MYPRTR is the nickname,
users can enter the command: PRINT REPORT (PRINTER=MYPRTR. NAME can
be a single name, a list of names separated by commas, or a name with a
leading or trailing ? character used as a wild card to send output to
multiple printers that have similar names.

v Use TOFAM to indicate the type of device you’re using. GDDM recognizes
four families of devices, and handles each differently.

v Use DEVTOK to indicate a valid GDDM device token, which uniquely
identifies a device and its print configuration (for example, a 3820 printer
that prints 60 rows by 85 columns, 6 lines per inch). For a list of valid
device tokens, see:

GDDM System Customization and Administration for GDDM 3.1
GDDM Installation and System Management for VM for GDDM 2.3

A unique label can be added to the syntax. For example, GDDMPRT1 is a
possible label for the nickname definition.

GDDMPRT1 ADMMNICK NAME=MYPRINT,TOFAM=3,DEVTOK=ADMKSYSP

Example Nickname for a Family 2 GDDM Printer
To define the nickname GRAPHIC for a Family 2 GDDM printer, you might
use an ADMMNICK specification similar to the one in Figure 41. This
specification is for a Family 2 GDDM printer (use TOFAM=1 for a Family 1
GDDM printer). It uses the device token R87S, an example of a token for a
remotely attached 3287 printer.

ADMMNICK NAME=nickname,TOFAM=family_type,DEVTOK=device_token

Figure 40. Using the ADMMNICK specification to define a nickname

ADMMNICK NAME=GRAPHIC,TOFAM=2,DEVTOK=R87S,TONAME=GRAP

Figure 41. Using the ADMMNICK specification to define a nickname for a Family 2 printer

Enabling Users to Print Objects

Chapter 9. Enabling Users to Print Objects 151

After you create your nickname, a file with type ADMPRINT is created on
your A-disk. This file has a file name of the printer that was supplied on
input to the DSOPEN call. You can then print the ADMPRINT file using the
ADMOPUV utility.

For more information about ADMOPUV, see GDDM System Customization and
Administration

Example Nickname for a Family 3 GDDM Printer
To define the nickname 370PRINT for a Family 3 GDDM printer, you might
use an ADMMNICK specification similar to the one in Figure 42.

After you create your nickname, a file with type ADMLIST is created. You can
then send the formatted file to the printer you have chosen.

Example Nickname for a Family 4 GDDM Printer
To define the nickname 3900PRNT for a Family 4 GDDM printer, you might
use an ADMMNICK specification similar to the one in Figure 43.

After you create your nickname, a file with type ADMIMAGE is created. You
can spool the file to PSF/VM automatically if you have the CPSPOOL
processing option set. For more information about Family 4 printing, see
GDDM System Customization and Administration

Defining Multiple Nicknames with One Definition
You can use a single nickname to define multiple printer addresses by
including the wild card ? in your nickname definition, like this:
ADMMNICK TOFAM=3,NAME=MYPRINT?,PROCOPT=((PRINTCTL,0))

The nickname MYPRINT? allows you to route print output to printers named
MYPRINT1, MYPRINT2, MYPRINTA, and so on. For example, when you
enter:
PRINT REPORT (PRINTER=MYPRINT2

GDDM uses the nickname definition for the MYPRINT? nickname to direct the
output from the PRINT command to the printer named MYPRINT2.

ADMMNICK NAME=370PRINT,TOFAM=3,DEVTOK=R87S

Figure 42. Using the ADMMNICK specification to define a nickname for a Family 3 printer

ADMMNICK NAME=3900PRNT,TOFAM=4,DEVTOK=R87S

Figure 43. Using the ADMMNICK specification to define a nickname for a Family 4 printer

Enabling Users to Print Objects

152 Installing and Managing QMF on VM

Examples of Nickname Definitions
This section shows examples of nicknames you might use for Family 1, 2, or 3
devices. For an example of defining nicknames for Family 4 devices, see
“Example Nickname for a Family 4 GDDM Printer” on page 152 or the
following manuals:

GDDM System Customization and Administration for GDDM 3.1
GDDM Installation and System Management for VM for GDDM 2.3

v 3800, 3812, or 3820 printer, 6 lines per inch: Use the following definition to
define the nickname GDDMPRT1 for a Family 3 printer:
GDDMPRT1 ADMMNICK TOFAM=3,DEVTOK=S3800N6,NAME=MYPRINT1

v 3800, 3812, or 3820 printer, 8 lines per inch: Use the following definition to
define the nickname GDDMPRT2 for a Family 3 printer:
GDDMPRT2 ADMMNICK TOFAM=3,DEVTOK=S3800N8,NAME=MYPRINT2

v Non-3800 system printer, 132 columns, 8 lines per inch: Use the following
definition to define the nickname GDDMPRT3 for a Family 3 printer:
GDDMPRT3 ADMMNICK TOFAM=3,DEVTOK=S1403W8,NAME=MYPRINT3

v A remotely attached 3287 (suitable for printing charts): Use the following
definition to define the nickname GDDMPRT4 for a Family 2 printer:
GDDMPRT4 ADMMNICK TOFAM=2,DEVTOK=R87,NAME=MYPRINT4

v Any destination without print control options: Use the following
definition to define the nickname GDDMPRT5 for a Family 3 printer:
GDDMPRT5 ADMMNICK TOFAM=3,PROCOPT=((PRINTCLTL,0)),NAME=MYPRINT5

The PROCOPT parameter specifies processing options using a print control
(PRINTCTL) keyword, which allows you to specify a number of print control
options. For example, you can use PRINTCTL to specify a page heading to be
printed, the number of copies to print, and the width of margins. The zero
in this example suppresses page headings.

Attention: If the print file has RECFM=F, GDDM printing changes the
DCB of the file from RECFM=F to RECFM=V.

For a list of print control options and how to use them, see GDDM System
Customization and Administration for GDDM 3.1 or GDDM Installation and
System Management for VM for GDDM 2.3.

v A PC printer using GDDM-PCLK (for DOS users): Use the following
definition to define the nickname PCPRINT for a Family 1 printer:
GDDMPRT6 ADMMNICK TOFAM=1,FAM=0,NAME=PCPRINT,TONAME=(*,ADMPCPRT)

where * indicates the user’s current device or the default value.

To print to a PC printer connected to DOS, GDDM-PCLK must be installed
on your workstation.

Enabling Users to Print Objects

Chapter 9. Enabling Users to Print Objects 153

v A PC printer using GDDM-OS/2 Link (for OS/2 users): Use the following
definition to define the nickname GDDMOS2P for a Family 1 printer:
GDDMPRT7 ADMMNICK TOFAM=1,FAM=0,NAME=PMPRINT,TONAME=(*,ADMPMOP)

where * indicates the user’s current device or the default value.

To print to a PC printer connected to OS/2, ensure GDDM-OS/2 Link is
installed on your workstation.

Updating the GDDM Defaults Module with the Nickname
In CMS, the ADMMNICK nickname specifications reside in the GDDM
external defaults module ADMADFV, which is supplied with the GDDM
product. The default module also contains default values for the GDDM
product. The module is stored as a file with a type ASSEMBLE.

To update the modules with your nickname specification:
1. Copy the GDDM source file to your own storage.
2. Edit the source file to add the nickname.
3. Enter your ADMMNICK specification after the ADMMDFT statements in

the module.
4. Reassemble and replace the changed default module.

For more information on the defaults modules, see:
v GDDM System Customization and Administration for GDDM 3.1
v GDDM Installation and System Management for VM for GDDM 2.3

Testing the Nickname Definitions in External Default Files
Test your nickname definitions by placing them in an external default file
named ADMDEFS PROFILE and printing with them until you are satisfied
they are working correctly. Then you can assemble them into the external
default module named ADMADFV. Testing the nickname definitions requires
access to the minidisks containing these files. The external default file can be
placed on any minidisk normally accessed when using QMF (for example, the
GDDM minidisks, which are accessed when using QMF).

GDDM uses external default modules more efficiently than files to find a
given nickname.

How QMF Interfaces with Your GDDM Nickname
QMF interfaces with GDDM nicknames through the standard interface
provided by GDDM, which issues a call that allows QMF to open a GDDM
print file.

The following defaults are provided by QMF on the DSOPEN call when the
PRINT command begins:

Enabling Users to Print Objects

154 Installing and Managing QMF on VM

v The device type is set to Family 2
v The device token is set to *
v No processing options are in place (PROCOPT is set to zero)
v The only entry in the name list is the nickname

The print operation is carried out one page at a time using the ASCPUT and
FSFRCE GDDM services. When printing is complete, QMF closes the print
operation with a DSDROP statement.

Using QMF’s DSQPRINT to Handle Printing

You can use DSQPRINT to print a report, table, SQL or QBE query, procedure,
or your profile.

DSQPRINT is a special printer destination that QMF uses when you don’t
supply a printer name on the command line or in the user profile to print a
report, table, SQL or QBE query, procedure, or the profile. DSQPRINT must be
allocated using a FILEDEF that points to the file or output class QMF uses for
printing. The FILEDEF is part of your QMF startup exec or is run from a
QMF session using the QMF CMS command. You must allocate DSQPRINT
before running the QMF PRINT command.

To add your printed output to PRINT FILE A, use the following syntax:
“FILEDEF DSQPRINT DISK PRINT FILE A (LRECL 133 BLKSIZE 133 RECFM V PERM”,

“DISP MOD”

The use of DISP MOD ensures that each PRINT command adds the latest
print output to the end of the file, instead of overwriting the results of the
previous PRINT command.

To route your output to a printer, use this syntax:
“FILEDEF DSQPRINT PRINTER (LRECL 121 BLKSIZE 121 RECFM VBA PERM”

If you’re using ISPF: You can use the QMF-supplied DPRE (Display Printed
Report) command synonym to view the effects of the
width and length values you have specified without
having to print the report. This is applicable only when
using DSQPRINT. For more information on DPRE, see
“Displaying Printed Reports (DPRE)” on page 160 and
QMF Reference.

Enabling Users to Print Objects

Chapter 9. Enabling Users to Print Objects 155

Defining a Synonym for the Print Function Key

Here is a customization technique that allows a user to print an object without
exiting QMF. The first two steps of this technique show how to define a
command synonym for printing, the final step shows how to customize your
Print function key. This technique can be used to invoke a local print utility
when the Print function key is pressed.
1. Create a REXX EXEC that locally prints the current object. Here is a

sample, called PRTQMF, using the QMF callable interface:
/* PRTQMF REXX EXEC for local print utility called MPRINT */
CALL DSQCIX “PRINT PROC (PRINTER=MYPRINT1”
mprint MYPRINT1 ADMLIST A

This example assumes you have a MYPRINT1 nickname defined and that
it creates a file with a file type of ADMLIST.

Some QMF users prefer to bypass the PRINT command and simply export
the object for local printing. In this case your EXEC looks something like:
/* PRTQMF REXX EXEC for local DSPRINT */
CALL DSQCIX “EXPORT PROC TO MYPROC”
mprint MYPROC PROC A

2. Create a QMF command synonym for printing. Here is a sample query
that creates a command synonym PRTQMF to execute the PRTQMF EXEC.
INSERT INTO COMMAND_SYNONYMS (VERB, SYNONYM_DEFINITION, REMARKS)
VALUES('PRTQMF','CMS PRTQMF','Print QMF Proc')

3. You can now customize a function key on the procedure panel to use this
command synonym. You need to customize a key for each panel. A query
to customize function key 4 on the procedure panel would look like this:
INSERT INTO PFKY_TABLE (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES('PROC','K', 4, 'PRTQMF')

This example assumes that the user’s profile has the PFKEYS column
value set to PFKY_TABLE, the name of the function key customization
table. (After running the query, QMF must be restarted to implement the
function key change.)

Updating User Profiles to Enable GDDM Printing

When a user enters a QMF PRINT command, QMF references the LENGTH,
WIDTH, and PRINTER fields of the user’s row in the Q.PROFILES table. Use
these fields of the profile to specify the size and destination for the user’s
output.

To activate GDDM services for printing, specify a default GDDM printer
nickname in the PRINTER column of the profile. Ensure the values you
supply for LENGTH and WIDTH are the same as the width and length

Enabling Users to Print Objects

156 Installing and Managing QMF on VM

specified by the device token in the ADMMNICK specification. Also ensure
the printer name you use matches one of the entries in the ADMADFV
defaults module. If a nickname isn’t found, the file nickname ADMPRINT is
created.

If you don’t specify a printer name in the profile and the user tries to print a
chart, form, or prompted query without specifying a printer name, QMF
displays the message Please supply a nickname for your printer. Pressing
Enter displays a prompt for a printer name. Instruct users to enter a printer
name that matches one of the entries in the nickname file.

If the PRINTER field in the user’s profile does not contain a GDDM
nickname, QMF services are used for printing. You can specify defaults for
LENGTH and WIDTH even if PRINTER is blank.

If you specified a default GDDM printer name in your profile but you want to
use QMF services for printing, supply a blank value for the PRINTER
keyword to override the GDDM printer nickname in the user’s profile:
PRINT REPORT (PRINTER=' '

Enabling Users to Print Objects

Chapter 9. Enabling Users to Print Objects 157

Enabling Users to Print Objects

158 Installing and Managing QMF on VM

Chapter 10. Customizing QMF Commands

QMF command synonyms help you customize the base set of QMF
commands by allowing you to define your own terms and link them to QMF
or CMS commands. A synonym might simply be another word for a QMF or
CMS command, or it can be a term that does the work of several commands.

After you create a command synonym, QMF end users can enter the synonym
on the command line in the same way they normally enter a QMF command.

Quick Start

Follow the steps in Table 26 to create a command synonym. If you need more
information on any step, see the page listed at the right.

Table 26. Creating synonyms for QMF commands

To do this task: See:

Use the default synonyms provided with QMF to display a printed report, run a batch
query or procedure, customize a report layout, or leave QMF in interactive mode and bridge
to ISPF.

Page 159

Create a command synonym table that has the columns VERB, OBJECT, and
SYNONYM_DEFINITION. The table links the synonyms you choose with the commands or
procedures they represent.

Page 162

Enter synonyms and their definitions into the table. VERB and OBJECT store your
synonym; SYNONYM_DEFINITION is the command or procedure that runs when you enter
the synonym. Follow the guidelines for valid verbs, object names, and synonym definitions.

Page 163

Activate the synonyms for users. Update the SYNONYMS field of the user’s row in
Q.PROFILES with the name of the synonym table. Then instruct users to reconnect to the
database to initialize the new synonyms.

Page 168

Minimize maintenance of your site’s command synonym tables by creating a single
synonym table for all users or by creating different types of views on the synonym table.

Page 170

Using the Default Synonyms Provided with QMF

QMF provides four applications that can be used as installation-defined
commands. After installation, the application synonyms appear in the
Q.COMMAND_SYNONYMS table. Users with access to this table can invoke
these applications by entering the appropriate synonym as if it were a QMF
command.

© Copyright IBM Corp. 1983, 2000 159

Display Printed Report
Synonym is DPRE. Displays the user’s current report just as it would
be printed. For information on customizing DPRE, see “Displaying
Printed Reports (DPRE)”.

Batch Query/Procedure
Synonym is BATCH. Lets the user run a query or procedure in batch
mode rather than running it interactively. For more information on
this application, see Using the QMF Batch Query/Procedure
Application (BATCH).

Layout Form
Synonym is LAYOUT. Lets the user tailor reports without having to
run a query. For an example of how to use this application, see Using
QMF . For information on the command’s syntax, see QMF Reference.

Bridge to ISPF
Synonym is ISPF. Lets the user temporarily leave QMF in
interactive-mode and “bridge” to ISPF/PDF. The user then conducts
an ISPF/PDF session independently of QMF. After the session is
ended, the user is returned to QMF, at the point where the ISPF
command was issued. For more on the ISPF application, see Using
QMFand Developing QMF Applications.

ISPF considerations:

1. For the first three applications, QMF must be started under ISPF.
2. The synonym ISPF is valid only if QMF is started as an ISPF dialog. If

QMF is not started as an ISPF dialog and the user wants to use ISPF, the
user can issue the command CMS ISPSTART.

Displaying Printed Reports (DPRE)
You might notice that a printed report doesn’t look exactly as it did on a
screen. For example, the displayed report is treated as a single page, even
with one or more page breaks in the printed report.

The differences between the printed report and its displayed version are
largely cosmetic: the facts and figures on the screen and those on the printed
page are the same. However, the differences can be important. (For more
detailed information about the differences, see Using QMF.) Because of this,
IBM supplies the QMF application called DPRE to display the report as it
would look when printed. After QMF is installed, the application can be
invoked using a command stored in the Q.COMMAND_SYNONYMS table.
The application is shared for everyone’s use.

Using DPRE
To use DPRE, you load the DATA object with the report data and the FORM
object with the appropriate form, then issue the command:
DPRE

Customizing QMF Commands

160 Installing and Managing QMF on VM

The application then generates the printer output and displays it through the
ISPF browse facility. After you finish browsing, the printer output disappears.

If you’re using an NLF: Issue the translated command synonym for DPRE to
display printed reports. For example, the translated
German command synonym for DPRE is AGB. For
the translated command synonym for DPRE in the
other language environments, see the
Q.COMMAND_SYNONYM_n control table or the
translated QMF Reference.

Report Parameters: The LENGTH parameter for the report being browsed is
taken from PROFILE. The WIDTH parameter specified in PROFILE is used if
it is less than 132 (lrecl); otherwise, a width of 132 (lrecl) is used because this
is the length specified in the CMS FILEDEF statement for DSQPRINT. If 132 is
too small, the CMS FILEDEF statement for DSQPRINT can be changed to
accommodate a larger width.

Performance Considerations: The design of QMF encourages users to
develop their printed reports by alternately modifying the FORM panels and
displaying REPORT, until the report suits the user’s needs. With DPRE, the
user can now alternate changing the FORM panel and browsing the tentative
report with DPRE. Users should be aware, however, that the second method
of development is expensive relative to the first, and should be used sparingly
when resources are at a premium.

When printing large tables, all the rows of the report are fetched before the
report is displayed.

Responding to Errors: DSQPRINT is the name of the file that receives output
from QMF PRINT commands in which PRINTER=' ' is either expressed or
implied. When a user runs DPRE, DSQPRINT is redefined as the file holding
the material to be browsed. If an error stops the execution, this definition
might still be in effect after the run terminates.

Customizing DPRE

Important: When making modifications to any file, first rename it and be sure
to keep backup copies of original and modified files.

You can change the parameters that DSQPRINT has when DPRE ends
normally. This is controlled by statements in the QMF procedure DSQAER2P
which is invoked by the DPRE command synonym. This statement:
Print_opts = "LRECL 121 RECFM FBA BLKSIZE 1210"
Address COMMAND "FILEDEF DSQPRINT PRINTER ("Print_opts

Customizing QMF Commands

Chapter 10. Customizing QMF Commands 161

changes the record format (LRECL) from 133 to 121, and changes the block
size (BLKSIZE) from 1330 to 1210.

Creating a Command Synonym Table

When a user starts a QMF session, QMF loads a command synonym table
whose name you specify in the SYNONYMS field of the user’s profile. When
you enter a command, QMF first checks the synonym table for a match. If
there is no match, QMF assumes the command is a base QMF command.
When you enter the letters QMF in front of any command, QMF automatically
assumes the command is a base QMF command and does not check the
synonym table for a match.

Use the following procedure to create a command synonym table. Then see
“Entering Command Synonym Definitions into a Command Synonym Table”
on page 163 for instructions on entering your synonyms and their definitions.
1. If necessary, acquire or add a dbspace to hold the command synonyms

table. Figure 30 on page 118 shows how to acquire a dbspace. If you need
to add a dbspace, see DB2 Server for VM System Administration

2. From the QMF SQL query panel, run an SQL CREATE TABLE statement
similar to the one in Figure 44 to create the table. Substitute your own
table name in place of COMMAND_SYNONYMS and your own dbspace
name for DBSPACE1. Type the other portions of the query exactly as
shown.

The VERB and OBJECT columns store your synonym. The
SYNONYM_DEFINITION column stores the command or procedure that
runs when you enter the synonym.

The columns can be in any order, and you can add a column for
comments so users know what function each synonym performs.

3. Add comments to the SYSTEM.SYSCATALOG table that describe the
table’s purpose. The following is an example for the
COMMAND_SYNONYMS table created with the query in Figure 44.
COMMENT ON TABLE COMMAND_SYNONYMS IS 'SYNONYMS FOR RESEARCH DEPT'

The phrase 'SYNONYMS FOR RESEARCH DEPT' appears in the
REMARKS column of the SYSTEM.SYSCATALOG table.

CREATE TABLE COMMAND_SYNONYMS
(VERB CHAR(18) NOT NULL,
OBJECT VARCHAR(31),
SYNONYM_DEFINITION VARCHAR(254) NOT NULL)
IN DBSPACE1

Figure 44. Creating a command synonym table

Customizing QMF Commands

162 Installing and Managing QMF on VM

4. Create an index to maximize performance at initialization time, when
QMF processes the command synonym table. Use a statement similar to
the following:
CREATE UNIQUE INDEX SYNONYMS_INDEX

ON COMMAND_SYNONYMS (VERB, OBJECT)

Index both the VERB and OBJECT columns with the UNIQUE keyword to
prevent duplicate synonym definitions. If you choose not to use the
UNIQUE keyword, QMF allows duplicate synonyms in the table; QMF
uses the first synonym it locates in the table and displays a warning
message on the QMF Home panel after initialization.

Entering Command Synonym Definitions into a Command Synonym Table

After you create a command synonym table, use an SQL INSERT statement
similar to the one in Figure 45 to enter your synonyms into the table. You can
also use the Table Editor to update the table, as explained in Using QMF.
After it is activated according to the procedure described in “Activating the

Synonyms” on page 168, the synonym COMPUTE MONTHLY_SALES runs a
QMF linear procedure called SALES_FIGURES, owned by user JONES.

The query in Figure 46 shows an example of a synonym that has no entry in
the object column:
After it is activated, the synonym EXECUTE runs the query currently in the

QMF temporary storage area.

The synonyms in Figures 45 and 46 follow guidelines that allow QMF to
process each synonym correctly. The rest of this section explains these
guidelines, which you need to follow to ensure that QMF correctly processes
your entries for the VERB, OBJECT, and SYNONYM_DEFINITION columns in
the table.

Choosing a Verb
Every command synonym definition must have a verb. Only the object name
is optional.

INSERT INTO COMMAND_SYNONYMS (VERB,OBJECT,SYNONYM_DEFINITION)
VALUES('COMPUTE', 'MONTHLY_SALES', 'RUN PROC JONES.SALES_FIGURES')

Figure 45. Creating a command synonym definition

INSERT INTO COMMAND_SYNONYMS (VERB,SYNONYM_DEFINITION)
VALUES('EXECUTE','RUN QUERY')

Figure 46. Creating a command synonym definition

Customizing QMF Commands

Chapter 10. Customizing QMF Commands 163

The verb is your own word for the QMF RUN command or CMS command
stored in the SYNONYM_DEFINITION column. For example, you might
create the synonym COMPUTE for the QMF base verb RUN if your company
has financial analysts who run only procedures that return financial results.

Rules for the VERB Column
Ensure entries in the VERB column of the synonym table:
v Are 1 to 18 characters long.
v Do not contain blanks.
v Do not include the verb QMF (other base QMF commands are allowed).
v Have an alphabetic or national character as the first character. (In English,

national characters are #, @, and $.)

Characters after the first letter can be alphabetic, national characters, decimal
digits, or the underscore. No other characters are allowed.

Some examples that demonstrate these rules are shown in the following list.
QMF ignores rows that have invalid entries in the VERB column, and displays
a warning message.

Valid Verbs:
Invalid Verbs:

COMPUTE
DO SALES (Blanks not allowed unless surrounded by double quotes)

DISPLAY
ADJ%AGE (% not allowed)

PRINT
PRINT_PRODUCTIVITY_TOTALS (more than 18 characters)

Using Base QMF Verbs as Command Synonym Verbs
You can use base QMF commands, such as PRINT, as synonyms. For example,
you might choose to define a synonym that automatically routes print output
to a GDDM-defined printer.

When you define a synonym that is also a base QMF command, instruct users
to precede the command with the letters QMF when they want to use the
base QMF command. For example, the synonym DISPLAY might represent a
synonym definition that executes the QMF command RUN PROC
SALES_REPORT. The SALES_REPORT procedure runs a query and prints a
report on a GDDM-defined printer. Users who forget to enter QMF in front of
DISPLAY might get a formatted, printed report of data they didn’t necessarily
want. Using base verbs in verb-object synonyms has a similar impact.

Some base QMF commands must be followed by a parameter. For example,
you need to follow the IMPORT command with an object type, such as
TABLE. If you are using a verb such as IMPORT in a verb-object pair, choose
an object name that is not one of these parameters to prevent users from

Customizing QMF Commands

164 Installing and Managing QMF on VM

inadvertently running the synonym. For other base commands you use, see
the syntax diagrams in QMF Reference to find out if the command requires a
parameter.

Choosing an Object Name
An object name is optional in a command synonym. When you do use an
object name, however, ensure users specify both the verb and the object name;
otherwise, QMF can’t find a match in the synonym table.

Entries in the OBJECT column must follow these rules:
v Must be 1 to 18 characters long
v Must conform to rules for naming DB2 for VM tables
v Must be surrounded by double quotes if the object name has blanks or

other special characters. (Both QMF and the database manager remove the
double quotes when the name is processed.)

Some examples of valid and invalid objects are shown in the following list.

Valid Objects:
Invalid Objects:

PFKEYS
80CAT (first character is numeric)

MONTH_2_REPORT
ADJ%AGE (% not allowed)

“User x”.“Net Sales”
JANUARY_PRODUCTIVITY (over 18 characters)

“Net Sales”
JONES GROSS (double quotes required for blanks)

Choosing the Synonym Definition
The synonym definition is the QMF command or procedure that runs when
the user enters the command synonym. An entry in the
SYNONYM_DEFINITION column can include:
v A RUN command that calls a QMF procedure or query. For example, RUN

PROC JONES.SALES_DATA might be a synonym definition for the
command synonym COMPUTE MONTHLY_SALES.

v A CMS command that starts a QMF procedure.

Your synonym definition can even include both types of commands if the
definition runs a QMF linear procedure.

For information about developing complex applications to run in a command
synonym, see Developing QMF Applications

Using a Procedure in the Synonym Definition
Your synonym definition can include a procedure that does the work of
several QMF commands. For example, the linear procedure in Figure 47 on
page 166 performs the following tasks:

Customizing QMF Commands

Chapter 10. Customizing QMF Commands 165

1. Runs the following query, called SALES_DATA, which creates a report that
shows all the customers handled by sales representative number 20:
SELECT QUANTITY, CUSTNO
FROM Q.SALES
WHERE SALESREPNO = 20

2. Routes the report from QMF to a file.
3. Runs a QMF procedure to route the report to a predefined print

destination.

Your definition for a synonym that runs this procedure might look similar to

the one in Figure 48.

If you’re using an NLF: Make sure that the QMF commands in the queries,
forms, and other objects included in the procedure
are translated before you use the command synonym
that calls the procedure. Also ensure these
components are suitable for the NLF you’re using.
Unless your procedure sets the
DSQEC_NLFCMD_LANG variable to 1, ensure the
commands are translated before you use the
command synonym. The DSQEC_NLFCMD_LANG
variable is discussed in “Enabling English Support in
an NLF Environment” on page 144.

Using Variables in the Synonym Definition
You can use variables in the synonym definition to pass values for like-named
variables present in objects (such as queries) named in the definition. For
example, Figure 49 on page 167 shows a definition that passes the value
Q.STAFF for the table name, which is evaluated when MYQUERY runs.

-- Procedure name: SALES_PROC
RUN QUERY SALES_DATA
CMS FILEDEF DSQPRINT DISK MYPRT FILE A (LRECL 75 BLKSIZE 75 RECFM F
PRINT REPORT (PRINTER=' '

Figure 47. Sample procedure to run using a command synonym

SYNONYM
VERB OBJECT DEFINITION
----------- --------------- -------------------
SHOW SALES RUN PROC SALES_PROC

Figure 48. Using a command synonym to run a procedure

Customizing QMF Commands

166 Installing and Managing QMF on VM

MYQUERY might look something like:
SELECT * FROM &TABLENAME

Ampersands are doubled in a variable name in the synonym definition
because they become single ampersands when QMF executes the RUN
command.

Use double ampersands in the synonym definition for all variables except the
variable &ALL. &ALL is a special QMF variable that allows you to enter
variable values when you enter the synonym, rather than including them in
the synonym definition. When you use the variable &ALL in a synonym
definition, QMF uses as variable values any information you enter to the right
of the synonym. You can use the variable &ALL to show where the
information is located within the synonym definition.

The synonym definition in Figure 50 shows an example of a synonym defined
using &ALL.
The query named STAFFQUERY might look something like the following:

SELECT * FROM Q.STAFF
WHERE DEPT=&DEPT and JOB=&EMPLOYEE_JOB

After activating the SHOW_INFO synonym defined in the preceding example,
you can enter the following statement from the QMF command line to display
information about all the managers in Department 10:
SHOW_INFO &DEPT=10 &EMPLOYEE_JOB='MGR'

Rules for &ALL: When you use the variable &ALL in a synonym definition:
v Use &ALL only once in a synonym definition.
v Always write &ALL in uppercase.
v Never follow &ALL with a number or letter.
v Any value you substitute for &ALL must be syntactically correct when

QMF evaluates the entire command. For more information on syntax of
QMF commands, see QMF Reference.

SYNONYM
VERB OBJECT DEFINITION
---------- --------- --------------------------------------
EXECUTE - RUN QUERY MYQUERY (&&TABLENAME=Q.STAFF

Figure 49. Using variables in command synonym definitions

SYNONYM
VERB OBJECT DEFINITION
---------- --------- ------------------------
SHOW_INFO - RUN QUERY STAFFQUERY (&ALL)

Figure 50. Using the variable &ALL in a command synonym definition

Customizing QMF Commands

Chapter 10. Customizing QMF Commands 167

If a user does not supply a value following the command synonym, QMF
substitutes a null value for &ALL. In the synonym definition shown in
Figure 50 on page 167, QMF prompts the user for values for the &DEPT and
&EMPLOYEE_JOB variables if the user enters SHOW_INFO by itself on the
command line.

Keying Information Into the SYNONYM_DEFINITION Column
Follow these guidelines when keying your synonym definitions into the
synonym table:
v Add single quotes around a variable in your synonym definition.

Single quotes around a variable eliminate the need for the user to add
quotes to the command synonym when running a query. For example,
&ALL has single quotes in this synonym definition:
RUN MYQUERY (&&NAMEVALUE='&ALL'

If you search for the name O’BRIEN, you do not need to enter 'O'BRIEN',
because QMF does this for you.

v Enter base verbs and keywords in uppercase.
Literal information in the synonym definition is not converted to uppercase.

v Qualify all object names if their owners are different from the SQL
authorization ID of the user who uses the synonym.
QMF leaves names unqualified when searching for a synonym that contains
the object name specified. For example, if your synonym definition includes
a query named MY_SALES owned by user ID JONES, ensure that the object
name in the synonym definition reads JONES.MY_SALES. Otherwise,
JONES is the only user that can use that command synonym.

v Use only capital letters for letters that lie outside of delimited identifiers.
If QMF converts user input (the synonym) to uppercase and the synonym
definition is in lowercase, QMF can’t find the synonym definition that
matches the synonym the user entered. The CASE value of the user’s QMF
profile controls whether input is converted to uppercase. Use the SET
PROFILE command to change the CASE value. This command is explained
in QMF Reference.

Activating the Synonyms

To activate the command synonym table for your users:
1. Update the SYNONYMS field of the user’s profile with the proper

command synonym table name.
For example, to assign the COMMAND_SYNONYMS table to the user
JONES in the English language and the table GUMMOW.XYZ to the user

Customizing QMF Commands

168 Installing and Managing QMF on VM

SCHMIDT in the German NLF environment, use the query in Figure 51 :

Important: Always specify a value for TRANSLATION when you’re
updating Q.PROFILES, or you might change more rows than
you intend.

The query in Figure 51 applies to users who are already enrolled in QMF.
You can use a similar query to update the SYSTEM profile. If you are
enrolling a new user, use an INSERT query similar to the one shown in
Figure 18 on page 99.

2. Grant the SQL SELECT privilege to PUBLIC so that assigned users can
access the synonyms. For example:
GRANT SELECT ON COMMAND_SYNONYMS TO PUBLIC

If you are using a view on a synonym table rather than the table itself,
grant SELECT on only the view to prevent users from accessing synonyms
not meant for their use. Views are discussed in “Minimizing Maintenance
of Command Synonym Tables” on page 170.

3. Instruct users to use the QMF CONNECT command to reconnect to the
database to activate the new synonyms. For example, user JONES who has
the password MYPW needs to enter:
CONNECT JONES (PA=MYPW

Each time you make a change to the table, instruct users to reconnect to
the database to activate the changes you made.

See Table 13 on page 95 for how to grant a user authority to connect to the
database. Users who do not have DB2 for VM CONNECT authority can
end the current QMF session and start another to activate the synonyms.

Base QMF (English)
German NLF

UPDATE Q.PROFILES
UPDATE Q.PROFILES

SET SYNONYMS='COMMAND_SYNONYMS'
SET SYNONYMS='GUMMOW.XYZ'

WHERE CREATOR='JONES'
WHERE CREATOR='SCHMIDT'

AND TRANSLATION='ENGLISH'
AND TRANSLATION='DEUTSCH'

AND ENVIRONMENT='CMS'
AND ENVIRONMENT='CMS'

Figure 51. Activating a user’s QMF command synonyms

Customizing QMF Commands

Chapter 10. Customizing QMF Commands 169

Command synonyms follow the same rules for abbreviation as QMF
commands. Any abbreviation must indicate a unique QMF command or
command synonym. For example, the minimum valid abbreviation for the
synonym EXECUTE is EXE. If you enter only EX, QMF can’t distinguish the
command synonym EXECUTE from the base QMF command EXPORT. See
QMF Reference for the proper abbreviations for QMF commands.

Minimizing Maintenance of Command Synonym Tables

The command synonym table is initialized before the QMF Home panel is
displayed. If you notice that QMF initialization time is increasing, you might
need to reorganize the command synonym table. To monitor the table’s
statistics, refer to DB2 Server for VM Database Administration

To minimize the time you spend maintaining users’ command synonym
tables, consider either assigning one synonym table to all users or assigning a
variety of different views of the same table. Both methods are discussed in
this section.

Assigning One Synonym Table to all Users
The more command synonym tables you create for individual users, the more
time you spend on maintenance. One way to reduce maintenance is to create
a single command synonym table and assign it to every user. The query in
Figure 52 assigns to every user of base (English) QMF a table named
COMMAND_SYNONYMS.

Assigning Views of a Synonym Table to Individual Users
To enable users to have synonyms unique to their needs and still keep table
maintenance at an acceptable level, consider creating several views of one
synonym table, and assigning the views to individual users or groups of
users. There are three types of views you can create.

Synonyms for Public or Private Use
If you have few synonyms that are used by individuals, consider creating and
assigning a view that flags each synonym for either public use (by all users)
or private use (by individual users):
1. Add an AUTHID column to the synonym table when you create the table.

A null value in the AUTHID column indicates a public synonym; a user
ID in the AUTHID column indicates a private synonym. You can have
many entries for the same synonym, each assigned to a different user.

UPDATE Q.PROFILES
SET SYNONYMS='Q.COMMAND_SYNONYMS'
WHERE TRANSLATION='ENGLISH' and ENVIRONMENT='CMS'

Figure 52. Assigning a single command synonym table to all QMF users

Customizing QMF Commands

170 Installing and Managing QMF on VM

2. Use a query similar to that in Figure 53 to create a view on the synonym
table. This query allows a user (indicated by userid in the figure) to use
all public synonyms in the table and any synonyms assigned privately to
his or her SQL authorization ID.

Synonyms for Public or Group Use
If you support a large group of end users, consider creating and assigning a
view that flags certain synonyms to be used by certain groups of users.

The synonym table used to create the view contains a single row for each
synonym that belongs to a user group, and a single row for each public
synonym. AUTHID is either null or has a value that uniquely identifies the
user group.
1. Add an AUTHID column to the synonym table if it doesn’t have one.
2. Use a query similar to the one in Figure 54 to create the view on the

synonym table. All users in the DEPTD02 group can use all public
synonyms in the table and any synonyms assigned specifically to the
group.

Synonyms Paired with an Authorization Table
Consider creating a separate table that holds in one column SQL authorization
IDs and in the other column the values of a key. If the keyed value for a
particular SQL authorization ID matches a keyed value in a row of the
command synonym table, the synonym described in that row is available to
the user.

Use a query similar to the one in Figure 55 on page 172 to implement this
method of maintaining command synonyms. The query creates a view called
KEYVIEW on the table COMMAND_SYNONYMS, incorporating in the view
only the synonyms that have keyed matches between
COMMAND_SYNONYMS and the auxiliary table, KEYTABLE.

CREATE VIEW SYNVIEW (VERB,OBJECT,SYNONYM_DEFINITION)
AS SELECT VERB, OBJECT, SYNONYM_DEFINITION

FROM COMMAND_SYNONYMS
WHERE AUTHID='userid' OR AUTHID IS NULL

Figure 53. Creating a view that controls individual and public use of synonyms

CREATE VIEW GROUPVIEW (VERB,OBJECT,SYNONYM_DEFINITION)
AS SELECT VERB, OBJECT, SYNONYM_DEFINITION

FROM COMMAND_SYNONYMS
WHERE AUTHID='DEPTD02' OR AUTHID IS NULL

Figure 54. Creating a view that controls group and public use of synonyms

Customizing QMF Commands

Chapter 10. Customizing QMF Commands 171

CREATE VIEW KEYVIEW (VERB,OBJECT,SYNONYM_DEFINITION)
AS SELECT VERB, OBJECT, SYNONYM_DEFINITION

FROM COMMAND_SYNONYMS
WHERE AUTHID IS NULL OR AUTHID IN

(SELECT KEYS FROM KEYTABLE WHERE USER=userid)

Figure 55. Creating a view that uses an extra table to control use of synonyms

172 Installing and Managing QMF on VM

Chapter 11. Customizing QMF Function Keys

The default settings and labels for function keys on each QMF panel describe
a common set of QMF tasks that end users are likely to perform. Because
every site’s needs are unique, however, QMF provides a way for you to
customize both the label that displays on the screen and the command QMF
executes when a user presses the key.

Quick Start

Follow the steps in Table 27 to customize a default QMF function key. If you
need more information on any step, see the page listed at the right of the
table.

Table 27. Customizing QMF function keys

To do this task: See:

Choose the panels and function keys you want to customize. You can change function key
settings on all panels except table editor panels and database status panels. Your flexibility in
customizing the keys depends on what type of panel you choose.

Page 173

Create a table to hold the customized definitions of your function keys. Include at least
four columns: PANEL, ENTRY_TYPE, NUMBER, and PF_SETTING. These columns have
information about the command QMF issues when the key is pressed and the label text that
is displayed beside the key number on the screen.

Page 176

Insert your customized key definitions into the function key table. To insert a definition,
reference the panel ID of the panel you’re customizing; the QMF command issued when the
key is pressed; the text displayed on the screen next to the number of the key; and where
the key is positioned on the screen.

Page 177

Activate the new function key definitions by updating the PFKEYS field of the user’s row
in Q.PROFILES with the name of the function key table you created.

Page 184

Choosing the Keys You Want to Customize

QMF function keys appear on two types of panels: primary panels, which are
full-screen panels such as FORM.MAIN and REPORT; and secondary panels,
which appear as window dialog panels. Help, prompt, and Prompted Query
panels are examples of secondary panels.

The tables in “Default Keys on Full-screen Panels” on page 174 show the
default QMF function key labels and commands for both full-screen and
window panels; use them to decide which function keys you want to change.

© Copyright IBM Corp. 1983, 2000 173

You cannot customize function keys on Table Editor panels. On other panels,
you can choose QMF or installation-defined commands to associate with any
function key label you modify.

Default Keys on Full-screen Panels

Key Executed command

Backward BACKWARD

Cancel CANCEL

Change CHANGE

Chart DISPLAY CHART or SHOW CHART

Check CHECK

Clear CLEAR

Command SHOW COMMAND

Comments SWITCH COMMENTS

Delete DELETE

Describe DESCRIBE

Draw DRAW

Edit Table EDIT TABLE

End END

Enlarge ENLARGE

Form DISPLAY FORM or SHOW FORM

Forward FORWARD

Help HELP

Insert INSERT

Left LEFT

List LIST

Print PRINT

Proc DISPLAY PROC or SHOW PROC

Profile DISPLAY PROFILE

Query DISPLAY QUERY or SHOW QUERY

Reduce REDUCE

Refresh REFRESH

Report DISPLAY REPORT or
SHOW REPORT

Retrieve RETRIEVE

Right RIGHT

Customizing QMF Function Keys

174 Installing and Managing QMF on VM

Key Executed command

Run RUN QUERY or RUN PROC

Save SAVE PROFILE

Show SHOW

Show Field SHOW FIELD

Show SQL SHOW SQL

Sort SORT

Specify SPECIFY

Specify View SPECIFY VIEW

Default Keys on Window Panels

Key Executed command

Attribute SPECIFY ATTRIBUTES

Backward BACKWARD

Cancel CANCEL

Clear CLEAR

Command SHOW COMMAND

Comments SWITCH COMMENTS

Condition SPECIFY CONDITION

Delete DELETE

Describe DESCRIBE

End END

Exit END

Forward FORWARD

Help HELP

Index HELP INDEX

Keys HELP KEYS

List LIST

Menu HELP MENU

More Help HELP MORE

Next Column NEXT COLUMN

Next Definition NEXT DEFINITION

Previous Column PREVIOUS COLUMN

Previous Definition PREVIOUS DEFINITION

Customizing QMF Function Keys

Chapter 11. Customizing QMF Function Keys 175

Key Executed command

Refresh REFRESH

Show Entity SHOW ENTITY

Show Field SHOW FIELD

Show View SHOW VIEW

Sort SORT

Specify Attributes SPECIFY ATTRIBUTES

Specify Condition SPECIFY CONDITION

Switch HELP SWITCH

On the global variable list panel, RESET GLOBAL is the command executed
when the Delete key is pressed.

For more information on the commands associated with these function keys,
see QMF Reference.

Creating the Function Key Table

After you decide which function keys you want to customize, follow these
steps to create a table that links your customized function key definitions with
the appropriate panels:
1. Use an SQL CREATE TABLE statement similar to the one shown in

Figure 56 to create the table. Substitute your own name for MY_PFKEYS
and your own dbspace for DBSPACE1.

For information on acquiring a dbspace to hold the table, see “Choosing
and Acquiring a dbspace for the User” on page 118. For information on
creating a new dbspace, see DB2 Server for VM Database Administration

2. Add comments to the SYSTEM.SYSCATALOG table using an SQL
statement similar to the following:
COMMENT ON TABLE MY_PFKEYS IS 'PF KEYS RESERVED FOR FINANCIAL ANALYSTS'

CREATE TABLE MY_PFKEYS
(PANEL CHAR(18) NOT NULL,
ENTRY_TYPE CHAR(1) NOT NULL,
NUMBER SMALLINT NOT NULL,
PF_SETTING VARCHAR(254))
IN DBSPACE1

Figure 56. Creating a function key table

Customizing QMF Function Keys

176 Installing and Managing QMF on VM

The phrase PF KEYS RESERVED FOR FINANCIAL ANALYSTS appears in the
REMARKS column of the SYSTEM.SYSCATALOG table. For more
information on adding comments to the system catalog, see DB2 Server for
VM Database Administration

3. Create an index using an SQL statement similar to the following:
CREATE UNIQUE INDEX MY_PFKEYSX

ON MY_PFKEYS (PANEL, ENTRY_TYPE, NUMBER)

Use the UNIQUE keyword to index the PANEL, ENTRY_TYPE, and
NUMBER columns to ensure that no two rows of the table can be
identical.

If you choose not to use the UNIQUE keyword, QMF allows duplicate key
definitions. QMF displays warning messages on the Home panel if it finds
more than one key definition for the same key, and writes information
about the warning messages to the user’s trace data. Multiple key
definitions for window panels cause no messages; QMF uses the last
definition it finds.

Entering Your Function Key Definitions into the Table

You can use SQL INSERT statements or the QMF Table Editor to insert
customized key definitions into the function key table. Each function key
definition spans two rows in the table:
v One row specifies the command QMF issues when a user presses the key.
v The other row specifies the label text that appears on the screen.

Enter both rows for each key you want to customize. A function key
command without an associated label doesn’t appear on the user’s screen.
Similarly, a label with no associated command is inactive.

The next two sections discuss the values you need to enter for each row.

Linking a Command with a Function Key
Each function key on a QMF panel is linked with a QMF command that
executes when the function key is pressed. To ensure your customized
function keys also work this way, make sure one of the two rows you enter
into the table has the values shown in Table 28 on page 178.

Customizing QMF Function Keys

Chapter 11. Customizing QMF Function Keys 177

Table 28. Values to customize your function key table

Column Value Information

PANEL ID of the QMF
panel you’re
customizing

“Full-screen Panel Identifiers” on page 181 shows the IDs you
need to use for full-screen panels. “Window Panel Identifiers” on
page 181 shows the IDs you need to use for specific window
panels.

If you want to define the same set of keys to appear on every
panel in a class of window panels, use the class ID shown at the
bottom of the tables. For example, to customize the Specify
panel of a Forms window, use the panel ID FOSPEC if you want
the Specify panel to have different keys than the rest of the
panels in the forms class. Otherwise, use the panel ID FOXXXX,
which characterizes all panels in that class.

Changes you make using a class ID apply to all panels
customized by that class ID. Help and prompt windows don’t
have a set of unique IDs; they can be customized using only
class IDs.

ENTRY_TYPE K K indicates that this row defines the command QMF issues
when the key is pressed.

NUMBER Number of the
function key you’re
customizing

For example, if you’re changing the definition for PF5, enter a 5
in this column.

PF_SETTING Text of the
command that runs
when the key is
pressed

Make sure this command is appropriate for the panel on which
it appears. For example, the ENLARGE command is appropriate
for only the QUERY panel in a QBE query. Because QMF doesn’t
check if the command is appropriate for the panel until the user
presses the key, test each of your new function keys before your
end users need them.

Enter the command in uppercase, because QMF does not
convert terminal input to uppercase when it retrieves the
commands associated with function keys. The command won’t
run if this value is lowercase and the CASE field of the user’s
profile has the value UPPER.

Ensure that each panel you customize has a key set to END or
CANCEL. Without a key defined to one of these commands,
users might not be able to exit the panel.

If you’re using an NLF: Ensure the underlying command has the correct
national language translation; additionally, it’s
helpful if the label text for each key is written in the
language of the NLF you’re using.

Customizing QMF Function Keys

178 Installing and Managing QMF on VM

Labeling the Function Key and Positioning it on the Screen
The function keys on each QMF panel have labels next to the function key
numbers. To ensure the label appears on the screen, you need to add a second
row to the table. In this row, make sure the columns of the function key table
have the values shown in Table 29.

Table 29. Values to label your function key table

Column Value Information

PANEL ID of the QMF
panel you’re
customizing

This is the same ID you used for the first row of the definition,
explained in “Linking a Command with a Function Key” on
page 177.

ENTRY_TYPE L L indicates that the row defines the label associated with the
function key.

NUMBER Number of the row
where the key
appears on the
display, if you are
customizing a
full-screen panel.

If you are customizing a window or help panel, NUMBER
represents the number of the function key (as it does in the first
row you added to the table in “Linking a Command with a
Function Key” on page 177). For example, on the Home panel,
PF5 appears in row 1 and PF12 appears in row 2.

PF_SETTING Text of the function
key labels

For full-screen panels, QMF displays on the screen exactly what
you enter in this column, and does not adjust for spacing. For
example, if you’re customizing the QMF Home panel, you need
to enter all the keys that appear on that panel, whether or not
you customized them. QMF does not automatically fill in the
default key settings for keys you choose not to customize. See
Figure 57 on page 180 for an example.

For window panels, you need to type only the label of the key
in this column. See Figure 58 on page 180 and Figure 59 on
page 181 for examples.

Examples of Key Definitions
Use the examples in this section to see how to enter a complete function key
definition for each type of QMF panel. The examples show how to update a
full-screen panel, a window panel, and a help panel.

The examples shown use panel IDs from the tables in “Identifying the Panel
You Want to Customize” on page 181. Use these tables to get the proper
values for the PANEL column of the function key table.

Entering a Definition for a Key on a Full-screen Panel
Use the SQL queries shown in Figure 57 on page 180 to change PF2 on the
Home panel from EDIT TABLE to IMPORT. Identify the Home panel with the
panel ID HOME, and indicate with the number 2 (in the first query shown) that
you want to customize the command executed when a user presses PF2.

Customizing QMF Function Keys

Chapter 11. Customizing QMF Function Keys 179

The QMF Home panel now displays Import for PF2:

In the PF_SETTING column of the second query, be sure to type exactly what
appears in the top row of keys on the Home panel, even if you haven’t
customized each key. For example, if you specify only the word Import in the
PF_SETTING column for the second query, the Home panel looks like this:

Entering a Definition for a Key on a Window Panel
The SQL queries in Figure 58 add a PF3 key to the Tables panel in Prompted
Query. The function key executes the CANCEL command, and is labeled
CancelMe.

