
Understanding Hybrid Architecture
Version: 2013.11.21

Contents

Contents
CIO/Project Manager

Why is this important to me?
Front-end Developer

Why is this important to me?
Hybrid Architecture Concepts & Fundamentals
Android Platform

Fragmentation
Here Comes Chromium
Unfortunate side effects

iOS Platform
Development Options when Encountering Performance Issues or Limitations with Hybrid

Implement your entire app using Native SDK
Implement screens with advanced capabilities or degraded performance on older
versions using native, and other screens using web technologies (a mixed hybrid
application)
Implement your entire app with web technologies, turning off advanced visual effects
and possibly using alternative u/x design that avoids slow performance (for example
scrolling of large lists can be slow)

Copyright © 2013 International Business Machines. All rights reserved.

CIO/Project Manager

Why is this important to me?
Understanding how Hybrid application architectures differ from other environments such as
web or pure native applications is crucial to understanding how this type of architecture can
be used to reduce overall project costs over time. Not understanding the limitations of hybrid
environments can also unexpectedly introduce user experience or performance problems late in
a development cycle.

If you don’t have a strategy in your project or across your organization for how to deal with
known hybrid issues on different platforms or new issues that might come up, chances are you
will spend a lot of extra money in recovery that could have been saved.

If you’re a manager, please take the time to understand the following Concepts & Fundamentals
section and as a follow-on activity, read the related Updating Applications To Support New
Operating System Versions guidelines and make sure to adjust your projects’ development
process accordingly.

The wide variations in the browser environments described across platforms and versions in the
next section is situation normal for hybrid and web application developers; however, it should
be clear that in this world, different rigorous development processes, different development
techniques and different planning will be required to ensure project success that you may not be
aware of.

The mobile development model, whether native, hybrid or web architectures is not:
● Write once, run everywhere
● Write once, run forever without having to make changes
● Design once, pixel perfect, run on any screen size.

One of the biggest mistakes is expecting that it is.

Mobile development with hybrid and web architecture is:
● Writing to standards (not proprietary api’s)
● Reusing Web skills
● Reusing Tools
● Reusing HTML/CSS/JavaScript assets over time and across projects and platforms
● Making necessary adjustments to applications as runtime environments change using

well established design techniques, patterns and best practices to keep changes
minimal.

● Design mobile first, using responsive design techniques and environment awareness--
not pixel perfect, adaptable to different screen sizes and orientations.

Copyright © 2013 International Business Machines. All rights reserved.

https://docs.google.com/document/d/18hqyXmstngRywYs-Bfg9Sa8KzcXwv-v7AH1f01wF7Qs/edit#heading=h.ezpydwtk7wqu
https://docs.google.com/document/d/18hqyXmstngRywYs-Bfg9Sa8KzcXwv-v7AH1f01wF7Qs/edit#heading=h.ezpydwtk7wqu
https://docs.google.com/document/d/1eQX9Yi-20lba6w-7d-zQ1gNCCGl_kT8VKvreRC-73Ho/edit#heading=h.1jm61yf6a4w9
https://docs.google.com/document/d/1eQX9Yi-20lba6w-7d-zQ1gNCCGl_kT8VKvreRC-73Ho/edit#heading=h.1jm61yf6a4w9

Adapting to rapidly evolving mobile platform releases requires a strategic plan for dealing with
these platform changes over time, including updating and migrating applications with support
for new emerging platforms on a near-continuous basis. And it requires the use of development
techniques that allow your application design and architecture to accommodate changes in the
underlying platform.

Copyright © 2013 International Business Machines. All rights reserved.

Front-end Developer

Why is this important to me?
There are always different features available that need to be checked for and code needs to
be written in a flexible manner to be resilient to these differences. Various techniques are
now well-established for helping developers deal with these kinds of differences in JavaScript
and HTML, such as feature detection, feature testing, mobile first responsive design and open
source tools and performance optimization techniques that you should be aware of and using
in your applications. It is important that you have a good understanding of the Front-end
Development technology-specific Best Practices and Checklist items that have been captured
on this site.

Most front-end developers view webkit as a black box component, but it may be helpful to
understand how Webkit is designed to understand what are the causes of variation. For more
technical details on the how webkit browser engines is designed and how it varies across
platforms, see Paul Irish, WebKit for Developers.

As you develop your own tips and tricks, consider sharing the techniques with us via a blog post
or comment on this site, so that others can benefit from your lessons learned.

Copyright © 2013 International Business Machines. All rights reserved.

https://drive.google.com/folderview?id=0B4h69dzRObtydGl4WUNSNzBTS28&usp=sharing
https://drive.google.com/folderview?id=0B4h69dzRObtydGl4WUNSNzBTS28&usp=sharing
https://drive.google.com/folderview?id=0B4h69dzRObtydGl4WUNSNzBTS28&usp=sharing
http://www.webkit.org
http://www.paulirish.com/2013/webkit-for-developers/

Hybrid Architecture Concepts & Fundamentals
Hybrid Applications consist of native code that creates an embedded web browser used to
render parts of the application user interface which are written in standard HTML, JavaScript
and CSS formats.

