
Platform - Worklight
Version: 2013.11.14

Topics

❏ Dealing with new device O/S versions �

❏ Simple and clean previews of Worklight Apps �

❏ Source code ignore list �

❏ Native folder management �

❏ Exporting projects �

❏ Worklight image sizes �

❏ App Versioning and Publishing Worklight Apps �

❏ Best Practice for complex CSS applications �

External Documents

❏ Building apps and Configuring the Worklight server for use in slow networks �

Copyright © 2013 International Business Machines. All rights reserved.

https://docs.google.com/document/d/1i9TZzuXbi4_h-lAIpufvvqCGyc8UX9ZbEVBvz1il5AE

Dealing with New Device O/S Versions

Examples:
● Soft keyboard affects `viewport.height` when shown/hidden dynamically in iOS7, but did

not in iOS6.
○ This type of change is done by the browser implementation, and controlled via

<meta> viewport tag
○ See this Stackoverflow article

● It is possible that browser (even native) screen dimensions available to apps might
change between major OS versions.

○ The proper way to deal with this is CSS media queries, just as if it's a new type of
device with different screen dimensions (even though in this case its caused by
the OS/software updates)

○ Specific example is the addl 20px height given to all apps in iOS7 (native/hybrid/
web)

○ One possible general solution if you have a header <div> in your app is to
add padding-top: 20px within a media query that matches the iOS7 screen
heights (one for portrait and one for landscape) vs. the default that doesn't add
the padding

○ Or vice-versa, make the new default styling with the extra padding going forward,
and remove the extra top padding in a media query matching the older screen
dimensions

Copyright © 2013 International Business Machines. All rights reserved.

http://stackoverflow.com/questions/18970865/ios-7-input-elements-moving-fixed-positioned-elements

Simple and Clean Previews of Worklight Apps
For most day to day developer testing, having the full Worklight simulator environment can be
obstructive. It takes longer to load, makes it harder to examine the DOM, and generally is not
helpful. Granted it is useful and needed when testing device features, such as the camera. But
the 80% of the time, developers only need a simple browser based experience for debugging.

Use the following URL pattern to load your Worklight app in preview mode without the simulator
accouterments.

http://{wlserver}:{wlport}/{wlproject}/apps/services/preview/{wlapp}/

{wlenv}/{wlappver}/default/index.html

Where:
● {wlserver}:{wlport} - The host and port of your embedded Worklight server. Typically,

this will be **localhost:10080**
● {wlproject} : The Worklight project name being tested
● {wlapp} : The Worklight app being tested
● {wlenv} : The environment being tested. Possible values are: android, iphone, ipad,
● {wlappver} : The Worklight version being tested. Unless overridden, this will be 1.01.0

Example URL:

http://localhost:10080/MyProject/apps/services/preview/MyApp/android/

1.01.0/default/index.html

Copyright © 2013 International Business Machines. All rights reserved.

Source Code ignore list
The following list of directories and file should be added to your source code control’s "ignore"
lists:

/apps/{AppName}/android/native/assets/www
/apps/{AppName}/android/native/bin
/apps/{AppName}/android/native/gen

/apps/{AppName}/blackberry/native/www
/apps/{AppName}/blackberry10/native/build
/apps/{AppName}/blackberry10/native/www

/apps/{AppName}/ipad/native/build
/apps/{AppName}/ipad/native/cordova
/apps/{AppName}/ipad/native/cordovaLib
/apps/{AppName}/ipad/native/WorklightSDK
/apps/{AppName}/ipad/native/www
/apps/{AppName}/ipad/package

/apps/{AppName}/iphone/native/build
/apps/{AppName}/iphone/native/cordova
/apps/{AppName}/iphone/native/cordovaLib
/apps/{AppName}/iphone/native/WorklightSDK
/apps/{AppName}/iphone/native/www
/apps/{AppName}/iphone/package

/apps/{AppName}/windowsphone*/native/Bin
/apps/{AppName}/windowsphone*/native/obj
/apps/{AppName}/windowsphone*/native/www

/bin

Copyright © 2013 International Business Machines. All rights reserved.

Native folder management
The other issue with source code control and Worklight is the "native" folders. Almost 100% of it
can (and probably should) be ignored. There are many irrelevant files that get changed on each
build that are then marked dirty for SCCS and get disbursed to the team. Worse yet, if multiple
developers do a build, then we show file conflicts. Another common issue when importing
shared projects, is that things don't work unless you delete the "native" folder, thus losing any
custom settings. While this contradicts the InfoCenter, we recommend that you ignore the entire
“native” directory.