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES('HOME', 'K', 2, 'IMPORT')

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES('HOME','L',1,'1=Help 2=Import 3=End 4=Show 5=Chart 6=Query')

Figure 57. Changing a function key for a QMF command on the Home panel

Type command on command line or use function keys. For help, press PF1 or type
HELP.
__
1=Help 2=Import 3=End 4=Show 5=Chart 6=Query
7=Retrieve 8=Edit Table 9=Form 10=Proc 11=Profile 12=Report
OK, cursor positioned.
COMMAND ===>

Type command on command line or use function keys. For help, press PF1 or type
HELP.
__
Import
7=Retrieve 8=Edit Table 9=Form 10=Proc 11=Profile 12=Report
OK, cursor positioned.
COMMAND ===>

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES('QPTABL', 'K', 3, 'CANCEL')

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES('QPTABL', 'L', 3, 'CancelMe')

Figure 58. Changing a function key on the Specify panel of Prompted Query

Customizing QMF Function Keys

180 Installing and Managing QMF on VM

Entering a Key Definition for a Help or Prompt Panel
The SQL queries in Figure 59 add a PF13 key to all help panels. The function
key executes the CANCEL command, and is labeled CancelMe.
All help and prompt panels are customized using a single class ID. Because

any changes you make to one panel in the class appear on all panels that are
defined with that class ID, ensure changes you make to one help or prompt
panel are appropriate for all the help and prompt panels in that class.

Identifying the Panel You Want to Customize

Use the tables in this section to help you determine what ID to enter in the
PANEL column of your function key table. The panel ID appears in the upper
left corner of the panel, when the global variable DSQDC_SHOW_PANID is
set to 1, using the following command:
SET GLOBAL (DSQDC_SHOW_PANID=1

Full-screen Panel Identifiers
The full-screen panel identifiers are listed in Figure 60. Enter the identifiers in
the PANEL column of the function key table exactly as they are shown here.

Window Panel Identifiers
Use the tables in this section to reference window panel IDs. If you set the
global variable DSQDC_SHOW_PANID to display the panel IDs, you’ll notice
that each ID shown in these tables is prefaced by 4 characters when it appears
on the screen.

Window panels not named in the tables do not have unique panel IDs, and
can be customized using the class ID shown at the bottom of each table. All

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES('HEXXXX', 'K', 13, 'CANCEL')

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES('HEXXXX', 'L', 13, 'CancelMe')

Figure 59. Changing a function key on a help panel or prompt panel

PROMPTED QUERY FORM.BREAK1 FORM.COLUMNS
SQL QUERY FORM.BREAK2 FORM.CONDITIONS
QBE QUERY FORM.BREAK3 FORM.DETAIL
PROC FORM.BREAK4 FORM.FINAL
PROFILE FORM.BREAK5 FORM.MAIN
REPORT FORM.BREAK6 FORM.OPTIONS
GLOBALS FORM.CALC FORM.PAGE
HOME

Figure 60. Full-screen panel identifiers

Customizing QMF Function Keys

Chapter 11. Customizing QMF Function Keys 181

class IDs have the character string XXXX in them. These characters are not
variable characters; they are actually part of the ID.

Command Windows

Panel Identifier Title or Description

COENTR Command Entry

COXXXX Command Window Class

Forms Windows

Panel Identifier Title or Description

FOALIG Alignment

FODFIN Definition

FOSPEC Specify

FOXXXX Form Window Class

Global Variable Windows

Panel Identifier Title or Description

GLADVA Add Variables

GLSHVA Show Variables

GLXXXX Global Variables Window Class

Help and Prompt Windows

Panel Identifier Title or Description

HEXXXX Help Window Class

PRXXXX Prompt Window Class

Location Windows

Panel Identifier Title or Description

PLLOCA Location Window List

Object List Windows

Panel Identifier Title or Description

OBDESC Object Description

Customizing QMF Function Keys

182 Installing and Managing QMF on VM

Panel Identifier Title or Description

OBLIAC Object List: Action

OBLIMU Object List: Multi-selection

OBLISI Object List: Single-selection

OBSORT Object List Sort

OBXXXX Object List Window Class

Prompted Query Windows

Panel Identifier Title or Description

QPCDCH Condition Connector - Change

QPCDIT Condition Connector

QPCOCH Column - Change

QPCODE Column Description

QPCOFU Column Summary Function Items

QPCOFU Column Summary Functions

QPCOLI Column Names List

QPCOLU Columns

QPDUCH Duplicate Rows - Change

QPDUPL Duplicate Rows

QPEXPR Expression

QPJOCO Join Columns

QPJOTA Join Tables

QPROBE Rows - Between

QPROCH Rows - Change (left side)

QPROCT Rows - Containing

QPROC1 Rows - Comparison Operators 1

QPROC2 Rows - Comparison Operators 2

QPROEN Rows - Ending With

QPROEQ Rows - Equal To

QPROGQ Rows - Greater Than or Equal To

QPROGR Rows - Greater Than

QPROLQ Rows - Less Than or Equal To

QPROLS Rows - Less Than

QPROST Rows - Starting With

Customizing QMF Function Keys

Chapter 11. Customizing QMF Function Keys 183

Panel Identifier Title or Description

QPROWS Rows (Row Conditions)

QPSHFI Show Field

QPSHSQ Show SQL

QPSOCH Sort - Change

QPSORT Sort

QPSPEC Specify

QPTABL Tables

QPXXXX PQ Window Class

Activating New Function Key Definitions

To enable users to use the customized function key definitions you created:
1. Update the PFKEYS field of the user’s profile with the name of your

function key definitions table.
For example, use a query like the one in Figure 61 to assign to English
QMF user JONES the table MY_PFKEYS, and to German NLF user
SCHMIDT the table MEIN_PFKY. Always include a value for the
TRANSLATION and ENVIRONMENT columns in a query that updates
the Q.PROFILES table.

2. Grant the SQL SELECT privilege to users who need to access the table.
To allow any user to whom the table is assigned to use it, grant the
SELECT privilege to PUBLIC. For example:
GRANT SELECT ON MY_PFKEYS TO PUBLIC

Base QMF (English)
German NLF

UPDATE Q.PROFILES
UPDATE Q.PROFILES

SET PFKEYS = 'MY_PFKEYS'
SET PFKEYS = 'MEIN_PFKY'

WHERE CREATOR='JONES'
WHERE CREATOR='SCHMIDT'

AND TRANSLATION = 'ENGLISH'
AND TRANSLATION = 'DEUTSCH'

AND ENVIRONMENT = 'CMS'
AND ENVIRONMENT = 'CMS'

Figure 61. Making customized function keys accessible to a user

Customizing QMF Function Keys

184 Installing and Managing QMF on VM

To minimize maintenance of function keys at your site, you can assign a
view of the table. Grant the SELECT privilege on only the view to prevent
users from accessing function keys not meant for their use.

The procedures for assigning views of a function key table are the same as
those for command synonym tables, discussed in “Minimizing
Maintenance of Command Synonym Tables” on page 170. Use the
strategies discussed in that section to decide whether to assign a table or a
view to individual users or groups of users.

3. Instruct users to reconnect to the database to initialize a QMF session with
the new function key definitions.
For example, user JONES who has the password MYPW needs to enter:
CONNECT JONES (PA=MYPW

Each time you make a change to the table, instruct users to reconnect to
the database to activate the changes you made.

See Table 13 on page 95 for how to grant a user authority to connect to the
database. Users who do not have DB2 for VM CONNECT authority can
end the current QMF session and start another to activate the new
function keys.

Customizing QMF Function Keys

Chapter 11. Customizing QMF Function Keys 185

Customizing QMF Function Keys

186 Installing and Managing QMF on VM

Chapter 12. Creating Your Own Edit Codes for QMF Forms

Note: This chapter contains General Use Programming Interface and
Associated Guidance Information.

QMF forms help users control the format of data returned from the database.
Use edit codes in the EDIT column of the MAIN and COLUMNS panels of
the QMF form to format report data in different ways. For example, use a
decimal edit code for a column that returns salary data. This edit code
formats the numeric data into a decimal with a currency symbol.

If the edit codes supplied by QMF do not meet the report editing needs of
your site, you can use the information in this chapter to create your own edit
codes to be used in the EDIT column of the FORM.MAIN and
FORM.COLUMNS panels. QMF Reference shows the edit codes supplied with
QMF.

This chapter also shows you how to write an edit exit routine in either
assembler, PL/I, or COBOL, to format the data described by your edit code.
QMF provides both a standard interface to your edit exit routine and a
sample edit exit program you can use as a starting point for writing your
own.

QMF supports edit routines in 31-bit or 24-bit AMODE or RMODE; however,
some versions of some supported languages do not support 31-bit addressing.

Before you begin the tasks in this chapter, consider reviewing the sections of
QMF Referencethat describe QMF’s functions for report formatting and edit
codes.

Quick Start

Use the steps in Table 30 to guide you in creating a user edit exit routine. If
you need more information on any step, see the page listed at the right of the
table.

Table 30. Creating a user edit exit routine

To do this task: See:

Decide what you want your routine to do and choose an edit code that identifies the
routine. Use either Uxxxx or Vxxxx for your edit code, where xxxx is zero to four letters
with no embedded blanks or null values.

Page 188

© Copyright IBM Corp. 1983, 2000 187

Table 30. Creating a user edit exit routine (continued)

To do this task: See:

Request that your exit routine format the data by using fields of the IBM-supplied interface
control block.

Page 191

Accept parameters from and return formatted results to the exit routine using the standard
input and output fields provided in the interface control block.

Page 193

Request that control pass to your edit exit routine when QMF terminates by setting a
termination switch in a field of the interface control block. You might pass control to the edit
exit routine if the routine needs to perform cleanup activities, such as releasing storage.

Page 197

To write your edit exit routine in assembler, start with the sample assembler program
provided by IBM. After you write your program, assemble and generate the program.

Page 197

To write your edit exit routine in PL/I, start with the sample PL/I program provided by
IBM. After you write your program, compile and generate the program and define it to
CMS.

Page 203

To write your edit exit routine in COBOL, start with the sample COBOL program
provided by IBM. After you write your program, compile and generate the program and
define it to CMS. COBOL refers to VS COBOL II, COBOL/370, and IBM COBOL for OS/390
and VM unless otherwise stated.

Page 213

Choosing an Edit Code

Create either a Uxxxx or a Vxxxx edit code to be handled by your edit exit
routine. For U codes, data passed to the edit routine has the internal database
representation of the source data. For V codes, numeric data is converted to a
character string, and this character string is passed to the edit program.

Both codes can indicate processing for either character or numeric data. U and
V must be in uppercase. Replace xxxx with zero to four characters (letters,
digits, or special characters) that can be entered from a terminal; embedded
blanks or nulls are not allowed. The following examples show valid U-type
and V-type edit codes:
U1 UAB42 V_1 VX%5

When the source data is character, codes of either type are equally easy to
process. If the formatting requires arithmetic operations, consider using U
codes for numeric sources; otherwise, use V-codes. If the data type is extended
floating point, ensure that the programming language supports it. For
example, VS COBOL II doesn’t handle extended floating point data. In this
case, IBM recommends using V codes.

For V-codes containing numeric data, QMF converts the data to character
format and then calls the user edit routine. The length of the converted
number varies depending upon its original data type, as shown in Table 31.

Creating Your Own Edit Codes for QMF Forms

188 Installing and Managing QMF on VM

Table 31. How QMF converts numeric data according to data type

If data type of original
numeric data is:

QMF converts it to this length:

Small integer 5

Integer 11

Decimal Equal to the precision of the original data (raised to an
odd number if the original data is even)

Floating point 15 or more depending on the base 10 exponent

Extended floating point 30 or more depending on the base 10 exponent

You need not restrict an edit code to the processing of numeric data, or to the
processing of character data. The sample edit routines supplied with QMF
process one edit code for both numeric and character data.

If the CASE field of a user’s profile has the value UPPER or STRING, QMF
converts all input entered from the terminal to uppercase, and the edit code
might not be recognized. If your edit code is written to accept edit codes in
mixed case, enter the edit codes when case is set to mixed.

Handling DATE, TIME, and TIMESTAMP Data Types

If your installation supports date/time data types, you can format columns
with data types of DATE, TIME, and TIMESTAMP. This enables your users to
use local date/time exit routines. For more information about these data
types, see Using QMF.

You need to remember that these are DB2 for VM exits, not QMF exits. For
details about how these exits are created refer to DB2 Server for VM System
Administration

In order for QMF to use a local date/time exit, the text files containing the
date/time exits, ARIUXDT and ARIUXTM, must be placed on a minidisk that
is accessible to QMF, when QMF starts. If QMF is being started in program
segment mode, you must create two relocatable module files from the existing
exit text files, ARIUXDT and ARIUXTM. To create the relocatable module files,
issue the following CMS commands:

LOAD ARIUXDT (RLDSAVE)
GENMOD ARIUXDT
LOAD ARIUXTM (RLDSAVE)
GENMOD ARIUXTM

Your edit routine can format data from these columns, just as it can format
data from columns of the other data types. The one difference is that the

Creating Your Own Edit Codes for QMF Forms

Chapter 12. Creating Your Own Edit Codes for QMF Forms 189

value to be formatted, which appears in the control block field ECSINP, is
always passed as a character string, whether the code to be processed is a U
code or a V code. The format of the string is described in Table 32.

Table 32. Formatting DATE, TIME, and TIMESTAMP data

Data type Form of the string

DATE data yyyy-mm-dd where:
yyyy Specifies the year. It is always a four-digit

number.
mm Specifies the month (01 for January, ... 12 for

December). It is always a two-digit number that
can contain a leading zero.

dd Specifies the day of the month. It is always a
two-digit number that can contain a leading
zero.

The dashes (-) represent true dashes.

For example, 1990-12-12 is the date December 12, 1990.

TIME data hh.mm.ss where:
hh Specifies the hour (based on a 24-hour clock,

from 00 to 23). It is always a two-digit number
that can contain a leading zero.

mm Specifies the minute. It is always a two-digit
number that can contain a leading zero.

ss Specifies the second. It is always a two-digit
number that can contain a leading zero.

The periods represent true periods.

For example, 13.08.36 is 1:08 P.M. and 36 seconds in the
notation commonly used in the United States.

TIMESTAMP data yyyy-mm-dd-hh.mm.ss.nnnnnn where:
yyyy-mm-dd

Specifies the date in the same way it does for
DATE data.

hh.mm.ss
Specifies the time of day in the same way it
does for TIME data.

nnnnnn
Specifies a six-digit number that extends the
count of seconds (ss) down to the nearest
microsecond.

For example, 1990-12-12-13.08.36.123456 is 1:08 P.M. and
36.123456 seconds on December 12, 1990, in the notation
commonly used in the United States.

For the data types available, see the ECSINTYP field in Table 33 on page 193.

Creating Your Own Edit Codes for QMF Forms

190 Installing and Managing QMF on VM

Calling Your Exit Routine to Format the Data

Figure 62 shows how QMF and your edit exit routine work together to format
data using the edit codes you define.

When you enter your own code in a column of FORM.MAIN or
FORM.COLUMNS, QMF passes certain characteristics of the data into the first
interface control block shown in Figure 62. These characteristics reside in
specific fields of the control block, which are discussed in “Fields of the
Interface Control Block” on page 193. QMF also passes into the input area the
data to be formatted and an output area that holds the formatted result.

IBM supplies three different versions of a sample edit exit routine. One
version is for assembler (named DSQUXDTA), one is for PL/I (named
DSQUXDTP), and the other is for COBOL (named DSQUXDTC). The sample
program supports two edit codes:
VSS Adds dashes to a social security number or a character string.
UDN Transforms a department number into its department name, using a

table internal to the program.

The sample program is commented so you can more easily see how a user
edit routine works. You can use the sample as a template for creating your
own program.

QMF supplies a user edit routine in the form of a relocatable module file and
a text file (both called DSQUEDIT), which are located on the QMF production
disk. Delete or rename the QMF-supplied module and text file DSQUEDIT
when you are ready to use your edit routine.

If the programming language you are using supports creation of a relocatable
module file, create a module file for the edit routine.

Note: The use of a relocatable module file facilitates user edit code
development because a module file on the user’s “A” disk can be tested
without renaming or deleting the QMF-supplied user edit routine from
the QMF production disk. This reduces the impact on other QMF users.

QMF
Form

SQL/DS
Data

QMF
Interface
Control
Block

QMF
Interface
Control
Block

User-
written
Edit
Exit
Routine

QMF
Report

Figure 62. How a user edit routine works with QMF

Creating Your Own Edit Codes for QMF Forms

Chapter 12. Creating Your Own Edit Codes for QMF Forms 191

Once you have written and assembled or compiled your edit routine, you
need to consider the method of making your routine available to QMF for
execution. The user edit routine can be executed in text or module format.
The use of a relocatable CMS module file is the preferred method of
generating a user edit routine.

When QMF is started, QMF attempts to load the edit routine as follows:
1. Issue CMS NUCXLOAD for DSQUEDIT.

NUCXLOAD loads a CMS module file that has relocation information
saved, or as a member of an OS load library.

2. Issue OS LOAD (SVC 8) for DSQUEDIT.
If use of NUCXLOAD is not successful, QMF then issues an OS LOAD
(SVC 8). OS LOAD loads a text file, a member of a TXTLIB, or a member
of an OS load library.

Different versions of the interface control block are used for assembler, PL/I,
and COBOL edit routines. However, the fields of the control block and the
input they contain are the same regardless of the programming language the
routine is written in. Figure 63 shows this general structure.

Figure 63. General program structure for edit routines

Creating Your Own Edit Codes for QMF Forms

192 Installing and Managing QMF on VM

Passing Information to and from the Exit Routine

To format the data returned from the database, QMF calls your edit exit
routine and passes information through fields of the interface control block.
Information is also passed to and from the exit routine using the input and
output areas, which contain the database data to be formatted and
information about where to put the formatted result.

The data to be formatted can be a column value, the result of a built-in
function, a defined column, a calculation, or a value represented by a variable
in a heading, a footing, or a final-summary line.

Upon receiving control for formatting, your edit routine takes the parameters
in the following list.
v The interface control block.
v The value of ECSINPT, the data from the input area to be formatted.
v The value of ECSRSLT, the output area containing the formatted result.

ECSRSLEN contains the amount of storage actually passed to this output
area on each call. The result cannot be column wrapped.

Important: Do not use more memory in the output area than is indicated in
the ECSRSLEN field, or results might be unpredictable.

ECSINPT, ECSRSLT, and ECSRSLEN are fields of the interface control block,
explained in Table 33.

Fields of the Interface Control Block
Use the fields of the interface control block to pass information to and from
your exit routine. Although there are separate interface control blocks that
work with assembler, PL/I, or COBOL, the fields of the interface control block
are standard regardless of the programming language your edit exit routine is
written in. These fields are shown in Table 33. Unless otherwise stated, each
field relates to all formatting calls.

These same fields appear in each sample program (one for each programming
language supported) shipped with QMF. You can include these field names in
your own source program. The QMF production disk contains the sample
programs.

Table 33. Fields of the QMF interface control block

Name Contents

ECSDECPT Contains the current decimal point symbol as determined by the DECOPT option of
PROFILE (period or comma).

ECSECODE Contains the user edit code.

Creating Your Own Edit Codes for QMF Forms

Chapter 12. Creating Your Own Edit Codes for QMF Forms 193

Table 33. Fields of the QMF interface control block (continued)

Name Contents

ECSERRET Contains a zero at the point of call. Set this to a nonzero return code to record an
error. Use one of the values in the following list for an error of the indicated type:

Number
Error

99101 Unrecognized edit code
99102 Improper input data type for edit code
99103 Invalid input value for item to be formatted
99104 Item to be formatted is too short
99105 Not enough room for result in ECSRSLT (result is too wide for the space

allotted)

Error codes listed (and their associated messages and help panels) are specific to the
error. For any other code, a general error message, with a general backup Help panel,
is displayed.

ECSFREQ Holds E for a formatting call, T for a termination call.

ECSINLEN Contains the length, in bytes, of the value to be formatted.

ECSINNUL Holds an N if the value to be formatted is null.

ECSINPRC Contains the precision of the value to be formatted. Applies only to U-type codes
when the data type is DECIMAL, or to V-type codes when the character string to be
formatted was derived from numeric data.

ECSINSCL Contains the scale of the value to be formatted. Applies only to U-type codes when
the data type is DECIMAL, or to V-type codes when the character string to be
formatted was derived from numeric data.

ECSINSGN Holds the sign of a converted numeric value (blank or -). Applies only to V-codes
when the character string to be formatted was derived from numeric data.

Creating Your Own Edit Codes for QMF Forms

194 Installing and Managing QMF on VM

Table 33. Fields of the QMF interface control block (continued)

Name Contents

ECSINTYP Indicates, in database terms, how the value to be formatted is represented. Applies to
edit codes of every type. Values can be:
384 DATE data type
388 TIME data type
392 TIMESTAMP data type
448 VARCHAR data type
452 CHAR data type
456 LONG VARCHAR data type
464 VARGRAPHIC data type
468 GRAPHIC data type
472 LONG VARGRAPHIC data type
480 FLOAT data type
484 DECIMAL data type
496 INTEGER data type
500 SMALLINT data type
940 Extended floating point data type
The extended floating point data type is not supported by the database (or by
COBOL); it is limited to functions such as AVERAGE and STDEV. Extended floating
point values are precise to more than 30 digits.

ECSNAME Contains the name of the control block, which is DXEECS. Serves as an eye catcher in
storage dumps.

ECSRQMF Set this to T to request a termination call.

ECSRSLEN Contains the length of the output area, in bytes.

ECSTHSEP Contains the thousands separator as determined by the DECOPT option of PROFILE
(blank or a comma).

ECSUSERS A 256-byte scratchpad area where your exit routine can record information that
persists from one call to the next. On the first call after the edit routine is loaded, this
field contains binary zeros.

Fields That Characterize the Input Area

Restriction: This section does not apply to values from DATE, TIME, and
TIMESTAMP columns. For information on values for those types,
see “Handling DATE, TIME, and TIMESTAMP Data Types” on
page 189.

During a session, the subprogram DSQUXDT might need to service many
different edit codes. If it does, consider making your routine an executive
routine, which does nothing but analyze the edit codes passed to it and then
invokes an appropriate routine to do the actual formatting. The design makes
the source code easier to read and easier to modify when new user edit codes
are devised.

Creating Your Own Edit Codes for QMF Forms

Chapter 12. Creating Your Own Edit Codes for QMF Forms 195

In addition to the fields in the interface control block, your edit exit routine
receives, in the input field, information about the data to be formatted.

The value to be formatted appears in the field ECSINPT. How it is
represented depends on two factors:
v Whether the value to be formatted is numeric or character, as determined

by the ECSINTYP field.
v Whether the edit code is a U code or a V code, as determined by the

ECSECODE field.

How U-Type Edit Codes are Represented in the Input Area
Numeric values are represented in internal database format. For example, if
ECSINTYP is equal to 496 (INTEGER data type), the value is a full-word
integer. If it is 484 (DECIMAL data type), the value is in decimal format. Scale
and precision in the decimal format are in the ECSINSCL and ECSINPRC
fields. Length (in bytes) is in ECSINLEN.

Numeric data from defined columns, calculations, and summary values is
returned as extended floating point values, a data type not explicitly
supported by DB2 for VM. The length (16 bytes) is in the ECSINLEN field.

Character or graphic values are represented in their internal, character-string
format, with one exception: for variable-length strings (for example,
VARCHAR data type), only the string itself appears and not the preceding
length field. For all character values, the string length (in bytes) is in the
ECSINLEN field.

How V-Type Edit Codes are Represented in the Input Area
Numeric values are represented by a numeric character string. The length is
contained in the field ECSINLEN. Leading or trailing zeros fill out the string
if required.

The string contains no sign or decimal point. Instead, the sign appears as a
blank or a minus sign in the field ECSINSGN, and the position of the decimal
point is in the field ECSINSCL. For example, suppose that the string in
ECSINPT is 12345, that ECSINSGN is blank, and that ECSINSCL is equal to 3;
then the value represented is +12.345.

Character or graphic values are represented in their character string. For all
character values, the string length (in bytes) is in the ECSINLEN field.

Fields That Characterize the Output Area
The ECSRSLT field receives the formatted output in the form of a character
string that completely fills the field. Upon input, this field is always blank.
The length of this field (in bytes) is in ECSRSLEN. QMF blanks out ECSRSLT
before calling the edit routine.

Creating Your Own Edit Codes for QMF Forms

196 Installing and Managing QMF on VM

Passing Control to the Exit Routine When QMF Terminates

Use the ECSRQMF field of the control block to indicate that you want your
exit routine to receive control whenever QMF terminates. The ECSRQMF
value should be updated the first time the edit exit routine receives control.

When your edit exit routine receives control upon termination of QMF, the
parameters passed to the routine are the control block, the input area, and the
output area. Only the control block contains usable information.

Writing an Edit Routine in High-Level Assembler (HLASM) or Assembler

The QMF edit exit interface for assembler consists of these parts:
v Interface control block, which is shipped with QMF as DXEECSA
v Control program, which is shipped with QMF as DSQUXIA
v Your edit exit program, which is named DSQUXDT

Figure 64 shows the program structure of an assembler edit exit routine for
CMS.
The IBM-supplied sample edit program for assembler, DSQUXDTA, is located

in the QMF production disk. The sample program is commented so that you
can modify it to suit your needs. If you plan to use this example program,
copy it to your program library and change its name to DSQUXDT. Near the
bottom of this file is a COPY statement for DXEECSA, which is a member of
DSQUSERE MACLIB. It is DXEECSA that defines the input fields, giving
them the names we are using in this chapter.

Figure 64. Program structure of an assembler edit exit routine

Creating Your Own Edit Codes for QMF Forms

Chapter 12. Creating Your Own Edit Codes for QMF Forms 197

How an Assembler Edit Routine Interacts with CMS
Linkage obeys the standard IBM calling conventions:
v The address of a parameter list is passed in register 1, as shown in

Figure 65.

v The parameter list contains three 4-byte addresses. The addresses point to:
– The control block
– The value to be formatted
– The storage reserved for the formatted results

v Registers 13 and 14 point to the caller’s save area and the return point.

In the example program, the addresses are placed in registers 8, 9, and 10
through the statements:
ECSPTR EQU R10

L ECSPTR,0(R1)
USING DXEECS,ECSPTR

ECSINPTP EQU R9
L ECSINPTP,4(R1)
USING ECSINPT,ECSINPTP

ECSRSLTP EQU R8
L ECSRSLTP,8(R1)
USING ECSRSLT,ECSRSLTP

The USING statements refer to the DSECTs defined in DXEECSA. These
define the three parameters and their input-field components (see Figure 66 on
page 200).

It follows that registers 10, 9, and 8 point, respectively, at the control block,
the value to be formatted, and the storage reserved for the formatted results.

Return control to QMF using the standard convention by restoring the
registers to their value at the time of the call, and returning to the address in
register 14.

Figure 65. Registers of the program interface in assembler

Creating Your Own Edit Codes for QMF Forms

198 Installing and Managing QMF on VM

How an Assembler Edit Routine Interacts with QMF
The interface control block between QMF and the user edit interface
DSQUXDT is DXEECS. It contains the user’s edit code, identifies the source
data and the target location for the edited result, and provides a scratchpad
area for the user edit routine’s use. This control block is persistent between
calls to the user edit routine. The scratchpad area is not modified by QMF
after the initial invocation of the exit routine.

Figure 66 on page 200 shows the DXEECS control block for assembler.

Creating Your Own Edit Codes for QMF Forms

Chapter 12. Creating Your Own Edit Codes for QMF Forms 199

*** 00001000
* * 00002000
* CONTROL BLOCK NAME: DXEECS (ASSEMBLER VERSION) * 00003000
* * 00004000
* FUNCTION: * 00005000
* * 00006000
* THIS IS THE INTERFACE CONTROL BLOCK BETWEEN QMF AND * 00007000
* THE USER EDITING INTERFACE, DSQUEDIT (TSO/CMS), OR * 00008000
* DSQUECIC (CICS). * 00009000
* * 00010000
* IT CONTAINS THE USER'S EDIT CODE, IDENTIFIES THE SOURCE * 00011000
* DATA AND THE TARGET LOCATION FOR THE EDITED RESULT * 00012000
* AND PROVIDES A SCRATCHPAD AREA FOR THE USER EDIT * 00013000
* ROUTINE'S USE. * 00014000
* * 00015000
* THIS CONTROL BLOCK IS PERSISTENT BETWEEN CALLS TO THE * 00016000
* USER EDIT ROUTINE. * 00017000
* * 00018000
* THE SCRATCHPAD AREA WILL NOT BE MODIFIED BY QMF AFTER * 00019000
* THE INITIAL INVOCATION OF THE EXIT ROUTINE. * 00020000
* * 00021000
* * 00022000
* STATUS: VERSION 7 RELEASE 1 LEVEL 0 * 00023000
* * 00024000
* INNER CONTROL BLOCKS: NONE * 00025000
* * 00026000
* CHANGE ACTIVITY: * 00027000
* * 00028000
* CHANGE DATE: * 00029000
* * 00030000
*** 00031000
* 00032000
DXEECS DSECT 00033000
ECSNAME DS CL8 -- CONTROL BLOCK IDENTIFICATION 00034000

SPACE 00035000
ECSEDCTL DS XL40 -- EDIT CONTROL 00036000

ORG ECSEDCTL 00037000
ECSFREQ DS CL1 ----- FUNCTION REQUEST 00038000
ECSFEDIT EQU C'E' -------- EDIT FUNCTION 00039000
ECSFTERM EQU C'T' -------- TERMINATE FUNCTION 00040000
* (TO FREE RESOURCES... QMF 00041000
* WILL CALL THE USER EDIT 00042000
* ROUTINE FOR THIS FUNCTION 00043000
* ONLY IF THE USER EDIT ROUTINE 00044000
* HAS PREVIOUSLY REQUESTED IT. 00045000
* SEE ECSRQMF BELOW.) 00046000
ECSPAD10 DS CL3 ----- RESERVED FIELD 00047000
ECSECODE DS CL5 ----- EDIT CODE FROM FORM OBJECT 00048000

Figure 66. User edit routine field definitions for assembler DXEECS control block (Part 1 of 3)

Creating Your Own Edit Codes for QMF Forms

200 Installing and Managing QMF on VM

ECSPAD20 DS CL3 ----- RESERVED FIELD 00049000
ECSDECPT DS CL1 ----- SYMBOL FOR DECIMAL POINT 00050000
* (AS DEFINED BY DECIMAL OPTION IN 00051000
* CURRENT PROFILE OBJECT 00052000
ECSTHSEP DS CL1 ----- SYMBOL FOR THOUSANDS SEPARATOR 00053000
* (AS DEFINED BY DECIMAL OPTION IN 00054000
* CURRENT PROFILE OBJECT 00055000
ECSPAD30 DS CL6 ----- RESERVED FIELD 00056000
ECSQMF DS CL20 ----- AREA RESERVED FOR QMF'S USE 00057000

SPACE 00058000
ECSINDTA DS XL16 -- DESCRIPTION OF THE INPUT DATA 00059000

ORG ECSINDTA 00060000
ECSINTYP DS F ----- DATA TYPE OF THE INPUT AS IT 00061000
* EXISTS IN THE DATA BASE. 00062000
ECSFLT EQU 480 ------- FLOATING POINT DATA TYPE CODE 00063000
ECSDEC EQU 484 ------- DECIMAL DATA TYPE CODE 00064000
ECSINT EQU 496 ------- INTEGER DATA TYPE CODE 00065000
ECSSINT EQU 500 ------- SMALL INTEGER DATA TYPE CODE 00066000
ECSVCHR EQU 448 ------- VARCHAR DATA TYPE CODE 00067000
ECSFCHR EQU 452 ------- (FIXED) CHARACTER DATA TYPE CODE 00068000
ECSLCHR EQU 456 ------- LONG VARCHAR DATA TYPE CODE 00069000
ECSVG EQU 464 ------- VARGRAPHIC DATA TYPE CODE 00070000
ECSFG EQU 468 ------- (FIXED) GRAPHIC DATA TYPE CODE 00071000
ECSLG EQU 472 ------- LONG VARGRAPHIC DATA TYPE CODE 00072000
ECSDATE EQU 384 ------- DATE DATA TYPE CODE 00073000
ECSTIME EQU 388 ------- TIME DATA TYPE CODE 00074000
ECSTS EQU 392 ------- TIMESTAMP DATA TYPE CODE 00075000
ECSFLTX EQU 940 ------- EXTENDED FLOATING PT CODE 00076000
* 00077000
ECSINLEN DS F ----- LENGTH OF INPUT DATA 00078000
ECSINPRC DS H ----- PRECISION OF INPUT DATA IF IT IS 00079000
* DECIMAL DATA TYPE (U-TYPE EDIT CODE) 00080000
* OR IF IT WAS ANY NUMERIC DATA TYPE 00081000
* (V-TYPE EDIT CODE)... 00082000
* ZERO OTHERWISE 00083000
ECSINSCL DS H ----- SCALE OF INPUT DATA IF IT IS 00084000
* DECIMAL DATA TYPE (U-TYPE EDIT CODE) 00085000
* OR IF IT WAS ANY NUMERIC DATA TYPE 00086000
* (V-TYPE EDIT CODE)... 00087000
* ZERO OTHERWISE 00088000
ECSINSGN DS CL1 ----- SIGN OF CONVERTED NUMERIC DATA 00089000
* (V-TYPE EDIT CODE ONLY)... 00090000
ECSPLUS EQU C' ' -------- POSITIVE SIGN 00091000
ECSMINUS EQU C'-' -------- NEGATIVE SIGN 00092000
* 00093000
ECSINNUL DS CL1 ----- NULL INPUT DATA INDICATOR 00094000
ECSNULL EQU C'N' -------- INPUT DATA IS NULL 00095000
* 00096000

Figure 66. User edit routine field definitions for assembler DXEECS control block (Part 2 of 3)

Creating Your Own Edit Codes for QMF Forms

Chapter 12. Creating Your Own Edit Codes for QMF Forms 201

Assembling Your Program
Before you assemble your program, ensure that you can access the
IBM-supplied control block DXEECSA, which is located in the QMF library
“DSQUSERE MACLIB” on the QMF production disk. You need to access the
QMF production disk and issue the CMS command GLOBAL MACLIB for the
QMF macro library. For example:
GLOBAL MACLIB DSQUSERE

Assemble your edit program, DSQUXDT, using HLASM or the assembler
supplied with CMS.

ECSPAD40 DS CL10 ----- RESERVED FIELD 00097000
SPACE 00098000

ECSRSDTA DS XL16 -- DESCRIPTION OF THE RESULT BUFFER 00099000
ORG ECSRSDTA 00100000

ECSRSLEN DS F ----- LENGTH OF RESULT AREA 00101000
* (EQUIVALENT TO COLUMN WIDTH IN THE 00102000
* FORM OBJECT 00103000
ECSPAD50 DS CL12 ----- RESERVED FIELD 00104000

SPACE 00105000
ECSUCTL DS XL16 -- USER CONTROL AREA 00106000

ORG ECSUCTL 00107000
ECSERRET DS F ----- EDIT ROUTINE ERROR RETURN CODE 00108000
ECSERR01 EQU 99101 -------- UNRECOGNIZED EDIT CODE 00109000
ECSERR02 EQU 99102 -------- IMPROPER INPUT DATA TYPE 00110000
ECSERR03 EQU 99103 -------- INVALID INPUT DATA VALUE 00111000
ECSERR04 EQU 99104 -------- INPUT DATA LENGTH IS TOO SHORT 00112000
ECSERR05 EQU 99105 -------- RESULT BUFF LENGTH IS TOO SHORT 00113000
* 00114000
ECSRQMF DS CL1 ----- REQUEST FOR QMF 00115000
ECSRTERM EQU C'T' -------- REQUEST INVOCATION FOR 00116000
* TERMINATION FUNCTION 00117000
* 00118000
ECSPAD60 DS CL11 ----- RESERVED FIELD 00119000

SPACE 00120000
ECSUSERS DS CL256 -- USER SCRATCH PAD AREA 00121000

SPACE 2 00122000
ECSINPT DSECT -- EDIT ROUTINE INPUT DATA 00123000
ECSINPTC DS CL32767 ----- CHARACTER STRING 00124000

ORG ECSINPTC 00125000
ECSINSIN DS H ----- SMALL INTEGER 00126000

ORG ECSINPTC 00127000
ECSININT DS F ----- INTEGER 00128000

ORG ECSINPTC 00129000
ECSINFLT DS D ----- FLOATING POINT 00130000

SPACE 2 00131000
ECSRSLT DSECT -- EDIT ROUTINE RESULT BUFFER 00132000
ECSRSLTC DS CL32767 ----- CHARACTER STRING 00133000

Figure 66. User edit routine field definitions for assembler DXEECS control block (Part 3 of 3)

Creating Your Own Edit Codes for QMF Forms

202 Installing and Managing QMF on VM

Generating Your Program
Before you create the DSQUEDIT module file to generate your program,
ensure that you can access the IBM-supplied control module (DSQUXIA).
DSQUXIA is located on the QMF production disk. You need to access this
disk prior to creating the module file.

To create the DSQUEDIT module file, use the CMS LOAD and GENMOD
commands as follows:
1. Load the text files that make up the DSQUEDIT module.

The DSQUEDIT module must be relocatable. To be relocatable, the module
must be loaded with RLD entries. You do this by specifying the RLDSAVE
option on the CMS LOAD command. The entry point to the DSQUEDIT
module must be DSQUXIA. Issue the following CMS LOAD command:

LOAD DSQUXIA DSQUXDT (RLDSAVE RESET DSQUXIA)

You can run your edit routine in either 24-bit or 31-bit addressing mode.
QMF manages address switching as required. You can specify 31-bit
addressing on the CMS LOAD command. For example:

LOAD DSQUXIA DSQUXDT (RLDSAVE RESET DSQUXIA AMODE 31 RMODE ANY)

2. Generate the DSQUEDIT module.
Issue the CMS GENMOD command to generate the DSQUEDIT module
from the text files just loaded by the CMS LOAD command:

GENMOD DSQUEDIT (AMODE 31 RMODE ANY)

Once the user edit routine is tested it can be placed on the QMF production
disk or user disk that is available when you start QMF.

Writing an Edit Routine in PL/I without Language Environment (LE)

The QMF edit exit interface for PL/I consists of these parts:
v A control program, which is shipped with QMF as DSQUXIP
v A control module, which is shipped with QMF as DSQUPLI
v A control block, which is shipped with QMF as DXEECSP
v Your edit exit program, which is named DSQUXDT

Figure 67 on page 204 shows the program structure of a PL/I edit exit routine
for CMS.

Creating Your Own Edit Codes for QMF Forms

Chapter 12. Creating Your Own Edit Codes for QMF Forms 203

The IBM-supplied sample edit program for PL/I, DSQUXDTP, is located on
the QMF production disk. The sample program is commented so that you can
modify it to suit your needs. If you plan to use the sample program, copy it
to your program library and change its name to DSQUXDT. If you build your
own routine instead, note that within the source is an %INCLUDE statement for
DXEECSP, which is a member of DSQUSERE MACLIB. It is DXEECSP that
defines the input fields, giving them the names we are using in this chapter. It
is best to include this in your own edit routine.

How a PL/I Edit Routine Interacts with QMF
Linkage begins with the PROCEDURE statement:
DSQUXDT:

PROCEDURE(DXEECSF,ECSINPTF,ECSRSLTF) ...;

Passed through this statement are the control block (DXEECSF), the value to
be formatted (ECSINPTF), and the storage set aside for the formatted result
(ECSRSLTF). At this point, you can expect to find declarations defining
DXEECSF as a structure, and defining ECSINPTF and ECSRSLTF as character
strings. Instead, you find the statement:
DECLARE (DXEECSF,

ECSINPTF,
ECSRSLTF)

BINARY FIXED, ...

which defines the three parameters as fullword integers. This is because the
calling program itself, in order to avoid the overhead of locators and

Figure 67. Program structure of a PL/I edit exit routine

Creating Your Own Edit Codes for QMF Forms

204 Installing and Managing QMF on VM

descriptors, represents the parameters in its call to DSQUXDT as fullword
integers. QMF doesn’t know in what language the calling program is written,
so the parameters are passed in the same way as they are for assembler.

In the sample program, the actual parameter descriptions appear in the
previously mentioned block of definitions comprising DXEECSP (Figure 68).
The declaration for the control block begins with:
DECLARE

1 DXEECSP BASED(ECSPTR)...

The statements defining the other two parameters are:
DECLARE

ECSINPT CHARACTER(32767)
BASED(ECSINPTP), ... and

DECLARE
ECSRSLT CHARACTER(32767)

BASED(ECSRSLTP);

Thus, the parameters are defined as based storage. To complete the linkage,
the pointers are set to the appropriate addresses at the start of the procedural
logic section:
ECSPTR = ADDR(DXEECSF);
ECSINPTP = ADDR(ECSINPTF);
ECSRSLTP = ADDR(ECSRSLTF);

The interface control block between QMF and the user edit interface
DSQUEDIT is DXEECS. It contains the user’s edit code, identifies the source
data and the target location for the edited result, and provides a scratchpad
area for the user edit routine’s use. This control block is persistent between
calls to the user edit routine. The scratchpad area is not modified by QMF
after the initial invocation of the exit routine.

Return control to QMF using a standard RETURN statement.

Figure 68 on page 206 shows the DXEECS control block for PL/I.

Creating Your Own Edit Codes for QMF Forms

Chapter 12. Creating Your Own Edit Codes for QMF Forms 205

/**/ 00001000
/* */ 00002000
/* CONTROL BLOCK NAME: DXEECS (PLI VERSION) */ 00003000
/* */ 00004000
/* FUNCTION: */ 00005000
/* */ 00006000
/* THIS IS THE INTERFACE CONTROL BLOCK BETWEEN QMF AND */ 00007000
/* THE USER EDITING ROUTINE INTERFACE, DSQUEDIT (TSO/CMS). */ 00008000
/* OR DSQUECIC (CICS). */ 00009000
/* */ 00010000
/* IT CONTAINS THE USER'S EDIT CODE, IDENTIFIES THE SOURCE */ 00011000
/* DATA AND THE TARGET LOCATION FOR THE EDITED RESULT */ 00012000
/* AND PROVIDES A SCRATCHPAD AREA FOR THE USER EDIT */ 00013000
/* ROUTINE'S USE. */ 00014000
/* */ 00015000
/* THIS CONTROL BLOCK IS PERSISTENT BETWEEN CALLS TO THE */ 00016000
/* USER EDIT ROUTINE. */ 00017000
/* */ 00018000
/* THE SCRATCHPAD AREA WILL NOT BE MODIFIED BY QMF AFTER */ 00019000
/* THE INITIAL INVOCATION OF THE EXIT ROUTINE. */ 00020000
/* */ 00021000
/* */ 00022000
/* STATUS: VERSION 7 RELEASE 1 LEVEL 0 */ 00023000
/* */ 00024000
/* INNER CONTROL BLOCKS: NONE */ 00025000
/* */ 00026000
/* CHANGE ACTIVITY: */ 00027000
/* */ 00028000
/* CHANGE DATE: */ 00029000
/* */ 00030000
/**/ 00031000

00032000
DECLARE 00033000

1 DXEECS BASED(ECSPTR), /* EDIT ROUTINE INFORMATION */ 00034000
3 ECSNAME CHARACTER(8), /* CONTROL BLOCK IDENTIFICATION */ 00035000

00036000
3 ECSEDCTL, /* EDIT CONTROL */ 00037000

5 ECSFREQ CHARACTER(1), /* FUNCTION REQUEST 00038000
(CODES ARE DEFINED BELOW) */ 00039000

5 ECSPAD10 CHARACTER(3), /* RESERVED FIELD */ 00040000
5 ECSECODE CHARACTER(5), /* EDIT CODE FROM FORM OBJECT */ 00041000
5 ECSPAD20 CHARACTER(3), /* RESERVED FIELD */ 00042000
5 ECSDECPT CHARACTER(1), /* SYMBOL FOR DECIMAL POINT 00043000

(AS DEFINED BY DECIMAL OPTION 00044000
IN CURRENT PROFILE OBJECT) */ 00045000

5 ECSTHSEP CHARACTER(1), /* SYMBOL FOR THOUSANDS SEPARATOR 00046000
(AS DEFINED BY DECIMAL OPTION 00047000

Figure 68. User edit routine field definitions for PL/I DXEECS control block (Part 1 of 4)

Creating Your Own Edit Codes for QMF Forms

206 Installing and Managing QMF on VM

IN CURRENT PROFILE OBJECT) */ 00048000
5 ECSPAD30 CHARACTER(6), /* RESERVED FIELD */ 00049000
5 ECSQMF CHARACTER(20), /* AREA RESERVED FOR QMF'S USE */ 00050000

00051000
3 ECSINDTA, /* DESCRIPTION OF THE INPUT DATA*/ 00052000

5 ECSINTYP FIXED BINARY(31), /* DATA TYPE OF THE INPUT AS 00053000
IT EXISTS IN THE DATA BASE 00054000
(SEE CODES DEFINED BELOW) */ 00055000

5 ECSINLEN FIXED BINARY(31), /* LENGTH OF INPUT DATA */ 00056000
5 ECSINPRC FIXED BINARY(15), /* PRECISION OF INPUT DATA IF 00057000

IS IT DECIMAL DATA TYPE 00058000
(U-TYPE EDIT CODE) OR 00059000
IF IT WAS ANY NUMERIC 00060000
DATA TYPE (V-TYPE EDIT 00061000
CODE)... 00062000
ZERO OTHERWISE */ 00063000

5 ECSINSCL FIXED BINARY(15), /* SCALE OF INPUT DATA IF 00064000
IS IT DECIMAL DATA TYPE 00065000
(U-TYPE EDIT CODE) OR 00066000
IF IT WAS ANY NUMERIC 00067000
DATA TYPE (V-TYPE EDIT 00068000
CODE)... 00069000
ZERO OTHERWISE */ 00070000

5 ECSINSGN CHARACTER(1), /* SIGN (V-TYPE EDIT ONLY) 00071000
SEE VALUES DEFINED 00072000
BELOW */ 00073000

5 ECSINNUL CHARACTER(1), /* NULL INPUT DATA INDICATOR 00074000
SEE VALUE DEFINED 00075000
BELOW */ 00076000

5 ECSPAD40 CHARACTER(10), /* RESERVED FIELD */ 00077000
3 ECSRSDTA, /* DESCRIPTION OF THE RESULT 00078000

BUFFER */ 00079000
5 ECSRSLEN FIXED BINARY(31), /* LENGTH (EQUIVALENT TO 00080000

COLUMN WIDTH IN THE 00081000
FORM OBJECT) */ 00082000

5 ECSPAD50 CHARACTER(12), /* RESERVED FIELD */ 00083000
00084000

3 ECSUCTL, /* USER CONTROL AREA */ 00085000
5 ECSERRET FIXED BINARY(31), /* EDIT ROUTINE ERROR RETURN CODE 00086000

(SEE CODES DEFINED BELOW) */ 00087000
5 ECSRQMF CHARACTER(1), /* REQUEST FOR QMF 00088000

(SEE CODE(S) DEFINED BELOW */ 00089000
5 ECSPAD60 CHARACTER(11), /* RESERVED FIELD */ 00090000

00091000
3 ECSUSERS CHARACTER(256); /* USER SCRATCH PAD AREA */ 00092000

Figure 68. User edit routine field definitions for PL/I DXEECS control block (Part 2 of 4)

Creating Your Own Edit Codes for QMF Forms

Chapter 12. Creating Your Own Edit Codes for QMF Forms 207

00093000
DECLARE /* INPUT DATA PARAMETER... */ 00094000

ECSINPT CHARACTER(32767) /* CHARACTER INPUT DATA */ 00095000
BASED(ECSINPTP), 00096000

ECSINSIN FIXED BINARY(15) /* SMALL INTEGER INPUT DATA */ 00097000
BASED(ECSINPTP), 00098000

ECSININT FIXED BINARY(31) /* INTEGER INPUT DATA */ 00099000
BASED(ECSINPTP), 00100000

ECSINFLT FLOAT BINARY(53) /* FLOATING POINT INPUT DATA */ 00101000
BASED(ECSINPTP); 00102000

00103000
DECLARE /* RESULT BUFFER PARAMETER... */ 00104000

ECSRSLT CHARACTER(32767) /* EDIT ROUTINE RESULT BUFFER */ 00105000
BASED(ECSRSLTP); 00106000

00107000
DECLARE 00108000
(ECSPTR, /* MUST CONTAIN DXEECS ADDRESS */ 00109000
ECSINPTP, /* MUST CONTAIN ECSINPT ADDRESS */ 00110000
ECSRSLTP /* MUST CONTAIN ECSRSLT ADDRESS */ 00111000

) POINTER; 00112000
00113000
00114000

DECLARE (/* DATA TYPE CONSTANTS: 00115000
(SEE ECSINTYP ABOVE) */ 00116000

ECSINT INITIAL(496), /* INTEGER */ 00117000
ECSSINT INITIAL(500), /* SMALL INTEGER */ 00118000
ECSFLT INITIAL(480), /* FLOATING POINT */ 00119000
ECSVCHR INITIAL(448), /* VARYING CHARACTER */ 00120000
ECSFCHR INITIAL(452), /* FIXED CHARACTER */ 00121000
ECSLCHR INITIAL(456), /* VERY LONG CHARACTER */ 00122000
ECSVG INITIAL(464), /* VARYING GRAPHIC */ 00123000
ECSFG INITIAL(468), /* FIXED GRAPHIC */ 00124000
ECSLG INITIAL(472), /* VERY LONG GRAPHIC */ 00125000
ECSDEC INITIAL(484), /* DECIMAL */ 00126000
ECSDATE INITIAL(384), /* DATE */ 00127000
ECSTIME INITIAL(388), /* TIME */ 00128000
ECSTS INITIAL(392), /* TIMESTAMP */ 00129000
ECSFLTX INITIAL(940) /* EXTENDED FLOATING POINT */ 00130000

) FIXED BINARY(31) STATIC; 00131000
00132000
00133000

DECLARE (/* FUNCTION REQUEST CONSTANTS 00134000

Figure 68. User edit routine field definitions for PL/I DXEECS control block (Part 3 of 4)

Creating Your Own Edit Codes for QMF Forms

208 Installing and Managing QMF on VM

Compiling Your Program
Before compiling your program, ensure that you can access the IBM-supplied
control block DXEECSP. DXEECSP is located in the QMF library DSQUSERE

(SEE ECSFREQ ABOVE) */ 00135000
ECSFEDIT INITIAL('E'), /* EDIT */ 00136000
ECSFTERM INITIAL('T') /* TERMINATE 00137000

(TO FREE RESOURCES... 00138000
QMF WILL CALL THE USER 00139000
EDIT ROUTINE FOR THIS 00140000
FUNCTION ONLY IF THE 00141000
USER EDIT ROUTINE HAS 00142000
PREVIOUSLY REQUESTED 00143000
IT.) */ 00144000

) CHARACTER(1) STATIC; 00145000
00146000
00147000

DECLARE (/* PLUS/MINUS SIGN CONSTANTS 00148000
(SEE ECSINSGN ABOVE) */ 00149000

ECSPLUS INITIAL(' '), /* INPUT DATA IS POSITIVE */ 00150000
ECSMINUS INITIAL('-') /* INPUT DATA IS NEGATIVE */ 00151000

) CHARACTER(1) STATIC; 00152000
00153000
00154000

DECLARE (/* NULL INDICATION CONSTANT 00155000
(SEE ECSINNUL ABOVE) */ 00156000

ECSNULL INITIAL('N') /* INPUT DATA IS NULL */ 00157000
) CHARACTER(1) STATIC; 00158000

00159000
00160000

DECLARE (/* REQUEST-FOR-QMF CONSTANTS 00161000
(SEE ECSRQMF ABOVE) */ 00162000

ECSRTERM INITIAL('T') /* REQUEST QMF TO INVOKE 00163000
USER EDIT ROUTINE FOR 00164000
TERMINATION FUNCTION */ 00165000

) CHARACTER(1) STATIC; 00166000
00167000
00168000

DECLARE (/* QMF-DEFINED ERROR RETURN CODE 00169000
CONSTANTS 00170000
(SEE ECSERRET ABOVE) */ 00171000

ECSERR01 INITIAL(99101), /* UNRECOGNIZED EDIT CODE */ 00172000
ECSERR02 INITIAL(99102), /* IMPROPER INPUT DATA TYPE FOR */ 00173000

/* REQUESTED EDIT EDIT CODE */ 00174000
ECSERR03 INITIAL(99103), /* INVALID INPUT DATA VALUE */ 00175000

/* RECEIVED */ 00176000
ECSERR04 INITIAL(99104), /* LENGTH OF INPUT DATA IS TOO */ 00177000

/* SHORT */ 00178000
ECSERR05 INITIAL(99105) /* LENGTH OF RESULT BUFFER IS */ 00179000

/* TOO SHORT */ 00180000
) FIXED BINARY(31) STATIC; 00181000

Figure 68. User edit routine field definitions for PL/I DXEECS control block (Part 4 of 4)

Creating Your Own Edit Codes for QMF Forms

Chapter 12. Creating Your Own Edit Codes for QMF Forms 209

MACLIB on the QMF production disk. You need to access the QMF and PL/I
production disks. You also need to make the macro libraries available to the
PL/I compiler by issuing a CMS GLOBAL MACLIB command. For example:
GLOBAL MACLIB DSQUSERE PLICOMP

To compile your edit program, DSQUXDT, your edit program must not use
the procedure option MAIN.