The actual browser engine used within the embedded web browser and it’s configuration
options are provided by the device operating system vendor. The browser engine’s
implementation changes between versions of the operating system, usually the same browser
engine technology is kept and just a newer version of the browser engine is used when an
O/S is updated, but sometimes completely different browser engines are used in newer
versions of the O/S. Across different operating systems, completely different browser engine
implementations are used (eg. WinPhone8 - Internet Explorer/Trident, Apple iOS - Safari/
Webkit), even though they may be based off of the same underlying browser engine codebase.

Even if an operating system provides a specific browser engine, parts of the browser engine can
be replaced by carriers (that have forked the primary O/S for their devices or markets). A good
example of this is Webkit, which has replaceable subsystems that are implemented differently
on different operating systems (eg. iOS, Android, Blackberry).

It’s also important to realize that the embedded web browser engine used inside the webview
native code of the hybrid app often has different capabilities enabled from the default
standalone browser application provided by the mobile operating system vendor. There is
no guarantee that the browser engine used by the default browser will have exactly the same
features and runtime characteristics as the browser used by the embedded webview API
provided by the same O/S vendor and version. As an example, see the next section about
Android’s browser engines changing in different versions of Android O/S.

The above facts are not obvious, but can have large ramifications on application
functionality and performance.

Copyright © 2013 International Business Machines. All rights reserved.

Android Platform
Currently, there are the following versions of Android in the marketplace:

Version
WebView

Browser Engine
Default Browser Application

Browser Engine

2.x
+ carrier-specific forks

Android Default (webkit) Android Default (webkit)
+ carrier-specific replacements

3.x
+ carrier-specific forks

Android Default (webkit) Android Default (webkit)
+ carrier-specific replacements

4.1-4.3
+ carrier-specific forks

Android Default (webkit) Chromium (Blink)
+ carrier-specific replacements

4.4 (Kit Kat) Chromium (Blink) Chomium (Blink)

For user-installed web browser applications on Android, there are multiple alternative browsers
available through Google Play.

Fragmentation
Note that there are different forks of the Android codebase versions for different worldwide
carriers. Some of these carriers tweak or modify the webkit subsystems, others replace the
browser with their own, for example the UCBrowser is common in India and Chinese carriers.

Here Comes Chromium
As you can see from the table above, in Android 4.0, the platform’s default browser application
changed from an Android webkit fork to use the new Chromium engine based on Blink.
Chromium (the same browser engine that Google Chrome’s desktop browsers are based on)
supports more HTML5 features and has better support of many of the same features that were
in the Android Default browser engine.

Unfortunate side effects
Unfortunately, it appears that around the time Android began switching Chromium in for the
default web browser, the Android default browser engine used by the WebView API’s provided
by Android was left in the dust. This means that currently on Android, web apps running in the
Chrome browser have a different (more advanced) set of features and much better runtime
performance than hybrid apps which are using the less capable engine. Fancy effects such as
3d transitions are possible only on the default 4.x browser application.

Because of the additional carrier forks (many carriers fork once and never provide OS updates
to customers), it is impossible to back port and update the default web view and browsers on
older versions of Android. It is technically possible to embed Chromium browser engine inside
of a hybrid app, but experimental open source projects have shown that this only works on

Copyright © 2013 International Business Machines. All rights reserved.

http://www.ucweb.com

Android 4 (Chromium would need to be backported to previous Android API’s to be embeddable
on those versions), and embedding Chromium within an app increases the application footprint
by at least 16MB.

Because of these differences, Android platforms require more effort to test on a wider variety
of devices than iOS. You may find that on a specific device model performance goals or user
experience is not achievable. In these cases, see the Development Options when Encountering
Performance Issues or Limitations on Hybrid and Web Architectures section for common
solutions.

This wide variation is situation normal for native, web and hybrid architectures on Android
and you will need to plan for changes over time, even for apps already in production, and is
very similar to the browser history and problems/solutions needed for Internet Explorer on
desktop platforms. See the Upgrading Applications to Support New Operating System Versions
document for further guidance on how to plan accordingly.

It is great news for the Android 4.4 platform that the browser engine will be Chromium/”Blink”-
based for both the webview used by hybrid applications and web apps running on the default
browser application. Performance improvements and advanced HTML5 capabilities are
now possible for hybrid apps running on Android 4.4. However, it’s impossible to have the
Chromium webview backported onto older Android versions, so customers running 4.0-4.3 will
need to upgrade their OS, a non-trivial procedure in order to have decent hybrid capabilities.

