
Understanding Responsive Web Design (RWD) &
Environment Aware Component Design

Version: 2013.11.21

Contents

Contents
Checklist

Planning
Responsive Web Design Overview

What is responsive design?
When should responsive design be considered?
Architectural Strategies
Key Ingredients of Responsive Design
Prescriptive vs. Responsive design
Determining Major Breakpoints

Cost reduction strategies for responsive web design
Beyond Responsive Design

Environment Awareness
Environment-aware Conditional Loading
Device-Awareness and Feature Detection
IBM Worklight Features for Environment Optimization

Environment Optimization
Skin

Copyright © 2013 International Business Machines. All rights reserved.

Checklist

Planning

❏ Make sure to include design, development and test work items for apps that need to
operate in more than one orientation.

❏ Use responsive design early in the project lifecycle. Trying to retrofit responsive
techniques late in a project is very expensive.

❏ Define a cost reduction strategy and plan for minimizing costs due to supporting multiple
devices, operating systems.

❏ Start with small form factor screen designs, and work outward toward larger form
factors—this is “mobile-first” responsive design. Starting with large form factors and
going the other direction incurs large refactoring costs.

❏ Do not waterfall the design process – responsive design requires designer and
developer collaboration.

❏ Determine your breakpoints early in the project
❏ When determining supported breakpoints, make sure to consider vertical breakpoints in

addition to horizontal breakpoints.
❏ Make sure to design for orientation changes

Copyright © 2013 International Business Machines. All rights reserved.

Responsive Web Design Overview

What is responsive design?
It is an essential technique for adjusting application content to the wide variations in screen
sizes and different orientations.

Figure
1

● Minimum screen resolution cause clipped viewport
● Devices becoming smaller and larger simultaneously

○ Small: Mobile devices, smart phones
○ Large: Web gets into Game Console, TV
○ Somewhere in between: Tablet

● We are designing for more:
○ Devices
○ Input types
○ Resolutions
○ Orientations

● Reduce development costs
● 30% ~ 50% less coding (as compared to pixel perfect approaches)

Copyright © 2013 International Business Machines. All rights reserved.

Example: Application Layouts on iPhone vs. iPad form factors
Figure 2

When should responsive design be considered?

Responsive design pattern should be considered even in the early phase of User Interface/
Experience (UX) design

● Design UX component that can be easily expand or subtracted. Etc. List, Grid
● Design/Wireframe one flow (use case) for multi-form factor (phone -> tablet)

Architectural Strategies
Multi-channel rendering

● Can facilitate the rendering of multiple channels via Responsive Design, Feature
Detection, and the Worklight Optimization framework.

Mobile First
● Build on form factor (phone or tablet) as first channel.
● Extend to support other devices and form factors

Responsive Architecture

● Responsive Architecture is a piece of architecture and its inhabitants to mutually
influence and inform each other

● Responsive Design is the technique of designing web sites/apps that are not only more
flexible, but that can adapt to the media that renders them.

Key Ingredients of Responsive Design

Copyright © 2013 International Business Machines. All rights reserved.

● Flexible size (including fonts)
● Fluid layout
● Responsive images and media
● CSS3 Media queries for responsive layout

Prescriptive vs. Responsive design
Prescriptive design, the traditional design approach which uses absolute pixel positioning in
design mockups targets specific device form factors without considering multi-channel or multi
form factors.

Using prescriptive design usually ends up with developers creating functional components
for each device type or form factors, instead of reusing most of the existing components with
Responsive Design and thinking about building components that must have flexibility when used
in different environments and container sizes.

Determining Major Breakpoints
It is important early on in a project to decide upon the major “breakpoints” that your app (or
company’s apps) will need to support. For example, here are some horizontal breakpoints that
typically are used:

● Smartphone width <480px
● Tablets portrait width <768px
● Tablets landscape width >768px
● Desktop >1024px

When determining supported breakpoints, make sure to consider vertical breakpoints in addition
to horizontal breakpoints.

Example during rough mockup activity

Copyright © 2013 International Business Machines. All rights reserved.

Cost reduction strategies for responsive web design
It is important that you develop a business strategy around responsive design to minimize
costs over time. Starting with different form factors and working toward other form factors in
subsequent iterations can have dramatic differences in costs, depending on if you start small
and work to larger or vice versa.

There are many dimensions that incrementally affect costs that may not be initially apparent
when developing mobile apps across multiple device types and channels. Figure 1 describes
the most common cost factors.

When targeting many device types or channels (commonly referred to as “multichannel”), there
are many cost factors include designing, developing and testing the application to be flexible
enough to accommodate a wide variety of form factors, orientations, themes, device-specific
behaviors or UI metaphors, accessing device capabilities not available in the browser alone,
and coding native screens or components.