Compile without including the STAE or SPIE macros. To do this, add the
following statement to your PL/I program:

DCL PLIXOPT CHAR(15) VAR INIT('NOSTAE,NOSPIE') STATIC EXTERNAL;

If you’re using PL/I Version 2: Use the PL/I SYSTEM(MVS) compile-time
option. QMF expects the MVS style of
parameter list when running in CMS.

Compile the IBM-supplied program, DSQUPLI, using the same options as
used for DSQUXDT, except that DSQUPLI specifies the procedure option
MAIN.

Creating Your DSQUEDIT Module File in PL/I
Before you can create your DSQUEDIT module file, ensure that you can
access the IBM-supplied control module (DSQUXIP). DSQUXIP is located on
the QMF production disk. You need to access this disk prior to creating the
module file.

To create the DSQUEDIT module file, use the CMS LOAD and GENMOD
commands:
1. Load the text files that make up the DSQUEDIT module.

The DSQUEDIT module must be relocatable. To be relocatable, the module
must be loaded with RLD entries. You do this by specifying the RLDSAVE
option on the CMS LOAD command. The entry point to the DSQUEDIT
module must be DSQUXIP. PL/I text libraries must be made available by
issuing a CMS GLOBAL TXTLIB command. Issue the following CMS
commands:

GLOBAL TXTLIB IBMLIB PLILIB
LOAD DSQUXIP DSQUXDT DSQUPLI (RLDSAVE RESET DSQUXIP)

You can run your edit routine in either 24-bit or 31-bit addressing mode.
QMF manages address switching as required. You can specify 31-bit
addressing on the CMS LOAD command. For example:

GLOBAL TXTLIB IBMLIB PLILIB
LOAD DSQUXIP DSQUXDT DSQUPLI

(RLDSAVE RESET DSQUXIP AMODE 31 RMODE ANY)

2. Generate the DSQUEDIT module.

Creating Your Own Edit Codes for QMF Forms

210 Installing and Managing QMF on VM

Issue the CMS GENMOD command to generate the DSQUEDIT module
from the text files just loaded by the CMS LOAD command:

GENMOD DSQUEDIT

Once the user edit routine is tested, it can replace the DSQUEDIT module file
on the QMF production disk or user disk that is available when starting QMF.
In order to use the PL/I user edit routine, the PL/I production disk and
run-time libraries need to be available when you start QMF.

When running under ISPF and starting QMF using the PGM form of
ISPSTART, the PL/I run-time load libraries must be specified using a CMS
FILEDEF command for ISPLLIB. For guidelines and considerations about PL/I
programs running in ISPF, see ISPF for VM Dialog Management Services and
Examples

When running without ISPF, or running under ISPF and starting QMF using
the program segment form of ISPSTART, the PL/I run-time load libraries
must be specified using a CMS GLOBAL LOADLIB command.

For detailed information on how to compile and make run-time libraries
available for PL/I, see PL/I Programming Guide

Writing an Edit Routine in PL/I with Language Environment (LE)

The QMF edit exit interface for PL/Iin VM for LE consists of these parts:
v Interface control block, which is shipped with QMF as DXEECSP
v Control program, which is shipped with QMF as DSQUXILE
v Your edit exit program, which is named DSQUXDT
v LE Preinitialization Service program, which is named CEEPIPI

Figure 69 on page 212 shows the program structure of a PL/I edit exit routine
for CMS.

Creating Your Own Edit Codes for QMF Forms

Chapter 12. Creating Your Own Edit Codes for QMF Forms 211

Generating Your PL/I Program for LE
Before you can create your DSQUEDIT module file, ensure that you can
access the IBM-supplied module (DSQUXILE). DSQUXILE is located on the
QMF production disk. You need to access this disk prior to creating the
module file. To create the DSQUEDIT module file , use the CMS LOAD and
GENMOD commands as follows:
1. Load the text files that make up the DSQUEDIT module.

The DSQUEDIT module must be relocatable. To be relocatabale, the
module must be loaded with RLD entries. You do this by specifying the
RLDSAVE option on the CMS/LOAD command. The entry point to the
DSQUEDIT module must be DSQUXILE. LE text libraries must be made
available by issuing a CMS GLOBAL TXTLIB command. Issue the
following CMS command:
GLOBAL TXTLIB SCEELKED
LOAD DSQUXILE DSQUXDT (RLDSAVE RESET DSQUXILE

You can run your edit routine in either 24-bit or 31-bit addressing mode.
QMF manages address switching as required. You can specify 31-bit
addressing on the CMS LOAD command. For example:
GLOBAL TXTLIB SCEELKED
LOAD DSQUXILE DSQUXDT (RLDSAVE RESET DSQUXILE AMODE 31 RMODE ANY

2. Generate the DSQUEDIT module.

Figure 69. Program structure of a PL/I edit exit routine with LE

Creating Your Own Edit Codes for QMF Forms

212 Installing and Managing QMF on VM

Issue the CMS GENMOD command to generate the DSQUEDIT module
from the text files just loaded by the CMS LOAD command:
GENMOD DSQUEDIT

Writing an Edit Routine in COBOL without Language Environment (LE)

COBOL refers to VS COBOL II, COBOL/370, and IBM COBOL for OS/390
and VM unless otherwise stated.

The QMF edit exit interface for COBOL consists of these parts:
v Interface control block, which is supplied by IBM as DXEECSC
v Control program, which is supplied by IBM as DSQUXIC
v Control macro, which is supplied by IBM as IGZOPT
v Control module, which is supplied by IBM as IGZERRE
v Your edit exit program, which is named DSQUXDT

Figure 70 shows the structure of a COBOL edit exit routine in CMS.
The IBM-supplied sample edit exit program, DSQUXDTC, is commented so

that you can browse it online, print it, or modify it to suit your needs. If you
plan to use this program, copy it to your program library and change its
name to DSQUXDT. If you plan to write your own user edit routine, note that
this routine contains a COPY statement for DXEECSC, which is a member of
DSQUSERE MACLIB. It is DXEECSC that defines the input fields, giving

Figure 70. Program structure of a COBOL edit exit routine

Creating Your Own Edit Codes for QMF Forms

Chapter 12. Creating Your Own Edit Codes for QMF Forms 213

them the names we are using in this chapter. You can include DXEECSC in
your own user edit routine. A listing of the module appears in Figure 71 on
page 215.

How a COBOL Edit Routine Interacts with QMF
The following statement begins the mainline logic:
PROCEDURE DIVISION USING DXEECS, ECSINPT, ECSRSLT

In this example, DXEECS is the name of the control block, ECSINPT is the
name of the value to be formatted, and ECSRSLT is the name of the area
reserved for the formatted result. The fields within these parameters are
defined in DXEECSC.

The interface control block between QMF and the user edit interface
DSQUXDT is DXEECS. It contains the user’s edit code and provides a
scratchpad area for the user edit routine’s use. This control block is persistent
between calls to the user edit routine. The scratchpad area is not modified by
QMF after the initial invocation of the edit routine.

Return control to QMF with a GOBACK statement.

Figure 71 on page 215 shows the DXEECS control block for COBOL.

Creating Your Own Edit Codes for QMF Forms

214 Installing and Managing QMF on VM

*** 00001000
* * 00002000
* CONTROL BLOCK NAME: DXEECS (COBOL VERSION) * 00003000
* * 00004000
* FUNCTION: * 00005000
* * 00006000
* THIS IS THE INTERFACE CONTROL BLOCK BETWEEN QMF AND * 00007000
* THE USER EDITING INTERFACE, DSQUEDIT (TSO/CMS), OR * 00008000
* DSQUECIC (CICS). * 00009000
* * 00010000
* IT CONTAINS THE USER'S EDIT CODE, IDENTIFIES THE SOURCE * 00011000
* DATA AND THE TARGET LOCATION FOR THE EDITED RESULT * 00012000
* AND PROVIDES A SCRATCHPAD AREA FOR THE USER EDIT * 00013000
* ROUTINE'S USE. * 00014000
* * 00015000
* THIS CONTROL BLOCK IS PERSISTENT BETWEEN CALLS TO THE * 00016000
* USER EDIT ROUTINE. * 00017000
* * 00018000
* THE SCRATCHPAD AREA WILL NOT BE MODIFIED BY QMF AFTER * 00019000
* THE INITIAL INVOCATION OF THE EXIT ROUTINE. * 00020000
* * 00021000
* * 00022000
* NOTE: THIS FILE IS DESIGNED TO BE COPIED INTO THE LINKAGE * 00023000
* SECTION OF THE USER EDIT ROUTINE. * 00024000
* * 00025000
* * 00026000
* STATUS: VERSION 7 RELEASE 1 LEVEL 0 * 00027000
* * 00028000
* INNER CONTROL BLOCKS: NONE * 00029000
* * 00030000
* CHANGE ACTIVITY: NEW CONTROL BLOCK * 00031000
* * 00032000
* CHANGE DATE: * 00033000
* * 00034000
*** 00035000

00036000
01 DXEECS. 00037000

02 ECSNAME PICTURE X(8). 00038000
* -- CONTROL BLOCK IDENTIFICATION 00039000

00040000
02 ECSEDCTL. 00041000

* -- EDIT CONTROL 00042000
00043000

03 ECSFREQ PICTURE X(1). 00044000
* -- FUNCTION REQUEST 00045000

Figure 71. User edit routine field definitions for COBOL version of DXEECS control block (Part 1 of
5)

Creating Your Own Edit Codes for QMF Forms

Chapter 12. Creating Your Own Edit Codes for QMF Forms 215

88 ECS-EDIT-FUNCTION VALUE "E". 00046000
88 ECS-TERMINATE-FUNCTION VALUE "T". 00047000

* ---- TERMINATE FUNCTION TO FREE RESOURCES. 00048000
* QMF WILL CALL THE USER EDIT ROUTINE 00049000
* FOR THIS FUNCTION ONLY IF THE USER 00050000
* EDIT ROUTINE HAS PREVIOUSLY REQUESTED 00051000
* IT. (SEE ECSRQMF BELOW.) 00052000

03 ECSPAD10 PICTURE X(3). 00053000
* -- RESERVED FIELD 00054000

03 ECSECODE PICTURE X(5). 00055000
* -- EDIT CODE FROM FORM OBJECT 00056000

03 ECSPAD20 PICTURE X(3). 00057000
* -- RESERVED FIELD 00058000

03 ECSDECPT PICTURE X(1). 00059000
* -- SYMBOL FOR DECIMAL POINT 00060000
* -- (AS DEFINED BY DECIMAL OPTION IN 00061000
* -- CURRENT PROFILE OBJECT 00062000

03 ECSTHSEP PICTURE X(1). 00063000
* -- SYMBOL FOR THOUSANDS SEPARATOR 00064000
* -- (AS DEFINED BY DECIMAL OPTION IN 00065000
* -- CURRENT PROFILE OBJECT 00066000

03 ECSPAD30 PICTURE X(6). 00067000
* -- RESERVED FIELD 00068000

03 ECSQMF PICTURE X(20). 00069000
* -- AREA RESERVED FOR QMF'S USE 00070000

00071000
02 ECSINDTA. 00072000

* -- DESCRIPTION OF THE INPUT DATA 00073000
00074000

03 ECSINTYP PICTURE S9(9) COMPUTATIONAL. 00075000
* -- DATA TYPE OF THE INPUT AS IT 00076000
* -- EXISTS IN THE DATA BASE. 00077000

88 ECS-FLOATING-POINT VALUE IS +480. 00078000
88 ECS-DECIMAL VALUE IS +484. 00079000
88 ECS-INTEGER VALUE IS +496. 00080000
88 ECS-SMALL-INTEGER VALUE IS +500. 00081000
88 ECS-VARCHAR VALUE IS +448. 00082000
88 ECS-FIXED-CHAR VALUE IS +452. 00083000
88 ECS-LONG-VARCHAR VALUE IS +456. 00084000
88 ECS-VARG VALUE IS +464. 00085000
88 ECS-FIXED-G VALUE IS +468. 00086000
88 ECS-LONG-VARG VALUE IS +472. 00087000
88 ECS-DATE VALUE IS +384. 00088000
88 ECS-TIME VALUE IS +388. 00089000
88 ECS-TIMESTAMP VALUE IS +392. 00090000
88 ECS-EXT-FLOATING-POINT VALUE IS +940. 00091000

03 ECSINLEN PICTURE S9(5) USAGE IS COMPUTATIONAL. 00092000
* -- LENGTH OF INPUT DATA 00093000

03 ECSINPRC PICTURE S9(2) USAGE IS COMPUTATIONAL. 00094000

Figure 71. User edit routine field definitions for COBOL version of DXEECS control block (Part 2 of
5)

Creating Your Own Edit Codes for QMF Forms

216 Installing and Managing QMF on VM

* -- PRECISION OF INPUT DATA IF IT IS 00095000
* -- DECIMAL DATA TYPE (U-TYPE EDIT CODE) 00096000
* -- OR IF IT WAS ANY NUMERIC DATA TYPE 00097000
* -- (V-TYPE EDIT CODE)... 00098000
* -- ZERO OTHERWISE. 00099000

03 ECSINSCL PICTURE S9(2) USAGE IS COMPUTATIONAL. 00100000
* -- SCALE OF INPUT DATA IF IT IS 00101000
* -- DECIMAL DATA TYPE (U-TYPE EDIT CODE) 00102000
* -- OR IF IT WAS ANY NUMERIC DATA TYPE 00103000
* -- (V-TYPE EDIT CODE)... 00104000
* -- ZERO OTHERWISE. 00105000

03 ECSINSGN PICTURE X(1). 00106000
* -- SIGN OF CONVERTED NUMERIC DATA 00107000
* -- (V-TYPE EDIT CODE ONLY)... 00108000

88 ECS-POSITIVE VALUE " ". 00109000
88 ECS-NEGATIVE VALUE "-". 00110000

00111000
03 ECSINNUL PICTURE X(1). 00112000

* -- NULL INPUT DATA INDICATOR 00113000
88 ECS-NULL-DATA VALUE "N". 00114000

00115000
03 ECSPAD40 PICTURE X(10). 00116000

* -- RESERVED FIELD 00117000
00118000

02 ECSRSDTA. 00119000
* -- DESCRIPTION OF THE RESULT BUFFER 00120000

00121000
03 ECSRSLEN PICTURE S9(5) USAGE IS COMPUTATIONAL. 00122000

* -- LENGTH OF RESULT AREA 00123000
* -- (EQUIVALENT TO COLUMN WIDTH IN THE 00124000
* -- FORM OBJECT 00125000

03 ECSPAD50 PICTURE X(12). 00126000
* -- RESERVED FIELD 00127000

00128000
02 ECSUCTL. 00129000

* -- USER CONTROL AREA 00130000
00131000

03 ECSERRET PICTURE S9(9) USAGE IS COMPUTATIONAL. 00132000
* -- EDIT ROUTINE ERROR RETURN CODE 00133000
* (SEE QMF-DEFINED ERROR CODES BELOW). 00134000

03 ECSRQMF PICTURE X(1). 00135000
* -- REQUEST FOR QMF 00136000
* (SEE CODE(S) DEFINED BELOW.) 00137000

03 ECSPAD60 PICTURE X(11). 00138000
* -- RESERVED FIELD 00139000

00140000
02 ECSUSERS. 00141000

Figure 71. User edit routine field definitions for COBOL version of DXEECS control block (Part 3 of
5)

Creating Your Own Edit Codes for QMF Forms

Chapter 12. Creating Your Own Edit Codes for QMF Forms 217

* -- USER SCRATCH PAD AREA 00142000
00143000

03 ECSUSERS-ARRAY 00144000
PICTURE X(1) 00145000
OCCURS 256 TIMES. 00146000

00147000
00148000

******** -- EDIT ROUTINE INPUT DATA 00149000
01 ECSINPT. 00150000

02 ECSINPTC PICTURE X(32767). 00151000
02 ECSINPT-ARRAY REDEFINES ECSINPTC 00152000

PICTURE X(1) 00153000
OCCURS 32767 TIMES. 00154000

02 ECSINPT-INTEGER-OVL 00155000
REDEFINES ECSINPTC. 00156000

03 ECSINPT-INTEGER 00157000
PICTURE S9(9) 00158000
USAGE IS COMPUTATIONAL. 00159000

03 FILLER PICTURE X(1) 00160000
OCCURS 32763 TIMES. 00161000

02 ECSINPT-SMALL-INTEGER-OVL 00162000
REDEFINES ECSINPTC. 00163000

03 ECSINPT-SMALL-INTEGER 00164000
PICTURE S9(4) 00165000
USAGE IS COMPUTATIONAL. 00166000

03 FILLER PICTURE X(1) 00167000
OCCURS 32765 TIMES. 00168000

02 ECSINPT-FLOATING-POINT-OVL 00169000
REDEFINES ECSINPTC. 00170000

03 ECSINPT-FLOATING-POINT 00171000
USAGE IS COMPUTATIONAL-2. 00172000

03 FILLER PICTURE X(1) 00173000
OCCURS 32759 TIMES. 00174000

Figure 71. User edit routine field definitions for COBOL version of DXEECS control block (Part 4 of
5)

Creating Your Own Edit Codes for QMF Forms

218 Installing and Managing QMF on VM

Compiling Your Program
To create a CMS module file from COBOL source code, ensure that you can
access the IBM-supplied control block DXEECSC. DXEECSC is located in the
QMF library DSQUSERE MACLIB on the QMF production disk. You need to
access the QMF and COBOL production disks. You also need to make the
macro libraries available to the COBOL compiler by issuing a CMS GLOBAL
MACLIB command. For example:

00175000
00176000

******** -- EDIT ROUTINE RESULT BUFFER 00177000
01 ECSRSLT. 00178000

02 ECSRSLT-ARRAY PICTURE X(1) 00179000
OCCURS 1 TO 32767 TIMES 00180000

DEPENDING ON ECSRSLEN. 00181000
00182000

*** 00183000
* * 00184000
* THE DATA DEFINITIONS BELOW ARE FOR DOCUMENTATION * 00185000
* PURPOSES ONLY SINCE COBOL DOES NOT ALLOW LINKAGE * 00186000
* SECTION DATA DEFINITIONS TO HAVE VALUE CLAUSES * 00187000
* * 00188000
*** 00189000

00190000
******** -- QMF-DEFINED VALUES FOR ECSERRET 00191000
* (SEE ABOVE). 00192000
*77 ECS-UNKNOWN-EDIT-CODE 00193000
* PICTURE S9(9) VALUE IS +99101 00194000
* USAGE IS COMPUTATIONAL. 00195000
*77 ECS-IMPROPER-DATA-TYPE 00196000
* PICTURE S9(9) VALUE IS +99102 00197000
* USAGE IS COMPUTATIONAL. 00198000
*77 ECS-INVALID-DATA-VALUE 00199000
* PICTURE S9(9) VALUE IS +99103 00200000
* USAGE IS COMPUTATIONAL. 00201000
*77 ECS-INPUT-DATA-TOO-SHORT 00202000
* PICTURE S9(9) VALUE IS +99104 00203000
* USAGE IS COMPUTATIONAL. 00204000
*77 ECS-RESULT-BUFFER-TOO-SHORT 00205000
* PICTURE S9(9) VALUE IS +99105 00206000
* USAGE IS COMPUTATIONAL. 00207000

00208000
00209000

******** -- POSSIBLE REQUEST-FOR-QMF CODES 00210000
* (SEE ECSRQMF ABOVE). 00211000
*77 ECS-CALL-FOR-TERMINATE 00212000
* PICTURE X(1) VALUE IS "T". 00213000

Figure 71. User edit routine field definitions for COBOL version of DXEECS control block (Part 5 of
5)

Creating Your Own Edit Codes for QMF Forms

Chapter 12. Creating Your Own Edit Codes for QMF Forms 219

GLOBAL MACLIB DSQUSERE VSC2MAC

DXEECSC, as distributed by IBM, uses quotation marks (“”) to delimit
character literals. If your program uses apostrophes (’), you must either
change DXEECSC as distributed by IBM or copy the structure to your
program, changing quotes to apostrophes.

You can compile your program using the options:

COBOL II:
LIB, NODYNAM, OBJECT, RENT, RES

COBOL/370 and IBM COBOL for OS/390 and VM:
LIB, NODYNAM, OBJECT, RENT

Assembling the Run Time Options Macro (COBOL II)
Use the C2CUSTL EXEC provided by IBM to assemble IGZOPT. Follow the
prompts and add option STAE=NO to the IGZEOPT ASSEMBLE file. The new or
changed option file is replaced in VSC2LTXT TXTLIB and VSC2LOAD
LOADLIB, or in another TXTLIB and LOADLIB that you specify. Refer to VS
COBOL II Installation and Customization for CMS for more information about
assembling run time options.

Generating Your Program
Before you can create the module file, ensure that you can access the
IBM-supplied control module (DSQUXIC). DSQUXIC is located on the QMF
production disk. You need to access this disk prior to creating the module file.

To create the DSQUEDIT module file, use the CMS LOAD and GENMOD
commands as follows:
1. Load the text files that make up the DSQUEDIT module.

The DSQUEDIT module must be relocatable. To be relocatable, the module
must be loaded with RLD entries. You do this by specifying the RLDSAVE
option on the CMS LOAD command. The entry point to the DSQUEDIT
module must be DSQUXIC. COBOL text libraries must be made available
by issuing a CMS GLOBAL TEXTLIB command. Issue the following CMS
commands:

GLOBAL TXTLIB VSC2LTXT
LOAD DSQUXIC DSQUXDT (RLDSAVE RESET DSQUXIC)

You can run your edit routine in either 24-bit or 31-bit addressing mode.
QMF manages address switching as required. You can specify 31-bit
addressing on the CMS LOAD command. For example:

GLOBAL TXTLIB VSC2LTXT
LOAD DSQUXIC DSQUXDT

(RLDSAVE RESET DSQUXIC AMODE 31 RMODE ANY)

Creating Your Own Edit Codes for QMF Forms

220 Installing and Managing QMF on VM

2. Issue the CMS GENMOD command to generate the DSQUEDIT module
from the text files just loaded by the CMS LOAD command:

GENMOD DSQUEDIT (AMODE 31 RMODE ANY)

Once the user edit routine is tested, it can replace the DSQUEDIT module file
on the QMF production disk or user disk that is available when you start
QMF. In order to use the COBOL user edit routine, the COBOL production
disk and run-time libraries need to be available when you start QMF.

When running under ISPF and starting QMF using the PGM form of
ISPSTART, the COBOL run-time load libraries must be specified using a CMS
FILEDEF command for ISPLLIB. For guidelines and considerations about
COBOL programs running in ISPF, see ISPF for VM Dialog Management
Services and Examples

When running without ISPF, or running under ISPF and starting QMF using
the program segment form of ISPSTART, the COBOL run-time load libraries
must be specified using a CMS GLOBAL LOADLIB command.

For detailed information on how to compile and make run-time libraries
available for COBOL, see VS COBOL II Application Programming Guide.

Writing an Edit Routine in COBOL with Language Environment (LE)

The QMF edit exit interface for COBOL in VM for LE consists of these parts:
v Interface control block, which is supplied with QMF as DXEECSP
v Control program, which is shipped with QMF as DSQUXILE
v Your edit exit program, which is named DSQUXDT
v LE Preinitialization Service program, which is named CEEPIPI

Figure 72 on page 222 shows the structure of a COBOL edit exit routine in
CMS.

Creating Your Own Edit Codes for QMF Forms

Chapter 12. Creating Your Own Edit Codes for QMF Forms 221

Generating Your COBOL Program for LE
Before you can create the module file, ensure that you can access the
IBM-supplied control module (DSQUXILE). DSQUXILE is located on the QMF
production disk. You need to access this disk prior to creating the module file.

To create the DSQUEDIT module file , use the CMS LOAD and GENMOD
commands as follows:
1. Load the text files that make up the DSQUEDIT module.

The DSQUEDIT module must be relocatable. To be relocatabale, the
module must be loaded with RLD entries. You do this by specifying the
RLDSAVE option on the CMS/LOAD command. The entry point to the
DSQUEDIT module must be DSQUXILE. LE text libraries must be made
available by issuing a CMS GLOBAL TXTLIB command. Issue the
following CMS command:
GLOBAL TXTLIB SCEELKED
LOAD DSQUXILE DSQUXDT (RLDSAVE RESET DSQUXILE

You can run your edit routine in either 24-bit or 31-bit addressing mode.
QMF manages address switching as required. You can specify 31-bit
addressing on the CMS LOAD command. For example:

Figure 72. Program structure of a COBOL edit exit routine with LE

Creating Your Own Edit Codes for QMF Forms

222 Installing and Managing QMF on VM

GLOBAL TXTLIB SCEELKED
LOAD DSQUXILE DSQUXDT (RLDSAVE RESET DSQUXILE AMODE 31 RMODE ANY

2. Generate the DSQUEDIT module.
Issue the CMS GENMOD command to generate the DSQUEDIT module
from the text files just loaded by the CMS LOAD command:

GENMOD DSQUEDIT

Handling Double-Byte Character Set Data

Double-byte character set (DBCS) data can appear in character columns or in
columns with a graphic data type (GRAPHIC, VARGRAPHIC, and LONG
VARGRAPHIC). If you need to devise edit routines that process this type of
data, read this section.

Among the characters represented by the Japanese DBCS are Latin characters
and Katakana characters. A Latin character has these characteristics:
v The first (leftmost) byte of the character has the value X'42'
v The second byte of the character contains the EBCDIC equivalent

A Katakana character has these characteristics:
v The first byte of the character contains X'43'
v The second byte contains the EBCDIC equivalent

Edit Codes for DBCS Data
You can use either Uxxxx or Vxxxx edit codes for DBCS data. The data that
the edit routine receives is the same.

What the Edit Routine Receives
The data to be formatted is in the field ECSINPT, and the length of that data,
in bytes, is in ECSINLEN. What you find in ECSINPT depends to some extent
on where the data originates. More precisely, it depends on whether the
column containing that data is a character column or one with a graphic data
type.

Data from Graphic Columns
If the data to be formatted is from a column with a graphic data type, then
the text in ECSINPT consists of this data preceded by one shift character and
followed by another. Both shift characters are single bytes. For DBCS
terminals, shift characters mark the start and end of a string of DBCS
characters.

So denotes the shift character that introduces a DBCS string, and Si denotes
the one that marks its end. So has the value X'0E'. Si has the value X'0F'.

The shift characters are included in the data length recorded in ECSINLEN.
Thus, the length appearing in ECSINLEN is always greater by two than the

Creating Your Own Edit Codes for QMF Forms

Chapter 12. Creating Your Own Edit Codes for QMF Forms 223

length of the actual data. Because the data is presumably a string of DBCS
characters, its length (in bytes) is always an even number.

Data from Character Columns
If the data to be processed comes from a character column, then the data in
ECSINPT is just a copy of the column data. Unlike data from a graphic
column, this data can hold single-byte characters and shift characters, as well
as DBCS characters. To locate DBCS characters, you must search for the So
and Si characters that bracket the DBCS strings. If there are no So or Si
characters in ECSINPT, the string contains no DBCS data. For example,
ECSINPT contains the following string:
ccccSodedededededededeSiccSodededededeSi

Here, c, d, and e stand for any possible byte, while So and Si are shift bytes.
From the placement of the shift bytes, you can see that every occurrence of c
represents a single-byte character, and that every occurrence of de represents a
DBCS character.

Single-byte characters can represent Latin letters, Arabic numerals, and special
characters such as plus signs and parentheses. For Japanese DBCS, they can
also be Katakana characters. Some bytes meant to represent lowercase Latin
might be displayed as Katakana symbols. You might have to devise edit codes
that distinguish between columns containing lowercase English and those
containing Katakana.

Ensuring the Edit Routine Returns the Right Results
Return the results in the ECSRSLT field, with trailing blanks for unused bytes.
Make the results readable to the user’s screen. This means that the resulting
DBCS and EBCDIC characters must have the appropriate representations, and
that the beginning and end of any string of DBCS characters are marked by So
and Si characters.

Overflowing the ECSRSLT Field
Be careful not to overflow the ECSRSLT field, whose length is contained in
the ECSRSLEN field. If your results do not fit, truncate them on the right. If
the last character represented in the truncated results is a DBCS character, be
certain to retain its rightmost byte, and to follow that character with an Si
character.

Printing the Report Column
QMF copies the ECSRSLT field into the corresponding report column. The
result is exactly as wide as the report column. If you don’t specify
ALIGNMENT for data, the data is aligned exactly as you typed it.

How the report device represents what you return depends on the specific
device. For some terminals, the following rules apply:

Creating Your Own Edit Codes for QMF Forms

224 Installing and Managing QMF on VM

v If the report is displayed on the screen, the Si and So characters embedded
in a user’s results also appear on the terminal.

v The Si and So characters appear either as blanks or as special symbols.
There is one special symbol for Si and another for So.

v Blanks appear instead of the symbols unless the user presses a certain
combination of keys.

For other devices, the rules can be slightly different.

Instructions for using DBCS characters in the online help say not to use
certain DBCS characters in queries and QMF commands. The same restriction
does not apply to the formatted data returned by an edit routine. Any
legitimate DBCS character can be returned in the ECSRSLT field.

Creating Your Own Edit Codes for QMF Forms

Chapter 12. Creating Your Own Edit Codes for QMF Forms 225

226 Installing and Managing QMF on VM

Chapter 13. Controlling QMF Resources Using a Governor
Exit Routine

Note: This chapter contains General Use Programming Interface and
Associated Guidance Information.

A governor exit routine helps you limit end-user activity and control use of
computer resources at your installation. IBM supplies a governor exit routine
with QMF, with default limits for the amount of time spent executing a QMF
command or for the number of rows a user can retrieve from the database.
You can use this default exit routine, or use assembler to modify the routine
or write one of your own.

Quick start

Use the steps in Table 34 to guide you in setting up and using a governor exit
routine. If you need more information on any step, see the page listed at the
right of the table.

Table 34. Using a governor exit routine

To do this task: See:

To prompt users when the number of database rows retrieved reaches 25 000, and
cancel data retrieval when the number reaches 100 000, turn the governor on by setting
the INTVAL field of Q.RESOURCE_VIEW to 0 (where RESOURCE_GROUP=SYSTEM and
RESOURCE_OPTION=SCOPE). Then update the RESOURCE_GROUP field of the user’s
profile to SYSTEM, and reconnect to the database.

Page 229

To prompt users when 15 minutes of real time has elapsed and cancel data when 60
minutes of real time has elapsed, turn the governor on by setting the INTVAL field of
Q.RESOURCE_VIEW to 0 (where RESOURCE_GROUP=SYSTEM and
RESOURCE_OPTION=SCOPE). Then update the RESOURCE_GROUP field of the user’s
profile to SYSTEM, and reconnect to the database.

Page 229

To set up the governor exit routine to use database row limits other than the defaults
of 25 000 and 100 000, add new rows to Q.RESOURCE_TABLE that define the points at
which you want to warn the user (optional) and cancel data retrieval. Turn the governor
on and update the user’s profile as explained in step 227.

Page 233

To limit activities other than the number of rows retrieved from the database, use
assembler to modify the IBM-supplied governor exit routine or write a routine of your
own.

Page 238

If you modify the IBM-supplied governor exit routine or write your own routine,
assemble and generate the routine.

Page 261

© Copyright IBM Corp. 1983, 2000 227

Using the IBM-Supplied Governor Exit Routine

The governor exit routine supplied by IBM controls how many rows a user
can retrieve from the database or how much time is spent running a QMF
command. The governor exit routine is shipped with two predefined values
for the number of rows:
v A row prompt value warns users when the number of rows retrieved

reaches 25000, at which time the user sees the message shown in Figure 73:

v A row limit value cancels data retrieval when 100 000 rows have been
retrieved, if the user presses the Enter key in response to the message in
Figure 73. When the IBM-supplied governor cancels data retrieval, the user
sees the message shown in Figure 74:

When running a procedure, you might get a message that your procedure was
canceled, rather than the message in Figure 74. For example, if your procedure
contains a command that requires the report to complete (such as ERASE),
you receive the message shown in Figure 75:

Users using the SYSTEM profile, discussed in “Establishing a Profile Structure
for Your Installation” on page 98, are already set up to use these default
values of 25 000 and 100 000. To activate the default values for users with
unique profiles, see “Activating the Default Limits” on page 229.

DSQUn00 QMF governor prompt:
Command has fetched 25000 rows of data.

==> To continue QMF command press the "ENTER" key.
==> To cancel QMF command type "CANCEL" then press the "ENTER" key
==> To turn off prompting type "NOPROMPT" then press the "ENTER" key

Figure 73. Message displayed when a resource limit is approaching. The n symbol in the figure
represents an NLID from Table 5 on page 19

Row limit exceeded! Your command canceled by QMF governor.

Figure 74. Message displayed when a resource limit is exceeded

Procedure canceled.

Figure 75. Message displayed when a procedure is canceled

Controlling QMF Resources Using a Governor Exit Routine

228 Installing and Managing QMF on VM

The governor exit routine also has predefined values for the time spent
running a QMF command:
v A time prompt value warns users when the real time for the cycle has

reached 15 minutes at which time the user sees the message shown in
Figure 76:

v A time prompt value cancels the command when 60 minutes of real time
has been used during the cycle.

If you want to define your own limits for when the user is warned and when
data retrieval is canceled, see “Defining Your Own Resource Limits” on
page 233.

Activating the Default Limits
Follow this procedure to set up the governor exit routine to warn a user when
the number of rows retrieved from the database reaches 25 000 and to cancel
the QMF activity when the number of rows retrieved reaches 100 000:
1. Run the query shown in Figure 77 from the SQL query panel:

2. Set a value of SYSTEM for the RESOURCE_GROUP field of the user’s
profile. For example, the UPDATE statements in Figure 78 on page 230
activate default values for user JONES (using English QMF) and user
SCHMIDT (using German QMF).

Important: Always specify a value for the TRANSLATION column, or you
might change more rows in Q.PROFILES than you intend.

DSQUn00 QMF governor prompt:
Command has executed for 15 minutes.

==> To continue QMF command press the "ENTER" key.
==> To cancel QMF command type "CANCEL" then press the "ENTER" key
==> To turn off prompting type "NOPROMPT" then press the "ENTER" key

Figure 76. Message displayed when a resource limit is approaching. The n symbol in the figure
represents an NLID from

UPDATE Q.RESOURCE_VIEW
SET INTVAL=0
WHERE RESOURCE_OPTION='SCOPE' AND

RESOURCE_GROUP='SYSTEM'

Figure 77. Activating default values for the IBM-supplied governor

Controlling QMF Resources Using a Governor Exit Routine

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 229

For more information on how to create a new user profile in the
Q.PROFILES table, see “Creating User Profiles to Enable User Access to
QMF” on page 97.

3. Instruct the user to reconnect to the database to activate the new values.
For example, user JONES, who has the password MYPW, enters the
following command:
CONNECT JONES (PA=MYPW

Each time you make a change to the table, instruct users to reconnect to
the database to activate the changes you made.

See Table 13 on page 95 for how to grant a user authority to connect to the
database. Users who do not have DB2 for VM CONNECT authority can
end the current QMF session and begin another to activate the new
resource group.

“How a Governor Exit Routine Controls Resources” explains how the
governor uses the information in the Q.RESOURCE_VIEW and the
Q.PROFILES table to control resources.

If you want to define row limits other than the defaults of 25 000 and 100 000,
read “How a Governor Exit Routine Controls Resources”. Then see the
procedure in “Defining Your Own Resource Limits” on page 233.

How a Governor Exit Routine Controls Resources
The governor uses two types of information to control resources:
v Information about the resource limits you set for a user, defined in a

resource control table called Q.RESOURCE_TABLE.
v Information about the state of the user’s session, which tells the governor

how close the user’s activity is coming to the resource limits defined for the
resource group the user is in. This information is passed to the governor
exit routine in the IBM-supplied control blocks DXEGOVA and DXEXCBA.

Base QMF (English)
German NLF

UPDATE Q.PROFILES
UPDATE Q.PROFILES

SET RESOURCE_GROUP = 'SYSTEM'
SET RESOURCE_GROUP = 'SYSTEM'

WHERE CREATOR='JONES' AND
WHERE CREATOR='SCHMIDT' AND

TRANSLATION='ENGLISH'
TRANSLATION='DEUTSCH'

Figure 78. Updating a user’s resource group

Controlling QMF Resources Using a Governor Exit Routine

230 Installing and Managing QMF on VM

How the Governor Knows What the Resource Limits Are
Each row of the IBM-supplied Q.RESOURCE_TABLE contains:
v The name of a resource group (RESOURCE_GROUP), which characterizes one or

more users whose activities you want to govern in the same manner.
v The name of the resource (RESOURCE_OPTION) you want to limit for the group

of users named in RESOURCE_GROUP.
v Values (INTVAL, FLOATVAL, or CHARVAL) that define the limit for the resource

option. Resource options can have integer values, floating-point values, or
character values.

Table 35 on page 237 shows the structure of the Q.RESOURCE_TABLE as it is
shipped by IBM. Q.RESOURCE_TABLE has the index Q.RESOURCE_INDEX,
with the UNIQUE attribute. Keyed columns are RESOURCE_GROUP and
RESOURCE_OPTION.

The Q.RESOURCE_TABLE is shipped by IBM with a predefined resource
group called SYSTEM. The SYSTEM resource group has six predefined
resource options, as shown in Figure 79. Use the CHARVAL column to
indicate the limits defined in each row, as shown.

SCOPE = 0
Activates governing for a particular resource group.

ROWLIMIT = 100000
If the user decides to continue when warned, the governor exit
routine cancels data retrieval activities after 100 000 rows are
retrieved. (Retrieval is for FETCH only.) ROWLIMIT is dependent on
the buffer size; therefore, more than 100 000 rows can be retrieved if
the buffer holds a number of rows not divisible by 100 000.

ROWPROMPT = 25000
Warns the user when 25 000 database rows have been retrieved.

TIMELIMIT = 3600
If the user decides to continue when warned, the governor exit
routine cancels the command after 60 minutes have elapsed.

RESOURCE RESOURCE
GROUP OPTION INTVAL FLOATVAL CHARVAL

---------------- ----------- ----------- ---------- -------------------------------------
SYSTEM SCOPE 0 - INDICATE WHETHER GOVERNOR IS ACTIVE
SYSTEM ROWLIMIT 100000 - CANCEL AFTER FETCHING 100000 ROWS
SYSTEM ROWPROMPT 25000 - PROMPT USER AFTER FETCHING 25000 ROWS
SYSTEM TIMELIMIT 3600 - CANCEL AFTER 60 MINUTES
SYSTEM TIMEPROMPT 900 - PROMPT USER AFTER 15 MINUTES
SYSTEM TIMECHECK 900 - 15 MINUTE INTERVAL BETWEEN TIME CHECK

Figure 79. Default resource group and options for the IBM-supplied governor exit

Controlling QMF Resources Using a Governor Exit Routine

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 231

TIMELIMIT is checked at TIMECHECK intervals; therefore, more than
60 minutes can elapse if the TIMECHECK interval is set at an interval
not divisible by 60.

TIMEPROMPT = 900
Warns the user when 15 minutes have elapsed.

TIMECHECK = 900
Specifies 15 minutes of real time between time checks for prompting
or canceling.

IBM also supplies a view of this table, called Q.RESOURCE_VIEW, that
includes all five columns of Q.RESOURCE_TABLE. Each time QMF calls the
governor exit routine, QMF passes to the routine the resource control
information stored in Q.RESOURCE_VIEW. The governor exit routine uses
this resource information to help determine when the user reaches a resource
limit.

How the Governor Knows When You Reach a Resource Limit
On a call to the governor exit routine, QMF queries Q.RESOURCE_VIEW,
which shows what resource limits are defined in the resource control table for
the resource group to which the user belongs. To determine the resource
group, QMF checks the value of the RESOURCE_GROUP field of the user’s
row in the Q.PROFILES table and checks Q.RESOURCE_VIEW for a matching
value.

QMF uses two control blocks, DXEGOVA and DXEXCBA, to pass information
to the governor exit routine. The DXEGOVA control block contains
information from Q.RESOURCE_VIEW about the limits you set for each user.
The DXEXCBA control block contains information about the activities the user
is performing in the current QMF session, which tells the governor how close
the user is coming to the resource limits.

Figure 80 on page 233 shows how the governor limits use of resources.

Controlling QMF Resources Using a Governor Exit Routine

232 Installing and Managing QMF on VM

QMF calls the governor exit routine at a number of different points within the
QMF session, as shown in Figure 80. These calls are called function calls. For
more information about function calls, see “Points at Which QMF Calls the
Governor” on page 241.

What Happens When You Reach a Resource Limit
When the resource control information QMF passes to the governor exit
routine indicates that a resource limit has been reached, the IBM-supplied
governor exit routine calls the QMF cancellation service to cancel the QMF
activity the user tried to perform, and the user sees the message in Figure 74
on page 228.

If you use the default limits for number of rows as discussed in Activating the
Default Limits, the IBM-supplied governor exit routine also displays a
warning before canceling the activity, as shown in Figure 73 on page 228. See
“Defining Your Own Resource Limits” for how to activate this warning if you
are not using the default values for the number of rows retrieved.

The IBM-supplied governor exit routine resets its count of the number of rows
upon returning control to QMF, so that the number of rows is not cumulative
across calls to the governor.

Defining Your Own Resource Limits
This section explains how to create a new resource group, for which the
resource is the number of rows retrieved from the database and the time
processing a command. If you want to define resource limits other than the
number of rows or real time allowed, you need to modify the IBM-supplied
governor exit routine or write an exit routine of your own. See “Modifying
the IBM-supplied Governor Exit Routine or Writing Your Own” on page 238
for more information on the facilities you can use.

Use the following procedure to add a resource group to the resource control
table. This procedure adds a resource group named GROUP1, where the

Return
to QMF

QMF Session
Function
Calls

QMF
Interface
Ctrl. Blocks

Governor
Exit
Routine

Session start/end

Command start/end

DB start/end

"Think time" start/end

Command cancellation

DXEGOVA

DXEXCBA

Figure 80. How a governor exit routine works with QMF

Controlling QMF Resources Using a Governor Exit Routine

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 233

governor prompts a user in GROUP1 when the number of rows reaches
10000, and cancels the user’s activity when the number of rows reaches 15000.
The governor also prompts a user when the real time reaches 10 minutes, and
cancels the user’s activity when the real time reaches 45 minutes. The
procedure also shows an example of how to add a user to a resource group.
1. Run the query in Figure 81 to set the number of rows at which the user is

warned of the approaching resource limit.
If you don’t want to warn users when they are approaching their limit for
the number of rows, skip to Step 2.

2. Run the query in Figure 82 to set the number of rows at which the
governor cancels the user’s activity.

3. Run the query in Figure 83 to set the real time that elapses before the user
is warned of the approaching resource limit.
If you don’t want to warn users when they are approaching their limit for
the time elapsed, skip to step 4.

4. Run the query in Figure 84 to set the time that can elapse before the
governor cancels the user’s activity.

5. Run the query in Figure 85 on page 235 to set the time between intervals
when the governor checks the user’s activity.

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION,INTVAL)
VALUES('GROUP1','ROWPROMPT',10000)

Figure 81. Activating prompting for row limit

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION,INTVAL)
VALUES('GROUP1','ROWLIMIT',15000)

Figure 82. Activating cancellation of activities when user reaches row limit

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION,INTVAL)
VALUES('GROUP1','TIMEPROMPT',600)

Figure 83. Activating prompting for time limit

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION,INTVAL)
VALUES('GROUP1','TIMELIMIT',2700)

Figure 84. Activating cancelation of activities when user reaches time limit

Controlling QMF Resources Using a Governor Exit Routine

234 Installing and Managing QMF on VM

6. Run the query shown in Figure 86 to turn on governing for the GROUP1
resource group.

SCOPE is a resource option that activates or deactivates governing. Each
resource group in the Q.RESOURCE_TABLE must have a
RESOURCE_OPTION called SCOPE, and SCOPE must have a
corresponding INTVAL of zero, or the resource group is not governed. Set
INTVAL to 1 to deactivate governing.

7. Run a query similar to the one in Figure 87 to add user JONES to the
GROUP1 resource group in the English QMF environment.

If you’re using an NLF: Use a similar query to update a user’s profile in
an NLF environment, but use a TRANSLATION
value from Table 5 on page 19.

8. Instruct the user whose profile you updated to reconnect to the database
to initialize the resource values. For example, user JONES, who has the
password MYPW, can enter:
CONNECT JONES (PA=MYPW

Each time you make a change to the table, instruct users to reconnect to
the database to activate the changes you made.

See Table 13 on page 95 for how to grant a user authority to connect to the
database. Users who do not have DB2 for VM CONNECT authority can
end the current QMF session and begin another to activate the new
resource group.

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION,INTVAL)
VALUES('GROUP1','TIMECHECK',600)

Figure 85. Activating time interval check

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION,INTVAL)
VALUES('GROUP1','SCOPE',0)

Figure 86. Turning on the governor for a particular resource group

UPDATE Q.PROFILES
SET RESOURCE_GROUP='GROUP1'
WHERE CREATOR='JONES' AND
TRANSLATION='ENGLISH'

Figure 87. Updating a user’s resource group

Controlling QMF Resources Using a Governor Exit Routine

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 235

Creating your own Resource Control Table
You can create your own table or rename the Q.RESOURCE_TABLE. You can
also include additional columns in the table you create, if
Q.RESOURCE_VIEW is the view defined in this table, and if the table
includes all of the columns shown in Table 35 on page 237.