Also, applications which were using various performance workarounds on Android 4.0-4.3 need
to now check the API level and either apply the previous workarounds for 4.0-4.3 or remove
them for the new API levels, and the app must be built to target Android 4.4, otherwise the app
will resort to a “quirks” mode that will degrade behavior to be similar to 4.0, even though the app
would be running on 4.4.

Copyright © 2013 International Business Machines. All rights reserved.

https://docs.google.com/document/d/18hqyXmstngRywYs-Bfg9Sa8KzcXwv-v7AH1f01wF7Qs/edit?usp=sharing
http://www.chromium.org/blink

iOS Platform
Currently, on all versions of iOS in the marketplace, the browser engine used in embedded web
views is the same as the browser engine used within the default browser application, Safari/
Webkit.

The main differences between the browser engines are in HTML5 capabilities, bug fixes, and
normal browser improvements. However, even though web applications running in hybrid web
views, and default Safari browser are running on the same codebase, the options enabled in the
browser can vary. Also, between versions of iOS, webkit browser features that are controlled by
the O/S may change, resulting in variations.

Here are some examples of variation that developers have experienced that application
developers may need to make changes to their applications when new versions appear:

● JavaScript JIT optimization may not be enabled when launching web apps that have
been bookmarked to the home screen, resulting in lower performance.

● The browser dimensions may no longer be the same as the screen dimensions, affecting
viewport dimensions.
Examples:

○ iOS7’s changing the previously reserved status bar area to be an overlay results
in a 20px change in viewport height.

○ When a soft keyboard is shown on iOS7, the default behavior of the browser
viewport has changed. Previously, the viewport’s height when keyboard was
displayed was the device-height, in iOS7 the viewport’s height becomes the
remaining height in the visible area above the soft keyboard.

The first change due to status bar can be solved easily with a media query.
The change because of the soft keyboard can be solved with a <meta> viewport height
change. Unfortunately, running the new html on an older version of iOS will not give the
application proper behavior, because this viewport height setting was broken in previous
releases.

The goal of this section is not to list all of these known differences and solutions here, but rather
to bring awareness as to the kinds of things that can affect an application that was working on a
previous version of the same iOS.

You may find that on a specific device model or older O/S version that is still supported in
your market, performance goals or user experience is not achievable. In these cases, see
the Development Options when Encountering Performance Issues or Limitations on Hybrid
and Web Architectures section for common solutions. Again, this is normal for native, web
and hybrid architectures. See the Upgrading Applications to Support New Operating System
Versions document for further guidance on how to plan accordingly.

Copyright © 2013 International Business Machines. All rights reserved.

https://docs.google.com/document/d/18hqyXmstngRywYs-Bfg9Sa8KzcXwv-v7AH1f01wF7Qs/edit?usp=sharing
https://docs.google.com/document/d/18hqyXmstngRywYs-Bfg9Sa8KzcXwv-v7AH1f01wF7Qs/edit?usp=sharing

Development Options when Encountering Performance Issues or
Limitations with Hybrid
What all of this means is that if you are targeting Android you have the following options if you
find performance problems due to the default Android browser based on the Android devices
used in your market:

1. Implement your entire app using Native SDK

This is a perfectly acceptable technical approach, but has a higher business cost (both
initial and ongoing) due to maintenance, training/skills over time.

You’ll need to hire a larger team of native developers on each project with skills specific
to each native vendor O/S that you need to support the applications on. This option
also results in having completely separate codebases across vendor operating system
platforms, with no sharing of common code assets between platforms.

2. Implement screens with advanced capabilities or degraded
performance on older versions using native, and other screens using
web technologies (a mixed hybrid application)

An example of this approach is that some screens such as login, top-level navigation,
and other frequently visited screens are done in native, while less-frequently visited
screens are implemented with web technologies. Over time, the native views can
be dropped and replaced with web-based views (that may run just fine in the iOS
environment branch of your project) so that you remove native parts as the browser
capabilities improve.

 You’ll need to hire a small team of native developers with skills for each native platform
supported on each project that uses this option. Care needs to be taken to align the
visual design and behavior of the native implemented views with the web views so
that the integration is as seamless as possible from an end-user perspective. Costs
concerns for the native portions of the app are same as option 1.

3. Implement your entire app with web technologies, turning off
advanced visual effects and possibly using alternative u/x design that
avoids slow performance (for example scrolling of large lists can be
slow)

Copyright © 2013 International Business Machines. All rights reserved.

As an example, one of the known performance problems on certain device models such
as Samsung Galaxy Tab 2 have poor native scrolling performance in the embedded
web browser. If you can change the application design such that the user does not
touch scroll through a list, but instead is designed to provide paging buttons, and this
user experience tests acceptable with your users, you have a workaround that does not
require native.

Copyright © 2013 International Business Machines. All rights reserved.