If you need to alter any files located under an environment's "native" folder -- such as
editing the androidManifest.xml, plist files, or adding cordova plugins -- copy that file into
the "nativeResources" folder first, and edit that file instead. Any files in this folder are copied
to the native folder prior to build. A side benefit is that it is obvious which native files have
been customized. As long as you are careful about having all native tree changes made in
the nativeResources folder instead, and making sure the nativeResources folder is properly
managed under SCCS, then you get the best of both worlds.

Copyright © 2013 International Business Machines. All rights reserved.

Exporting projects
When exporting a project to a zip archive, DO NOT include the following files and dirs:

/bin
/jslib
/apps/{AppName}/android/bin/{APP}.apk
/apps/{AppName}/android/native

/apps/{AppName}/blackberry/native
/apps/{AppName}/blackberry10/native

/apps/{AppName}/ipad/native
/apps/{AppName}/ipad/package

/apps/{AppName}/iphone/native
/apps/{AppName}/iphone/package

/apps/{AppName}/windowsphone8/native

 : Any customizations made in the native folder of the respective environments should be
reflected in the associated "nativeResources" directory, as described in the previous tip.

For Dojo-enabled projects that you are sharing, be sure to also export the associated Dojo
Library project (ie dojoLib). This is needed to provide any loose modules that have not been
added directly to the main app project's www directory.

While there is no current tooling to support this, 3rd party libraries should not be generally
exported, but rather they should be loaded once the project has been imported into Worklight
Studio. These libraries would typically come from bower, npm, brew, or some other package
management system.

Copyright © 2013 International Business Machines. All rights reserved.

Worklight Image Sizes
Note: May need updating for IOS7

Worklight Image Sizes w x h

common/images/icon.png
common/images/thumbnail.png
common/images/favicon.ico

128 x 128
90 x 90
16 x 16

Android Images w x h

android/native/res/drawable/icon.png
android/native/res/drawable/push.png

48 x 48
25 x 25

android/native/res/drawable-hdpi/icon.png
android/native/res/drawable-hdpi/push.png
android/native/res/drawable-hdpi/settings.png

72 x 72
24 x 38
72 x 72

android/native/res/drawable-hdpi-v11/push.png 36 x 36

android/native/res/drawable-ldpi/icon.png
android/native/res/drawable-ldpi/push.png
android/native/res/drawable-ldpi/settings.png

36 x 36
12 x 19
36 x 36

android/native/res/drawable-ldpi-v11/push.png 18 x 18

android/native/res/drawable-mdpi/icon.png android/native/
res/drawable-mdpi/push.png
android/native/res/drawable-mdpi/settings.png

48 x 48
16 x 25
48 x 48

android/native/res/drawable-mdpi-v11/push.png 24 x 24

android/native/res/drawable-xhdpi/icon.png android/native/
res/drawable-xhdpi-v11/push.png

96 x 96
48 x 48

IOS (Applies for both ipad and iphone trees) w x h

ipad/Resources/Default-iphone.png (Splash)
ipad/Resources/Default@2x-iphone.png (Splash, retina)

320 x 480
640 x 920

ipad/Resources/Default-Landscape-ipad.png ipad/Resources/
Default-Landscape@2x-ipad.png
ipad/Resources/Default-Portrait-ipad.png
ipad/Resources/Default-Portrait@2x-ipad.png

1024 x 768
2048 x 1496
768 x 1024

1536 x 2008

Copyright © 2013 International Business Machines. All rights reserved.

ipad/Resources/Icon.png
ipad/Resources/Icon@2x.png
ipad/Resources/Icon-72.png
ipad/Resources/Icon-72@2x.png (@ 72dpi)
ipad/Resources/Icon-small.png
ipad/Resources/Icon-small-50.png

57 x 57
114 x 114

72 x 72
144 x 144

29 x 29
50 x 50

ipad/Resources/ITunesArtwork.png 512 x 512

Blackberry w x h

blackberry/native/icon.png
blackberry/native/splash.png

80 x 80
200 x 38

Windows w x h

Copyright © 2013 International Business Machines. All rights reserved.

App Versioning and Publishing Worklight Apps
In Worklight, the “application-descriptor.xml” file contains the apps “public” version.

For IOS deployments, an .ipa has two versions embedded into it.
● Public Version - This is the version that is shown to users on the AppStore, and is

visible on the device. This is the version number that is maintained within the Worklight
app-desc file. This version is localizable as needed.