Figure 88 shows an example of SQL statements you might use to create a table
called MY_RESOURCES. Substitute your own table, column, and dbspace
names in the query. Before creating a new table, ensure you erase the
Q.RESOURCE_TABLE from the database, because Q.RESOURCE_VIEW is
defined in this table:
DROP TABLE Q.RESOURCE_TABLE

Dropping the Q.RESOURCE_TABLE also drops Q.RESOURCE_VIEW from the
database, so you need to recreate both the table and the view, as shown in
Figure 88 and Figure 89.

Always recreate Q.RESOURCE_VIEW if you decide to use a table other than
Q.RESOURCE_TABLE or decide to give Q.RESOURCE_TABLE a different
name, because QMF queries the view, not the table, to obtain resource control
information to pass to the governor exit routine.

Figure 89 shows how to redefine Q.RESOURCE_VIEW as a view on the new
table, MY_RESOURCES. Substitute your own table and column names for
those in the figure.

VM Timer Considerations
If you plan to use the governor timer options (TIMEPROMPT, TIMELIMIT, or
TIMECHECK), you should be aware that the TIME option in VM is
implemented in QMF by using the STIMER macro as simulated by VM. How

CREATE TABLE MY_RESOURCES
(GROUP_NAME CHAR(16) NOT NULL,
CONSTRAINT CHAR(16) NOT NULL,
INTEGER INTEGER,
FLOAT_VALUE FLOAT,
CHARACTER VARCHAR(80))

IN DBSPACE1

Figure 88. Creating a resource control table or renaming Q.RESOURCE_TABLE

CREATE VIEW Q.RESOURCE_VIEW
(RESOURCE_GROUP, RESOURCE_OPTION, INTVAL, FLOATVAL, CHARVAL)
AS SELECT GROUPNAME, CONSTRAINT, INTEGER, FLOAT_VALUE, CHARACTER
FROM MY_RESOURCES

Figure 89. Redefining the Q.RESOURCE_VIEW

Controlling QMF Resources Using a Governor Exit Routine

236 Installing and Managing QMF on VM

the QMF timer operates depends on the release of VM you are using and how
your system environment options are set. The basic design of the QMF
governor in VM requires the use of elapsed time. Elapsed time is derived
from the amount of virtual CPU run time and virtual wait time.

The time routine is executed when a timer interrupt occurs. The time duration
is specified by the TIMECHECK value. When a TIMEPROMPT value is
specified and that value has expired, the time routine issues a TPUT to send
instructions to the user followed by a TGET to receive the user’s response.
Because the timer exit can gain control at any point during QMF execution or,
in some cases, during processes called by QMF, the state of the environment is
unknown.

If you are unsure of the operation or behavior of your environment, use the
ROWPROMPT option instead of the TIMEPROMPT option. The following is a
list of known restrictions which affect the use and operation of the
TIMEPROMPT option:
v Do not use the QMF attention handler in conjunction with the

TIMEPROMPT option.
If you interrupt QMF using the attention key, the timer routine might
acquire control of the system while the attention handler is waiting for
instructions from the user. If this happens, the existing attention TGET is
replaced by the TGET of the timer routine. This in turn usually generates a
CMS ABEND.

v When using the TIMEPROMPT option, specify a value of at least five
minutes (300 seconds).
QMF might return status information to your terminal using ISPF or
GDDM. The results of using the TIMEPROMPT option during ISPF or
GDDM execution are unpredictable. Specifying a value of at least 300
seconds for the TIMEPROMPT option reduces the risk of these
incompatibility problems.

Table 35. Structure of the Q.RESOURCE_TABLE table

Column name Data type Length
(bytes)

Nulls allowed? Function/values

RESOURCE_GROUP CHAR 16 No Contains the name of the
resource group. Update the
RESOURCE_GROUP field of the
user’s row in Q.PROFILES to
activate governing for that user.

RESOURCE_OPTION CHAR 16 No Your own name for a resource
you want to monitor.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 237

Table 35. Structure of the Q.RESOURCE_TABLE table (continued)

Column name Data type Length
(bytes)

Nulls allowed? Function/values

INTVAL INTEGER Yes Reflects resource limit for
resource options that have
integer values. For example,
number of rows retrieved from
the database is a resource that
has an integer value.

FLOATVAL FLOAT Yes Reflects resource limit for
resource options that have
floating point values.
FLOATVAL is null for the
IBM-supplied governor.

CHARVAL VARCHAR 80 Yes Reflects resource limit for
resource options that have
character values. For example,
you might establish a
DAY_OF_WEEK resource option
and assign MONDAY to
CHARVAL so that QMF users
can log on to QMF only on
Mondays. CHARVAL is used as
a comment column in the
IBM-supplied governor.

Modifying the IBM-supplied Governor Exit Routine or Writing Your Own

If you decide to govern resources other than the number of rows returned
from the database, you need to modify the IBM-supplied governor exit
routine or write your own by doing the following:
1. Establish addressability to the exit routine for the points at which QMF

calls the routine. “How and When QMF Calls the Governor Exit Routine”
on page 241 explains this step.

2. Pass resource control information to the governor exit routine and store
this information. “Passing Resource Control Information to the Governor
Exit” on page 244 explains this step.

3. Establish addressability to the QMF cancellation service to cancel activities.
“Canceling User Activity” on page 259 explains this step.

4. Establish addressability to the QMF message service to provide messages
for activities that have been canceled. “Providing Messages for Canceled
Activities” on page 260 explains this step.

Controlling QMF Resources Using a Governor Exit Routine

238 Installing and Managing QMF on VM

5. Assemble and generate your governor exit routine, whether you modified
the IBM-supplied governor exit routine or wrote your own. “Assembling
and Generating Your Governor Exit Routine” on page 261 explains this
step.

Program Components of the Governor Exit Routine
Before you begin modifying or writing your own governor exit routine, you
need to know the names of the governor exit routine components and what
purpose each component serves.

Table 36 shows these components, whose names vary according to which
language you installed (English or an NLF). Replace the n symbol in the
component names in Table 36 with the NLID (from Table 5 on page 19) that
matches the NLF you’re using.

Table 36. English (base product) and NLF components for the IBM-supplied governor
exit routine

Member
Name

Library Function

DSQUnGV2 PRODUCTION DISK Text file and member of load library

DSQUnGV2 PRODUCTION DISK Source code for governor exit routine.

DXEGOVA DSQUSERE MACLIB DSECT for the DXEGOVA control block.

DXEXCBA DSQUSERE MACLIB DSECT for the DXEXCBA control block.

DXEUnGV2 DSQUSERE MACLIB Contains text and related definitions for
the governor exit routine prompts and
cancellation message.

You can find these members in the libraries as shown in the table.

If you’re using an NLF: You can govern resources in an NLF session as well
as an English QMF session, by using different
versions of the member DSQUnGV2 for each
language environment. For example, if you have
both English and German QMF installed, use the
phase DSQUEGV2 for English and the phase
DSQUDGV2 for German.

You can share the resource control table (Q.RESOURCE_TABLE or one you
create yourself) and the Q.RESOURCE_VIEW between language
environments, just as the Q.PROFILES table can contain profiles for English or
any NLF.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 239

How CMS Interacts with the Governor Exit Routine
At the start of a user’s session, QMF loads the governor into the user’s virtual
storage. For performance reasons, an assembler call interface is used between
QMF and the governor exit routine. The governor exit routine must provide
fast performance because, depending on which resources you are trying to
control, it might be called on every row retrieved from the database.

After loading the governor, QMF calls it once during session initialization. On
this call, the governor should initialize itself for the user’s QMF session.
Toward this end, QMF passes to the governor the rows in the resource control
table for the user’s resource group. Resource groups and control tables were
described in “How the Governor Knows What the Resource Limits Are” on
page 231.

Within QMF are exits, each marking the beginning or end of some activity.
When control reaches one of these exits, QMF calls the governor. The first
such exit is the one, just described, for the governor’s initialization. The last is
part of session termination. On this last call, the governor can do whatever is
needed for its own termination. It might, for instance, release storage it no
longer needs.

Between the first and last calls, QMF can call the governor many times from
many different exits. Some of these calls, for example, precede the execution
of a QMF command. The types of calls are described in detail in “How and
When QMF Calls the Governor Exit Routine” on page 241.

Figure 90 shows the program structure of a governor exit routine:

Figure 90. CMS processing that interacts QMF with the governor exit

Controlling QMF Resources Using a Governor Exit Routine

240 Installing and Managing QMF on VM

How and When QMF Calls the Governor Exit Routine
QMF issues standard assembler CALL statements to the governor exit routine.
The term function calls describes the points during the QMF session when
these CALL statements are issued.

Points at Which QMF Calls the Governor
Function calls to the governor exit routine either precede or follow a specific
type of QMF activity. For example, QMF passes control to the governor exit
before and after running a command.
v At the beginning and end of a QMF session

QMF calls the governor exit routine during initialization for a QMF session,
after the governor exit routine is loaded into the user’s virtual storage. The
governor initializes itself for the session using the resource control
information contained in rows passed from QMF’s query of
Q.RESOURCE_VIEW.
The governor exit routine is also called just before the session ends, when it
can perform whatever is needed to discontinue its activities for the user’s
session. For example, it can release virtual storage.

v After a new connection is made to the database
When a user issues the CONNECT command, the Q.PROFILES table and
the resource control table are re-initialized. The governor is called because
the resource control values might have changed if a different CONNECT ID
was used. All unfinished database operations are completed before the
connection is made.
Although the governor exit routine cannot cancel a connection to the
database, you can write statements in your own routine that cancel the
user’s session on the next activity, if the resource information passed to the
governor indicates that the user is not allowed to use QMF.

v Before and after running a command
QMF calls the governor before and after running all commands. There can
be several calls for the start of commands before a call for the completion of
a command. For example, a RUN PROC command results in two “start
command” calls and two “end command” calls when there is a RUN
QUERY command embedded in the procedure.

v Before database activity starts and when it ends
QMF calls the governor just before it begins a variety of database
operations, such as PREPARE, OPEN, and FETCH; QMF also calls the
governor upon completing any database activity.
When QMF retrieves data, it fits the maximum number of rows possible
into a buffer that has a minimum size of 4K. QMF calls the governor once
upon retrieving the first row into the buffer and once upon either filling the
buffer or reaching the end of the table, whichever comes first.
The following QMF commands always force database activity:

Controlling QMF Resources Using a Governor Exit Routine

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 241

– DISPLAY table commands
– The EDIT TABLE command for the Table Editor
– The ERASE command for a table
– The EXPORT TABLE command
– The IMPORT command to a table
– The PRINT command for a table or view
– The RUN QUERY command (for all types of queries)
– The SAVE DATA command (which forces an implicit CREATE TABLE

query)
– Scrolling commands that result in retrieving data when a report is being

displayed
– Data retrieval operations (fetch operations)

v Before and after the user makes a choice
At various points in a session, QMF waits for users to make decisions. The
time QMF spends waiting is known as think time.
QMF calls the governor before performing an operation that leads to think
time, such as displaying a panel for a user-entered selection. As soon as the
user enters a response and ends the period of think time, QMF calls the
governor.
Any of the following activities leads to think time:
– Displaying a QMF panel between running commands
– Displaying help panels
– Displaying confirmation prompt panels; for example, when the user is

about to erase something by issuing the SAVE command that replaces
the object

– Displaying command prompt panels; for example, when the user enters
DISPLAY ?

– Displaying the LIST prompt panel
– Displaying the GDDM interactive chart utility panels for QMF charting

functions
– Running EDIT PROC or EDIT QUERY functions

v At initiation of an abnormal ending
QMF calls the governor just before it initiates an abnormal ending. The
governor can then perform the cleanup necessary before the abend
processing begins. The actions might be similar to those during the session
end.

For the IBM-supplied governor exit routine, QMF uses the GOVFUNCT field
of the DXEGOVA control block to pass information about the type of function
call. The fields of this control block are explained in Table 37 on page 245.

Controlling QMF Resources Using a Governor Exit Routine

242 Installing and Managing QMF on VM

Each type of function call has a specific value for the GOVFUNCT field. These
values are shown in Figure 92 on page 244.

What Happens Upon Entry to the Governor Exit Routine
QMF calls the governor exit routine by branching to the address of the entry
point DSQUnGV2. Upon entry to the governor exit routine:
v Register 1 contains the address for the parameter list. Figure 91 shows the

contents of Register 1 on a call to the governor.
The parameter list contains two addresses: The address of the DXEXCBA
control block and the address of the DXEGOVA control block.

v Register 13 contains the address of the QMF save area
v Register 14 contains the return address
v Register 15 contains the address of the entry point (DSQUnGV2)

Establishing Addressability for Function Calls
Because QMF always branches to an entry point named DSQUnGV2 when it
calls the governor, you can’t use this entry point to determine the type of
function call; instead, use the GOVFUNCT field of the DXEGOVA control
block.

In the IBM-supplied governor exit routine, GOVFUNCT contains a character
value that identifies the type of function call. This character value, in turn,
equates to a 1-byte binary integer from 1 to 10. For example, on a function call
for the start of a QMF session, the value of GOVFUNCT is GOVINIT, which
equates to a numeric value of X'1'.

Both character and numeric values for each type of function call are shown in
Figure 92 on page 244. (If you need more information about the activity that
occurs at each function call, see “Points at Which QMF Calls the Governor” on
page 241.)

Register 1

(on entry to
governor exit)

Address List

DXEXCBA

DXEGOVA

Figure 91. Contents of Register 1 on a call to the governor exit routine

Controlling QMF Resources Using a Governor Exit Routine

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 243

To improve performance in your own exit routine, you can follow the
convention the IBM-supplied governor uses, and equate the values of
GOVFUNCT with binary numbers by using a branch table. QMF uses the
branch table to find the addresses to branch to for each type of function call.

Figure 93 shows an example of some code that identifies branch addresses for
the IBM-supplied governor.

Because the governor program runs on the same program level as the main
QMF program, ensure you preserve the QMF environment at every function
call.

Use the standard assembler RETURN statement to return control to QMF after
every call.

Passing Resource Control Information to the Governor Exit
If you have not done so already, read the following sections, which describe
how to set up resource control information in a format the governor can use:

GOVINIT EQU 1 -------- INITIALIZATION OF SESSION
GOVTERM EQU 2 -------- TERMINATION OF SESSION
GOVSCMD EQU 3 -------- START COMMAND
GOVECMD EQU 4 -------- END COMMAND
GOVCONN EQU 5 -------- CONNECT COMMAND
GOVSDBAS EQU 6 -------- START DATA BASE
GOVEDBAS EQU 7 -------- END DATA BASE
GOVSACTV EQU 8 -------- SUSPEND QMF ACTIVITY
GOVRACTV EQU 9 -------- RESUME QMF ACTIVITY
GOVABEND EQU 10 -------- QMF ABEND OPERATION

Figure 92. Character and numeric values for the GOVFUNCT field of DXEGOVA

XR R07,R07 ZERO REGISTER 7
IC R07,GOVFUNCT IDENTIFY EXIT TYPE
SLL R07,2 DETERMINE BRANCH TABLE OFFSET
LA R15,FUNBTAB(R07) GET BRANCH TABLE ADDRESS
L R15,0(R15) GET BRANCHING ADDRESS
BALR R14,R15 BRANCH TO THE APPROPRIATE CODE

. . .

. . .

. . .

. . .
FUNBTAB DS 0F

DC A(BYPASS) VALUE "0" - UNUSED
DC A(INIT) VALUE "1" - QMF INITIALIZATION

. . .

. . .

. . .

Figure 93. Identifying the type of function call and branching to the appropriate address

Controlling QMF Resources Using a Governor Exit Routine

244 Installing and Managing QMF on VM

v “How a Governor Exit Routine Controls Resources” on page 230
v “Defining Your Own Resource Limits” on page 233

QMF passes resource control information using two control blocks named
DXEGOVA and DXEXCBA. These are shown in Figure 94 on page 248 and
Figure 96 on page 256. Their addresses are passed to the governor on every
function call. The DSECT DXEXCBA (shipped as DXEXCBA) and the DSECT
DXEGOVA (shipped as DXEGOVA) are located in the DSQUSERE MACLIB.
Include these DSECTs in your program using the assembler COPY statement.

Structure of the DXEGOVA Control Block
The DXEGOVA control block passes to the governor exit routine information
about a user’s resource constraints. This information is located in a resource
control view called Q.RESOURCE_VIEW. See “How the Governor Knows
What the Resource Limits Are” on page 231 for more information on how this
view is used.

Table 37 provides the name of each field in the DXEGOVA control block, with
its data type and purpose. Each data type is listed as it appears in the DS
statement that defines the field in the DSECT. For example, for the
GOVOROWS field, the letter F indicates that this field contains a full-word
integer. The DS statement for GOVOROWS appears as GOVOROWS DS F.

The layout of the control blocks and the information they contain is the same
for QMF support in all operating environments. Therefore, some of the
information shown in the control blocks might not apply to QMF in the
VM/ESA environment because it is used in only OS/390 or VSE/ESA
operating environments.

Table 37. Fields of the DXEGOVA interface control block to the governor

Field Data
Type

Purpose

GOVCADDR A Contains the address to branch to for canceling an activity.
The code to use this field appears in “Canceling User
Activity” on page 259.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 245

Table 37. Fields of the DXEGOVA interface control block to the governor (continued)

Field Data
Type

Purpose

GOVFUNCT XL1 Indicates the type of function call. Possible values are:
v GOVINIT (session initialization); GOVTERM (session

termination)
v GOVSCMD (start command); GOVECMD (end

command)
v GOVCONN (connect command)
v GOVSDBAS (start database retrieval operation);

GOVEDBAS (end database retrieval operation)
v GOVSACTV (suspend QMF activity for user think time);

GOVRACTV (resume QMF activity)
v GOVABEND (exit for abnormal ending)

Code to use this field appears in “Establishing
Addressability for Function Calls” on page 243.

GOVGROUP CL16 Contains the name of the user’s resource group. This value
can change after a CONNECT command, when QMF
initializes the Q.RESOURCE_TABLE and the Q.PROFILES
table. For more on resource groups, read “How the
Governor Knows What the Resource Limits Are” on
page 231.

GOVNAME CL8 Contains the name of the control block (DXEGOVA). This
value does not change during a session. It can serve as an
eye catcher in a dump of virtual storage.

GOVOROWS F Contains the number of rows for the user’s resource group
in the resource control table. This value can change after a
CONNECT command.

GOVRESC 10XL128 Contains information from the resource control table. This
information is divided into 10 contiguous blocks of storage
that are structured like DSECT GOVRESCT. A block
contains information about one of the rows for the user’s
resource group in the QMF resource control table.
v If the resource group has less than 10 rows, unused

blocks are those at the end of the field.
v If the resource group has more than 10 rows, use the

field named GOVNEXTR (in the GOVRESCT DSECT) to
access additional rows.

All blocks are part of a chain, as described in “Addressing
the Resource Control Table” on page 249. The value of this
field does not change during a session.

Controlling QMF Resources Using a Governor Exit Routine

246 Installing and Managing QMF on VM

Table 37. Fields of the DXEGOVA interface control block to the governor (continued)

Field Data
Type

Purpose

GOVRESCT DSECT Describes the block of storage containing information on
one of the user’s rows of the resource control table. All such
blocks are linked together in a chain discussed in
“Addressing the Resource Control Table” on page 249. The
following fields are within the block:
GOVOPTN(CL16)

Contains the value in the RESOURCE_OPTION
column of the resource control table. Blocks in the
chain are ordered alphabetically on the content of
this field.

GOVNULLI(H)
Null indicator for INTVAL column.

GOVINTVL(F)
Value of INTVAL column.

GOVNULLF(H)
Null indicator for FLOATVAL column.

GOVFLOAT(D)
Value of FLOATVAL column.

GOVNULLC(H)
Null indicator for CHARVAL column.

GOVCHLEN(H)
Length of data in CHARVAL column.

GOVCHAR(CL80)
Value in CHARVAL column.

GOVNEXTR(A)
Points to the block of data for the next resource
table row. Contains zero if this is the last row.

Any null indicator in the structure is zero when its
corresponding column value isn’t null. If the column value
is null, the indicator is not zero.

GOVSQLCA A Address of the SQL communications area (SQLCA), which
holds information about the SQL SELECT query on the
resource control view (Q.RESOURCE_VIEW).

GOVSQLRC F Return code from the SQL SELECT query on the resource
control view (Q.RESOURCE_VIEW). If it is nonzero, the
query failed and no rows are passed to the governor.

GOVUSERS CL2048 Scratchpad area, retained between session calls. QMF does
not change this value.

Figure 94 on page 248 shows the structure of the DXEGOVA control block.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 247

*** 00001000
* * 00002000
* CONTROL BLOCK NAME: DXEGOVA * 00003000
* * 00004000
* FUNCTION: * 00005000
* * 00006000
* THIS IS THE INTERFACE CONTROL BLOCK BETWEEN QMF AND * 00007000
* THE GOVERNOR EXIT ROUTINE. * 00008000
* * 00009000
* STATUS: VERSION 7 RELEASE 1 LEVEL 0 * 00010000
* * 00011000
* INNER CONTROL BLOCKS: NONE * 00012000
* * 00013000
* CHANGE ACTIVITY: NA * 00014000
* * 00015000
* CHANGE DATE: NA * 00016000
* * 00017000
*** 00018000
* 00019000
DXEGOVA DSECT 00020000

DS 0D 00021000
GOVNAME DS CL8 -- CONTROL BLOCK IDENTIFICATION 00022000

SPACE 00023000
GOVEXCTL DS XL72 -- EXIT CONTROL 00024000

ORG GOVEXCTL 00025000
GOVFUNCT DS XL1 ----- FUNCTION CODE 00026000
GOVINIT EQU 1 -------- INITIALIZATION OF SESSION 00027000
GOVTERM EQU 2 -------- TERMINATION OF SESSION 00028000
GOVSCMD EQU 3 -------- START COMMAND 00029000
GOVECMD EQU 4 -------- END COMMAND 00030000
GOVCONN EQU 5 -------- CONNECT COMMAND 00031000
GOVSDBAS EQU 6 -------- START DATA BASE 00032000
GOVEDBAS EQU 7 -------- END DATA BASE 00033000
GOVSACTV EQU 8 -------- SUSPEND QMF ACTIVITY 00034000
GOVRACTV EQU 9 -------- RESUME QMF ACTIVITY 00035000
GOVABEND EQU 10 -------- QMF ABEND OPERATION 00036000
GOVPAD10 DS CL7 ----- RESERVED FIELD 00037000

SPACE 00038000
GOVCADDR DS A ----- ADDR TO BRANCH TO FOR CANCELLATION 00039000

SPACE 00040000
GOVOROWS DS F ----- NUMBER OF OPTION ROWS RETRIEVED 00041000

SPACE 00042000
GOVSQLRC DS F ----- RESOURCE TABLE SQL RETURN CODE 00043000

SPACE 00044000
GOVSQLCA DS A ----- ADDRESS OF SQLCA FOR ERROR CONDITION 00045000

SPACE 00046000
GOVGROUP DS CL16 ----- GROUP NAME 00047000
GOVPAD20 DS CL32 ----- RESERVED FIELD 00048000

Figure 94. The DXEGOVA control block (Part 1 of 2)

Controlling QMF Resources Using a Governor Exit Routine

248 Installing and Managing QMF on VM

Addressing the Resource Control Table
The GOVGROUP field of the DXEGOVA control block holds the value of the
RESOURCE_GROUP column of Q.RESOURCE_VIEW, the view defined on the
resource control table.

All information about the user’s resource options is stored in blocks; there is
one block for each of the user’s resource options you decide to monitor.

The first block defines the first resource option and is stored in the DXEGOVA
control block as the DSECT GOVRESCT. This DSECT is shown in the last part
of Figure 94. The address of this DSECT is defined in the DXEGOVA field
GOVRESC. You can establish addressability to the GOVRESC field in your
own routine using the address of the GOVRESCT DSECT.

Negative half-word integers in the DSECT represent null values entered for
INTVAL, CHARVAL, or FLOATVAL in the Q.RESOURCE_VIEW; zero or
positive half-words indicate a value in that column of Q.RESOURCE_VIEW.

The blocks that store the resource control information form a chain in which a
pointer in one block points to the beginning of the next block (the next
resource option) in the chain. For example, the GOVNEXTR DS statement in
the GOVRESCT DSECT in Figure 94 contains the address of the next block in
the chain of resource control information. Each block in the chain has a

SPACE 00049000
GOVUCTL DS XL304 -- USER CONTROL AREA 00050000

ORG GOVUCTL 00051000
GOVUSERS DS CL2048 ----- USER SCRATCH PAD AREA 00052000
GOVPAD30 DS CL48 ----- RESERVED FIELD 00053000

SPACE 00054000
DS 0D 00055000

GOVRESC DS 10XL128 -- RESOURCE CONTROL TABLE 00056000
ORG GOVRESC 00057000

GOVRESCT DSECT -- RESOURCE CONTROL TABLE MAPPING 00058000
DS 0D 00059000

GOVOPTN DS CL16 ----- RESOURCE OPTION 00060000
GOVNULLI DS H ----- INTEGER NULL INDICATOR 00061000
GOVPAD40 DS CL2 ----- RESERVED FIELD 00062000
GOVINTVL DS F ----- INTEGER OPTION REPRESENTATION 00063000
GOVNULLF DS H ----- FLOATING POINT NULL INDICATOR 00064000
GOVPAD50 DS CL6 ----- RESERVED FIELD 00065000
GOVFLOAT DS D ----- FLOATING POINT OPTION REPRESENTATION 00066000
GOVNULLC DS H ----- CHARACTER NULL INDICATOR 00067000
GOVCHLEN DS H ----- LENGTH OF THE CHARACTER OPTION 00068000
GOVCHAR DS CL80 ----- CHARACTER OPTION REPRESENTATION 00069000
GOVNEXTR DS A ----- POINTER TO NEXT RESOURCE CONTROL ROW 00070000

Figure 94. The DXEGOVA control block (Part 2 of 2)

Controlling QMF Resources Using a Governor Exit Routine

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 249

GOVNEXTR DS statement. In the final block, the GOVNEXTR DS statement
contains zeros to mark the end of the user’s resource control information.

Figure 95 shows a part of the code for the IBM-supplied governor that
processes the blocks of resource control information. In this code, GOVRESC
points to the GOVRESCT DSECT.

Structure of the DXEXCBA Control Block
The DXEXCBA control block passes to the governor exit routine information
about the state of the QMF session upon entry to the governor. The governor
combines this information with information on resource limits (contained in
DXEGOVA) to determine when the resource limits are exceeded and when to
cancel the user’s activity.

L R08,GOVOROWS GET NUMBER OF RESOURCE TABLE ROWS
LTR R08,R08 ANY RESOURCE TABLE ROWS?
BZ ENDRESST NO, SKIP RESOURCE INITIALIZATION
LA R05,GOVRESC GET ADDRESS OF 1ST RESOURCE ROW
USING GOVRESC,R05 BASE RESOURCE RECORD ENTRY

LOOK4RES DS 0H MAIN LOOP THRU RESOURCE ROWS
LTR R05,R05 ANY MORE RESOURCE TABLE ROWS?
BZ ENDRESST NO, END RESOURCE INITIALIZATION...
L R05,GOVNEXTR GET ADDRESS ON NEXT RESOURCE ROW
B LOOK4RES BEGIN NEXT ITERATION

ENDRESST DS OH -- BRANCH HERE WHEN FINISHED READING ALL ROWS

. . .

. . .

. . .

. . .

DXEGOVA DSECT

. . .

. . .

. . .

GOVRESC DS 10XL128 -- RESOURCE CONTROL TABLE
ORG GOVRESC

GOVRESCT DSECT -- DSECT FOR RESOURCE ROW
. . .
. . .
. . .

GOVNEXTR DS A -- POINTER TO NEXT RESOURCE ROW
. . .
. . .
. . .

Figure 95. Resource initialization

Controlling QMF Resources Using a Governor Exit Routine

250 Installing and Managing QMF on VM

For example, you can define a resource option that does not allow user
JONES to use the EDIT TABLE command. You can then write your governor
exit routine so that, if the XCBQRYP field of the DXEXCBA control block
indicates an EDIT TABLE command, the governor exit calls the QMF
cancelation service to cancel the command.

Table 38 provides the name of each field in the control block, with its data
type and purpose. Each data type is listed as it appears in the DS statement
that defines the field in the DSECT.

The layout of the control blocks and the information they contain is the same
for QMF support in all operating environments. Therefore, some of the
information shown in the control blocks might not apply to QMF in the
VM/ESA environment because it is used in only OS/390 or VSE/ESA
operating environments.

Table 38. Fields of the DXEXCBA interface control block to the governor

Field Data
Type

Purpose

XCBACTIV CL1 Indicates the current type of database activity. Applies only
when rows are being retrieved for the current data object.
Does not apply when rows are retrieved for an IMPORT
command. Possible values are:
1 OPEN being run
2 FETCH being run
3 PREPARE being run
4 DESCRIBE being run
5 CLOSE being run

This field changes whenever the type of database activity
changes. You can use the value when the governor receives
control asynchronously.

XCBAIACT CL1 Tells whether the current command is running interactively:
1 Interactive
0 Noninteractive (batch)
Interactive commands display prompt and status panels.
This field changes value on any function call for the start of
the command; it is reset to zero when the command
completes.

XCBAUTH CL8 Contains the user’s SQL authorization ID. This field can
change on a CONNECT command.

XCBCAN CL1 Indicates whether the user or the governor requested
cancelation of the current command. The field is set to 1 if
cancelation is requested. Zero indicates that no cancelation
was requested. This field is reset to zero before the function
call for the command’s termination.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 251

Table 38. Fields of the DXEXCBA interface control block to the governor (continued)

Field Data
Type

Purpose

XCBCLOC CL18 Contains the current location name.

XCBCMDL F Contains the length of the string containing the command
to be run. This is the string addressed by XCBCMDP field.
This field changes values when XCBCMDL changes values.

XCBCMDP A Points to the string containing the command to be run. This
field is reset when QMF validates a command at some
point before the function call for the start of the command.

The field is reset to zeros before the function call when the
command completes. You might need to take this into
account for asynchronous processing. If a command
synonym is being run, it appears here.

XCBCVERB CL18 Holds the verb of the current command. This field changes
value on the function call for the start of a command. The
value does not change between calls.

XCBDBMG CL1 Identifies the database manager. This value is set to 1 for
DB2 for VM, and to 2 for DB2.

XCBEMODE CL1 Indicates the current mode of the QMF session:
1 Interactive
2 Noninteractive (batch or server)
This value does not change during a session. See
“Specifying an Interactive or Noninteractive QMF Session
(DSQSMODE)” on page 83 for more information on starting
a noninteractive session.

XCBERRET F Contains the return code to be used in the default
cancelation message. For more information on this message,
see “Providing Messages for Canceled Activities” on
page 260.

XCBINCI
(ISPF only)

CL1 Indicates if the current command is being run through the
command interface. The field is set to 1 when it is; zero
when it isn’t. For more information about the command
interface, see Developing QMF Applications.

XCBINPRC CL1 Tells the governor where a command is being run: 1
indicates it is running in a procedure or LIST command; 0
indicates it is being run another way.

XCBKPARM CL1 Tells the governor how the DSQSDBCS program parameter
is set. The value does not change during a session. Possible
values are: 0 for Latin letters; 1 for double-byte character
set (DBCS) data. See “Setting Printing for Double-Byte
Character Set Data (DSQSDBCS)” on page 90 for more
information about this parameter.

Controlling QMF Resources Using a Governor Exit Routine

252 Installing and Managing QMF on VM

Table 38. Fields of the DXEXCBA interface control block to the governor (continued)

Field Data
Type

Purpose

XCBLOGM CL1 Indicates if QMF should log a message in the QMF trace
data set. Use a value of 1 to log the message, and 0 to not
log the message. Message logging is described in
“Providing Messages for Canceled Activities” on page 260.
Using the QMF trace facility is described in “Using the
QMF Trace Facility” on page 300.

XCBMGTXT CL78 Contains the text for a message. The message can be logged
in the QMF trace data, displayed on the screen, or both. For
more information on how this field is used, see “Providing
Messages for Canceled Activities” on page 260.

XCBMSGNO
(ISPF only)

CL8 Contains the message ID for an ISPF message definition.
The field can be used for a message to be logged in the
DSQDEBUG file, displayed on a user’s screen, or both. For
more information about XCBMSGNO use, see “Providing
Messages for Canceled Activities” on page 260.

XCBNAME CL8 Contains the control block name (DXEXCBA). Can serve as
an eye catcher in a dump of virtual storage. This value does
not change during a session.

XCBNLANG CL1 Identifies NLFs being used. (For a list of NLIDs used, see
Table 5 on page 19.) Value does not change during a session.

XCBPANEL
(ISPF only)

CL8 Contains the panel ID for the message help panel for a
cancelation message. For more information about
XCBPANEL use, see “Providing Messages for Canceled
Activities” on page 260.

XCBPLAN CL8 Contains the application plan ID for QMF. This value does
not change during a session.

XCBQCE F Contains the decimal equivalent of the value of the
SQLDERRD(4) field in the SQLCA returned from DB2 for
VM. The integer part of this decimal appears in the
database status (“relative cost estimate”) panel. The value is
set to zero on the function call when the command finishes
running. The field contains zeros if the operation is not a
data retrieval query. The query cost estimate is not available
from SQL V1, DB2 Parallel Edition V1.2, or DataJoiner
v1.2.1. In these environments the value is set to 1.

XCBQERR CL1 Tells whether a QMF error occurred since the previous
function call: 0 indicates no error occurred; 1 indicates an
error occurred.

XCBQMF CL10 Identifies the current release of QMF. This value is QMF
V7R1.0, and does not change during a session.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 253

|
|

Table 38. Fields of the DXEXCBA interface control block to the governor (continued)

Field Data
Type

Purpose

XCBQRYP A Contains the address of a copy of the query that QMF
passes to the database for execution. The governor inspects
the query upon a call to start database activity (before any
data retrieval) and determines whether to cancel the
activity. The address is set to zero either at the beginning of
the session or when the data object is reset or imported to
temporary storage.

This field contains information only when data retrieval is
requested through one of the commands in the following
list; no information is provided for queries on DB2 for VM
system tables or QMF control tables.
DISPLAY TABLE

EDIT TABLE
ERASE TABLE

EXPORT TABLE
IMPORT TABLE

PRINT TABLE
RUN QUERY

SAVE DATA

XCBREFR CL1 Indicates whether QMF refreshes the screen after returning
from the governor; 1 indicates a refresh; 0 indicates no
refresh.

If your governor displays any screen information, set this
field to 1.

XCBRELN CL2 Identifies the QMF release level. For QMF VM/ESA V7R1,
this is 12. The value does not change during a session.

XCBRGRP CL16 Contains the name of the user’s resource group. This value
can change after a CONNECT command.

XCBROWSF F Reflects the number of rows retrieved into the data object.
Initially zero, this field changes value whenever more rows
are retrieved. All data retrieval is counted whether data is
retrieved from the database or imported from CMS files.

QMF does not reset this field, but the governor can. For
example, if your governor exit routine monitors the number
of database rows retrieved, you can set this field to zero on
the function call for the end of the command that began the
data retrieval.

Controlling QMF Resources Using a Governor Exit Routine

254 Installing and Managing QMF on VM

|
|

Table 38. Fields of the DXEXCBA interface control block to the governor (continued)

Field Data
Type

Purpose

XCBSYST CL1 Identifies the current operating system. The value does not
change during a session, and is usually set to 4, indicating
CMS. Possible values are:
1 for CMS (VM/SP)

3 for TSO (MVS/XA™ or MVS/ESA™)
4 for CMS (VM/XA or VM/ESA)

5 for CICS (VSE/ESA™, MVS/ESA, or MVS/XA)
For information on why the other values here can be valid
for QMF VM/ESA V7, see “Providing the Correct Profile
for the User’s Operating Environment” on page 104.

XCBTRACE CL1 Contains a value for the level of detail at which user exit
activity is traced. Possible values are 0 (least detail), 1, or 2
(most detail). Using this value in a governor is discussed in
“Providing Messages for Canceled Activities” on page 260.

At the start of a session, the value of the TRACE field from
the user’s QMF profile is used here. After that, the value
changes only when the user changes the value of the
TRACE option. For more information on tracing, see “Using
the QMF Trace Facility” on page 300.

XCBUSER CL8 Contains the users VM logon ID.

XCBUSERS CL2048 Scratchpad area in which you can store results you want
the governor to save from one call to the next. It is initially
set to blanks. QMF does not change this value.

Figure 96 on page 256 shows the structure of the DXEXCBA control block.
Table 38 on page 251 provides more information on each field in the control
block.

Controlling QMF Resources Using a Governor Exit Routine

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 255

*** 00001000
* * 00002000
* CONTROL BLOCK NAME: DXEXCBA * 00003000
* * 00004000
* FUNCTION: * 00005000
* * 00006000
* THIS IS THE INTERFACE CONTROL BLOCK BETWEEN QMF AND * 00007000
* EXIT ROUTINES. * 00008000
* * 00009000
* STATUS: VERSION 7 RELEASE 1 LEVEL 0 * 00010000
* * 00011000
* INNER CONTROL BLOCKS: NONE * 00012000
* * 00013000
* CHANGE ACTIVITY: * 00014000
* * 00015000
* * 00016000
*** 00017000
* 00018000
DXEXCBA DSECT 00019000

DS 0D 00020000
XCBNAME DS CL8 -- CONTROL BLOCK IDENTIFICATION 00021000

SPACE 00022000
XCBEXCTL DS XL190 -- EXIT CONTROL 00023000

ORG XCBEXCTL 00024000
XCBAUTH DS CL8 ----- AUTHORIZATION ID 00025000
XCBUSER DS CL8 ----- USER ID 00026000
XCBPLAN DS CL8 ----- PLAN ID 00027000

SPACE 00028000
XCBQMF DS CL10 ----- CURRENT VERSION/RELEASE 00029000

SPACE 00030000
XCBRELN DS CL2 ----- QMF RELEASE LEVEL 00031000

SPACE 00032000
XCBTRACE DS CL1 ----- QMF EXIT TRACE LEVEL 00033000
XCBTOFF EQU C'0' -------- NO TRACING 00034000
XCBTPART EQU C'1' -------- PARTIAL TRACING 00035000
XCBTFULL EQU C'2' -------- FULL TRACING 00036000

SPACE 00037000
XCBSYST DS CL1 ----- OPERATING SYSTEM 00038000
XCBSYSTX EQU C'3' -------- MVS/ESA or XA (TSO,APPC, native) 00039000
XCBSYSTV EQU C'4' -------- CMS/VM/ESA 00040000
XCBSYSTY EQU C'5' -------- CICS (MVS or VSE) 00041000

SPACE 00042000
XCBPAD10 DS CL4 ----- RESERVED FIELD 00043000

SPACE 00044000
XCBNLANG DS CL1 ----- CURRENT NATIONAL LANGUAGE 00045000

SPACE 00046000
XCBKPARM DS CL1 ----- SETTING OF K PARAMETER 00047000
XCBKPARN EQU C'0' -------- LATIN 00048000
XCBKPARY EQU C'1' -------- DBCS 00049000

SPACE 00050000

Figure 96. The DXEXCBA control block (Part 1 of 3)

Controlling QMF Resources Using a Governor Exit Routine

256 Installing and Managing QMF on VM

XCBDBMG DS CL1 ----- DATA BASE MANAGER 00051000
XCBDBMGS EQU C'1' -------- DB2 FOR VM/VSE 00052000
XCBDBMGD EQU C'2' -------- DB2 FOR OS/390 00053000
XCBDBMGW EQU C'3' -------- WORKSTATION DB2 00054000

SPACE 00055000
XCBEMODE DS CL1 ----- CURRENT EXECUTION MODE 00056000
XCBIACTV EQU C'1' -------- INTERACTIVE MODE 00057000
XCBBATCH EQU C'2' -------- BATCH MODE 00058000

SPACE 00059000
XCBAIACT DS CL1 ----- CURRENT INTERACT MODE 00060000
XCBAIACY EQU C'1' -------- INTERACTIVE EXECUTION 00061000
XCBAIACN EQU C'0' -------- NOT INTERACTIVE EXECUTION 00062000

SPACE 00063000
XCBINCI DS CL1 ----- CURRENT COMMAND INTERFACE STATE 00064000
XCBINCIY EQU C'1' -------- COMMAND INTERFACE ACTIVE 00065000
XCBINCIN EQU C'0' -------- COMMAND INTERFACE NOT ACTIVE 00066000

SPACE 00067000
XCBINPRC DS CL1 ----- PROCEDURE OR LIST CMD EXEC STATE 00068000
XCBPRCY EQU C'1' -------- RUNNING A PROCEDURE OR LIST CMD 00069000
XCBPRCN EQU C'0' -------- NOT RUNNING PROCEDURE OR LIST CMD 00070000

SPACE 00071000
XCBCVERB DS CL18 ----- CURRENT COMMAND VERB 00072000

SPACE 00073000
XCBCAN DS CL1 ----- CANCEL CURRENT COMMAND INDICATOR 00074000
XCBCANN EQU C'0' -------- NO CANCELLATION 00075000
XCBCANY EQU C'1' -------- CANCELLATION IN PROGRESS 00076000

SPACE 00077000
XCBACTIV DS CL1 ----- TYPE OF DATA BASE ACTIVITY 00078000
XCBOPEN EQU C'1' -------- OPEN 00079000
XCBFETCH EQU C'2' -------- FETCH 00080000
XCBPREP EQU C'3' -------- PREPARE 00081000
XCBDESCR EQU C'4' -------- DESCRIBE 00082000
XCBCLOSE EQU C'5' -------- CLOSE 00083000
XCBEXEC EQU C'6' -------- EXECUTE 00084000
XCBEXECI EQU C'7' -------- EXECUTE IMMEDIATE 00085000
XCBPAD20 DS CL9 ----- RESERVED FIELD 00086000

SPACE 00087000
XCBRGRP DS CL16 ----- RESOURCE GROUP NAME 00088000
XCBPAD30 DS CL22 ----- RESERVED FIELD 00089000

SPACE 00090000
XCBCMDP DS A ----- POINTER TO ORIGINAL COMMAND STRING 00091000
* -------- WILL NOT CONTAIN PROMPT VALUES 00092000

SPACE 00093000
XCBCMDL DS F ----- ORIGINAL COMMAND STRING LENGTH 00094000

SPACE 00095000
XCBQCE DS F ----- QUERY COST ESTIMATE VALUE 00096000

SPACE 00097000
XCBROWSF DS F ----- DATA BASE ROWS FETCHED FROM SOURCE 00098000
* -------- SET BY QMF; EXIT MAY RESET 00099000

SPACE 00100000

Figure 96. The DXEXCBA control block (Part 2 of 3)

Controlling QMF Resources Using a Governor Exit Routine

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 257

&rbl;

Storing Resource Control Information for the Duration of a QMF Session
You can use the information passed to the governor on the first call of a
session for subsequent calls to the governor routine. You can use the 2048-byte
scratchpad areas provided in the DXEGOVA and DXEXCBA control blocks to
obtain the necessary storage to hold the resource control information. These
fields can contain any information you need to store. The information persists
from one call to the governor to the next (if a CONNECT call doesn’t change
it).

The IBM-supplied governor uses the code shown in Figure 97 to address
GOVUSERS, the scratchpad area in the DXEGOVA control block. You can use
similar code to address the XCBUSERS scratchpad area in the DXEXCBA
control block, by replacing GOVUSERS in the following example with
XCBUSERS.

XCBQERR DS CL1 ----- QMF ERROR INDICATOR 00101000
XCBQERRN EQU C'0' -------- NO QMF ERROR DETECTED 00102000
XCBQERRY EQU C'1' -------- QMF ERROR DETECTED 00103000
XCBCLOC DS CL18 ----- CURRENT LOCATION NAME 00104000
XCBPAD40 DS CL41 ----- RESERVED FIELD 00105000

SPACE 00106000
XCBQRYP DS A ----- POINTER TO SQL QUERY 00107000
* -------- QUERY LENGTH IS FIRST HALFWORD 00108000

SPACE 00109000
XCBUCTL DS XL432 -- USER CONTROL AREA 00110000

ORG XCBUCTL 00111000
XCBERRET DS F ----- EXIT ERROR RETURN CODE 00112000
XCBMGTXT DS CL78 ----- EXIT ERROR MESSAGE TEXT 00113000
XCBMSGNO DS CL8 ----- ISPF MESSAGE NUMBER 00114000
XCBPANEL DS CL8 ----- ISPF MESSAGE HELP PANEL 00115000
XCBLOGM DS CL1 ----- LOG MESSAGE INDICATOR 00116000
XCBLOGMN EQU C'0' -------- QMF SHOULD NOT LOG MESSAGE 00117000
XCBLOGMY EQU C'1' -------- QMF SHOULD LOG MESSAGE 00118000
XCBREFR DS CL1 ----- REFRESH SCREEN INDICATOR 00119000
XCBREFRN EQU C'0' -------- QMF DOES NOT HAVE TO REFRESH SCR 00120000
XCBREFRY EQU C'1' -------- QMF SHOULD REFRESH SCREEN 00121000
XCBPAD50 DS CL28 ----- RESERVED FIELD 00122000

SPACE 00123000
XCBUSERS DS CL2048 -- USER SCRATCH PAD AREA 00124000
XCBPAD60 DS CL48 ----- RESERVED FIELD 00125000

Figure 96. The DXEXCBA control block (Part 3 of 3)

LA WORKPTR,GOVUSERS
USING WORK,WORKPTR

Figure 97. Establishing addressability to the governor scratchpad area

Controlling QMF Resources Using a Governor Exit Routine

258 Installing and Managing QMF on VM

In Figure 97 on page 258, WORK is the name of a DSECT, and WORKPTR is
equated to general register 4. The WORK DSECT contains the definition for
the fields that hold the information in the scratchpad areas.

The governor might also issue GETMAIN macros to obtain needed storage.

Canceling User Activity
When users reach their resource limits, you can call the QMF cancellation
service to cancel user activity. For example, your governor exit routine might
cancel the following:
v A QMF session during a function call at the start of a QMF session
v The current command during a number of different function calls, and any

commands that start database activity
v Asynchronous commands when a timer is active

The code for canceling either of the first two activities is contained in the
source program DSQUnGV2. To have your governor call the QMF cancellation
service to cancel an activity, branch to the address that appears in the
DXEGOVA control block field named GOVCADDR. Figure 98 shows the
statements that establish addressability to the QMF cancellation service. Before
you use these statements to pass control from the governor exit routine to
QMF, ensure that Register 13 points to a save area for the governor so that
QMF can restore the state of the governor upon returning control.

The cancellation routine returns control to the point addressed by Register 14
(in this case, the command that follows the BALR command). Register 15
contains a return code of 0 if QMF accepted the request to cancel, and a
return code of 100 if the governor requested a cancel when QMF was inactive.

To cancel QMF commands using asynchronous processing, the IBM-supplied
governor uses a timer macro, which returns control to a timer routine. The
timer routine tests whether to cancel the current command. If the command is
to be canceled, it carries out the cancellation. The tests are based on real time
and the number of rows fetched for the current DATA object. The tests can
also be based on the user’s response to a cancellation prompt. Your VM
system should be running with the value for the CP TIMER set to REAL.

The timer routine is the CSECT named TIMEX in the source code for the
IBM-supplied governor. The source code is the member DSQUnGV2 on the
production disk.

L R15,GOVCADDR
BALR R14,R15

Figure 98. Calling the QMF cancellation service

Controlling QMF Resources Using a Governor Exit Routine

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 259

Making an asynchronous cancellation call is very much like pressing PA1.
Cancellation might not be immediate, and it might be impossible. Before the
cancellation takes place, control can return to the governor.

Providing Messages for Canceled Activities
You can use the QMF message service to display a message to users after
their commands are canceled, by using the following fields of the DXEXCBA
control block:

XCBMGTXT
Contains the message text.

XCBERRET
Contains the error return code.

XCBMSGNO
Contains the message ID for an ISPF message definition.

XCBPANEL
Contains the panel ID for an ISPF message help panel definition.

Upon entry to the governor, XCBMGTXT contains blanks, and XCBERRET
contains binary zeros. The value of XCBERRET determines what message is
displayed on the screen:
v If you want to use the message OK, command canceled, leave the zero value

in XCBERRET.
v If you want to use the message A governor exit cancel occurred with

return code xxxxx, use a nonzero value for XCBERRET; this nonzero value
appears in the message in place of xxxxx.

If QMF initialization is canceled by the governor exit, the messages discussed
for XCBMGTXT and XCBERRET appear in the user’s trace data rather than on
the screen.

Set XCBLOGM to 1 to log a message in the user’s trace data for any function
call in your own governor exit routine. If the value of XCBERRET is nonzero,
the IBM-supplied governor logs cancellation messages in the user’s trace data
by setting the XCBLOGM field of the DXEXCBA control block to a value of 1.

The trace facility writes messages to the DSQDEBUG file at a level of detail
determined by the value of the XCBTRACE field of the DXEXCBA control
block. Use a value of zero for XCBTRACE if you don’t want messages to be
logged (although initialization errors are logged unless you don’t allocate a
trace data set). Use a value of 1 or 2 in the U-setting of the trace option to get
trace output. For additional details on using the QMF trace facility, see “Using
the QMF Trace Facility” on page 300.