The goal of this section is to illustrate one possible approach of many for how costs can be
minimized over time. Your projects may not have the luxury of starting in this order, but you will
still need to define a plan for how your projects (and in other projects across your company) can
reduce costs following similar approaches that fit your business case.

Figure 4 – Cost Dimensions

Copyright © 2013 International Business Machines. All rights reserved.

Figure 5 illustrates a lowest cost/broadest reach strategy. This approach requires starting with
designing for small form factor devices and desktop hosted web browser at smaller (phone-
approximate) sizes, webkit-based devices first but with flexible CSS layouts. This allows the
app design on the smartphone to be fully functional and flexible sizing to be tested on all form
factors (by resizing the desktop browser manually), until more form-factor appropriate designs
can be implemented in subsequent iterations.

Figure 5 – Lowest Cost/Broadest Reach Approach

Subsequent iterations can then address design differences at larger form factors. This is
where the term, “Mobile First Design” originates. As design moves toward larger form factors,
aggregation is used reusing components designed for smaller form factors, reducing the costs
that would be associated with decomposing larger user interfaces designs if working in the
opposite direction (from larger to smaller form factors).

To further reduce costs, this approach can use a single cross-device unified “theme”, rather
than device-specific themes. After web form factors are targeted, application features requiring
device capabilities are added using hybrid bridge technologies such as Apache Cordova

Copyright © 2013 International Business Machines. All rights reserved.

(Phonegap).

Copyright © 2013 International Business Machines. All rights reserved.

Figure 6 – Addressing multiple orientations in different form factors

Finally, Figure 7 illustrates how if you plan to add additional operating system-specific UI
behaviors, this will add an additional cost dimension to your project.

Copyright © 2013 International Business Machines. All rights reserved.

Figure 7 – Device specific behavior and tweaks

Copyright © 2013 International Business Machines. All rights reserved.

Beyond Responsive Design

● Responsive Design can’t solve all the multi-channel challenges.
○ Dramatic different design for Web vs. Mobile channel.
○ Need for different landing page URL
○ Vendor device model-specific UI needs

● Alternatives to Responsive Design
○ facade for component with different implementations on different devices
○ Server side dynamic CSS using SASS

Environment Awareness
Types of problems that require environmental awareness

● How to design user interfaces that can dynamically adapt to varying capabilities
available on devices?
e.g.

● Input methods (Keyboard, Touch, Mouse, Headtrack, etc.)
● Capabilities (SVG vs. Canvas, Camera/Video, Secure storage)

● How to allow different UI controls on different device types?
● How allow different UI controls to be used in different form factors, with very different

behaviors?
eg. Popover dialogs for tablet, slide-in overlays for phone

● How to you keep JavaScript code loaded limited to only what’s needed by a particular
environment?

Environment-aware Conditional Loading
When using MVC patterns, the controller can perform feature detection, then dynamically load
an appropriate child controller module (or switch between views already loaded).

This allows the controller to:
● Swap in different controls for different device types (Android/iOS/etc.)
● Swap in different controls for different form factors

A similar technique can be used to dynamically load feature modules for certain types of
interaction, only when needed (eg. mouse or touch support)

Device-Awareness and Feature Detection

Copyright © 2013 International Business Machines. All rights reserved.

● Process/Render different content based on device type and feature detection
● Inspecting the User-agent header property of HTTP request

 Mozilla/5.0 (iPhone; CPU iPhone OS 5_0_1 like Mac OS X) AppleWebKit/534.46
(KHTML, like Gecko) Mobile/9A405

● Device
● OS
● Browser

Existing frameworks and API’s simplify the task of feature detection:
● has.js
● Dojo – dojo.has, dojox.mobile.deviceTheme
● Modernizr
● IBM Worklight - WL.Client.getEnvironment

IBM Worklight Features for Environment Optimization
There are times when a combination of feature detection and responsive design techniques are
still not sufficient, such as overcoming deficiencies in browsers on specific device models or OS
versions. In these cases, IBM Worklight’s Environment Optimization & Skin capabilities can be
used.

Environment Optimization
● The Worklight application structure is divided into environment folders (iPhone, Android,

BlackBerry, and so on).
● Each environment folder contains the resources (CSS, JS, images, and so on) that are

relevant for that specific environment.

Copyright © 2013 International Business Machines. All rights reserved.

● Customization can be made for a specific environment

Skin
● Skins provide support for multiple form factors in a single executable file for devices of

the same OS family.
● Skins are a sub-variant of an environment.
● Skins are packaged together in one app.
● The decision on which skin to use is made automatically at runtime

Copyright © 2013 International Business Machines. All rights reserved.