This is also known as the “Bundle Short Version String”. Within the info.plist file of the
app this version is stored in the CFBundleShortVersionString.

● Build Version - This is the private iTunes App Store only version. It is used to compare
app versions during AppStore submission, and must be higher than any previously
submitted versions. We believe this is an options version number, until it has been used
once, at which point it becomes mandatory (for version comparison). Worklight does
not touch this property, it is the customer's responsibility to ensure that it is valid and
consistent when used.

This version is also known as the “Bundle Version”. Within the info.plist file of the app
this version is stored in the CFBundleVersion.

Copyright © 2013 International Business Machines. All rights reserved.

https://developer.apple.com/library/ios/documentation/general/Reference/InfoPlistKeyReference/Articles/CoreFoundationKeys.html#//apple_ref/doc/uid/20001431-111349
https://developer.apple.com/library/ios/documentation/general/Reference/InfoPlistKeyReference/Articles/CoreFoundationKeys.html#//apple_ref/doc/uid/20001431-102364

Best Practice for complex CSS applications
This entry describes how to properly utilize CSS stylesheets within Worklight. I'm currently
putting my env specific CSS files into each environment's css/ directory as part of my initial dojo
build. Then in each env's MyApp.css file, I do an @import of the specific file.

Worklight Limitation

Worklight concatenates CSS files of the common and environment specific trees during the
build process. This presents an issue with regards to @import in CSS files within Worklight
applications. To illustrate, here is an example use case:

In common/css/MyApp.css, we have the following:
@import("iphone.css");

h1 { ... }

.myRule { ... }

.another { ... }

Then in android/css/MyApp.css, we have:
@import("android.css");

.myAndroidRule { ... }

When WL builds the app, it concatenates these files, which breaks the rule of @import
statements needing to be at the top of the CSS file, and the android CSS file is never read in!
To workaround this issue, there are two options:

1. Do not use @imports in Worklight projects. This is simply not realistic in ANY non-trivial
application.

2. If @imports are used, Do not have any discreet rules in the "MyApp.css" files.

Solution pattern
So given that option 2 above is the only practical solution, the css files would now resemble the
layout shown below. This assumes that you have multiple environments. There are two basic
strategies to follow regarding CSS. You can either start with a common theme that carries over
all environments, or you have a unique theme for each environment. Both are valid depending
on your needs. The following layout can safely support either configuration. Shown below is an
example suggested layout of a complex CSS structure.

Copyright © 2013 International Business Machines. All rights reserved.

/common/css/{MyApp}.css
/*

This file may contain only @import statements, or only

rules. If rules are placed here, then the environment

specific MyApp.css may not contain @imports!

Global base css when using common look and feel

Usually taken from base env file (ie iphone.css)

*/

@import url("common.css");

/*

Other non-conflicting external css files, typically

library files

*/

@import url("someLibrary.css");

...

/common/css/common.css
/*

This file is used to define common (global) css rules.

It is used when the application will have a common look

and feel shared by all environments. It is typically based

on a dojox.mobile theme file (ie iphone.css).

*/

/common/css/common_custom.css
/*

This file is used to override common (global) css rules.

It should be loaded after the common.css, library, and

environment specific rules are applied.

*/

Copyright © 2013 International Business Machines. All rights reserved.

/{environment}/css/{MyApp}.css
/*

This environment specific file may contain @import and/or

rules. It is recommended that only @imports be used here

and rules be placed in the {environment}_custom.css file.

Environment specific base rules, when there IS NOT a

common look and feel

*/

@import url("iphone.css");

/*

Other non-conflicting external css files, specific to

this environment

*/

@import url("someLibrary.css");

...

/*

Bring in global common override rules for either the

global and/or environment rules

*/

@import url("common_custom.css");

/*

Bring in environment specific override rules AFTER the

common rules are applied.

*/

@import url("iphone_custom.css");

/{environment}/css/{environment}.css

Copyright © 2013 International Business Machines. All rights reserved.

/*

This file is used to define an environment specific theme.

Typically, you will define either a common (global) theme,

or environment specific themes.

*/

/{environment}/css/{environment}_custom.css
/*

This file is used to override environment specific theme

rules. It should be loaded last after: common, environment,

and common_custom.

*/

When combined, we have a valid master CSS file that contains all @imports. When a final dojo
build is run, it will combine the css files for each env, and result in a single css file that contains
all rules. So again, when WL combines the post built files, its still valid in that sense as well.

Copyright © 2013 International Business Machines. All rights reserved.