Controlling QMF Resources Using a Governor Exit Routine

260 Installing and Managing QMF on VM

An ISPF message definition can contain long message text and can designate a
panel ID. To use the long text for a message and the designated panel for
Help, fill XCBMSGNO with the message ID of the message definition and
leave XCBMGTXT and XCBPANEL blank. If no HELP panel was designated
in the message definition, the user receives no message help.

To override the long-message specification in a message definition, place the
new message text in XCBMGTXT. To override the panel specification, place
the new panel ID in XCBPANEL. Placing a panel ID in XCBPANEL also
provides message HELP when the message definition doesn’t specify a panel.

Leave XCBMSGNO blank if there is no relevant ISPF message definition. Then
place the message text in XCBMGTXT, and the HELP panel ID, if any, in
XCBPANEL. Leaving XCBPANEL blank, in this case, leaves the user without
message help.

The governor can log messages in the ISPF log file. It can do this through the
ISPF LOG service discussed in ISPF for VM Dialog Management Services and
Examples.

Messages do not appear on screen if the command is run in batch or
noninteractively from a QMF application.

The IBM-supplied governor does not log messages for termination function
calls.

Assembling and Generating Your Governor Exit Routine

Whether you’re modifying the IBM-supplied governor exit routine or writing
a routine of your own, you need to create a CMS module.

If you’re migrating from an earlier QMF release: Starting QMF from ISPF
with PGM or DCSS form
no longer has an effect on
how to create the governor
module.

Assembling Your Governor Exit
The IBM-supplied governor is written for the H or HLASM assembler. To use
the IBM-supplied governor, IBM supplies governor control blocks (DXEGOVA
and DXEXCBA) in DSQUSERE MACLIB, which is located on the QMF
production disk.

If you assemble the IBM-supplied governor, you need to issue a global maclib
command for the following libraries:
1. DSQUSERE

Controlling QMF Resources Using a Governor Exit Routine

Chapter 13. Controlling QMF Resources Using a Governor Exit Routine 261

2. OSMACRO
3. TSOMAC

For example, use the following statements to assemble the QMF-supplied
governor:

Address CMS "PRODUCT HLASM"
Address CMS "PRODUCT QMF"
Address CMS "GLOBAL MACLIB DSQUSERE DMSSP CMSLIB OSMACRO TSOMAC "
Address CMS "HLASM DSQUEGV2"

Building a Module File or Creating a Load Library Member
After you assemble your governor, a TEXT file is created. You then need to
build a relocatable module file named DSQUEGV2 or create a member of a
CMS LOADLIB.

Important: If you are using your own governor, the DSQUEGV2 file can run
in 31-bit addressing mode. If you are using the IBM-supplied
governor, DSQUEGV2 must run in 24-bit mode.

For example, use the following REXX statements to build a module file for the
IBM-supplied governor:

Address CMS "LOAD DSQUEGV2 (RLDSAVE AMODE 24 RMODE 24"
Address CMS "GENMOD DSQUEGV2"

If you choose to create a member of a CMS LOADLIB:
1. Create a SYSLIN file that contains the following statements:

INCLUDE DSQUEGV2
ENTRY DSQUEGV2

2. Allocate the SYSLIN and INCLUDE files using the following CMS
commands:
FILEDEF SYSLIN DISK SYSLIN CONTROL A
FILEDEF DSQUEGV2 DISK DSQUEGV2 TEXT A

3. Create the module as a member of a new or existing CMS load library
using the following CMS command:
LKED DSQUEGV2 (NCAL LET REUS NAME DSQUEGV2 LIBE USERLIB)

Controlling QMF Resources Using a Governor Exit Routine

262 Installing and Managing QMF on VM

Chapter 14. Customizing a Remote Database Connection

You can customize a remote database connection to allow your users to query
relational data on remote systems and build reports or charts to present the
data on their local system. You can establish connections to any of the DB2 for
OS/390 or DB2 for VM databases within a distributed network. (QMF users
cannot connect to OS/400® locations.) You can establish this connection
during QMF initialization or from within a QMF session. You can establish
connections between like (for example, DB2 to DB2) and unlike (for example,
DB2 for OS/390 to DB2 for VM) locations.

QMF enables you to access remote data through the distributed database
solutions as implemented by both DB2 for OS/390 and DB2 for VM. Those
solutions are based on Distributed Relational Database Architecture (DRDA)™.
DRDA is an open set of protocols and formats enabling transparent access to
local and remote data belonging to like or unlike relational database
management systems (RDBMSs).

When your users are connected to a remote location, all the SQL statements
within their applications are directed to that database for processing. They can
access the data and QMF objects at that location’s database in much the same
way they access data and objects without a remote unit of work connection.
QMF continues to use programs that reside at the same system in which QMF
is executing. This type of distributed connection is called remote unit of work.
(For a schematic diagram, see Figure 99 on page 264.)

Quick Start

Table 39 outlines how you can customize a remote database connection for
your users.

For more information on any of the tasks listed, see the page shown at the
right of the table.

Table 39. Customizing a remote database connection

To do this task: See:

Determine the type of database connections your users need depending on which database
they need to access.

Page 264

Verify the connections required for remote unit of work. Page 266

Prepare the remote location for access by your users. Page 267

© Copyright IBM Corp. 1983, 2000 263

Table 39. Customizing a remote database connection (continued)

To do this task: See:

Enable your users to access a remote database by preparing the user profiles and the
database location involved.

Page 271

Enable access to your location for other DBAs to set up remote unit of work from their
location to yours.

Page 275

Determining the Remote Database Connection Needed

In DB2 for VM, you can use remote unit of work connections to another DB2
for VM database or to a remote DB2 database application server.

Remote unit of work and distributed unit of work can be used together. (For a
schematic diagram, see Figure 99.)

Notes:

1. The application requester is the database management system (DBMS)
code that handles the QMF end of the distributed connection.

Figure 99. Distributed connection types using remote unit of work and distributed unit of work from
QMF/VM

Customizing a Remote Database Connection

264 Installing and Managing QMF on VM

2. The application server is the DBMS code that supports requests from
application requesters and in QMF is called the current location.

3. The secondary server supports requests from the application server and
does not use Distributed Relational Database (DRDA) database support
protocols.

See DRDA Connectivity Guide for more information.

Connecting with Remote Unit of Work
Using remote unit of work, you can connect to and access relational data at a
remote DB2 location or a remote DB2 for VM location. The remote location is
called the server. When connected to the server, you can access the data and
QMF objects at that location as you would access the data and objects without
a remote unit of work connection.

Connecting with DB2-to-DB2 Distributed Unit of Work
From a DB2 for VM database, you can connect to a DB2 database. From there,
you can connect to another DB2 database and set up a DB2-to-DB2 connection
using distributed unit of work. With distributed unit of work, the application
program need not connect to a different database when it accesses data from
another location. Instead, the application specifies the other location within a
three-part name in a query or QMF command.

Specifying a Table or View with a Three-part Name in DB2
If you are connected to a DB2 subsystem that has distributed data support,
you can specify a table or view with a three-part name. QMF remains
connected to a single DB2 location, and this location sends all SQL statements
that use three-part names (or aliases for them) to the DB2 location referred to
in the three-part name. That location then processes the SQL statement.

Restrictions: The following restrictions apply when referring to a table or
view using a three-part name:
v From a remote DB2 server, you cannot reference a local object using a

three-part name.
v When DB2 for VM is the current location:

– The location in the three-part name must match the current location name
(the name of the application server to which the QMF session is
currently connected).

– QMF commands, prompted query, and QBE do not support three-part
names.

Directing a Query Using Three-part Names
Establishing a connection to a specified location constitutes most of
remote-unit-of-work support. If that connection is made, QMF functions
largely as it did before remote-unit-of-work support. Consequently, three-part

Customizing a Remote Database Connection

Chapter 14. Customizing a Remote Database Connection 265

name support is still provided. If the current location is a DB2 location that
supports three-part names, SQL statements using three-part names can direct
a query to yet another DB2 location.

Verifying the Connections Necessary for Remote Unit of Work

To ensure that the users can access a remote system, connections between the
local and remote systems must be in place.

Checking DB2 for VM Connections
To connect from DB2 for VM to a remote system, you need to ensure that the
remote systems have been defined (their LU names are registered).

When an DB2 for VM application requests data from a remote system, DB2
for VM searches the VM Communications Directory to find information about
the remote system. You need to check that the following items are available to
DB2 for VM:
v Gateway name—local logical unit (LU) name
v Remote LU name
v Remote transaction program name (TPN)
v Conversation security level required by the application server
v User ID identifying application requester at the application server
v Password authorizing application requester at the application server
v Mode name describing session characteristics to use to communicate with

the application server
v RDB_NAME

For the DB2 application server to process distributed database requests, check
for the following information:
v The application server is defined to the local communication subsystem.
v The necessary security is in place.

For more information about the DB2 for VM connections necessary for remote
unit of work, see DRDA Connectivity Guide

Checking DB2 for VM Connections
To connect from DB2 to a remote system, you need to ensure that the remote
systems have been defined.

When a DB2 application requests data from a remote system, DB2 searches
the communications database tables to find information about the remote
system. You need to check that the following items are available to DB2:
v Logical unit (LU) name and transaction program name (TPN)

Customizing a Remote Database Connection

266 Installing and Managing QMF on VM

VTAM® must contain the LU name for each server
v Network security information required by the remote site
v Session limits and mode names used to communicate with the remote site

For the DB2 application server to process distributed database requests, check
for the following information:
v The application server is defined to the local communication subsystem
v Each potential secondary server destination is defined
v The necessary security is in place

For more information about the DB2 connections necessary for remote unit of
work, see DRDA Connectivity Guide

Preparing a Non-DB2 for VM Location for Access by QMF VM Users

For users to access the remote location, you must:
v Create command synonym tables
v Prepare QMF to support the DPRE command
v Prepare QMF to support other commands
v Create function key tables, if necessary
v Update QMF governor control tables, if necessary
v Install the National Language feature in the QMF server, if necessary

Tip on naming conventions: Develop consistent naming conventions for the
objects stored in a location. Your users then
know where any particular object is located. If
you establish and use a naming convention as
described, you and your users can easily:

v List all objects of the same application at a given location
v List all objects of the same application in all locations

Creating Command Synonym Tables
You need to create command synonym tables in the remote locations to
provide your users with commands that work remotely. The commands
operate in the environment at which the users are logged on; therefore, users
logged on in VM and connected to a remote DB2 database cannot use QMF
commands that are defined as CMS commands.

You can create a Q.COMMAND_SYN_CMS table in the non-OS/390 location,
to be used when your CMS users are connected to that location.

You create these tables as you do any other command synonym table. Be sure
to include the name of the synonym table in the Q.PROFILES table. For more
information about using the Q.PROFILES table, see “Reading the Q.PROFILES
Table” on page 100.

Customizing a Remote Database Connection

Chapter 14. Customizing a Remote Database Connection 267

Sample Remote Server Command Synonym Table for the CMS
Environment
If you have QMF installed in a workstation database server, this synonym
table is provided for you. If QMF is installed in a DB2 for VM server, the
synonym table is not provided.

The statements shown in Figure 100 are examples of how to define a
command synonym table in a non-OS/390 remote data base server for the
CMS environment.

CREATE TABLE Q.COMMAND_SYN_CMS
("VERB" CHAR(18) NOT NULL,
"OBJECT" VARCHAR(31),
"SYNONYM_DEFINITION" VARCHAR(254) NOT NULL,
"REMARKS" VARCHAR(254))

IN DSQDBCTL.DSQTSSYN;
COMMENT ON TABLE Q.COMMAND_SYN_CMS IS

'QMF CMS COMMAND SYNONYM TABLE';
COMMENT ON COLUMN Q.COMMAND_SYN_CMS.VERB IS

'NAME OF THE VERB';
COMMENT ON COLUMN Q.COMMAND_SYN_CMS.OBJECT IS

'NAME OF THE OBJECT';
COMMENT ON COLUMN Q.COMMAND_SYN_CMS.SYNONYM_DEFINITION IS

'DEFINITION OF SYNONYM';
COMMENT ON COLUMN Q.COMMAND_SYN_CMS.REMARKS IS

'OPTIONAL COMMENTS ABOUT SYNONYM';

CREATE UNIQUE INDEX Q.COMMAND_SYN_CMSX ON Q.COMMAND_SYN_CMS
("VERB" ASC , "OBJECT" ASC)

USING VCAT QMFCAT
SUBPAGES 8
CLOSE NO;

GRANT SELECT ON Q.COMMAND_SYN_CMS TO PUBLIC;

INSERT INTO Q.COMMAND_SYN_CMS
VALUES('DPRE',NULL,'RUN Q.DSQAER2P',

'QMF DISPLAY PRINTED REPORT APPLICATION');
INSERT INTO Q.COMMAND_SYN_CMS

VALUES('ISPF',NULL,'CMS DSQAEZ2P',
'QMF ISPF BRIDGE APPLICATION');

INSERT INTO Q.COMMAND_SYN_CMS
VALUES('BATCH',NULL,'CMS DSQABB21 DXYEABVP',

'QMF BATCH APPLICATION');
INSERT INTO Q.COMMAND_SYN_CMS

VALUES('IRM',NULL,'CMS DSQAEI1P P('&ALL'')',
'QMF IRM BRIDGE APPLICATION');

INSERT INTO Q.COMMAND_SYN_CMS
VALUES('LAYOUT',NULL,'CMS DSQAEL0A',

'QMF LAYOUT APPLICATION');

Figure 100. Sample command synonym table

Customizing a Remote Database Connection

268 Installing and Managing QMF on VM

Preparing QMF to Support the DPRE Command
To allow remote users to issue the DPRE command at a remote location, you
must copy the OS/390 procedure to the VM system or the VM procedure to
the OS/390 system. The DPRE command procedure for CMS VM is
Q.DSQAER2P and for TSO OS/390 is DSQAER1P.

To copy the procedures:
1. Connect to one location.
2. Display the procedure.
3. Connect to the other location.
4. Save the procedure.

Preparing QMF to Support Other Commands
You must have a command synonym table at your current location to define
QMF Command Synonyms for the commands that use objects there. The
following types of commands use objects at your current location:
v Commands that refer to QMF objects (CONVERT QUERY)
v Commands that read information from tables (DRAW)
v Commands that modify tables (EDIT TABLE)
v Commands that list tables you are authorized to use at that location (LIST

TABLES)
v Commands that display a list (LIST TABLES)

Some commands use programs or files from the location in which QMF is
executing, requiring a command synonym table at a remote location. The type
of commands that run at the remote location are:
v System-specific
v IMPORT/EXPORT commands

Because of this, your users need a command synonym table for each location,
and you must add all the commands (and the objects referenced by them)
from the Q.COMMAND_SYNONYMS table to the database where the
commands run.

Creating Function Key Tables
If you have customized function keys for your local users, you must copy the
function key tables to the remote location.

To provide the tables:
1. Display the table.
2. Connect to the other database.
3. Type the SAVE DATA command.
4. Create any indexes.

Customizing a Remote Database Connection

Chapter 14. Customizing a Remote Database Connection 269

5. Grant SELECT authority.

Updating QMF Governor Control Tables
If necessary, update QMF governor control tables at the remote location. The
governor limitations at the remote location are the limits used during remote
work, because those are the resources being accessed.

Installing the National Language Feature in the QMF Server
If you’re using an NLF, you also add the National Language feature to the
QMF remote location, because it must be at both the requester and the server.
For the users to access the National Language feature, you must:
1. Prepare Q.PROFILES for NLF.
2. Create a command synonym table for NLF.

Code Page Support
Both DB2 and DB2 for VM can handle character translation between
application requesters and servers that are on different systems and use
different code pages.

To process character strings coming from an unlike database, you must set up
the CCSID conversion rules properly for both the application requester and
the application server. Define the proper CCSID translation pair at the server
for the application server to recognize the character string sent from the
application requester.

The decision to translate depends on whether an entire string (for example,
data from a CHAR or VARCHAR column) must be translated.

For CHAR or VARCHAR columns:
v If the column is defined FOR BIT DATA, then its contents are not

translated.
v If the column is defined FOR SBCS DATA or FOR MIXED DATA, then its

contents are translated.

For more information on FOR BIT DATA, FOR SBCS DATA, and FOR MIXED
DATA parameters, see DB2 REXX SQL for VM/ESA Reference

Restricting Use of the APPLDATA Column
QMF uses the VARCHAR column APPLDATA (of Q.OBJECT_DATA) to hold
the definitions of its procedures, queries, and forms. The definitions of QMF
objects contain some data that must not be translated. Therefore, the
APPLDATA column is not classified as containing translatable character data,
and is defined as FOR BIT DATA.

Avoiding Use of Some Special Characters
Between systems on which QMF can execute and access data, the number of
characters that require translation depends on the code pages used at the

Customizing a Remote Database Connection

270 Installing and Managing QMF on VM

application requester and server locations. The list of characters that require
translation includes the not sign (¬), and the vertical bar (|), as well as any
other characters that require translation between the code pages of your
requester and server locations.

Because the characters in QMF objects do not get translated, if code pages in
the application requester and server are different, avoid using ¬ and |.

Enabling Your Users to Access a Remote Database

QMF V7R1 supports remote unit of work access between different databases.
You can go between different DB2 for VM databases, between different DB2
databases, or between DB2 for VM and DB2 for OS/390 databases.

Updating a User’s Profile
You need to update users’ Q.PROFILES tables if they need access to a remote
workstation. Update the Q.PROFILES table as explained in “Creating User
Profiles to Enable User Access to QMF” on page 97.

Some profile values are attributes of your QMF session (query type and the
LANGUAGE parameter, for example), others (SPACE parameter, for example)
are related to the current location.

You can set up different rows in a single profile table for a specific user (for
access from CMS, TSO, or CICS). You can do this with the ENVIRONMENT
column to give values that apply to the QMF operating environment, with
values that must be unique for the location on which the profile is stored.

Specifying Access for Current SQL Authorization ID
Your users’ CURRENT SQLID is not in effect after a connection to a different
location. So, if they need to use the same CURRENT SQLID with multiple
DB2 application servers from a single QMF session, they might have to reset
the CURRENT SQLID after they connect to each server. For more information,
see QMF Reference.

Connecting to the Local Database
In CMS, QMF connects to DB2 for VM when you run the SQLINIT EXEC to
specify which database to access when QMF issues SQL statements. The EXEC
runs before you invoke QMF, and loads two required modules to the user’s A
disk. As long as those modules remain, and as long as the user wants to use
the same database, the EXEC need not be rerun.

Connecting to the Remote Database
You can provide your users with different methods of connecting to a remote
location from a QMF session. You can set up one or more of the following
methods:
v Using the program parameter DSQSDBNM

Customizing a Remote Database Connection

Chapter 14. Customizing a Remote Database Connection 271

Use this parameter to connect to a remote location when you initialize a
QMF session. For more information on the DSQSDBNM parameter,
“Specifying the Location to Connect to When Starting QMF (DSQSDBNM)”
on page 82.

v Using the QMF CONNECT command
Use this command to connect to a remote location during the QMF session.
This command lets you connect to a different location within your
distributed network during a QMF session.
You can issue the command from:
– The callable or command interface
– The command line
– Within a procedure (linear or with logic)

For more information on the command, the command parameters, and a
list of considerations for using the command, see QMF Reference. For more
information on procedures and the callable or command interface, see
Developing QMF Applications.

v You can also create a procedure to establish the connection and add a
command to the Q.SYNONYMS table to run the procedure. Your users can
then enter the command to connect to a remote database.

Specifying a Location Name
QMF uses SQL to access a relational database. In remote unit of work, the
application requester takes a CONNECT request and establishes a connection
with the remote database management system. In distributed unit of work,
the application requester “receives” the SQL request and routes it to the
appropriate distributed unit of work server.

QMF uses the term location name to denote the DBMS to which it is connected.
You can use the location name to connect to a database system or to qualify a
table name. For example, an SQL table named SAN_JOSE.JONES.TABLE5 is
managed by the database management system (DBMS), whose location name
is SAN_JOSE.

In DB2
The location name refers to an entire subsystem. Servers that are accessible to a
DB2 subsystem are defined in the communication database.

If you’re using three-part names: When you are using both remote unit of
work and distributed unit of work, the
locations you can access with three-part
names are accessible to the current
application server, which must be a DB2
location.

Customizing a Remote Database Connection

272 Installing and Managing QMF on VM

In DB2 for VM
The location name refers to an entire DB2 for VM database machine and is
cataloged in the CMS communications directory.

Where Data Must be Located for User Access
Commands and queries that access data, such as DISPLAY TABLE tablename,
are directed to the current location, unless the current location is DB2 and
tablename is a three-part name (or an alias for that name) that refers to a DB2
subsystem other than the current location.

Working with QMF Objects
QMF objects (queries, procedures, and forms) that are retrieved from or stored
into the database must reside at the current location; that is, the location you
are connected to. This is identical to QMF without remote-unit-of-work
support: objects reside at the same location as tables that are accessed without
three-part names.

To ensure that, when you save data, procedures, queries, and forms at the
current location, you have sufficient database resource, do the following at
that location: Routinely monitor your default tablespace (if you connect to a
DB2 location) or default dbspace (if you connect to an DB2 for VM location),
and the QMF object tables (Q.OBJECT_DIRECTORY, Q.OBJECT_DATA, and
Q.OBJECT_REMARKS).

Some QMF objects stored in the database can refer to programs that QMF
must invoke. These programs include:
v User edit routines
v REXX programs in support of procedures with logic and report calculations
v Local date and time routines invoked in support of local date and time edit

codes
v QMF procedures that contain CMS, CICS, or TSO commands

These procedures must be written to ensure that no attempt is made to
execute CMS commands in an TSO environment or TSO commands in a
CMS environment.

v An EXEC or CLIST that causes a program to execute QMF commands
through the callable or command interface

These programs must reside at the same system in which QMF is executing
(the system that you log on to), because these programs can contain operating
system commands that cannot be run successfully or with the expected results
by that system. Consequently, that system can be different from the system in
which the database (and hence the QMF objects) resides. For an example of
this, see Using QMF and Developing QMF Applications.

Customizing a Remote Database Connection

Chapter 14. Customizing a Remote Database Connection 273

You might want to use QMF objects when the application requester and
application server are on systems with different code pages. For important
restrictions, see “Code Page Support” on page 270.

Working With Tables
You cannot use a three-part name in data definition statements. However, if
you first connect to a location with remote unit of work, you can issue data
definition statements such as CREATE and GRANT at that location. You can
grant privileges on a table that resides at the current server to users at other
locations by using the GRANT clause PUBLIC AT ALL LOCATIONS.

Preventing SQL Errors
SQL errors generally involve the difference between the SQL supported by the
like DBMS for your operating environment and the SQL you need to use
when connected to an unlike DBMS. To avoid such errors, remember to use
the SQL supported by the application server.

For example, if QMF is executing in OS/390 and your current location is DB2
for VM, the syntax you use in an SQL query must be the syntax supported by
DB2 for VM. For example, using the 'IN' clause for the CREATE TABLE
command, the following (DB2 for VM) syntax is acceptable:

CREATE TABLE ... IN DSP3

The corresponding syntax in DB2 for VM is unacceptable:
CREATE TABLE ... IN DATABASE DSQ3

The SQL statement completion information (the SQLCODE) contains the
information returned by the current location. If you are using QMF on
OS/390, because you might be accustomed to the SQL syntax and information
returned by DB2.

If you want QMF query portability, use SQL syntax supported by SAA. This
allows the greatest degree of portability between DRDA application
implementations.

The following database management issues can affect QMF:
v Some application requester environments can limit the SQL statements

available to the application. For example, a DB2 application requester
running under CICS is not allowed to update resources at a remote
application server.

v An application program must be sensitive to where tables, views, and QMF
objects reside within the network, because remote unit of work is limited to
a single database management system within a single unit of work.

Restriction: You cannot issue a join for two tables stored at different
locations.

Customizing a Remote Database Connection

274 Installing and Managing QMF on VM

v The user edit routines and governor exit modules residing at the location
where QMF is operating are used for your QMF sessions.

v After connecting to a location, the profile, resource control table, synonyms,
and function keys are initialized to the values at that location.

Translating User IDs
Because the user ID of a database user might be translated to another user ID
when the user connects to another location, the database administrator might
need to define a translated user ID.

Translating Names
When you connect to a location (DB2 for OS/390 or VM), your primary user
ID might be translated. To understand how translation is set up, refer to your
DBMS manuals or contact your database administrator.

Why Name Translation Might be Necessary: Your one-to-eight character
user ID must be unique within a particular operating system, but might not
be unique throughout the Systems Network Architecture (SNA) network.

To eliminate naming conflicts, distributed database systems support the
following name translation schemes:

Outbound name translation
Allows the application requester to translate the end user’s name
before sending it to the destination in the SNA network.

Inbound name translation
Allows the application server to translate the end user’s name it
receives from its SNA partner.

Deleting QMF Users from Each Remote QMF Location
After deleting a user’s objects from the local QMF, you need to delete the
user’s objects from each remote location accessed by that user. If you are the
QMF administrator for the other remote locations, you can delete the remote
objects in the same way you deleted the local objects. If you are not the QMF
administrator for the remote locations, you need to request the other
administrator to delete the objects for the user ID.

Enabling Administrator Access to Your Location

If there are different QMF administrators for each QMF location, you must
enable some access to your location for other administrators, so they can set
up remote unit of work from their location.

You must:
v Grant them select authority on QMF requester control tables

Customizing a Remote Database Connection

Chapter 14. Customizing a Remote Database Connection 275

v Install the governor routine into the QMF requester to prevent remote users
from using all your resources

Customizing a Remote Database Connection

276 Installing and Managing QMF on VM

Chapter 15. Customizing the Batch Processing Program

As a QMF administrator, you might need to advise and assist batch mode
users. You might also want to run your own procedures in batch mode. This
chapter describes how you can use the QMF batch mode.

To enable your users to use batch mode, you need to give them the proper
authority. Your users can then use batch mode to run procedures
independently of a session and issue commands interactively while the
procedure is running. The batch procedure might not run immediately. It
might wait to run after the user’s QMF session ends.

You and your users can create batch procedures to be run and saved in the
database. A procedure can invoke queries or other procedures and can execute
most other QMF commands. For more information about writing batch
procedures, see Using QMF

QMF also supplies the QMF BATCH application to simplify running batch
jobs. For more information about this application, see “Using the QMF Batch
Query/Procedure Application (BATCH)” on page 282.

Quick Start

Table 40 outlines ways to customize the batch processing program.

For more information on any of the tasks listed, see the page shown at the
right of the table.

Table 40. Customizing the batch processing program

To do this task: See:

To enable your users to run in batch mode, provide them with CONNECT authority:
GRANT CONNECT TO userid IDENTIFIED BY password

Page 278

To send a job to the CMS batch machine, you must use a spool and punch the batch job to
the specified batch machine.

Page 279

To run a batch job on your own machine, you need to have DSQSMODE set to B when
QMF starts. QMF starts, sends the job to batch, and then stops.

Page 281

To debug a batch procedure, use the L1 and L2 trace codes discussed in “Chapter 16.
Troubleshooting and Problem Diagnosis” on page 289.

Page 282

To use the QMF BATCH application, you must ensure that the correct MACLIBs are
available, call the application, and fill out the prompt panel.

Page 282

© Copyright IBM Corp. 1983, 2000 277

Enabling Your Users to Use Batch Mode

Assume that you have a procedure running in batch mode. In the course of its
execution, it tries to run various queries and procedures and to execute QMF
commands. To do this, the CMS batch machine needs the same authority the
user would need to do these things interactively. The CMS batch machine can
get this authority either implicitly or explicitly. It has the authority of its own
user ID unless the QMF CONNECT command is being used to run the batch
machine with the authority of another person’s user ID.

A batch machine’s authority depends on your installation setup. It is possible
for users to run a job and save queries, procedures, and forms under the
batch machine’s ID. If users are allowed to save things under the batch
machine’s ID instead of their own IDs, you or the database administrator
must clean up the database periodically and purge what is owned by the
batch machine. If items are saved in this way, let users know that what they
save under the ID of the batch machine might be purged from the database
on a periodic basis.

To provide a user with CONNECT authority, you must grant them access
using the following query:
GRANT CONNECT TO userid IDENTIFIED BY password

Users who can use QMF interactively can also use it in batch mode, while
those who cannot use it interactively cannot use it in batch mode. Anyone can
send a job to the CMS batch machine. Either the batch machine can use the
minimum authority for running the job granted to that batch machine’s ID, or
it can use the authorization granted to some user through the CONNECT
command. The CONNECT command has to be used to enable a user to access
data in batch mode with the same authorization that user has when working
with QMF interactively.

If you or your users create a procedure to run in batch, and save that
procedure with SHARE=YES, anyone can display it. If the procedure also has
your CONNECT ID in it, then anyone who can display that procedure can see
your CONNECT ID and its associated password.

You need to ensure that your own or your user’s IDs are not made public.
You can use one of the following procedures:
v The job you send to the CMS batch machine can call an EXEC that creates a

procedure on the CMS batch machine’s A disk containing the CONNECT
ID, the CONNECT ID password, and a command to run the user’s
procedure. This intermediary procedure, created by the EXEC, then
connects to the database and runs the user’s procedure already saved in the
database. The procedure named on the DSQSRUN parameter of the

Customizing the Batch Processing Program

278 Installing and Managing QMF on VM

ISPSTART command imports the intermediary procedure that connects to
the database and runs the user’s procedure.

v You can send the data in-stream (with the CMS batch job) and use the CMS
MOVEFILE command. This process creates a procedure containing the
CONNECT ID, the CONNECT ID password, and a command to run the
user’s procedure.

If you’re using an NLF: Users at a multilingual installation can choose the
language environment for their batch QMF sessions,
just as they can for their interactive sessions.

Sending a Job to the CMS Batch Machine

Users can execute procedures in batch mode by sending jobs to the CMS
batch machine. They can then continue their sessions without waiting for
those procedures to be run. For example, a user can sent the following EXEC
and continue to work:

You also need to tell the CMS batch machine to execute the procedure in
batch mode.

Figure 102 on page 280 is a sample job to start QMF in batch mode. Lowercase
words in it are parts of commands filled in by you.

/* Sends batch job file to batch machine */
/* Syntax: BATCHJOB fn ft <fm <batmach>> */
/* where batmach is the name of the batch machine */
/* (default is CMSBATCH) */
/* */
Parse upper arg fn ft fm batmach
If batmach = '' then batmach = 'CMSBATCH'
'PUSH PUN'
'CP SPOOL PUN NOHOLD NOCONT TO' batmach
'PUNCH ' fn ft fm
'POP PUN'

Figure 101. Sample EXEC to send a job to the batch machine

Customizing the Batch Processing Program

Chapter 15. Customizing the Batch Processing Program 279

/*
/JOB userid acctnum jobname
/SET TIME 10 PUNCH 3000 PRINT 3000

*---Spool PRINTER, PUNCH and CONSOLE to userid
CP SPOOL 00E CONT DIST userid TO userid NOHOLD
CP SPOOL 009 NOHOLD TO userid
CP SPOOL 00D NOHOLD TO userid
CP SPOOL 009 START

*--- Link to userid's disk
CP LINK userid 191 192 RR readpass
ACCESS 192 B/A

* Tailor the QMF invocation EXEC DSQ2EINV which
* first links to GDDM, ISPF, DB2 for VM, QMF, and then
* creates the FILEDEFs to run the job.
* The result from this tailoring can be invoked
* as an EXEC or can be coded in line with this
* sample job.

* QMF invocation follows:
* Run with code in BATCHMODE, and pass the name
* of an invocation QMF PROC to run.
* EXEC ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE)
* PARM(dcssname(DSQSMODE=B,DSQSRUN=userid.myproc))
* Other forms of QMF invocation which can be used are as follows:
* DSQQMFE dcssname(DSQSMODE=B,DSQSRUN=userid.myproc))
* when QMF is started independent of ISPF
* EXEC ISPSTART PGM(appl_name)
* where "appl_name" is the name of the application program.
* EXEC ISPSTART DCSS(dcssname) NEWAPPL(DSQE)
* PARM(DSQSMODE=B,DSQSRUN=userid.myproc))
* See
Chapter 6. Customizing Your Start Procedure for more
* information on these forms of QMF invocation.

Figure 102. Sample job to send to CMS batch machine (Part 1 of 2)

Customizing the Batch Processing Program

280 Installing and Managing QMF on VM

The job first spools the printer, punch, and console, and then accesses the
user’s A-disk as an extension of the batch machine’s A-disk. Having done this,
it invokes an EXEC to allocate the necessary resources and start QMF.

Sample job notes:

1. Using parameter ‘DSQSMODE=B’ to indicate batch mode means you must
include the ‘DSQSRUN’ parameter (as in the preceding example) to name
the procedure you run.

2. The CMS batch machine must be authorized to both start QMF and to
connect to DB2 for VM.

3. The DCSS name following PARM on the ISPSTART command must be
included if it is anything other than the default: QMF710E. It is required if
you use the DCSS(dcssname) form of the end.

4. The language EXEC included is started by the following statement:
EXEC QMFBATCH language proc

where language is the language for the session and proc is the name of the
QMF procedure to be run.

Running Batch Jobs on Your Machine

You can start QMF to run a job in batch mode (DSQSMODE=B) without
sending the job to the CMS batch machine. Invoking QMF for such a job
means that QMF comes up and runs the procedure you specify with the
DSQSRUN parameter.

For more information on passing parameters to QMF, see Chapter 6.
Customizing Your Start Procedure.

Before doing this however, check the ISPF profile and ensure a value is
entered for CONSOLE PROCESS OPTION. If you don’t specify a value, then
ISPF comes up with a console disposition panel prompting you for a
CONSOLE PROCESS OPTION value.

--
* MAKE THE NLF RESOURCES NEEDED FOR THE RUN AVAILABLE
--
EXEC QMFBATCH DEUTSCH LMN.PROCA
---Close the PRINTER--
CP SPOOL 00E NOCONT
CP CLOSE 00E
* You can also run an application in batch without ISPF.
* You would use the following command:
* EXEC MYAPEXEC
/*

Figure 102. Sample job to send to CMS batch machine (Part 2 of 2)

Customizing the Batch Processing Program

Chapter 15. Customizing the Batch Processing Program 281

Debugging a Procedure

You can examine any message regarding an error in the execution of a
procedure by arranging to have the message printed, sent to a debug file, or
sent to your reader.

“Chapter 16. Troubleshooting and Problem Diagnosis” on page 289 discusses
problem diagnosis for interactive sessions. Among the topics discussed are:
v Use of the L1 and L2 trace codes to provide a record of user activities

during a QMF session
v Use of the HELP command to reconstruct the message HELP panels for

error messages

You can use both the trace codes and the tool to diagnose problems with a
batch mode procedure. In fact, L2 tracing is the default for procedures run in
batch mode. To change this requires a SET command in your procedure.

For example, to specify L1 tracing instead of L2, add the following statement
at the start of the procedure:
SET PROFILE (TRACE=L1

With either L1 or L2 tracing, a log is produced in DSQDEBUG, just as it is for
an interactive session. Within this log is a series of message records, one for
each message that QMF issued while the procedure was being run. With L2
tracing in effect, the log contains a record for each QMF command run by the
procedure (and its subordinates).

If the procedure terminates prematurely, an error message is logged to the
DSQDEBUG data set. You can then use the HELP command to reconstruct the
corresponding message HELP panel.

Using the QMF Batch Query/Procedure Application (BATCH)

The QMF Batch Query/Procedure Application is designed to minimize the
amount of effort involved and knowledge required to run a query or
procedure in batch mode. This section explains what the application can do
and how to use it.

If you’re using an NLF: You need to assign the translated synonym to the
users. They then issue the translated command
synonym for BATCH. Refer to “Chapter 10.
Customizing QMF Commands” on page 159 for the
procedure on how to assign synonyms.

Customizing the Batch Processing Program

282 Installing and Managing QMF on VM

MACLIBs Required
The following MACLIBs must exist for use by this application. Appropriate
FILEDEFs for these MACLIBs should be named on the EXEC used to invoke
ISPF.

Note: In addition, several other files are supplied with QMF. If you want to
examine them, they can be printed from the distribution disk.

v DSQMLIBE
This is the application message library. It should be concatenated with
ISPMLIB. For this application, the members of this MACLIB are DSQBE00,
DSQBE01, and DSQBE02.

v DSQPLIBE
This is the library containing the application’s panels. It should be
concatenated with ISPPLIB. DXYEABVP, DXYEABV1, DXYEABV2, and
DXYEABV3 are the members of this library for this application.

v DSQSLIBE
This is the application skeleton library. It should be concatenated with
ISPSLIB. DSQABB2P, DSQABB2J, and DSQABB2S are the members of this
library for this application.

Using the Application
The application must be invoked while the user is operating under QMF.
When invoked, the application prepares a batch job for the user and submits
it to the background. The job is prepared from information the user enters on
a prompt panel. It runs a single query or procedure of the user’s choice.
Assuming the batch job is a select query, the job can also:
v Save the DATA object that is created by running the query
v Format the REPORT object using a form of the user’s choice
v Print the report
v Send the report to one or more other users

The advantage to using the application lies in the prompt panel, where the
user outlines what the job should do and leaves the details of how to do it to
the application.

To use the batch application, issue:
BATCH

which results in the display of the prompt panel in Figure 103 on page 284.

Filling in the Prompt Panel
A user can get help filling out the prompt panel by pressing function key 1,
which results in the display of the first of three help panels.

Customizing the Batch Processing Program

Chapter 15. Customizing the Batch Processing Program 283

Required Entry Fields
Certain fields on the batch prompt panel are mandatory. Messages are
displayed prompting the user to enter values for these required fields if the
ENTER key is pressed before values are provided. The cursor is then
positioned on the field requiring input. Table 41 describes the required fields.

Table 41. BATCH application required entry fields

Field Description

OBJECT NAME A value is required for the name of the query or procedure to be run in batch
mode. If the query or procedure is the current query or procedure, it is saved
in the database using this name. Save this object using CONFIRM=NO as a
profile setting.

QUERY or PROC The object type to be run in batch; must be either QUERY or PROC.

PROC arguments Through this field, you can pass arguments to the REXX procedure specified
in the OBJECT NAME field.

QMF BATCH QUERY/PROC BATCH PROMPT

OBJECT NAME ===> Name of query or procedure
Current OBJECT ===> NO Use object in temporary storage?
QUERY or PROC ===> QUERY
FORM NAME ===> Form to be used with query
Current FORM ===> NO Use form in temporary storage?
BATCH NAME ===> Name for QMF batch execution proc
PROC arguments ===> ARGS
CONNECT PASSWORD ===> Database password
DISK PASSWORD ===> User 'A' disk read password
LOGGING ===> YES Log messages and commands?
BATCH MACHINE ===> CMS ID of batch machine
SAVE DATA ===> Name of data to be saved
REVIEW OUTPUT ===> YES Send report to your reader?

DISTRIBUTION Userids and nodes to send report.
USERID ===> NODE ===>

===> ===>
PRINT OUTPUT: Printer ID and node for printed output.

ID ===> NODE ===>

1=Help 3=End Enter=Process batch request

Figure 103. The QMF batch prompt panel

Customizing the Batch Processing Program

284 Installing and Managing QMF on VM

Table 41. BATCH application required entry fields (continued)

Field Description

BATCH NAME A value is required for the name of the QMF procedure to be run in batch
mode. If you are submitting multiple queries, you need to modify the
BATCH NAME field for each query or the new batch job replaces the old job.
This procedure contains the appropriate QMF commands depending upon
the user’s input. The user’s query or procedure, specified in the QUERY or
PROC field, is run from this procedure. The procedure is saved using the
SHARE=YES keyword option. It must be able to be run by the batch
machine. Save this procedure using CONFIRM=NO as a profile setting.

CONNECT PASSWORD Users are required to enter the DB2 for VM password. Assign this to a user
in the SYSTEM.SYSUSERAUTH table. This password is used in a CONNECT
command in the batch machine. The user is then operating with the
authority granted to the DB2 for VM user ID. The batch procedure is run
with this authority.

DISK PASSWORD Users are required to enter their 191 (A) disk read password. (If the user has
no read password, ‘ALL’ must be entered instead.) This is used in the batch
job sent to the CMS batch machine. The batch machine then links to the
user’s 191 disk.

BATCH MACHINE Users are required to enter the CMS user ID of a batch machine on which the
job is to be run. The job is punched to this machine. This value is saved
across sessions for users. The batch machine must exist on the same
processor as that of the user.

Optional Entry Fields
The following is a description of the remaining (optional) entry fields on the
panel. Where a value of YES or NO is expected, a default YES or NO
normally appears on the screen. If a user blanks out a value in a YES/NO
field, the user is prompted for an entry. See Table 42 for the required fields
and their descriptions.

Table 42. BATCH application optional entry fields

Field Description

Current OBJECT If the batch query or procedure is the current object, the user enters YES in
this field. The query or procedure is then saved to be run later in batch. The
default value for this field is NO. If this field has no value, the user is
prompted to supply a value.

FORM NAME To run the batch query using a form, the user must specify the name of a
form in this field. If the form to be used in batch is the current form, the
form is saved in the database using this name. This form is saved using
CONFIRM=NO as a profile setting.

Current FORM If the batch form is the current form, the user enters YES in this field. The
form is then saved for use later in batch. The default value for this field is
NO.

Customizing the Batch Processing Program

Chapter 15. Customizing the Batch Processing Program 285

Table 42. BATCH application optional entry fields (continued)

Field Description

LOGGING The default value for this field is YES. This means that the default trace level
in batch mode is L2, which traces messages and commands. If the user
doesn’t want tracing at the L2 level, NONE should be specified. Tracing does
not continue in the batch procedure beyond the SET PROFILE
(TRACE=NONE command, which is then in the generated user procedure.

SAVE DATA If the user wants the data resulting from running a query or procedure to be
saved, a value must be given for this field. The DATA is saved as a new table
using this name and the CONFIRM=NO keyword option.

REVIEW OUTPUT If the user wants to view the report resulting from running the batch query
or procedure, and, optionally, formatted by the specified form, YES should be
specified as the value for this field. YES is the default value. The report is
sent to the user’s reader using SENDFILE. If the query or procedure to be
sent to batch does not generate a report, such as an INSERT or UPDATE
query, this field should be set to NO.

DISTRIBUTION USERID
and NODE

If the user wants the resulting report to be sent to other users, the user must
enter their user IDs and nodes in these fields. The report is sent using
SENDFILE, which makes use of the NAMES file. Because of this fact, the
NODE need only be supplied if the recipient of the report is on a different
system and there is no entry for that user in the NAMES file. The USERID
can also be a list defined in the NAMES file. If the query or procedure to be
sent to batch does not generate a report, such as an INSERT or UPDATE
query, no values should be supplied for these fields.

PRINT OUTPUT If the user wants the resulting report to be sent to a printer, the printer ID
and the NODE should be entered here. If the printer ID is SYSTEM, the
output is sent to the system printer. The appropriate CP SPOOL and TAG
commands are executed before the report is printed.

Modifying the Batch Application
When you make modifications to the application, be sure to save a copy of
the original file. Modify a copy of an original file that has been renamed.
Keep a backup copy of any original file and its modified version. This way, a
new copy sent by IBM in the future won’t replace it.

Three modifiable model files are shipped with the product. They provide
input to ISPF file tailoring, which in turn produces 3 files needed to run this
application. One of these model files, DSQABB2J COPY, is the skeleton file
behind the actual job sent to the CMS batch machine. In DSQABB2J COPY,
you can modify the following:
v The account number
v The print and punch output limits
v The maximum processor time allowed for a job

Customizing the Batch Processing Program

286 Installing and Managing QMF on VM

v The name of the discontiguous shared segment (DCSS) on the ISPSTART
command

v The SQLINIT statement to specify another database if queries are run in
some database other than SQLDBA

v The links to the product disks

The two other model files do the following:
v DSQABB2P COPY creates the user’s batch procedure.
v DSQABB2S COPY saves a user’s query, form, and procedure and punches a

job to the CMS batch machine. It also erases any work files that were
created.

You can also modify the batch prompt panel (DXYEABVP) so that values for
fields automatically appear. To do this, prevent variables in the INIT section of
the panel logic from being initialized to blanks. Then, add the variable names
(the ones you prevented from being initialized to blanks) to the VGET and
VPUT statements in the DSQABB22 EXEC so they look like this:
&SUBCOMMAND ISPEXEC VGET (VARIABLE1, VARIABLE2)
&SUBCOMMAND ISPEXEC VPUT (VARIABLE1, VARIABLE2)

Add a model or panel that has been modified to the appropriate MACLIB.

Customizing the Batch Processing Program

Chapter 15. Customizing the Batch Processing Program 287

288 Installing and Managing QMF on VM

Chapter 16. Troubleshooting and Problem Diagnosis

Use this chapter to help solve problems your users might have while using
QMF. “Troubleshooting Common Problems” on page 290 provides possible
solutions to common problems, while “Determining the Problem Using
Diagnosis Aids” on page 298 provides explanations of diagnosis aids that help
you solve more complex problems.

Quick Start

Use the steps in Table 43 to guide you in troubleshooting common errors and
diagnosing more complex problems. If you need more information on any
step, see the page listed at the right.

Table 43. Troubleshooting common errors and diagnosing problems

For information on this problem: See:

If you encounter GDDM or QMF errors while printing, it’s likely you did not
supply a printer name, defined the name or allocated the device incorrectly, or
encountered an I/O error.

Page 292

If you see warning messages on the QMF Home panel, QMF probably encountered
errors during initialization trying to read or load tables or routines.

Page 291

If the report display seems incoherent, you might need to convert raw binary data
(from the table that generates the report) to character data before displaying the
report.

Page 295

If you’re getting slow response, you likely need to either reset the data object or
increase your storage.

Page 296

If the problem is none of the above, determine which QMF or CMS diagnostic
aids can help you further diagnose the problem.

Page 298

To determine the problem using QMF message support, use the message number
on the help panel to determine more information about the error, such as the QMF
function that issued it.

Page 298

To determine the problem using the QMF trace facility, turn the trace on by setting
the DSQSDBUG program parameter, displaying the user’s profile and changing the
value of the TRACE option, or using the command SET PROFILE (TRACE=value. The
level of detail for the DSQSDBUG parameter is either ALL or NONE. You can also
specify a selected trace level just prior to running your trace. For example, you can
specify SET T=C2D2L2.

Page 300

To determine the problem using the QMF interrupt facility, create and read an
interrupt.

Page 306

© Copyright IBM Corp. 1983, 2000 289

Table 43. Troubleshooting common errors and diagnosing problems (continued)

For information on this problem: See:

To determine the problem using reports from the Q.ERROR_LOG table, run a
SELECT query on the table, specifying the SQL authorization ID that experienced the
error and the approximate date and time of the error.

Page 308

To report a problem to IBM, use IBM’s ServiceLink facility (if you have it) or call
your IBM Support Center.

Page 309

Troubleshooting Common Problems

Use this section to help determine how to solve initialization errors, printing
errors, warning messages on the display, incoherent report displays, and slow
response times or other performance problems.

Handling Initialization Errors
If you cannot start QMF, there are several common fixes:

Determine whether all QMF users at your shop cannot get into QMF, and it is
not just one user.

Check whether there are any messages on the terminal screen, and look up
the explanation for the DSQDEBUG file message in QMF Messages and Codes.

If nothing appears on the screen and nothing is in DSQDEBUG, go into ISQL
and issue a SELECT * FROM Q.ERROR_LOG and see if any entries appear
during the time you were trying to access QMF.

QMF initializes DB2 for VM and GDDM during QMF initialization. If any ARI
(DB2 for VM) and ADM (GDDM) error messages appear, look them up in the
messages and codes book for the appropriate product.

Check that the DB2 for VM database is initialized and working properly. If all
users are getting a type of ADMxxxx message upon startup, check that the
base GDDM product is working correctly by running the GDDM IVPs.

If users try to start QMF through ISPF, and QMF fails to start, the following
message appears for all types of failures:
INITIAL PGM RC ¬= 0 | 4 - THE INITIALLY INVOKED MODULE ENDED
WITH A RETURN CODE = 16 .

Users should still look on the screen for more messages, and in DSQDEBUG
and Q.ERROR_LOG for more information. If there are no other messages,
have the user try to run the CMS command SET EMSG ON and start QMF
again.

Troubleshooting and Problem Diagnosis

290 Installing and Managing QMF on VM

Handling Warning Messages
If errors occur during QMF initialization (or after issuing the CONNECT
command), you might see this message on the QMF Home panel:
Warning messages have been generated

Errors that cause this kind of message do not stop QMF. They indicate that
QMF is having a problem loading or reading any of the following:
v Command synonym table
v Function key definitions table
v Resource control table (for governor exit routine)
v User edit exit routine
v Governor exit routine
v Module level trace control

For command synonyms, function keys, and resource control tables, ensure
that:
v The user has the SQL SELECT privilege for that table. If this might be the

problem, issue an SQL GRANT statement according to instructions in “SQL
Privileges Required to Access Objects” on page 107.

v The table conforms to the proper structure:
– The structure for command synonym tables is shown in “Chapter 10.

Customizing QMF Commands” on page 159
– The structure for function key tables is shown in Figure 56 on page 176
– The structure for the resource control table is shown in Table 35 on

page 237
v All rows of the table contain valid data. If this might be the problem, see:

– “Entering Command Synonym Definitions into a Command Synonym
Table” on page 163 for information on valid command synonym
definitions

– “Entering Your Function Key Definitions into the Table” on page 177 for
information on valid function key definitions

– Table 35 on page 237 for information on valid resource control
information

v All rows in the tables are unique.

More information about the error is logged in the user’s trace data. The trace
data is stored in DSQDEBUG.

To view the information in the trace data, first press the Help key to display a
panel containing the message number. Then browse or print the user’s trace
data according to the instructions in “Viewing QMF Trace Data” on page 304.
Search the trace data for the numeric portion of the message number to see
information about the error.

Troubleshooting and Problem Diagnosis

Chapter 16. Troubleshooting and Problem Diagnosis 291

Handling GDDM Errors During Printing
If a GDDM error occurred during printing, QMF displays this message:

GDDM error using nnnnnnnn. See message help for details.

The character string nnnnnnnn in the message represents a GDDM printer
nickname. Press the Help key to display the help panel, which contains an
explanation of the error. This section discusses some common errors and what
you can do to fix them.

DSQ50623
GDDM error. ADM0482 E DEVICE NAME LIST '31E' IS INVALID
FOR FAMILY 1. Severity 8. Function DSOPEN. *** CMD=PRINT

If you see a message like this, your nickname definition is incorrect.
The device token you supplied is not a valid token for the type of
GDDM printer for which you created the nickname. See “Choosing a
GDDM Nickname for Your Printer” on page 150 for information on
how to create a nickname for a GDDM printer. For a list of valid
device tokens for each family of GDDM printers, see Graphical Data
Display Manager Base: Programming Reference , Volume 2.

DSQ50631
GDDM error. ADM0904 E ALPHANUMERIC FIELDS ARE NOT
SUPPORTED FOR THIS DEVICE. Severity 8. Function ASDFLD.
*** CMD=PRINT

If you see a message like this, the output the user is trying to print is
not valid for the type of printer defined by the GDDM nickname.
Certain types of output, such as QMF charts, are restricted to specific
families of GDDM printers. For more information on what families of
printers handle your type of output, see Graphical Data Display
Manager Base: Programming Reference , Volume 2.

DSQ90551
GDDM error. ADM0055 E SPINIT, AT '82F810C2'X ADM0050 E
DEFAULTS ERROR. INVALID SYNTAX OR VALUE AT
'...JIP,ADMMNICK'

You might see a message like this when starting QMF. The message
indicates that you made a syntax error somewhere in the
ADMMNICK specification for the nickname. See “Choosing a GDDM
Nickname for Your Printer” on page 150 for examples of syntax for the
ADMMNICK specification. After you fix the syntax error, reload the
ADMADFC GDDM defaults module.

Handling QMF Errors During Printing
The following information helps you to solve errors that can occur during
printing.

Troubleshooting and Problem Diagnosis

292 Installing and Managing QMF on VM

What happens: What it means: What to do:

You issue the PRINT
command from the command
line or a function key and see
the message:

GDDM printer nickname
is required for
PRINTER.

The object you are
trying to print needs a
printer nickname, and
no printer nickname
default exists on your
profile.

Press the Enter key again to
display a prompt panel on
which you can enter a
printer nickname and other
print parameters. You can set
a printer nickname default
on your profile to avoid
being prompted.

After using the CONNECT
command, your PRINT
commands result in the
message described, or your
printed output goes to a
different printer.

The CONNECT
command replaces
your own profile
values with those of
the user you connected
to.

After connecting, remember
to enter:

SET PROFILE
(PRINTER=prtname

from the command line to
establish your printer name
as the default.

You issue several PRINT
commands but find that only
the last object is printed.

Your output file is not
defined as DISP MOD,
so each PRINT
operation reopens the
file and overwrites the
previous contents.

Change the disposition of
your output file to DISP
MOD. For example:

FILEDEF DSQPRINT
DISK DSQP FILE A
(LRECL 133 FECFM F
PERM DISP MOD

You print a QMF object and
see unexpected control
characters in the printed
output or file.

The device token or
PROCOPT that you are
using do not match the
device on which you
are actually printing.

Supply the correct device
token, or reduce control
characters to a minimum by
one of these techniques:

v For a report, table, SQL or
QBE query, procedure, or
the profile, type PRINTER='
' to bypass GDDM
printing.

v For other objects, use the
following command with
no device token:

PROCOPT=((PRINTCTL,0))

When printing a report, table,
SQL or QBE query, procedure,
or profile, you see the
message:

File DSQPRINT did not
open.

No printer name
default exists on your
profile, and no
DSQPRINT file or
system output is
currently allocated.

DSQPRINT must be
allocated before issuing a
print command.

Troubleshooting and Problem Diagnosis

Chapter 16. Troubleshooting and Problem Diagnosis 293

Handling CMS Command Errors
You might encounter problems when using the QMF CMS command in the
following ways:
v When using the CMS command to run an exec
v When using the CMS command if QMF has been started using ISPF
v If the CMS command is used to invoke a function and that function

executes a program that issues a DB2 for VM CONNECT
v If the CMS command is used to invoke a function and that function

executes a program that issues a DB2 for VM COMMIT

The following sections describe the type of problem that might occur.

Using the CMS Command to Run an EXEC
QMF uses a STAE exit to establish an ABEND handler. If you use the CMS
command to run an EXEC that alters the STAE exit, you can encounter the
following problems:
v If the STAE exit is removed, you are not able to record ABEND information

should a QMF ABEND occur.
v If a STAE exit is added, the wrong STAE exit can get control should a QMF

ABEND occur.

Issuing the CMS Command if QMF is Started Using ISPF
If you invoke QMF through the PGM form of the ISPSTART command, QMF
packages the CMS command and uses the ISPF “Select CMD” service. The
command is then executed in CMS subset mode. Some CMS functions don’t
work while in subset mode. If a function is started using the QMF CMS
command and that function changes the CMS environment or resets CMS
subset mode, results can be unpredictable when returning to QMF.

Note: If QMF is invoked with the DCSS form of the ISPSTART command, you
do not get CMS in subset mode; you get the full CMS with all CMS
functions available. See “Chapter 6. Customizing Your Start Procedure”
on page 67 for more information about invoking QMF with the two

forms of ISPSTART.

Using the DB2 for VM CONNECT Command
If the CMS command is used to invoke a function and that function in turn
executes a program that issues an DB2 for VM CONNECT, the results of that
function are not known to QMF. In such a case when control is returned to
QMF, QMF is unknowingly executing on behalf of the user ID specified by the
CONNECT done outside of QMF. In this case all table requests are performed
using the connect ID outside of QMF and all QMF objects are processed using
the connect ID known to QMF.

You should caution your end users not to use the DB2 for VM CONNECT
command through the CMS command.

Troubleshooting and Problem Diagnosis

294 Installing and Managing QMF on VM

Using the DB2 for VM COMMIT Command
If a function is invoked through the CMS command, and that function in turn
executes a program that issues an DB2 for VM COMMIT command, the
results can prematurely close the cursor on a QMF report object.

This might happen if the QMF report is not complete when issuing the CMS
command. To prevent this from happening, you should complete or reset the
report object prior to executing a function through the CMS command that
causes a database commit. If the report cursor is closed prematurely, and you
subsequently scroll to the bottom of the report, a system error occurs.

Handling Display Errors
If a user who attempts to display a report finds that the report has several
display control characters in it, data in one or more of the table columns from
which the report is derived might be binary (rather than character) data. QMF
provides three ways of handling these control characters:
v Using the HEX function
v Using the QMF-provided hex and bit edit codes in the QMF form
v Handling binary data through user-written edit routines

Using the HEX Function
The HEX function is an SQL scalar function that converts its argument to a
string of legitimate characters. The resulting string is the value of the
argument in hexadecimal notation. For example, the function argument ABC
produces the string C1C2C3 in hexadecimal notation.

Instruct users to use the word HEX in their queries in front of any columns
that might contain binary data. For example, the following statement converts
binary data in column A of the table SMITH.TABLEA.
SELECT HEX(A) FROM SMITH.TABLEA

Using QMF-provided Hex and Bit Edit Codes
Two edit codes (and their wrapping versions) for character data allow QMF to
display binary data in character columns: X and XW (for hex display), B and
BW (for bit display). For more information on using these edit codes, see
QMF Reference.

Handling Binary Data with User-Written Edit Routines
Using the HEX function or the hex and bit edit codes can be a good way to
handle binary data. For example, assume that each bit represents a data item
and displays in natural language form of the value. If the fifth bit represents
gender rather than hex values, a user edit code routine can cause a value of
Male or Female to be displayed.

You can create your own edit code and write an edit exit routine in COBOL,
PL/I, or assembler to convert the binary data to the character string you
want. You might consider predefining some QMF forms that use the new edit

Troubleshooting and Problem Diagnosis

Chapter 16. Troubleshooting and Problem Diagnosis 295

codes you create. You can then make the forms available to your users. See
“Chapter 12. Creating Your Own Edit Codes for QMF Forms” on page 187 for
more information.

Solving Slow Performance Problems
If your users notice slow performance in running queries or formatting
reports, the problem might be that QMF is attempting to retrieve all the
database rows requested during one command before starting another. It’s
also possible that the user does not have enough virtual storage to retrieve all
the requested rows. This section explains what you can do to solve each kind
of problem.

Resetting the Data Object to Improve Performance
Suppose that, after viewing parts of a report, a user attempts to run an
UPDATE query and waits an unusually long time for the query to return
results. Because QMF finishes one database task before starting another, QMF
might be attempting to complete the report (retrieve the rest of the rows into
the DATA object) before running the UPDATE query. These commands cause
QMF to complete the report before the command can run:

CONNECT
DISPLAY tablename or QMF object

(from the database)
DRAW tablename
EDIT TABLE
ERASE
EXPORT (from the database)
IMPORT (to the database)
LIST
PRINT (from the database)

REFRESH (of a database object list)
RESET QUERY (with

LANGUAGE=PROMPTED and modifying
query)

RUN (an object in the database)
RUN QUERY
SAVE (data, form, procedure, or profile)

Any query run by the user that drops, creates, or modifies an DB2 for VM
object forces the completion of the DATA object.

Depending on the setting of the global variable DSQEC_RESET_RPT, you
might need to instruct users to issue a RESET DATA command as soon as
they finish viewing the necessary parts of the report to prevent performance
problems caused by trying to run these commands before QMF completes the
report. See the QMF Reference for more information.

A user who attempts to execute certain commands during the insufficient
storage condition receives an “incomplete DATA” prompt. This is caused by
any command that forces QMF to “complete” the current DATA object. (A
DATA object is complete when all its rows have been fetched by QMF and
none have been discarded without copying to the DSQSPILL file.) To resolve
this problem, the prompt offers the user two choices: Either reset the DATA
object, or withdraw the command.

Troubleshooting and Problem Diagnosis

296 Installing and Managing QMF on VM

If QMF encounters a system error while the insufficient storage condition is in
effect, it might reset the user’s current DATA object.

Under some unusual processing conditions (such as running out of storage
during CLOSE processing of the spill file), insufficient storage can result in
abend code 001. You can also get 001 abends if you detach the disk that
contains the spill file, erase the spill file, or do a FILEDEF CLEAR that affects
the spill file.

Increasing the User’s Report Storage
Users might also experience slow performance if they do not have enough
virtual storage to accommodate a large report. For example, if you set the
DSQSRSTG or DSQSBSTG parameter at a very low value and the user runs a
query that retrieves hundreds of thousands of rows, QMF can only maintain a
small amount of data in user memory. The user might find performance slow
for formatting complex reports or scrolling the report.

To maximize report performance, ensure you specify an adequate amount of
virtual storage for the user, using the DSQSBSTG or DSQSRSTG parameter.
The parameters are discussed in “Adjusting Storage for Report Data
(DSQSBSTG)” on page 73 and “Adjusting Reserved Storage Used for Report
Data (DSQSRSTG)” on page 74. To provide the best performance, use a value
that accommodates the largest report the user is likely to have.

You can also define a spill file for the user, as discussed in “Acquiring Extra
Storage (DSQSPILL)” on page 75. However, using primarily virtual storage for
QMF operations provides better performance. Users who rely on a spill file
and have little virtual storage might not notice slow performance for large
reports, but other users on the system might.

QMF performance might also slow down if QMF needs a data row (as a result
of a SCROLL BACKWARD command) and that data is not in the spill file or
in virtual storage, the data cursor is reopened and the row is again retrieved
from the database.

Using REXX Function Packages
When using REXX in reports, your response time might slow while the report
writer switches between QMF and REXX multiple times. To reduce the input
and output time, you can put your REXX procedures in a REXX function
package.

For more information about REXX performance, see Procedures Language
VM/REXX User’s Guide or Procedures Language VM/REXX Reference For
additional information, you can also see the REXX Compiler.

Troubleshooting and Problem Diagnosis

Chapter 16. Troubleshooting and Problem Diagnosis 297

Determining the Problem Using Diagnosis Aids

If you weren’t able to solve your problem using the troubleshooting
techniques discussed in “Troubleshooting Common Problems” on page 290,
use this section to find out which QMF and CMS diagnosis aids can help you
determine the problem.

Choosing the Right Diagnosis Aid for the Symptoms
Use Table 44 to help you determine which diagnosis aids you need for the
symptoms you’re experiencing. The diagnosis aids are listed across the top of
the table, and symptoms are listed on the side. For example, if you experience
a problem while using a governor exit routine, you can use the QMF trace
facility, CMS status information, and QMF messages and help to determine
the problem.

Table 44. Types of problems and the best diagnosis aids to use for them

QMF
Msg. No.

QMF
Trace

CMS
dump

CMS
Status
Info.

Help
Message

Non-
QMF

Msg. No.

Error
Log

Output

Abend x x x x

Batch session x x x x x

Callable interface x x x x x

Display panel x x x x x

Document interface x x

Error messages x x x x x

Governor exit routine x x x x x x

Incorrect output x x x x x

Initialization x x x x x x

Installation x x x x

Interrupt facility x x

Loop x x x

Performance x x x x x

Printing x x x x x x

QMF command x x x x x

SQL error codes x x x x x

Termination x x x x x x

Diagnosing Your Problem Using QMF Message Support
QMF issues various types of messages during a user’s session, indicating
either that QMF successfully completed the user’s request or that an error

Troubleshooting and Problem Diagnosis

298 Installing and Managing QMF on VM

occurred. All QMF messages have a message number of the form DSQnnnnn,
where nnnnn is a 5-digit number. These numbers are listed in QMF Messages
and Codes , which provides more information about how you can solve the
problem.

To obtain the message number and more information about the error, press
the Help key to display a message help panel. Each help panel has a panel
number associated with it. If you report the problem to IBM, your IBM
Support Center representative might need this number. To make sure the
number displays, set the global variable DSQDC_SHOW_PANID to 1:
SET GLOBAL (DSQDC_SHOW_PANID=1

Determining which QMF Function Issued an Error Message
You can use the QMF message number, which begins with DSQ, to determine
which QMF component issued the message. This information can help you
isolate the problem to a specific QMF function.

The QMF functions and their associated ranges of message numbers are
shown in Table 45. The trace IDs are the same IDs you use to trace QMF
activity for each function, as discussed in “Getting the Right Level of Detail in
Your Trace Output” on page 302.

Table 45. QMF functions and the message numbers they issue

Function Trace ID Message Numbers

Database Services I DSQ10000 - DSQ19999
DSQ30000 - DSQ39999

Dialog Command
Processing

D DSQ20000 - DSQ29999

Display Services E DSQ40000 - DSQ49999

Common Services and
Systems Interface

C DSQ50000 - DSQ59999

Report Formatting F DSQ60000 - DSQ69999

Charting P DSQ70000 - DSQ79999

Full-screen Windows G DSQ80000 - DSQ89999

In addition to the preceding messages, the following ranges of message
numbers might be generated during QMF initialization:

DSQI0001 - DSQI0100
DSQ90000 - DSQ99999

Troubleshooting and Problem Diagnosis

Chapter 16. Troubleshooting and Problem Diagnosis 299

Handling System Error Messages
A system error might indicate a system problem, a resource problem, or an
unexpected condition. These might be problems within QMF, the database
manager, or possibly some other software component. System errors are
indicated by the following message:
Sorry, a system error occurred. Your command may not have been
executed.

You can press the Help key to display more information about the message,
or see QMF Messages and Codes

All uncommitted changes to the database are rolled back when a system
problem stops QMF. Error information about the system problem is written to
the trace data, which is the only source of information for a system problem
that stops QMF. See “Viewing QMF Trace Data” on page 304 for instructions
on viewing the trace data. The Q.ERROR_LOG table contains information
about a system error only if the error occurred while the database was still
running.

Handling SQL Return Codes
In some cases, the message QMF displays might map to an SQL return code.
For example, suppose a user receives QMF message DSQ12002. This message
maps to the SQL return code -702, which has the text:
NO AVAILABLE SPACE IN THE DBSPACE NUMBER 'dbspace_number' FOR INDEXES.

dbspace_number in the message is a placeholder, called a token, for a real
database value. The token is located in the SQL communications area
(SQLCA) that QMF receives from DB2 for VM.

To find the value of the token:
1. Run a QMF I2 or ALL trace using the procedures described in “Using the

QMF Trace Facility”. Keep the trace data online so you can search it easily.
2. Convert the SQL return code to a hexadecimal number. For example, the

SQL return code -702 is FFFFFD42 in hexadecimal.
3. Locate the hexadecimal number in the trace data. It is in a trace block

called SQLCA.
4. Browse the right side of the trace (the eye catcher field) to gather the

tokens. See DB2 Server for VSE & VM SQL Reference for SQLCA mappings
of the tokens.

5. When you find the right token, see DB2 Server for VM Message and Codes to
solve the problem that caused the SQL return code.

Using the QMF Trace Facility
QMF provides a facility that traces QMF activity during a user’s session. Trace
output from the facility can help you analyze errors such as incorrect or

Troubleshooting and Problem Diagnosis

300 Installing and Managing QMF on VM

missing output, performance problems, or loops. This section shows you how
to allocate storage for the trace output, how to start the facility and determine
the level of tracing detail, and how to view the trace data for diagnosis.

Allocating the Trace File
When you are using procedures involving trace information, ensure that the
trace file is allocated before you begin the QMF session. This is automatically
true if the file is allocated by the PROFILE EXEC for a user ID. The default
file name is DSQDEBUG.

Check with your VM administrator if you are not sure whether the file is
allocated automatically before a QMF session. If it is not, issue the following
CMS statement before you start QMF for your diagnostic session.
FILEDEF DSQDEBUG PRINTER (LRECL 121 RECFM FA PERM)

If the PROFILE EXEC takes you to QMF immediately after logon and logs
you off VM when you terminate the QMF session, insert the preceding
FILEDEF statement into the user’s PROFILE EXEC file.

Starting the Trace Facility
Using the trace facility is a 4-step process. Each of the steps in this process is
discussed in the section referenced in that step.
1. Allocate a file with a file name of DSQDEBUG.

QMF Trace writes its results into this file, which can be printed or
displayed. The file is used for trace purposes only.

2. Decide on your tracing options.
With these options, you control what is traced and the level of detail. For
more information on choosing trace options, see “Getting the Right Level
of Detail in Your Trace Output” on page 302.
Specify a value of ALL on the DSQSDBUG program parameter when you
start QMF, as explained in “Setting the Level of Trace Detail
(DSQSDBUG)” on page 81 This value traces QMF activity at the highest
level of detail, including program failures that might occur during QMF
initialization.

3. Specify these options to QMF Trace.
During a QMF session, some set of tracing options is always in effect. You
can override current trace options in several different ways:
v Instruct the user to enter the following QMF command:

SET PROFILE (T=value

where value is ALL or a string that indicates QMF functions and their
levels of detail in the trace output. The levels of detail are explained in
“Getting the Right Level of Detail in Your Trace Output” on page 302.

Troubleshooting and Problem Diagnosis

Chapter 16. Troubleshooting and Problem Diagnosis 301

v Use SQL UPDATE statements for the TRACE field in the user’s profile,
which has the same effect as the previous method. Instruct the user to
reconnect to the database to initialize the new values. For example, user
JONES with password MYPW can enter:
CONNECT JONES (PA=MYPW

v Users who do not have DB2 for VM CONNECT authority can end the
current QMF session and begin another to initialize the values.

v Access the trace data set when you have a warning or a system error
during QMF initialization.
Looking at DSQDEBUG helps you understand the reason for the error.
For more information on how to access the DSQDEBUG data set, see
“Viewing QMF Trace Data” on page 304.

4. Interpret the trace output.
You can display or print the DSQDEBUG file for analysis. For more
information on interpreting trace output, see “Viewing QMF Trace Data”
on page 304.

Getting the Right Level of Detail in Your Trace Output
If you want to trace all QMF functions at the most detailed level, use a value
of ALL for trace. If you want to trace individual QMF functions, update the
TRACE column of Q.PROFILES with a character string that has letters for the
QMF functions you want to trace and numbers for the level of detail you
want in the trace data for each function. You need to pair each letter with a
number:

The value of 1 traces a function at a medium level of detail.
The value of 2 traces a function at the highest level of detail.

Only the functions you specify in the character string are traced. The letter for
each QMF function is shown in the following list.

Trace ID
QMF Function

A Application Support Services
C Common Services and Systems Interface
D Dialog Command Processing
E Display services for parts of QMF such as Prompted Query, QBE,

Table Editor, global variable lists, and database object list
F Report formatting
G QBE, Prompted Query, and table editor full-screen windows
I Database services
L Message and command logging
P Charting (Interactive Chart Utility)
R Storage management functions
U User exits, such as a governor exit routine

Troubleshooting and Problem Diagnosis

302 Installing and Managing QMF on VM

For example, to trace message and command logging at the most detailed
level, application support services at a medium level, and common services
and systems interfaces at the most detailed level, use this command:
SET PROFILE (T=L2A1C2

Use the L1 and L2 trace records to precisely record user activities during a
QMF session. A value of L1 writes records for all messages issued by QMF; L2
writes all the L1 records, plus additional records describing the execution of
QMF commands. Use the L2 trace code to log each command a user issued
and how QMF responded to that command. Figure 104 shows an example of a
RUN QUERY command that failed because the user named columns that were
not in the table.

Within the DSQDEBUG file, the messages appear chronologically. When
commands are included, they also appear chronologically and are intermixed
with the messages. The command that a message is concerned with is the
command that precedes it in the file.

QMF messages have variables for parts of the message that change, such as a
table or column name. You can use the trace data to help a user decipher a
message that includes variables. For example, the message shown in
Figure 104 appears in QMF Messages and Codesas:
Column &01 is not in table &02.

The bottom half of Figure 104 shows that the value for &01 in the message is
DATE and that the value for &02 is STAFF. Substitute these values into the
message to help a user solve the problem.

--
---------- ****** 94/12/15 20:39 ****** -----------------
USERID: KRIS
AUTHORIZATION-ID: KRIS
COMMAND TEXT:
RUN QUERY
--
--
---------- ****** 94/12/15 20:39 ****** -----------------
USERID: KRIS
AUTHORIZATION-ID: KRIS
MESSAGE NUMBER: DSQ12405
MESSAGE TEXT:
Column name DATE is not in table STAFF.
&O1: DATE
&O2: STAFF
&O9: -205
--

Figure 104. Using the L2 trace code to trace a user’s commands and messages

Troubleshooting and Problem Diagnosis

Chapter 16. Troubleshooting and Problem Diagnosis 303

These variables might also appear in the definition of the help panels
associated with the error message. Use the variable values from the trace data
together with the help command to reconstruct the message help panel.

Tracing at the Module Level

Important: Perform a trace at the module level under IBM Service Level 2
guidance.

You can turn on a trace for certain modules using the SET PROFILE command
and the module DSQUTRAC. For example, you can trace the formatter buffer
manager without tracing the line manager or the summary manager. The
values for module-level tracing are:

The value 3 provides a detailed trace for specific programs in a
component, and traces entry and exit for all other programs in the
component.
The value 4 traces a module only.

To create a module-level trace, list the modules you want traced in the
DSQUTRACE module. Then assemble and link-edit the module. After the
module is created, you must make it available as a phase. You can then run
the following command:

SET PROFILE (TRACE F4

Viewing QMF Trace Data
DSQDEBUG might have been allocated automatically through your PROFILE
EXEC in a CMS environment. You might want to reallocate it if the original
allocation does not fill your needs (for example, the original allocation might
define DSQDEBUG as a PRINT file when you really want to display it).

To allocate (or reallocate) for printing, issue the following statements, which
define DSQDEBUG as a PRINT file:
FILEDEF DSQDEBUG PRINTER (LRECL 121 FA PERM)

The allocation contains fixed-length, 121-character records whose first byte is
an ANSI carriage-control character. The trace information is formatted with
120 characters to the line, not including the ANSI control character.

You can also issue the following statements to allocate (or reallocate)
DSQDEBUG as a sequential file that can be displayed using an online editor.
The file consists of fixed-length, 81-character records whose first byte is an
ANSI carriage-control character. The trace information is formatted with 80
characters to a line, not including the ANSI control character.
FILEDEF DSQDEBUG DISK DEBUG LIST (PERM RECFM FBA LRECL 81

Troubleshooting and Problem Diagnosis

304 Installing and Managing QMF on VM

Determining the QMF Service Level
The service level information is displayed:
v When T=ALL is specified on invocation (or from Q.PROFILES)
v When SET (TRACE ALL was specified as a command
v When an abend occurs

You can determine the QMF service level using the following procedure:
1. Enter the SET PROFILE command (T=ALL.
2. Enter the SET PROFILE command (T=NONE.
3. Exit QMF.
4. Look at the DSQDEBUG file.

The resulting trace shows the program with its version, date, and time. The
trace can also show an APAR number if the module has a PTF applied, as in
the following trace example:
** DSQFQWRM: ENTERED FROM DSQFMCTL ***

V7R1.00 01/02/30 12:00 PNxxxxx

APAR PNxxxxx represents the most recent APAR for which service was
applied.

Turning Off the Trace Facility
After you capture diagnostic details using the trace facility, you might want to
turn tracing off, because the disk or spool area used for the trace data can fill
up very quickly.

To turn tracing off, issue the following command from within QMF:
SET PROFILE (T=NONE

If you leave tracing on until you end the QMF session, when you start QMF
the next time, the tracing is set to NONE by default. The program parameter
DSQSDBUG, explained in “Setting the Level of Trace Detail (DSQSDBUG)” on
page 81, controls this tracing when QMF is started.

Abend Handling
When QMF starts, it establishes an abend handler. If QMF fails, the abend
handler gets control, records the error, and cleans up the environment. After
completion, the abend handler returns to the operating system, and allows it
to continue with the abnormal termination process.

If an abend occurs while processing the user edit code or while executing the
governor, additional areas appear in the dump to assist with problem
diagnosis.

For the user edit code, DXEECS, the input area, and the result area are added
to the output.

Troubleshooting and Problem Diagnosis

Chapter 16. Troubleshooting and Problem Diagnosis 305

|
|

For the governor, DXEXCBA and DXEGOV are added to the output.

Using the QMF Interrupt Facility
To use the QMF interrupt handler, ensure that your break key is set to PA1. To
do this, enter:
CMS Q TERMINAL

Examine the BRKKEY field that is displayed. If it does not show BRKKEY PA1,
then enter:
CMS TERM BRKKEY PA1

to set the break key to PA1.

Press the CLEAR key to see the QMF procedure panel.

Use the QMF interrupt facility to gather information about a problem. Using
the interrupt facility, you can produce an abend dump, or cause trace
information to be displayed or written into the DSQDEBUG data set.

You use the interrupt facility under the user ID of the user whose problem
you are diagnosing. First, however, you must recreate the problem, unless you
were there when it occurred.

Creating an Interrupt
The first step in using the interrupt facility is to create an attention interrupt.
For most system configurations, you can create an attention interrupt by
pressing either the Attn key or a combination of the Reset and PA1 keys. If
these combinations do not work for you, see the appropriate publications for
your current system configuration to obtain more information on creating the
interrupt.

The interrupt facility responds by displaying the following message:

Note: If you have to use the PA1 key to create the interrupt, you might have
to press the PA1 key twice before this message appears.

DSQ50546 QMF command interrupted! Clear screen and press enter.

Figure 105. QMF interrupt handler prompt 1

Troubleshooting and Problem Diagnosis

306 Installing and Managing QMF on VM

Displaying Trace Information After Creating an Interrupt
After the interrupt message appears, press the Clear and Enter keys, as the
message instructs you to do. The message shown in Figure 106 appears.

Note: You might have to press the Enter key twice before this message
appears on your screen.

Make your choice by typing CONT, CANCEL, or DEBUG, then press the Enter key:
v Enter CONT to return control to wherever you were before you caused the

interrupt, as if the interrupt had never occurred.
v Enter CANCEL to stop any command that is running at the time of the

interrupt. The keyboard is unlocked, and QMF awaits your next command.
Note that it is not always possible to cancel a command.

v Enter DEBUG to get diagnostic information as shown in Figure 107:

The trace information on the second line of this example tells you that, at
the time of the interrupt, control was in CSECT DSQEINPT, and that
control had reached this CSECT by passing successively through the
CSECTs DSQDSUPV, DSQDSUPX, DSQEADAP, and DSQEMAIN.

Respond to the debug panel shown in Figure 107 by entering CONT, CANCEL,
ABEND, TRACEALL, or TRACENONE, according to the following descriptions. Then
press the Enter key.
v Enter CONT to return control to wherever you were before you caused the

interrupt, as if the interrupt never occurred.

DSQ50547 QMF command interrupted! Do one of the following:
==> To continue QMF command, type "CONT".
==> To cancel QMF command, type "CANCEL".
==> To enter QMF debug, type "DEBUG".

Figure 106. QMF interrupt handler prompt 2

-- OK, QMF debug entered. QMF CSECT trace is:
DSQDSUPV -> DSQDSUPX -> DSQEADAP -> DSQEMAIN -> DSQEINPT -> ENDTRACE

==> To continue QMF command, type 'CONT'
==> To cancel QMF command, type 'CANCEL'
==> To abnormally terminate QMF, type 'ABEND'
==> To set QMF trace, type 'TRACEALL' or 'TRACENONE'

Figure 107. Diagnostic information captured by typing DEBUG on the interrupt screen.

Troubleshooting and Problem Diagnosis

Chapter 16. Troubleshooting and Problem Diagnosis 307

v Enter CANCEL to stop any command that is running at the time of interrupt.
The keyboard is unlocked, and QMF awaits your next command. However,
note that it is not always possible to cancel a command.

v Enter ABEND to abnormally terminate QMF and let you enter CP commands,
for example, to initiate a VM dump.

v Enter TRACEALL to cause QMF to start adding the most detailed level of
tracing output to the DSQDEBUG data set. Control returns to wherever it
was at the time of interrupt.

v Enter TRACENONE to cause QMF to stop adding any trace output to the
DSQDEBUG data set. Control returns to wherever it was at the time of
interrupt.

Error Handling
QMF handles interrupts through the use of a STAX exit. If you use a CMS
command to execute an EXEC that alters the STAX exit, you encounter the
following problems when returning to QMF:
v If the STAX exit is removed, you are not able to interrupt QMF. This means

you won’t be able to cancel a QMF command. You can, however, get into
CP READ and issue an HX command. This action halts execution of both
QMF and ISPF.
Since the STAX is removed, it causes QMF to generate an error during a
termination when it tries to remove the STAX exit that no longer exists.

v If a STAX exit is added, you can have a problem canceling a QMF
command. You can end up in the wrong interrupt handler! Here again, you
can get into CP READ and issue an HX command, which halts the
execution of both QMF and ISPF.

Using Error Log Reports from the Q.ERROR_LOG Table
The Q.ERROR_LOG table is a QMF control table that logs information about
resource problems and problems caused by possible software defects. The
structure of the table is shown in Table 46.

Table 46. Structure of the Q.ERROR_LOG table

Column name Data type Length
(bytes)

Nulls
allowed?

Function/values

DATESTAMP CHAR 8 no The date on which the error
occurred. It is in the form
yyyymmdd.

TIMESTAMP CHAR 5 no The time at which the error
occurred. It is in the form
hh:mm, where hh is the
hour and mm is the minute.

Troubleshooting and Problem Diagnosis

308 Installing and Managing QMF on VM

Table 46. Structure of the Q.ERROR_LOG table (continued)

Column name Data type Length
(bytes)

Nulls
allowed?

Function/values

USERID CHAR 8 no The user ID of the VM
logon ID of the user who
experienced the error.

MSG_NO CHAR 8 no The QMF message number
that was issued with the
error.

MSGTEXT VARCHAR 254 no Text of the message. SQL
errors might have data from
the SQLCA in this column.

A long error message might need more than one row of the table to represent
it. If it does, the values of every column except the MSGTEXT column repeat.
Within the MSGTEXT column, each row carries a fragment of the message. A
fragment begins with 1), 2), 3), and so on, to indicate its relative position in
the message.

To help diagnose problems, you can query the Q.ERROR_LOG table for
information about errors. You need to know the terminal ID of the user who
experienced the problem and the approximate time the problem occurred.
Figure 108 shows the format of the query.
Be sure to use valid formats for the date and times you supply. These formats

are shown in Table 46 on page 308.

Reporting a Problem to IBM

Before you report a problem to IBM, check IBM’s Software Support Facility
(SSF) to see if the problem has already been reported. For many reported
problems, IBM support center representatives prepare an Authorized Program
Analysis Report (APAR), which includes useful information about how to
solve the problem.

If you have access to the SSF through ServiceLink or some other facility, read
“Using ServiceLink to Search for Previously Reported Problems” on page 310

SELECT TIMESTAMP, MSG_NO, MSGTEXT
FROM Q.ERROR_LOG
WHERE USERID = 'terminal_id'

AND DATESTAMP = 'date'__yyyymmdd
AND TIMESTAMP BETWEEN 'time1' AND 'time2'

ORDER BY TIMESTAMP, MSG_NO, MSGTEXT

Figure 108. Querying the error log for problem information

Troubleshooting and Problem Diagnosis

Chapter 16. Troubleshooting and Problem Diagnosis 309

for instructions on how to develop a string of search keywords that help you
find the problem. If you do not have access to ServiceLink, you can go
directly to “Working with Your IBM Support Center” on page 312.

Using ServiceLink to Search for Previously Reported Problems
Search the SSF by constructing a string of search words that describe your
problem. Every string of search words for QMF VM/ESA 7 begins with the
component ID 566872101 and a release number (shown in Table 47) that
matches the QMF national language environment in which you experienced
the problem.

Table 47. Release numbers for QMF base product and NLFs

NLF ID

Brazilian Portuguese 79B

Danish 795

English 790

French 796

German 797

Italian 798

Japanese 799

Korean 79A

Simplified Chinese 793

Spanish 79C

Swedish 79D

Swiss French 79E

Swiss German 79F

Canadian French 79G

Uppercase English 791

The flowchart in Figure 109 on page 311 shows how to develop your search
words as you determine each characteristic of the problem.

Troubleshooting and Problem Diagnosis

310 Installing and Managing QMF on VM

||

For example, if the problem you are searching for is an abend type of 0C4
that occurred in the DSQFDTBL control section (CSECT) when a user was
running an English QMF session, use this search phrase:

Figure 109. Chart of keyword types. Move from the top to the bottom of this chart to determine
your keywords.

Troubleshooting and Problem Diagnosis

Chapter 16. Troubleshooting and Problem Diagnosis 311

566872101 09 ABEND0C4 DSQFDTBL

To find the CSECT name, look in the section of the trace output that has the
heading ABEND CSECT NAME. The CSECT name is set off by asterisks. See
“Using the QMF Trace Facility” on page 300 for more information on how to
use the QMF trace facility.

For more information on searching the SSF for known QMF problems, see
ServiceLink User’s Guide

Working with Your IBM Support Center
If you’re having trouble diagnosing the problem and have used the diagnosis
aids explained in this chapter, contact your IBM Support Center to report the
problem.

To help diagnose the problem, your support center representative might need
more information about the problem. For example, if you call to report an
abend in QMF, you might need to supply some information about CSECTs of
the program that you suspect might have caused the error. In many cases, you
can find this type of information using the trace facility, which is explained in
“Using the QMF Trace Facility” on page 300. The IBM representative might
also need documentation produced by other diagnosis aids shown in Table 44
on page 298. This documentation can help the representative recreate the
problem.

Troubleshooting and Problem Diagnosis

312 Installing and Managing QMF on VM

Part 3. Appendixes

© Copyright IBM Corp. 1983, 2000 313

314 Installing and Managing QMF on VM

Appendix A. Installation Checklists

This appendix is provided to assist you in QMF and QMF NLF installations.
Checklists provide the major installation steps to be completed and the
applicable file name or EXEC of each step.

QMF Installation Checklist

Table 48. Checklist for QMF V7R1

Step Description File or EXEC Name

Read and follow installation steps in
program directory

1 Create QMF installation control file DSQ2ECTL

2 Create DB2 for VM DBSPACEs

10 (initial installation)

1 (migrating from QMF V2)

0 (migrating from QMF V3R1
or higher)

DSQ2DBSC

3 Run QMF installation EXEC DSQ2EINS

4 Start QMF DSQ2EINV

5 Run IVP for interactive mode DSQ2EIVP

6 Install the QMF sample queries and
procedures

DSQ2ESQD DSQ2ESQI

7 Run IVP for batch mode (optional) DSQ2EBAT

8 Delete QMF 2.4 or higher (optional) DSQ2BDEL

9 Post-installation cleanup N/A

10 Load QMF DB Packages to Remote
server (optional)

DSQ2BPKB

© Copyright IBM Corp. 1983, 2000 315

|||

QMF NLF Installation Checklist

Table 49. Checklist for QMF National Language Feature

Step Description File or EXEC Name

Read and follow the installation steps
in the program directory

1 Create the QMF NLF installation
control file

DSQ2nCTL

2 Run the QMF NLF installation EXEC DSQ2nINS

3 Invoke QMF NLF DSQ2nINV

4 Run the NLF IVP DSQ2nIVP

5 Install the QMF NLF sample queries DSQ2nSQD DSQ2nSQI

6 Run the IVP for batch mode
processing

DSQ2nBAT

7 Post-installation cleanup N/A

Installation Checklists

316 Installing and Managing QMF on VM

Appendix B. QMF Objects Residing in DB2 for VM

The following tables show a DBA the QMF 7.1 objects that reside in the
database. The tables are intended to summarize all the database objects that
are needed to run QMF 7.1 in the DB2 for VM subsystem. These tables are not
intended as replacements for the installation jobs outlined in this book, but
merely as a guide if database object recovery is needed.

The DDL parts and jobs reside on the QMF distribution and products disks.

Input to DSQ2EINS or DSQ2nINS

Table 50 shows the files for DSQ2EINS or DSQ2nINS.

Table 50. Input to DSQ2EINS or DSQ2nINS

File name Created by EXEC

QMFV710E INSTALL DSQ2ECTL

QMFV710n INSTALL DSQ2nCTL

QMF User ID

Table 51 shows the QMF user ID and its definition part.

Table 51. QMF user ID

Name Definition part

Q DSQ2SETQ

QMF Control Tables

Table 52 shows the control tables shipped with QMF.

Table 52. QMF control tables

Table Index View dbspace* DDL part

Q.OBJECT_DIRECTORY Q.OBJECT_DIRECTORYX none DSQTSCT1 DSQ2TBLI

Q.OBJECT_REMARKS Q.OBJECT_REMARKSX none DSQTSCT2 DSQ2TBLI

Q.OBJECT_DATA Q.OBJECT_OBJDATAX none DSQTSCT3 DSQ2TBLI

Q.PROFILES Q.PROFILEX none DSQTSPRO DSQ2TBLU

Q.ERROR_LOG none none DSQTSLOG DSQ2TBLE

© Copyright IBM Corp. 1983, 2000 317

|

|

Table 52. QMF control tables (continued)

Table Index View dbspace* DDL part

Q.COMMAND_SYNONYMS Q.COMMAND_SYNONYMSX none DSQTSSYN DSQ2TBLN

Q.RESOURCE_TABLE Q.RESOURCE_INDEX Q.RESOURCE_VIEWDSQTSGOVDSQ2TBLN

Q.DSQ_RESERVED none none DSQTSRDO DSQ2TBLR

: *dbspaces are acquired using the DSQDBSP EXEC.

Default List Views

You might have customized the default list views. Table 53 describes the
default views shipped with QMF.

Table 53. Default List Views

View Name DDL Member

Q.DSQEC_TABS_SQL DSQ2TBLV

Q.DSQEC_COLS_SQL DSQ2TBLV

Q.DSQEC_QMFOBJS DSQ2TBLV

QMF Packages

Table 54 describes the packages shipped with QMF.

Table 54. QMF packages

Package name Preprocessing job

DSQCxxxx DSQ2PREP

Note: For the job that runs the particular DDL member, see the index.

NLF Parts

Table 55 describes the NLF table shipped with QMF

Table 55. QMF NLF table

Table Index DDL member in
DSQSAMPn

Q.OBJECT_SYNONYM_n Q.COMMAND_SYNONYMX_n DSQ2nSYC

318 Installing and Managing QMF on VM

Appendix C. Migration and Fallback Considerations

Note: Skip this section if you are installing QMF for the first time.

Your users may need certain kinds of help before they can operate the new
release of QMF.

Migrating from a Previous QMF Release to QMF 7.1

This section describes changes to the global variables (and the governor exit
control block), the callable interface communications area, the invocation
procedure (use of), and the view Q.VPROFILE.

Global Variables and the Governor
These are the changes made to the global variables and the governor exit
control block for QMF 7.1:
v Global variables

DSQA0_QMF_RELEASE is now set to '12'
DSQA0_QMF_VER_RELS is now set to 'QMF V7R1.0'

v Governor exit control block DXEXCBA fields
XCBRELN is now set to '12'
XCBQMF is now set to 'QMF V7R1.0'

Use of the Invocation Procedure
In QMF Version 2, if you start QMF with a value for the DSQSRUN program
parameter, or issue the END command to leave QMF, QMF runs an
“invocation procedure”.

In the current release, if you start QMF with a value for the DSQSRUN
program parameter, the specified invocation procedure is run at the initial
location (the first server). If you change locations during the QMF session, the
invocation procedure is not rerun. Instead, the following message is displayed
on the Home Panel:
“Your invocation procedure was not rerun due to location differences”

This remains until:
v You connect to the initial location.
v You set the global variable DSQEC_RERUN_IPROC to 0.
v You issue the EXIT command.

Q.VPROFILE
In previous releases, Q.VPROFILE was created when you installed QMF into a
database. This view is no longer created during QMF installation. If you are

© Copyright IBM Corp. 1983, 2000 319

|
|

|
|

migrating to QMF 7.1 from an existing release of QMF that is already installed
into that database, the Q.VPROFILE view remains intact; that is, QMF does
not drop it during the migration process. If you have any applications that
depend on Q.VPROFILE, and you are installing QMF 7.1 into a new database,
you must create Q.VPROFILE or use your own view in the application.

If you need to use Q.VPROFILE, use the following statement to create
Q.VPROFILE:
CREATE VIEW Q.VPROFILE AS
SELECT * FROM Q.PROFILES
WHERE CREATOR = 'SYSTEM'

Multiple Releases of QMF
Multiple releases of QMF can access one DB2 for VM database, and all
releases use the same QMF control tables (and hence, QMF objects).

Migrating to a new DB2 for VM level

When upgrading your database to a new level of DB2 for VM, it is
recommended that you follow the DB2 for VM migration installation
procedure described in DB2 Server for VM Installation Guide When you migrate
to a new level of DB2 for VM, QMF requires its DCSS to be rebuilt.

If you install the new level of DB2 for VM as an initial installation and then
decide to migrate to it from the old database, it is important to remember that
QMF requires the existence of the following items in DB2 for VM:
v QMF DBSPACEs and associated tables, indexes, and views
v QMF catalog views NOT associated with QMF DBSPACEs:

– Q.DSQEC_TABS_SQL
– Q.DSQEC_COLS_SQL

These views are described in DSQ2TBLV on your QMF distribution
minidisk.

v QMF program access modules

If QMF DBSPACEs and QMF catalog views not associated with QMF
DBSPACEs already exist in the new database, proceed to step 3 of the
installation process and follow the database-only installation procedure. When
running DSQ2ECTL, specify v3r3 migration to indicate that the QMF control
tables do not require alteration by the installation EXEC.

If you are migrating from SQL/DS V2R2 to a later release, you must drop the
Q.OBJECT_DATA table and recreate it so that the APPLDATA column is
defined as LONG VARCHAR FOR BIT DATA:
1. Use the DB2 for VM DBS Utility to unload the Q.OBJECT_DATA table.

Migration and Fallback Considerations

320 Installing and Managing QMF on VM

2. Drop and create the Q.OBJECT_DATA table with the following SQL
queries:

3. Use the DB2 for VM DBS Utility to reload data into the Q.OBJECT_DATA
table.

Migration and 31-Digit Decimal Support
If you are using QMF 3.1 (or later) and are operating in SQL/DS 3.2 (or later),
you have 31-digit decimal support. If you migrate from an earlier version of
QMF, or from an earlier database version, you may want to determine which
tables are impacted by the 31-digit decimal support. The following query
retrieves a list of the user tables from the SQL/DS tables:

SELECT DISTINCT(TNAME) FROM SYSTEM.SYSCOLUMNS WHERE COLTYPE IN
('INTEGER', 'SMALLINT', 'FLOAT', 'DECIMAL', 'DATE', 'TIME', 'TIMESTAMP')
ORDER BY TNAME

Fallback

Fallback is the process of migrating a user back to the earlier release of QMF.
Cleanup is the process of removing the earlier release from VM. Cleanup is
described in “Part 1. Installing QMF for VM/ESA” on page 1 and is not
discussed here.

Fallback isn’t likely to be done unless the two versions of QMF are running
from the same DB2 for VM database.

CONNECT Q IDENTIFIED BY xxx ;

DROP TABLE OBJECT_DATA ;

CREATE TABLE Q.OBJECT_DATA
("OWNER" CHAR(8) NOT NULL,
"NAME" VARCHAR(8) NOT NULL,
"TYPE" CHAR(8) NOT NULL,
"SEQ" SMALLINT NOT NULL,
"APPLDATA" LONG VARCHAR FOR BIT DATA)

IN DSQTSCT3;
COMMENT ON TABLE Q.OBJECT_DATA IS

'QMF SAVED ITEM DATA TABLE';
COMMENT ON COLUMN Q.OBJECT_DATA.OWNER IS

'AUTHORIZATION ID OF QMF ITEM OWNER';
COMMENT ON COLUMN Q.OBJECT_DATA.NAME IS

'NAME OF QMF ITEM';
COMMENT ON COLUMN Q.OBJECT_DATA.TYPE IS

'TYPE OF QMF ITEM';
COMMENT ON COLUMN Q.OBJECT_DATA.SEQ IS

'ROW SEQUENCE NUMBER';
COMMENT ON COLUMN Q.OBJECT_DATA.APPLDATA IS

'QMF ITEM DATA';
CREATE UNIQUE INDEX Q.OBJECT_DATAX ON Q.OBJECT_DATA

("OWNER" ASC, "NAME" ASC, "SEC" ASC);

Migrating to a New DB2 for VM Level

Appendix C. Migration and Fallback Considerations 321

Re-establishing the Earlier Profiles
Because QMF Version 3 added an ENVIRONMENT column to Q.PROFILES, it
is possible to have multiple rows where the CREATOR and TRANSLATION
columns contain the same values (but with different values in the
ENVIRONMENT column). Since there was no ENVIRONMENT column in
QMF versions earlier than Version 3, this means that when you fall back from
Version 3 to Version 2, some rows in Q.PROFILES that were unique in Version
3 appear as duplicates in Version 2. Therefore, you might need to re-establish
the earlier profile. This is necessary only under certain conditions.
v If your SQL/DS is Version 3.2 or earlier, no action is needed.
v If your SQL/DS is Version 3.3 or later, and you are falling back to QMF

Version 3.1, no action is needed.
v If your SQL/DS is Version 3.3 or later, and you are falling back to QMF

Version 2.4 or earlier, delete the ENVIRONMENT column from the
Q.PROFILES table.

Using Version 7 Objects Under Earlier QMF Releases
This is largely preventive. While there is still a chance for fallback, make
certain that your users understand the compatibility rules given previously in
this appendix.

If you fall back to the earlier QMF release, some objects created under QMF
Version 7 cannot be used in the earlier environment. Consider this when
planning for a possible fallback. The following list contains the restrictions
that apply when you use some Version 7 objects in earlier releases.
v Forms

Form objects that were saved or exported under Version 7, and displayed or
imported to earlier releases of QMF, can be expected to execute normally.
However, form objects saved or exported from Version 7 cannot be used in
Version 2.4 or earlier.
Before they can be used in earlier applications, forms exported from Version
7 that use break field numbers (or the object level in the header record)
require the Form Application Migration Aid.

v Queries
Some restrictions apply to Version 7 queries for fallback to earlier releases:
– SQL queries: You can export SQL queries from Version 7 and import

them on earlier releases, and they execute normally. However, SQL
queries saved on Version 7 cannot be used in Version 2.4 or earlier.

– Prompted queries: You can display and import Version 7 prompted
queries in earlier releases provided they do not contain variables, or
expressions with more than the old 55 or 65 character limit.

– QBE queries: Queries created with QBE (Query-by-Example) saved or
exported in Version 7 can be displayed or imported in earlier releases
and execute normally.

Migrating to a New DB2 for VM Level

322 Installing and Managing QMF on VM

v Procedures
Procedure objects exported from Version 7 can be imported into earlier
releases, and they can be run if the new QMF commands or command
syntax are not used. Procedure objects saved with Version 7 cannot be
displayed with earlier releases unless you first export them from Version 7
and import them into the earlier release. Procedures with logic, that is,
procedures that contain REXX logic, cannot be displayed or imported in
releases earlier than Version 3.

v Procedures or applications containing QMF commands that cannot be run
under the earlier release
These commands could fail to run for a number of reasons. See “Using
Version 7 QMF Commands with Earlier Releases”, for details.

v Applications that call the callable interface
Applications call the callable interface in their EXECs and programs to call
QMF. The callable interface was introduced for Version 2.4, so applications
running with earlier versions of QMF cannot use it.

v Applications containing QMF commands that cannot be run in the earlier
release.
These are the same commands that cannot be run in a procedure, and for
the same reasons. See “Using Version 7 QMF Commands with Earlier
Releases” for details.

Importing objects to Version 2.4
If you have queries or procedures created under Version 3 which do not have
any of the characteristics just mentioned, it might be possible to use them
under QMF Version 2.4. To use your Version 3 procedures or queries:
1. Export your Version 3 objects while running under Version 3.
2. Import the objects while running under QMF Version 2.4.

You might want more information on the differences between the earlier QMF
release and QMF Version 3. If you do, compare the two releases of QMF
Reference.

Using Version 7 QMF Commands with Earlier Releases
Version 7 procedures and applications might run incorrectly under an earlier
QMF release because they contain commands that the earlier release cannot
run. Some commands:
v Do not exist in the earlier release.
v Contain options that operate differently in the earlier release. For example,

the DRAW command has the same syntax as before, but now produces
different results. All keywords now have double quotes; therefore, the users
no longer have to add the quotes, and any tools used to provide double
quotes are no longer necessary.

Migrating to a New DB2 for VM Level

Appendix C. Migration and Fallback Considerations 323

31-Digit Decimal Support
If you are using QMF Version 3.1 (or later) and are operating in SQL/DS
Version 3.2 (or later), you have 31-digit decimal support. Some expressions
might produce unusual or unacceptable results when migrated from 15-digit
to 31-digit decimal format. It is very difficult to fall back to a 15-digit decimal
environment without backup data.

Migrating to a New DB2 for VM Level

324 Installing and Managing QMF on VM

Appendix D. QMF Control Tables and dbspaces Used by
QMF

QMF uses the control tables shown in Table 56 to manage QMF users and the
objects they create. The dbspace sizes given for each block are in pages, where
each page is one 4096-byte block. See the page listed at the right of the table if
you need information on the table’s structure and more detailed information
on how QMF uses it.

Table 56. List of QMF control tables and dbspaces used by QMF

Control table name dbspace dbspace size Table content More
information:

Q.PROFILES DSQTSPRO 128 pages Contains QMF profiles that
hold information about
individual users’ access to
resources and data during
a QMF session.

Pages 97 to 107

Q.OBJECT_DIRECTORY DSQTSCT1 256 pages Contains general
information about all QMF
queries, forms, and
procedures in the database.

Page 121

Q.OBJECT_DATA DSQTSCT3 5120 pages Contains queries, forms,
and procedures represented
in an internal QMF format.

Page 122

Q.OBJECT_REMARKS DSQTSCT2 256 pages Contains comments that
were saved when queries,
forms, and procedures
were created (or replaced).

Page 123

Q.COMMAND_SYNONYMS DSQTSCT2 128 pages Contains information on
the command synonyms

Page 159

Q.RESOURCE_TABLE DSQTSGOV 128 pages Contains resource control
information passed to the
governor exit routine.

Page 227

Q.ERROR_LOG DSQTSLOG 128 pages Contains information on
system, resource, and
“unexpected condition”
errors. This information is
more detailed than that
found in error messages.

Page 308

© Copyright IBM Corp. 1983, 2000 325

Table 56. List of QMF control tables and dbspaces used by QMF (continued)

Control table name dbspace dbspace size Table content More
information:

Q.DSQ_RESERVED DSQTSRDO 128 pages Contains information used
by QMF during
initialization.

This table is
not discussed
in this book.

In addition to the dbspaces shown in Table 56 on page 325 for the QMF
control tables, QMF uses dbspace DSQ2STBT for the QMF sample tables, and
DSQTSDEF to store data from the QMF SAVE DATA or IMPORT TABLE
commands. Both dbspaces have a default size of 128 pages.

For more information about the QMF sample tables, see Using QMF . For
more information on the SAVE DATA or IMPORT TABLE commands, see
QMF Reference.

QMF Control Tables and dbspaces Used by QMF

326 Installing and Managing QMF on VM

Appendix E. Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10594-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 1983, 2000 327

be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is as your own risk.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurement may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

328 Installing and Managing QMF on VM

All IBM prices shown are IBM’s suggested retail prices, are current and are
subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is
subject to change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,
which illustrates programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Appendix E. Notices 329

Trademarks

The following terms are trademarks of the IBM Corporation in the United
States or other countries or both:

ACF/VTAM
Advanced Peer-to-Peer

Networking
AIX
AIX/6000
AS/400
C/370
CICS
CICS/ESA
CICS/MVS
CICS/VSE
COBOL/370
DATABASE 2
DataJoiner
DB2
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
DXT
GDDM
IBM

IBMLink
IMS
Language Environment
MVS
MVS/ESA
MVS/XA
OfficeVision/VM
OS/2
OS/390
PL/I
PROFS
QMF
RACF
S/390
SQL/DS
Virtual Machine/Enterprise

Systems Architecture
Visual Basic
VM/XA
VM/ESA
VSE/ESA
VTAM

Java or all Java-based trademarks and logos, and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other counrtries, or both.

Lotus and 1-2-3 are trademarks of Lotus Development Corporation in the
Unites States, other counrties, or both.

Microsoft, Windows, and Windows NT are trademarks or registered
trademarks of Microsoft Corporation.

Other company, product, and service names, which may be denoted by a
double asterisk (**), may be trademarks or service marks of others.

330 Installing and Managing QMF on VM

Glossary of Terms and Acronyms

This glossary defines terms as they are used throughout the QMF library. If
you do not find the term you are looking for, refer to the index in this book,
or to the IBM Dictionary of Computing.

abend. The abnormal termination of a task.

ABENDx. The keyword for an abend problem.

Advanced Peer-to-Peer Networking. A distributed network and session control architecture that allows
networked computers to communicate dynamically as equals. Compare with Advanced
Program-to-Program Communication (APPC). An implementation of the SNA synchronous data link
control LU 6.2 protocol that allows interconnected systems to communicate and share the processing of
programs.

Advanced Program-to-Program Communication (APPC). An implementation of the SNA synchronous
data link control LU 6.2 protocol that allows interconnected systems to communicate and share the
processing of programs.

aggregation function. Any of a group of functions that summarizes data in a column. They are
requested with these usage codes on the form panels: AVERAGE, CALC, COUNT, FIRST, LAST,
MAXIMUM, MINIMUM, STDEV, SUM, CSUM, PCT, CPCT, TPCT, TCPCT.

aggregation variable. An aggregation function that is placed in a report using either the
FORM.BREAK, FORM.CALC, FORM.DETAIL, or FORM.FINAL panels. Its value appears as part of the
break footing, detail block text, or final text when the report is produced.

alias. In DB2 UDB for OS/390, an alternate name that can be used in SQL statements to refer to a table
or view in the same or a remote DB2 UDB for OS/390 subsystem. In OS/2, an alternate name used to
identify a object, a database, or a network resource such as an LU. In QMF, a locally defined name used
to access a QMF table or view stored on a local or remote DB2 UDB for OS/390 subsystem.

APAR. Authorized Program Analysis Report.

APPC. Advanced Program-to-Program Communication

application. A program written by QMF users that extends the capabilities of QMF without modifying
the QMF licensed program. Started from a QMF session by issuing a RUN command for a QMF
procedure, an installation-defined command, or a CMS or TSO command that invokes an EXEC or
CLIST, respectively.

application requester. (1) A facility that accepts a database request from an application process and
passes it to an application server. (2) In DRDA, the source of a request to a remote relational database
management system.

The application requester is the DBMS code that handles the QMF end of the distributed connection.
The local DB2 UDB for OS/390 subsystem to which QMF attaches is known as the application requester
for QMF, because DB2 UDB for OS/390’s application requester is installed within the local database

© Copyright IBM Corp. 1983, 2000 331

manager. Therefore, an entire DB2 UDB for OS/390 subsystem (including data) is associated with the
application requester, but the SQL statements are processed at the current location. This subsystem is
called the “local DB2 UDB for OS/390”.

With DB2 for VM and VSE the application requester runs in the same virtual machine as QMF; that is,
no database is inherently associated with the DB2 for VM and VSE application requester.

application server. The target of a request from an application requester. (1) The local or remote
database manager to which the application process is connected. The application server executes at the
system containing the desired data. (2) In DRDA, the target of a request from an application requester.
With DB2 UDB for OS/390, the application server is part of a full DB2 UDB for OS/390 subsystem.

With DB2 for VM and VSE, the application server is part of a DB2 for VM and VSE database machine.

application-support command. A QMF command that can be used within an application program to
exchange information between the application program and QMF. These commands include INTERACT,
MESSAGE, STATE, and QMF.

area separator. The barrier that separates the fixed area of a displayed report from the remainder of the
report.

argument. An independent variable.

base QMF environment. The English-language environment of QMF, established when QMF is
installed. Any other language environment is established after installation.

batch QMF session. A QMF session running in the background. Begins when a specified QMF
procedure is invoked and ends when the procedure ends. During a background QMF session, no user
interaction and panel display interaction are allowed.

bind. In DRDA, the process by which the SQL statements in an application program are made known
to a database management system over application support protocol (and database support protocol)
flows. During a bind, output from a precompiler or preprocessor is converted to a control structure
called a package. In addition, access paths to the referenced data are selected and some authorization
checking is performed. (Optionally in DB2 UDB for OS/390, the output may be an application plan.)

built-in function. Generic term for scalar function or column function. Can also be “function.”

calculation variable. CALCid is a special variable for forms that contains a user-defined calculated
value. CALCid is defined on the FORM.CALC panel.

callable interface. A programming interface that provides access to QMF services. An application can
access these services even when the application is running outside of a QMF session. Contrast with
command interface.

chart. A graphic display of information in a report.

CICS. Customer Information Control System.

client. A functional unit that receives shared services from a server.

CMS. Conversational Monitor System.

Glossary

332 Installing and Managing QMF on VM

column. A vertical set of tabular data. It has a particular data type (for example, character or numeric)
and a name. The values in a column all have the same data characteristics.

column function. An operation that is applied once to all values in a column, returns a single value as
a result, and is expressed in the form of a function name followed by one or more arguments enclosed
in parentheses.

column heading. An alternative to the column name that a user can specify on a form. Not saved in
the database, as are the column name and label.

column label. An alternative descriptor for a column of data that is saved in the database. When used,
column labels appear by default on the form, but they can be changed by users.

column wrapping. Formatting values in a report so that they occupy several lines within a column.
Often used when a column contains values whose length exceeds the column width.

command interface. An interface for running QMF commands. The QMF commands can only be issued
from within an active QMF session. Contrast with callable interface.

command synonym. The verb or verb/object part of an installation-defined command. Users enter this
for the command, followed by whatever other information is needed.

command synonym table. A table each of whose rows describes an installation-defined command. Each
user can be assigned one of these tables.

commit. The process that makes a data change permanent. When a commit occurs, data locks are freed
enabling other applications to reference the just-committed data. See also “rollback”.

concatenation. The combination of two strings into a single string by appending the second to the first.

connectivity. The enabling of different systems to communicate with each other. For example,
connectivity between a DB2 UDB for OS/390 application requester and a DB2 for VM and VSE
application server enables a DB2 UDB for OS/390 user to request data from a DB2 for VM and VSE
database.

conversation. A logical connection between two programs over an LU 6.2 session that allows them to
communicate with each other while processing a transaction.

correlation name. An alias for a table name, specified in the FROM clause of a SELECT query. When
concatenated with a column name, it identifies the table to which the column belongs.

CP. The Control Program for VM.

CSECT. Control section.

current location. The application server to which the QMF session is currently connected. Except for
connection-type statements, such as CONNECT (which are handled by the application requester), this
server processes all the SQL statements. When initializing QMF, the current location is indicated by the
DSQSDBNM startup program parameter. (If that parameter is not specified, the local DB2 UDB for
OS/390 subsystem

current object. An object in temporary storage currently displayed. Contrast with saved object.

Glossary

Glossary of Terms and Acronyms 333

Customer Information Control System (CICS). An IBM licensed program that enables transactions
entered at remote terminals to be processed concurrently by user-written application programs. It
includes facilities for building, using, and maintaining databases.

DATA. An object in temporary storage that contains the information returned by a retrieval query.
Information represented by alphanumeric characters contained in tables and formatted in reports.

database. A collection of data with a given structure for accepting, storing, and providing on demand
data for multiple users. In DB2 UDB for OS/390, a created object that contains table spaces and index
spaces. In DB2 for VM and VSE, a collection of tables, indexes, and supporting information (such as
control information and data recovery information) maintained by the system. In OS/2, a collection of
information, such as tables, views, and indexes.

database administrator. The person who controls the content of and access to a database.

database management system. A computer-based system for defining, creating, manipulating,
controlling, managing, and using databases. The database management system also has transaction
management and data recovery facilities to protect data integrity.

database manager. A program used to create and maintain a database and to communicate with
programs requiring access to the database.

database server. (1) In DRDA, the target of a request received from an application server (2) In OS/2, a
workstations that provides database services for its local database to database clients.

date. Designates a day, month, and year (a three-part value).

date/time default formats. Date and time formats specified by a database manager installation option.
They can be the EUR, ISO, JIS, USA, or LOC (LOCAL) formats.

date/time data. The data in a table column with a DATE, TIME, or TIMESTAMP data type.

DB2 UDB for OS/390. DB2 Universal Database for OS/390 (an IBM relational database management
system).

DB2 for AIX. DATABASE2 for AIX. The database manager for QMF’s relational data.

DBCS. Double-byte character set.

DBMS. Database management system.

default form. The form created by QMF when a query is run. The default form is not created if a saved
form is run with the query.

destination control table (DCT). In CICS, a table containing a definition for each transient data queue.

detail block text. The text in the body of the report associated with a particular row of data.

detail heading text. The text in the heading of a report. Whether or not headings will be printed is
specified in FORM.DETAIL.

dialog panel. A panel that overlays part of a Prompted Query primary panel and extends the dialog
that helps build a query.

Glossary

334 Installing and Managing QMF on VM

distributed data. Data that is stored in more than one system in a network, and is available to remote
users and application programs.

distributed database. A database that appears to users as a logical whole, locally accessible, but is
comprised of databases in multiple locations.

distributed relational database. A distributed database where all data is stored according to the
relational model.

Distributed Relational Database Architecture. A connection protocol for distributed relational database
processing that is used by IBM and vendor relational database products.

distributed unit of work. A method of accessing distributed relational data in which users or
applications can, within a single unit of work, submit SQL statements to multiple relational database
management systems, but no more than one RDBMS per SQL statement.

DB2 UDB for OS/390 introduced a limited form of distributed unit of work support in its V2R2 called
system-directed access, which QMF supports.

DOC. The keyword for a document problem.

double-byte character. An entity that requires two character bytes.

double-byte character set (DBCS). A set of characters in which each character is represented by two
bytes. Languages such as Japanese, Chinese, and Korean, which contain more symbols that can be
represented by 256 code points, require double-byte character sets. Because each character requires two
bytes, the typing, display, and printing of DBCS characters requires hardware and programs that support
DBCS. Contrast with single-byte character set.

DRDA. Distributed Relational Database Architecture.

duration. An amount of time expressed as a number followed by one of seven keywords: YEARS,
MONTHS, DAYS, HOURS, MINUTES, SECONDS, MICROSECONDS.

EBCDIC. Extended Binary-Coded Decimal Interchange Code.

echo area. The part of the Prompted Query primary panel in which a prompted query is built.

EUR (European) format. A format that represents date and time values as follows:
v Date: dd.mm.yyyy
v Time: hh.mm.ss

extended syntax. QMF command syntax that is used by the QMF callable interface; this syntax defines
variables that are stored in the storage acquired by the callable interface application and shared with
QMF

example element. A symbol for a value to be used in a calculation or a condition in a QBE query.

example table. The framework of a QBE query.

fixed area. That part of a report that contains fixed columns.

fixed columns. The columns of a report that remain in place when the user scrolls horizontally. On
multiple-page, printed reports, these columns are repeated on the left side of each page.

Glossary

Glossary of Terms and Acronyms 335

form. An object that contains the specifications for printing or displaying a report or chart. A form in
temporary storage has the name of FORM.

function key table. A table containing function key definitions for one or more QMF panels, along with
text describing the keys. Each user can be assigned one of these tables.

gateway. A functional unit that connects two computer networks of different network architectures. A
gateway connects networks or systems of different architectures, as opposed to a bridge, which connects
networks or systems with the same or similar architectures.

GDDM. Graphical Data Display Manager.

global variable. A variable that, once set, can be used for an entire QMF session. A global variable can
be used in a procedure, query, or form. Contrast with run-time variable.

Graphical Data Display Manager. A group of routines that allows pictures to be defined and displayed
procedurally through function routines that correspond to graphic primitives.

grouped row. A row of data in a QBE target or example table that is summarized either by a G. or a
built-in function.

HELP. Additional information about an error message, a QMF panel, or a QMF command and its
options.

host. A mainframe or mid-size processor that provides services in a network to a workstation.

HTML. Hypertext Markup Language. A standardized markup language for documents displayed on
the World Wide Web.

ICU. Interactive Chart Utility.

INCORROUT. The keyword for incorrect output.

index. A collection of data about the locations of records in a table, allowing rapid access to a record
with a given key.

initial procedure. A QMF procedure specified by the DSQSRUN parameter on the QMF start command
which is executed immediately after QMF is invoked.

initialization program. A program that sets QMF program parameters. This program is specified by
DSQSCMD in the callable interface. The default program for interactive QMF is DSQSCMDn, where n is
the qualifier for the presiding language ('E' for English).

installation-defined command. A command created by an installation. QMF will process it as one of its
own commands or as a combination of its commands.

installation-defined format. Date and time formats, also referred to as LOCAL formats, that are
defined (or built) by the installation.

interactive execution. Execution of a QMF command in which any dialog that should take place
between the user and QMF during the command’s execution actually does take place.

Glossary

336 Installing and Managing QMF on VM

interactive session. Any QMF session in which the user and QMF can interact. Could be started by
another interactive session by using the QMF INTERACT command.

interactive switch. A conceptual switch which, when on, enables an application program to run QMF
commands interactively.

invocation CLIST or EXEC. A program that invokes (starts) QMF.

ISO (International Standards Organization) format. A format that represents date and time values as
follows:
v Date: yyyy-mm-dd
v Time: hh.mm.ss

ISPF. Interactive System Productivity Facility.

IXF. Integration Exchange Format: A protocol for transferring tabular data among various software
products.

JCL. Job control language for OS/390.

job control. In VSE, a program called into storage to prepare each job or job step to be run. Some of its
functions are to assign I/O devices to symbolic names, set switches for program use, log (or print) job
control statements, and fetch the first phase of each job step.

JIS (Japanese Industrial Standard) format. A format that represents date and time values as follows:
v Date: yyyy-mm-dd
v Time: hh:mm:ss

join. A relational operation that allows retrieval of data from two or more tables based on matching
columns that contain values of the same data type.

keyword parameter. An element of a QMF command consisting of a keyword and an assigned value.

like. Pertaining to two or more similar or identical IBM operating environments. For example, like
distribution is distribution between two DB2 UDB for OS/390’s with compatible server attribute levels.
Contrast with “unlike”.

literal. In programming languages, a lexical unit that directly represents a value. A character string
whose value is given by the characters themselves.

linear procedure. Any procedure not beginning with a REXX comment. A linear procedure can contain
QMF commands, comments, blank lines, RUN commands, and substitution variables. See also
“procedure with logic.”

linear syntax. QMF command syntax that is entered in one statement of a program or procedure, or
that can be entered on the QMF command line.

line wrapping. Formatting table rows in a report so they occupy several lines. The row of column
names and each row of column values are split into as many lines as are required by the line length of
the report.

local. Pertaining to the relational database, data, or file that resides in the user’s processor. See also
“local DB2 UDB for OS/390”, and contrast with remote.

Glossary

Glossary of Terms and Acronyms 337

local area network (LAN). (1) Two or more processors connected for local resource sharing (2) A
network within a limited geographic area, such as a single office building, warehouse, or campus.

local data. Data that is maintained by the subsystem that is attempting to access the data. Contrast
with remote data.

local DB2 UDB for OS/390. With DB2 UDB for OS/390, the application requester is part of a DB2 UDB
for OS/390 subsystem that is running in the same MVS system as QMF. Therefore, an entire DB2 UDB
for OS/390 subsystem (including data) is associated with the application requester, but the SQL
statements are processed at the current location. This subsystem is where the QMF plan is bound.

When QMF runs in TSO, this subsystem is specified using DSQSSUBS startup program parameter. When
QMF runs in CICS, this subsystem is identified in the Resource Control Table (RCT). The local DB2 UDB
for OS/390 is the subsystem ID of the DB2 UDB for OS/390 that was started in the CICS region.

location. A specific relational database management system in a distributed relational database system.
Each DB2 UDB for OS/390 subsystem is considered to be a location.

logical unit (LU). A port through which an end user accesses the SNA network to communicate with
another end user and through which the end user accesses the functions provided by system services
control points.

Logical Unit type 6.2 (LU 6.2). The SNA logical unit type that supports general communication
between programs in a distributed processing environment.

LU. Logical unit.

LU 6.2. Logical Unit type 6.2.

LOOP. The keyword for an endless-loop problem.

MSGx. The keyword for a message problem.

Multiple Virtual Storage. Implies the MVS/ESA product

MVS/ESA. Multiple Virtual Storage/Enterprise System Architecture (IBM operating system).

NCP. Network Control Program.

Network Control Program (NCP). An IBM licensed program that provides communication controller
support for single-domain, multiple-domain, and interconnected network capability.

NLF. National Language Feature. Any of several optional features available with QMF that lets the user
select a language other than US English.

NLS. National Language Support.

node. In SNA, an end point of a link or a junction common to two or more links in a network. Nodes
can be distributed to host processors, communication controllers, cluster controllers, or terminals. Nodes
can vary in routing and other functional capabilities.

null. A special value used when there is no value for a given column in a row. Null is not the same as
zero.

Glossary

338 Installing and Managing QMF on VM

null value. See null.

object. A QMF query, form, procedure, profile, report, chart, data, or table. The report, chart, and data
objects exist only in temporary storage; they cannot be saved in a database. The table object exists only
in a database.

object name. A character string that identifies an object owned by a QMF user. The character string can
be a maximum of 18 bytes long and must begin with an alphabetic character. The term “object name”
does not include the “owner name” prefix. Users can access other user’s objects only if authorized.

object panel. A QMF panel that can appear online after the execution of one QMF command and
before the execution of another. Such panels include the home, report, and chart panels, and all the
panels that display a QMF object. They do not include the list, help, prompt, and status panels.

online execution. The execution of a command from an object panel or by pressing a function key.

owner name. The authorization id of the user who creates a given object.

package. The control structure produced when the SQL statements in an application program are
bound to a relational database management system. The database management system uses the control
structure to process SQL statements encountered during statement execution.

panel. A particular arrangement of information, grouped together for presentation in a window. A
panel can contain informational text, entry fields, options the user can choose from, or a mixture of
these.

parameter. An element of a QMF command. This term is used generically in QMF documentation to
reference a keyword parameter or a positional parameter.

partner logical unit. In SNA, the remote system in a session.

PERFM. The keyword for a performance problem.

permanent storage. The database where all tables and QMF objects are stored.

plan. A form of package where the SQL statements of several programs are collected together during
bind to create a plan.

positional parameter. An element of a QMF command that must be placed in a certain position within
the command.

primary panel. The main Prompted Query panel containing your query.

primary QMF session. An interactive session begun from outside QMF Within this session, other
sessions can be started by using the INTERACT command.

procedure. An object that contains QMF commands. It can be run with a single RUN command. A
procedure in temporary storage has the name of PROC. See also “linear procedure” and “procedure with
logic.”

procedure termination switch. A conceptual switch that a QMF MESSAGE command can turn on.
While on, every QMF procedure to which control returns terminates immediately.

Glossary

Glossary of Terms and Acronyms 339

procedure with logic. Any QMF procedure beginning with a REXX comment. In a procedure with
logic, you can perform conditional logic, make calculations, build strings, and pass commands back to
the host environment. See also “linear procedure.”

profile. An object that contains information about the characteristics of the user’s session. A stored
profile is a profile that has been saved in permanent storage. A profile in temporary storage has the
name PROFILE. There can be only one profile for each user.

prompt panel. A panel that is displayed after an incomplete or incorrect QMF command has been
issued.

Prompted Query. A query built in accordance with the user’s responses to a set of dialog panels.

protocol. The rules governing the functions of a communication system that must be followed if
communication is to be achieved.

PSW. Program status word.

PTF. Program temporary fix.

QBE (Query-By-Example). A language used to write queries graphically. For more information see
Using QMF

QMF administrative authority. At minimum, insert or delete priviledge for the Q.PROFILES control
table.

QMF administrator. A QMF user with QMF administrative authority.

QMF command. Refers to any command that is part of the QMF language. Does not include
installation-defined commands.

QMF session. All interactions between the user and QMF from the time the user invokes QMF until
the EXIT command is issued.

qualifier. When referring to a QMF object, the part of the name that identifies the owner. When
referring to a TSO data set, any part of the name that is separated from the rest of the name by periods.
For example, ‘TCK’, ‘XYZ’, and ‘QUERY’ are all qualifiers in the data set name ‘TCK.XYZ.QUERY’.

query. An SQL or QBE statement, or a statement built from prompting, that performs data inquiries or
manipulations. A saved query is an SQL query, QBE query, or Prompted Query that has been saved in a
database. A query in temporary storage, has the name QUERY.

RDBMS. Relational database management system

relational database. A database perceived by its users as a collection of tables.

relational database management system (RDBMS). A computer-based system for defining, creating,
manipulating, controlling, managing, and using relational databases.

remote. Pertaining to a relational DBMS other than the local relational DBMS.

remote data. Data that is maintained by a subsystem other than the subsystem that is attempting to
access the data. Contrast with local data.

Glossary

340 Installing and Managing QMF on VM

remote data access. Methods of retrieving data from remote locations. The two remote data access
functions used by QMF are remote unit of work and DB2 UDB for OS/390-only distributed unit of work,
which is called system-directed access.

remote unit of work. (1) The form of SQL distributed processing where the application is on a system
different from the relational database and a single application server services all remote unit of work
requests within a single logical unit of work. (2) A unit of work that allows for the remote preparation
and execution of SQL statements.

report. The formatted data produced when a query is issued to retrieve data or a DISPLAY command is
entered for a table or view.

REXX. Restructured extended executor.

rollback. The process that removes uncommitted database changes made by one application or user.
When a rollback occurs, locks are freed and the state of the resource being changed is returned to its
state at the last commit, rollback, or initiation. See also commit.

row. A horizontal set of tabular data.

row operator area. The leftmost column of a QBE target or example table.

run-time variable. A variable in a procedure or query whose value is specified by the user when the
procedure or query is run. The value of a run-time variable is only available in the current procedure or
query. Contrast with global variable.

sample tables. The tables that are shipped with QMF. Data in the sample tables is used to help new
QMF users learn the product.

saved object. An object that has been saved in the database. Contrast with current object.

SBCS. Single-byte character set.

scalar. A value in a column or the value of a literal or an expression involving other scalars.

scalar function. An operation that produces a single value from another value and is expressed in the
form of a function name followed by a list of arguments enclosed in parentheses.

screen. The physical surface of a display device upon which information is presented to the user.

scrollable area. The view of a displayed object that can be moved up, down, left, and right.

server. A functional unit that provides shared services to workstations over a network.

session. All interactions between the user and QMF from the time the user logs on until the user logs
off.

single-byte character. A character whose internal representation consists of one byte. The letters of the
Latin alphabet are examples of single-byte characters.

SNA. Systems Network Architecture.

SNAP dump. A dynamic dump of the contents of one or more storage areas that QMF generates
during an abend.

Glossary

Glossary of Terms and Acronyms 341

sort priority. A specification in a retrieval query that causes the sorted values in one retrieved column
to determine the sorting of values in another retrieved column.

SQL. Structured Query Language.

SQLCA. Structured Query Language Communication Area.

SSF. Software Support Facility. An IBM online database that allows for storage and retrieval of
information about all current APARs and PTFs.

stored object. An object that has been saved in permanent storage. Contrast with current object.

string. A set of consecutive items of a similar type; for example, a character string.

Structured Query Language. A language used to communicate with DB2 UDB for OS/390 and DB2 for
VSE or VM. Used to write queries in descriptive phrases.

subquery. A complete SQL query that appears in a WHERE or HAVING clause of another query (the
main query or a higher-level subquery).

substitution variable. (1) A variable in a procedure or query whose value is specified either by a global
variable or by a run-time variable. (2) A variable in a form whose value is specified by a global variable.

substring. The part of a string whose beginning and length are specified in the SUBSTR function.

System Log (SYSLOG). A data set or file in which job-related information, operational data,
descriptions of unusual occurrences, commands, and messages to and from the operator may be stored.

Systems Network Architecture. The description of the logical structure, formats, protocols, and
operational sequences for transmitting information units through and controlling the configuration and
operation of networks.

table. A named collection of data under the control of the relational database manager. A table consists
of a fixed number of rows and columns.

Table Editor. The QMF interactive editor that lets authorized users make changes to a database without
having to write a query.

table name area. The leftmost column of a QBE example table.

tabular data. The data in columns. The content and the form of the data is specified on FORM.MAIN
and FORM.COLUMNS.

target table. An empty table in which example elements are used to combine columns, combine rows,
or include constant values in a report.

temporary storage. An area where the query, form, procedure, profile, report, chart, and data objects in
current use are stored. All but the data object can be displayed.

temporary storage queue. In CICS, a temporary storage area used for transfer of objects between QMF
and an application or a system service.

time. Designates a time of day in hours and minutes and possibly seconds (a two- or three-part value).

Glossary

342 Installing and Managing QMF on VM

thread. The DB2 UDB for OS/390 structure that describes an application’s connection, traces its
progress, provides resource function processing capability, and delimits its accessibility to DB2 UDB for
OS/390 resources and services. Most DB2 UDB for OS/390 functions execute under a thread structure.

three-part name. A fully-qualified name of a table or view, consisting of a location name, owner ID,
and object name. When supported by the application server (that is, DB2 UDB for OS/390), a three-part
name can be used in an SQL statement to retrieve or update the specified table or view at the specified
location.

timestamp. A date and a time, and possibly a number of microseconds (a six- or seven-part value).

TP. Transaction Program

TPN. Transaction program name

transaction. The work that occurs between 'Begin Unit of Work' and 'Commit' or 'Rollback'.

transaction program. A program that processes transactions in an SNA network. There are two kinds of
transactions programs: application transaction programs and service transaction programs.

transaction program name. The name by which each program participating in an LU 6.2 conversation
is known. Normally, the initiator of a connection identifies the name of the program it wants to connect
to at the other LU. When used in conjunction with an LU name, it identifies a specific transaction
program in the network.

transient data queue. In CICS, a storage area, whose name is defined in the Destination Control Table
(DCT), where objects are stored for subsequent internal or external processing.

TSO. Time Sharing Option.

two-phase commit. A protocol used in distributed unit of work to ensure that participating relational
database management systems commit or roll back a unit of work consistently.

unit of work. (1) A recoverable sequence of operations within an application process. At any time, an
application process is a single unit of work, but the life of an application process may involve many
units of work as a result of commit or rollback operations. (2) In DRDA, a sequence of SQL commands
that the database manager treats as a single entity. The database manager ensures the consistency of data
by verifying that either all the data changes made during a unit of work are performed or none of them
are performed.

unlike. Refers to two or more different IBM operating environments. For example, unlike distribution is
distribution between DB2 for VM and VSE and DB2 UDB for OS/390. Contrast with like.

unnamed column. An empty column added to an example table. Like a target table, it is used to
combine columns, combine rows, or include constant values in a report.

USA (United States of America) format. A format that represents date and time values as follows:
v Date: mm/dd/yyyy
v Time: hh:mm xM

value. A data element with an assigned row and column in a table.

Glossary

Glossary of Terms and Acronyms 343

variation. A data formatting definition specified on a FORM.DETAIL panel that conditionally can be
used to format a report or part of a report.

view. An alternative representation of data from one or more tables. It can include all or some of the
columns contained in the table or tables on which it is defined. (2) The entity or entities that define the
scope of the data to be searched for a query.

Virtual Storage Extended. An operating system that is an extension of Disk Operating System/ Virtual
Storage. A VSE consists of (1) VSE/Advanced Functions support and (2) any IBM-supplied and
user-written programs that are required to meet the data processing needs of a user. VSE and the
hardware it controls form a complete computing system.

VM. Virtual Machine (IBM operating system). The generic term for the VM/ESA environment.

VSE. Virtual Storage Extended (IBM operating system). The generic term for the VSE/ESA
environment.

WAIT. The keyword for an endless-wait-state problem.

window. A rectangular portion of the screen in which all or a portion of a panel is displayed. A
window can be smaller than or equal to the size of the screen.

Workstation Database Server. The IBM family of DRDA database products on the UNIX and Intel
platforms (such as DB2 Universal Database (UDB), DB2 Common Server, DB2 Parallel Edition, and
DataJoiner.)

wrapping. See “column wrapping” and “line wrapping”.

Glossary

344 Installing and Managing QMF on VM

Bibliography

The following lists do not include all the books for a particular library. To get
copies of any of these books, or to get more information about a particular
library, contact your IBM representative.

For a list of QMF publications, see “The QMF Library” on page ix.

APPC Publications
Communicating with APPC and CPI-C: A Technical Overview
Networking with APPC: An Overview

CICS Publications

CICS Transaction Server for OS390
CICS/OS390 User’s Handbook
CICS/OS390 Application ProgrammerÆs Reference
CICS/OS390 Application Programming Guide
CICS/OS390 DB2 Guide
CICS/OS390 Resource Definition (Macro)
CICS/OS390 Resource Definition (Online)
CICS/OS390 Problem Determination Guide
CICS/OS390 System Definition Guide
CICS/OS390 Intercommunication Guide
CICS/OS390 Performance Tuning Handbook

CICS for VSE

v CICS for VSE/ESA User’s Handbook

v CICS for VSE/ESA Application Programmer’s Reference

v CICS for VSE/ESA Application Programming Guide

v CICS for VSE/ESA Resource Definition (Macro)

v CICS for VSE/ESA Resource Definition (Online)

v CICS for VSE/ESA Problem Determination Guide

v CICS/OS390 System Definition Guide

v CICS for VSE/ESA Intercommunication Guide

v CICS for VSE/ESA Performance Tuning Handbook

© Copyright IBM Corp. 1983, 2000 345

COBOL Publications
VS COBOL II Application Programming Guide for VSE
COBOL/VSE Language Reference
COBOL/VSE Programming Guide

DATABASE 2 Publications

DB2 UDB for OS390
DB2 UDB for OS390 Installation Guide
DB2 UDB for OS390 Administration Guide
DB2 UDB for OS390 SQL Reference
DB2 UDB for OS390 Command Reference
DB2 UDB for OS390 Application Programming and SQL Guide
DB2 UDB for OS390 Message and Codes
DB2 UDB for OS390 Uitility Guide and Reference
DB2 UDB for OS390 Call Level Interface Guide and Reference
DB2 UDB for OS390 Reference for Remote DRDA Requesters and Servers

DB2 for VSE & VM
DB2 Server for VM Installation Guide
DB2 Server for VSE Installation Guide
DB2 Server for VSE & VM Database Administration
DB2 Server for VM System Administration
DB2 Server for VSE System Administration
DB2 Server for VSE & VM Operation
DB2 Server for VSE & VM SQL Reference
DB2 Server for VSE & VM Application Programming
DB2 Server for VSE & VM Interactive SQL Guide and Reference
DB2 Server for VSE & VM Database Services Utility
DB2 Server for VM Message and Codes
DB2 Server for VSE Message and Codes
DB2 Server for VSE & VM Diagnostic Guide and Reference
DB2 Server for VSE & VM Performance Tuning Handbook

DB2 for AS/400
DB2 for AS/400 SQL Reference
DB2 for AS/400 SQL Programming

Parallel Edition
DB2 Parallel Edition Administration Guide and Reference

DB2 Universal Database
DB2 Universal Database Command Reference
DB2 Universal Database SQL Reference
DB2 Universal Database Message Reference

Bibliography

346 Installing and Managing QMF on VM

DataJoiner
DataJoiner Application Programming and SQL Reference Supplement

DCF Publications
DCF and DLF General Information

DRDA Publications
DRDA Every Manager’s Guide
DRDA Connectivity Guide

DXT Publications
DXT Guide to Dialogs
Data Extract: Planning and Administration Guide for Dialogs
Data Extract: UserÆs Guide
Learning to Use DXT

Graphical Data Display Manager (GDDM) Publications
GDDM General Information
GDDM Base Programming Reference
GDDM Base Programming Guide
GDDM Guide for Users
GDDM Installation and System Management for VSE
GDDM Messages

HLASM Publications
IBM High-Level Assembler Programmer’s Guide for OS/390, VM and VSE
IBM High-Level Assembler Language Reference for OS/390, VM and VSE

ISPF/PDF Publications

OS/390
Interactive System Productivity Facility for OS/390 Installation and
Customization
Interactive System Productivity Facility for OS/390 Dialog Management Guide
Interactive System Productivity Facility for OS/390 Dialog Management Services
and Examples

VM
ISPF for VM Dialog Management Services and Examples

Bibliography

Bibliography 347

OS/390 Publications

Utilities
OS/390 Administration: Utilities
OS/390 Extended Architecture Utilities

JCL
OS/390 Extended Architecture JCL Reference
OS/390 Extended Architecture JCL User’s Guide
OS/390 JCL Reference
OS/390 JCL Users Guide

Pageable Link Pack Area (PLPA)
OS/390 Extended Architecture Initialization and Tuning
OS/390 SPL: Initialization and Tuning

VSAM
OS/390 VSAM Administration Guide
OS/390 VSAM Catalog Administration Access Method Services

TSO
OS/390 TSO Primer
OS/390 User’s Guide

SMP/E
OS/390 System Modification Program Extended Messages and Codes
OS/390 System Modification Program Extended Primer
OS/390 System Modification Program Extended Reference
OS/390 System Modification Program Extended User’s Guide

PL/I Publications
PL/I VSE Language Reference
PL/I VSE Programming Guide

REXX Publications

OS/390 environment
IBM Compiler and Library for REXX/370: UserÆs Guide and Reference
TSO Extensions REXX/MVS Reference

VM environment
Procedures Language VM/REXX Reference
Procedures Language VM/REXX User’s Guide

ServiceLink Publications
ServiceLink User’s Guide

Bibliography

348 Installing and Managing QMF on VM

VM Publications
Virtual Machine Planning Guide and Reference
Virtual Machine CMS Command and Macro Reference

VSE Publications
VSE Planning Guide
VSE Guide to System Functions
VSE System Utilities
VSE Guide for Solving Problems

Bibliography

Bibliography 349

Bibliography

350 Installing and Managing QMF on VM

Index

Numerics
31-digit decimal 321
31-digit decimal and fallback 324
31-digit decimal and migration 321

A
abbreviating command

synonyms 170
abbreviations

for command synonyms 170
ABEND handler 294
abend handling 305
access

to objects
controlling 107
database object list,

customizing 112
queries, forms,

procedures 111
SQL GRANT statement 110
SQL REVOKE statement 110

to QMF
enabling 97
restricting 99

ACQUIRE DBSPACE command 14
ACQUIRE dbspace statement 14,

118
acquire the DB2 for VM

DBSPACE(s) 28
address, governor function

calls 243
ADMADFV defaults module 154
administration

acquiring dbspace 118
DB2 for VM system tables 127
granting and revoking

privileges 109
listing user’s tables/views 128
object

controlling access 111
deleting 125
displaying user’s 124
listing user’s 123
transferring ownership 124,

128
Q user profile 95, 97
resources 95, 97
tables, creating 116
user profiles and objects 106

ALL keyword, tracing 81
allocating DXT CMS files,

example 131, 136
ALTER DBSPACE statement 127
ALTER statement

DBSPACE keyword 127
ampersand (&)

in command synonyms 166
ampersands in command

synonyms 166
APAR (Authorized Program

Analysis Report) 309
APPLDATA 270
APPLDATA column 123
application procedures

install in base 37
install in NLF 49

application requester
definition 13

application requester (AR) 13
application requester for QMF

definition 13
application server

definition 13
application server (AS) 13
assembler

compiling assembler edit
routine 202

edit routine
assembling 202
compiler options 202
creating a DSQUEDIT module

file 203
edit exit routine

structure 197
edit function call 198
generate 203
interface control block 199,

205
linkage 198
returning control to the

caller 198
assembler edit routine

creating a DSQUEDIT module
file 203

linkage 198
returning control to the

caller 198

assembling assembler edit
routine 202

asynchronous processing,
printing 149

authorization
cascading 110
command synonyms 168, 171
creating tables 116
DBA, user Q 95, 97
messages 108
RESOURCE 118
to access QMF 98

B
B parameter 73
base QMF commands as

synonyms 164
batch

DSQSMODE parameter 83
expected results for IVP 39
ISPSTART command 63
QMF procedures

identifying (DSQSRUN
parameter) 63

running a query or procedure
in 160

running IVP in 38
running the IVP (NLF) 50
starting QMF

from ISPF 63
starting QMF in 64

BATCH application
filling in the prompt panel 283
MACLIBs required 283
modifying 286
starting 283

batch-mode QMF
DSQSMODE parameter 83

batch processing
customizing the program 277
debugging a batch

procedure 282
enabling use 278
running jobs on your

machine 281
sending a job to the CMS batch

machine 279
using the BATCH

application 282

© Copyright IBM Corp. 1983, 2000 351

batch use of QMF, specifying
through parameter 83

bilingual support
forms 144

bilingual support, QMF forms 144
binary data

in reports 295
binary data in reports 295
branch addresses, governor 243
Brazilian Portuguese NLF 20

C
callable interface

DSQSCMDn program
parameter 68

canceling
governor 259

cancellation service, governor 259
cascading authority 110
case, setting 101
CASE column (Q.PROFILES) 101
catalog views

QMF 17
chart

printing 148
GDDM vs QMF 149
specific objects 148

chart support 120
charts

printing 149
CHARVAL column,

Q.RESOURCE_TABLE 231
checklist, installation

NLF 316
QMF 315

Chinese NLF 20
class ID, customizing function

keys 178
CMS

command errors
DB2 for VM COMMIT

command 295
DB2 for VM CONNECT

command 294
QMF ABEND handler 294
QMF interrupt handler 306

ENVIRONMENT values, QMF
profile 104

interface to governor 240
QMF CMS command

command synonym 165
setting report storage 73, 74
subset mode 294

CMS (Conversational Monitor
System)

access 96

CMS (Conversational Monitor
System) (continued)

command errors
DB2 for VM COMMIT

command 295
DB2 for VM CONNECT

command 294
QMF ABEND handler 294
QMF interrupt handler 306

ENVIRONMENT values, QMF
profile 104

interface to governor 240
non-SUBSET mode 62
QMF CMS command, command

synonym 165
storage requirements for

QMF 14
subset mode 294
SUBSET mode 62

COBOL 213
edit routine

creating a DSQUEDIT module
file 220, 222

returning to the caller 214
COBOL (with LE) 221
COBOL edit routine

compiling 219
creating a DSQUEDIT module

file 220, 222
edit exit routine structure 213
edit exit routine structure (with

LE) 221
edit program call 214
interface control block 214
linkage 214
returning to the caller 214

Code-only installation
create DB2 for VM

dbspace(s) 26
installation EXEC 28

code page support
APPLDATA 270
special characters 270

command 103
cancellation messages 260
cancellation service 259
CMS, synonym definition 165
customizing 159
function keys, assigning 173
governor exit routine calls 241
interface

installation verification
procedure (IVP) 36, 49

interface initialization
messages 291

command 103 (continued)
ISPSTART 61
PRINT 147
privileges required 108
RUN

initial procedure 84
synonym definition 165

SAVE
SHARE parameter 111

SET PROFILE 105
synonyms 159
window IDs 181

command (QMF) interface test, IVP
base 36
NLF 49

command interface
considerations for non-SUBSET

and SUBSET modes 62
command synonyms table

creating 162
maintaining 170
views 171

comment
on function keys table 177
on synonyms table 162

comments
on function keys table 177
on synonyms table 162

COMMIT command, DB2 for
VM 295

compiler options
assembler edit routine 202
COBOL edit routine 220

CONFIRM column
(Q.PROFILES) 101

confirmation panel
displaying 101
table editor 119

confirmation panels
displaying 101
table editor 119

CONNECT authority, granting 96
CONNECT command

CMS command 294
errors 291

CONNECT ID
user Q 14

CONNECT ID “Q” 14
control programs, edit routine 192
control section (CSECT),

diagnosis 311
control tables

dbspace names/sizes 325
installation of 5
ownership 95, 97

352 Installing and Managing QMF on VM

control tables (continued)
Q.ERROR_LOG 308
Q.OBJECT_DATA 122
Q.OBJECT_DIRECTORY 121
Q.OBJECT_REMARKS 123
Q.PROFILES 98
Q.RESOURCE_TABLE 231
Q.RESOURCE_VIEW 232
QMF 16

controlling rows fetched from the
database 79

Conversational Monitor System
(CMS)

access 96
command errors

DB2 for VM COMMIT
command 295

DB2 for VM CONNECT
command 294

QMF ABEND handler 294
QMF interrupt handler 306

ENVIRONMENT values, QMF
profile 104

interface to governor 240
non-SUBSET mode 62
QMF CMS command, command

synonym 165
subset mode 294
SUBSET mode 62

CREATE TABLE statement
command synonyms 162
customized function keys 176
privileges for SAVE DATA 108
resource control table 236
tables for users 116

CREATOR column (Q.PROFILES)
defined 101
role in profile initialization 104

CSECT (control section),
diagnosis 311

cursor stability 111
customizing

function keys 173
QMF commands 159
QMF session behavior

using user profile 97

D
D parameter 82
Danish NLF 20
data

files 32
Data Extract 129
data formats 187

data object
limiting initial rows retrieved 79
performance 296
privileges for SAVE DATA 108

database
-only installation

for NLF 44
for QMF base 24
migration 320

CONNECT ID “Q” 14
connection

authority 95, 97
location name parameter 90
remote 263
starting QMF 57

object list, customizing 112
objects

access 107
granting privileges 109
ownership 109
revoking privileges 109
storage for 73, 74

requirements for QMF 13
slow performance 79, 296

database-only installation
for NLF 44
for QMF 24

Database-only installation
migration 320

DATE columns 190
date information, handling 189
date/time exit routines, local 128
DB2 for VM

acquiring a dbspace 118
authority

DBA authority 109
displaying users’ 106

change confirmation panels 119
CMS command errors 294
COMMIT cmd and CMS cmd

errors 295
CONNECT command errors 294
CONNECT ID 28
DBA authority 109
dbspace 26, 28
displaying users’ authority 106
enlarging dbspaces 126
granting and revoking

privileges 109
granting CONNECT

authority 96
granting RESOURCE

authority 118
knowledge required 12
required by QMF 13

DB2 for VM (continued)
system tables 127
use of 3

DB2 for VM CONNECT ID,
establish 28

DB2 for VM DBSPACE(s)
acquire 28
create 26

DBCS (double-byte character set)
printing support 90

DBCS (double-byte character set)
support

edit codes 223
Katakana characters 223
Latin characters 223

dbspace
acquiring 118
ADD dbspace statement 118
calculating size 118
creating tables 117
deleting 106
enlarging 126
nonrecoverable 119
QMF-supplied tables 325
requirements 14, 18
specifying in user profile 102

DBSPACE requirements
number to create 16
overview 14
Q.COMMAND_SYNONYMS 16
Q.DSQ_RESERVED table 16
Q.ERROR_LOG 16
Q.OBJECT tables 16
Q.PROFILES 16
Q.RESOURCE table 16
QMF control tables 16
QMF sample tables 17
SAVE DATA command 13

dcssname program parameter 72
decimal data, edit routine 188
DECOPT column

(Q.PROFILES) 101
default

function keys 174
GDDM module ADMADFV 154
QMF profile 99

default function keys 174
default QMF profile 99
defaults module, GDDM

printing 154
DESCRIBE command

customizing 112
DESCRIBE command,

customizing 112
Deutsch (NLF) 20

Index 353

DEVTOK keyword, ADMMNICK
specification 151

diagnostic aids 298
DISPLAY command, SQL privileges

required 108
displaying reports (DPRE) 160, 269
distribution minidisk

create DB2 for VM
DBSPACE(s) 26

create QMF installation control
file 25, 45

NLF 45
QMF 25

QMF installation EXEC 28, 46
base 28
NLF 46

DMSFREE storage problems 73
DOS printers 153
double-byte character set (DBCS)

support
edit codes 223
Katakana characters 223
Latin characters 223

DPRE 160
remote unit of work 269

DRAW command
SQL privileges required 108

DRAW command, SQL privileges
required 108

DRDA
remote unit of work 263

DSQ2EINS, installation EXEC 28
preparation 28

DSQ2EINV, QMF invocation
EXEC 30

DSQCP global variables 119
DSQDC_SHOW_PANID global

variable 299
DSQDEBUG 32

requirements 32
DSQEC_ALIASES variable 113
DSQEC_COLS_LDB2 variable 113
DSQEC_COLS_SQL variable 113
DSQEC_FORM_LANG variable 144
DSQEC_NLFCMD_LANG

variable 144
DSQEC_RERUN_IPROC global

variable 84
DSQEC_TABS_LDB2 variable 113
DSQEC_TABS_SQL variable 113
DSQEDIT 33
DSQLDLIB 33
DSQMFE

independent of ISPF 64
return codes 64

DSQPNLE 33
DSQPRINT 33

allocation
using the QMF CMS

command 33
DSQQMFE module 61, 64
DSQSBSTG (maximum storage for

reports)
general 73

DSQSBSTG parameter 73
DSQSCMDE (REXX initialization

program) 69
DSQSCMDn 68
DSQSCMDn parameter 68
DSQSDBCS (choose Kanji) 90
DSQSDBCS parameter 90
DSQSDBNM (initial location

name) 82
DSQSDBNM parameter 82
DSQSDBUG (set trace) 81
DSQSDBUG parameter 81
DSQSIROW (control rows

fetched) 79
DSQSIROW parameter 79
DSQSMODE (choose mode) 83
DSQSMODE (operation mode)

batch-mode QMF 63
DSQSMODE parameter 83
DSQSPILL 33
DSQSPILL (spill file) 75
DSQSPILL parameter 75

file requirements 33
DSQSRSTG (reserve storage) 74
DSQSRSTG parameter 74
DSQSRUN

description 84
initial procedure 84

DSQSRUN (called procedure)
batch-mode QMF 63

DSQSRUN parameter 84
passing variables 86

DSQUECIC edit program 191
DSQUEGV2 262
DSQUEGV3 phase, governor

exit 243
DSQUnGV2 phase, governor

exit 239
DSQUXDTA sample edit

routine 197
DSQUXDTC sample edit

routine 213
DXEECS control block 199, 205, 214
DXEGOVA control block 245
DXEXCBA control block 250
DXT (Data Extract) 129

DXT (Data Extract) 129 (continued)
allocating files 129
EXTRACT command 129

E
edit

codes 188
binary data 295
CASE field of profile 189
DBCS data 223
numeric data processing 188
types 188
UDN 191
VSS 191

exit interface 187
assembler 199, 205
COBOL 214
control block fields 193
formatting calls 191
input area 195
output area 195, 196
termination calls 197

exit routine 193
routine 187

assembler 197
COBOL 213
COBOL (with LE) 221
DBCS data 223
general structure 191
sample program

(assembler) 197
scratchpad area 214
storing data between

calls 199, 205
EDIT command 143
EDIT command, support for 139
edit routines

creating a DSQUEDIT module
file

in assembler 203
in PL/I 210
in VS COBOL II 220, 222

handling different codes 195
specific languages

PL/I 203, 209
PL/I (with LE) 211
VS COBOL II 219

EDIT TABLE command
concurrent editing 110
SQL privileges required 108

editing interfaces
customizing 139

editor, make available for the EDIT
command 139

English QMF, NLID 20

354 Installing and Managing QMF on VM

English support in NLF session 144
enrolling users in QMF 98
ENTRY_TYPE column (function key

table) 179
environment

changing in QMF profile 104
customizing 97

ENVIRONMENT column
(Q.PROFILES)

role in profile initialization 104
environmental considerations when

starting QMF 61
error

initialization 81, 84
insufficient storage 79
messages

authorization 108
warning 291

printing 157
QMF log 308
reporting to IBM 309

errors
CMS command 294

EXEC
starting QMF, CMS 61

EXEC DSQ2EINV
examples of invocation

statements 32
getting to the QMF Home

Panel 36
tailoring 30

exit routines
date/time 128

explicit connection
granting CONNECT

authority 96
EXPORT TABLE, SQL

privileges 108
extended floating point, edit

routine 188
EXTRACT command 129

allocating resources 129
allocation through an EXEC 130
names for CMS files 129
reallocation through an

EXEC 135
support 129

F
F parameter 79
fallback

31-digit decimal support 324
installation considerations 18

fallback, installation
considerations 18

fallback and clean-up 321
fallback considerations 324
Family 1 printer 150
Family 2 printer 150, 151
Family 3 printer 150, 152
Family 4 printer 152
file (CMS)

DSQDEBUG 32
DSQPRINT 33
DSQSPILL 33

file requirements
DSQDEBUG 32
DSQPRINT 33
DSQSPILL 33

floating point data, edit routine 188
FLOATVAL column,

Q.RESOURCE_TABLE 231
formatting calls, edit routine 191
forms

controlling user access 111
creating new edit codes 188
displaying 124
internal stored format 122
listing 123
NLF support 144
of the ISPSTART command 61
printing 148
window IDs 182

French NLF 20
full-screen panels 179, 181

customized function key
examples 179

panel IDs 181
function calls

branch addresses 243
GOVFUNCT values 243
types 241

function keys
customizing 103

activating new
definitions 184

appearance on screen 179
command 179
examples 179
full-screen panel 179
guidelines 177
help panel 181
problems activating 177
prompt panel 181
updating function key

table 177
user profile modification 184
window panel 180

default settings 174
index on table 177

function keys (continued)
initialization messages 291
panels 173
table 176

authorizing users 184
creating 176
entering definitions 177
maintenance 184
panel IDs 181

G
GDDM (Graphical Data Display

Manager) 153
ADMADFV defaults

module 154
considerations, QMF

invocation 34
error messages, printing 292
printer nicknames 149

ADMADFV defaults
module 154

ADMMNICK
specification 151

use of 3
generate statements

assembler edit exit routine 203
generic QMF profile 98
German NLF 20
GETMAIN storage problems 73
global variable

DSQEC_RERUN_IPROC 84
migration 319

global variables
confirming database

changes 119
DSQDC_SHOW_PANID 299
English support for NLFs 144
object list, displaying 112
window IDs 182

governor exit, assembling 261
governor exit routine

assembling 261
branch table 243
building module file 262
cancellation service 259
CICS control block interface 238
command processing 243
control information, storing 258
description 228
exit routine information 250
flow of control 238
function calls 243
load library member 262
passing resource control

information 244

Index 355

governor exit routine (continued)
performance 244
program structure 238
resource control table 227
RESOURCE_GROUP 104
scratchpad area 258
sharing 239
specifying for resource

groups 236
think time 242
types of function calls 241

GOVFUNCT values for function
calls 243

GRANT statement
CONNECT authority 96
PUBLIC keyword 110
RESOURCE authority 118
WITH GRANT OPTION 110

H
Hangeul (NLF) 20
hardware requirements

for NLF 44
for QMF 7

help
customizing panel function

keys 181, 182
panel test during IVP 36

Help panel test, the IVP 36
help panels

customized function key
example 181

panel ID 182
HEX function 295

I
I parameter 84
ICU (Interactive Chart Utility) 120
ID

for NLFs 19
QMF panels 181
translation 275

IMPORT TABLE command
creating tables 116
default dbspace 325
SQL privileges required 108

incomplete
data object and the DSQSIROW

parameter 79
index

command synonyms table 163
function key table 177
Q.OBJECT_DATA 122
Q.OBJECT_DIRECTORY

table 121
Q.OBJECT_REMARKS 123

index (continued)
Q.PROFILES table 100
Q.RESOURCE_TABLE 231
recreating 126

initial procedures 84
initialization

errors 291
location name parameter 90
message numbers 299
QMF profile values 104
REXX program to start QMF 68
slow performance 84
tracing errors 81

initialization errors 290
input area

control for formatting 193
control for termination 197

installation
checklist 315, 316
considerations 18, 19
control file, create 25, 45
EXEC

error messages 29, 47
function 28
preparation 28, 46
restart procedure 29
running 29, 46

overview 5
steps 21, 24, 44

NLF 44
verification procedure 36
worksheet

NLF 44
QMF 25

Installation Verification Procedure
(see IVP) 38

insufficient storage message 79
integer data, edit routine 188
Interactive Chart Utility (ICU) 120
interactive use of QMF, specifying

through parameter 83
interface control block

assembler edit routine 199, 205
COBOL 214
DXEGOVA 244
DXEXCBA 244

interrupt handler, QMF 306
INTVAL column,

Q.RESOURCE_TABLE 231
invocation EXEC

GDDM considerations 34
parameters 30, 47
QMF dialog considerations 32
to start QMF 30, 47

NLF 47

invocation EXEC (continued)
to start QMF 30, 47 (continued)

QMF 30
invocation procedure,

migration 319
invoking procedures through

program parameters 84
isolation levels

cursor stability 111
uncommited read 111

ISPEXEC command
batch-mode QMF 62

ISPF (Interactive System Productivity
Facility)

establishing QMF as dialog 35,
47

forms of the PARM operand 61
invocation EXEC 35
Master Application Menu

NLF 48
QMF 35

menu
starting batch-mode QMF 63

starting batch QMF session 62
starting QMF, CMS 61
use of 3

ISPF/PDF editor 143
ISPSTART command

batch-mode QMF 62
considerations when using user

edit routines 211, 221
environmental considerations 61
from CMS 61
from READY mode 61
passing parameters 31
PGM form 61, 62
program segment form 62
specifying batch-mode 63

ISPSTART command parameters 31
Italian NLF 20
IVP (installation verification

procedure)
for QMF batch mode

NLF 50
IVP (Installation Verification

Procedure)
for QMF batch mode

authorization required 39
QMF 38
what it tests 38
what the results are 38

for QMF interactive mode
NLF 48
QMF 36

356 Installing and Managing QMF on VM

J
Japanese NLF 20

K
K parameter 90
Katakana terminals

setting up DBCS support 90
UCF support 20

Katakana terminals, DBCS
support 20

keywords, reporting problems 310
Korean NLF 20

L
L parameter 75
L2 tracing 81
LENGTH column

(Q.PROFILES) 101
linear procedures in command

synonyms 166
LIST command

ALL keyword 124
customizing 112

list views
rules for creating 115

literals in command synonyms 168
load library member 262
load modules 5
local date/time exits 128
local installation 5
location

name
parameter 90

location window IDs 182
locks on tables 79, 110
log on to QMF

restricting 99
logon procedure

for VM 30
logon procedure for QMF 30
logon to QMF

enabling 97
loop problems, initialization 84

M
M parameter 83
maintenance

command synonym table 170
displaying objects 124
enlarging dbspace for

objects 126
function key table 184
listing objects 123
listing tables 128
listing views 128
QMF and database objects 120

message
authorization 108
canceling user activity,

governor 260
insufficient storage 79
printer name 157
printing errors 292
QMF message services 298
row limit exceeded 228
warning, QMF Home panel 291

migrating to QMF Version 7
commands from earlier

releases 323
migration

considerations
31-digit decimal

migration 321
global variables 319
installation 18
invocation procedure 319
multiple releases of

QMF 320
Q.VPROFILE 319

fallback and clean-up 321
installation considerations 18
object compatibility

using Version 7 objects under
earlier releases 322

to a new DB2 for VM level 320
minidisk, distribution and

production 46
create DB2 for VM

DBSPACE(s) 26
create QMF installation control

file 25, 45
QMF installation EXEC 28

MODEL column 104, 122
module file

building 262
DSQUEGV2 262

module level tracing 304
multiple

releases of QMF 320
multiple releases of QMF 320

N
n symbol 19
name

ADMMNICK specification 151
column in control tables 122
translation 275

National Language Feature
(NLF) 19

NEWAPPL operand, starting
QMF 61

nickname
defining multiple printers 152
errors during printing 292

Nihongo (NLF) 20
NLF (National Language Feature)

administering 19
changing in QMF profile 103
command synonyms 166
DBCS printing 90
defined 19
English support 144
governor, sharing 239
multiple profiles 99
NLID 20
QMF profile values 100
release numbers,

ServiceLink 310
TRANSLATION column

(Q.PROFILES) 98
NLIDs, national languages 20
non-SUBSET mode of CMS,

considerations for 62
NONE keyword, tracing 81
nonrecoverable dbspace 119
Notices 327
NUCXLOAD command

loading edit routines 192
with DSQQMFE 64

NUMBER column (function key
table) 179

numeric data conversion, edit
routine 188

O
object 95

authorization to use 107
cascading authority 110
control tables 120
deleting 125, 128
displaying 124
enlarging dbspace 126
internal representation 121
list

customizing 114
default views 112
window IDs 182

listing 123
maintenance 120
name, command synonym 164
ownership 109
privileges 107
sharing 111, 124
standards for creating 112
storage 73, 74

Index 357

object 95 (continued)
transferring ownership

queries, forms,
procedures 124

tables, views 128
types 3

OBJECT column (synonyms
table) 162, 165

object lists
customizing with global

variables 114
OBJECTLEVEL column, QMF control

tables 122
open enrollment 98
OS/2 printers 154
output area

control for formatting 193
control for termination 197

overview
of installation 5
of QMF 3

overview of the install process 5
OWNER column, QMF control

tables 122
ownership

control tables 95, 97
how QMF tracks 121
transferring 124, 128

P
page sizes for dbspace 118
panel

class ID 178
confirmation 101, 119
customized function keys 173
governor prompt 228
IDs 181

PANEL column (function key
table) 178

panels
class ID 178
confirmation 101, 119
customized function keys 173
governor prompt 228
IDs 181

parameters
NLF invocation 47
passed to edit routine 193
QMF invocation 30
QMF program 67

PC printers 153
performance 84

data retrieval 79
governor exit routine 244
reports 73, 74, 79

performance 84 (continued)
slow, causes 296
table indexes 117
using a spill file 75
using spill file 78

PF keys 103
PF_SETTING column (function key

table) 179
PFKEYS column (Q.PROFILES) 103
PGM form of ISPSTART

command 61, 62
PGM operand, starting QMF 61
PL/I edit routine

creating a CMS text file 210
creating a DSQUEDIT module

file 210
linkage 204
returning to the caller 205

Portuguese NLF 20
post-installation cleanup

NLF 50
QMF 40

preprocess QMF modules
for sample table insert

program 28
PRINT command 149

routing to named
destinations 149

print data output 33
Print function key

defining a synonym for 156
PRINT TABLE command, SQL

privileges required 108
printer

control keywords
(PRINTCTL) 153

DBCS support 90
DOS 153
Family 1 150
Family 2 151
Family 3 152
Family 4 152
length of output 101
multiple addresses 151
nicknames 149
OS/2 154
PROCOPT parameter 153
width of output 101

PRINTER column
(Q.PROFILES) 103

printing
enabling users 147
errors 292
QMF vs. GDDM 149
summary 148

printing (continued)
to PC printers 153
trace file 304
updating user profiles 156

private dbspace 118
privileges 105

commands 108
database objects 107
for table editor 109
GRANT statement 110
granting to all users

(PUBLIC) 110
queries 109
REVOKE statement 110
revoking 110

privileges required for QMF
tasks 108

problem reporting 309
procedure

batch-mode QMF 83
initial (DSQSRUN) 84
invoking using program

parameters 84
procedures

controlling user access 111
displaying 124
internal stored format 122
listing 123
maintaining objects 122, 128
printing 148
using in command

synonyms 166
PROCOPT parameter, printing 153
production minidisk

create DB2 for VM
DBSPACE(s) 26

create QMF installation control
file 25, 45

NLF 45
QMF 25

QMF installation EXEC 28, 46
NLF 46
QMF 28

QMF invocation EXEC 30, 47
NLF 47
QMF 30

profile
CASE setting, customized

function keys 179
command synonyms 168
creating 97, 98
default values 100
deleting 99, 106
function key customization 184
initialization search order 104

358 Installing and Managing QMF on VM

profile (continued)
maintenance 120
multiple (NLFs) 99
print parameters 156
printing 148
Q user ID 95, 97
SET PROFILE command 105
sizing printed reports 156
updating 105, 106

program
access packages 18
parameters 30
requirements

NLF 44
program access modules, QMF 18
program access packages, QMF 18
program parameters 84

DSQSBSTG (maximum storage
for reports) 73

DSQSCMDn 68
DSQSDBCS (choose Kanji) 90
DSQSDBNM (initial location

name) 82
DSQSDBUG (set trace) 81
DSQSIROW (control rows

fetched) 79
DSQSMODE (choose mode) 83
DSQSPILL (spill file) 75
DSQSRSTG (reserve storage) 74
DSQSRUN (initial procedure) 84
DSQSRUN (invoke a

procedure) 84
program products

required
NLF 44

program segment
running QMF as an ISPF

dialog 72
start QMF as an ISPF dialog 59

program segment form of ISPSTART
command 62

program segments
program parameter, starting

QMF 72
prompt panel

customized function key
example 181

panel ID 182
prompted query

printing 148
SQL privileges 109
window IDs 183

public dbspace 118
PUBLIC keyword 110

Q
Q.COMMAND_SYNONYMS

table 16
storage structure 16

Q.DSQ_RESERVED control
table 325

table structure 16
Q.DSQ_RESERVED table 16
Q.DSQIOLST_AU_VIEW catalog

view 17
Q.DSQIOLST_QT_VIEW catalog

view 17
Q.DSQIOLST_TB_VIEW catalog

view 17
Q.ERROR_LOG control table 308,

325
table structure 16

Q.ERROR_LOG table 16
Q.OBJECT_DATA control table

default dbspace 325
enlarging dbspace 126
table structure 16

Q.OBJECT_DATA table 16
Q.OBJECT_DIRECTORY control

table
default dbspace 325
enlarging dbspace 126
maintaining objects 121, 128
table structure 16

Q.OBJECT_DIRECTORY table 16
Q.OBJECT_REMARKS control table

default dbspace 325
enlarging dbspace 126
maintaining objects 123, 128
table structure 16

Q.OBJECT_REMARKS table 16
Q.PROFILE, migration 319
Q.PROFILES control table

adding user profiles 98
default dbspace 325
deleting user profile 99
table structure 16, 100
updating 105
updating PFKEYS field 184
updating RESOURCE_GROUP

field 229
updating SYNONYMS field 168
user modifications 105

Q.PROFILES table 16
Q.RESOURCE_TABLE control table

default dbspace 325
governor exit routines 231

Q.RESOURCE_TABLE table 16
Q.RESOURCE_VIEW, governor 232
Q user profile 95, 97

QBE query
printing 148
SQL privileges 109

QMF
error messages, printing 292
establishing user support 95,

145
interrupt handler 306
profile 95
session 97, 259

QMF (Query Management Facility)
application procedures

install in base 49
install in NLF 37

control tables 16
data files 32
dbspace requirements 14
dialog on ISPF menu

NLF 48
QMF 35

establishing as an ISPF dialog
NLF 47
QMF 35

hardware requirements 7
invocation 30
objects 3
overview of 3
program

access modules 18
parameters 30

required files 32
starting

NLF 47
QMF 30

storage requirements 14
QMF dialog and invocation 32
QMF edit command 143
QMF installation EXEC 46
QMF program access modules 18
QMF program access packages 18
queries

changing default type 102
controlling user access 111
deleting 125
displaying 124
GRANT 110
internal stored format 122
listing 123
printing 149
required privileges 109
transferring object

ownership 124
queries, QMF sample

installing
NLF 49

Index 359

queries, QMF sample (continued)
QMF 37

query
changing default type 102
deleting

SQL statements 125
displaying 124
internal stored format 122
listing

SQL statements 123
required privileges 109
sample

installing 37, 49
storage for execution 73, 74

Query Management Facility (see
QMF) 7

R
R parameter 74
release numbers 310
RELOAD dbspace command 126
REMARKS column 123
remote installation 5
remote unit of work

access to objects 273
access to tables 274
administrator access 275
code page

APPLDATA 270
special characters 270
support 270

commands 269
connecting to local database 271
connecting to remote

database 271
creating command synonym

tables 267
customizing a remote database

connection 263
database connection, type 264
DB2 connections 266
DB2 for VM connections 266
defined 13
deleting users 275
distributed unit of work 265
DPRE command 269
DRDA 263
enabling user access 271
function key tables 269
location name 272
naming conventions 267
NLF 270
overview 4
preparing the locations 267
QMF governor control

tables 270

remote unit of work (continued)
remote location 265
SQL authorization ID 271
SQL errors 274
three-part name

directing a query 265
specifying a table or

view 265
user profile 271

report
slow performance 79

reports
binary data 295
data formats 187
printing 148
Q.ERROR_LOG table 308
slow performance 297
storage

allocating extra 75
width/length 101, 156

requirements for QMF
database 13
DBSPACE 14
files 32
hardware 7
MAINT machine 14
storage 14

reserve storage, specifying through
parameters 74

RESET DATA command 296
resource

controlling 228
governor exit routine 228
group 99

default (SYSTEM) 231
limiting 228
profile 104

ownership 95, 97
passing control information 244
problem log 308
profile management 99

RESOURCE authority 118
RESOURCE_GROUP column 104,

231
RESOURCE_OPTION column 231
restricted access to QMF 99
RESTRICTED column

changing value to NO 124
defined 122

restrictions, environmental, when
starting QMF 61

return codes
issued when QMF started

without ISPF 64
return codes, SQL 300

REVOKE statement 110
REXX

DSQSCMDn program
parameter 68

QMF initialization program 68
REXX initialization program

(DSQSCMDE) 69
routines, edit

DATE, TIME, and TIMESTAMP
data 189, 190

rows, controlling number
retrieved 228

rows from database, controlling
number fetched 79

rules
command synonyms 163
customizing function keys 177

rules for command synonyms 163,
168

rules for customizing function
keys 177

RUN command
command synonym 165
initial procedure 84
SQL privileges required 108

S
sample

queries
installation 37
installing 49
storage requirements 14

tables
creating 29
DBSPACE for 17
deleting 29
insert program 28
predefined dbspaces 325
space requirements 14
what they are 17

sample queries, QMF
installing

NLF 49
QMF 37

storage requirements for 14
sample tables 325

delete 29
insert program 28
install 29
QMF 17

storage requirements for 14
SAVE

DATA keyword 108
SHARE parameter 111
SQL privileges required 108

360 Installing and Managing QMF on VM

SAVE (continued)
TABLE keyword 108

SAVE command
default dbspace, tables 325
performance 79

SCOPE resource option 231
scratchpad area

edit routines 214
governor exit routine 258

SEQ column 122
ServiceLink 309
session 97

cancellation service 259
customizing

user profile 97
interactive vs. batch 83

SET PROFILE command 105
SFS (Shared File System)

directories 3
share locks on data 79
shift characters 223
Simplified Chinese NLF 20
small integer data, edit routine 188
Software Support Facility (SSF) 309
SPACE column (Q.PROFILES) 102
Spanish NLF 20
special characters 270
specifying interactive or batch

mode 83
spill file

allocating 75
estimating size 76
performance problems 75, 78
sample calculations 78
specifying characteristics through

parameters 75
SQL

ID 98
attached to user profile 101
command synonym

table 171
how QMF stores 122
Q 95, 97

privileges 98
for prompted, QBE

queries 109
for QMF commands 108
for table editor 109
granting 109
Q.PROFILES table

update 105
revoking 109
table and view access 107

queries, printing 148
return codes 300

SQL (continued)
statement 98

ACQUIRE DBSPACE 118
ALTER DBSPACE 127
CREATE TABLE 116
GRANT 110
INSERT (new user

profile) 98
REVOKE 110
UPDATE 105

SQLADBSP DB(dbname)
command 27

SQLSTART DB(dbname)
command 27

SSF (Software Support Facility) 309
STAE exit 294
START command

DSQSCMDn parameter 68
starting QMF

as an ISPF dialog 59
batch mode, base QMF

environment
from an ISPF menu 63
independent of ISPF 64

environmental considerations
with ISPSTART 61

establishing a database
connection 57

from an ISPF menu
adding an option to the

menu 59
without an EXEC 61

independent of ISPF
commands for 64
return codes issued 64

independent of ISPF,
DSQQMFE 61

passing parameters
PARM operand 61

QMF profile initialization 104
QMF program 57
REXX initialization program 68
sample definition for the ISPF

menu 59
table lock failure 110
through ISPSTART 61

STAX exit 306
storage

combinations of values for
DSQSBSTG and
DSQSRSTG 75

data from edit routine 193
dbspace

calculating size 118
increasing size 126

storage (continued)
insufficient storage prompt 79
limiting users’ storage 73, 74
reports

allocating extra (spill file) 75
setting for reports 73, 74
specifying reserve storage

through parameters 74
spill file 75

storage requirements
for DB2 for VM 13

QMF catalog views 17
QMF control tables 16
QMF DBSPACE 14
QMF program access

modules 18
QMF sample tables 17

SUBSET mode of CMS,
considerations for 62

SUBTYPE column, QMF control
tables 122

Swedish NLF 20
Swiss French NLF 20
Swiss German NLF 20
SYNONYM_DEFINITION

column 165
SYNONYMS column

(Q.PROFILES) 103
synonyms for QMF commands 159,

163
abbreviations 170
activating for users 168
creating synonyms table 162
index 162
initialization messages 291
object name 164
problems activating 164
quotation marks 168
synonym definition 165
syntax 168
table maintenance 170
using variables 166
verb 164

SYSTABAUTH system table 106
system

error messages 300
printing errors 292
tables, DB2 for VM 127

SYSTEM profile
changing default values 106
deleting 99

SYSTEM resource group 231
system tables

DB2 for VM 106
SYSUSERAUTH system table 106

Index 361

T
T parameter 81
Table Editor

confirmation panels 119
SQL privileges required 109

tables
command synonym 162
concurrent editing 110
control tables 98
controlling access 107
creating 116
DB2 for VM system 127
deleting 128
enlarging dbspaces 126
function keys 173
indexes 117
listing 128
locks 110
maintenance 127
printing 148
QMF control tables 98
resource control, governor

exit 231
transferring ownership 128

tables, control
QMF 7

tables, sample
(see sample tables) 7

tailor the QMF invocation EXEC
NLF 47
QMF 30

tailoring the QMF invocation
EXEC 30, 47

terminal
changing case 101
DBCS data support 90
UCF support for Katakana 20

termination calls, edit routine 197
think time 242
TIME data 190
TIMESTAMP data 190

information, handling 189
TOFAM keyword, ADMMNICK

specification 151
toggle switch, governor exit 231
trace

data
level of detail 81

dump output 32
facility

file allocation 300
starting 81, 301
stopping 305

level of detail 102
message logging 291

trace (continued)
viewing data 304

TRACE column (Q.PROFILES) 102
trace dump output 32
trace file

allocating 301
displaying 304
printing 304

tracing
module level 304

transferring object ownership 124
translation

of user IDs 275
TRANSLATION column

(Q.PROFILES) 103
troubleshooting

abend handling 305
aids 298
common problems 290
diagnostic aids 298
GDDM errors 292
initialization errors 290
message support 298
performance problems 296
printing errors 292
problem reporting 309
Q.ERROR_LOG table 308
SQL return codes 300
symptoms 298
system error messages 300
trace facility 300

TYPE column, QMF control
tables 122

U
U edit codes, forms 188, 195

defined 188
input area 195

UCF (Uppercase Feature) 20
UDN edit code 191
uncommited read 111
UNLOAD dbspace command 126
Uppercase Feature (UCF) 20
user

adding new 98
authorization for objects 107
edit routines 187
limiting resources 227
objects 123
profiles 95
support 95

creating tables 116
object access 107
profile and object

maintenance 120

user edit routines
creating a DSQUEDIT module

file
in assembler 203
in PL/I 210
in VS COBOL II 220, 222

DATE data 189, 190
handling different codes 195
specific languages

PL/I 203, 209
PL/I (with LE) 211
VS COBOL II 219

TIME data 189, 190
TIMESTAMP data 189, 190

V
V edit codes, forms 188, 195

defined 188
input area 195

variables
in synonym definitions 166
passing using DSQSRUN

parameter 86
using &ALL 166

VERB column (synonyms
table) 162, 164

views
controlling access 107
deleting 128
listing 128
maintenance 127
object lists, customizing 112
privileges for queries 109
privileges for table editor 109
Q.RESOURCE_VIEW, governor

exit 232
recreating 127

virtual storage
requirements

VM 12
virtual storage requirements 12
VSS edit code 191

W
warning messages 291
where QMF objects reside 5
WIDTH

column in Q.PROFILES 101
WIDTH column (Q.PROFILES) 101
window panels

customized function key
examples 180

IDs 181
worksheet for installation

QMF 25

362 Installing and Managing QMF on VM

workstation database servers

planning 20

Index 363

364 Installing and Managing QMF on VM

Readers’ Comments — We’d Like to Hear from You

Query Management Facility™

Installing and Managing QMF on
VM/ESA
Version 7

Publication No. GC27-0720-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
GC27-0720-00

GC27-0720-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM CORPORATION
Department HHX/H3
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5697-F42

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC27-0720-00

Spine information:

��� Query Management Facility™ Installing and Managing QMF on VM Version 7

	Contents
	The QMF Library
	About This Book
	How to Use This book
	What You Should Know Before You Begin
	Locating Prerequisite Documentation

	Part 1. Installing QMF for VM/ESA
	Chapter 1. Introduction
	Overview of QMF
	QMF Objects
	Overview of QMF with Remote Unit of Work

	Some Terminology
	Overview of the Installation Process
	Where the Objects Reside
	Local and Remote Installation
	Connecting to a Remote Database from VM
	Connecting to Workstation Database Servers from VM

	Chapter 2. Planning for Installation
	Hardware Requirements
	Prerequisite Software
	Products Required to Support Remote Unit of Work
	Virtual Storage Requirements
	Discontiguous Shared Segments (DCSS) Storage Requirements
	Disk Storage Requirements
	Required DB2 for VM Knowledge
	DB2 for VM Requirements for QMF
	A PUBLIC DBSPACE is Required for Saving Data
	Database CONNECT ID “Q” and “SQLDBA”
	QMF SQL Install Packages
	Further Requirements
	QMF DBSPACE Requirements
	QMF Control Tables
	QMF Catalog Views
	QMF Sample Tables
	QMF SQL Packages

	Before You Begin
	Previous Releases of QMF
	Migration and Fallback
	QMF National Language Feature (NLF) Considerations
	Example

	Planning for Installing QMF into a Workstation Database Server

	Chapter 3. Installing QMF 7.1 into the DB2 for VM Database
	QMF Installation Flow Diagram
	The Installation Steps
	Preliminary: Read the Program Directory and Complete the QMF 7.1Worksheet
	Step 1—Create QMF Installation Control File: DSQ2ECTL
	Prompts

	Step 2—Create DB2 for VM DBSPACEs: DSQ2DBSC
	Step 3—Run QMF Installation EXEC: DSQ2EINS
	Preparation
	Assumptions for Installing QMF into a Remote Database Server
	What the Installation EXEC Does
	Running the QMF Installation EXEC
	Installation EXEC Error Messages

	Step 4—Start QMF: DSQ2EINV
	Step 4A—Tailor the QMF Invocation EXEC: DSQ2EINV (Optional)
	Step 4B—Invoke QMF from an ISPF Environment (Optional)

	Step 5—Run the IVP for QMF Interactive Mode : DSQ2EIVP
	Step 5A—Test QMF Initialization
	Step 5B—Test the Help Panel
	Step 5C—Test the QMF Command Interface (ISPF Only)
	Step 5D—Test the QMF IVP Procedure
	Restarting the IVP

	Step 6—Installing the QMF Sample Objects and Application Objects:DSQ2ESQD and DSQ2ESQI
	Restarting the Procedure

	Step 7—Running the Batch-Mode IVP (Optional): DSQ2EBAT
	DB2 for VM Authorization
	Restarting the Batch IVP
	Expected Results from Executing the Batch IVP

	Step 8—Deleting Previous Versions of QMF (Optional): DSQ2BDEL
	Step 9—Post-Installation Cleanup
	Step 10—Load QMF Database Packages to a Remote Server (Optional):DSQ2BPKB

	Chapter 4. Installing a QMF 7.1 National Language Feature(NLF)
	NLF Installation EXECs
	Installing a National Language Feature
	Hardware and Program Product Requirements
	The Installation Steps
	Preliminary: Read the NLF Program Directory and Complete theWorksheet
	Step 1—Create the QMF NLF Installation Control File: DSQ2nCTL
	Prompts

	Step 2—Run QMF NLF Installation EXEC: DSQ2nINS
	Assumptions for Installing QMF into a Workstation Database Server
	Running the EXEC
	Restart Procedure
	Installation EXEC Error Messages

	Step 3—Start QMF NLF: DSQ2nINV
	Step 3A—Tailor the QMF Invocation EXEC: DSQ2nINV
	Step 3B—Invoking QMF from an ISPF Environment (Optional)

	Step 4—Run the IVP for QMF NLF Interactive Mode: DSQ2nIVP
	Test the QMF Command Interface
	Test the QMF Procedure

	Step 5—Install QMF NLF Sample Objects and Application Objects:DSQ2nSQD and DSQ2nSQI
	Restarting the Procedure

	Step 6—Run the IVP for QMF NLF Batch Mode (Optional): DSQ2nBAT
	Step 7—Post-Installation Cleanup

	Part 2. Managing QMF for VM/ESA
	Chapter 5. Starting QMF
	Before you Start QMF
	Establishing a Database Connection
	Initializing the QMF Session

	Quick Start
	Setting up QMF to Run under ISPF
	Before you start QMF
	Starting QMF from a Menu Option
	Starting QMF with the ISPSTART Command
	PGM Form
	Program Segment Form

	Starting QMF in Batch Mode in ISPF
	Examples of Starting QMF under ISPF

	Setting up QMF to Run under CMS
	Starting QMF Directly with the DSQQMFE Module
	Starting QMF in a Batch CMS Environment
	Examples of Starting QMF under CMS

	Creating a CMS EXEC
	Verify Program Modules
	Verify QMF Data Files
	GDDM Considerations
	DB2 for VM Considerations

	Chapter 6. Customizing Your Start Procedure
	Quick Start
	Setting Default Start Values Using the REXX Program DSQSCMDn
	Naming the Program Segment
	dcssname
	DSQSDCSS

	Customizing Report Storage and Report Performance
	Adjusting Storage for Report Data (DSQSBSTG)
	Choosing the Right Amount of Virtual Storage for Each User
	Performance Tradeoffs

	Adjusting Reserved Storage Used for Report Data (DSQSRSTG)
	DSQSBSTG and DSQSRSTG Value of 0
	Small Value for DSQSBSTG or Large Value for DSQSRSTG

	Acquiring Extra Storage (DSQSPILL)
	Allocating a Spill File for CMS Users
	Estimating the Space Required for a Spill File
	Using a Spill File in a Noninteractive QMF Session
	Solving Some Spill File Problems

	Controlling the Number of Report Rows Retrieved for Display(DSQSIROW)
	Performance with Small DSQSIROW Values
	Performance with Large DSQSIROW Values

	Setting the Level of Trace Detail (DSQSDBUG)
	Controlling Initial Activities During a Session
	Specifying the Location to Connect to When Starting QMF (DSQSDBNM)
	Specifying an Interactive or Noninteractive QMF Session (DSQSMODE)
	Naming a Procedure to Run When QMF Starts (DSQSRUN)
	Running an Initial Procedure Noninteractively
	Performing Interactive QMF Work with an Initial Procedure
	Passing Variable Values to an Initial Procedure

	Setting Printing for Double-Byte Character Set Data (DSQSDBCS)

	Chapter 7. The QMF Session Control Facility
	Installing or Removing Q.SYSTEM_INI
	Importing the Default System Initialization Procedure
	When Does the Q.SYSTEM_INI Procedure Run?
	Using Q.SYSTEM_INI
	Example Shipped with QMF
	User Session Procedure Example
	Procedure that Displays an Object list

	Security and Sharing Session Procedure
	Diagnosis Considerations

	Chapter 8. Establishing QMF Support for End Users
	The role of the Q AUTHID
	Quick Start
	Ensuring That Users Have Access to CMS
	Creating User Profiles to Enable User Access to QMF
	Using the Q User Profile, a Special QMF Profile
	Establishing a Profile Structure for Your Installation
	Adding a New User Profile to the Q.PROFILES Table
	Preventing Users Without Unique Profiles from Using QMF
	Reading the Q.PROFILES Table
	Providing the Correct Profile for the User's Operating Environment
	Updating User Profiles
	Using the SET PROFILE Command
	Using SQL UPDATE Statements
	Updating the SYSTEM Profile

	Deleting Profiles from the Q.PROFILES Table

	Controlling Access to QMF and Database Objects
	SQL Privileges Required to Access Objects
	SQL Privileges Required for QMF Commands
	SQL Privileges Required for Prompted and QBE Queries
	SQL Privileges Required for the Table Editor

	Granting and Revoking SQL Privileges
	Using the SQL GRANT Statement
	Using the SQL REVOKE Statement

	Sharing QMF Objects with Other Users
	Allowing Uncommitted Read
	Setting Standards for Creating Objects

	Customizing a User's Database Object List
	Using the Default Object Lists
	Changing the Default List
	Object List Storage Requirement

	Enabling Users to Create Tables in the Database
	Choosing and Acquiring a dbspace for the User
	Using the SQL ACQUIRE Statement
	Sizing a dbspace

	Granting a User DB2 for VM RESOURCE Authority
	Enabling Users to Confirm Table Changes Before They are Made

	Enabling Users to Support a Chart
	Maintaining QMF Objects Using QMF Control Tables
	Reading the Q.OBJECT_DIRECTORY Table
	Reading the Q.OBJECT_DATA Table
	Reading the Q.OBJECT_REMARKS Table
	Listing QMF Queries, Forms, and Procedures
	Displaying QMF Queries, Forms, and Procedures
	Transferring Ownership of Queries, Forms, and Procedures
	Deleting Obsolete Queries, Forms, and Procedures
	Enlarging the dbspace for the QMF Object Control Tables

	Maintaining Tables and Views Using DB2 for VM System Tables
	Listing Tables and Views
	Transferring Ownership of a Table or View
	Deleting a Table or View from the Database

	Supporting Locally Defined Date/Time Formats
	Accessing the DXT End User Dialogs (ISPF Only)
	Supporting the EXTRACT Command
	Allocating Resources
	Allocating and Reallocating Resources Using EXECs
	Preparing the Allocation EXEC
	Preparing the Reallocation EXEC
	Other Allocation Methods

	Customizing the Document Editing Interface for Users
	Changing the Application
	Renaming the Document Interface Macros and EXEC
	Placing the Q.DSQAED2S Procedure in the Database
	Transferring Ownership to Q
	Changing the Data Components
	The Message Component
	The DCF Components

	Changing the EXECs and Macros
	Changing DSQABD2Q
	Changing DSQABD2I
	Changing DSQABD2C

	Customizing the QMF Edit Command
	Enabling English Support in an NLF Environment
	Using Global Variables to Define the Currency Symbol

	Chapter 9. Enabling Users to Print Objects
	Quick start
	Printing Objects
	Deciding Whether to Use QMF or GDDM Services for Printing
	Using GDDM Services to Handle Printing
	Choosing a GDDM Nickname for Your Printer
	Choosing the Right Type of GDDM Device

	Creating the Nickname Specification
	Example Nickname for a Family 2 GDDM Printer
	Example Nickname for a Family 3 GDDM Printer
	Example Nickname for a Family 4 GDDM Printer
	Defining Multiple Nicknames with One Definition
	Examples of Nickname Definitions
	Updating the GDDM Defaults Module with the Nickname

	Testing the Nickname Definitions in External Default Files
	How QMF Interfaces with Your GDDM Nickname

	Using QMF's DSQPRINT to Handle Printing
	Defining a Synonym for the Print Function Key
	Updating User Profiles to Enable GDDM Printing

	Chapter 10. Customizing QMF Commands
	Quick Start
	Using the Default Synonyms Provided with QMF
	Displaying Printed Reports (DPRE)
	Using DPRE
	Customizing DPRE

	Creating a Command Synonym Table
	Entering Command Synonym Definitions into a Command Synonym Table
	Choosing a Verb
	Rules for the VERB Column
	Using Base QMF Verbs as Command Synonym Verbs

	Choosing an Object Name
	Choosing the Synonym Definition
	Using a Procedure in the Synonym Definition
	Using Variables in the Synonym Definition
	Keying Information Into the SYNONYM_DEFINITION Column

	Activating the Synonyms
	Minimizing Maintenance of Command Synonym Tables
	Assigning One Synonym Table to all Users
	Assigning Views of a Synonym Table to Individual Users
	Synonyms for Public or Private Use
	Synonyms for Public or Group Use
	Synonyms Paired with an Authorization Table

	Chapter 11. Customizing QMF Function Keys
	Quick Start
	Choosing the Keys You Want to Customize
	Default Keys on Full-screen Panels
	Default Keys on Window Panels

	Creating the Function Key Table
	Entering Your Function Key Definitions into the Table
	Linking a Command with a Function Key
	Labeling the Function Key and Positioning it on the Screen
	Examples of Key Definitions
	Entering a Definition for a Key on a Full-screen Panel
	Entering a Definition for a Key on a Window Panel
	Entering a Key Definition for a Help or Prompt Panel

	Identifying the Panel You Want to Customize
	Full-screen Panel Identifiers
	Window Panel Identifiers
	Command Windows
	Forms Windows
	Global Variable Windows
	Help and Prompt Windows
	Location Windows
	Object List Windows
	Prompted Query Windows

	Activating New Function Key Definitions

	Chapter 12. Creating Your Own Edit Codes for QMF Forms
	Quick Start
	Choosing an Edit Code
	Handling DATE, TIME, and TIMESTAMP Data Types
	Calling Your Exit Routine to Format the Data
	Passing Information to and from the Exit Routine
	Fields of the Interface Control Block
	Fields That Characterize the Input Area
	How U-Type Edit Codes are Represented in the Input Area
	How V-Type Edit Codes are Represented in the Input Area

	Fields That Characterize the Output Area

	Passing Control to the Exit Routine When QMF Terminates
	Writing an Edit Routine in High-Level Assembler (HLASM) or Assembler
	How an Assembler Edit Routine Interacts with CMS
	How an Assembler Edit Routine Interacts with QMF
	Assembling Your Program
	Generating Your Program

	Writing an Edit Routine in PL/I without Language Environment (LE)
	How a PL/I Edit Routine Interacts with QMF
	Compiling Your Program
	Creating Your DSQUEDIT Module File in PL/I

	Writing an Edit Routine in PL/I with Language Environment (LE)
	Generating Your PL/I Program for LE

	Writing an Edit Routine in COBOL without Language Environment (LE)
	How a COBOL Edit Routine Interacts with QMF
	Compiling Your Program
	Assembling the Run Time Options Macro (COBOL II)
	Generating Your Program

	Writing an Edit Routine in COBOL with Language Environment (LE)
	Generating Your COBOL Program for LE

	Handling Double-Byte Character Set Data
	Edit Codes for DBCS Data
	What the Edit Routine Receives
	Data from Graphic Columns
	Data from Character Columns

	Ensuring the Edit Routine Returns the Right Results
	Overflowing the ECSRSLT Field
	Printing the Report Column

	Chapter 13. Controlling QMF Resources Using a GovernorExit Routine
	Quick start
	Using the IBM-Supplied Governor Exit Routine
	Activating the Default Limits
	How a Governor Exit Routine Controls Resources
	How the Governor Knows What the Resource Limits Are
	How the Governor Knows When You Reach a Resource Limit
	What Happens When You Reach a Resource Limit

	Defining Your Own Resource Limits
	Creating your own Resource Control Table
	VM Timer Considerations

	Modifying the IBM-supplied Governor Exit Routine or Writing Your Own
	Program Components of the Governor Exit Routine
	How CMS Interacts with the Governor Exit Routine
	How and When QMF Calls the Governor Exit Routine
	Points at Which QMF Calls the Governor
	What Happens Upon Entry to the Governor Exit Routine
	Establishing Addressability for Function Calls

	Passing Resource Control Information to the Governor Exit
	Structure of the DXEGOVA Control Block
	Addressing the Resource Control Table
	Structure of the DXEXCBA Control Block

	Storing Resource Control Information for the Duration of a QMF Session
	Canceling User Activity
	Providing Messages for Canceled Activities

	Assembling and Generating Your Governor Exit Routine
	Assembling Your Governor Exit
	Building a Module File or Creating a Load Library Member

	Chapter 14. Customizing a Remote Database Connection
	Quick Start
	Determining the Remote Database Connection Needed
	Connecting with Remote Unit of Work
	Connecting with DB2-to-DB2 Distributed Unit of Work
	Specifying a Table or View with a Three-part Name in DB2
	Directing a Query Using Three-part Names

	Verifying the Connections Necessary for Remote Unit of Work
	Checking DB2 for VM Connections
	Checking DB2 for VM Connections

	Preparing a Non-DB2 for VM Location for Access by QMF VM Users
	Creating Command Synonym Tables
	Sample Remote Server Command Synonym Table for the CMSEnvironment

	Preparing QMF to Support the DPRE Command
	Preparing QMF to Support Other Commands
	Creating Function Key Tables
	Updating QMF Governor Control Tables
	Installing the National Language Feature in the QMF Server
	Code Page Support
	Restricting Use of the APPLDATA Column
	Avoiding Use of Some Special Characters

	Enabling Your Users to Access a Remote Database
	Updating a User's Profile
	Specifying Access for Current SQL Authorization ID
	Connecting to the Local Database
	Connecting to the Remote Database
	Specifying a Location Name
	In DB2
	In DB2 for VM

	Where Data Must be Located for User Access
	Working with QMF Objects
	Working With Tables

	Preventing SQL Errors
	Translating User IDs
	Translating Names

	Deleting QMF Users from Each Remote QMF Location

	Enabling Administrator Access to Your Location

	Chapter 15. Customizing the Batch Processing Program
	Quick Start
	Enabling Your Users to Use Batch Mode
	Sending a Job to the CMS Batch Machine
	Running Batch Jobs on Your Machine
	Debugging a Procedure
	Using the QMF Batch Query/Procedure Application (BATCH)
	MACLIBs Required
	Using the Application
	Filling in the Prompt Panel
	Required Entry Fields
	Optional Entry Fields

	Modifying the Batch Application

	Chapter 16. Troubleshooting and Problem Diagnosis
	Quick Start
	Troubleshooting Common Problems
	Handling Initialization Errors
	Handling Warning Messages
	Handling GDDM Errors During Printing
	Handling QMF Errors During Printing
	Handling CMS Command Errors
	Using the CMS Command to Run an EXEC
	Issuing the CMS Command if QMF is Started Using ISPF
	Using the DB2 for VM CONNECT Command
	Using the DB2 for VM COMMIT Command

	Handling Display Errors
	Using the HEX Function
	Using QMF-provided Hex and Bit Edit Codes
	Handling Binary Data with User-Written Edit Routines

	Solving Slow Performance Problems
	Resetting the Data Object to Improve Performance
	Increasing the User's Report Storage
	Using REXX Function Packages

	Determining the Problem Using Diagnosis Aids
	Choosing the Right Diagnosis Aid for the Symptoms
	Diagnosing Your Problem Using QMF Message Support
	Determining which QMF Function Issued an Error Message
	Handling System Error Messages
	Handling SQL Return Codes

	Using the QMF Trace Facility
	Allocating the Trace File
	Starting the Trace Facility
	Getting the Right Level of Detail in Your Trace Output
	Tracing at the Module Level
	Viewing QMF Trace Data
	Determining the QMF Service Level
	Turning Off the Trace Facility

	Abend Handling
	Using the QMF Interrupt Facility
	Creating an Interrupt
	Displaying Trace Information After Creating an Interrupt
	Error Handling

	Using Error Log Reports from the Q.ERROR_LOG Table

	Reporting a Problem to IBM
	Using ServiceLink to Search for Previously Reported Problems
	Working with Your IBM Support Center

	Part 3. Appendixes
	Appendix A. Installation Checklists
	QMF Installation Checklist
	QMF NLF Installation Checklist

	Appendix B. QMF Objects Residing in DB2 for VM
	Input to DSQ2EINS or DSQ2nINS
	QMF User ID
	QMF Control Tables
	Default List Views
	QMF Packages
	NLF Parts

	Appendix C. Migration and Fallback Considerations
	Migrating from a Previous QMF Release to QMF 7.1
	Global Variables and the Governor
	Use of the Invocation Procedure
	Q.VPROFILE
	Multiple Releases of QMF

	Migrating to a new DB2 for VM level
	Migration and 31-Digit Decimal Support

	Fallback
	Re-establishing the Earlier Profiles
	Using Version 7 Objects Under Earlier QMF Releases
	Importing objects to Version 2.4

	Using Version 7 QMF Commands with Earlier Releases
	31-Digit Decimal Support

	Appendix D. QMF Control Tables and dbspaces Used byQMF
	Appendix E. Notices
	Trademarks

	Glossary of Terms and Acronyms
	Bibliography
	APPC Publications
	CICS Publications
	COBOL Publications
	DATABASE 2 Publications
	DCF Publications
	DRDA Publications
	DXT Publications
	Graphical Data Display Manager (GDDM) Publications
	HLASM Publications
	ISPF/PDF Publications
	OS/390 Publications
	PL/I Publications
	REXX Publications
	ServiceLink Publications
	VM Publications
	VSE Publications

	Index
	Readers’ Comments — We'd Like to Hear from You

